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DYNAMICS AND CONTROL OF CONTINUOUS CRYSTALLIZERS

CHAPTER I. INTRODUCTION

Crystallization from solution is a separation and purification

process often used in the chemical, pharmaceutical, and food processing

industries. Crystal size distribution (CSD) is one of the most important

and difficult to predict properties of the crystallization process and

better knowledge and control of crystal size is essential to the improve-

ment of the crystallization process. Crystal size distribution affects

the end uses of the crystalline product and interacts strongly with the

crystallization process itself; it influences crystal purity, stability

of operation, and other aspects of crystallization.

Although crystallization is a very old unit operation, the indust-

rial operation of continuous crystallizers is still something of an art,

and often depends to a considerable degree on experience. The main

difference between the continuous crystallizer process and most other

continuous reactors is the simultaneous occurrence of nucleation and

growth, which produces cyclic instability of the crystal size distribu-

tion.

For example, an increase of the supersaturation leads to a higher

nucleation rate, but as the total crystal surface area increases due

to the growth of the nuclei, the supersaturation decreases again, thus

reducing the nucleation rate. The total crystal surface area decreases

when the product crystals are withdrawn, and this in turn causes an
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increase of the supersaturation and the establishment of a new

corresponding nucleation rate, and so on. The steady state condition

can be expected. Due to the considerable time lag, because newly formed

nuclei have no appreciable surface for a long time, a large number of

nuclei might be formed which will later reduce the supersaturation

below its steady state value. The resulting slow nucleation will lead

to a decrease of the total crystal surface area below its steady state

value, and this in turn will cause an increase of the supersaturation

above its steady state, and so on. The result of this sequence of

events will be the occurrence of limit cycles. Similar phenomena have

been observed in some continuous polymerization and fermentation pro-

cesses which also involve nucleation and growth. (39, 40, 41)

(A) CSD Dynamics and Stability

It would be wise to distinguish between CSD transients and insta-

bility. Dynamics of the former type are caused by upsets outside the

crystallizer such as changing the feed rate or composition; while an

unstable CSD results from the particular form of crystallizer configu-

ration and the operating parameters imposed on the given system kinetics.

Transients result from time dependent outside forcing functions, while

instability results from the structure of the system equations.

Analytical work on CSD dynamics dates back to the early 1960's

and was motivated by the unstable limit-cycle behavior in ammonium

sulfate system (30).

Randolph and Larson (30) presented the crystal population balance

as a very useful tool in the study of CSD transient. Hulburt and Katz (14)
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and Randolph (25) treated the population balance as a fundamental

concept in the particulate system and discussed distributed forms of

the balance equations and moment transformations. Randolph and Larson

(29) studied CSD dynamics in a class II (high yield) mixed suspension

mixed product removal ( MSMPR) crystallizer and derived the now classical

constraint for homogeneous nucleation. Sherwin et al. (34) analyzed

the stability of a class I (variable yield) MSMPR crystallizer in terms

of the nucleation/growth sensitivity parameter, bc/gc which is defined

in terms of the nucleation rate B and growth rate G as 1nB/lnG. Hulburt

and Stefango (15) investigated the dynamic behavior in a class I MSMPR

crystallizer with clear liquid overflow. Sherwin et al. (35) studied

an idealized classified crystallizer, and they found a dramatic influence

of product classification on CSD stability. Lei et al. (19) studied

similar effects of fines removal and Randolph et al. (26) examined the

product classification with fines removal. These studies showed that

product classification has a drastic destabilizing effect on CSD whereas

seeding of the feed increases system's stability.

Recently, Liss and Shinnar (20) studied the stability of a MSMPR

crystallizer in which crystallizer kinetics depend on the magma suspen-

sion. Epstein and Sowul (7) studied the stability of the class II MSMPR

crystallizer with secondary nucleation kinetics including crystal number

dependent, crystal length dependent, crystal surface area dependent,

and crystalline mass dependent.
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(B) CSD Control

A few studies on the control of CSD have been reported. Control

studies are divided into two categories since there are two dynamic

modes that a crystallizer may experience, namely, dynamics due to ex-

ternal disturbance, and self-sustained limit cycle behavior.

Han (12) analyzed the stability of class I MSMPR crystallizer which

was derived by Sherwin et al. (34), and investigated a feed-forward

scheme which controlled supersaturation using feed rate as the manipulated

variable. Good control was predicted when the crystallizer was operated

in a stable region. However, the controller did not reduce sustained

limit-cycle behavior in the unstable region. Gupta and Timm (11) studied

the control of the class II MSMPR crystallizer by applying predictive/

corrective scheme, they utilized zeroth and second moment by using fines

seeding and destruction as the manipulated variable. They found that by

controlling the zeroth moment they could eliminate sustained limit

cycling. On the other hand, control of the second moment might drive

a normally stable crystallizer unstable. Lei at al. (18) studied the

convensional proportional feedback control of class I MSMPR crystallizer

with point fines trap. They investigated control of fines crystal area

by manipulating either throughput rate or fines destruction rate. It

was found that an unstable system could be stabilized by manipulation

of throughput rate but not by manipulation of fines destruction rate.

Bechman at al. (3) studied a class II complex R-z crystallizer (equipped

fines destruction, clear liquor advance and product classification).

In their studies, the conventional proportional feedback control was
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used with two control schemes: using the nuclei density as the controlled

variable and the fines destruction rate as the manipulated variable, or

using the slurry density as the controlled variable and the slurry with-

draw rate as the manipulated variable. The result of their work showed

successful elimination of a long term oscillatory transit by the first

scheme.

A comprehensive and methodical treatment of continuous crystallizer

based on the population balance concept appears in a book by Randolph

and Larson (28). An excellent review of the state of the art in the

CSD dynamics and control is provided by Randolph (24).

(C) Scope of the Present Research

It is the intention of this work to show the dynamic behavior of

an isothermal class I MSMPR crystallizer with fines trap (an MSMPR

crystallizer is a special case) due to self-perpetuated limit cycles

or as affected by disturbance of the feed conditions, and present the

design of a control system to improve the dynamics of the uncontrolled

system. The approach chosen for a control scheme was modal control

which seems to have definite advantages over the conventional feedback

control.

The basic technique for designing a modal controller has been

discussed by Rosenbrock (32), Gould and Lasso (10), Crossley (5), Mayne

and Murdoch (21), and Takahashi et al. (37). These ideas were adapted

for designing a controller to control the CSD in a MSMPR with or without

a trap for fines. The number of the crystals, the total length of the
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crystals, the surface area of the crystals, and the mass of the crystals

would be controlled using either throughput flow rate or fines destruc-

tion rate or using both as the manipulated variables and the feed

concentration as the input disturbance.

Finally, the stability analysis of a class I MSMPR crystallizer

with size-dependent growth rate, (where the McCabe AL law does not hold)

will be discussed.

In the second part of this work, an on-line probe for particle size

measurement is developed and discussed. It is the first, and perhaps

the most basic step in developing the control technology of the continuous

crystallizer.
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CHAPTER II. DERIVATION OF THE MODEL

In this section, the basic differential equations for a continuous

crystallizer with a fines trap will be set down. A diagram of this

type of operation discussed is shown in Fig. 2-1. A crystallizer of

this type is usually used to increase the crystal product size. The

removal of flows of liquor associated with the fines dictates that they

be dissolved and the pure liquid recycled. The net effect of fines

destruction is to force the growth rate to higher levels, producing the

same product in fewer crystals but of large average crystal size.

A feed material containing pure solute at concentration C. (gm/cm3)

is fed to a crystallizer of working volume V (cm
3
) at a volumetric flow

rate q (cm
3
/sec). A product slurry of crystallizer is withdrawn at

the volumetric flow rate q, in addition a continous removal of fines

or very small crystals (or crystals below a certain size) from the

crystal magma at the volumetric flow rate q
o

(cm
3
/sec). They are

drawn off to a heater in which the smaller crystals are dissolved, or

to a mechanical fines-removing device and the clear solution is fed back

to the crystallizer body.

(A) Homogeneous Nucleation Model

In this section the system equations of a homogeneous nucleation

model will be developed, and a secondary nucleation model will be

developed in the following section.
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In addition to simplify the development, the following basic

assumptions are made:

1. The crystallizer is ideally mixed.

2. The crystals in the system are geometrically similar and the

solid density is constant.

3. The growth rate G (cm/sec) = dr/dt is independent of particle

size, i.e. the McCabe AL law holds, and is proportional to the super-

saturation

G = k
g
(C -C

s
)

where C
s

is the saturation concentration at the given temperature and

kg is the growth rate constant.

4. The nucleation rate B(no/cm
3

sec) is defined by the Mier form:

B = kb (C-Cm)n'

where C
m

is some critical concentration level higher than the saturation

concentration C
s

.

5. The crystallizer is isothermal, with the instant cooling of the

feed resulting in a supersaturation driving force for the subsequent

nucleation and growth.

6. The volume of the crystallizer and the volumetric flow rate

are based on the total slurry, and the total volume of the crystallizer

is kept constant.

7. No solids or seeds exist in the input feed stream.
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8. The fines destruction size r
o

and the fines retention time

6
0

(= Vigo) are very small, however, their ratio is finite. This

corresponds to a crystallizer with a point fines trap.

The basic governing equations may be described by the following

set of equations.

(i) Population balance:

By Hulburt and Katz (14), the population balance equation is taken

to be:

f 3f

3r
V
D + VG -qf, r > 0 (2 -la)
at

where:

f = population density of crystal particles at size r and at

time t (no/cm
3
cm)

G = growth rate (cm/sec)

q = volumetric flow rate (cm
3
/sec)

r = characteristic size of the crystals (cm)

t = time (sec)

,
V = volume of the crystallizer kcm

3
)

The terms in Eq.(2-1a) represent, in order, the accumulation of the

crystals at size r, the net flux of crystals away from size r due to

growth, and the withdrawal of particles of size r due to the product

removal.
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The boundary condition will be (19)

Gf = a e-r°cI /GV, r = 0 (2-1b)

where E is the liquid volume fraction in the crystallizer, and it will

be represented as

m
= 1 - k fo f r

3
dr (2-1c)

and k(1 /no) is the geometrical shape factor. Here also, r
o

is the

fines destruction size, and (10 the fines removal rate.

The boundary condition (2 -lb) means the formation of new crystals

because of nucleation at size r = 0, but the fraction 1 - exp(-rogo/GV)

of nuclei formed is destroyed due to the fines trap.

(ii) Solute and Crystal balance:

The overall mass balance on solute and crystal material in the

system is:

V at {Ce + (1-0 p
s
} (2 -id)

where C and Ci represent the concentration of solute within the

crystallizer (and the output) and the input feed, respectively, and

p
s

represents the solid crystal density.

The terms in Eq. (2-1d) represent, in order, the accumulation of

solute and crystals within the crystallizer, the input of solute by
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feed stream, and the removal of solute and crystals from the crystallizer

due to the product withdrawal.

(iii) Moment Equations

If it is not necessary to determine how the population distribution

f varies with time; a knowledge of the variation of its moments with

time is satisfactory. This set can be transformed to a group of ordinary

differential equations.

The nth moment of f will be called pn,

p
n
(t) = Jo

the physical significance of the moments of f is shown below:

co

po = fo fdr

ul = fc°frdr

3 kp = 3kf fr
2
dr

= total number of crystals per unit
volume of crystallizer

= total radius of crystals per unit
volume of crystallizer

= total surface area of crystals
per unit volume of crystallizer

1413 = kf0fr
3
dr = 1 - E = volume fraction of solids in

crystallizer

The moments of higher order can be defined similarly, but their

physical significances are not so obvious as the first four leading

moments.

Multiplying Eq. (2-la) through by rn, and integrating with respect

to r from 0 to 03, one generates the moment equations.
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q- Be- r0 /G60
dt

=
TI/J°

+

n

dt
V lin +

n
- 1

(n = 1,2,3,

It is convenient to introduce a crystal-solute function

= (1-kp3)C + kp3ps (2-2)

Then using Eq. (2-1d), the system equations will be:

0
+ E Be

ro
/13 G

dt V
+ G po

(2-3a)

(2 -3b)

dt
"2 - -

V
.1.2+ 2G111 (2-3c)

dui
dt

- 2113 + 3G112

= c. - 2qh
'dt V 1 V

(2-3d)

(2-3e)

Although n = 3 is enough to form the closed complete set of

equations all moments should exist mathmatically (1).



(iv) Steady State Solutions

The steady state moments can now be obtained by letting dt = 0

in Eq. (2-3).

* * * * -X
p

o
=ecBe

p
n
= ne G p

n-1
(n = 1,2,3,

ro *

where X - =
V*

VG*

qo

'

(2-4a)

(2-4b)

(2-4c)

14

the superscript"*" means steady state value. The parameter "X"

characterizes the operation of fines trap: when ro is small, the

value ro/G*, the time a nucleus needs to grow to size ro, is small

with respect to the mean residence time 0, but it is finite with

respect to the much smaller mean recirculation time 00, and if ro is

small, the destruction of nuclei in the fines trap is instantaneous.

