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Forest products companies in the U.S. face vigocouspetition from other wood
producers around the world and other industriege(staluminum, plastics,
composites). To be competitive, forest companiesdrte control costs, sort and
allocate logs to the most appropriate markets, racdver more value at time of

harvest. Interest in log sorting based on intewwdd properties is increasing.

Wood properties, such as stiffness and densitynave being considered by log
buyers. Assessing these properties in-forest amelaltime will be a challenge for
log supply managers. The utility of near infrarédR) technology for measuring
wood density is showing promise in laboratory ctinds. The rationale behind

this study was to evaluate NIR under conditionst tlzae similar to



field harvesting operations to estimate log densiouglas-fir wood samples
(110 disks) were collected from the McDonald-Duprekt and processed in the
OSU Oak Creek laboratories. Processing conditiome wrganized to simulate a
harvester processor environment by using a chainaad then channeling the
chips with a chute to concentrate chips to moveé @adNIR sensor. This apparatus
was intended to mimic a sensor system fitted toaevdster head.. A rugged

Prospectra DNIR sensor was used to collect spectral data.

The generated spectra were analyzed in two formsaa data (without any
transformations) and a transformed dat& (@erivative). Then, four types of
calibration models were applied to predict log digngl) models that used tree
parameters only as a predictor (the simple modgl)),models that used NIR
absorbance data and Partial Least Squares (PL§ps@nprocedures , (3) models
that used NIR absorbance data and Multiple Lineagr&ssion (MLR) analysis
procedures, and (4) models that used a mix of NdRodbance data and tree
parameter data and MLR analysis procedures. Theojdbhe models was to use

the NIR data to predict the density of the log tiet been cut.

Model results were also obtained for validationll(faross validation) and
calibration sets. Data analysis suggests that letioas for calibration sets (R)
were high, but when validation was applied thereewlarge drops in R values.
The best fit model was the simple model, the mdigigd did not include NIR data

as predictors.



Our interpretation of why the simple model was st fit is that there is great
variability of wood characteristics across the stesection, that there was
morphological problems associated with how we preskthe samples, and that
we used a narrower spectral range of NIR comparetid range used in earlier

studies.
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EVALUATION OF A PROTOTYPE NIR SYSTEM FOR DOUGLAS-FIR
WOOD DENSITY ESTIMATION

CHAPTER 1

INTRODUCTION

Douglas-fir is an important commercial timber spsan many parts of the world.
In the United States 7.3 percent (~ 14.3 million dfahe country’s 196 million ha
of non-reserved timberland is presently occupiedDioyglas-fir. In Canada the
area stocked with Douglas-fir is slightly less thare-third (~ 4.5 million ha) of
that in the United States. In Europe this spe@dsighly significant in plantation
forests, especially in France and Germany (330a0@0134,000 ha, respectively).
In the southern hemisphere it is also well represknwith New Zealand, Chile
and Australia being the countries with the greag@sisence of the species

(Hermann and Lavender, 1999).

Timber resources in the Pacific Northwest have gaéy shifted from unmanaged
old growth to intensively managed young growth. psunger stands are
harvested, wood quality is negatively affected amparison to old growth wood
because of the presence of a higher proportioruwdnile wood, which in turn

affects properties such as strength and dimensgtahility (Gartner 2005).



2
Douglas-fir timber must compete against timber poadl from other tree species
and, in some markets, against substitute matesiads as steel, aluminum, plastic
and concrete. Competition is making the wood manketre complex and
demanding (Acuna and Murphy, 2006a). For Douglgsdignificant quality
attributes for wood products include density, midnal angle, fiber length, lignin
content, ring width, knot size and distributionaigr angle, and coarseness, color,

etc. (Gartner 2005).

Wood density is one of the most important physiclahracteristics for wood
products because it is an excellent predictor wdngtth, stiffness, hardness and
pulp yield (Megraw 1986, Haartveit and Flaete, 2008hese wood properties
have a high influence on the quality of the finabguct, for example trees with
high density and low microfibril angle are desimbbr providing stiff and strong
structural lumber, while trees with high densityddow lignin are required for

high pulp yields (Jones, 2006).

Wood density is a widely variable characteristieere is variation between trees
within a stand and also within the same tree (JaszbMiddleton, 1994). Density
is lower in juvenile wood, near the pith and inlgavood. In Douglas-fir wood
density may also be affected by environmental darh such as elevation. It has
demonstrated to be a very plastic species (CownPamller, 1979). Silvicuture

also has a strong effect on wood density. Heavilgrtied stands respond with
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greatly increased latewood density and this offie¢spersistent low earlywood
density because of the augmented radial growthr($14885).

Optimally matching wood quality to markets can meaiting logs for very
specific end uses and classifying them into sewsatdgories or “sorts” to improve
product uniformity, productivity and profitabilitglong the seedling to customer
supply chain. Log makers have to adhere to a seaulet referred to as log
specifications. These specifications can signifigaaffect the values generated
for both forest owners and log processing industiidey also ensure that the logs
will fulfill mill requirements for a given productn markets where there are many
customers, there can be many log grades. As anmeampaper on New Zealand
log markets reported thirty eight (38) log gradesenty for domestic market and
the rest for export markets (NZIF, 2005). As anoteample, in central Georgia
some companies have up to fifteen different (19) gopades (Amanda Hamsley,

University of Georgia, pers. communication).

Optimally matching wood to markets produces a ligllenge for log distribution
to processing centers. In some markets, the logisnisansported to the mill and
once there, classified in the log yard. If logsnih meet specification they can be
(1) reclassified and sent to another mill, addimgnsgportation costs to the
operation, (2) cut into other log products, prodgcefficiency problems, or (3)
accepted and processed in the mill, leading to tless satisfactory mill outputs.

Some wood markets are beginning to include intenwadd properties in their log
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specifications. New sensor systems are being deedlto help classify logs based
on these internal wood properties (Andrews 200zZk&bn et al. 2004, Young
2002).

Traditionally, wood quality is determined in labtmgy conditions using
destructive methods, which can be expensive anel ¢mmsuming. However, there
are some non-destructive methods, such as acoustics Near Infrared
spectroscopy (NIR), which can be both time and effsctive. Another advantage
of these methods is that some instruments havadlreeen developed for use in

the forest or could be adapted for that purpose.

NIR has a number of advantages that make it an e for characterizing
biomass. These include minimal sample preparatapid acquisition times, and
non-contact, non-destructive spectral acquisitigelley et al. 2004a). Some

commercial spectrometers are also lightweight, éasyperate and economic.

