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Forest products companies in the U.S. face vigorous competition from other wood 

producers around the world and other industries (steel, aluminum, plastics, 

composites). To be competitive, forest companies need to control costs, sort and 

allocate logs to the most appropriate markets, and recover more value at time of 

harvest. Interest in log sorting based on internal wood properties is increasing. 

 

Wood properties, such as stiffness and density, are now being considered by log 

buyers. Assessing these properties in-forest and in real-time will be a challenge for 

log supply managers. The utility of near infrared (NIR) technology for measuring 

wood density is showing promise in laboratory conditions. The rationale behind 

this study was to evaluate NIR under conditions that are similar to 



field harvesting operations to estimate log density.  Douglas-fir wood samples 

(110 disks) were collected from the McDonald-Dunn forest and processed in the 

OSU Oak Creek laboratories. Processing conditions were organized to simulate a 

harvester processor environment by using a chainsaw, and then channeling the 

chips with a chute to concentrate chips to move past an NIR sensor. This apparatus 

was intended to mimic a sensor system fitted to a harvester head.. A rugged 

Prospectra D2 NIR sensor was used to collect spectral data. 

 

The generated spectra were analyzed in two forms, as raw data (without any 

transformations) and a transformed data (2nd derivative). Then, four types of 

calibration models were applied to predict log density: (1) models that used tree 

parameters only as a predictor (the simple model), (2) models that used NIR 

absorbance data and Partial Least Squares (PLS) analysis procedures , (3) models 

that used NIR absorbance data and Multiple Linear Regression (MLR) analysis 

procedures, and (4) models that used a mix of NIR absorbance data and tree 

parameter data and MLR analysis procedures. The goal of the models was to use 

the NIR data to predict the density of the log that has been cut. 

 

Model results were also obtained for validation (full cross validation) and 

calibration sets. Data analysis suggests that correlations for calibration sets (R) 

were high, but when validation was applied there were large drops in R values. 

The best fit model was the simple model, the model that did not include NIR data 

as predictors. 



Our interpretation of why the simple model was the best fit is that there is great 

variability of wood characteristics across the stem section, that there was 

morphological problems associated with how we presented the samples, and that 

we used a narrower spectral range of NIR compared to the range used in earlier 

studies.  
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EVALUATION OF A PROTOTYPE NIR SYSTEM FOR DOUGLAS-FIR 
WOOD DENSITY ESTIMATION 

 

CHAPTER 1 

INTRODUCTION 

 

Douglas-fir is an important commercial timber species in many parts of the world. 

In the United States 7.3 percent (~ 14.3 million ha) of the country’s 196 million ha 

of non-reserved timberland is presently occupied by Douglas-fir. In Canada the 

area stocked with Douglas-fir is slightly less than one-third (~ 4.5 million ha) of 

that in the United States. In Europe this species is highly significant in plantation 

forests, especially in France and Germany (330,000 and 134,000 ha, respectively). 

In the southern hemisphere it is also well represented, with New Zealand, Chile 

and Australia being the countries with the greatest presence of the species 

(Hermann and Lavender, 1999). 

 

Timber resources in the Pacific Northwest have gradually shifted from unmanaged 

old growth to intensively managed young growth.  As younger stands are 

harvested, wood quality is negatively affected in comparison to old growth wood 

because of the presence of a higher proportion of juvenile wood, which in turn 

affects properties such as strength and dimensional stability (Gartner 2005). 
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Douglas-fir timber must compete against timber produced from other tree species 

and, in some markets, against substitute materials such as steel, aluminum, plastic 

and concrete. Competition is making the wood market more complex and 

demanding (Acuna and Murphy, 2006a). For Douglas-fir, significant quality 

attributes for wood products include density, microfibril angle, fiber length, lignin 

content, ring width, knot size and distribution, grain angle, and coarseness, color, 

etc. (Gartner 2005). 

 

Wood density is one of the most important physical characteristics for wood 

products because it is an excellent predictor of strength, stiffness, hardness and 

pulp yield (Megraw 1986, Haartveit and Flæte, 2006).  These wood properties 

have a high influence on the quality of the final product, for example trees with 

high density and low microfibril angle are desirable for providing stiff and strong 

structural lumber, while trees with high density and low lignin are required for 

high pulp yields (Jones, 2006). 

 

Wood density is a widely variable characteristic; there is variation between trees 

within a stand and also within the same tree (Josza and Middleton, 1994). Density 

is lower in juvenile wood, near the pith and in early wood. In Douglas-fir wood 

density may also be affected by environmental conditions such as elevation. It has 

demonstrated to be a very plastic species (Cown and Parker, 1979).  Silvicuture 

also has a strong effect on wood density. Heavily thinned stands respond with 
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greatly increased latewood density and this offsets the persistent low earlywood 

density because of the augmented radial growth (Harris 1985).  

Optimally matching wood quality to markets can mean cutting logs for very 

specific end uses and classifying them into several categories or “sorts” to improve 

product uniformity, productivity and profitability along the seedling to customer 

supply chain. Log makers have to adhere to a set of rules referred to as log 

specifications. These specifications can significantly affect the values generated 

for both forest owners and log processing industries. They also ensure that the logs 

will fulfill mill requirements for a given product. In markets where there are many 

customers, there can be many log grades. As an example, a paper on New Zealand 

log markets reported thirty eight (38) log grades, twenty for domestic market and 

the rest for export markets (NZIF, 2005). As another example, in central Georgia 

some companies have up to fifteen different (15) log grades (Amanda Hamsley, 

University of Georgia, pers. communication). 

 

Optimally matching wood to markets produces a big challenge for log distribution 

to processing centers. In some markets, the log mix is transported to the mill and 

once there, classified in the log yard.  If logs do not meet specification they can be 

(1) reclassified and sent to another mill, adding transportation costs to the 

operation, (2) cut into other log products, producing efficiency problems, or (3) 

accepted and processed in the mill, leading to less than satisfactory mill outputs.  

Some wood markets are beginning to include internal wood properties in their log 
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specifications. New sensor systems are being developed to help classify logs based 

on these internal wood properties (Andrews 2002, Dickson et al. 2004, Young 

2002).  

Traditionally, wood quality is determined in laboratory conditions using 

destructive methods, which can be expensive and time consuming. However, there 

are some non-destructive methods, such as acoustics and Near Infrared 

spectroscopy (NIR), which can be both time and cost effective. Another advantage 

of these methods is that some instruments have already been developed for use in 

the forest or could be adapted for that purpose. 

 

NIR has a number of advantages that make it an ideal tool for characterizing 

biomass. These include minimal sample preparation, rapid acquisition times, and 

non-contact, non-destructive spectral acquisition (Kelley et al. 2004a). Some 

commercial spectrometers are also lightweight, easy to operate and economic. 

