AN ABSTRACT OF THE THESIS OF

MEESAJJEE CHULIT for the MASTER OF SCIENCE
(Name of student) (Degree)
in Electrical and
Electronics Engineering presented on Dec /12,1972
(Major) (Date)

Title: THE EVALUATION OF DATA FILES ACCESS METHODS

FOR AN ON-LINE INFORMATION SYSTEM

Redacted for Privacy

) V Lo'uisVN. Stone

Abstract approved:

It is necessary to ex}aluate and compare the characteristics of
various methods of accessing data-files in order to utilize economic-
ally both the hardware and the software (Space and Time) supported
by the digital on-line system. The purpose of this paper is to
describe and evaluate the structure and use of four conventional
methods of file organization: Sequential File, Indexed Sequential
File, Partitioned File, and Direct File,

Special attention is given to the Direct File, which possesses
the fastest accessing time. Five selected Hash Coding Techniques,
each associated with three methods of handling redundant keys, are
simulated and examined with the use of a selected data model of
1024 random United States names, and the resulting '"average number

of search per record retrieval' are compared with their

corresponding theoretical values. As Hash 1 has offered the best
results, it has been used to evaluate the organization of the Direct
File, and to compare this organization with that of the other files.

The CDC-3300 system hardware parameter, control cycle
time, the internal core storage, and the auxiliary storage parameters
are introduced. From these values and the average number of
searches per record retrieval, an expression of logical record file
size, or loading factor is developed. The file size, or loading
factor varies for different methods of file structure and accessing,
(based upon the selected testing program). The system character-
istics consisting of the average throughput per record retrieval,
achievable-throughput-rate capability and user operating cost per
call (unit cost) are evaluated and compared. The file system uses
the full name of the record and a fixed length numerical key.

Two common internal searches, Linear search and Binary
search, are evaluated and compared as the preliminary work of this

investigation, as shown in Appendix B.

The Evaluation of Data File Access Methods
For an On-Line Information System

by

Chulit Meesajjee

A THESIS
submitted to

Oregon State University

in partial fulfillment of
the requirements for the
degree of

Master of Science

June 1973

APPROVED:

Redacted for Privacy

Prof or of Electricdl arl Electronics Engineering
in charge of major

Redacted for Privacy

Head of Department of Electrical and Electronics
Engineering

Redacted for Privacy

Dean of Graduate School

Date thesis is presented Dec /2, /972

Typed by Ilene Anderton for Meesajjee Chulit

ACKNOWLEDGEMENTS

The writer desires to express his most sincere appreciation
and thanks to Professor Louis N. Stone for his encouragement and
advice through the course of this study and for his help in the prepar-
ation and writing of this thesis.

Thanks go to the staff of the Operating System and to the
Control Data Corporation representatives at Oregon State University
Computer Center for supplying the source of information for this
work,

Thanks are also due to Mrs. Blanche B. Stroup for reading
and checking the format of this thesis.

The writer is grateful to the Royal Thai Air Force Committee

and to his parents for their approval and support of this study.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1

II. METHODS OF DATA FILE ORGANIZATION

FOR ON-LINE SYSTEM 3
Data Division 3
Methods of File Organization 7

Sequential Organization 7
Indexed Sequential Organization 10
Partitioned Organization 11
Direct (Random) Organization 12
III. SEQUENTIAL FILE STRUCTURE AND USE 16
Sequential File Structure 16
Sequential File Maintenance 16
The Algorithm of Unsorted File Maintenance 17
The Algorithm of Strictly Sequential File
Maintenance 19
Sequential Disk File Use for On- Line System 23
Description of Records in File 23
Space Storage Requirements 24
Methods of Using Sequential Disk File 24
Sequential Disk File Maintenance 26
Uses of Sequential File for On-Line System 26
Evaluation of Accessing Characteristics
of Sequential Disk File 27
The Purpose of the Evaluation 28
Results of Sequential Disk File Accessing
Characteristics 31

Iv. INDEXED SEQUENTIAL FILE STRUCTURE AND USE 33

Indexed Sequential File Structure 33
On-Line Indexed Sequential File Supported by
Disk Memory 33
The Use of the On-Line Indexed Sequential Disk File 40
Adding a New Record to the File 40

Up-Dating or Deleting the Record from the File 49
File Reorganization Criteria 52

Chapter

Handling Deletions in the Indexed Sequential
File

Variable- Length Records

Evaluation of Accessing Characteristics of the
Indexed Sequential Disk File

The Purpose of the Evaluation

Simulating Block Diagram Model

Results of the Evaluation of Indexed Sequential
Disk File

V. PARTITIONED FILE STRUCTURE AND USE
Partitioned File Structure
User's Argument Key Name
Directory Decoding Techniques
Directory and Main File Organization
Use of the Partitioned File
Adding a New Record to the File
Updating and Deleting the Record from the File
Insert Mechanism
Delete Mechanism
Use of the Partition File with Tree With Fixed
Lingth Key
Use of the Partitioned File with a Three
Dimension Tree Directory
On-Line Partitioned Disk File
Use of On-Line Partitioned Disk File
Adding the New Records to the File
Updating or Deleting a Record From the File
Adding a Member Name to the Directory
Deleting a Member Name From the Directory
Evaluation of Accessing Characteristics of the
Partitioned Disk File
Purpose of the Evaluation

52
54

55
57
57

57

60
60
61
61
63
64
65
66
70
72

75

76
76
85
86
88
88
90

91
92

Results of the Evaluation of the Partitioned Disk File 96

VI, DIRECT FILE STRUCTURE AND USE
Direct File Structure
General Description
Addressing
Mapping Function
Hash Code Redundant Handling

97
97
97
97
98
100

Chapter

Direct File Maintenance
Direct Disk File for On-Line System
Direct File Organization Supported by Disk
Addressing
Randomizing Techniques Used for Disk
Description of a Direct Disk File
On-Line Direct File Maintenance
Evaluation of Accessing Characteristics of the
Direct Disk File
Purpose of the Evaluation
Results of the Evaluation of the Direct Disk File

VII. RESULTS AND CONCLUSIONS

Summary of Investigation and Evaluation

Results of the Investigation
File Operating Cost per Call (Unit Cost)
Terminal Device Cost for 250 Calls Per Hour
Terminal Device Cost for 1000 Calls Per Hour
Terminal Device Cost for 2000 Calls Per Hour

Conclusions and Recommendations

BIBLIOGRAPHY
APPENDIX A
APPENDIX B
APPENDIX C

APPENDIX D

107
118
118
120
126
127
129

131
133
136

137
137
141
162
165
166
166
176

181
184
199
341

369

Figure

LIST OF FIGURES

Machine-oriented data division hierarchy:
Track, block,

Application-oriented data division hierarchy:
File, record, field and character,

Reel-file, Disk module interaction,
Block-record interaction,

Word-field interaction,

Accessing a record from sequential file.
Indexed sequential record accessing.
Accessing partitioned records,

Creation and accessing records with direct
organization file,

Disk pack, Read-write heads and Cylinder
Concept of data recording.

Illustration of Sequential File Structure,

Addition of a new record to an unsorted file.

Deletion of the record key name ''S'" from the file.
Addition of new records to strictly sequential file.

Delection and repacking of strictly sequential file.

A binary search of an eight-cylinder file, multi-
cylinder file.

Page

11

12

14

15
16
18
19
21

22

25

Figure

Graphical representation of User queue for
CDC-3300.

Block diagram showing the simulating of accessing
a record from Disk Sequential File.

Structure of the Indexed Sequential File,
Illustration of Cylinder Overflow Area.
Illustration of Independent Overflow Area.

An Indexed Sequential Disk File with no additions.

An Indexed Sequential Disk File after the first addi-
tion to a prime track.

An Indexed Sequential Disk File after subsequent
additions to a track.

An Indexed Sequential Disk File after deletions
of the desired records from File.

Block diagram showing the simulation of accessing

a random record from Indexed Sequential Disk File.

Structure of Partitioned File,
Key Directory decoding pattern.

Partitioned file using randomizing as directory
decoding technique.

Comparison of ordered table and ordered tree.
Tree structure (balanced tree).
Flow chart of tree search,

Delection of node AIRL, the ROOT of the tree.

28

30
34
38
39

43

44

45

46

58
60

63

65
69
69
71

73

Figure

5.8

5.9

Delection of BABC, the INTERNAL node of the
Tree.

Deletion of node vBABB, the leaf of the Tree.
Tree structure of Variable-Length Key names.
Example of Directory in Partitioned File,
Partitioned file without additions.

Partitioned File after deletion of records "SOLA'"
and ""SMIT",

Partitioned File after addition of records "EGGY"
and "MOOR",

Mapping of Partitioned File on Disk Memory, using
Directory and variable length inverted list.

Block diagram showing the simulation of accessing
a random record from the single level Directory
Partitioned Disk File.

Block diagram showing the simulation of accessing
of a random record from double level directory
Partitioned Disk File,

Graphical representation of direct file organization.

Addition of the new items into the file with Linear
probing.

Deletion of the items which are not secondary
records from the file with Linear probing.

Deletion of the items which are secondary records
from the file with linear probing.

Addition of records to the file with Random probing.

74

74

78

80

81

82

83

84

93

95

98

109

110

110

113

Figure Page

6,6 Deletion of records in the file with Random probing. 114
6.7 Addition of items in the file with direct chain probing, 116

6.8 Addition of secondary record, the head of the chain
when the calculated address of the new coming item

is occupied, 117
6.9 Deletion of the items which are first record and
secondary record, not the head of the chain, 117

6.10 Deletion of the item which is the secondary record,
the head of the chain. 118

6.11 Address pattern on Disk memory. 121

6.12 Disk storage drive address format, based on D854,
disk memory. 122

6.13 Redundants and overflows in disk memory. 125

6.14 Block diagram showing the simulation of accessing

of a random record from Direct Disk File. 134
7.1 Schematics diagram of investigation and evaluation

of on-line data file systems. 142
7.2 Investigation and evaluation of characteristics of

on-line data file system., 143
7.3 Throughput time per record retrieval, 144
7.4 Average throughput time per record retrieval as the

function of file loading factors for each typical file,
code numbers 1 to 3, using full name of records in
accessing. 147

7.5 Average throughput time as the function of file load-
ing factors for each typical file organization method
using the full name of records in accessing. 148

Figure

7.6

7.9

Average throughput time per record retrieval as the
function of loading factors for each typical file code
numbers 1 to 3 using unique fixed-length key in
accessing.

Average throughput time as the function of file load-
ing factors for each typical file organization method,
code numbers 3 to 8, using unique-fixed-length key
in accessing.