Several authors have investigated the use of NIRrédlict wood properties. In
2002, Schimlecket al. used NIR to estimate wood stiffness in laboratory
conditions. Correlations between laboratory deteatmon of modulus of elasticity
and predicted by NIR were higher than 0.9 for thecges tested. Kellegt al.
(2004a) combined NIR with multivariate analytictstical techniques to predict
mechanical and chemical properties of solid wo@dgehl on a “full” spectral range

(500 nm — 2400 nm) and a reduced spectral rang@ 16> — 1150 nm). Their
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results indicated that correlation coefficients agmed high even though the
spectral range was reduced. This analysis indicatet lightweight and
economical equipment for NIR measurements couldseel.

Later, Acuna and Murphy (2006b) confirmed that odeyn wood density can be
predicted from measurements of green and dry wadgoscusing Near Infrared
(NIR) technology and these measurements possihliddme used as the basis for
sorting logs into several density categories. Theyed, however, that further
research was required before NIR technology coelddst effectively applied in
“real-time” forest harvesting operations. A limitat of their study was that
measurements were made under laboratory conditisimg chips rotating on a

turntable under NIR light with wavelengths rangfrgm 500 to 2500 nm.

Further research was required to determine whestimall, faster, lighter and less
expensive industrial-grade spectrophotometers (witheduced spectral range)
could be used to measure density from green claanchips ejected as each stem
is cut into logs by mechanized harvesting equipménso, then spectra and
density predictions could be gathered across thelil@meter - from bark to pith to

bark.

Other raw material producers have begun to use BdRsors for product
segregation and crop management. Some recent ajpgris of NIR on harvesters

have been undertaken in agriculture in Europe (Bramd and Femenias 1999),
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USA (Von Rosenbergt al. 2000) and Australia (Taylat al. 2005). For example,
Taylor et al. (2005) have reported the use of NIR as a protems@& on grain
harvesters. GIS have been attached to the NIR sensader to map crop nutrient
deficiencies. The output from the NIR protein sensbowed strong spatial
patterns that were consistent with observed yigdations and what growers

expects and have lead to improved crop manageneergions.

The main goal of this project was to use NIR abasode values obtained from
various known heights in logs as an index of woedsity at those locations. The
models employed several varied factors: the nunobgreaks from the spectral
data that were included, and breast height dian{&tBH) and the tree diameter
and height within the tree at which the materiasveampled. Several different
models were used, with the overall question of Wwaethere is a basic model to

estimate wood density in real time from a minimumoant of information.

The specific objectives of this study were to depelvood density models from a

single stand which indicated whether:

» it was possible to make strong prediction modelsa adfample’s specific
gravity from external characteristics alone (sustD&8H, and/or diameter
and height of sampling point).

» correlations could be improved by including datanifr NIR absorbance

spectra collected from green chainsaw chips.
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» whether the presence of bark in the saw chips adiyeaffected prediction

power of the models.



CHAPTER 2

LITERATURE REVIEW

In the following section, some background inforraatiis provided on wood
density, near infrared principles, and the use ethmology for harvesting
operations. The first section is a brief review tbé wood density variation
between and within the tree, and the factors thghtrcause this variation. The
second section includes an explanation of how Nibtke# to characterize the
sample and how we relate this information with aalde of interest, all with the
aim of building a prediction model. The third seatiis a brief summary of
previous work on technology that has been donetbgraesearchers in order to

optimize cost and/or productivity in harvesting Gi@ns.

21WOOD DENSITY

Most mechanical and physical properties of woodctosely correlated to specific
gravity and density. These terms have distinctniigins although they refer to the
same characteristic (Bowyer et al, 2003). Wood ideisa simple measure of the

total amount of solid wood substance in a pieceadd (Jozsa et al., 1989).

Traditionally, density has been measured based @hiedes’ principle. The

green volume (for basic density) is measured byemdisplacement. Then, mass
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of the sample is measured at the appropriate nmmeistantent and density is

calculated (Sarampaa, 2003).

The strength of wood as well as its stiffness iases with specific gravity. The
yield of pulp-per-unit volume is directly related specific gravity. The heat
transmission of wood increases with specific gsaas well as the heat per unit
volume produced in combustion. It is possible @rhemore about the nature of a
wood sample by determining its specific gravity nthhy any other single
measurement. Perhaps it is for this reason thatityenas the first wood property

to be scientifically investigated (Bowyer et al 030).

Wood density is a widely variable characteristi@re is variation between trees in
a same stand and also within the same tree. Bechtlse tree growth pattern, we
have more early wood and wider rings near theipithe upper crown region (i.e.
less dense wood in the upper section of the tieejk look at the cross section of
the stem, there is an important pith-to-bark gnaii€his is a cause of the juvenile
wood that occurs during the first 15 to 30 yeargrofvth (Harris, 1985; Josza and
Middleton, 1994; Lausberg et al., 1995). This waedlifferent because it grows
under the influence of live branches. In genetails wwood has lower density,
shorter fibers, larger microfibril angle and lowegllulose content than mature

wood (Josza and Middleton, 1994).
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In addition, trees that grow faster will have ahagcontent of juvenile wood and
consistently lower density. This is a big issue wipelp companies decide about
their silvicultural treatments because they wast fgowth but at the same time

that means lower pulp yield per tree.

Density uniformity is also an important issue fonme end uses such as veneer
production. The greatest change in density is fobetiveen rings and between
latewood and earlywood. In the special case of Dxsufir, density is high in the
darker area of the ring (latewood) and lower in theection of the next ring
(earlywood). Douglas-fir has a great intra-ring slgnvariation (range between
0.25 to 0.85 (g/cr)) (Josza and Middleton, 1994). Harris (1969) aksported an
extreme contrast between latewood and earlywoatingna maximum range 0.17
to 0.87 g/cm in successive growth layers. On the other handlse found that

earlywood values are quite constant across the atehaverage 0.2 g/ém

When Jozsa and Middleton (1994) analyzed the veladensity at breast height
they found that Douglas-fir has a decrease in terfsom rings zero to ten
(juvenile wood) and then starts increasing un@ ttee reaches thirty years, then

keeps increasing each year but at a slower rate.

When we talk about wood density, we also havefer te the chemical properties

of its components. In general, conifer cell walés/é three principal components:
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cellulose between 40 and 50%, hemicellulose betvwaermnd 35% and lignin
between 15 and 35%. All these determine the dewsithe cell wall and tissue
characteristics. There is evidence that cell wisbue density is quite constant
within the tree and is not affected by growth rdatewever, the amount of cell
wall that is contained in a specific volume is det@ed by the wall thickness and

the cell lumen size (Sarampéaa, 2003; Harris, 1969).