 

Several authors have investigated the use of NIR to predict wood properties. In 

2002, Schimleck et al. used NIR to estimate wood stiffness in laboratory 

conditions. Correlations between laboratory determination of modulus of elasticity 

and predicted by NIR were higher than 0.9 for the species tested.  Kelley et al. 

(2004a) combined NIR with multivariate analytic statistical techniques to predict 

mechanical and chemical properties of solid wood, based on a “full” spectral range 

(500 nm – 2400 nm) and a reduced spectral range (650 nm – 1150 nm). Their 
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results indicated that correlation coefficients remained high even though the 

spectral range was reduced. This analysis indicated that lightweight and 

economical equipment for NIR measurements could be used.  

Later, Acuna and Murphy (2006b) confirmed that oven dry wood density can be 

predicted from measurements of green and dry wood chips using Near Infrared 

(NIR) technology and these measurements possibly could be used as the basis for 

sorting logs into several density categories. They noted, however, that further 

research was required before NIR technology could be cost effectively applied in 

“real-time” forest harvesting operations. A limitation of their study was that 

measurements were made under laboratory conditions using chips rotating on a 

turntable under NIR light with wavelengths ranging from 500 to 2500 nm.  

 

Further research was required to determine whether small, faster, lighter and less 

expensive industrial-grade spectrophotometers (with a reduced spectral range) 

could be used to measure density from green chain saw chips ejected as each stem 

is cut into logs by mechanized harvesting equipment. If so, then spectra and 

density predictions could be gathered across the log diameter - from bark to pith to 

bark. 

 

Other raw material producers have begun to use NIR sensors for product 

segregation and crop management. Some recent applications of NIR on harvesters 

have been undertaken in agriculture in Europe (Dardenne and Femenias 1999), 
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USA (Von Rosenberg et al. 2000) and Australia (Taylor et al. 2005). For example, 

Taylor et al. (2005) have reported the use of NIR as a protein sensor on grain 

harvesters. GIS have been attached to the NIR sensor in order to map crop nutrient 

deficiencies. The output from the NIR protein sensor showed strong spatial 

patterns that were consistent with observed yield variations and what growers 

expects and have lead to improved crop management decisions. 

 

The main goal of this project was to use NIR absorbance values obtained from 

various known heights in logs as an index of wood density at those locations. The 

models employed several varied factors: the number of peaks from the spectral 

data that were included, and breast height diameter (DBH) and the tree diameter 

and height within the tree at which the material was sampled. Several different 

models were used, with the overall question of whether there is a basic model to 

estimate wood density in real time from a minimum amount of information.  

 

The specific objectives of this study were to develop wood density models from a 

single stand which indicated whether: 

• it was possible to make strong prediction models of a sample’s specific 

gravity from external characteristics alone (such as DBH, and/or diameter 

and height of sampling point). 

• correlations could be improved by including data from NIR absorbance 

spectra collected from green chainsaw chips. 
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• whether the presence of bark in the saw chips adversely affected prediction 

power of the models. 
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CHAPTER 2 

LITERATURE REVIEW 

 

In the following section, some background information is provided on wood 

density, near infrared principles, and the use of technology for harvesting 

operations. The first section is a brief review of the wood density variation 

between and within the tree, and the factors that might cause this variation. The 

second section includes an explanation of how NIR works to characterize the 

sample and how we relate this information with a variable of interest, all with the 

aim of building a prediction model. The third section is a brief summary of 

previous work on technology that has been done by other researchers in order to 

optimize cost and/or productivity in harvesting operations. 

 

2.1 WOOD DENSITY 

 

Most mechanical and physical properties of wood are closely correlated to specific 

gravity and density. These terms have distinct definitions although they refer to the 

same characteristic (Bowyer et al, 2003). Wood density is a simple measure of the 

total amount of solid wood substance in a piece of wood (Jozsa et al., 1989).  

 

Traditionally, density has been measured based on Archimedes’ principle. The 

green volume (for basic density) is measured by water displacement. Then, mass 
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of the sample is measured at the appropriate moisture content and density is 

calculated (Sarampää, 2003).  

 

The strength of wood as well as its stiffness increases with specific gravity. The 

yield of pulp-per-unit volume is directly related to specific gravity. The heat 

transmission of wood increases with specific gravity as well as the heat per unit 

volume produced in combustion. It is possible to learn more about the nature of a 

wood sample by determining its specific gravity than by any other single 

measurement. Perhaps it is for this reason that density was the first wood property 

to be scientifically investigated (Bowyer et al, 2003). 

 

Wood density is a widely variable characteristic; there is variation between trees in 

a same stand and also within the same tree. Because of the tree growth pattern, we 

have more early wood and wider rings near the pith in the upper crown region (i.e. 

less dense wood in the upper section of the tree). If we look at the cross section of 

the stem, there is an important pith-to-bark gradient. This is a cause of the juvenile 

wood that occurs during the first 15 to 30 years of growth (Harris, 1985; Josza and 

Middleton, 1994; Lausberg et al., 1995). This wood is different because it grows 

under the influence of live branches. In general, this wood has lower density, 

shorter fibers, larger microfibril angle and lower cellulose content than mature 

wood (Josza and Middleton, 1994). 
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In addition, trees that grow faster will have a higher content of juvenile wood and 

consistently lower density. This is a big issue when pulp companies decide about 

their silvicultural treatments because they want fast growth but at the same time 

that means lower pulp yield per tree.  

 

Density uniformity is also an important issue for some end uses such as veneer 

production. The greatest change in density is found between rings and between 

latewood and earlywood. In the special case of Douglas-fir, density is high in the 

darker area of the ring (latewood) and lower in the direction of the next ring 

(earlywood). Douglas-fir has a great intra-ring density variation (range between 

0.25 to 0.85 (g/cm3)) (Josza and Middleton, 1994). Harris (1969) also reported an 

extreme contrast between latewood and earlywood finding a maximum range 0.17 

to 0.87 g/cm3 in successive growth layers. On the other hand he also found that 

earlywood values are quite constant across the stem and average 0.2 g/cm3.  

 

When Jozsa and Middleton (1994) analyzed the relative density at breast height 

they found that Douglas-fir has a decrease in density from rings zero to ten 

(juvenile wood) and then starts increasing until the tree reaches thirty years, then 

keeps increasing each year but at a slower rate. 

 

When we talk about wood density, we also have to refer to the chemical properties 

of its components. In general, conifer cell walls have three principal components: 
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cellulose between 40 and 50%, hemicellulose between 20 and 35% and lignin 

between 15 and 35%. All these determine the density of the cell wall and tissue 

characteristics. There is evidence that cell wall tissue density is quite constant 

within the tree and is not affected by growth rate. However, the amount of cell 

wall that is contained in a specific volume is determined by the wall thickness and 

the cell lumen size (Sarampää, 2003; Harris, 1969).  