Achievable throughput-rate capability as the function
of file loading factors for each typical file, code
numbers 1 to 5, using full name of records in
accessing,

Achievable throughput-rate capability of file loading
factors for each typical file organization method, code
numbers 4 to 8, using full name of records in
accessing.

Achievable throughput-rate capacity as the function of
file loading factors for each typical file, code numbers
1 to 3, using unique fixed-length key in accessing,

Achievable throughput-rate capacity of file loading
factors for each typical file organization method,
code numbers 4 to 8, using fixed-length key in
accessing,

On-line data file system configurations for handling
250, 1000, and 2000 calls per hour,

Customer operating cost per call (unit cost) as the
function of file loading factors, for each typical file,
code numbers 1 to 8, using full name of record in
accessing.

Customer operating cost per call as the function of
file loading factors, for a typical file, code numbers
1 to 8, using full name of record in accessing.

150

151

153

154

156

157

168

169

170

Figure

7.15

7.16

Page
Customer operating cost per call as the function of
file loading factors, for each type of file, code
numbers 1 to 8, using record's full name in access-
ing. ‘ 171

Customer operating cost per call (unit cost) as the

function of file loading factors for the outstanding files,

code numbers 3, 5 and 8 using full name of records

in accessing. 172

Table

LIST OF TABLES

Illustration of full name of record and unique fixed-
length key of record,

Example of Variable length key
name,

Data results of computation of average throughput
time per record retrieval as the function of file
loading factors, for each typical file organization
method, using the full name of records in accessing.

Data results of computation of average throughput
time per record retrieval as the function of file
loading factors for each typical file organization
method using unique fixed-length key in accessing.

Data results of computation of achievable throughput-
rate capability as the function of file loading factors
for each typical file organization method using the
record's full name in accessing,

Data results of computation of achievable throughput-
rate capability as the function of file loading factors
of each typical file organization method, using
unique fixed-length key in accessing.

Approximate formulas of average throughput time
and achievable throughput-rate capability for each
typical file,

Data computation of customer operating cost per
call (unit cost) as the function of file loading factors
of each typical file organization method of specific
selected rates of use, using full name of records

in accessing.

68

77

146

149

152

155

158

173

LIST OF APPENDIX TABLES

Appendix Table

Al Directory File.

A.2 Results of average search time, linear and binary
search per record vs. file size.

A.3 Core storage space required for internal linear and
binary search,

B.1 Results of computation of an accessing time per
random record retrieval as the function of file size
for unsorted sequential disk file.

B.2 Results of computation of average throughput time
per random record retrieval and CPU billing time
per record accessing with file system using both
unique fixed-length key and full name of records in
accessing.

B.3 Results of computation of storage space required as
the function of file size of unsorted sequential file
with both fixed length key and record full name,

B.4 Results of computation of customer operating cost
per call (unit cost) as the function of file loading
factor of unsorted sequential file with using the full
name of record in accessing.

B.5 Results of computation of an accessing time per
random record retrieval from strickly sequential
disk file,

B.6 Results of computation of average throughput time

per random record retrieval and CPU busy time per
record accessing with the file system using both
unique fixed-length key and full name of records

in accessing.

193

198

231

232

233

234

241

242

Appendix Table

B.9

Results of computation of required storage space

as the function of file size in strickly sequential disk
file with using both fixed-length key and full name

of record in accessing.

Results of computation of customer operating cost
per call (unit cost) as the function of file loading
factor of strickly sequential disk file using the full
name of record in accessing.

Result of computation of average search time per
random access of the entry from cylinder index and
track index of indexed sequential disk file.

Data results of computation of average search time
per random record retrieval with 10% using cylinder
overflow track and average disk access time per
record retrieval from the indexed sequential disk file,

Data results of computation of average throughput
time per random record retrieval and CPU busy time
per record access of indexed sequential file using
both full name of records and unique fixed-length key
in accessing.

Results of computation of storage space required as
the function of file size of indexed sequential disk file,
using both full name of record and unique fixed-length
key in accessing.

Results of computation of customer operating cost per
call (unit cost) as the function of file loading factor of
the indexed sequential file, using the full name of
record in accessing.

Data results of computation of disk average access
time per record retrieval as a function of file sizes
of a single level directory partitioned disk file.

243

244

261

262

263

264

265

279

Appendix Table

Data results of computation of average throughput
time per record retrieval as the function of file
size or loading factors of a single-level directory
partitioned disk file,

Data results of storage space required as the function
of file size of a single level directory of partitioned

disk file.

Results of computation of customer operating cost
per call (unit cost) as the function of file loading
factor of the single level directory partition disk
file using full name of record in accessing.

Data results of computation of disk access time per
record retrieval as a function of file size of a double-
level directory partitioned disk file.

Data results of computation of average throughput
time per record retrieval as the function of file size
or loading factors of a double-level directory
partitioned disk file.

Data results of storage space required as the function
of file size of a double level directory of partitioned
disk file.

Results of computation of customer operating cost per
call (unit cost) as the function of file loading factor of
double level directory partitioned disk file using
record's full name in accessing.

Schedules of simulations of a direct file.

Results of computation of expected length of search
as a function of loading factor for five hash function
with linear probing compared with statistical formula.

Results of computation of expected length of search
per record, as a function of loading factor for hash 1,
with four methods of handling redundant records in
the file,

280

281

282

289

290

291

292

300

303

305

Appendix Table

Results of expected length of search per record,
as a function of loading factor for hash 3 with four
methods of handling redundant records in the file.

Results of computation of expected length of search
record, as a function of loading factor for hash 4,
with four methods of handling redundant records in
the file.

Percent of search across the track and percent of
search across the cylinder of disk direct file using
Hash 1 with linear probing, random probing and
direct chain probing.

Data results of computation of disk average access
time per record retrieval as a function of loading
factor of direct disk file using Hash 1 with linear

probing (+ 1).

Data results of computation of CPU busy time and
average throughput time per record retrieval of direct
disk file organization with linear probing using full
name of a record in accessing a random record from
file,

Data results of computation of storage space required
as the function of file size of direct file organization
with linear probing using both record's full name and
fixed-length numerical code for accessing a record
from file.

Results of computation of customer operating cost
(unit cost) as the function of file loading factor of

direct disk file with linear probing (+ 1) using full
name of record in accessing.

Data results of computation of disk average access
time per record retrieval as a function of loading
factor of direct disk file using Hash 1 with random

probing.

307

309

313

329

330

331

332

333

Appendix Table

B. 33

Data results of computation of CPU busy time and
average throughput time per record retrieval of
direct disk file organization with random probing
using full name of a record in accessing a random
record from file.

Data results of computation of storage space required
as the function of file size of direct file organization
with random probing using both record's full name
and fixed-length numerical code in accessing.

Result of computation of customer operating cost
(unit cost) as the function of file loading factor of
direct disk file with random probing using full
name of record in accessing.

Results of computation disk average access time per
record retrieval as a function of loading factor of
direct disk file using Hash 1 with direct chain

probing.

Data results of computation of CPU busy time and
average throughput time per record retrieval of
direct disk file organization with direct chain probing
using full name of a record in accessing a random
record from disk file.

Data results of computation of storage space required
as the function of file size of direct file organization
with direct chaining using both record's full name and
fixed-length numerical code for accessing a record
from the file.

Result of computation of customer operating cost
(unit cost) as the function of file loading factor of
direct disk file with direct chain probing using full
name of record in accessing.

334

335

336

337

338

339

340

LIST OF APPENDIX FIGURES

Appendix Figure Page
Al Average number of tests per record searchas a

function of number of the items in the array. 194
A, 2 Average search time per record retrieval both

linear and binary search as a function of items in the

file, 195
B.1 System block diagram of the simulator, 201
B.2 Conventional record formats, 202

B.3 A logical record format and disk 854, sector format. 203

B. 4 Storage space required for test program as a function
of file size. 204
B.5 Random access of a record in a sequential disk file

in (a) is equivalent to average access of a record in
(b). Average looking-up records in the file: average

cylinders, average tracks have to be considered. 228
B.6 Time diagram for accessing a record from sequential

disk file, 229
B.7 Time diagram for random accessing a record in a

one-cylinder sequential disk file. 230
B.8 Random access of a record from strickly sequential

file in (a) is equivalent to search of a desired record

in (b). 245
B.9 Actual time path search and effective path search. 252

B.10 Random access of a record from indexed sequential
disk file in (a) is equivalent to accessing an average
of a record in (b); Average of records, in cylinder
index, in track index, and in desired track are to be
considered in computation. 259

Appendix Figure

B.11

Time diagram for random accessing the record from
indexed sequential file on disk.

Interaction of actual disk file and imaginary disk file.

Relationship of NAPT and NALS'

Random access of a record from single level directory
partitioned disk file in (a) is equivalent to making an
average access of a record in (b).

Random access of a record from double level
partitioned disk file in (a) is equivalent to accessing
an average record in the file as in (b).

Time diagram for random accessing the record from
partitioned file, on disk.

Hash 3 performed hash address.
Hash 5 performing hash address.

Illustration of conversion of Hash address to Disk
address.

Expected length of search per record, as a function
of the loading factor for 6 selected Hash functions with
-1 displacement of records in the file.

Expected length of search per record, as a function
of the loading factor for Hash 1 (Hl) mapping function
with 4 methods of handling redundant records in the
file.

Expected length of search per record, as a function
of loading factor for Hash 3, mapping function with
4 methods of handling redundant records in the file,

Expected length of search per record, as a function
of the loading factor for Hash 4, with 4 methods of
handling redundant records in the file.

260

266

267

277

278

293
296

297

301

302

304

306

308

Appendix Figure Page

Illustration of search across the track and search

across the cylinder of direct disk file using Hash 1,

with linear probing, random probing and direct

chain probing. 312

Percentage of searches across the track and percent-

age of searches across the cylinder as a function of

loading factor,a, for disk direct file using Hash 1, with
linear probe, random probe and direct chain probe. 314

THE EVALUATION OF DATA FILE ACCESS METHODS
FOR AN ON-LINE INFORMATION SYSTEM

1. INTRODUCTION

It is apparent that time and space play a main role in computing
system efficiency, so that the concepts of utilizing mass storage
economically, and the reduction of processing time are the engineer-
ing goals for digital computers used in modern information processing
systems. To achieve these ends the development of a computing
system should be accomplished by more effective utilization of the
hardware or the software, or both.

Basically the computer system software development (the
problem of data organization within the constraints of information
retrieval, and the organization of files) is usually much more con-
venient than computer system hardware development. This is
especially true in the case of existing computing system hardware.