Another important factor to consider is the siteeef on wood density. In 1979
Cown and Parker made a densitometric analysis afdwioom five Douglas-fir
provenances growing in Corvallis, Oregon. They fbdihat provenances do not
affect growth rates and mean wood density, buthatea major influence on both
characteristics. The greater effect was in therimimgs of the tree and indicated
that this species has a great adaptability to tmar@ment through natural
selection. Later, Lausberg and others (1995) stuthe effect of provenance on
wood properties in Douglas-fir plantations locatedNew Zealand. They studied
twelve provenances of managed forests and fountditee is a general trend over
all sites and provenances for breast-height denmsiincrease from pith to bark.
There was a strong site effect on properties meds(85% confidence), but the
differences within sites was not very high havinmaximum of 0.15 g/cfiwhich
seems to be less than the effect that has beemtedgor Pinus radiata for the
same zones (0.35 g/érdifference). There was also strong evidence thathss

an effect on the heartwood proportion (95% confa@@nWith respect to altitude,
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Harris (1985) mentioned that in New Zealand, hi¢gvations would result in

lower Douglas-fir wood density.

Silvicuture has also a strong effect on wood dgnditeavily thinned stands
respond with greatly increased latewood densitytargdoffsets the persistent low

earlywood density because of the augmented radhalty (Harris 1985).

“Growth rates are lower on phosphate-deficientssaihd wood
density can be as much as 0.06 d/trigher that in trees growing
on normal (non-deficient) sites in the same ardd#ér(is, 1965)
cited by Harris (1969).
The reason is that in some sites, fertilization bardetrimental for wood density

because trees tend to grow faster.

Wood density is a highly heritable characteristicai number of species (King,
1986 cited by Loo-Dinkins and Gonzalez, 1991). Heeve there is some
discussion generated about the correct age whesitgeshmould be evaluated for
breeding selection. Vargas-Hernandez and Adams 1§198vestigated this
particular issue in coastal Douglas-fir. They dmieed that earlywood and
latewood, by themselves do not have higher helitglthan the overall density,
but they are highly correlated with overall dengity 0.74). Overall density was
positively correlated with intraring density varat (r = 0.72) and negatively

correlated with stem volume (r = -0.52). Anothase study, performed with
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Scots pineRinus sylvestris L.), indicated that correlation between wood deesi
in the transition zone between juvenile to matu@avwas high implying that
even young trees can be assessed and comparedui@ wvood density breeding

programs (Fries and Ericsson, 2006).

2.2NEAR INFRARED SPECTROSCOPY

NIR spectra were discovered in the early 1800’souad 1900, W.W. Coblentz
used a salt prism to build a primitive infrared dp@meter, but it wasn't until the
1950’s that modern NIR instruments were develofdédtese were first used for

food application experiments (Ciurczak and Buri@$)13.

The acceptance of NIR as an analytical techniqugaevith the work of Karl
Norris of the US Department of Agriculture in tharlg 1960’s. Later, NIR
spectroscopy flourished and expanded well into qplaaeutical, industrial, process
control, food processing, remote imaging spectmgc@and other diverse

applications (Barton, 2002).

The NIR region is between 850 nm and 2.5 micronstlen electromagnetic
spectrum, and it contains numerous overlapping rabisa bands arising from
overtones and combinations of X-H stretching vibrel modes (Meglen and

Hames, 1999). In order to understand how it worlksneed to understand the
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Franck-Condon principle (Barton, 2002). The Fra@dadon principle explains
the intensity of vibronic transitions. Vibronic tisitions are the simultaneous
changes in electronic and vibrational energy lewidlsa molecule due to the
absorption or emission of a photon of the approprienergy (Figure 1). The
principle states that during an electronic transitbetween molecular quantum
states, a change from one vibrational energy l@vahother will be more likely to

happen if the two vibrational wave functions ovprtaore significantly (Somoza,

2006).

Energy

i
q(] L

Nuclear Coordinates
Figure 1. Franck-Condon principle energy diagramcé&electronic transitions are
very fast compared with nuclear motions, vibratideeels are favored when they
correspond to a minimal change in the nuclear aoates.

When a sample is exposed to NIR energy, molecubrate. Then, when the NIR

energy matches the natural vibration of a molecbland within a molecule it
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absorbs that energy. Each different molecule siracinteracts with different
wavelengths, hence samples having different chdrarghphysical properties will
result in different NIR spectra (Jones, 2006). @a& from a NIR spectrum may
consist of thousand of variables measured from esahple. Each variable
corresponds to the reflectance or transmittancesuned from each wavelength

(Haarveit and Fleete, 2006).

Various compounds in biological materials have @amging peaks in the spectra,
often making multivariate analysis compulsory (Ha#r and Fleete, 2006). This
analysis, most often called Partial Least SquaRisS), makes possible the
transformation of the spectra into quantitativernfation. This method relates the
systematic information from a matrix of X (in outudy, absorption of

wavelengths) to the information on a matrix of M @ur study, wood density) with

the purpose of predicting Y from X. The statistibechnique simultaneously
calculates multivariate projections of the predicaod independent variables so
that the projection of the two data blocks are mmally correlated. In this way, a
guantitative expression of the correlation betwdesm two matrices is known

(Meglen and Hames, 1999).

In order to apply PLS analysis, calibration anddprgon sets of samples are
needed. The calibration set is used to build thelehand the prediction set to

evaluate the model. Meglen and Hames (1999) peddra study were the
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validation was made with a rigorous assessmerdrmit of full cross validation.
This technique works by holding back one sample @edicting it from a model
conducted from the remaining N-1 samples. Thenffarent sample is held back
and predicted with the remaining N-1 samples. rscedure is repeated until
every sample is predicted from a model in whichwis not a participant.
Therefore, N models (N, being sample size) areldeee. The validation plot that
is generated shows prediction of the samples theae wot participants in the

model construction (Meglen and Hames, 1999).