(v) Linearization

In order to determine the stability condition and apply linear

control theory, the set of equations describing the system, Eq. (2-3)

must be linearized about the steady state value. The quantities "6"

denote the departure from the steady state value.

The feed rate and concentration can vary in time in the form:

*
Ci(t) = Ci + 6Ci (2-5a)



q(t) = q* + dq

IP(t) = +4

*
C(t) = C + (SC

The performance variables are represented by:

(2-5b)

(2-5c)

(2-5d)

un(t) = pn + (Spn (n = 0,1,2,3, (2-6)

The kinetic terms for small displacement can be written as:

B(t) = B +
aB

(SC
ac

aG
G(t) = G

*
-a-c-+ SC

(2-7a)

(2 -7b)

15

Now substitution of Equations (2-5), (2-6) and (2-7) into Eq. (2-3)

and utilization of the steady state relations Eq. (2-4), retaining only

the first order term of "6" in each term results in the following

linearized set:

ri*
dcS 1-1D = - dq -112---4514Cr
dt

n(10 )- B (1 - kp3 ) exp
r
VG* VG

cso,

'0

+ B exp (
)

-roq . (dB ro *dG
Spy

VG do 71"vG- 0 dc

* -ro q0* dB roq,* dG
- kB exp ( + )

V G dcB VG dc

(As - C) + 1} 6p3 (2-8a)



64(0) °

(161.1 11*

q v
dun

n 5
+ nG 611

n-1dt

dG *

n dc 1ln-1
(1-k113)

*

- nk

(p
s
-c )

dG u* 1.13

* dc r-n-1
1 -k113

(n = 1,2,3,....)

61in(0) = 0

d4
(sc 4dt V V

4(0) = 0

(2 -8b)

(2-8c)

(2-8d)

(2-8e)

(2-8f)

16



Now defining the following dimensionless parameters and variables, one

obtains

6 Pn
- Z

n

t' = q*

g c

dG 1
= 6k(Ps-C* )61*4 G*3 B* dc G*

1 dG

a (ps-C )

bc = 6 k B*G
*3

e
*4

{1 + (P
s
-C

*
)

dB 1

dc B*

= a {1 + (Ps-C
* 1
) --iv

dB
}

* *3 *4
a = 6k B G

cif oq/q*

q' = Sq /q
0 0 0

*

L

P C
s s
*

C. - C
1 s

17
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*

M =
C -Cs

* -C
C.

F

h' - *

P -

C.

1

C

a(L-M)(1-1(113
*
)(1-

C.

We obtain following set of dimensionless equations.

dZ'

ccAq6 c
+Ag

c 3
)e Z' + (Ag

c
+b

c
-a)PF' (2-9a)

dZ'

- e+Z'-Z , X-g e Z' + g PF'
dt' pic3 c

dZ'

dt2
q'+Zt-Z'-g

c
e XZ

3
+ g

c
PF'

' 1

dZ'

dt'
- -q'+z-(1+gce X)Z.; + gePF'

3

dF'

dt'
- -F' + h'

(2 -9b)

(2-9c)

(2-9d)

(2-9e)

Eq. (2-9) is the system equation linearized about the steady state

value for a continuous crystallizer with a point fines trap. Its dynamic

behavior depends on the several dimensionless parameters; these are
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growth rate sensitivity ge, nucleation sensitivity be and the

parameter for the fines trap X.

Eq. (2-9) can be written in a more compact matrix form by letting

X = (Z6, Zi, Z, Z;, F')
T

= state variable vector

U = (q', ql)
T

= control variable vector
0

V = h' = input

where

B =

Then, Eq. (2-9) becomes

= AX + BU + DV (2-10)

A = /-1 0 0 -(b
c
+ Age) e (Xg

c
+b

c
- a )P

1 -1 0 - g
c

e
-X

g
c

P

0 1 -1 - g
c

e
-A

g
c

P

0 0 1 -(1+8
c
e A) g

c
P

0 0 0 0 -1

-A -1

0 -1

0 -1

0 -1

0 0

(2 -11a)

(2 -lib)
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D 0

0

0

0

1

(2-11c)

From state space analysis, V represents the forcing function,

U represents the manipulated variable. The matrix A represents the

state space matrix, and X represents the state variable vector.

(B) Secondary Nucleation Model

In the previous section, a system model of an MSMPR crystallizer

with a point fines trap for the homogeneous nucleation was developed.

Usually, crystal nucleation in homogeneous solutions requires a much

higher degree of supersaturation than that required for solutions con-

taining a suspended crystalline phase. The heterogeneous, crystalline

phase apparently has an autocatalytic effect upon the formation of

incipient crystals.

Recent studies of continuous mixed-suspension crystallizers

provide growing evidence that the secondary rather than homogeneous

nucleation is the dominant source of nuclei. In continuous mixed sus-

pension crystallizers, the secondary nucleation rate normally depends

on the leading moments of the crystal distribution. The homogeneous

nucleation model of Niers can be extended to secondary nucleation by

taking this into account. All possible rate models must include
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supersaturation as a variable because of its role as the fundamental

mass transfer driving force. Thus, the secondary nucleation model can

be mass dependent, area dependent, length dependent, and number dependent

mechanism.

Although we can propose mass dependent, length dependent, area

dependent, and number dependent secondary nucleation model as we can

find in the literature, the research to date is not capable of distinguish

between these mechanisms. All are equally adequate (6) to fit the experi-

mental data obtained from the continuous MSMPR crystallizer, so without

other evidence we can not deduce the secondary nucleation mechanism. For

this reason, here we choose a number dependent nucleation model for the

calculation of secondary nucleation. All other models can be treated in

a similar way.

The system of equations governing the dynamic behavior of an MSMPR

crystallizer with a point fines trap with number dependent nucleation

kinetics can be written in the following form.

(The notations and the assumptions are same as the homogeneous

nucleation except the nucleation rate.)

where

V
a3 9f

t
+ VG r- = -qf, r > 0 (2-12a)

Gf = B(c,n)e-r°/00G, r = 0 (2-12b)

V 2 = qCi - qtp (2-12c)

n = 110 = Jo fdr = number of crystals per unit volume



For secondary nucleation, the experimental data are obtained in

the presence of solid crystals and the expression for nucleations are

based on total slurry volume. For this reason, the boundary condition

given in Eq. (2-12b), does not include E.

Using the same techniques as in the homogeneous case, i.e. taking

moment transformation of Eqs. (2-12a) and (2-12b); and linearizing the

moment equations and Eq. (2-12c) the following dimensionless equations

can be derived.

where:

dZ'

dt'

0
-(1-b

n
)Z' - (Ag

1
+b

1
)e AZ' - q'

0

- Aq6 + (Agc+ be -o:) PF' (2-13a)

dZ'

dt1
Z' + Z' - g

1
e AZ' + q' + g PF'

' 0 1

dZ'

dt?
- Z' - Z' - g

1
e

3
Zf- q' + g

c
PF'

' 1 2

dZ'

dt3
- Z' - (l+g

1
e

3
A) Z' + g

c
PF' - q'

' 2

dt'

(2 -13b)

(2-13c)

(2-13d)

h' - F' (2-13e)

b
n

B

22
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gc/6*

=
b
C
- a

b
1

6*

All other parameters are defined in the same way as in the homogeneous

nucleation case.

And also Eq. (2-13) can be put into the matrix form as X = AX +

BU + DV and each matrix can be defined as follows:

A =
/
-(1-bn) 0 0

1 -1 0

-(Xg +bi)e-A (Xg1+131)PE
*

- g e
*

g1Pc
1

0 1 -1 - g e-
X

1

*
g
1
Pe

0 0 1 -(1+gleA) g
1
Pe

*

0 0 0 0 -1

(2-14a)

B = -X -1

0 -1

0 -1

0 -1

0 0 (2 -14b)

/
D = 0

0

0

(2-14c)
0

1
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X = [ Z;, Zi, Z2' , Z;-, 1" 1T

U
[

q;, 1T

V = h'
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CHAPTER III. STABILITY ANALYSIS

The linearized model can be used to study the dynamics and

stability of the system only in localized regions around the operating

point where linearization had been performed. None the less, it is

often sufficient to look at such small areas while analyzing the system's

stability because in many cases the linearized model provides a reason-

ably good approximation of the non-linear behavior. Further, in the

neighborhood of a steady state for a non-linear system, the stability

characteristics of the solution are the same as those for the linearized

model. All inherent stability criteria are based on the concept of

exponential asymptotic stability; in the time domain this translates

into the requirement that all the real part of the eigenvalues of the

state matrix be negative, if more than one eigenvalue has a real part

which is positive, the system will be inherently unstable and the linear

solution will become infinite as the time goes on.

(A) Homogeneous Nucleation Model

The characteristic equation of system equation (2-10) is

IA - S I I = 0

then

S = -1 (3-1)
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-1-S 0 0 -(b
c
+ g

c
)e-X

1 -1-S 0 - gce
X

0 1 -1-S - g e
X 0

0 0 -1 -(1+gceX)-S (3-2)

Since only the stability of the system is of interest then S # -1,

and from Eq. (3-2) the following characteristic equation can be found.

S
4
+ (4+g

c
e A)S3 + (6+4g

c
e

X
)S

2

+ (4+6g
c
e A)S + [1+3g

c
e X+(b

c
+kg

c

X
)e ] = 0 (3-3)

This is the same characteristic equation obtained by Lei et al. (19) by

using spectral analysis.

By the Routh test, the following relationship is found for the

linear stable region:

.A 2x
e3A

21+87-=- + 124-7. + 64---7
bc Sc gc Sc

(i) < X-4-

4e
X

,2gc
(1 +

gc
)

(3-4a)

(ii) If gc + co , bc/gc + 21 - X (3 -4b)

If X = 0 the crystallizer has no fines trap, and then bc/gc + 21.

This is the well-known MSMPR stability limit obtained by Sherwin et al.

(35), and Randolph and Larson (29).
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(iii) If the system is in the unstable region, two roots (eigen-

values) will have pssitive real parts.

The stability condition described by Eq. (3-3) is shown graphically

in Fig. 3-1.

The result of Eq. (3-4), where be is termed the nucleation

sensitivity parameter and termed the sensitivity growth rate para-

meter, means that the asymptotic behavior of MSMPR crystallizer with a

fines trap when the homogeneous kinetic order is less than (21 - X),

will be linearly stable. Therefore, if beige > 21 - A the system will

become unstable, so the larger we take A (the more fines we destroy),

the smaller we must take b
c
/g

c
to ensure stable operation. If we

destroy more fines we destabilize the system. It is helpful to keep

in mind that the stable regions represent the parametric combinations

which give a set of eigenvalues with exclusively negative real parts,

while the unstable regions are representation of some eigenvalues with

positive real parts.

(B) Secondary Nucleation Model

From Eq. (2-14a), the characteristic equation of the secondary

nucleation system will be

S4 + (4+g
1
e A-bn)S

3
+ (6+ 4 g

1
e A-3b

n
-g

1
b
n
e
-X

)S
2

+ (4+6g
1
e A-3b

n-3gle
Al)
n
)S

-
+ (3gle A+14Agie A -bn -3bngle A+b

1
e
_ A) = 0 (3-5)



Fig.3-1. Stability curves for a crystallizer with a
point fines trap.
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By the Routh test, the following conditions should be satisfied

for linear stability:

4 + gle
-X

- bn > (3-6a)

3g
1

X X
e + 1 + Ag

le
+ ble - bn - 3 bugle

X
> 0

(4+g
1
e X-bn)(6+4g

1
e X- 3b

n
- glbne X)

(4 + 6g
1
e
-X

- 3b
n

3g
1
e Xb

n
) > 0

(4 + 6gle X- 3b
n
- 3gle

-X r
bn) L(4 + gle X- bn)

x (6 + 4g e
-1-
X- 3b

n
- glbne X) - (4 + 6g

1
e
-X

1

3b
n

- 3g le
-A

bn )1 - (4 + g
1
e
-X

-b
n

)
2
(3g

1
e X+ 1

+ Xg
1
e X+ b

1
e X- b

n
3b
ngle

-X
) > 0

(3-6h)

(3-6c)

(3-6d)

In Appendix A the above set of equations are simplified and the

stability region will be as follows:

X
bn + 3bngle - 3 gle-X 1 - Azle

-X bie-X

< f(g
1
e-X)3(21-15b

n
+ 3b

n
2- A) + (g

1
eX)2

(87-81b
n
-8Ab

n
+27b

n
2- 3b

n
3) + (g

1
e-X)
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(128 - 148b
n
+ 8Ab

n
- 16A + 62b

2
- Xb

2
- 9b3 n)

+ (64 - 96b
n
+ 48b

2
- 8b3)} /(4 + g

1
e

X
bn)

2

n n

-A
3b

n
- 4

g
1
e >

3b
n

- 6 ,

b
n

< 2

If A = 0, i.e. the MSMPR crystallizer has no fines trap, the above

relations reduce to the results obtained by Liss and Shinnar (20).