 

Another important factor to consider is the site effect on wood density.  In 1979 

Cown and Parker made a densitometric analysis of wood from five Douglas-fir 

provenances growing in Corvallis, Oregon. They found that provenances do not 

affect growth rates and mean wood density, but site has a major influence on both 

characteristics. The greater effect was in the inner rings of the tree and indicated 

that this species has a great adaptability to the environment through natural 

selection. Later, Lausberg and others (1995) studied the effect of provenance on 

wood properties in Douglas-fir plantations located in New Zealand. They studied 

twelve provenances of managed forests and found that there is a general trend over 

all sites and provenances for breast-height density to increase from pith to bark. 

There was a strong site effect on properties measured (95% confidence), but the 

differences within sites was not very high having a maximum of 0.15 g/cm3 which 

seems to be less than the effect that has been reported for Pinus radiata for the 

same zones (0.35 g/cm3 difference). There was also strong evidence that site has 

an effect on the heartwood proportion (95% confidence). With respect to altitude, 
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Harris (1985) mentioned that in New Zealand, high elevations would result in 

lower Douglas-fir wood density. 

 

Silvicuture has also a strong effect on wood density. Heavily thinned stands 

respond with greatly increased latewood density and this offsets the persistent low 

earlywood density because of the augmented radial growth (Harris 1985).   

 

“Growth rates are lower on phosphate-deficient soils and wood 
density can be as much as 0.06 g/cm3 higher that in trees growing 
on normal (non-deficient) sites in the same area” (Harris, 1965) 
cited by Harris (1969).  

 

The reason is that in some sites, fertilization can be detrimental for wood density 

because trees tend to grow faster.  

 

Wood density is a highly heritable characteristic in a number of species (King, 

1986 cited by Loo-Dinkins and Gonzalez, 1991). However, there is some 

discussion generated about the correct age when density should be evaluated for 

breeding selection. Vargas-Hernandez and Adams (1991) investigated this 

particular issue in coastal Douglas-fir. They determined that earlywood and 

latewood, by themselves do not have higher heritability than the overall density, 

but they are highly correlated with overall density (r ≥ 0.74). Overall density was 

positively correlated with intraring density variation (r = 0.72) and negatively 

correlated with stem volume (r = -0.52).  Another case study, performed with 
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Scots pine (Pinus sylvestris L.), indicated that correlation between wood densities 

in the transition zone between juvenile to mature wood was high implying that 

even young trees can be assessed and compared for future wood density breeding 

programs (Fries and Ericsson, 2006). 

 

2.2 NEAR INFRARED SPECTROSCOPY 

 

NIR spectra were discovered in the early 1800’s. Around 1900, W.W. Coblentz 

used a salt prism to build a primitive infrared spectrometer, but it wasn’t until the 

1950’s that modern NIR instruments were developed. These were first used for 

food application experiments (Ciurczak and Burns, 2001).   

 

The acceptance of NIR as an analytical technique began with the work of Karl 

Norris of the US Department of Agriculture in the early 1960’s. Later, NIR 

spectroscopy flourished and expanded well into pharmaceutical, industrial, process 

control, food processing, remote imaging spectroscopy and other diverse 

applications (Barton, 2002). 

 

The NIR region is between 850 nm and 2.5 microns on the electromagnetic 

spectrum, and it contains numerous overlapping absorption bands arising from 

overtones and combinations of X-H stretching vibrational modes (Meglen and 

Hames, 1999). In order to understand how it works we need to understand the 
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Franck-Condon principle (Barton, 2002). The Franck-Condon principle explains 

the intensity of vibronic transitions. Vibronic transitions are the simultaneous 

changes in electronic and vibrational energy levels of a molecule due to the 

absorption or emission of a photon of the appropriate energy (Figure 1). The 

principle states that during an electronic transition between molecular quantum 

states, a change from one vibrational  energy level to another will be more likely to 

happen if the two vibrational wave functions overlap more significantly (Somoza, 

2006). 

 

 

Figure 1. Franck-Condon principle energy diagram. Since electronic transitions are 
very fast compared with nuclear motions, vibrational levels are favored when they 
correspond to a minimal change in the nuclear coordinates.  
 

When a sample is exposed to NIR energy, molecules vibrate. Then, when the NIR 

energy matches the natural vibration of a molecular bond within a molecule it 
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absorbs that energy. Each different molecule structure interacts with different 

wavelengths, hence samples having different chemical and physical properties will 

result in different NIR spectra (Jones, 2006). The data from a NIR spectrum may 

consist of thousand of variables measured from each sample. Each variable 

corresponds to the reflectance or transmittance measured from each wavelength 

(Haarveit and Flæte, 2006). 

 

Various compounds in biological materials have overlapping peaks in the spectra, 

often making multivariate analysis compulsory (Haarveit and Flæte, 2006). This 

analysis, most often called Partial Least Squares (PLS), makes possible the 

transformation of the spectra into quantitative information. This method relates the 

systematic information from a matrix of X (in our study, absorption of 

wavelengths) to the information on a matrix of Y (in our study, wood density) with 

the purpose of predicting Y from X.  The statistical technique simultaneously 

calculates multivariate projections of the predictor and independent variables so 

that the projection of the two data blocks are maximally correlated. In this way, a 

quantitative expression of the correlation between the two matrices is known 

(Meglen and Hames, 1999). 

 

In order to apply PLS analysis, calibration and prediction sets of samples are 

needed. The calibration set is used to build the model and the prediction set to 

evaluate the model. Meglen and Hames (1999) performed a study were the 
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validation was made with a rigorous assessment criterion of full cross validation. 

This technique works by holding back one sample and predicting it from a model 

conducted from the remaining N-1 samples. Then, a different sample is held back 

and predicted with the remaining N-1 samples. This procedure is repeated until 

every sample is predicted from a model in which it was not a participant. 

Therefore, N models (N, being sample size) are developed. The validation plot that 

is generated shows prediction of the samples that were not participants in the 

model construction (Meglen and Hames, 1999). 

 

NIR has been widely used to measure wood properties affecting a wide range of 

forest products. Many studies can be found in the literature on the prediction of 

physical (density, microfibril angle, tracheid length), mechanical (MOR, MOE), 

and chemical (glucose, lignin and extractives content) wood properties from NIR 

spectra for a range of softwood and hardwood species (Schimleck et al. 2002; 

Kelley et al. 2004b; Schimleck et al. 2004; Jones et al. 2005). Good correlations, 

R2 values ranging from 0.79 to 0.96, have been reported. NIR measurements have 

been made on green and dry solid wood, green and dry auger shavings, and dry 

powdered wood. It has also been shown that mechanical properties could be 

predicted using a reduced spectral range (650 nm-1500 nm) with nearly as good 

predictive ability (Kelley et al. 2004b). 
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Meglen and Hames (1999) described a field test to demonstrate the ability to 

obtain spectra of sufficient quality to permit quantitative calibration from wood 

chips moving at high speeds (approximately 350 ft/min). The reason for this 

experiment was to demonstrate the practical use of on-line VIS-NIR spectroscopy. 