In a large capacity storage computing system, the concept of virtual
memory and paging is frequently utilized for economical implementa-
tion. In this type of computing system the storage is separated into
two distinct levels. The first level consists of expensive, fast-access
core storage which comprises the main core memory. The second
level is the auxiliary memory (disk, drum, or magnetic tape) which

is much less costly than the main core memory. To make the system

2
economical and practical, the auxiliary memory is used for the major-
ity or bulk storage, with inexpensive but longer access time. The
efficiency of the operation of the system therefore depends upon two

major aspects:

1. The organization of information within the two storage
levels.
2. The manner in which information is transferred between

the two levels.

By consideration of these two factors the efficiency of a com-
puting system may be improved (or optimized).

On the aspect of information organization, file organization
techniques have been given attention periodically over the years,
both from persons interested in information retrieval and from those
interested in file-oriented computer applications in business, engi-
neering, science, and government works.

For these reasons, it is essential to evaluate and compare

the characteristics of various file organization methods and their

use.

II. METHODS OF DATA FILE ORGANIZATION
FOR ON-LINE SYSTEM

The development of a larger and faster computer with efficient
1/0 terminals has made it possible to store and retrieve selected
information for the supporting storage of the system (disk memory).
The development of information structure and indexing techniques
permits selected data to be arranged in mass storage devices in a
manner amenable to interaction with the users. For the achievement

of this goal, the processing information (data) has to be prearranged

as follows:

Data Division

In Electronic Digital Information System a data division is

classified according to:

Machine oriented data division. This data is partitioned

into a size particularly suitable for manipulation by the

machine:

REEL (tape) or CYLINDER, TRACK (disk)
BLOCK > WORD > BIT

See illustration in Figure 2. 1.

block

1 T [|

character

Nmt (Oor 1)

Figure 2.1. Machine-oriented data division hierarchy: Track, block.

2. Application oriented data division: This breaks the data

into a size convenient for human manipulation associated
with the application under consideration:
FILE > logical record or RECORD > FIELD >

CHARACTER. See Figure 2. 2.

~ Record - Field ~ Character
Record/ Field/ Character
) Record Field Character
File .
2 < .
“~ Record ~Field \- Character

Figure 2.2. Application-oriented data division hierachy: File,
record, field and character,

It is necessary to emphasize the interrelation between machine-

oriented and application-oriented data divisions.

Disk-module-File: The three relationships which may

exist between a Disk-module and a File are illustrated

in Figure 2. 3.

several files one file one file

"
Q Q Q Q Q magnetic tape file

Multireel file
multifile reel one file unifile reel

disk file

Multifile disk Multidisk module file Unifile disk
module module

Figure 2.3. Reel-file, Disk module interaction.

1) A Multifile-Disk Module is a disk-module containing

several files. It is the same as a multifile reel when

files are supported by magnetic tape.

2) A Multi-Disk Module File is a large single file sup-

ported by several disk-modules, It is the same as a

multireel-file,

3) A Unifile-Disk Module is a disk-module holding exactly

one file. It is also the same as a unifile reel.

Block-Record: The three relationships which may exist

between a Block and a Record are illustrated in Figure 2. 4.

1) A Multirecord Block. When records are very small

compared to block-size, it is economical to keep
several records in a block.

2) A Multiblock Record. A record which contains a very

large amount of imformation may require several
blocks.

3) A Unirecord Block: A single record fitting exactly

into a single block is called a "unirecord block'' or

a "uniblock'',

M? Block
==

Multirecord block

Block

a record

%

Z

> Record #1

W\

%

e

J
I Record #2

Multiblock record].

Unirecord block

Block

" Figure 2.4. Block-record interaction.

Word-Field: The three relationships which may exist
between a word (computer word) and a FIELD. See the
illustration in Figure 2. 5.

1) A Multifield Word., Several small fields are fit into

one word,

2) A Multiword Field. A field occupies several words.

3) A Unifield Word. A word fits exactly into one field,

2= o

Age Status } ~s— Multifield word

Social Security no. } ==— Unifield word

Figure 2.5 Word-field interaction.

Methods of File Organization

There are four conventional methods of file organization for
direct access devices, to be used with disks for on-line computing
systems. These are described briefly in this chapter and discussed

fully in Chapter III through VI.

Sequential Organization

In a sequential file, the data records are organized in sequence

according to their successive physical locations in the file. There
are two types of organization of the records in Sequential File.

(1) In the first case the logical records are kept sequentially
in the file, but not in a sequence according to their key; this type of
file is called an "unsorted file''. For example, the records of the
magnetic tape transaction file are not in any key sequence. (2) In
the second case the logical records are kept in a key sequence in
the file; this type of file is called ''strictly sequential file'' or ""sorted
file''. An example is the magnetic tape master file. The records in
the file are kept in a sequence according to their key. For the con-
version of an unsorted file into a strickly sequential file, a sorting
operation is used. Usually the sorting operation is performed off-
line. The records of the strictly sequential file are organized in
a sequence according to their key so that the file can use either
linear search or binary search to access an individual record from
the file. Binary search provides fast accessing of a record from
the strickly sequential file as the file size is increased, while
unsorted file can make use of only linear search, and performs
slowly in accessing an individual record from the file as the file
size is increased.

Within a strictly sequential file, the records are usually read
or updated in the same order in which they appear, and cannot be

deleted or added to unless the entire file is rewritten. This type of

9
file organization is commonly used when most records are processed
each time the file is used, such as for a payroll., For unsorted file,
the records are read or updated sequentially according to their
successive physical locations, and cannot be deleted without repack-
ing, but provides the simple addition to the first empty space in the
file. Seethe illustration of unsorted file and strictly sequential file

in Figure 2. 6.

Search argument

Hill

Search path

[1 [i] i

Smith data John data |Moore | data Hill data]8

(a) Accessing a record from unsorted file by linear search

Search argument

| Moore
Search path

| | |

Hill data John data |Moore | data Smith | data 2 z

(b) Accessing a record from strictly sequential file by linear search.

Search argument

Smith 7‘
- Search path
-
-
-~
-
&
’ ~ vd
, N
Hill [data | John | data |Jones | data |Moore| data |Smith| data j

(a) Accessing a record from strictly sequential file by binary search

Figure 2. 6. Accessing a record from sequential file.

10
The details of sequential file organization are covered in

Chapter III and sample calculation Example Ia and Ib in Appendix B.

Indexed Sequential Organization

An indexed sequential organized file is a strictly sequential
file associated with a reference index as its directory. The addition
of an index to the file system provides rapid access to individual
records in both sequential and random processing. For example,
an indexed sequential file is supported by Direct Access Storage

Device (DASD),Disk, and it may have a cylinder index stored on

cylinder zero, which contains the address of the highest key of the
record on any cylinder. This index will point to the correct cylinder.
When the access arm reaches the desired cylinder, it will search a
track index to determine on which track in that cylinder the desired
record is located (see Figure 2.2). Separating the areas of the file
permits the user to add a new record or delete the desired record

to the file without rewriting the entire file, as is necessary in the
sequential file, Although the added records may not be physically

in key sequence, the indexes automatically organize them in key
sequence. In this type of organization, the programming system
has control over the location of each record. The user needs to only
supply the key name of the desired record. The operating system

takes care of all searching of the indexes, link field and either

11
presents the specified record to the user or notifies that it cannot

be found. See more details in Chapter III and Example 2, Appendix

B.

search argument key

Cyl = cylinder number

CBA
TR = track number
AAA|CylO BBB Cyl1l CCC} Cyl2 DDD ZZZ ICyl 199
Cylinder index
CAA| TRO CAB TR 1 CAC | TR2 CBB | TR 3 TR 8 TR 9

Track index for cylinder 2

Figure 2.7. Indexed sequential record accessing.

Partitioned Organization

In partitioned organization, the file is divided into several
parts or "members', within each of these members, the data
records are organized in strictly sequential file fashion. A 'direc-
tory'' is used with this type of file organization and is of the same
nature as the index used with the Indexed Sequential File. This is
done to provide fast accessing of the random record from the file,
The directory contains the names and addresses of the members
within the file, which are arranged in alphabetical sequence. Mem-

bers may be added or deleted as required. In accessing an

12
individual record from the file, the user has to supply the name of
the file he wishes to process (name of the desired member) and the
directory is searched for ""equal''. The address of the corresponding
name is used as the pointer, and the access arm can be positioned
directly to this location (in case a disk memory is used). In some
cases this partioned organization file may be used with a multilevel
directory. Partitioned organization is used mainly for the storage
of sequential data, such as sub-routines, table, data items for ware-

house. See details in.Chapter IV and Example 3, Appendix II.

name supplied

spark plug

Directory contains member-name]_"

-

piston address radiator address spark plug address

1

Data set "spark
Jlgs"

Figure 2.8. Accessing partitioned records.

Direct (Random) Organization

The Direct (Random) Organization file permits the user to add

a new record, to delete a desired record, or to access the individual

13
record directly from the file, by using a single step, directory
decoding technique (randomizing or Hash coding technique). The
record-name is converted into a unique address, to which the
device, may position itself and find the desired record. The pro-
grammer establishes the relationship between the record-name and
its address on the supporting devices. In this organization method,
the records stored in the storage devices are not in any key sequence.
They may be distributed all over the supporting area depending on
the nature of '""mapping function' (Hash function). The major advan-
tage of this type of organization file is that it provides very fast
accessing of the individual record. It is possible to locate any
record in the file with one seek and one read, in case it is disk file,
which satisfies the features of the on-line information system. The
disadvantage is that it is not economical to implement this method of
organization when the file loading factor is too small. Although the
programming system provides the routines to read or write a file
of this type, the user still has great responsibility for the program-
ming required to locate the desired records, because the user him-
self establishes the relationship between the record-name and its

address on the storage device. See details in Chapter VI and Exam-

ple 4, Appendix B.

Smith

John

Moore

Ruth

Hill

Foster

record names
TR = Track on disk surface

Hash coding task,
convert record name into
a corresponding
address

=
data
S\kTRO

Moore data Ruth
Hill
data
\ \ Foster data f_
u'%Smit.h data
John data \
R —

TR 1

TR 2

TR 3

TR 4

storage supporting devices, disk memory

Figure 2.9. Creation and accessing records with direct organization file,

v1

15

OO;-‘—— Tracks Smmel 99 Sector 11:16
d| ectors per
‘&,‘o — - g- -—9— surface
o
« - Track

[T

'///II/////////////////II/I////II/A ‘

W LA LL Ll s

I IIIIT 117/ /7

A
V/IIII/IIIIIII//III/‘

=

l YLLIIIEI EE I 17
—
Disks
00 Cyl inder
01 cylinder

99 cyli
Comb-type cylinde
Access Assembly "

v L ’
v
1 v !
yl
=
E——18 'y
[YLl YIS /.
T <
B————18 !
l k2 Ll i
| —— s
"_ﬁl__l H
L E '
L
] (] | [
. ,. o 9
! AR - /(L LT L LT

o
I:I b Number of the surface
100 cylinder

. 10 Read~-Write Heads

Five access arms; Access mechanism of cylinder 00.