These results are plotted on b
1
e
-X

vs g
1
e
-X

in Fig. 3-2 for using

parameter b
n

. Unlike to the homogeneous nucleation model, the direct

relationship between the fines destruction rate and stable region can

not be found. In Fig. 3-3, the minimum stable value of g
1
e
-X

is

plotted as a function of b
n

. If b
n

= 2 the disturbance tends to

autoaccelerate itself explosively. It is also interesting to consider

the asymptotic behavior of the stability criteria of Eq. (3-7). In

Fig. 3-4 the values of bi/gi (or ble A/gle X) at the critical stabi-

lity limits are plotted as a function of bn. From these plots, we

find that the stable region is rather narrow, which means that the

secondary nucleation is less stable comparing to the homogeneous nuclea-

tion.

The number of eigenvalues which have a positive real part when

the system is an unstable region is rather complicated to compute but

in normal operating region (b
n
< 2, and g

1
> 0), only two eigenvalues

have a positive real part. This fact is good for control (as will be

shown later).
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CHAPTER IV. MODAL CONTROL OF CONTINUOUS MSMPR CRYSTALLIZERS

In the conventional feedback control system, the manipulated

variables are based upon the change of a deviation occurs in our measur-

ing state variable. The traditional approach is inappropriate for many

problems of process control for the following reasons:

1. It conceals the behavior of many variables which may in fact

have to be considered.

2. It offers no direct assistance in choosing the particular

variables as manipulated or controlled variables.

3. It does not show how these variables are to be chosen so as to

avoid interaction.

Modal design of multivariable system control was first proposed by

Rosenbrock (32), who consider the case when both matrix B and C in

the system equations

AX + BU + DV

U = - CX

could be chosen.

Takahashi et al. (37) extended this idea to the more general non-

ideal system when B and C could not be freely chosen. Based on their

idea our approach is to change the first r-largest eigenvalues of the

system (if there are r manipulated variables).
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Ellis and White (42), Mayne and Murdoch (21), Crossley (5) extended

modal control to a single-input control system. Based on these ideas

we change more than one eigenvalue even if there was only one manipulated

variable.

The details and techniques of modal control can be found in the

above sources and we will not repeat them here. Here we use the modal

control algorithm by Takahashi et al. for multiple input control, and

use Mayne and Murdoch's algorithm for the single input control.

For a continuous MSMPR crystallizer with a fines trap whose dynamic

equations are described above, the input variables are input concentra-

tion. C., feed flow rate q and fines recirculation rate go; the

output variables are number of particles po(t), particle size 1-11(0,

surface area ]2(t), volume of magma p3(t), and the total mass of

solute and crystals, 11)(0. Alternately, the feed concentration can

be assumed as an input disturbance or noise, with the feed rate and (or)

fines recirculation rate as the manipulated variables. On the measure-

ment of the state variables 'O' p
2'

p
3'

IP the controller

manipulates the feed flow rate and (or) fines recirculation rate to

hold the deviation of output to zero. The schematic diagram of the

control system is shown graphically in Fig. 4-1, and the block diagram

is shown in Fig. 4 -la.

(A) Simulation Results and Discussions

Numerical simulations of the system's response to various input

were performed on a Cyber 73 digital computer. The existing computer
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subroutines in IMSL package (International Mathematical and Statistical

Library Package) were taken to compute the eigenvalues and eigenvectors

of the real matrix, the inverse of the complex matrix, and to solve

simultaneous non - linear differentail equations.

Non-linear Equations (2-8) and (2-12) were made dimensionless

(in Appendix B) along with appropriate initial pertubations, and were

solved numerically by computer. The parameters were calculated from

steady state values and were shown in Table 4-1.

Figure 4-2 to 4-5 show the dynamic response of the homogeneous

nucleation system. The values are normalized (with respect to the steady

state value) and represent number, total length, total surface area,

total mass, and total solute concentration, with reduced time correspond-

ing to the step change of input feed concentration. It is found that

both the linearized model and non-linear model predict the transient

behavior of MSMPR crystallizer with a fines trap very closely. Figures

4-2 to 4-5 also demonstrate the dynamic behavior of the system which is

inherently stable, as was predicted by linear stability analysis. From

these figures we find an oscillatory behavior with high frequencies and

very slow decay. It is also seen that after the initial disturbance,

although the total solute resource function F settles to a new steady

state value, four leading moments are still in oscillatory behavior and

do not settle to the new steady state value. This kind of oscillatory

behavior may last up to twenty four hours or more in an industrial

system (24).

The oscillatory behavior of the process is due to competition

between the nucleation and the growth rates. A small increase in
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Table 4-1. Parameters for Simulation

Item
Case

I II III IV

Model Homogeneous Secondary

g
c 50 30

m
;.4

4.1

cu

g
;.4

m
a

gl 50 50

be
750 480

b
1 350 750

b
n 1 1

X 1 1 1 1

L 6 10 6 6

Stability stable unstable stable unstable
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concentration causes a shower of nuclei to form, and when these nuclei

grow, they supply such a large area for growth that the concentration

decreases significantly. The decreasing concentration causes the nu-

cleation rate to decrease until the removal of the crystals (and there-

fore area for growth) and the addition of more solute causes another

shower of nuclei to occur. Thus the system generates the self-sustained

oscillations.

Figures 4-6 to 4-10 show the transient response of secondary nu-

cleation system, which is inherently unstable. Linear stability analysis

predicts very successfully, that the leading moments Z0, Z1, Z2, Z3

exhibit a sustained oscillation, and the amplitude of oscillations

increases and become bigger and bigger as the time elapses. The number

of crystals most sensitively shows this effect.

Figures 4-11 and 4-14 show the effect on particle size of a step

change in feed concentration: the number of crystals Z0 increases as

the inlet concentration increases; the effect is in the opposite direc-

tion if the input concentration step change is in the decreasing direc-

tion. Figures 4-12 and 4-15 show that the transient response to a step

change of throughput flow rate is quite similar to the effect caused by

inlet concentration. Increasing the input flow rate is similar to

increasing the feed concentration. Figures 4-13 and 4-16 show that the

transient response to a step change in fines destruction rate, is

contrary to the above result. The reason is that increasing the fines

destruction rate is quite similar to decreasing the feed concentration

or feed flow rate. This is quite reasonable because increasing the
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fines destruction rate will cause nuclei density to decrease and this

effect is similar to the decreasing the feed concentration.

From the above results, we find that linear stability models the

system's dynamic behavior very successfully. When linear stability

analysis predicts the system is stable, we get a stable but oscillatory

system; if linear stability analysis predicts the system is unstable

then the system oscillate and the amplitude becomes bigger and bigger.

(B) Modal Control: Results and Discussions

Now it is quite obvious we need some control scheme to get better

performance. For an unstable system the reason is very obvious: we

can not operate the system; and even if the system is stable we still

need to eliminate the long term oscillations in order to get a smooth

system output. The modal control discussed in the previous section

can be used to improve the performance of our system. The output va-

riables Z0, Z1, Z2, Z3 and F are measured and the modal controller

manipulates the feed throughput rate or fines destruction rate or both.

Usually the two biggest eigenvalues of the system are shifted to improve

the dynamic performance of the original (open loop) system. The eigen-

values of the system are shown in Table 4-2. The gain calculated by

the modal control scheme is shown in Table 4-3.

Due to the basic structure of the Eq. (2-11a) and (2-14a), there

is always an eigenvalue whose value is negative one; this value is

fixed and this eigenvalue can not be changed by any method. Thus, the

two biggest eigenvalues can only be shifted to negative one. Figures

4-17, 18, 19, and 20 show the modal control of a homogeneous nucleation



Table 4-2. The Eigenvalues of the System

System Eigenvalues Stability

I - 0.046843 + 2.1957 i

0.046843 - 2.1957 i

- 1.0 stable

- 3.9625

- 18.339

II

III

IV

0.025403 + 2.1929 i

0.025403 2.1929 i

- 1.0

- 4.2567

- 10.831

- 0.0036061 + 1.631 i

- 0.0036061 - 1.631 i

- 1.0

- 3.0097

- 21.865

0.29134 + 2.0836 i

0.29134 - 2.0836 i

- 1.0

- 3.6189

- 21.846

unstable

stable

unstable

58
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Table 4-3. Controller Gain

(a) Multiple-input

System

Case

Gain matrix (2 x 5 Matrix)

I 0.95315 18.39565 29.6116 -48.96009 87.75355

0 1.17542 2.24113 -2.46338 4.43338

II 1.025375 12.49493 19.41281 -32.83147 60.41577

0 0.7343815 1.506456 - 1.215416 2.245738

III 0.997259 21.8092 18.95959 -41.8033 73.4875

0 3.13278 3.10969 5.24534 9.22115

IV 1.29131 29.00786 40.19301 -70.49161 129.18554

0 1.95236 3.0899 - 3.75093 6.61397

(b) Single-input Case

(i) Manipulated variable Q0

System Gain Vector

I -1.906 -2.726 5.726 26.53 -47.03

II -2.051 -3.154 5.549 29.87 -54.71

III -1.993 -0.9856 4.323 12.21 -21.47

IV -2.583 -2.42 7.601 34.7 -60.05
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Table 4-3. Controller Gain (Cont'd)

(ii) Manipulated variable Q

System Gain Vector

I 0.1296 0.1505 -0.4555 -1.731 3.066

II -2.051 -3.154 5.549 29.87 -54.71

III 0.2911 0.1001 -0.6690 -1.721 3.025

IV -2.583 -2.42 7.601 34.17 -60.05
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system using the throughput rate and fines destruction rate as manipu-

lated variable if the initial pertubation on F = 1.006 (this value is

equivalent to 19.58% increase in supersaturation). Comparing this

response to the open loop response, we find that modal control has a

tremendous effect on the system, it reduces the overshoot peak; and

restores the system to its steady state very quickly; and more important,

it eliminates the self-sustained oscillation. Contrary to the conven-

tional controller, the modal controller monitors each system output

variable, using the manipulated variables to control the output variable

very efficiently. This means that a modal controller can produce a

stable and ideal system response. A conventional feedback control can

then be used as a cascade controller to control the whole system to the

desired level.

In Figures 4-17, 18, 19, and 20 also show the proportional control

of the same system using nuclei density as the controlled variable and

using fines destruction rate as the manipulated variable. The value of

the gain used in the simulation was calculated as suggested by Beckman

et al. (3). Comparing this response to modal control response, we found

that using proportional control was not an effective way to control the

continuous crystallizer with a fines trap.

Usually we only change the real part of the biggest eigenvalues,

but we can also change the imaginary parts of the changeable eigenvalues.

However, this always gives rise to a higher gain value. Very high gains

are normally impractical even if stable, as they lead to excessive con-

trol effect, and also to amplification of high frequency disturbances.
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Fig. 4-21 shows the response of Z0 with modal control using throughput

rate or fines destruction rate as the control variables for a pertubation

in F. This method is effective even though controlling both may be a

more effective way to control the system than single input control. From

the above graph we also find that using fines destruction rate is better

than using the throughput rate in modal control. Although controlling

the throughput rate is not so effective as other two methods, it gives

us a very powerful method to control the continuous MSMPR crystallizer

(without a fines trap).

Figures 4-24 and 4-25 show the control effect for a secondary nu-

cleation system in which the system is inherently stable in the open

loop. Improvement similar to that found for homogeneous nucleation is

found in this system.

Systems which are inherently unstable show satisfactory control

performance using either throughput rate or fines destruction rate or

both as the manipulated variables. The unstable system shifts to a

stable one within a reasonably short time period. Figures 4-22, 4-23,

4-26, and 4-27 show (by simulation) that the unstable system can be

stabilized by using a modal controller. This is the special advantage

of a modal controller over conventional control schemes. Han (12) used

the feedforward control scheme to control the MSMPR crystallizer. The

controller was designed to control the supersaturation with the feed

rate as a manipulated input variable. Supersaturation is significantly

improved when the controllers are applied to the system which is basically

stable but they can not make a system stable if the system is basically

in an unstable region.
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Recently, Chang and Epstein (4) used input concentration,

residence time, and seeding/fines dissolving rate as manipulated vari-

ables for modal control of an MSMPR crystallizer with linear size

dependent growth rate. Although this kind of system is mathematically

impossible (1), but their results show the same trend as this work except

for the open loop unstable system, where they showed it was not possible

to stabilize the unstable system with the same control gain used in a

linearized model. A much higher gain was required to force the system

back to the steady state. Further, the input concentration could not

be used as the controlled variable, it is usually happened as the input

noise. Although they shifted the eigenvalues to some arbitary small

value, it was not meaningful because in this way the negative one was

still the slowest mode and the other eigenvalues were too small to

determine system response.