They made the test under environmental conditions found within a typical mill 

(dust, light and temperature conditions may be severe) in order to predict chemical 

properties of the pulp wood chips. The results indicated that visible light highly 

affects the measurements, which is the reason why they decided to make the 

predictions based on NIR spectra.  They concluded that there was a high 

probability that fluctuations seen in the NIR predictions were due to the real 

fluctuations in the chemical compositions of wood. 

 

Later, Acuna and Murphy (2006b) confirmed that oven dry wood density can be 

predicted from measurements of green and dry wood chainsaw chips using Near 

Infrared (NIR) technology. Their study was made under laboratory conditions 

using chips rotating on a turntable under NIR light with wavelengths ranging from 

500 to 2500 nm. The results indicated that NIR measurements could be used as the 

basis for sorting logs into several density categories. 
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2.3 THE USE OF TECHNOLOGY IN HARVESTING OPERATIONS 

 

Forest operations in many parts of the world are becoming more mechanized and 

automated. The main objectives of automation are to collect, transmit and report 

information, thereby diminishing the mental pressure of the operator, as well as to 

improve the working conditions and performance of the operator.  Löfgren (2006) 

used a forest machine simulator in Sweden to evaluate the effect of automation on 

performance. Their main finding was that automation was a feasible way to both 

increase productivity and improve the working conditions of operators. In 

particular, they found that automation should be directed both at knuckle boom 

work and log processing. 

 

There are several other examples of studies that have proven the operational uses 

of instruments in order to minimize costs or improve efficiency with the extraction 

operation.  

 

One of the examples is the use of GPS (Global Positioning Systems) in various 

pieces of harvesting equipment. Cordero and others (2006) integrated a GPS and a 

computer in two harvesting machines. One was cut-to-length operation consisting 

of a harvester and forwarder and the other was full-tree operation, consisting of a 

feller-buncher and a grapple skidder. Data were collected at 10 seconds intervals 

where position, altitude, speed and time were recorded. Both systems were clear-
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cutting 12-13 years old Eucalyptus spp. forests. As a result, they gathered lots of 

valuable information which could be used to monitor and improve the efficiency 

of these operations. They monitored machine productivity, total harvest volume 

(useful for comparisons with base inventory data), harvester paths (useful for 

checking soil compaction and damage to culverts and ditches), felling and 

processing strategies on steep slopes (which affects the efficiency of fuel 

consumption), wood piles locations (useful for allocating transportation), etc. All 

this information is highly valuable to make a more efficient, economic and reduced 

impact operation. 

 

Kopka and Reinhardt (2006) noted, however, that the accuracy of GPS 

measurements mainly depends on such things as climate, slope angle, aspect and 

satellite navigation systems (Russian or American) They investigated the cause of 

impreciseness of two different navigation systems using a Timberjack 1470D 

harvester in a two hectare forest stand in Northern Germany. They measured and 

oriented skidding tracks using the different navigation systems and then the 

harvester was guided only by the tracking function of the GPS software onto the 

skidding tracks. Under optimal signal conditions accuracy better than 10% 

deviation could be obtained. 

 

Another example, as reported earlier, is the application of NIR on agricultural 

grain harvesters. Taylor et al. (2005) used NIR as a protein sensor on grain 
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harvesters and reported positive results. GPS/GIS were attached to NIR sensor in 

order to map crop nutrient deficiencies. An accurate site-specific determination of 

protein content was provided, allowing the calculation of site-specific nutrient 

needs and spatial patterns in crop productivity. 
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CHAPTER 3 

MATERIALS AND METHODS 

 

3.1 SAMPLE ORIGIN 

 

Samples were taken from a single stand within McDonald-Dunn Forest. This 

forest is Oregon State University’s main research, teaching, and demonstration 

forest. The forest lies within a transition area between the Oregon Coast Range and 

the Willamette Valley (Fletcher et al., 2005). The specific location of the study site 

is 44° 42.55’N/ 123° 19.58’W and the elevation is 280 meters. The site has a 72 

year old Douglas fir stand with an average DBH of 41.6 cm (range from 15.0 – 

78.5 cm). The stand had received three commercial thinnings over its life. 

 

The DBH of each tree was measured.  Trees were then felled in the summer of 

2007. The total number of trees felled for the trial was 40 and 110 wood disk 

samples were obtained from them.  Samples were cut at different heights up the 

tree depending on the best tree bucking alternative. The first sample was taken at 

the base of the tree, the second at 18, 27 or 35 ft, and the third at 18, 27 or 35 ft 

depending on the second log length. Samples were not collected from all potential 

sampling points in the 40 trees. Sample height in the tree, stem diameter and an 

identification number were recorded and samples were marked with crayons. 
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3.2 SAMPLE PREPARATION 

 

Samples collected in the field were bagged and placed in a cold room at the end of 

each day. When all sample collection was finished, samples were taken out of the 

cold room for processing. 

Wood disks were split in half, if the bark was present. One half was debarked and 

the other left with bark. After that, each sample was placed in a holder (Figure 2) 

specially designed by Oregon Cutting Systems. This holder had adjustable pins to 

clamp samples of any shape and allowed the samples to be safely cut with a 

chainsaw through the sample cross section.  

 

 

Figure 2. Wood sample holder, arrows indicate adjustable holding pins. 
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In order to make the chip sampling protocol similar to a processor “environment”, 

a 0.404 inch pitch chainsaw chain was used. This decision was based on a brief 

survey, which indicated that approximately 60% of processor brands use chainsaw 

chains of these specifications on butt saws and almost 100% on topping saws 

(Glen Murphy, Oregon State University, Pers. Communication, January 2006).  

 

Chain pitch is the difference between the centers of any three consecutive rivets, 

divided by two; an example is shown in Figures 3a and 3b (Oregon Cutting 

Systems Group Blount Inc., 2004). In this study, the chain pitch was 0.404 inch.  

 

 

Figure 3. a) Chain pitch, b) picture of 0.404’’ pitch chain (Source: Mechanical 
Timber Harvesting Handbook, Oregon Cutting Systems Group Blount Inc.) 
 

Because the idea of this project is to obtain NIR spectra from the chips that are 

generated while we cut the sample, a chip collector was designed. This collector 

was located just below the place where chips are expelled from the chainsaw. The 

collector accumulates the chips and channels them. The NIR sensor was located 

below that accumulation point. Finally, chips were collected and placed in tagged 

bags. These bags were stored in a cold room for further measurements, if needed. 