Figure 2, 10. Disk pack, Read-write heads and Cylinder Concept of data recording.

16

III. SEQUENTIAL FILE STRUCTURE AND USE

Sequential File Structure

The two conventional types of sequential file organization can

be illustrated as follows.

(1) The records in the '""unsorted file' are organized solely
on the basis of the successive physical locations in the
file.

(2) The records in the '"sorted file' or '"'strictly sequential
file'' are organized in the key sequence either numeric-
ally, alphabetically or both.

A ''node'' can represent the item or record in the file, as

shown in Figure 3. 1.

—~@~E-E~- -~

(a) Diagram of the unsorted file,

(b) Diagram of the strictly sequential file (alphabetically).

Figure 3. 1. Illustration of Sequential File Structure.

Sequential File Maintenance

Maintenance of sequential files of the system is done in the

17
same logically straightforward manner that the clerks use to main-
tain their sequential files. The system permits addition, deletion

and alteration algorithms as follows:

The Algorithm of Unsorted File Maintenance

A new record can be added to the unsorted file.

Step 1; A search is made for the first empty space which may

be located between the records in the file in case the
file is "'loose list', or at the end of the file in case
the file is a '"dense list" (9).

Step 2; When the first empty space is found the new record
is added to the file.

Step 3. If an empty space is not found in the file, an overflow
occurs, and an extension area must be introduced.

A record in the file can be deleted, or its data can be updated.

Step 1. A search is made for the desired record in the file.

Step 2. If the desired record is found, then desired record
is deleted or its data is updated.

Step 3. If the search is not satisfied until the end of file mark
is found, the system has to notify the user that the
desired record is not there.

The record in the file whose key name is '"S'" in Figure 3.1 .

1

may need to be deleted or updated.

First empty space at
the end of the file

Search path

(a) Search is made for the first empty space, and a record
whose key name is '""W'' is added into the file in Figure

3.1 (a).

Added record

(b) Graphical representation after record with key name
"W' is added to the file.

First empty space

Search path

(c) Search for first empty space to add a record whose
key name is "W'' to the file.

Added record in the file

(d) Graphical repreéentation after record with key name
"W' is added to the file.

Figure 3.2. Addition of a new record to an unsorted file.

19

The desired record, to
delete or update its data

—_— = P N
@A PO

(a) Graphical representation of unsorted file, after desired
record is found.

(b) Graphical representation of unsorted file after desired
record is deleted. '

Figure 3.3. Deletion of the record key name '"'S" from the file.

After deletion of the record with key name ''S'" is completed,

the file structure is changed from density list to loose list.

The Algorithm of Strictly Sequential File Maintenance

A new record can be added to the strictly sequential file.

Step 1. A search is made for the proper location for the new
added record in the file, based on the key sequence
possessed by the file.

Step 2. If the proper location in the file is found the rest of
the records can be shifted up one position to a higher
address in the file to provide the proper location for
adding a new record to the file. In some cases a

part of the rest of the records including file mark in

Step 3.

20
the file have to move into the new extension area of
the file, and the new extension area is now considered
as a part of the body of the main file.

If the search is not satisfied until the end of the file
mark is found, the system has to notify the user that

an empty space is not available.

A record is deleted from the file or its data are updated.

Step 1.

Step 2.

Step 3.

A search is made for the desired record in the file.
If the search is satisfied, the desired record will be
added or its data updated depending on which is
required,

In case the user needs to delete the desired
record, all information of that record is erased; the
space is blank and all of the records which possess
a higher key than that of the deleted record have to
shift down successively one position, including the
file mark, repacking.

In case the data of the record needs to be up-
dated, then the information is to be read out.

If the search is not satisfied, and the desired record
cannot be found in the file, the program will notify

the user '"no such record in the file'',

21

Proper location for new
added record, "LU"

(a) graphical representation of strictly sequential file after the proper position for the new
added record is found

Start search

- —— e - Y Proper location for new
|) added record "OD" is found
)
|
)
|

\
\

1 \
[P G S ¢

| \ Extension
= == 4- - *
, - ;

(b) graphical representation of strictly sequential file after binary search is applied and the proper
position of new added record is found

Extension area

O-O-O-O-O-O-O-O---0 &

(c) graphical representation of strictly sequential file after new records LU, OD are added.

Figure 3.4. Addition of new records to strictly sequential file.

22

Start search here

Proper location for new added
record "OD" is found

| Extension
' area

(a) graphical representation of binary search for deleted or updated data

Repacking

(b) graphical representation of strictly sequential file after record OD has been deleted

S OHEP BB DDA -

(c) graphical representation of strictly sequential file after the file is repacked.

Figure 3.5. Deletion and repacking of strictly sequential file.

23

Sequential Disk File Use for On-Line System

The characteristics of a disk memory and its cost satisfy the
requirements of the on-line processing system. The analysis of
disk memory has been done by Dr. David Lepvitz (18). Consequently
the disk memory system is used as an on-line supporting storage
device.

In a sequential file supported by Direct Access Storage Devices
(DASD) disk, records are written one after the other, track by track,
cylinder by cylinder at successively higher addresses. The records

are usually in key sequence.

Description of Records in File

Actually records may be fixed or variable length, blocked or
unblocked or undefined. The records may be formatted with or
without keys. In case the file is processed (Processing file) sequenti-
ally, as is normally the case with this method of organization, there
is no need for formatting with keys. If for some reason there is an
appreciable amount of random processing, records should be
formatted with the key so that they can be located more quickly.

In the example in this thesis, commonly formatted records,

fixed-length records, blocked, are considered (see Figure 9. 2,

page

24

Space Storage Requirements

The amount of space disk storage required must be enough to
hold all the records in the file. Although it is permissible to have
the file extended, actually the space requirement is directly propor-

tionate to the number of records in the file,

Methods of Using Sequential Disk File

The sequential file provides the user with two options in
processing.

1. Sequential Processing. The time required is one search
per cylinder and one read per record (or block of records).

2. Random Processing. If a sequential file is processed
randomly, it is, at best, very inefficient. In case it is
used infrequently, the time required to locate the records
may not matter. There are several ways to program
random processing with significant differences in the time
required.

a) One possible way is to read the records sequentially
until the desired one is located, but it is the slowest
method. On the average, half of the file would have
to be read. A sequential search takes less time if the

records are formatted with the key. The search is

25

done only on search Key High or Equal to the speed
of one per track revolution. When the search condi-
tion is satisfied, the corresponding record is read.

b) Another method of processing a sequential file in a
random fashion is first to perform a binary search
of the file in order to determine in which small section
of the file the desired record is located. Then only
that small section need be searched in full. In Figure
3.6 an eight cylinder file formatted with key is

illustrated.

Figure 3.6. A binary search of an eight-cylinder file, multi-
cylinder file.

26
The last record in cylinder 4 is read and compared with the search
argument; then the last record in cylinder 2 or 6 is read and a com-
parison is made again. Then, depending on the result of that compari-
son, the last record in either cylinder 2 or 6 is read and a compari-
son performed again. Then, depending on the result of the
comparison, the last record in either cylinder 1, 3, 5, or 7 is read
and compared with the search argument. This last comparison
indicates in which one of the eight cylinders the desired record is to

be found. Only that cylinder need then be searched in full.

Sequential Disk File Maintenance

The maintenance of sequential file supported by DASD, disk is
straightforward, as shown previously in the graphic illustration.
Additions and deletions require a complete rewrite of a sequential
file. This is desirable from a timing standpoint only in case addi-
tion and deletions can be combined with another job that also

requires reading and updating all the records.

Uses of Sequential File for On- Line System

Sequential file organization is used on direct access storage
devices primarily for tables and intermediate storage rather than
for master files. It can be used as a master file if there is a high

percentage of activity, and if virtually all processing is sequential,

27

Evaluation of Accessing Characteristics
of Sequential Disk File

For some purposes in the comparative study of file organiza-
tion, the characteristics of sequential file accessing have to be
measured.

The strategy of evaluation presents two problems:

1. The systems disc file cannot be independently controlled.

2. Due to the system characteristics, ‘'OS-3 runs under the

influence of this user queue, with resource allocation and
1/ O dependent upon the list structures connected to a
particular ""program status area'' (PSA). At any given
moment, the system is processing a single user whose
PSA is indicated by a pointer., Alteration of the contents
of this pointer occurs at the end of discrete time inter-
vals (16).

According to the problems mentioned the system cannot permit
measurement of the exact total time used in executing the program,

To solve problem 1. Actually the Test File is created in the
disk memory, then it is read into core memory and the simulation
of file processing is performed. But in the simulation of the sequen-
tial file, the test file is created directly in core memory as the

initial stage, and the file simulation is then performed.

28

PSA

PSA

PSA being processed

PSA

Figure 3.7, Graphical representation of User queue for
CDC-3300.

To solve problem 2. ''Compass,' symbolic language is used
for simulation. The total executing time for each program is
obtained by direct computation, that is by adding the relative instruc-
tion time together according to the logical path in the '"compass'
program. This method of obtaining the executing time is also
recommended because the result is more accurate than by directly

measuring executing time.

The Purpose of the Evaluation

The purpose of this evaluation is to measure the following

Sequential File parameters, and to ascertain the characteristics

29
of the system.

1. To measure the internal searching time per record
retrieval with both Linear search and Binary search.

2. To compute the access time when the record is located
on the disk.

3. To measure the space storage requirement.

4. To find the characteristics of average througput time/
record retrieval, achievable throughput rate capability.

5. To find the COST/EFFECTIVENESS characteristics,
(customer operating cost per call).

6. To compare the characteristics with the other methods
of file organization technique.

The philosophy of accessing characteristics of a Sequential

File simulation can be illustrated as in Figure 3. 8.

1. Each logical record in the file is considered to be fixed,
blocked, and associated with a key. See detail in Figure
9.2, page 202.

2. The file is stored on D 854, disk memory, one W/R head
per disk surface by use of cylinder concept, see Figure
2.10, page 15. The records are stored in contigu‘ous
areas, track by track, cylinder by cylinder, not in key
sequence for the unsorted file, and in alphabetical sequence

for the strictly Sequential file.

30

Simulating Block Diagram Model

Disk file
Cylinder
I
CPU
r-— - - -7~ |
: : Cylinder
Guu name of a record)r—-—‘- Variable tree decoding task |] II
.]
] |
|
|
! ! |
|
Desired record is ! A track is called in i X
- Cylinder
present to user |
| and performs .
i | o 1
| internal search
| |
I |
| [

Figure 3.8. Block diagram showing the simulating of accessing a record from Disk Sequential File.