Figures 4-29 to 4-32 show modal controlled behavior of the homo-

geneous nucleation system for an inlet concentration step change when

the system is open-loop stable. Also Figures 4-33 to 4-36 show modal

controlled behavior of the secondary nucleation system for an inlet

concentration step change when the open loop system is unstable. It

can be seen that the modal controller controls the system very success-

fully. For the stable system, it eliminates the long term oscillatory

behavior very effectively, reduces the overshot remarkably, and im-

proves the speed of response; for the unstable system, it transforms the

system toa stable one, and eliminates oscillatory behavior.
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Up to now we have not been concerned with how to attain the desired

steady state value. This is because the modal control only alters the

dynamics of the system. As usual we must use conventional PI (or PID)

control to attain the desired steady state operating condition.

Lei et al. (18) studied the control of an MSMPR crystallizer with

a point fines trap by conventional proportional feedback control using

either bulk throughput rate or fines destruction rate, it was discovered

that modes of operation unstable in open loop can be stabilized by

measuring the surface area of the fines and manipulating the throughput

rate. A corresponding manipulation of the fines recirculation rate

rather than of the bulk throughput rate can not readily stabilize an

unstable operation. Beckman and Randolph (3) studied the control of a

variable yield crystallizer equipped with a fines destruction system and

product classifier. Control was simulated by proportional control of

nuclei density using fines destruction rate as the manipulated variable.

They suggested that nuclei density control scheme is effective both in

minimizing the CSD transients and for elimination of instability. But

they also showed that when using the slurry density and slurry with-

drawal rate as the measured and manipulated variables, the controller

can not eliminate the limit cycles. But these studies do not definitely

answer whether the control schemes which might stabilize the CSD are

effective in reducing the CSD disturbances caused by externally induced

upsets. Usually the external upset in a crystallizer would occur in the

inlet concentration, and throughput flow rate or fines recirculation

rate are usually used to manipulate the system. Again modal control
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is effective in such a situation. For this purpose, we use an inner

loop modal controller to alter the dynamics (eigenvalues) of the system,

while the outer loop controller attains the desired steady state. The

error signal is generated by comparing the measured variable with an

appropriate set point, taken to be the reference steady state value of

the controlled variable. The cascade control scheme is shown schemati-

cally in Fig. 4-37 and the block diagram is shown in Fig. 4-38. The

Ziegler-Nichols method (based on frequency response) was used to deter-

mine optimal settings for a proportional plus integral (PI) controller.

There are many possible combinations of observed variables (Z0, Z1, Z2,

Z3) and manipulating variables (Q0, Q) in addition to choosing multiple-

input modal control or single-input modal control. In practice we would

also need to take into account the economic factors but that is beyond

the scope of this study. Here we choose a few typical cases to show

how the controller improves the system output.

Figure 4-39 to 4-42 show the response of the modal controlled

system with a PI controller for the step change of inlet concentration

where either Z3 or Z2 is controlled by manipulating Q. When Z3

is controlled variable, it returns to steady state very quickly; but

for Z
2

as controlled variable, there is still some offset; however

improvement of Z0 (which was not intended) can be considered as an

additional benefit which may compensate for the offset remaining in the

system.
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CHAPTER V. STABILITY ANALYSIS OF AN MSMPR CRYSTALLIZER
WITH SIZE DEPENDENT GROWTH RATE

In Chapter III, a stability analysis for MSMPR crystallizer with

a fines trap was given for both homogeneous and secondary nucleation.

In that calculation it was assumed that the growth rate was independent

of the crystal size. This assumption is correct if the rate determining

step is the kinetic deposition rate of the surface. It has been shown

experimentally (44) that for large crystals (r> >50 micron) the overall

mass transfer coefficient at high agitation rates is independent of size.

For very small particles this assumption probably does not hold.

In the crystallization process the solute being crystallized must

diffuse from the bulk of the solution to the solid-liquid interface of

the crystal. At the interface a surface deposition occurs during which

the solute becomes a part of the crystal lattice. If the solute dif-

fusion resistance is less than the resistance offered by the surface

reaction, the common simplified assumption "McCabe's AL law" holds.

In a number of systems such as highly hydrated crystal CuSO4 . 5H20

(22) and MgSO4 . 7H20 (13), it has been observed that growth rate

actually increases with increasing crystal size. A diffusion mechanism

can be postulated to account for the violation of the McCabe's AL law

in such a heavily hydrated system when both the water molecules and the

solute ions must diffuse to the solid-liquid interface before being

integrated in the crystal lattice. For these systems, diffusion

resistance plays a large part in the determining the overall reaction

rate.
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Randolph (24) reported that the size-dependent growth rate affects

the CSD in a manner qualitatively the same as size dependent product

removal, both result in varying slope on a population density plot,

depending on growth and/or removal rate at that size. Thus the question

naturally arises, "Does size-dependent growth rate also destabilize

CSD?"

Only a few limiting cases of system stability of such size-dependent

growth rate have been studied. Sherwin et al. (34) predicted that

increasing growth rate with increasing size raises the system stability

limits. Their model assumed a growth rate which is linearly proportional

to the crystal size. Aushus and Ruckenstein (2) made a first order

correction for size-dependent growth and observed that the CSD stability

region narrows when the growth rate is mass-transfer controlling, that

is size dependent and inversely proportional to a power of the size

(below the critical size) and size-independent for large sizes (greater

than the critical size). Ishii and Randolph (16) studied the stability

of class II MSMPR crystallizers when the growth rate is different below

and above a certain critical size. They found a destabilizing effect

caused by the size-dependent growth rate.

For an MSMPR crystallizer system with size-dependent growth rate,

moment transformation usually cannot form a closed set of equations

and the resulting characteristic equation is not a polynomial, thus

the Routh test can not be applied. Here the Laplace transformation

method will be used to derive the general formula for stability and

two useful cases will be discussed. The first case is the system
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having different growth rate below and beyond a critical size; the

second case is a system which follows the Abegg, Stevens and Larson

growth rate equation (1).

(A) Derivation of General Equations

All the assumptions used in Chapter II can still be applied here

except the growth rate is not constant, and there is no fines trap.

The growth rate is now expressed as

where

G = Go(c) R(r) (5-1)

G
o
(C) = kg (C-C

s
) = growth-rate concentration-dependent

function

R (r) = growth-rate size-dependent function

= constant

Here we discuss only the homogeneous nucleation model in the class

I MSMPR crystallizer without a fines trap. The extension to a secondary

nucleation model or an MSMPR crystallizer with a fines trap is straight

forward.
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(i) The Polulation Balance Equation and Mass Balance Equation

at
a

V + V (Gf) = -qf, r > 0

Gf = cB, r = 0

V
d

{(1-E)p + EC } = qC. - q{CE+(l-E)p }

V -cri- = qCi - qtP

if IP = (1-E) ps + EC

(5-2a)

(5-2h)

(5-2c)

The physical meanings of these equations and the notations used

here are the same as in Chapter II except when specially noted. The

boundary condition at size zero equates the generation of particles

EB(C) to those grown away from the size zero as indicated by the term

Gf (0, t).

(ii) Steady State Solutions

Since we normalize the linearized equations about their steady

state, a diversion to derive the steady state solutions is appropriate

d

0T
now. From Equations (5-2a), (5-2b) and (5-2c) letting 0, the

steady state solution will be

* *

f
B r

*
dr

*
,

- exp
G 0 e G

*
C. =

*

(5-3a)

(5 -3b)
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(iii) Linearized Equations

It is assumed that a small disturbance is imposed on the crystal-

lizer whose steady state performance is described by Eq. (5-3). The

disturbance quantities are all assumed to be so small that the system

may be completely linearized about the steady state value.

(Steady state values are denoted by the superscript "*").

Thus, we write

and also

*
f (t, r) = f (r) + df (t,

(t) = 11)* + Mt)

q (t) = q* +

ci(t) = ci + Oci(t)

G (c, r) = G
*
+

aG

B (C) = B
*

SC-

aB
+ -R- do

(Ps-C
*
)1c6113

(5-4a)

(5-4b)

(5-4c)

(5-4d)

(5-4e)

(5-4f)

(5-5)

where &C., (5q(t) represents the imposed disturbance.

Substituting Eq. (5-4) into Eq. (5-2) and using steady state

solutions, the following linearized equations can be found.



a(sf a * ;G
*

*

at
+

ar ac ar
(G 6f) + [ + f Tr(2)

(Ps-C )1.61-13 * 60
-f - (Sf

V V
1 - kJ-13

r > 0 (5-6a)

*
(p

s
-C )1(413

ac * as *
)G 6f + Or- f - 7-- c

0C 0C
+ B 1(6113 = 0

r = 0 (5 -6b)

d6q) (6c. 610
dt 0* 1

(5-6c)

Now define the following dimensionless variables and parameters.

f
6f' - *

6
*

B

0

r

O

N7

q*

t
e*

r
* *
6 G

o
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f Go

H =

day' -

* *
E B

97

dtp

*
(ps - c )e

(Sci
-6c.'I * *

(p
S
-c ) E

gs

(5-7)

= c*) 1*
-2-g- = R (^ -C*1 1

3 G°
- Rg

s "'s '
Go a cGo 3C

313
b =

1
(p - C*)

B*
3C s

* 1 3G0
g = (Ps C ) * 3c

G
0

Then Eq. (5-6) becomes

3tf3dt

dH d+
9r'

(Rdf') + [g
sdr dr

,+ H , (8
s

) ]

*
k1.1 3

E*
Z3') = - Hdq' - (5f'

r' r > 0 (5-8a)
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,
3
*

i41+ [gsH-b] [4' - Li]

E*
Z' = 0
3

doV
dt'

- SC.1 ' - 4'

r, = 0 (5-8b)

(5-8c)

Equations (5-8) are the linearized system equations and are

independent of the growth rate form.

(iv) Stability Analysis

Now we assume that the only pertubation driving force is the

supersaturation. Then we can set SCi' = 0 and dq' = 0 in Eq. (5-8).

Now taking the Laplace transform with respect to the reduced time t'

reduces the partial differential equation to ordinary differential

equations. These Equations (5-8) are transformed applying the initial

conditions:

df' (0) = 0

4' (0) = 0

specifically, let,

Co

-se ,

y = oye dt

= Laplace transform of the function y with respect to t'
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% dg
(Rdf') + (S+1) 6f1 + (g +

dr' sde dr'

* ,

x (
1413

4 '
elk

Z
3
I) = 0

r' > 0 (5-9a)

ti
+ (gsH-b)4' = (gsH-b -1)

*
1.(113

X
E*

Z
3

r' = 0 (5 -9b)

ti

(S + 1) 4' = 0 (5-9c)

ti

From Eq. (5-9c), we see that either 4' = 0 or s = -1, and

(k,

since we are only interested in the system's stability we set (Stp' = 0.

This leaves

dr' [MC] + (S+1) 6f, .

dH k1.13
+ H /7[g

s dr'
g

dr' s E*

r' > 0 (5-10a)



k3
Z3'
ti

R(Sf
l-1*

= (g
s
H-b-1) E*

3
'

r ' = 0 (5-10b)

Solving Eq. (5-10) as an initial value problem in Ejf' gives

*
k113 r' S+1

- exp [ -I dy]
R 6 0 R

{f dH fx
R
a+1

p oyj dx
o ls dx dx

d
[ex

o

+ (g
s
H-b-1)

r'=0
Z
3

' = 0 (5-11)

where x and y are dummy variables, and

Letting

we find

*
B

i.13*

* *4
Gn

*3

Z
3

' f"
0

Et'r'3dr' (5-12)

a = 6kB
* *4

G
*3

0

(Ps -C )
s
-C )

DG 9G
ag

s
- a - Ra Rg

G* 3C G
* 3C c

o

(5-13)
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Substituting Eq. (5-11) into Eq. (5-12) and using Eq. (5-13) gives the

characteristic equation of system (5-1).

a
6 foexP [-(S+1) Jr' 1 1

R(y)' R(r')

{J.
'

[gsdx
dx

+ H
d

g
s o R(

dy

y)
] exp [(S+1) I

x
] dx}

,

r
3
dr' +--(g RH-b )1

1.1
I
00 1

6 c c =0 oR(rt)
exp

[-(S+1)
o R(y)

] r'3dr' = 1 (5-14)

Equation (5-14) is the general characteristic equation of the

system (5-1). It exists for all size-dependent functions of R. If

R = 1, Eq. (5-14) reduces to Eq. (3-16), with X = 0; it is the

characteristic equation for an MSMPR crystallizer with size-independent

growth rate.