The cutting procedure and collector are shown in Figure 4. 
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Figure 4. Top panel: wood chips path. Bottom panel: view of the collector from 
above. 
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3.3 NIR MEASUREMENTS 

 

NIR measurements were synchronized with the cutting process. The instrument 

used was a ProSpectraTM spectrometer by DSquared Development Inc. (LaGrande, 

Oregon).  The spectrometer has a maximum range in wavelengths from 600 to 

1100 nm.  As noted above, Kelley et al. (2004b) found that reducing the spectral 

range from 500 to 2500 nm down to 650 to 1500 nm would not have a large effect 

on the NIR prediction power and would allow the use of more economical 

equipment.  We confirmed this finding by re-analyzing data collected by Acuna 

and Murphy (2006b) (see later description of this analysis in Section 3.6). Using a 

narrower spectral range can save at least $30,000 on the equipment cost. This kind 

of equipment is being used on grain harvesters with an even narrower spectral 

range (e.g. 839 to 1045 in AccuHarvest equipment; 

http://www.zeltex.com/accuharvest.html, accessed 8 May 2008). 

 

The ProSpectra was adapted by the DSquared Development Inc. to be connected to 

a laptop computer. Two software programs are used with this equipment; one for 

gathering and pre-processing data and one for analyzing spectral data. 

 

DSquared2 software allows the gathering and displaying of data generated by the 

ProSpectra equipment. This software is very flexible; it has the capability of 

programming a method that better suits the data gathering procedure. In this case 
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we programmed a method that made the instrument scan the chips while the 

sample is cut through the entire cross section. There was a person in charge of the 

computer, this person had to enter the sample information (tree number, position, 

etc), determine when cutting of the sample is began, directed the scanning 

procedure to begin, stop the procedure when the cut was finished.  It should be 

noted that the ProSpectra system has the flexibility of automatically starting and 

stopping measurements. However, this feature was not used since in preliminary 

trials it was found that a break in the stream of chainsaw chips sometimes stopped 

scanning prematurely. 

 

Many scan measurements, relating to each wavelength, were gathered and 

averaged as the cut was made through the sample; the bigger the diameter, the 

more scans were obtained from the sample. The number of scans for each sample 

ranged from 10 to 860 and averaged 136. 

 

3.4 WOOD DENSITY MEASUREMETS 

 

In order to build the density estimation models, we needed the actual wood dry 

density of the samples. The method used to determine the dry density was the 

following: samples were oven dried until dry weight was stable (approx. 48 hr), 

then, sample volume was determined by the difference in weight between a bucket 

with water and the same bucket with the sample submerged, (Figure 5). Wood 
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density (kg/m3) was then calculated as the ratio between dry wood weight and dry 

volume.  

 

 

Figure 5. Dry density measurement using water displacement method. 

 

3.5 DATA PRE-PROCESSING AND STATISTICAL ANALYSIS 

 

Four types of models were developed for this study. All of them had the goal of 

predicting the wood density of the samples. The first, called the “Simple Model” 

was a linear regression model built to predict wood density without the use of NIR, 

instead, tree attributes such as DBH, sample height on the tree and sample 

diameter were used as predictors. The main purpose of these models was to have a 
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basic model to compare with the NIR performance as a predictor. The second 

model was developed using Multiple Linear Regression (MLR) to predict wood 

density of samples with the bark removed based on NIR wavelengths. The third 

model used Partial Least Squares (PLS) to predict wood density of samples with 

the bark removed based on NIR wavelengths. The fourth model used MLR to 

predict wood density of samples with the bark removed based on NIR wavelengths 

and sample height within the tree.  Variants of the second and third models 

included the NIR measurements of samples with the bark left on. 

 

Before building NIR models, data was preprocessed, and later analyzed, using 

Delight Beta software, developed by DSquared Development Inc. There were two 

preprocessing methods; the first was to leave the raw data as it was and the second 

was to take the second derivative of the absorbance values with respect to a 10 nm 

gap in wavelengths (10 point gap) and mean center it. The next pre-processing 

procedure was to trim both ends of the spectrum; this was done to eliminate noisy 

regions. Data was originally obtained along the 600 to 1200 nm range. The 

trimmed range was from 620 to 1080 nm.  

 

The general modeling procedure was the following: 

 

1) Construct the model based on tree attribute/NIR wavelengths to predict wood 

density. This means that, from within the total set of N samples with known wood 



 

 

29 

 

density (measured as indicated in Section 3.4), we use a sub-set of calibration 

samples to develop a mathematical model (Martens and Naes, 1984). Then, the 

coefficient of determination (R2) and standard error of calibration (SEC) are 

generated and become available to evaluate the model performance. These are 

called the calibration models. 

 

2) Validate the model using a validation set of samples to prove its performance. 

Two procedures were used for selecting samples for validation; a full cross-

validation procedure (see 2.2) and split cross validation where the samples not 

used in the calibration set were used in the validation set. One-third of the samples 

were randomly selected from the total data set and used in the split cross validation 

procedure... Then, a new determination coefficient is generated; this one represents 

the correlation between the predicted density value of a sample (using the model) 

and the actual density of that same sample (measured). A standard error of 

prediction (SEP) can also be calculated. These are called the validation models. 

 

3) Compare the calibration and validation R2 coefficients within the several 

models built in order to decide whether one model performs better than the other. 

A calibration model can have a great R statistic when a high number of variables 

are used; this is due to overfitting (when a model has too many parameters and as a 

result a “perfect fit” false model is created). However, this can produce a poor 

performance once the model is validated (Acuna and Muphy, 2006b). 
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3.5.1 Simple model 

 

Three “simple models” were built as a way to compare the prediction capability of 

the wood characteristic studied in this project with and without the use of NIR. 

The dependent variable was wood density. The independent variables were tree 

diameter at breast height, the height in the tree and the diameter of the stem where 

the sample was taken. The statistical procedure used was MLR using Microsoft 

Excel. The general equations for these three models were the following: a) density 

(kg/m3) = a + b*DBH (cm), b) density (kg/m3) = a + b*sample height (m), and c) 

density (kg/m3) = a + b*sample diameter (cm), where a and b are regression 

coefficients. 

 

The statistic used to measure the model performance was R2 and standard error.  

For validation purposes, the data were split into two sets, one of 77 samples and 

the other of 33 samples. The decision about which “simple model” was going to be 

the final model left as a base of comparison with NIR models, was the one that had 

a higher R2. 