NIR has been widely used to measure wood propeaffesting a wide range of
forest products. Many studies can be found in iteeature on the prediction of
physical (density, microfibril angle, tracheid Iéhy mechanical (MOR, MOE),
and chemical (glucose, lignin and extractives aofyte'ood properties from NIR
spectra for a range of softwood and hardwood spe@ehimleck et al. 2002;
Kelley et al. 2004b; Schimleck et al. 2004; Joneal €2005). Good correlations,
R? values ranging from 0.79 to 0.96, have been refoi{IR measurements have
been made on green and dry solid wood, green andudyer shavings, and dry
powdered wood. It has also been shown that mecdhlapioperties could be
predicted using a reduced spectral range (650 rdf-btn) with nearly as good

predictive ability (Kelley et al. 2004b).
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Meglen and Hames (1999) described a field testemahstrate the ability to
obtain spectra of sufficient quality to permit qtieative calibration from wood
chips moving at high speeds (approximately 350 ifffmThe reason for this
experiment was to demonstrate the practical ussdine VIS-NIR spectroscopy.
They made the test under environmental conditiansd within a typical mill
(dust, light and temperature conditions may be rggva order to predict chemical
properties of the pulp wood chips. The resultsdatiid that visible light highly
affects the measurements, which is the reason Wwhy tlecided to make the
predictions based on NIR spectra. They concludet there was a high
probability that fluctuations seen in the NIR pitins were due to the real

fluctuations in the chemical compositions of wood.

Later, Acuna and Murphy (2006b) confirmed that odeyn wood density can be
predicted from measurements of green and dry woaghsaw chips using Near
Infrared (NIR) technology. Their study was made emthboratory conditions
using chips rotating on a turntable under NIR lighth wavelengths ranging from
500 to 2500 nm. The results indicated that NIR mesaments could be used as the

basis for sorting logs into several density catisgor
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23 THE USE OF TECHNOLOGY IN HARVESTING OPERATIONS

Forest operations in many parts of the world ambgng more mechanized and
automated. The main objectives of automation areottect, transmit and report
information, thereby diminishing the mental pressaf the operator, as well as to
improve the working conditions and performancehaf operator. Lofgren (2006)
used a forest machine simulator in Sweden to etalh@ effect of automation on
performance. Their main finding was that automatias a feasible way to both
increase productivity and improve the working cdiodis of operators. In

particular, they found that automation should beaed both at knuckle boom

work and log processing.

There are several other examples of studies thet peoven the operational uses
of instruments in order to minimize costs or imga@ifficiency with the extraction

operation.

One of the examples is the use of GPS (Global Bosig Systems) in various
pieces of harvesting equipment. Cordero and otf28@6) integrated a GPS and a
computer in two harvesting machines. One was cigrigth operation consisting
of a harvester and forwarder and the other wastriedl operation, consisting of a
feller-buncher and a grapple skidder. Data weréectd at 10 seconds intervals

where position, altitude, speed and time were aExhrBoth systems were clear-
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cutting 12-13 years ol&ucalyptus spp. forests. As a result, they gathered lots of
valuable information which could be used to monaad improve the efficiency
of these operations. They monitored machine prodtttotal harvest volume
(useful for comparisons with base inventory dategrvester paths (useful for
checking soil compaction and damage to culverts ditches), felling and
processing strategies on steep slopes (which affdwe efficiency of fuel
consumption), wood piles locations (useful for editng transportation), etc. All
this information is highly valuable to make a mefcient, economic and reduced

impact operation.

Kopka and Reinhardt (2006) noted, however, that #oeuracy of GPS
measurements mainly depends on such things astelislape angle, aspect and
satellite navigation systems (Russian or Ameriddmy investigated the cause of
impreciseness of two different navigation systersghngi a Timberjack 1470D
harvester in a two hectare forest stand in Nortli@enmany. They measured and
oriented skidding tracks using the different natiga systems and then the
harvester was guided only by the tracking funcobrthe GPS software onto the
skidding tracks. Under optimal signal conditionscuaacy better than 10%

deviation could be obtained.

Another example, as reported earlier, is the appba of NIR on agricultural

grain harvesters. Taylor et al. (2005) used NIRaaprotein sensor on grain
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harvesters and reported positive results. GPS/@&® attached to NIR sensor in
order to map crop nutrient deficiencies. An acaisate-specific determination of
protein content was provided, allowing the caldolatof site-specific nutrient

needs and spatial patterns in crop productivity.
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CHAPTER 3

MATERIALSAND METHODS

3.1SAMPLE ORIGIN

Samples were taken from a single stand within Mcdunn Forest. This
forest is Oregon State University’'s main reseatelaching, and demonstration
forest. The forest lies within a transition areénsen the Oregon Coast Range and
the Willamette Valley (Fletcher et al., 2005). Tpecific location of the study site
is 44° 42.55’'N/ 123° 19.58'W and the elevation &)2meters. The site has a 72
year old Douglas fir stand with an average DBH df64cm (range from 15.0 —

78.5 cm). The stand had received three commeturaiings over its life.

The DBH of each tree was measured. Trees wereféllea in the summer of
2007. The total number of trees felled for theltrias 40 and 110 wood disk
samples were obtained from them. Samples weratcdifferent heights up the
tree depending on the best tree bucking alternalikie first sample was taken at
the base of the tree, the second at 18, 27 or, Zmd the third at 18, 27 or 35 ft
depending on the second log length. Samples wedreatiected from all potential
sampling points in the 40 trees. Sample heighthettee, stem diameter and an

identification number were recorded and samplegwaarked with crayons.
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3.2 SAMPLE PREPARATION

Samples collected in the field were bagged andeplac a cold room at the end of
each day. When all sample collection was finistsaaples were taken out of the
cold room for processing.

Wood disks were split in half, if the bark was enets One half was debarked and
the other left with bark. After that, each sampleswplaced in a holder (Figure 2)
specially designed by Oregon Cutting Systems. blder had adjustable pins to
clamp samples of any shape and allowed the sanplé® safely cut with a

chainsaw through the sample cross section.

Figure 2. Wood sample holder, arrows indicate adplse holding pins.
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In order to make the chip sampling protocol simitaa processor “environment”,
a 0.404 inch pitch chainsaw chain was used. Thessi® was based on a brief
survey, which indicated that approximately 60% afgessor brands use chainsaw
chains of these specifications on butt saws andbstii00% on topping saws

(Glen Murphy, Oregon State University, Pers. Comication, January 2006).

Chain pitch is the difference between the centé@ny three consecutive rivets,
divided by two; an example is shown in Figures 3a 8b (Oregon Cutting

Systems Group Blount Inc., 2004). In this studg, ¢hain pitch was 0.404 inch.

-— L 2 ]

RIGOMN o 2 o o & .
J/ \_{‘

Figure 3. a) Chain pitch, b) picture of 0.404 gtitchain (Source: Mechanical
Timber Harvesting Handbook, Oregon Cutting Syst&@rwup Blount Inc.)