The stability of Eq. (5-14) can be studied by examining the pure

imaginary roots s = +4), and Eq. (5-14) can be rearranged as

1

6
(gcRH-bc) Ir,.0 = function 4, R, H, gc) (5-15)

Since all the kinetic parameters are real numbers, a trial-and-error

search on cl) is made until



and then

where
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Im [function (, R, H, gc) ] = 0 (5-16a)

1
-6- (gc RH-bc) Ir,.0 = Re

Im [function R, H, gc)]

function (4), R, H, gc)]

(5-16b)

g
c

{(xL)(xH)-(xM)(xH)
(xH)

2
+(xI)

2

+ (3a) - (xJ)(xI) - (1a)(2a)}
gc

Re [function (q), R, H, gc)]

=
6

c
{

g
(xH) - (xJ) (xH) (xK) (xH)

6

g

(5-17a)

- (xL)(xI) + (xM)(xI)} / {(xH)2 +(xI)2} (5-17b)

and all the functions are defined as follows

co 1 dy
(xH) = exp (-Ir ) cos (4),fr' ) r'3d1.1

o R(ri) 0 R(y) 0 R(y)

(5-18a)



(xi) = to
R(e) exp (-J ) sin Ole ) r r

0 R(y) 0 R(y)

(5-18b)

00 1 (-frt ) cos (cPicr:(xJ) fo R(r1)
exp

o R(y)

jr t dH dR Ix ) cos Uoi(R + H )

__dy__\

0 dx dx
exp (

jo R(y) o R(y)

dxr'
3de

(xi() fc° 1

o R(ri )
exp (-Ire ) sin (0 R(y)q)fr' --d-Y '0 R(y)

Jr'
dx dx

dR) exp (fx
R(y)

)

o

sin (4).rx
d

Ryy)
) dxr 3drt

o (

00 1
(xL)

R(r )
exp (-1(T' R(y) ) sin Of0r' (1Y )R(y)

jo
x_dR

) exp R(Y)
)

(R
d

dHx dx

cos ((iv
R(y)

) dxr 3dr '

(5-18c)

(5-18d)

(5-18e)
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(xM) = (-fro' & cos (ei<
)

R(y)
0 R(r )

f- (R
dH

+ H
dR

) exp (Ix )

o
17

dx 0 R(y)

(v0
R(y)

x
) dxr 3dr (5-18f)
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If the growth rate model is given, and the values of R and H

are known functions of r' only, from Eq. (5-16b), the nucleation

sensitivity parameter can be found for a given value of gc.

All the calculations were made on a digital computer. The computer

programs are shown in Appendix C.

(B) Case Study Results and Discussion

(i) The growth rate is defined as

G = (C) (1 + a r) r < r
c

= G
o

(C) r > r
c (5-19)

If McCabe's AL law does not hold, one of the simplest equation

to describe the relationship between the growth and the size is the

linear equation

G =kg (C - Cs)
2. (1 + a r) (5-20)
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Unfortunately a continuous MSMPR crystallizer with this growth

rate is mathematically not possible (1), but due to the simple form

and easy mathematical calculation and data fitting, it still appears

very often in the literature (such as by Canning and Randolph (43),

Sherwin et al. (34), Randolph and Larson (28), Chang and Epstein (4)).

In actuality for small crystals the crystal growth rate is usually

size dependent and beyond certain critical size, the growth rate obeys

McCabe's AL law (44). Garside and Jancic (9) proposed the two region

growth rate model in which the population density and the growth rate

are not continuous at critical size but the number flux will be con-

tinuous at that size. We can find the growth rate equation described

by Eq. (5-19) satisfies the requirement that the number flux is con-

* * * *
tinuous at the critical size r

c
. Letting rc' = rc /8 G

o
, a' = a0 G. ,

the growth rate Eq. (5-19) is shown graphically in Fig. 5-1.

Fig. 5-2 plots the ratio of critical sensitivity nucleation to the

sensitivity growth rate parameter bc/gc as a function of dimensionless

critical size r
c

' at which a sudden change in growth rate occurs.

The plot is for gc = 100 with a' as the parameter. As r
c

'

approaches zero the stability limit approaches the MSMPR stability limit

at the given gc value. Note that the CSD is stabilized if the growth

* *
rate change occurs at a size less than 8 G

o
. Thus the phenomena of

slow-growing fines in many systems (44) would be expected to stabilize

the system. This result also proves the fact that the fines trap

destabilizes the system, because the fines trap withdraws the fines

and dissolves them, then recycles the pure solution to the system, so
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Fig.5-1. Diagram of size-dependent growth rate.
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the net effect is a decrease of fine crystals. In this way the system

becomes more unstable as was shown in Chapter III. The greater the

* *
value of a 0 Go , and the smaller the critical size, the more stable

the system will be. If, however, the growth rate changes at size greater

*
than about 1.2 e G_ , a significant destabilizing effect is predicted.

The latter result is similar to the CSD destabilizing effects of

product classification (24). Accelerated product removal and decreasing

growth rate gives a similar effect on CSD, but the decreasing growth

rate produces more destabilizing than accelerated product removal. As

r
c

' becomes greater, the b
c
/g

c
value will become nearly flat (not

shown in Fig. 5-2), and the destabilizing effect is very apparent.

Fig. 5-3 shows the effect of gc on bc/gc and a'=0.1 for

various values of r '. It shows that the value b /g increases as g
c c

increases and approaches an asymptotic value when gc becomes very

large.

(ii) The growth rate is expressed as

G = G
o
(C) (1 + ar)m m < 1 (5-21)

This is one of the empirical equations describing the effect of

crystal size on the growth rate. A good discussion of size-dependent

growth rate equations is given by Abegg et al. (1) and White et al. (38).

Perhaps the most popular and satisfactory equation among them is the

equation proposed by Abegg, Stevens and Larson (1) (the ASL equation).

The ASL equation can be written in the form of Eq. (5-21). If the

growth rate of nuclei is expressed as G
o
= k (C-C

s
) , then
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C

Fig.5-3. Asymtotic stability limit of size-dependent
growth rate.



110

G = kg (C-C
s
) (1 + a r)

m
is an empirical relationship which may be

used to correlate the effects of supersaturation and crystal size on

the growth rate by the non-linear least squares fitting.

Fig. 5-4 shows the graphical representation of Eq. (5-21). The

growth rate increases as r increases without asymptotic behavior if

m is a positive value but the growth rate value is limited by the line

m = 1; if the value of m is negative, the growth rate decreases as

r increases and approaches the asymptotic value of zero.

Garside and Jancic (8) used the ASL equation successfully to fit

the experimental data and showed that the kinetic parameter m depends

on the crystallizer volume.

Now consider the destabilizing effect due to the size-dependent

growth rate.

Fig. 5-5 show the stability limit at gc = 100 as the function of

m with parameter a'. If m = 0 or a' = 0, the critical stability

limit approaches the value be /gc = 20.24 which is the stability limit

for size-independent MSMPR crystallizer. The be /gc value is a mono-

tonic function of m but not a monotonic function of a', if the value

of m is fixed. For some values of a', the be /gc value increases

with increasing a'; but for other values of a', the be /gc values

increase and then decrease with increasing a'. This fact can be seen

more clearly as we plot be /gc vs a' using m as the parameter.

In Fig. 5-6, as a' approach zero the value of be /gc approach the

limiting value at gc = 100; if a' is less than 0.2, with positive

value of m, then the bigger the m, the more stabilized the system;
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Fig.5-5. Stability regime of ASL growth rate model.
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if m is a negative value, the smaller the m, the more destabilized

the system. But for a' greater than about 0.4, the stabilizing effect

becomes reversed, the greater the m value (positive m value), the

more is the destabilizing effect; and also the smaller the m value

(negative m value), the more is the stabilizing effect.

Users of the ASL equation often assume a' = 1 (or define

* *
a = G

o
) in Eq. (5-21) to reduce the two parameters system to one

parameter m for simple calculation. When the size-dependent growth

rate system is handled in industrial crystallizers, the tendency to

produce wider size distribution may well make the operation somewhat

more difficult than usual. This is observed by Garside and Jarcic (8)

without explanation. The main reason is largely due to destabilized

system near a' = 1.

Figure 5-7 shows the stability limit bc/gc with various parameters

a' = 0.1 and m as the function of g
c

. When g
c

become very large

the value of b
c
/g

c
approaches asymptotically a certain limiting value.
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CHAPTER VI. ON-LINE MEASUREMENT OF PARTICLE SIZE DISTRIBUTION

From Chapter IV we found that modal control is a useful tool to

control a continuous MSMPR crystallizer, but whatever control algorithm

is employed, a necessary requirement is for an on-line instrument to

measure the state of the system. This means measuring the crystal size

distribution (CSD).

There are two such devices available in the market, one is a small

orifice zone-sensing instrument; the other is a laser light scattering

analyzer.

Rovang and Randolph (33) described the zone-sensing device. They

made measurement using an on-line Coulter Counter in the fines dissolving

loop of a laboratory KC1 crystallizer, and they predicted the growth and

nucleation data by regression of the CSD data by an on-line real-time

mini-computer. But the zone-sensing instrument has some disadvantages:

first the small orifice is easily blocked by the particles; and second

is the problems due to the electrical noise caused by the flow of con-

ducting fluid.

Randolph et al. (31), using a Leeds and Northrup Microtrac forward

low-angle laser light scattering particle analyzer, developed an on-line

particle size analysis technique to monitor the laboratory KC1 crystal-

lizer. The measured size distribution was analyzed on-line to give

running measures of the growth and nucleation rate in the crystallizer.

The light scattering instruments have relatively poor precision which

requires statistically averaging over thousands of particles. They



117

concluded that the instrument has considerable potential for monitoring

and control of CSD.

Because both the zone-sensing instrument and the laser light

scattering analyzer are very expensive, we developed an inexpensive

and easy method for on-line measuring of the CSD and monitoring of the

crystallizer performance, using an impact type transducer. Up to now

due to some mechanical difficulties existing in the transducer we can

not measure very fine particles. But the device is inexpensive, only

about one-tenth the cost of zone-sensing equipment (the laser analyzer

would be more expensive), and still has considerable potential for use

in monitoring and control of a crystallizer. A comparison of these

three devices is shown in Table 6-1.

(A) Experimental Equipment and Instrumentation

The components used to measure the particle size are shown schema-

tically in Fig. 6-1. They include:

1. Transducer,

2. Test flow tube,

3. Amplifier, and

4. Recording system.

Each of these items will be discussed in detail below.

1. Transducer

A sewing needle shortened to a length of about 25 mm with a dia-

meter of about 300 1.1 and a phonograph stereo cartridge comprise the



Table 6-1 Comparison of On-line Measurement Equipments

Cost Measurable size Measuring Electrolyte Accuracy

range time required
Sample
required

Size identi-
fication method

Coulter Counter 10,000 20-1600 p 1-10 min. yes (c) 5-15 mg Statistical

(a) (b) method

Laser light
scattering
analyzer

100,000 0.1-1000 p
(b)

1-2 min no (c) 5-50 mg Statistical
method

This work 1,000 above 10 p depend on no (d) (e) Measure the

(impact
transducer)

(a) (b) particles
feeding
rate

particle size
one by one

(a) It does not include recording system or mini-computer.

(b) The equipment should change some parts for whole range measurement.

(c) Not available.

(d) Each particle can be identified accurately, the accuracy of size distribution increase
with increasing the number of particles measured.

(e) Need about one thousand particles.
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Equipment assembly

(a) Test flow tube

(b) Trap

(c) Rotameter

(d) Valve

(e) Sewing needle

(f) Amplifier

(g) Oscilloscope

(h) Instrument tape recorder

(i) Oscillographic recorder

(1) \\ (j) Overflow line

1 ill (k) Tone arm

(e),
(1) Rubber membrane

(m) Particle inlet port

(g)

0 0 0 0
(f)

0 0
(h)

(i)

Pig.6 -1. Schematic diagram of experimental apparatus.
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transducer. The needle is inserted through a rubber membrane with half

the needle inside the flow channel, and with the eye outside. The phono-

graph cartridge rests with its stylus in the needle eye. The needle is

chosen so that its eye fits the cartridge stylus. The phonograph stereo

cartridge used is a moving coil cartridge (Ortofon MC 10).

The momentum of a particle impacting the needle will give rise to

the signal by hitting the needle and this signal is transmitted through

the vibration of the cartridge stylus and transformed into an electrical

signal.

2. Test Flow Tube

The test flow tube is a 10 mm ID, 1000 mm long glass tube and its

structure is shown in Fig. 6-2. There is a 2 mm diameter hole on the

middle of the test tube wall. This hole is covered by a thin piece of

rubber. The sewing needle protrudes through the rubber into the center

of the tube and is supported by the rubber. The rubber thickness is so

chosen that where the needle is just supported in the horizontal posi-

tion. The cartridge was held by a tone arm and positioned with the

sewing needle eye and the tone arm in a horizontal position as shown in

Fig. 6-1. The upper part of the flow tube is equipped with an overflow

pipe so that the water level in test tube is kept constant. The parti-

cles are carried downward by water (or by gravity) through the flow tube

into the collecting bottle. All particles are collected in this bottle,

and the water goes through the rotameter and drains.
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Fig.6-2. Schematic diagram of test flow tube.
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3. Amplifier

The amplifier used in the experiment was a Yamaha C-6 natural sound

control pre-amplifier.