 

3.5.2 Multiple Linear Regression (MLR) based on NIR wavelengths 

 

For both MLR and PLS analyses, calibration and validation models were 

developed.  
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Multiple linear regression attempts to model the relationship between two or more 

explanatory variables and a response variable by fitting a linear equation to 

observed data. Every value of the independent variable x is associated with a value 

of the dependent variable y. In our study we will predict wood density (y) from the 

multiple spectrums that was obtained for each sample; those are going to be our 

multiple independent variables (x’s). Because we have several (maybe even 

hundreds) of independent variables (wavelengths) that characterize each sample, 

we need to choose some of them to build the model. MLR allows choosing the 

number of independent variables we want to use in our model. So, if we want to 

use one (1), the software is going to search through all the wavelengths and is 

going to choose the one that gives the best model. If we want to use two, it is 

going to use the best two, and so on. In Figure 6 there is an example of the three 

(3) best wavelengths chosen by the Delight software to build the model.  

 

In this study, models using from one to ten independent variables (wavelengths) 

were built. The general equation form for the models was the following: density 

(kg/m3) = a + b*w 1 + c*w 2 + d*w 3 +….y*w i where wi represents the “chosen” 

wavelength i for the model, and a to y represent the model coefficients. 
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Figure 6. Example graph of wavelengths chosen to build an MLR model 

 

Calibration and validation models were also tried for the following data sample 

types: 

 

- Bark Off Samples:  

a. Prediction of Bark Off density with no validation, raw data. 

b. Prediction of Bark Off density with no validation, going from 5 to 10 

variables. Second derivative transformed. 

c. Prediction of Bark Off density using full cross validation, going from 5 

to 10 variables. Second derivative transformed. 
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- Bark On Samples: 

a. Prediction of Bark On density using full cross validation, going from 1 

to 10 variables. Second derivative transformed. 

b. Prediction of Bark On density using Bark Off model going from 1 to 10 

variables. Second derivative transformed. 

 

The number of predictor variables used was related to trying to improve the 

model’s R statistic and diminish the standard error. 

 

3.5.3 Partial Least Squares (PLS) based on NIR wavelengths 

 

PLS is a technique that generalizes and combines features from principal 

component analysis and MLR (Abdi, 2003). MLR finds a combination of the 

predictors that best fit the response, then principal component analysis finds 

combinations of the predictors with large variance, reducing correlations. The 

technique does not use response values. PLS finds combinations of the predictors 

that have a large covariance with the response values. PLS therefore combines 

information about the variances of both the predictors (wavelengths) and the 

responses (wood density), while also considering the correlations among them.  

 

The NIR data were mean centered prior to carrying out the PLS analysis. Mean 

centering data is almost always applied when calculating any multivariate 



 

 

34 

 

calibration model. The process involves calculating the average spectrum of all the 

spectra on the data set and then subtracting the result from each spectrum. In 

addition, the mean value for the constituent (measured wood density) is calculated 

and subtracted from the constituent value of every sample. This process makes the 

differences between the samples substantially enhanced in terms of both 

constituent value and spectral response. This usually leads to calibration models 

that give more accurate predictions. 

 

For this type of analysis, models using from one to ten latent variables 

(wavelengths) were built. The general equation form for the models was the 

following: density (kg/m3) = a + b*w 1 + c*w 2 + d*w 3 +….y*w i where wi 

represents the “chosen” wavelength i for the model, and a to y represent the model 

coefficients. 

 

Once the models were obtained, the same statistics as for the MLR procedure were 

calculated.   

 

As described in previous sections, there were two types of samples, samples with 

bark on and samples with bark off. They were analyzed in the following way: 

 

- Bark Off Samples:  

a. Prediction of Bark Off density with no validation, raw data. 
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b. Prediction of Bark Off density with no validation from 1 to 10 latent 

variables. Second derivative transformed. 

c. Prediction of Bark Off density using full cross validation from 1 to 10 

latent variables. Second derivative transformed. 

 

- Bark On Samples: 

a. Prediction of Bark On density using full cross validation from 1 to 10 

latent variables. Second derivative transformed. 

b. Prediction of Bark On density using Bark Off model from 5 to 10 latent 

variables. Second derivative transformed. 

 

The number of latent variables used was related to trying to improve the model’s R 

statistic and diminish the standard error. 

 

Every disk was treated as an independent sample, even though there were 110 

disks that came from a group of 40 trees. 

 

3.5.4 Multiple Linear Regression (MLR) based on NIR wavelengths and 
sample height within the tree. 
 

The procedure for this model is the same as described in Section 3.5.2 with the 

only difference being that sample height is included in the model as another 



 

 

36 

 

predictor. The reason for building this model is to add the sample height predictive 

power to the NIR model and verify if it is going to make it stronger. 

 

This model was only developed with Bark Off samples, preprocessed with 10 

point second derivative. In order to validate the model, the data was divided so that 

two thirds of the samples were used to build the model and the remaining third was 

used for model validation. In both types of models (calibration and validation) we t 

using 10 and 5 variables (wavelengths) plus height on stem at which wood sample 

was collected. The five and ten wavelengths selected were chosen based on the 

analyses completed in Section 3.5.2. 

 

The general equation form for the models was the following: density (kg/m3) = a + 

b*sample height + c*w 1 + d*w 2 +….y*w i where wi represents the “chosen” 

wavelength i for the model (in this case i was 5 and 10), and a to y represent the 

model coefficients. 

 

3.6 ANALYSIS OF EFFECTS OF REDUCED WAVELENGTH RANGE 

 

Acuna (2006) evaluated the utility of NIR and multivariate analysis based on 

wavelengths ranging from 500 to 2200 nm. His original calibration and validation 

models were constructed for density predictions based on samples of green wood 

chips and the full range of wavelengths. Using the original data sets different 
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ranges of the spectra were analyzed: 650-1050 nm, 1500-2200 nm and 1050-2200 

nm.  This analysis was done to verify the effects of reducing the spectrum (band 

width) on calibration and validation models as reported by Kelley 2004b. 
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CHAPTER 4 

RESULTS 

 

4.1 WOOD DENSITY 

 

Wood density determined by water displacement method is summarized in Table 

1. Because the information is presented by different heights on the tree, it can be 

clearly seen that density decreases with tree height, while the standard deviations 

increase. The standard deviation pattern is mostly affected by the lower number of 

samples in the upper parts of the trees. 

 

Table 1. Descriptive statistics of wood dry density (kg/m3) by sample height. 

 Average SD Min Max N 
Base (0 ft) 570 40.4 496 640 40 

First log (18-35 ft) 513 43.8 430 606 37 

Second log (36-70 ft) 486 49.0 362 605 29 

Third log (54-105 ft) 422 109.0 268 511 4 

Total 523 61.3 268 640 110 
 

4.2 SIMPLE HEIGHT MODEL 

 

Of the three simple models tested, (DBH, sample stem diameter and sample 

height) sample height provided the best R2 value.  
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As shown in Figure 7, the simple DBH model has an R2 that explains very little of 

the variation in wood density. Diameter at the sampling point provided a slightly 

better R2 value (0.15).  When the calibration model was built using sample height 

to predict wood density, the R2 value was 0.46. In general, this is a normal value 

for this type of model and species.   