Because the idea of this project is to obtain Npiectra from the chips that are
generated while we cut the sample, a chip collestas designed. This collector
was located just below the place where chips apeleed from the chainsaw. The
collector accumulates the chips and channels tigma.NIR sensor was located
below that accumulation point. Finally, chips weadlected and placed in tagged
bags. These bags were stored in a cold room ftndumeasurements, if needed.

The cutting procedure and collector are shown gufd 4.
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Figure 4. Top panel: wood chips path. Bottom pawielv of the collector from
above.
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3.3NIR MEASUREMENTS

NIR measurements were synchronized with the cufpirazess. The instrument
used was a ProSpect¥aspectrometer by DSquared Development Inc. (LaGrand
Oregon). The spectrometer has a maximum rangeavelngths from 600 to
1100 nm. As noted above, Kelleyal. (2004b) found that reducing the spectral
range from 500 to 2500 nm down to 650 to 1500 nralevaot have a large effect
on the NIR prediction power and would allow the usfe more economical
equipment. We confirmed this finding by re-anatggidata collected by Acuna
and Murphy (2006b) (see later description of tmalgsis in Section 3.6). Using a
narrower spectral range can save at least $30,0@0ecequipment cost. This kind
of equipment is being used on grain harvesters astheven narrower spectral
range (e.g. 839 to 1045 in AccuHarvest equipment;

http://www.zeltex.com/accuharvest.html, access&th§ 2008).

The ProSpectra was adapted by the DSquared Devetddnt. to be connected to
a laptop computer. Two software programs are us#ddtivMs equipment; one for

gathering and pre-processing data and one for zinglgpectral data.

DSquared2 software allows the gathering and dispdagf data generated by the
ProSpectra equipment. This software is very flexibt has the capability of

programming a method that better suits the datiaegaty procedure. In this case
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we programmed a method that made the instrumemt #ea chips while the
sample is cut through the entire cross sectionrdlv@s a person in charge of the
computer, this person had to enter the samplenrdtion (tree number, position,
etc), determine when cutting of the sample is begirected the scanning
procedure to begin, stop the procedure when thevestfinished. It should be
noted that the ProSpectra system has the fleyilmlitautomatically starting and
stopping measurements. However, this feature wasised since in preliminary
trials it was found that a break in the streamhainsaw chips sometimes stopped

scanning prematurely.

Many scan measurements, relating to each wavelengéie gathered and
averaged as the cut was made through the sampleyidiger the diameter, the
more scans were obtained from the sample. The nuaflszans for each sample

ranged from 10 to 860 and averaged 136.

3.4WOOD DENSITY MEASUREMETS

In order to build the density estimation models, mez=ded the actual wood dry
density of the samples. The method used to detertha dry density was the
following: samples were oven dried until dry weighés stable (approx. 48 hr),
then, sample volume was determined by the diffexemaveight between a bucket

with water and the same bucket with the sample suped, (Figure 5). Wood
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density (kg/m) was then calculated as the ratio between dry weeight and dry

volume.

Figure 5. Dry density measurement using water decgrhent method.

3.5 DATA PRE-PROCESSING AND STATISTICAL ANALYSIS

Four types of models were developed for this stédlyof them had the goal of
predicting the wood density of the samples. Th&t,ficalled the “Simple Model”
was a linear regression model built to predict wdedsity without the use of NIR,
instead, tree attributes such as DBH, sample heightthe tree and sample

diameter were used as predictors. The main purpiodese models was to have a
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basic model to compare with the NIR performanceagwedictor. The second
model was developed using Multiple Linear RegresgMLR) to predict wood
density of samples with the bark removed based bt Wavelengths. The third
model used Partial Least Squares (PLS) to predictdwdensity of samples with
the bark removed based on NIR wavelengths. Thetifomodel used MLR to
predict wood density of samples with the bark reetblbased on NIR wavelengths
and sample height within the tree. Variants of #ssond and third models

included the NIR measurements of samples with #nk left on.

Before building NIR models, data was preprocessed, later analyzed, using
Delight Beta software, developed by DSquared Deraknt Inc. There were two
preprocessing methods; the first was to leavedhedata as it was and the second
was to take the second derivative of the absorbaalces with respect to a 10 nm
gap in wavelengths (10 point gap) and mean cehté@rhe next pre-processing
procedure was to trim both ends of the spectrum;wlas done to eliminate noisy
regions. Data was originally obtained along the @&001200 nm range. The

trimmed range was from 620 to 1080 nm.

The general modeling procedure was the following:

1) Construct the model based on tree attribute/N&#Relengths to predict wood

density. This means that, from within the total gelN samples with known wood
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density (measured as indicated in Section 3.4),use a sub-set of calibration
samples to develop a mathematical model (MartedsNaes, 1984). Then, the
coefficient of determination @ and standard error of calibration (SEC) are
generated and become available to evaluate the Inpedtormance. These are

called the calibration models.

2) Validate the model using a validation set of gka® to prove its performance.
Two procedures were used for selecting samplesvétidation; a full cross-
validation procedure (see 2.2) and split crossda#ibn where the samples not
used in the calibration set were used in the vabdaset. One-third of the samples
were randomly selected from the total data setusmed in the split cross validation
procedure... Then, a new determination coefficegenerated; this one represents
the correlation between the predicted density valug sample (using the model)
and the actual density of that same sample (med)sufe standard error of

prediction (SEP) can also be calculated. Thesealled the validation models.

3) Compare the calibration and validatiorf Boefficients within the several
models built in order to decide whether one modefqums better than the other.
A calibration model can have a great R statistienvh high number of variables
are used; this is due to overfitting (when a mdde too many parameters and as a
result a “perfect fit” false model is created). Hoxgr, this can produce a poor

performance once the model is validated (AcunaMuaphy, 2006b).
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3.5.1 Simple modéd

Three “simple models” were built as a way to corepthe prediction capability of
the wood characteristic studied in this projectmand without the use of NIR.
The dependent variable was wood density. The intigd variables were tree
diameter at breast height, the height in the trebthe diameter of the stem where
the sample was taken. The statistical procedurd uses MLR using Microsoft
Excel. The general equations for these three madetls the following: a) density
(kg/m®) = a + b*DBH (cm), b) density (kg/) = a + b*sample height (m), and c)
density (kg/m) = a + b*sample diameter (cm), wher and b are regression

coefficients.

The statistic used to measure the model performamseR and standard error.
For validation purposes, the data were split imto sets, one of 77 samples and
the other of 33 samples. The decision about whstigle model” was going to be
the final model left as a base of comparison witR Khodels, was the one that had

a higher R.