4. Recording System

The signal output from the preamplifier was monitored by a oscillo-

scope and recorded by a instrument tape recorder. The instrument recorder

used was a Hewlett Packard model 3960A. The signal was recorded at higher

speed (15 in/sec) and played back slowly (15/16 in/sec) to an oscillo-

graphic recorder (Hewlett Packard model 7402) for recording.

(B) Experimental Procedure

The experimental procedures used to acquire the data is described

below.

1. The particles to be measured were mixed with water to make a

slurry which was then sucked into a 1 ml syringe.

2. The syringe was put into the test tube inlet port, letting the

particles flow out from the syringe and flow down the tube smoothly with

the flowing water. Some of the particles hit the needle and give rise

to the signal which was then recorded.

(C) Theory

We can consider the probe (or the sewing needle) as an infinitely

long cylinder. When the particles carried by the fluid approach the

cylinder, due to the effect of inertia, the particles change their loci

from the fluid streamline. Some particles will attain the surface of



123

cylinder and some will miss the cylinder depending on their initial

position and their size. When the particles attain the surface of

cylinder, the change in momentum of the particles gives rise to the

signal. Diffusion affects only very small particles (particle size

less than 10 micron), therefore the signal obtained by the probe is

caused by the interception and inertia effect. The interception and

inertia effects are shown graphically in Fig. 6-3. In Fig. 6-3 (a)

the inertia effect is illustrated, far upstream of probe the particle

has the same velocity as the fluid. The particle follows the stream-

line of the fluid, until the particle approaches the cylinder. Then,

due to inertia the locus of the particle motion will be different from

the fluid streamline and the particle may attain the cylinder. In

Fig. 6-3 (b) the interception effect is illustrated. In this the

particles follow the fluid streamline even close to the probe (Stokes'

number equals zero). In this case, the particle attains the cylinder

if its radius is larger than the distance which separates the streamline

from the cylinder.

The stereo phonograph cartridge has two perpendicular channels and

each channel can be considered as a spring and dashpot assembly. The

two spring and dashpot assemblys are used to model the system as shown

in Fig. 6-4 (a). The mass of the cylinder is distributed to each

assembly as mass M. If the particle hits the position P, due to

symmetry the signal in each channel is the same; but if the particle

does not hit the position P the signal in each channel will be dif-

ferent and the magnitude depends on the position where the particle hit

the cylinder.
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(a) Inertia effect

particle trajectory and

streamline

(b) Interception effect

Fig.6-3. Particle trajectory in flow field.
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For each channel, the simple model shown in Fig. 6-4 (b) is equi-

valent to a second order system and the system equation can be written

as (45):

where

2

M
dt

2 dt
+ c LIZ + ky = F(t) (6 -la)

y(0) = 0 (6-1b)

y'(0) = 0 (6-1c)

F (t) = {110 U0(t-At)} (6-1d)

M, c, k = system constants: they represent mass, friction and

the spring constant

mass of particle (gm)

velocity of particle when it hits the cylinder (cm/sec)

displacement of system (cm)

time (sec)

Uo(t) = unit step function

At = contact time between cylinder and particle, that is the time

between when the particle hits the stylus and when the par-

ticle finally leaves the cylinder. Fig. 6-5 shows this

condition: the particle hits the cylinder and travels down

the surface of the cylinder until finally it leaves the

cylinder.

m =

u =

y =

t =

126
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Fig.6-5. Contact pattern between particle and
cylinder.
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Eq. (6-1d) shows the force acting on the system, if the contact time

is small then Eq. (6-1d) can be written as

F (t) = mu (S
0

(t) (6 -le)

where (5

0
(0 represents the unit impulse function.

Usually the cartridge is designed for critical damping and for

this condition Eq. (6-1) gives

P

=
mu

t ePt

-2M

For maximum displacement, we found

2mu -1
ymax

(6-2a)

(6 -2b)

(6-3)

Since the recording system records the electrical signal in volts the

electrical signal E (volts) will be

E = mui (6-4)

where i is a conversion factor which is determined by calibration with

using mono-size particles at a known velocity.
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The signal from each channel would be El = m ul i, or E2 = m u2 i.

By using the geometrical relationship the particle mass m (or particle

size) can be determined as described below.

If the particle does not hit at the center position, the two signals

E
1

and E
2
will be different. As shown in Fig. 6-6, the velocity vector

at the impact point P is u, and this vector u can be resolved into

uT and uN; the component u
T

is in the tangential direction to

cylinder and has only a small effect on the motion of the cylinder.

For simplicity the frictional force is assumed to be zero and thus, only

the vector component in the centripetal direction causes a signal. This

component uN can also be resolved into components in the signal channel

direction. (see Fig. 6-6(b)). The angle between channels is 90 0; hence

uN = u
1

2
+ u

2

2
and

(E
1

2
+ E22) = m uN i (6-5)

The uN value must be found from the flow condition. The relationship

between uN and the mass of the particle depends on where the particle

hits the cylinder. The angular position of impact is given by

= 45° - tan-1 ( -1-11 )

u2
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Fig.6-6. Velocity component at the point of
impaction.



(D) Equation of Motion of Particles in the Flow Field

If the fluid is in steady state motion and the particle is suf-

ficiently small to allow the use of the Stokes formula for drag force,

then by the Newton's law of motion, the trajectories of particles in

the flowing fluid can be written as

since

du

dt
- -6 irpr (ux-vx) (6-6a)

du

m
dt

- -6 Trilr (u
Y
-v

Y
)

dx
=u .

x dt dt

Let us define the following dimensionless variables

x
x
R

Yi R

u t

V

V -
x

V

co

vi-
y

(6 -6b)
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where:

132

u , u = particle velocity in x and y direction respectively
x y

v
x
, v

y
= fluid velocity in x and y direction respectively

= mass of particle

r = radius of particle

p = viscosity of fluid

R = reference length (= radius of cylinder)

uco = upstream fluid velocity

x, y = linear length

then we get the dimensionless equations.

d
2
x' dx'

= 0

= 0

(6-7a)

(6-7b)

(6-7c)

St --,, + - v
x

dt"" dt'

12 +ALSt -21 - 17'

dt
,2

dt'

2r2psuco

St =
911R

= Stokes' number
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Stokes' number is the only parameter associated with a non-

diffusional field. v
x

, and v are the fluid velocity and they

depend on the type of flow. Here we considered the flow of fluid past

an infinitely long cylinder,

With given initial conditions Equations (6-7a) and (6 -7b) can be

solved to find the velocity at the point of impaction.

Some significant properties of Strokes' number can be found by

analyzing special cases. If St = 0, then

dx'
'

dt'
- v

x

dy'

dt'
V

This means the particles will follow the streamline of the fluid. In

this case only the interception effect is considered. If St 00, then

d
2
x'

dt'
2

d2
,

dt'
2

0

0

This means the particle locus is a straight line.
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(E) Probe Limitation

Now let us find what is the lower limit of particle size which can

be found by this mehtod.

First, let us assume the flow field is potential flow, then

v
x

= 1

v =

(x'
2
+ yl

2
)
2

,2 ,2
x y

(x'
2
+ y'

2
)
2

2 x'y'

(6-8a)

(6 -8b)

By combining the Equations (6-7) and (6-8), the equation of motion of

a particle moving along the stagnation streamline in the direction of

stagnation point takes the form

where

du 1

2
St -r-, + u - (1- ) = 0

dt
x,

dx'

dt'

(6-9)

Differentiating the Eq. (6-9) with respect to x' and putting x' = -1

and u = 0, we get

from which

du
St (--,)

2
+

du
+ 2 = 0

dx dx

St < 1/8

(6-10)

(6-11)
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This value is different from the value obtained by Levich (17) due to

differentfloTilmodelusedinthecalculation.If0<st<Stcri =1/8,

the particles loose all their kinetic energy by the time they collide

with the cylinder at the stagnation point, in other words the negligibly

small particles can never hit the cylinder. If the particle having

St>St=1/8, the velocity at the stagnation point is not zero and
cri

the particle may or may not hit the cylinder depending on its initial

starting point and on its size. For our equipment, R = 0.015 cm,

p
s
= 8.91 gm/cm

3
, p = 0.01 poise, u, = 15.1 cm/sec, the minimum size

(radius) that the probe can measure is about eight microns. With other

parameter values it may be possible to measure smaller particles, but it

must be kept in mind that if the particle size is less than ten microns,

diffusional effects become important and our method is not useful.

(F) Accuracy of the Probe

In order to find how accurately we can measure the particle size

distribution, let us consider the system as illustrated in Fig. 6-7.

And also let us assume:

1) The particles enter the control surface only one particle at

a time,

2) No matter what calculation method we use, if the particle hits

the probe we can identify its size accurately,

3) Only the particles through the control surface are considered,

4) The particle size distribution is an exponential distribution,

that is, the density function of the particle size distribution is



control surface

(-03,1)

(- CD, 0 )

flow

Fig,6-7. System model for simulation.

probe
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f
0
= exp (-r/R) which is the most commonly encountered in the continuous

MSMPR crystralizer,

5) The Stokes' number equals zero. The particles will therefore

follow streamlines and only the interception effect is considered. This

is the most inefficient case,

6) The flow field is the potential flow.

Now consider a randomly selected particle from an exponential size

distribution at position x = co with a random position in the cross

section of the flow field. The particle will follow the equation of

motion of the fluid. Some particles will hit the probe and directly

give rise to signals; some particles will miss the probe due to their

initial position or their size. Fig. 6-8 shows the simulation results

obtained with Monte Carlo simulation. The mean and variance from the

Poisson's distribution are both one. The results show that if the total

particles taken for consideration are one thousand, then the mean value

is about 1.27, about 30% higher than the theoretical value, although the

variance approaches the theoretical value. Let us now look at the be-

havior of these particles in more detail.

If a particle with size r enters the control surface at position

y. , the particle will be intercepted by the probe only if

ym < (r+R)2 - R2 (r+R)-1

if r/R is small, then y. < 2 r. The probability for a particle with

size r/R = 0.1 to hit the probe is 2% compared to 8% for a size r/R = 0.5.
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This means that the probability of hitting the probe increases rapidly

as the particle size increases. Therefore, the probe is most efficient

for large particles. This result can also found from Fig. 6-9, when

the calculated size distribution is plotted against the size and com-

pared with the theoretical values. The result shows when the particle

rJR is between o.6 and 1.0 the simulation result is very close to the

theoretical one, and the more particles we take the more accurate the

result. Since the small particles are easy to miss the probe, this is

why the mean value is always greater than the theoretical value.

The distribution of initial positions, y0 is given in Table 6-2.

The deviation from uniformity is on the average under 7.5%.

The percentage miss of particles from the probe is shown in Fig.

6-10, up to the particles sampling number equal to one thousand, the

percentage miss of particles is nearly around twenty six, so about a

quarter of the particles can not be taken into account for measurement.

(G) Experimental Results and Discussion

A high quality stereo phonograph cartridge (Ortofon MC 10) was

tested and found to be not sensitive enough for our work; it gave useful

results only for particle diameters bigger than 300 micron. The parti-

cles were small copper spheres. The liquid used as the carrier fluid

was water. In our experimental range, the particle size was bigger than

the needle size and the terminal velocity of the particle was faster than

the fluid velocity. In this situation with the particles settling

freely down the flowing fluid, the particles will flow in straight lines
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Table 6-2. Simulation Statistics

Position(ym/R) Number of particles Expected Value Deviation

0 A, 0.1 109 100 0.09

0.1 A, 0.2 96 100 -0.04

0.2 A, 0.3 108 100 0.08

0.3 A, 0.4 101 100 0.01

0.4 A, 0.5 111 100 0.11

0.5 A, 0.6 89 100 -0.11

0.6 A, 0.7 98 100 -0.02

0.7 A, 0.8 108 100 0.08

0.8 A, 0.9 95 100 -0.05

0.9 (1., 1.0 85 100 -0.15

Total: 1000 Total: 1000

Average absolute deviations = 0.074
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with their terminal velocity. By using Eq. (6-5) the particle size can

be predicted. Fig. 6-11 shows the background noise if the probe is in

still air; the noise level is less than the 10 mv. Fig. 6-12 shows the

background noise of the probe in still water, and Fig. 6-13 shows the

background noise if the water is flowing at the Reynolds number equal

to 1510. The noise is about 20 mv; if we increase the fluid velocity

the vibration of the system becomes stronger and the base line of the

signal shows some cyclic motion.