31

3. For accessing the desired record from the file, the full
name of the desired record is applied to the system. The
Tree with variable length key directory decoding program
converts the full name of the desired record into one word,
a uniquely fixed length key. The operating system can use
the fixed length key as search argument.

4, Since for each track of Sequential File there are 64 logical
records, it is more efficient to select linear internal
search. See the analysis of internal linear and binary
search on pages 193 - 197. So that a Sequential track is
called in and linear internal search is performed for both
unsorted and strictly Sequential File.

5. If the desired record is found, the operating system will
present it to the user,

6. If the desired record is not found, the operating system
will notify the.user that it is not there. See the details
in Example 1, Appendix B.

Results of Sequential Disk File
Accessing Characteristics

The results of this simulation are shown as follows:
1. Figure 8.1. The comparison of searching parameter

(number of look-up per record retrieval vs. file size,

32
between Linear search and Binary search).
Figure 8.2 shows the result of the comparison of search-
ing parameter (searching time in msec. per record
retrieval vs. file size) between Linear search and Binary
search,
Figure 8.4 shows the result of the comparison of core
space requirement number of computer words vs. file
size) between Linear search and Binary search,
Figure 7.1 shows the result of computation of retrieval
time per record retrieval (throughput time) when the main

records are located in disk memory.

33

IV, INDEXED SEQUENTIAL FILE STRUCTURE AND USE

Indexed Sequential File Structure

The indexed sequential file organization is in use by several
computer manufacturers. It is an automatic file management and
access method. The indexed sequential file has the same basic
structure as the partitioned file, which uses the ''directory' system
in logical hierarchical relation with the ''main file''. However in
the indexed sequential file the directory and the record in the main
file are in physical relation according to position. In general this
file is designed to use with DASD, especially disk. Hence, the
basic structure of the indexed sequential file supported by disk is
as follows: (see the Figure 4.1). In case the processing of the file
is based on alphabetic key, the file system has to be attached to a
directory table for the variable length full name of a record to be
converted into a unique fixed-length key name. Extra time is
needed for decoding by searching the directory table for each random
access record.

On- Line Indexed Sequential File Supported
by Disk Memory

An indexed sequential file has three major components: Index

Area, where the cylinder index and track index are located. Prime

Track Index 1 Prime Area

Q Argument, Full Name) Normal record
 Key: Data:
o High- Home .| Data area
est address pf Cylinder 1

Directory Table use of Tree key on |of

with variable length records track prime

names to unique fixed length track.

key

. Track Index 2 Overflow

DONNE LL DAVID ponn| _ CYlinder Index

Key: Data:
HODGE D M HODG Highest Home
key on address Data area
Ll JOHNSON ALBERT W JOHN each of track Hi of Cylinder 2
cylinder, Index
JOHNSON ARTHUR C JOHS for each
cylinder,
MOOR ARCHE MOOR
_Overflow

NARASIMHAN M N L NARA Track Index 3

SMITH A PETE SMIT Overflow Record
Key: Data:

SMITH BEVERLY SMIH sl Key of jaddress] .} Data area
over- of over- of Cylinder 3
flow flow
record |record

Figure 4. 1. Structure of the Indexed Sequential File. Overflow

be

35
Area, where the normal records of the file system are located, and
Overflow Area, where the overflow records of the main file are
located.

The Cylinder Index is the '"master directory'' of this file

system. There is only one cylinder index. It is the higher level
index and is always present. Somewhere in the indexed sequential
file system, its entry contains a pointer to a track index. Some-
times the cylinder index may be on a different type of disk than the
rest of the file. In case it is assigned to the same disk module,
the cylinder index should be put at the beginning of the file area
(see Figure 4. 2).

The Track Index is equivalent to a ''subdirectory''. This is

the lowest level of index and is always present. Actually there is
one track index for each cylinder in the main file area (prime area).
Its entries point to data records and are always written on the first
track of the cylinder that they index. Each track index may contain a
special record called "Cylinder Overflow Control Record', COCR.
The operating system uses this record when an overflow exists in
the file system. The rest of each track index consists of alternating
"normal' and "overflow'' entries. There are a pair of entries for
each data track in the cylinder.

The normal entry contains the home address of the prime

track, and the key of the highest record on the track.

36

The overflow entry contains the highest key record on the track

in the key area, The data area contains the home address of the
overflow area which indicates ''end of the chain. ' The entry is
changed when a record is added to the file and overflow exists.

The last entry of the track index is a "dummy entry' indicating
the end of the track index. The rest of track index may contain prime
data records if there is room for them. In this case, the first pair
of entries in the track index referes to this track.

Each track index entry, Normal, Overflow, Dummy, has the
same format. It is an unblocked, fixed-length record consisting of
a Count Area, a Key Area, and a Data Area. When a Key Area is
as specified by the user, in the case of a normal or overflow entry,
this area contains the key of the data record which is the entry point.
However, the area of the dummy entry has all 1 bits, which is the
highest in the collecting sequence. The Data Area is depended on
the user's specifing for example that it is 10 bytes long, contains
the full address of the track or record to which the index points and
other information such as the level of index and type of entry (based

on the IBM system).-l‘/ The Data Area of the dummy entry is null

-L/The IBM system (16) has suggested that using of the Master
Index when the cylinder index occupies more than four tracks.
Master index is the highest level of index and is optional; it is used
when the cylinder index is too time-consuming. It can be stored
permanently in core memory.

37
(all 0-bits). For illustration, see Figure 4.4, page 43,

The Prime Area is the area in which data records are written

when the file is first created or subsequently reorganized. Addi-
tions to the file may also be written in this area. The prime area
may spand multiple cylinders, modules may consist of several non-
contiguous areas. The record in the prime area has to be written
in key sequence. Data records in the prime area must be formatted
with key. They may be blocked or unblocked. In case a record is
blocked, each logical record has to contain its key, and the key area
contains the key of the highest record in the block.

The Overflow Area may be of one of two types, a cylinder over-

flow area or an independent overflow area. Either one or both can be
used for an indexed sequential file,

a) The Cylinder Overflow Area is the most popular means of

handling overflow records. A certain number of whole
tracks, as specified by the use, are reserved in each
cylinder for overflows form the prime tracks in that
cylinder. When a cylinder overflow area is specified,
record 0, the track descriptor record in the track index
is used as a Cylinder Overflow Control Record (COCR)

See illustration in Figure 4. 2.

38

Cylinder 0| Cylinder 1 |Cylinder 2| Cylinder 3|Cylinder 4 {Cylinder 5

Cylinder Index

Track Index

Prime Area

Cylinder fve rflow Area

Figure 4.2 Illustration of Cylinder Overflow Area.

The operating system uses the COCR to keep track of the
address of the '""Last Overflow Record' in the cylinder and the num-
ber of bytes left in that cylinder overflow area. In some cases the
Operating System uses this COCR for additiomal information. Two
bytes of this COCR are used in case the file has variable-length
records. If the file has fixed-length records these two bytes are left
blank.

Thé advantage of having a cylinder overflow area is that addi-
tional searches are not required to locate overflow records. The
disadvantage is that there will be unused space, if addi:cions are

unevenly distributed throughout the file.

b) The Independent Overflow Area provides a means of

39
placing the overflow records from anywhere in the prime
areas in a certain number of cylinders reserved solely for
overflows. The size and unit location of the independent
overflow area are specified by the user. The area must,
however, be on the same disk module as the prime area.
The advantage of having an Independent overflow area is that
less space need be reserved for overflows. A disadvantage is that

accessing overflow records requires additional searches.

o — —

Cylinder 1 | Cylinder 2 | Cylinder 3

Cylinder Inldex Cylinder X | Cylinder Y

Track Inde;c

Independent
Prime Area ‘ Overflow
Area

Figure 4.3. Illustration of Independent Overflow Area.

Overflow Records must be unblécked‘; they must be formatted

with keys; they must be of fixed-length or variable-length. If the
prime records are blocked, the key of an overflow record is con-
tained in both the key area and the data area so that all logical
records have the same format.

The first field of data area of overflow record is a link field,

which is used to chain together in key sequence the records that have

40
overflowed from a prime track. The link field is usually ten bytes
long and contains the same type of information as the dataarea of
index entries. If an overflow record is not the last link in a chain,
its link field so indicates and contains the address of the next over-
flow record in the chain. If an overflow record is the last link in a
chain, its link field so indicates and points back to the track index.
An overflow record has a link field, while a prime record does not.
The overflow record is of significance to the user only in that the
link field requires space on the disk and in core memory. The oper-
ating system presents logical records to the user in such a way that

he does not know of the difference in format.

The Use of the On-Line Indexed Sequential Disk File

In the update and maintenance operations of the Indexed
Sequential File, the prime record is of a fixed length and blocked.

The -cylinder overflow area is used to handle the overflow records.

Adding a New Record to the File

There are three cases of adding new records to the file, The
standard algorithm of addition is as follows:
A new record is added to a ""prime track'', to create the file,

See illustrated example in Figure 4.5, page 44.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

41
The user supplies the name of the desired record to
the system.
The operating system decodes the full name of the
record into a fixed-length record key name by means
of one of the methods to be mentioned in Chapter V,
under the section on Directory Decoding Technique.
Now the unique record key name of a desired record
can be decoded by the directory table.
The operating system edits and searches through the
cylinder index for a key "high' or ''equal' in core
memory.
When the search is satisfied, the address in the cor-
responding data areadf the record in the cylinder
index is read.
The reference cylinder is sought (hardware operation).
The operating system edits and searches the track
index, for a key "high' or '"equal'' in core memory.
When the search is satisfied the address in the
corresponding data area of the records in the track
index is read.
The reference track in that cylinder with key ""high"

or "'equal'' is sought.

Step 9.

Step 10.

Step11.

Step 12.

Step 13.

Step 14.