3.5.2 MultipleLinear Regression (MLR) based on NIR wavelengths

For both MLR and PLS analyses, calibration and dagion models were

developed.
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Multiple linear regression attempts to model thatrenship between two or more
explanatory variables and a response variable tiyndia linear equation to
observed data. Every value of the independent Manais associated with a value
of the dependent variabje In our study we will predict wood density) from the
multiple spectrums that was obtained for each santpbse are going to be our
multiple independent variables (x’s). Because we&ehaeveral (maybe even
hundreds) of independent variables (wavelengthef) ¢haracterize each sample,
we need to choose some of them to build the mddER allows choosing the
number of independent variables we want to useumnoodel. So, if we want to
use one (1), the software is going to search thraalfthe wavelengths and is
going to choose the one that gives the best mdidele want to use two, it is
going to use the best two, and so on. In FigureeBetis an example of the three

(3) best wavelengths chosen by the Delight softw@imiild the model.

In this study, models using from one to ten indeleen variables (wavelengths)
were built. The general equation form for the medehs the following: density
(kg/m®) = a + b*w, + c*'w, + d*ws +....y*w; where w represents the “chosen”

wavelength for the model, and toy represent the model coefficients.
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Figure 6. Example graph of wavelengths chosen tid hn MLR model

Calibration and validation models were also tried the following data sample

types:

- Bark Off Samples:
a. Prediction of Bark Off density with no validatiaaw data.
b. Prediction of Bark Off density with no validatiogoing from 5 to 10
variables. Second derivative transformed.
c. Prediction of Bark Off density using full crogslidation, going from 5

to 10 variables. Second derivative transformed.
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- Bark On Samples:
a. Prediction of Bark On density using full crosdidation, going from 1
to 10 variables. Second derivative transformed.
b. Prediction of Bark On density using Bark Off nebdoing from 1 to 10

variables. Second derivative transformed.

The number of predictor variables used was relatedrying to improve the

model’s R statistic and diminish the standard error

3.5.3 Partial Least Squares (PLS) based on NIR wavelengths

PLS is a technique that generalizes and combinesurtss from principal

component analysis and MLR (Abdi, 2003). MLR findscombination of the

predictors that best fit the response, then pralcgomponent analysis finds
combinations of the predictors with large varianoegucing correlations. The
technique does not use response values. PLS fordbinations of the predictors
that have a large covariance with the responseesalBLS therefore combines
information about the variances of both the predgt(wavelengths) and the

responses (wood density), while also consideriegctirrelations among them.

The NIR data were mean centered prior to carryimgtbe PLS analysis. Mean

centering data is almost always applied when calmg any multivariate
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calibration model. The process involves calculatimgaverage spectrum of all the
spectra on the data set and then subtracting thdt rfom each spectrum. In
addition, the mean value for the constituent (messwood density) is calculated
and subtracted from the constituent value of egamiple. This process makes the
differences between the samples substantially esghnn terms of both
constituent value and spectral response. This lyslezlds to calibration models

that give more accurate predictions.

For this type of analysis, models using from one tém latent variables
(wavelengths) were built. The general equation fdon the models was the
following: density (kg/m) = a + b*w; + c*w, + d*ws +...y*w; where w

represents the “chosen” wavelengfior the model, and toy represent the model

coefficients.

Once the models were obtained, the same statasiésr the MLR procedure were

calculated.

As described in previous sections, there were ped of samples, samples with

bark on and samples with bark off. They were aredyin the following way:

- Bark Off Samples:

a. Prediction of Bark Off density with no validatiaaw data.
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b. Prediction of Bark Off density with no validatiéorom 1 to 10 latent
variables. Second derivative transformed.
c. Prediction of Bark Off density using full crogslidation from 1 to 10

latent variables. Second derivative transformed.

- Bark On Samples:
a. Prediction of Bark On density using full crosdidation from 1 to 10
latent variables. Second derivative transformed.
b. Prediction of Bark On density using Bark Off nabtiom 5 to 10 latent

variables. Second derivative transformed.

The number of latent variables used was relateyitog to improve the model's R

statistic and diminish the standard error.

Every disk was treated as an independent sampés though there were 110

disks that came from a group of 40 trees.

3.5.4 Multiple Linear Regression (MLR) based on NIR wavelengths and
sample height within thetree.

The procedure for this model is the same as destrilb Section 3.5.2 with the

only difference being that sample height is inchide the model as another
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predictor. The reason for building this model isatll the sample height predictive

power to the NIR model and verify if it is goingrtmake it stronger.

This model was only developed with Bark Off sampleseprocessed with 10
point second derivative. In order to validate theded, the data was divided so that
two thirds of the samples were used to build theehand the remaining third was
used for model validation. In both types of modeHibration and validation) we t
using 10 and 5 variables (wavelengths) plus heaghétem at which wood sample
was collected. The five and ten wavelengths seleatere chosen based on the

analyses completed in Section 3.5.2.

The general equation form for the models was tHeviing: density (kg/m) = a +
b*sample height +c*w, + d*w, +...y*w; where w represents the “chosen”
wavelength for the model (in this casewas 5 and 10), ana to y represent the

model coefficients.

3.6 ANALYSISOF EFFECTS OF REDUCED WAVELENGTH RANGE

Acuna (2006) evaluated the utility of NIR and mudtiate analysis based on
wavelengths ranging from 500 to 2200 nm. His oagitalibration and validation
models were constructed for density predictiongetam samples of green wood

chips and the full range of wavelengths. Using dhiginal data sets different
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ranges of the spectra were analyzed: 650-1050 660-2200 nm and 1050-2200
nm. This analysis was done to verify the effedtseducing the spectrum (band

width) on calibration and validation models as mepad by Kelley 2004b.
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CHAPTER 4

RESULTS

4.1 WOOD DENSITY

Wood density determined by water displacement ntetesummarized in Table
1. Because the information is presented by diffehenghts on the tree, it can be
clearly seen that density decreases with tree heigtile the standard deviations
increase. The standard deviation pattern is maedticted by the lower number of

samples in the upper parts of the trees.

Table 1. Descriptive statistics of wood dry dengity/m’) by sample height.