Various approaches were tried to improve performance but none was

very successful. One way to increase the magnitude of the signal is by

increasing the fluid velocity, but if the fluid flow pattern in the tube

is turbulent the signal and the background noise will both become bigger;

therefore, it is not practical to increase the fluid velocity into the

turbulent regime.

The friction loss of the needle support is not very important.

Direct impulse response tests showed that the needle-cartridge system

transmits more than 90% of the energy which would be detected by the

cartridge alone.

Fig. 6-14 shows typical signals obtained from the experiments, the

signal b and d are suitable for calculating the particle size.

Theoretically, the system is critically damped so that the signal curves

should show only one peak, but probably due to some change in the pro-

perties of the rubber which holds the needle (see Fig. 6-1), the system

shows underdamped behavior.

The following results are based on the values for 500 effective

particles signal readings.
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Fig. 6-15 and 6-16 show the cumulative undersize fraction curve D

(%) vs particle size D for particle size from 24 mesh (701 1.1) to

28 mesh (589 p) and 35 mesh (417 11) to 48 mesh (295 p) respectively;

the experimental values are only slightly different from the theoretical

values. When the fluid velocity changes, the results are quite similar,

because the particles are flowing down with a terminal velocity, that is

larger than the fluid velocity.

Fig. 6-17 shows the cumulative undersize fraction curve D (%) vs

particle size D when particles between 24 mesh to 28 mesh and 35 mesh

to 48 mesh are mixed in equal amounts. From the result we can find that

at about 400 p the under size fraction is less than 50% the theoretical

value, more particle samplings will decrease this gap.

This equipment is not perfect and requires further development

before practical application is possible. The transducer should be

improved to extend the particle measuring range. Signal output should

be standarized to eliminate the oscillation behavior. The instrument

should also be programmed for operator-free operation.
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CHAPTER VII. CONCLUSIONS

A set of lumped parameter equations were developed in terms of

moments of the crystal size distribution for an isothermal continuous

mixed suspension mixed product removal class I crystallizer with a fines

trap for both the homogeneous and secondary nucleation models. Linear

stability analysis was carried out, and linear stability criteria were

established for both homogeneous and number dependent secondary nuclea-

tion in terms of system kinetic parameters. The results provide insight

into the complexity of the interaction between crystal growth and

nucleation rate.

Extensive nonlinear and linear simulations of the system equation

were performed. The linear stability model predicted the system per-

formance successfully. When the linear stability analysis predicts a

stable system, the dynamic response shows long-term self-sustained

oscillation; when the stability analysis predicts the unstable system,

the dynamic response shows the amplitude of the system variables will

become bigger and bigger as the time elapses.

The capability of modal control for elimination of the limit cycles

in the above cases was investigated. The results of simulations indicated

that modal control was a useful tool for control the continuous MSMPR

crystallizer with a fines trap, and showed remarkable improvement in the

performance of both the stable and unstable system. The output of the

systems was measured using the throughput or fines recirculation rate or

both as the manipulated variables. From the simulation results, it was
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found that when using both the throughput rate and fines recirculation

rate as the manipulated variable the system is better controlled; and

using the fines recirculation rate is better than using the throughput

rate. Although using the throughput rate is not so effective as the

previous two methods, it is still useful for control of a continuous

MSMPR crystallizer.

The stability of MSMPR crystallizer where McCabe's AL law was

violated (i.e. the growth rate is size-dependent) was investigated. The

general characteristic equation was formulated. In this situation the

characteristic equation is not a simple polynomial form, and the Routh

test for stability is no longer applicable. Two cases of size-dependent

growth rate were solved to illustrate how size-dependent growth desta-

bilized the system.

Finally, a new and simple method for on-line measurement of particle

size distribution was investigated. This method measures the momentum

of a particle when it hits a very small cylindrical probe to determine

the particle size. The instrument tested was not adequate but the tech-

nique has considerable potential for monitoring and control of CSD, and

deserves further investigation.
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Appendix A. Stability Limit of Number Dependent Secondary Nucleation

From Eq. (3-5), the characteristic equation represent the system

will be:
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Application of the Routh test to the above equation results in the

conditions for the system. These conditions are from Eq. (3-6)
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In order to represent the stability region more clearly, one must

rearrange the Eq. (A-1). From Eq. (A -lb) and Eq. (A-1d), one get
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Then the stability limit h(bi, gl, X,bn) lies between f(gle A)

and zero. If let f(g
1
e
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) = 0, one gets three roots as
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-X -X -X
(i) If b

n
> 4, then (gle )1, (gle )2, and (g1e )3 are three

real roots. The relationship of Eq. (A-2) is shown in Fig. A-1(a),

so the stable region must be g1e
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but this relation violate the requirement of Eq. (A -lb). Thus no

stability limit can be found in region bn > 4.

(ii) If bn < 4, then f(gleX) = 0 has only one real roots (gle-X)3,

and the relationship of Eq. (A-2) is shown in Fig. A-1(b). From

-X
requirement of Eq. (A-1a), (g
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Finally one can conclude that if bn < 2, the stable region will
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(a)
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g e-k)3
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Fig.A-1. Locus of stable region for number
dependent nucleation model.
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Appendix B. The Non-linear Dimensionless Equations.

(a) Homogeneous Nucleation Model

4n q
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(b) Secondary Nucleation Model

From Eq. (2-12), taking moment transformation one can get the

following dimensionless equations.
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APPENDIX C

Computer Programs for Computation



CC
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XPHI=XHALF
CALL GENEFUN(GA,YH)
FHALF=YH
IF(ABS(FHALF).LE.EPS) GO TO 10
IF(FHALF*FL.GT.0.0) GO TO 80

XR=XHALF

FR=FHALF

GO TO 90

80 XL=XHALF
FL=FHALF

90 CONTINUE
WRITE(6,170)ITER

STOP

50 XHALF=XPHI
FHALF=FL

GO TO 10

20 XHALF=XPHI
FHALF=FR

10 WRITE(6,180)XHALF,FHALF
Y=GA/6.0*(XH*6.0/GA-XJ4H-X0XH-XLL*XI

1 +XM*XI)/(XH**2+XI**2)

WRITE(6,190)Y

STOP

120 FORMAT(// * GIVEN DATA* / //* GA = *,F10.2,

1 * RC = *,F10.4,* A = *,F10.4

2 //* CALCULATED RESULT*//)

150 FORMAT(//* NO INTERVAL CAN BE FOUND UP TO NEAR XL =*,

1 F10.6)

160 FORMAT(//* THE INTERVAL FOR XPHI IS BETWEEN XL =*,

1 F10.6,5X,*T0 XR =*,F10.6,5X//* FL = *,E14.4

2 ,5X,*FR = *,E14.4)

170 FORMAT(//* NO VALUE OF XPHI CAN BE FOUND FOR GIVEN*,

1 *ITERATION ITER =*,I6)

180 FORMAT(//* THE XPHI VALUE=*,F10.4,5X,* THE IMAGINARY*,

1 * VALUE = *,E14.4)
190 FORMAT(//* THE ACTUAL VALUE=*,F12.4)

END

CC

CC

FUNCTION FINF(F,RC)

CC SUBPROGRAM FOR NUMERICAL INTEGRATION OF F FROM LOWER

CC BOUND RC TO INFINITE

CC DCADRE: IMSL SUBROUTINE

EXTERNAL F

AINF=RC

CC THIS VALUE IS SET ARBITARY AND SHOULD

CC ADJUST IF NECESSARY

BINF=10.

CC

RERR=1.0E-4

AERR=0.

C=DCADRE(F,AINF,BINF,AERR,RERR,ERROR,IER)
IF(IER.NE.O.AND.IER.NE.65.AND.IER.NE.66) GO TO 30



168

PROGRAM CHARAC(INPUT,OUTPUT,TAPE6=OUTPUT)
COMMON A,XPHI,RC,A1,CE,CA
COMMON/C1/XH,XI,XJ,XK,XLL,XM

CC

CC STABILITY ANALYSIS OF MSMPR WITH
CC GROWTH RATE G = GC*F(R)

CC F(R) = 1.0 + A*R, IF R LESS THAN OR EQUAL RC

CC F(R) = 1.0 , IF R GREATER THAN RC

CC

CC

CC GIVEN DATA
CC

CC GA=GC*ALPH
CC RC=CRITICAL PARTICLE SIZE

CC A =PARAMETER IN (1.0+ A*R )

CC

CC

CC

GA=100.

RC=1.75

A=0.05
A1=-1.0/A-1.0

WRITE(6,120) GA,RC,A

CE=(1.0+A*RC)**(-1.0/A)
CA=(ALOG(1.0+A*RC))/A

EPS=1.0E-3
EPSI=1.0E-8

N=20

ITER=50

CC TRIAL VALUE OF XPHI

XL=1.0

CC

CC FIND INTERVAL WITHIN WHICH ROOT LIES

XPHI=XL

CALL GENEFUN(GA,YA)

FL=YA

IF(ABS(FL).LE.EPSI) GO TO 50
DO 60 I=1,N
XR=XL+5.0
XPHI=XR

CALL GENEFUN(GA,YB)
FR=YB

IF(ABS(FL).LE.EPSI) GO TO 20
IF(FL*FR.LT.0.0) GO TO 30

XL=XR

FL=FR

60 CONTINUE

WRITE(6,150)XL

STOP

30 WRITE(6,160)XL,XR,FL,FR

CC

CC INTERVAL HALVING SEARCH METHOD

DO 90 J=1,ITER
XHALF=(XL+XR)/2.0



DO 20 1=1,50
AINF=BINF

BINF=AINF+2.0
D=DCADRE(F,AINF,BINF,AERR,RERR,ERROR,IER)
IF(IER.NE.O.AND.IER.NE.65.AND.IER.NE.66) GO TO 30
ER=ABS(D/C)

IF(ER.LT.0.0005) GO TO 60

C=C+D

20 CONTINUE

WRITE(6,180)BINF

STOP

60 FINF=C

RETURN

30 WRITE(6,150)IER

STOP

CC

150 FORMAT(//* IER =*,I5,* THE INTEGRATION FAILS*)
180 FORMAT(//* UPPER LIMIT =*,F10.6,* IS STILL NOT BIG *

1 ,*ENOUGH*)

END

CC

CC

FUNCTION FFIX(F,XA,XB)

CC SUBPROGRAM FOR NUMERICAL INTEGRATION OF F FROM

CC XA TO XB

CC DCADRE: IMSL SUBROUTINE

EXTERNAL F

RERR=1.0E-4

AERR=0.0

C=DCADRE(F,XA,XB,AERR,RERR,ERROR,IER)
IF(IER.NE.O.AND.IER.NE.65.AND.IER.NE.66) GO TO 30

FFIX=C

RETURN

30 WRITE(6,150)IER
STOP

CC

150 FORMAT(//* IER =*,I5,* THE INTEGRATION FAILS*)

END

CC

CC

CC

CC

SUBROUTINE GENEFUN(GA,Y)
EXTERNAL F1,F2,F3,F4,F5,F6,F7,F8,F9,F10
COMMON A,XPHI,RC,A1,CE,CA,CT

COMMON/C1/XH,XI,XJ,XK,XLL,XM

CT=XPHI*CA

XH=FFIX(F1,0.,RC)+FINF(F2,RC)*CE
XI=FFIX(F3,0.,RC)+FINF(F4,RC)*CE

XJP=FFIX(F5,0.,RC)+FINF(F6,RC)*CE
XJ=XJP*(-1.0)/XPHI

XKP=FFIX(F5,0.,RC)-FFIX(F3,0.,RC)-FINF(F4,RC)*CE
1 +FINF(F6,RC)*CE

XK=XKP/XPHI
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CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

XLP=FFIX(F7,0.,RC)+FINF(F8,RC)*CE
XLL=-XLP/XPHI
XMP=FFIX(F9,0.,RC)-FFIX(F1,0.,RC)-FINF(F2,RC)*CE

1 +FINF(F10,RC)*CE

XM=XMP/XPHI

Y= XLL*XH-XM*XH+6.0*XI/GA-XJ*XI-X1OXI
RETURN

END

FUNCTION F1(X)

COMMON A,XPHI,RC,A1

P=1.0+A*X

F1=(P)**(A1)*COS(XPHI/A*ALOG(P))*X**3
RETURN

END

FUNCTION F2(X)
COMMON A,XPHI,RC,At,CE,CA,CT

F2= EXP(-(X-RC))*COS(CT
1 +XPHI*(X-RC))*X**3

RETURN

END

FUNCTION F3(X)
COMMON A, XPHI,RC,A1

P=1.0+A*X

F3=(P)**(A1)*SIMPHI/A*ALOG(P))
1 *X**3

RETURN

END

FUNCTION F4(X)