42
If the proper sequential location on the prime track is
found, and it is empty, the new record is added
there; the job is done.
If the proper sequential location is found, and it is
not empty on that prime track, the operating system
will move the rest of the records higher on that prime
track up one position; some of the higher key records
in that prime track may be bumped out.
The operating system will automatically continue the
search for the first available space in the cylinder
overflow area.
If the first available space in the cylinder overflow
area is found, the bumped records or the new record
is written up in the available location in the overflow
area, and the linked list concept is introduced. The
record is placed in the cylinder overflow area for
that cylinder. If it exists and if there is a space in
it, the job is done.
If the cylinder overflow area is full, the operating
system will continue searching for the first available
space in the independent overflow area.
If the first available space in the independent overflow

area is encountered, the bumped record or new record

CYLINDER INDEX

BEER

0000

BUTZ

0100

CURR

0200

DYSO

0300 [ees

\

T—Data: Home address of track index
for cylinder 00

Key:

TRACK INDEX

Highest key on cylinder 00

A pair of entries
_ Al

One such entry for

each cylinder of

the prime data area

Norma{ entry Over flow entry Normal entry Overflow entry

0000 COCR ABRE 0001 ABRE 0255 ADOT 0002 ADOT 0255 ¢ s s ot

Home) LDate Home address of One normal and one overflow

Address prime track 0001 entry for each prime data

Key: Highest key on prime track on cylinder 00
data track 0001
_ Normal entry Overflow entry Dummy entry -

O BEER 0010 BEER 0100 DUMMY Data Record
. PRIME DATA AREA

0001 AABY AARO AASU ABRA [-r-eocverrerrree-e ABEM ABRA ABRE

i(?lg;eess I[._Data Record: Count, Key and Data for record with key "AABY"

0002 ACEA ACID ACKE ACNE [--reeeeeeninn.. ACTO ADAT ADOT

0010 BABC BACC BACH BACO fpecereeeeeeeeen.. BEDO BEEM BEER

Figure 4. 4. An Indexed Sequential Disk File with no additions,

127

CYLINDER INDEX (No change)

BEER 0000 BUTZ 0100 CURR 0200 DYSO 03000 | ----- DUMMY

TRACK INDEX

Normal Overflow Normal
0000 COCR ABRA 0001 ABRE 00111 ADOT 0002 [e-rerrreremcernnnn.
H. A. L——-Key of normal L overflow entry changed - now points
entry changed to record 1 on the track 0011
PRIME DATA AREA 7
0001 AABY AARO AASU ABBA | rreererereeen ABEM ABER ABRA
H. A. New record ——1

Original record moved up—

0002 ACEA ACID {ACKE ACNE | cccerrrrcccrrccccncecen. ADAI ADOT

OVERFLOW AREA

0011 00111 ABRE XXX kk¥k XXX Rest of data

H:A. Count Key } _Link field: This is the last link of a chain, so it
contains the original value of the track index entry
that is, *+% | to indicate ''end of chain".

Figure 4.5, An Indexed Sequential Disk File after the first addition to a prime track.

147

CYLINDER INDEX (No change)

BEER 0000 BUTZ 0100 CURR 0200 DYSO 0300 | cev--- DUMMY

TRACK INDEX

0000 COCR ABRA 0001 ABRE 00123 ADOT 0002 § cevcvecereneenans

H. A. Y overflow entry changed - points to
address of lowest key which overflowed
from this track - record 3 on track 0012

PRIME DATA AREA

0001 AABY AARO AASU AABA | e, ABEM ABER ABRA

0002 ACEA ACID ACKE ACNE | +-rerrrrrerrercencocnns ADAI ADOT

OVERFLOW AREA

0011 00111 ABRE XXX %xx *XX Restofdata |::+.0-v-e- link in this chain,

H. A. Count Key P Link field: No changer— this record always be the last
0012 | +ocvrreeramiensnennenenn 00123 ABRC XXX 00111%xX%X Rest of data

H. A. Count Key L_Link field: points to next link in

chain - record 1 on track 0011

Figure 4. 6. An Indexed SequentialDisk File after subsequent additions to a track.

sy

CYLINDER INDEX (No change)

DUMMY

BEER 0000 BUTZ 0100 CURR 0200 DYSO 0300
TRACK INDEX
Overflow entry changed - now points
| to record 1 on the track 0011
0000 COCR ABER 0001 ABRE 00111 ADOT 0002
H.A. Key: Highest key on prime

PRIME DATA AREA

data track 0001

Deleted Record

0001 ABBY AARO AASU AABA | +erceevcescn. ABEM ABER ABRA

0002 ACEA ACID ACKE U\) T B ADAI ADOT

OVERFLOW AREA J This record is ''‘end of the chain',

0011 00111 ABRE XXX KKK XXX Restof data | = ==0éceeeececioen.n

H.A.

Q012 tererrerneneetccecaanaanas 00123 ¢ABRC | XX % 00111 XXX Rest of data
1\—Deleted record (in overflow area)

Figure 4. 7. An Indexed Sequential Disk File after deletions of the desired records from File.

9%

47
is written, the chain is updated, and the job is done.
Step 15. The key area of the normal index entry is updated,
containing the highest key in that prime track.
Step 16. In case the overflow exists, the data area of the
overflow index entry is also updated; it now contains
the address of the overflow record.

Example of Case I, First Addition to a Prime Track. The

first addition to a track is always handled in this way. Any record
that is higher than the original highest record on the preceding track
but lower than the original highest record on this track is written on
this track. See Figure 4.5,

Example of Case II, Subsequent Additions to a Track. Subse-

quent additions are written either on the prime track where they
belong or as part of the overflow chain from that track. In case the
addition belongs between the last prime record on a track and a
previous overflow from that track, as in the case of adding a new
record with key name ABRC, which is written in the first available
location in the overflow area, with its link field containing the address
of the next record in the chain. The link field of a previous overflow
may need to be changed; in this example it is not necessary because
the Data Area of the overflow index entry always refers to the
address of the lowest key in a chain.

If the addition belongs on a prime track as in this case, the

48
record's key name, ABER, is added in its proper sequential loca-
tion on the prime track. The bumped record, ABRE; is written in
the first available location in the overflow aréa.

The Key Area of the normal index entry is changed to ABRA.
The link field of a previous overflow and the Data Area of the over-
flow index entry are changed if necessary.

The similarity between the normal and overflow index entries
is that the normal entry indicates that a sequence of records starts
at the beginning of Track 0011, the last record having a key of
ABRA. The overflow entry indicates that a sequence of records
chained together by the link field starts with the third record on
Track 0012, the last record having a key of ABRE. See Figure
4.6, page 45.

Although the cylinder overflow area may eventually contain
overflow records, all prime tracks in the cylinder and the independ-
ent overflow area may eventually contain overflow records from
anywhere in the file; each prime track has its own chain.

Example of Case III, Addition of High Keys. A record witha

key higher than the current highest key in the file is placed on the
last prime track containing data records if that track is not full.

In case that track is full, the record is placed in the overflow area.
The sequence link for this record is chained to the last prime track

containing data records. The key area of higher level indexes is

49

changed to reflect the addition.

Up-Dating or Deleting the Record from the File

There are two conventional types of retrieval of the specified
records from this type of file:

Sequential Processing. The logical steps required to retrieve

all of the records in the key sequence are as follows, provided that
the prime area consists of one contiguous area:(since each record
in the file is read out, no need to perform cylinder search):

Step 1. The operating system positions the access mechanism
at the track index of the first cylinder in the file. It
performs read-in operation, an internal search of the
track index and picks up two entries from internal
track index, the current overflow entry and the normal
entry.

Step 2. The operating system reads and presents to the user
each record on the specified prime track. If the end-
of-file record is read, it goes to end-of-file routine.

Step 3. If the current overflow entry has been changed the
operating system reads and presents to the user each
record in the overflow chain and then goes to Step 5.

Step 4. If the current overflow entry has not been changed,

the operating system goes immediately to Step 5.

50

Step 5. If the next prime entry is a dummy, that is if all the
records in this cylinder have been read the operating
system seeks the next cylinder by going to Step 7.

Step 6. If the next prime entry is not a dummy, go to Step 8.

Step 7. The operating system positions the access mechanism
at the track index of the next successive cylinder in
the file and performs read-in, an internal search of
its track index. A track index of this next successive
cylinder is read-in and stored at some place in core
memory which may be called "track index table''. It
is the same as Step 1, but not for the first cylinder.
Go to Step 8.

Step 8. The operating system performs an internal search
through the track index table and picks up the next
pair of entries: that is the overflow entry of the next
prime track to be processed and the normal entry for
the prime track following that, and return to Step 2.

In fact, the cylinder index is used only for the initial
positioning at the beginning of the file, and reference to the
track index is necessary only once for each prime track,

Random Processing. This typical method of retrieving speci-

fied records is more suitable to the nature of an on-line information

system.

51

Step 1. The operating system reads the transaction, the full
name of a record or the fixed-length key of a record
is used as search argument.

Step 2. The operating system searches the cylinder index for
key ""high'" or '"equal'.

Step 3. When the search is satisfied, the system reads the
address in the corresponding data area.

Step 4. The operating system seeks the referenced cylinder.

Step 5. It searches the track index for the cylinder with a key
"high'"' or "equal' in core memory.

Step 6. When the search is satisfied the system picks up the
address in the corresponding data area,.

Step 7. If the desired record is on the prime track, it is the
normal record. The operating system searches the
reference prime track for a key '"equal'' in core
memory and reads and presents to the user the desired
record in the main file.

Step 8. If the desired record is not on the prime track, itis
an overflow record.

a) The operating system searches the referred over-
flow track, read-in and an internal search for

identifier with equal record address is performed.

b)

d)

52
The system searches the desired record in core
along the chain.
If the desired record is found, the system
presents its data to the user.
If it is not found the system repeats Step b) by
using the address from the link field until the
specified record is found.
If the end of the chain is encountered, the system
goes to record-not-found-routine which notifies

the user ''NO SUCH RECORD IN THE FILE."

File Reorganization Criteria

An efficient file must be reorganized periodically for three

reasons:
1. The overflow area is eventually full,
2. During additions, increased time is required to locate
a record at random.
3. When the prime area contains many deleted records,

much space is wasted.

Handling Deletions in the Indexed Sequential File

Most operating systems do not handle deletion in any way.

The usual approach is to tag a deleted record in some way by the

53
same method as that of partitioned file organization and then to omit
it when the file is reorganized.

a) Usually the desired record is tabbed by writing all 1-bits
in the first byte of the deleted record.

b) If the tagged record is bumped off the prime track by a
subsequent addition, it is not rewritten again in the over-
flow area.

c) When the file is reorganized, any tagged records remain-
ing in the prime area can be omitted from the reorganized
file by the user.

d) When the file is processed sequentially, the deletion
records (tagged records) are not retrieved for process-
ing.

e) When the file is processed by random sequence, tagged
records are retrieved like any other record and thus
should be checked for deletion-code by the user's pro-
gram,

In some cases the operating system can automatically handle

deletion records as follows:

a) If the deleted record is the last record in the prime
track, the operating system will simple erase this record.

b) In case the desired record is somewhere in the prime

track, all the whole records in that prime track are

54
read-in. Repacking is performed in core memory, and
the repacked records are returned to the original prime
track. In case there is still an empty space left on
this prime track, an overflow record, which is the head
of the chain that belongs to this track, is shifted up to be
the highest key record of this prime track. The operat-
ing system updates data in the overflow entry and in the
normal entry which corresponds to this prime track
in the track index.

c) In case the desired record is on the cylinder overflow
track, deletion by tagging the desired record can be

performed.