 

 

 

Figure 7. Calibration models to predict wood density from a) DBH and, b) Height 
in the tree. 
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When the simple height model was validated against one third of the data that 

were left out to build the calibration model, the R2 value dropped to 0.29 (Figure 

8).  
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Figure 8. Validation of model height/dry density 

 

This simple height model constituted our baseline for comparison with the NIR 

based models. On these following models we evaluated whether NIR contributed 

to higher or lower predictive power in comparison with this simple model. 

 

4.3 EFFECT OF REDUCED WAVELENGTH RANGE (BASED ON DATA 
COLLECTED BY ACUNA (2006)) 
 

As stated above, the instrument used for the current study only collected data over 

an abbreviated spectral range compared to previous attempts for prediction of 
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wood density from NIR data. Therefore, we used the available data set from Acuna 

(2006) to learn how this smaller range could potentially affect predictions. 

 

The results of the models prepared to verify the effect of the spectral range 

reduction are shown on Table 2. 

 

Table 2. Coefficient of determination for different band width ranges on green 
chips wood samples. 
 

Band Width (nm) R2 Calibration R2 Validation 

650-1050 0.80 0.61 

1500-2200 0.83 0.63 

1050-2200 0.80 0.62 

500-2200 (control) 0.89 0.74 

 

There were very little differences between the R2 derived from the three band 

widths. When compared with control (500-2500 nm), however, the R2 results for 

the calibration and validation models are lower.  These results are consistent with, 

Kelley’s (2004b) finding that a reduced range of band width results in a drop in R2 

of about 10%. 

 

4.4 NIR PREDICTION MODELS 

 

4.4.1 MLR based on NIR wavelengths 
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a) Bark off samples 

 

As shown in Figure 9 there is a significant improvement in the calibration model 

R2 values, compared with raw data, when a second derivative transformation is 

applied to the spectral curves. In Figure 9a the R2 statistic is extremely low (0.01). 

The transformation increases the R2 to 0.56 (Figure 9b). Using 10 wavelengths as 

predictors resulted in the best model in statistical terms with respect to the other 

five models tested (five to nine wavelengths). This result seems acceptable 

compared with the calibration simple height model (R2 = 0.46). The other five 

models are not presented here, but in the appendix there are graphs that show the 

statistical parameters of the other models.  

 

However, when the best calibration model is cross-validated using the Delight 

software, the R2 value drops dramatically to 0.006; this model has no predictive 

power (see Figure 9c). 

 

Validation of the best MLR calibration model using split data gives a slightly 

higher R2 value than found for the full cross validation, but it is still too weak to be 

evaluated as a good model (Figure 15 in appendix). 
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There may be outliers in the data (Figure 9). Removing these would give a very 

small improvement in the R2 values. However, careful examination of individual 

points did not provide strong evidence as to why the “outliers” should be removed. 
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Figure 9. a) Prediction of Bark Off density with no validation, raw data. b) 
Prediction of Bark Off density with no validation, second derivative transformed. 
c) Prediction of Bark Off density using full cross validation, second derivative 
transformed. 

(a) 

(b) 

(c) 
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Validation based on Calibration model
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Figure 10. Prediction of Bark Off density using split data validation, second 
derivative transformed. 
 

b) Bark on samples 

 

Because of the increase in R2 values resulting from the second derivative 

transformation in bark off spectral data, we went directly to the transformed 

version of the model for the bark on samples. From all the trials, the calibration 

model with a single wavelength was the best statistically (Figure 15).  

 

As shown in Figure 11a the validation R2 value was 0.12, which is higher than was 

found for the bark off validation model (R2~0.0). We have no explanation for this. 

When the model built with bark off was validated with bark on data the R2 value 

dropped dramatically (R2 = 0.03). 



 

 

46 

 

The presence or absence of bark will, therefore, be a source of variability in 

density predictions since the mechanized processor may or may not take the bark 

off each log as it is being delimbed and cut. 

 

 

Figure 11. a) Prediction of Bark On density using full cross validation, second 
derivative transformed. b) Prediction of Bark On density using Bark Off model, 
second derivative transformed. 
 

4.4.2 PLS based on NIR wavelengths 

 

a) Bark off samples 

 

(a) 

(b) 
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When PLS is applied to raw data, it gives a better, although still poor model, 

compared with MLR. The best model was found using five latent variables (five 

wavelengths) which yields an R2 of 0.20 (Figure 12a).  

 

When a second derivative transformation is applied, the PLS model explains 97% 

(R2 = 0.97) of the variation, which is excellent considering the previous results. 

The best model, from the ten tested (from 1 to 10 latent variables), was found 

using ten latent variables and is shown in Figure 12b.  

 

When cross validation was applied to the best PLS model (2nd derivative), the 

validation model predictive power dropped significantly to an R2 of 0.02 (Figure 

12c). This reduction in predictive power is similar to the results for the MLR 

models. 

 

b) Bark on samples 

 

PLS analysis of 2nd derivative transformed data did not improve the validation 

model compared with the best MLR derived model (Figure 13a). The same 

behavior was observed in the model built with bark off samples and validated with 

bark on. The best model found used six latent variables (six wavelengths) and is 

shown in Figure 13b.  
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Figure 12. a) Prediction of Bark Off density with no validation, raw data. b) 
Prediction of Bark Off density with no validation, second derivative transformed. 
c) Prediction of Bark Off density using full cross validation, second derivative 
transformed. 

(a) 

(b) 

(c) 
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Figure 13. a) Prediction of Bark On density using full cross validation, second 
derivative transformed. b) Prediction of Bark On density using Bark Off model, 
second derivative transformed. 
 

4.4.3 MLR using NIR and sample height within the tree 

 

When height is included in the model, it has a positive effect on the model’s R2 in 

the calibration model. It goes from 0.56 (Figure 9b) with NIR alone to 0.81 when 

(a) 

(b) 
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height on the tree is included (Figure 14a). But when the model is validated, the R2 

drops again to 0.16 (Figure 14b).   

Figure 14. MLR using NIR and height on the tree a) calibration model, b) 
validation model 
 

4.5 MODEL PARAMETER SUMMARY 

 

On the following table (Table 3), the R2 statistics for the simple height model, the 

best of the NIR models and the model that includes both height and NIR 

wavelengths are summarized.  Here it is easy to notice that for calibration models, 
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NIR had a significant improvement on the predictive ability of the model. 

However, when the calibration models were validated, the simple height model 

(without NIR) was the one with the best predictive ability. 