Average| SD Min M ax N
Base (O ft) 570 40.4 496 640 | 40
First log (18-35 ft) 513 43.8 430 606 37

Second log (36-70t) | 486 490 362 605 | 29
Third log (54-105 ft) 422 | 109.0 268 511| 4
Total 523 613 268 640 | 110

4.2 SIMPLE HEIGHT MODEL

Of the three simple models tested, (DBH, samplenstkameter and sample

height) sample height provided the beévRlue.
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As shown in Figure 7, the simple DBH model has arthat explains very little of

the variation in wood density. Diameter at the slamgppoint provided a slightly

better B value (0.15). When the calibration model wasthusing sample height

to predict wood density, the’Ralue was 0.46. In general, this is a normal value

for this type of model and species.
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Figure 7. Calibration models to predict wood dgngibm a) DBH and, b) Height

in the tree.
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When the simple height model was validated agaongt third of the data that
were left out to build the calibration model, thé\Rilue dropped to 0.29 (Figure

8).

Validation based on Calibration Model
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Figure 8. Validation of model height/dry density

This simple height model constituted our baselimedomparison with the NIR
based models. On these following models we evaluateether NIR contributed

to higher or lower predictive power in comparisoithvihis simple model.

4.3 EFFECT OF REDUCED WAVELENGTH RANGE (BASED ON DATA
COLLECTED BY ACUNA (2006))

As stated above, the instrument used for the custedy only collected data over

an abbreviated spectral range compared to prewatiesnpts for prediction of



41
wood density from NIR data. Therefore, we usedaieilable data set from Acuna

(2006) to learn how this smaller range could patdigtaffect predictions.

The results of the models prepared to verify thiectfof the spectral range

reduction are shown on Table 2.

Table 2. Coefficient of determination for differebéand width ranges on green
chips wood samples.

Band Width (nm)| RCalibration | R Validation
650-1050 0.80 0.61
1500-2200 0.83 0.63
1050-2200 0.80 0.62
500-2200 (control) 0.89 0.74

There were very little differences between the derived from the three band
widths. When compared with control (500-2500 nnowéver, the Rresults for
the calibration and validation models are lowehede results are consistent with,
Kelley’s (2004b) finding that a reduced range afidavidth results in a drop in°R

of about 10%.

4.4 NIR PREDICTION MODELS

4.4.1 MLR based on NIR wavelengths
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a) Bark off samples

As shown in Figure 9 there is a significant impnoet in the calibration model
R? values, compared with raw data, when a secondatare transformation is
applied to the spectral curves. In Figure 9a thstRistic is extremely low (0.01).
The transformation increases thétR 0.56 (Figure 9b). Using 10 wavelengths as
predictors resulted in the best model in statiktieans with respect to the other
five models tested (five to nine wavelengths). Thesult seems acceptable
compared with the calibration simple height modet € 0.46). The other five
models are not presented here, but in the appehdne are graphs that show the

statistical parameters of the other models.

However, when the best calibration model is cradgdated using the Delight
software, the Rvalue drops dramatically to 0.006; this model haspredictive

power (see Figure 9c¢).

Validation of the best MLR calibration model usisglit data gives a slightly
higher R value than found for the full cross validationt ks still too weak to be

evaluated as a good model (Figure 15 in appendix).
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There may be outliers in the data (Figure 9). Rangpthese would give a very
small improvement in the Rvalues. However, careful examination of individual

points did not provide strong evidence as to wiey“thutliers” should be removed.
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Figure 9. a) Prediction of Bark Off density with malidation, raw data. b)
Prediction of Bark Off density with no validatiosecond derivative transformed.
c) Prediction of Bark Off density using full crosalidation, second derivative
transformed.
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Validation based on Calibration model
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Figure 10. Prediction of Bark Off density using ispmlata validation, second
derivative transformed.

b) Bark on samples

Because of the increase in’ Ralues resulting from the second derivative
transformation in bark off spectral data, we wenedaly to the transformed
version of the model for the bark on samples. Fedihthe trials, the calibration

model with a single wavelength was the best stedilty (Figure 15).

As shown in Figure 11a the validatiof ®alue was 0.12, which is higher than was
found for the bark off validation model $R0.0). We have no explanation for this.
When the model built with bark off was validatedtwbark on data the?Ralue

dropped dramatically (R= 0.03).
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The presence or absence of bark will, thereforeab®urce of variability in
density predictions since the mechanized processgyror may not take the bark

off each log as it is being delimbed and cut.
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Figure 11. a) Prediction of Bark On density usingj €ross validation, second
derivative transformed. b) Prediction of Bark Omsigy using Bark Off model,
second derivative transformed.

4.4.2 PL S based on NIR wavelengths

a) Bark off samples
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When PLS is applied to raw data, it gives a betthough still poor model,
compared with MLR. The best model was found usikg fatent variables (five

wavelengths) which yields arfRf 0.20 (Figure 12a).

When a second derivative transformation is appliee,PLS model explains 97%
(R? = 0.97) of the variation, which is excellent catesing the previous results.
The best model, from the ten tested (from 1 to dt@nt variables), was found

using ten latent variables and is shown in Fige. 1

When cross validation was applied to the best Pldglah(2° derivative), the
validation model predictive power dropped signifitg to an B of 0.02 (Figure
12c). This reduction in predictive power is simikar the results for the MLR

models.

b) Bark on samples

PLS analysis of ¥ derivative transformed data did not improve théidaion

model compared with the best MLR derived model ({feg13a). The same
behavior was observed in the model built with baffksamples and validated with
bark on. The best model found used six latent kb (six wavelengths) and is

shown in Figure 13b.
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Figure 12. a) Prediction of Bark Off density witlo walidation, raw data. b)
Prediction of Bark Off density with no validatiosecond derivative transformed.
c) Prediction of Bark Off density using full crosalidation, second derivative
transformed.
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Figure 13. a) Prediction of Bark On density usiall ¢ross validation, second
derivative transformed. b) Prediction of Bark Omsigy using Bark Off model,
second derivative transformed.

443 MLR using NIR and sample height within thetree

When height is included in the model, it has a fasieffect on the model’sRn

the calibration model. It goes from 0.56 (Figurg @lith NIR alone to 0.81 when
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height on the tree is included (Figure 14a). Buemwkthe model is validated, thé R

drops again to 0.16 (Figure 14Db).
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Figure 14. MLR using NIR and height on the treeca)ibration model, b)
validation model

4.5 MODEL PARAMETER SUMMARY

On the following table (Table 3), the® Rtatistics for the simple height model, the

best of the NIR models and the model that inclubdeth height and NIR

wavelengths are summarized. Here it is easy teettat for calibration models,
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NIR had a significant improvement on the predictigbility of the model.
However, when the calibration models were validated simple height model

(without NIR) was the one with the best predicial®lity.