COMMON A,XPHI,RC,A1,CE,CA,CT
F4= EXP(-(X-RC))*S1N(CT

1 +XPHI*(X-RC))*X**3

RETURN
END

FUNCTION F5(X)
COMMON A, XPHI,RC,A1

P=1.0+A*X

F5=(P)**(A1)*(SIN(2.0*XPHI/A*ALOG(P)))

1 /2.0*X**3

RETURN

END

FUNCTION F6(X)

COMMON A,XPHI,RC,A1,CE,CA,CT

170
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CC

CC

CC

CC

CC

CC

CC

CC

F6=EXP(-(X-RC) )*(SIN(2.0t(CT+XPHI*(X-RC))))
1 /2.0*X**3

RETURN

END

FUNCTION MX)
COMMON A,XPHI,RC,A1

P=1.0+A*X

F7=(P)**(A1)*(SIN(XPHI/A*ALOG(P
1 )))**2*X**3

RETURN

END

FUNCTION F8(X)

COMMON A, XPHI,RC,A1,CE,CA,CT

F8= EXP(-(X-RC))*(SIN(CT

1 +XPHI*(X-RC) ))**2*X**3

RETURN

END

FUNCTION F9(X)

COMMON A, XPHI,RC,A1

P=1.0+A*X

F9=(P)**(A1)*(COS(XPHI/A*ALOG(P
1 )))**2*X**3

RETURN

END

1

FUNCTION F10(X)

COMMON A,XPHI,RC,AlICE,CA,CT
F10= EXP(-(X-RC))*(COS(CT

+XPHI*(X-RC)))**2*X**3
RETURN

END

-END OF FILE-
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PROGRAM CHARANINPUT,OUTPUT,TAPE6=OUTPUT)
COMMON A,XPHI,B,CE,CA

COMMON/C1/XH,XI,XJ,XK,XLL,XM
CC

CC STABILITY ANALYSIS OF MSMPR WITH

CC GROWTH RATE G = GC * F(R)

CC F(R)= (1.0 + A*R )**B, B LESS THAN ONE

CC

CC

CC GIVEN DATA

CC

CC GA=GC*ALPH

CC A,B =PARAMETER IN (1.0+ A*R )**B

CC

CC

CC

GA=20.

B=+0.2

A=0.05

WRITE(6,120) GA,B,A

CA=1.0/(A*(1.0-B))

CE=EXP(CA)

EPS=1.0E-3

EPSI=1.0E-8
N=20

ITER=50

CC TRIAL VALUE OF XPHI

XL=1.0

CC

CC FIND INTERVAL WITHIN WHICH ROOT LIES
XPHI=XL

CALL GENEFUN(GA,YA)

FL=YA
IF(ABS(FL).LE.EPSI) GO TO 50

DO 60 I=1,N
XR=XL+5.0

XPHI=XR
CALL GENEFUN(GA,YB)
FR=YB
IF(ABS(FR).LE.EPSI) GO TO 20
IF(FL*FR.LT.0.0) GO TO 30

XL=XR

FL=FR

60 CONTINUE
WRITE(6,150)XL

STOP

30 WRITE(6,160)XL,XR,FL,FR

CC

CC INTERVAL HALVING SEARCH METHOD

DO 90 J=1,ITER

XHALF=(XL+XR)/2.0

XPHI=XHALF

CALL GENEFUN(GA,YH)
FHALF=YH



CC
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IF(ABS(FHALF).LE.EPS) GO TO 10
IF(FHALF*FL.GT.0.0) GO TO 80
XR=XHALF

FR=FHALF

GO TO 90

80 XL=XHALF
FL=FHALF

90 CONTINUE

WRITE(6,170)ITER
STOP

50 XHALF=XPHI

FHALF=FL

GO TO 10

20 XHALF=XPHI
FHALF=FR

10 WRITE(6,180)XHALF,FHALF

Y=GA/6.0*(XH*6.0/GA-XJ*XH-XK*XH-XLL*XI
1 +XM*XI)/(XH**2+XI**2)

WRITE(6,190)Y

STOP

120 FORMAT(// * GIVEN DATA*///* GA = *,F10.2,

1 * B = *,F10.4,* A = *,F10.4

2 //* CALCULATED RESULT*//)

150 FORMAT(//* NO INTERVAL CAN BE FOUND UP TO NEAR XL =*,
1 F10.6)

160 FORMAT(//* THE INTERVAL FOR XPHI IS BETWEEN XL =*,
1 F10.6,5X,*TO XR =*,F10.6,5X//* FL = *,E14.4

2 ,5X,*FR = *,E14.4)
170 FORMAT(//* NO VALUE OF XPHI CAN BE FOUND FOR GIVEN *,

1 *ITERATION ITER =*,I6)

180 FORMAT(//* THE XPHI VALUE=*,F10.4,5X,* THE IMAGINARY*,
1 * VALUE = *,E14.4)

190 FORMAT(//* THE ACTUAL VALUE=*,F12.4)

END

CC

CC

FUNCTION FINF(F,RC)

CC SUBPROGRAM FOR NUMERICAL INTEGRATION OF F FROM LOWER
CC BOUND RC TO INFINITE
CC DCADRE: IMSL SUBROUTINE

EXTERNAL F

AINF=RC

CC THIS VALUE IS SET ARBITARY AND SHOULD
CC ADJUST IF NECESSARY

BINF=10.

CC

RERR=1.0E-4
AERR=0.

C=DCADRE(F,AINF,BINF.AERR,RERR,ERROR,IER)
IF(IER.NE.O.AND.IER.NE.65.AND.IER.NE.66) GO TO 30

DO 20 1=1,90

AINF=BINF

BINF=AINF+2.0



D=DCADRE(F,AINF,BINF,AERR,RERR,ERROR,IER)
IF(IER.NE.O.AND.IER.NE.65.AND.IER.NE.66) GO TO 30

ER=ABS(D/C)
IF(ER.LT.0.0005) GO TO 60

C=C+0

20 CONTINUE

WRITE(6,180)BINF
STOP

60 FINF=C
RETURN

30 WRITE(6,150)IER
STOP

CC

150 FORMAT(//* IER =*,I5,* THE INTEGRATION FAILS*)
180 FORMAT(//* UPPER LIMIT =*,F10.6,* IS STILL NOT BIG *

1 ,*ENOUGH*)

END

CC

CC

CC

CC

CC

CC

CC

SUBROUTINE GENEFUN(GA,YI)

EXTERNAL F1,F2,F3,F4,F5

COMMON A,XPHI,B,CE,CA

COMMON/C1/XH,XI,XJ,XK,XLL,XM

XH=FINF(F1,0.0)*CE
XI=FINF(F2,0.0)*CE
XJ=-FINF(F3.0.0)*CE/2.0/XPHI
XK=-XJ-XI/XPHI
XLL=-FINF(F4,0.0)*CE/XPHI
XMP=FINF(F5,0.0)*CE

XM=(XMP-XH)/XPHI
YI= XLL*XH-XM*XH+6.0*XI/GA-XJ*XI-XOXI
RETURN

END

FUNCTION F1(X)
COMMON A,XPHI,B,CE,CA
P=1.0+A*X

RY=P**(-B)*CA

RYY=RY*P

F1=RY/CA*EXP(-RYY)*COS(XPHI*(RYY-CA))
1 *X**3

RETURN

END

FUNCTION F2(X)

COMMON A,XPHI,B,CE,CA

P=1.0+A*X
RY=P**(-B)*CA

RYY=RY*P

F2=RY/CA*EXP(-RYY)*SIN(XPHI*(RYY-CA))
1 *X**3
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RETURN
END

CC

CC
FUNCTION F3(X)

COMMON A,XPHI,B,CE,CA
P=1.0+A*X

RY=P**(-B)*CA
RYY=RY*P

F3=RY/CA*EXP(-RYY)*SIN(2.0*XPHI*
1 (RYY-CA))*X**3

RETURN

END

CC

CC

FUNCTION F4(X)

COMMON A,XPHI,B,CE,CA
P=1.0+A*X

RY=P**(-11)*CA

RYY=RY*P

F4=RY/CA*EXP(-RYY)*(SIN(XPHI*(RYY-CA)))

1 **2*X**3

RETURN

END

CC

CC

FUNCTION F5(X)

COMMON A,XPHI,B,CE,CA

P=1.0+A*X
RY=P**(-8)*CA

RYY=RY*P

F5=RY/CA*EXP(-RYY)*(COS(XPHI*(RYY-CA)))

1 **2*X**3

RETURN

END

-END OF FILE-
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LIST OF SYMBOLS

A - State space matrix

a - Constant in growth rate

a' - a G
0
*0*

B - Nucleation rate (no/cm
3

sec)

B - Matrix defined by Eq. (2 -lib) or Eq. (2-14b)

b
c

- Nucleation Sensitivity rate (-)

bl - (bc a) /E* (-)

b
n 1-10*/B*

3B
(-)

0

(ps-c*) 3B

B* 9c
b

C - Concentration (gm/cm
3

)

C. - Inlet concentration (gm/em
3
)

C
m

- Critical concentration in Mier nucleation model (gm/cm
3
)

C
s

- Saturation concentration (gm/cm
3
)

c - Friction constant (Chapter 6 only)

D - Matrix defined by Eq. (2-11c) or Eq. (2-14c)
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Dp Particle diameter (Chapter 6 only)

E, El, E2 - Electrical voltage (volt)

F(t) - Forcing function (Chapter 6 only)

F T/T* (-)

F' -(ST/T* (-)

f - Population density (no/cm
3
cm)

G - Growth rate (cm/sec)

G
o

- Growth rate concentration dependent function (cm/sec)

g - (Cs - C*)/G *0 9c

- Growth Sensitivity rate (-)
gc

3G0

gl gc/E* (-)

g
c

ag

g
s

- Defined by Eq. (5-7)

H Defined by Eq. (5-7)

h - ci/ci* (-)

h' - 6C.1 /C.1 * (-)

i,i' - Conversion factor
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k - Spring constant (Chapter 6 only)

k - Geometric shape factor (1/no)

k - Growth rate constant
g

kb Nucleation rate constant

L - (p
S
-C

S I
)/(C.*-C

S
) (-)

1 - constant

M - Mass of cylinder (Chapter 6 only)

M - (C* - C
s
)/(C.* C

s
) (-)

m - constant

m - mass of particle (Chapter 6 only)

N - Number of particles

n - Interger number (-)

n' Constant in Mier nucleation model (-)

P - l/a (L-M)(1-ku3*)(1-Cs/Ci*) (-)

P - Defined by Eq. (6-2b)

Q
gig*

Q
0

q
0
/q

0
* (-)
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q

qi

q 0

- Throughput volumetric flow rate (cm
3
/sec)

(5q/q* (-)

- Fines recirculation rate (cm
3
/sec)

',go/go* (-)

R(r) Growth rate size dependent function (-)

R - Reference radius (Chapter 6 only)

- Characteristic size of crystal (cm)

r' - r/G
o
*e* (-)

r
c

- Critical size (cm)

rc I - Dimensionless critical size (-)

r
o

- A critical size for fines destruction (cm)

St - Stokes' number (-)

s - Laplace transformation variable

t - Time (sec)

t' - Reduced time = t /0* (-)

t, - t u./R (Chapter 6 only)

- Velocity of patticle (cm/sec) (Chapter 6 only)
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U - Control variable vector

U ul u2 - Velocity component of particle in x, y, 1, 2
direction (cm/sec)

um - Velocity component of particles in normal direction (cm/sec)

u
T

Velocity component of particles in tangential direction
(cm/sec)

- Reference velocity (cm/sec)

- Volume of crystallizer (cm
3
)

- Input vector

v
x
, v

y
Velocity component of the fluid in x, y direction (cm/sec)

i , v - Dimensionless velocity component of fluid in x, y

direction (cm/sec)

X - State space matrix

x - Dummy variable

x - Displacement (Chapter 6 only)

x' - x/R (Chapter 6 only)

y - Dummy variable

y - Displacement (Chapter 6 only)

Y. - y coordinate of particle at upstream
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Yt - y/R (Chapter 6 only)

Zn Pn /11n* (-)

Zn' -611n/lin* (-)



GREEK LETTERS

a - 6kB* G*3 6*4 (-)

6 - Refers to the pertubation variables of the system

&C.' Defined by Eq. (5-7)

df' - Defined by Eq. (5-7)

511P - Defined by Eq. (5-7)

E - Liquid volumetric fraction in the crystallizer (-)

e - The overall holdup time of the crystallizer (sec)

0
- Retention time of small particles (sec)

A - rogo*/V G*, parameter of the fines trap (7)

- Viscosity (gm/cm sec)

Pm
- Mean

n

P
s

- n-th moment of population density f (no cm
n-3

)

- Density of crystals (gm/cm
3
)

a
2

- -Variance

95 Parameter

- Crystal-solute resource function (gm/cm
3
)
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SUPERSCRIPT

* - Refer to the steady state value

q, - Refer to Laplace transformation

AFFIX

(S - Denote pertubation from the steady state value