Variable-Length Records

In some cases the user encounters variable-records. One way

to solve this problem is to use trailer records, the extension of the

master record with the same operating system used for the fixed-
length logical records. The trailer record may be written immedi-
ately after the associated master record. The duplicate key is not
allowed. It is necessary to add a digit or character to the true key;
that is, to use the alphanumeric key. For example 125A, the key of
the master record number 125, are added 125B, and 125C, the key of

the first and the second trailer record respectively. The trailer

55

record may be written as a separate file by which link list chain is

introduced.

Evaluation of Accessing Characteristics
of the Indexed Sequential Disk File

For comparison with other file organization methods, the

parameters of the Indexed Sequential File have to be measured.

CDC-3300 system with OS-3 is selected as the simulator. The

strategy of simulation is as follows:

1.

For simulation of the Indexed Sequential Disk File, the
data records in the file are assumed to be fixed, and
blocked, See Figure 9.2, page 202. Each record is
formatted with a key. The overflow records are placed
in cylinder overflow area only. The overflow records
of each prime track are put in a chain.

Data model for simulation uses the selected data model
as shown in Appendix B. See simulating block diagram
model in Figure 4. 8.

For accessing the proper location in disk memory, the
full name of the record has to be converted into a unique
fixed-length key name by the Variable-Length Tree-
Decoding Technique. (The detail of Variable-Length

Tree-Decoding Technique is shown in Chapter V.)

56

All data records are kept in disk memory, D854,

a)

The Directory Table is read into core memory for
initializing and the user supplies the full name of
the records to the system. Search of the Directory
Table is performed internally,

If the search is satisfied, the operating system will
use the fixed length key name obtained as the argu-
ment key for retrieval of the desired record from
the file system.

If the search is not satisfied, the operating system
will notify the user "NO SUCH NAME IN THE FILE",
For' accessing the data of the Cylinder Index, the
Track Index and the Data of the Main record, the
machine has to read into core memory and search
for desired item. The user can control the operat-
ing system to return the Directory decoding routine
to disk memory after file processing task is

finished,

For measuring the exact accessing characteristics of

this file system, the selected record format is consid-

ered and the computation is performed., See Example 2,

Appendix B.

57

The Purpose of the Evaluation

The purpose of the evaluation is to measure the following
Indexed Sequential Disk File parameters:

1. To compute the access time per random record retrieval
when the data file is on the disk.

2. To measure the space storage requirement.

3. To find the characteristics of ""average throughput time
per record retrieval' and "achievable throughput rate
capability'.

4, To find the "cost/effectiveness' characteristics, (''user
or customer operating cost per call, unit cost'').

5. To compare the characteristics of this file method with

the other methods of file organization.

Simulating Block Diagram Model

Simulation block diagram model, Figure 4.8 is the illustration
of finding the accessing characteristics of a random record form

Indexed Sequential Disk File. See details in Appendix B, Example 3.

Results of the Evaluation of Indexed Sequential Disk File

Results of the evaluation of Indexed Sequential Disk File and

the comparison of the characteristics of this file with those of the

Disk File

Cylinder 1

!

Cylinder Index

internal search

task

The full name of a
record is supplied
by user,

s= Cylinder 2

Y

internal search |-l
task

!

A data prime
track/a cylinder
overflow track is

called in and

internal search
is performed

Cylinder 3

The desired record
is present to user,

' Variable Tree
—T’ decoding task
|
|
|
|
|
I
|
|
!
{
|
|
|
|
|
|
!
|
i
f

|
|
|
|
]
I
I
|
]
i
|
I
|
Track Index |
i
|
|
|
|
|
|
I
i
|
|
|
|
[

Figure 4.8. Block diagram showing the simulation of accessing
a ramdon record from Indexed Sequential Disk File.

other methods of file organization technique are shown in Chapter

VII.

59

60

V., PARTITIONED FILE STRUCTURE AND USE

Partitioned File Structure

The partitioned file is one of common method of organization
for the on-line data processing system. It has a hierarchical file
structure which is compounded, and it requires a directory and some-
times even hierarchies of directories for maintaining association
and providing access. These directories are of table of content
type. Access is most commonly made by attribute. The speed of

access depends upon the size and number of directories used. See

Figure 5. 1.
1st Member
Table Individual
@ lookup [g} records
member with key
» 1
‘ ;nd;ml;lng Directory
asacoce i 2nd Member
contains
- ree Fixed —
Member ength ke Member Table Individual
name Y lookup records
name and§ and .
: . member with key
hree dimension startin »
Tree g -
address
ith Member
4
Table Individual

@ | lookup records
member with key

Figure 5. 1. Structure of Partitioned File. ith

61

User's Argument Key Name

In the partitioned file, the user's argument key name or record
key name is the "key' which is used to communicate the master
record of the file, stored on the auxiliary memory units. Due the
nature of Directory and Partitioned File Organization, usually an
alphabetical string of key names is used. For convenience, the
natural language such as a person's name is used as the key name
of his own record in the file. Sometimes alphanumeric and numeric

keys can be used in the same fashion.

Directory Decoding Techniques

Directory decoding techniques for the partitioned file can be
divided into two general classes:

1. Randomizing or Hash Coding. The details of this

technique will be illustrated and discussed in Chapter VL

2. Tree Structure Decoding. This method can be divided

into two subclasses:

a) Fixed-Length Key Decoding. Fixed length keys are
generally preferred because the decoding programs
are simple to write and fast to execute. There are
two general methods for converting a full length

name into a Fixed-Length Key, as indicated in

b)

62

Figure 5.2. One method is ''to sample'' some of the

fixed set of characters or bits from the full-length

name. A spécial method is to ''truncate'' the key

to a given number of characters. This technique is

popularly used in many systems. Another method

is to apply a randomizing technique to the full name

of the record to convert it into a range that is repre-

sented by a fixed number of bits.

The disadvantage of Fixed-Length Key decoding
is that the method cannot guarantee to offer 0% of
redundancy coding.

Variable-Length Key Decoding. There are also

two ways to obtain the variable-length key.

(1) The full name of the record can be used as the
variable key.

(2) A unique sampling can be used for each key so
that as little of the key word is retained as is
necessary to make it completely different from
every other key. In fact this method is applied
to a small sized file. It is impractical to
implement it on a large scaled file.

The main advantage of the variable length key method

is that is provides completely unambiguous decoding.

63

KEY DIRECTORY DECODING

Randomizing Tree
Fixed Length Key Variable Length Key
Sampled Randomized Complete Key Unique Sampling
Truncation only few systems d use full record name only few svst sed
is popular ‘ Y R4 use as key very popular Y systems u

Figure 5.2. Key Directory decoding pattern.

Directory and Main File Organization

Directory. Also called 'file directory' has been mentioned
before in Chapter II. Partitioned file organization is divided into
several parts called "'members'. A directory contains the '"names"
of these members and their corresponding ''addresses'' (location in
the main file). The entries of a directory are organized in alpha-
betical sequence. To provide efficient file accessing a directory
can be divided into blocks. Each directory block begins with a Key
Area which contains the key name of the last member of the block.
Records in the main file are organized the same as directory entries.

Main File Body. In the partitioned file organization, the main

body consists of several ''sequential subfiles' or "members'. In

each of these members, the data records are arranged sequentially.

64
They may or may not be in key sequence, depending on the record-
accessing technique. If there are many data records in each member
(more than 64 records), data records should be arranged in a key
sequence so that binary search can be introduced. This arrangement
also provided the possibility of accessing the records from the main
file by sequential processing. In case the file system uses hash
coding as its directory decoding method, records in the main file

are not distributed in any key sequence. See details in Chapter VI.

Use of the Partitioned File

The method of use or maintenance of the partitioned file is
dependent on the directory decoding technique used. Three cases
will be discussed here.

Case I. The partitioned file system uses '"'randomizing'' or
has coding to perform a key decoding task.

The details of hash coding will be discussed in Chapter VI,
After the hash address is obtained it is used as the address for the
directory table. The address of the first record in the member is
kept as an entry in the directory table, which is stored in core
memory. But in direct file organization the hash address is directly
used as the reference of the data record in the main file. There is
no need to search at the directory level.

Standard algorithms of file maintenance are as follows:

Record name -

Figure 5.3

r
of table| of disk |" of under X
: member
Hash)
code | Address |} Table |) Address Key Y and
(Member name }—#Hash codingj—a use of % look up of member Records
task of member (% of under Y
table ! member '
————— — | address :
e __ 'b Table N Address Key Z and
:x_‘look up of member Records
of under Z
member

65

Main File
Directory Table

Table Address Key X and
Address | Address | ry dlook up of member Records

Partitioned file using randomizing as directory
decoding technique.

Adding a New Record to the File

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

The user supplies full name of a record.

The operating system converts the full name of the
record being added into hash address to be used for
directory table reference.

The system fetches the address of the member to
which record being added should belong.

The operating system searches for the next space
available in the member.

If the proper sequential location in the desired track
of the desired member is found, and it is empty,

the new record is added there; the job is done.

Step 6.

Step 7.

Step 8.

66
If the proper sequential location is found, and it is
not empty in the track of the desired member, the
operating system will move the rest of the records
higher in that track (up one position) some of the
higher key records in that prime track may be bumped
out,
The operating system will continue the search for
the first available space in the overflow area.
If the first available space in overflow area is found,
the bumped record or the new record is written. In
an overflow area the overflow records which belong
to the same track of each member must be organized
in the same chain (link list can be applied for over-

flow records which belong to the same member).

Updating and Deleting the Record from the File

Step 1.

Step 2.

Step 3.

The user supplies the full name of the member.
The operating system converts the full name of
desired member into hash address to be used for
directory reference.

The operating system fetches the address of the

member to which the desired record should belong.

67

Step 4. The user has to supply the full name of the desired
record or unique fixed-length key of the desired
record.to the system. If it is the full name of the
desired record the directory decoding technique should
be introduced (in this case the writer suggests to
use variable-length tree decoding technique) to con-
vert the full name of record into unique fixed-length
key.

Step 5. The operating system searches for the desired
record in the member by using the unique fixed-length
key of the desired record as the search argument.

Step 6. If the search is satisfied, the data in the desired
record may be updated or deleted, as the user may
wish. In case of deletion, the deletion-mark is written
on the desired record, and this deleted record area
cannot be reused until the file is reorganized.

Step 7. If the search is not satisfied in the file, the operating
system will notify the user "NO SUCH RECORD IN
THE FILE'".