 

Table 3. Coefficient of determination (R2) for all the bark off models 
 

 Calibration 
Full cross 
validation Split validation 

Simple height model 0.46 ------ 0.29 

MLR based on NIR 
wavelengths 

0.56 0.006 0.04 

PLS based on NIR 
wavelengths  

0.97 0.020 ----- 

MLR based on NIR 
wavelengths and Height 

0.81 ----- 0.16 
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CHAPTER 5 

DISCUSSION AND CONCLUSIONS 

 

The first step of this research was to build the “simple model” as a baseline to 

predict wood density. The analyses were done initially building three different 

models using as independent variables: diameter at breast height (tree size), 

sample diameter, and sample height on the tree .The strongest model that we found 

was the one using sample height as an independent variable. The other two models 

had very weak correlations (diameter versus density, and DBH versus density). 

These low correlations are consistent with other studies in Douglas-fir (Barbara 

Lachenbruch, pers. Comm., Acuna and Murphy, 2006b). 

 

Because height itself was not very strong in terms of wood density prediction, we 

considered the use of NIR as a way to characterize wood density. This idea was 

based on the satisfactory results obtained by other researchers such as L. 

Schimleck (2002), S. Kelley (2004a, 2004b), P. Jones (2006) and M. Acuna 

(2006). 

 

When NIR was used to predict wood density as a calibration model without any 

mathematical transformation the results were not very good. We also found that 

when a second derivative was applied, the model improved significantly. In the 

study performed by Acuna and Murphy (2006b) although this mathematical 
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transformation was not applied to their models, they had good results for 

calibration and validation models.  

 

Particularly with the use of MLR, our models gave good results compared with the 

simple model but they did not have good performance when they were validated.  

PLS is the most widely used analysis method when NIR is used to build models. 

Many authors had used this method and had satisfactory results. This led us to try 

this method to as the basis for model construction. The calibration models were, in 

general, excellent in terms of R2, but were poor when the calibration models were 

validated. This may have been due to overfitting of data in the calibration models. 

However, reducing the number of latent variables to a few did not lead to great 

improvements in the validation statistics. 

 

Based on these results we developed a model in which both height in the tree and 

up to ten NIR wavelengths were used as explanatory variables. The calibration 

model resulted in a highly significant increase in the R2, better than NIR, and 

height by themselves. When the model was validated, the R2 dropped substantially 

to a level where it was slightly better than the other models but not good enough to 

reach at least 50% of the explanation of the variability. 

 

In general, none of the models that included NIR data performed better than height 

alone (density (kg/m3) = a + b*sample height) when the models were validated. 
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Since these results contradict the findings of other studies some possible 

explanations are required. 

 

As we discussed in the background section, the tree has great variability in wood 

properties in both longitudinal and radial directions. For our study, variability in 

the radial direction, within rings and from pith to bark, is crucial. Compared with 

our measurement procedures, other researchers gathered their spectral data on 

wood samples with lower variability. As an example, we have the studies 

performed by Schimleck et al (2002) and Jones (2006). They used NIR to predict 

wood stiffness from individual rings in increment cores and had good results. 

Another example is the study performed by Acuna and Murphy (2006b) where 

they used small blocks of wood (~ 5cm X 5cm) taken from the same part of the 

wood disk on each of the samples. This also reduced the variability of the 

properties of the wood sample. In other words, it is possible that our models 

performed poorly because of the large variability across disks relative to our 

sample size. A larger sample size could have lead to improved ability to estimate 

density based on NIR. 

 

Another important issue when working with NIR is the sample water content. This 

issue was addressed by Acuna and Murphy (2006b) and they reported a drop in the 

green chip model’s ability to predict density compared with dry chips. In our case 

we have the variability in both water content between heartwood-sapwood 



 

 

55 

 

(sapwood is generally saturated with water), as well as density, across the whole 

diameter of the disk. 

 

A third cause could be the use of a narrower band of wavelengths. There is 

evidence in the literature (Kelley et al. (2004b); Acuna and Murphy (2006b)) that 

the reduction of the bandwidth will result in a drop of the predictive ability of NIR 

based models. 

 

With regards to the bark effect on NIR models we found that in all of the models 

tried, the presence of bark slightly improved the ability to predict wood density 

when compared with bark off models. There was a difference between bark on and 

bark off models that might be a limitation in the potential use of NIR technology; 

if the instrument is attached to a harvester/processor, we can not be sure that the 

bark is going to be present on each log that is being cut. 

 

There are a number of limitations related to this study. These follow: 

 

- we worked with one species, Douglas-fir. 

- the sample was representative of only one site in the Coast Range of 

Oregon. 

- we tried one method of exposing the sample to the NIR sensor (there are 

several other methods such as spinners or stationary samples). 
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- we selected 5 or 10 best wavelengths for MLR when sample height on the 

tree was included. If we could have included the height as an independent 

variable in the Delight software, the software may have chosen different 

wavelengths due to the effect of the height variable. 

 

With respect to our original objectives we conclude that: 

 (1) it was not possible to make strong prediction models of a sample’s specific 

gravity from external characteristics alone; the best validation model had an R2 

value of 0.29. 

(2) calibration model correlations could be improved by including data from NIR 

absorbance spectra collected from green chainsaw chips, however these models 

performed poorly when applied to validation data sets. 

(3) the presence of bark in the saw chips adversely affected prediction power of 

the models. 

We also conclude that since other researchers have reported good to strong 

relationships between NIR measurements and wood density we can not attribute 

the low performance of our models to the NIR technology alone. We believe that 

the sampling protocol, that is, the method of presenting the chips to the sensing 

system, used in this study and the great variability from pith to bark may have 

caused the poor performance. This technology requires continuing research. 
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Finally, we note that with the technology available to us at present, even given the 

methodological problems encountered in the current study, it is clear that NIR does 

not sample green chips quickly enough or thoroughly enough for the real time 

application. Each of our wood disks was related to the mean curve from as many 

as 10 to 860 scans. A larger number of scans is simply not feasible with this 

technology. Therefore, we suggest that research be aimed at getting more 

representative NIR spectra, through such approaches as multiple simultaneous NIR 

sensors, different chip homogenizing techniques, or other technologies. When this 

issue is overcome, the method may hold promise for improving our ability to 

predict wood density in real time in the forest as we harvest. 
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APPENDIX 
 

Graphs showing variation in R and Standard Error for calibration and validation 
models 

 

 
 
Figure 15. Statistics (R and Standard Error) for the different variables tried in a) 
Calibration, b) Validation for the bark off models. MLR: Multiple Linear 
Regression and PLS: Partial Least Squares. 
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Figure 16. Statistics for the different variables tried in a) Validation models based 
on bark on calibration models  b) Validation models for bark on data based on bark 
off calibration models. MLR: Multiple Linear Regression and PLS: Partial Least 
Squares. 
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