Table 3. Coefficient of determination{Ror all the bark off models

Full cross

Calibration | validation | Split validation
Simple height model 046 | = ------ 0.29
MLR based on NIR 0.56 0.006 0.04
wavelengths
PLS based on NIR 0.97 0020 | -
wavelengths
MLR based on NIR 081 | = - 0.16
wavelengths and Height
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CHAPTER 5

DISCUSSION AND CONCLUSIONS

The first step of this research was to build thenfde model” as a baseline to
predict wood density. The analyses were done ilyitiauilding three different

models using as independent variables: diametebredst height (tree size),
sample diameter, and sample height on the treesffbegest model that we found
was the one using sample height as an independeanable. The other two models
had very weak correlations (diameter versus denaitgd DBH versus density).
These low correlations are consistent with othadiss in Douglas-fir (Barbara

Lachenbruch, pers. Comm., Acuna and Murphy, 2006b).

Because height itself was not very strong in teofneood density prediction, we
considered the use of NIR as a way to charactevazed density. This idea was
based on the satisfactory results obtained by otlesearchers such as L.
Schimleck (2002), S. Kelley (2004a, 2004b), P. 3o(#006) and M. Acuna

(2006).

When NIR was used to predict wood density as dclon model without any
mathematical transformation the results were noy gy@od. We also found that
when a second derivative was applied, the modelanga significantly. In the

study performed by Acuna and Murphy (2006b) althoubis mathematical
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transformation was not applied to their models,ythe®d good results for

calibration and validation models.

Particularly with the use of MLR, our models gaw®d results compared with the
simple model but they did not have good performamben they were validated.
PLS is the most widely used analysis method wheR NIused to build models.
Many authors had used this method and had satsfactsults. This led us to try
this method to as the basis for model construcfitwe. calibration models were, in
general, excellent in terms of Fout were poor when the calibration models were
validated. This may have been due to overfittinglatk in the calibration models.
However, reducing the number of latent variables tiew did not lead to great

improvements in the validation statistics.

Based on these results we developed a model inhwiadth height in the tree and
up to ten NIR wavelengths were used as explanatariables. The calibration
model resulted in a highly significant increasetlie R, better than NIR, and
height by themselves. When the model was validated® dropped substantially
to a level where it was slightly better than thieestmodels but not good enough to

reach at least 50% of the explanation of the vditgb

In general, none of the models that included NIER ¢eerformed better than height

alone (density (kg/M = a + b*sample height) when the models were validated.
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Since these results contradict the findings of oteaudies some possible

explanations are required.

As we discussed in the background section, thehasegreat variability in wood
properties in both longitudinal and radial direnso For our study, variability in
the radial direction, within rings and from pith bark, is crucial. Compared with
our measurement procedures, other researchersregthi®eir spectral data on
wood samples with lower variability. As an exampiege have the studies
performed by Schimleckt al (2002) and Jones (2006). They used NIR to predict
wood stiffness from individual rings in incremerdres and had good results.
Another example is the study performed by Acuna Ehophy (2006b) where
they used small blocks of wood (~ 5cm X 5cm) takem the same part of the
wood disk on each of the samples. This also redubedvariability of the
properties of the wood sample. In other words,sitpossible that our models
performed poorly because of the large variabilityoas disks relative to our
sample size. A larger sample size could have leadhproved ability to estimate

density based on NIR.

Another important issue when working with NIR i€ ttample water content. This
issue was addressed by Acuna and Murphy (2006b)rerydreported a drop in the
green chip model’'s ability to predict density comgmhwith dry chips. In our case

we have the variability in both water content betweheartwood-sapwood
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(sapwood is generally saturated with water), ad a®ldensity, across the whole

diameter of the disk.

A third cause could be the use of a narrower bahevavelengths. There is
evidence in the literature (Kelley et al. (2004Aguna and Murphy (2006b)) that
the reduction of the bandwidth will result in a praf the predictive ability of NIR

based models.

With regards to the bark effect on NIR models weni that in all of the models
tried, the presence of bark slightly improved thdity to predict wood density
when compared with bark off models. There was f@dihce between bark on and
bark off models that might be a limitation in thetgntial use of NIR technology;
if the instrument is attached to a harvester/premesve can not be sure that the

bark is going to be present on each log that isgoeut.

There are a number of limitations related to thislg. These follow:

- we worked with one species, Douglas-fir.

- the sample was representative of only one sitehen Coast Range of
Oregon.

- we tried one method of exposing the sample to the $&nsor (there are

several other methods such as spinners or stayigaanples).
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- we selected 5 or 10 best wavelengths for MLR wlanpde height on the
tree was included. If we could have included thegliteas an independent
variable in the Delight software, the software newe chosen different

wavelengths due to the effect of the height vaeabl

With respect to our original objectives we concltlolat:

(1) it was not possible to make strong predictioodels of a sample’s specific
gravity from external characteristics alone; thetbealidation model had an’R

value of 0.29.

(2) calibration model correlations could be imprd\®y including data from NIR
absorbance spectra collected from green chains#@s,chowever these models

performed poorly when applied to validation dats.se

(3) the presence of bark in the saw chips advers#cted prediction power of

the models.

We also conclude that since other researchers heperted good to strong
relationships between NIR measurements and wooslitgene can not attribute
the low performance of our models to the NIR tedbgy alone. We believe that
the sampling protocol, that is, the method of pméeg the chips to the sensing
system, used in this study and the great varighitam pith to bark may have

caused the poor performance. This technology reguontinuing research.
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Finally, we note that with the technology availateus at present, even given the
methodological problems encountered in the cursady, it is clear that NIR does
not sample green chips quickly enough or thorougrigugh for the real time
application. Each of our wood disks was relatetheomean curve from as many
as 10 to 860 scans. A larger number of scans iplgimot feasible with this
technology. Therefore, we suggest that researchaibeed at getting more
representative NIR spectra, through such approahewultiple simultaneous NIR
sensors, different chip homogenizing techniquesitioer technologies. When this
issue is overcome, the method may hold promiseiniroving our ability to

predict wood density in real time in the forestaasharvest.
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APPENDIX

Graphs showing variation in R and Standard Errorcldibration and validation
models
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Figure 15. Statistics (R and Standard Error) far different variables tried in a)
Calibration, b) Validation for the bark off model8ALR: Multiple Linear
Regression and PLS: Partial Least Squares.
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Figure 16. Statistics for the different variablaed in a) Validation models based
on bark on calibration models b) Validation modelsbark on data based on bark
off calibration models. MLR: Multiple Linear Regsesn and PLS: Partial Least
Squares.