Casell. The partition file system uses the tree with a fixed-

length key-word by truncation to perform the key decoding task. In

this section the terms tree structure, balanced tree and unbalanced

tree will be introduced. Since in practice most of the keynames

68

within the directory possess an unbalanced tree structure, only the
technique of unbalanced tree processing will be discussed here. As
this method may cause redundancies, the operating system or the
processing program has to notify the user every time the new key
name is redundant with the existing keys. Some modification has

to be performed by the user on the new key. One possible way is to
change some of the rightmost characters in the fixed-length redundant
key into fixed-length unique key. See example in Table 5.1. When
the size of the directory table is large, the number of redundancies
will increase, so the above method is impractical. The alternative
is to use the full name of a record and convert it into a fixed-length
unique key by using the variable-length tree decoding technique to
avoid ambiguous decoding. Details will be discussed in Case 1III,
page 75.

Table 5. 1. Illustration of full name of record and unique fixed-
length key of record.

Fixed Length Key

Fixed Length Key After Modifying
Argument, Full Name by Truncation the key must be unique
ADMINISTRATION A D M 1 A D M 1
AIR COMMAND UNIT A 1 R C A 1 R C

AIR FIELD CON-

STRUCTION A I R F A I R ¥
AIR FIELD LIGHT-] :I
ING SYSTEM ¥

BABB MARGARET
BABCOCK DANA
BABCOCK DONNER

W >
> >
Www ™
o
W w e
> >
W
[

Ordered Table

69

Ordered Tree

A D MI ADMI\
A I R C /AIRC
A I R F AIRF \
A I R L AIRL
B A B B BABB\ /
B A B C /BABC
B A B O BABO
Figure 5.4. Comparison of ordered table and ordered tree.
AIRL
Left
Right
AIRC BABC
Left b Left
Right _W Right —w
ADMI AIRF BABB BABO
¢ ¢ ¢ ¢
¢ ¢ ¢ ¢

Where Left = Left pointer: Right = Right pointer

Figure 5, 5.

Tree structure (balanced tree).

70

Tree Structure. The entire list structure in Figure 5.5 is

called a "tree'. Each data item in the tree is called a 'mode'. Node
AIRL is the root. It is the base or the beginning of the tree. The
order of the tree becomes evident by its relation to the root. All
nodes left of root AIRL contain lower keys: ADMI, AIRC, and AIRF.
All nodes to the right contain higher keys: BABB, BABC, and BABO.
This same order holds for nodes of the tree other than the root. For
example, lower key AIDMI is left of node AIRC, and the higher key
AIRF is right of it.

Search Mechanism. The algorithm of search of a tree (both

balanced and unbalanced tree) is as follows:

1. The search of a tree begins at the root node. The argu-
ment search key is compared to the node key.

2. If the argument key is greater, the node right of the root
is examined.

3. If the argument key is less, the node left of the root is
examined,

4, This process continues until the desired node is found.

. Figure 5. 6 gives the flow chart form for the search,

Insert Mechanism

The algorithm of insertion of both a balanced and an unbalanced

tree is the same as that of searching for a tree. The insert node will

Root Node

Pointer

Pick up

Search

fails

t
Non zero Stop

Argument Pick wp

Key same as

Left Pointer

Figure 5. 6.

Right Pointeq

ointer Key?

Search is

satisfied

Stop

Flow chart of tree search,

71

72
will always belong at the bottom of the tree. For high efficiency in
searching a tree in directory level the tree should be kept balanced
as much as possible. Therefore the user has to make some arrange-
ments beforehand. The task is simple, just sorting fixed-length keys

in alphabetical sequence, and selecting the middle keyname in the list

as the root of the tree.

In Figure 5.5, AIRL should be selected as the root node of
the tree, and the user should start loading from this key name. The
corresponding sequence nodes left or right AIRC, BABC, ADIM,

AIRF, BABB, and BABO can be loaded next,

Delete Mechanism

In contrast to inserting nodes, which are always added to the
bottom of the tree, deletion nodes may be taken anywhere from the
tree. There are three cases for deleting the tree: the deleted node

is either root, internal-node, or leaf-node,

The algorithm of deleting is as follows:
1. A search is made to find the deletion node in the tree.
2. If the deletion is an internal node or the root node,
-- the search goes down one level to the left of the
desired node,
-- and the search continues along the last of the levels

of the tree on the right pointer.

73

If a node with a right pointer is encountered, the deletion
node is replaced by this node and the pointer in the tree
is updated. Otherwise, the search goes down, based on
the right pointer to the leaf node of the tree (the leaf node
does not have both left and right pointers). The deletion
node is replaced by the appropriate leaf node, and the
pointer in the tree is updated.

3. If the deletion node is a leaf node, it is simple deleted
and the pointers of the tree are updated. The illustration

examples are shown in Figures 5.7 - 5.9,

Deleted node

\._._l'___/

Resultant Tree

Figure 5. 7. Deletion of node AIRL, the ROOT of the Tree.

74

Deleted node

Replaced node _

BABB

Figure 5.8. Deletion of BABC, the INTERNAL node of the Tree.

Figure 5.9. Deletion of node BABB, the leaf of the Tree.

75

The efficiency of the search is dependent on how well the tree
is balanced. In general in the application of the tree search structure,
the tree can be rebalanced after each insertion and deletion. The
balance mechanisms are shown by Richard L. Gauthier and Stephen D,
Ponto in Designing Systems Programs Section 8. 6 (12).

Use of the Partition File with Tree
With Fixed Length Key

The maintenance, adding, updating and deleting of the records
in the main file are by the same procedure as by those mentioned in
Case I. The alternative is to search at directory level using ''tree
search'’,

Case III. The partitioned file system uses a tree with full
name as a variable-length key in the directory. This technique could
be called "varible-length tree decoding' or 'three dimension tree'',

In this method, the system performs the coding task, by
searching for the full name with computer word length, and each
fixed-length part of the full name can represent a node of the tree.
The searching task is equivalent to decoding the record name by a
tree fixed-length key with truncation, as in Case II. If redundants
exist, the ambiguity in searching the record in the main file can be
avoided if the redundant is of the higher level nodes of the tree share

storage space together; i.e. combining subtrees, two-dimension

76
trees to form three-dimension trees, Each branch of the Three
Dimension Tree which represents a different logical meaning is
located on different planes, and the corresponding branches in dif-
ferent planes are connected by pointers, which are usually called
"successors'' (see Table 5.2). So in each node of a three-dimension
tree, the extra space is needed for the successor. See illustrated
example in Figure 5. 10.

Use of the Partitioned File with a
Three Dimension Tree Directory

The technique of using this typical file, in search at directory
level, is the same as that for search in tree directory. The algorithm
of adding, updating and deleting the record from the main file is the

same as that mentioned in Case II,

On-Line Partitioned Disk File

As the major structures of the partitioned file system are
Directory and Sequence Members of the main file, this file structure
can be implemented on disk memory, in one of the following ways:

1. TheDirectory is permanently kept in main core storage

and the Main File Body is kept on Disk Memory. This
system is obviously inefficient as the size of the Directory

and the Main File is increased,

Table 5.2. Example of Variable length key name.

Complete Key Name Data Successive Fixed Length Key
ADMI 0001 ADMI
ADMINIS 0200 ADMI NIS-
ADMINISTRATION 0221 ADMI NIST RATI ON~--
AIRFIELD CONSTRUCTION 0004 AIRF IELD -CON STRU CTIO N--
AIRFIEID LIGHTING 0005 AIRF IELD ~LIG HTIN G-~
AIR COMMAND 0006 AIR- COMM AIND-
AIR CONDITION 0007 AIR~ COND ITIO N--~
BUIL 0008 BUIL
BUILDING 0009 BUIL DING
BUILDING CONSTRUCTION 0010 BUIL DING -CON STRU CTIO N---
TECHNICAL DIV. 0011 TECH NICA L-DI V. -~
TECH 0012 - TECH
TACTICAL AIR COMMAND 0111 TACT ICAL -AIR ~-COM MAND
SUPPLY 0014 SUPP LY -~
UTIL 0015 UTIL
UTILITIES 0016 UTIL TIES
ABBOTT EVERETT 4205 ABBO TT-E VERE TT--
ABBOTT ETT GEORGE 7065 ABBO TT~E TT-G EORG E~~
BABB MARGARET 8693 BABB -MAR GARE T~--
BABCOCK DANA 6227 BABC OCK- DANA
BABCOCK DONNER 4934 BABC OCK~ DONN ER-~

77

78

Crr-) E®---)

(on--) (sTRU)

S

G

S

oN) (AND-)GARE)(CON)E-DI)
|]

S S S

C1--o) @ni;u)@l_)

Note: Only some of the complete key names in Table 5, 2 are

illustrated here,. 8 = successor,

Figure 5.10, Tree structure of Variable-Length Key Names.

79

2. The Directory is temporarily kept in main core storage
only during the processing of the file. After the job is
done, both the Directory and part of the Main File are
returned to Disk memory. This method is rather compli-
cated in software, but it is popular in usage. Both 1 and
2 are called internal search.

3. Both Directory and Main File are kept in Disk Memory.
The searching tasks, both Directory and Main File, are
performed in CPU. The advantage is that the majority
of ma.in core memory is not required, but the disadvantage
is that the nature of this search required more disk-time
than do the above two methods.

For comparison with the other type of file organization, the

second me thod above will be discussed and evaluated.

Description of Directory. In practice the simple 'or'ganization

of the directory is similar to that of the strictly sequential file. The
directory record, which is in alphabetical sequence by the member
name, varies from 12 to 24 bytes in length, depending on how much
data is included. For example the directory records are grouped
into 256-byte blocks, each containing as many records as will fit
into the block. Each directory block has an eight-byte key area
containing the name of the last member in the block. If the complete

directory is full, no new member can be added, until the file is

80

TECH WAST
ADMI 0006
0000 0002
Directory
0016 WEAT
Fixed length | Cylinder, track | No records/

Key Address Member AIRF 0007
ADMI 0000 0016 0001 0002
AIRF 0001 0016 0016 WOOD
BUIL 0602 0016 BUIL 0008
SUPP 0003 0016 0002 0003
TECH €004 0016 0016
UTIL 0005 0012 SUPP
WAST 0006 0002 0003
WEAT 0007 0002 0016
wWOOD 0008 0003 UTIL

a) Directory r;lapping in pape‘r'file. 0005
0012

b) Directory map-
ping in core memory,

Shows the beginning of a track or block

COUNT] | TECH

0044

ADMI

0000 | 0016 .

TECH | 0004 | 0016

COUNT} |WOOD

0032

UTIL

0005 | 0012

WOOD | 0008 | 0003

c) Directory mapping on Disk track; two directory blocks are shown,

Figure 5.11. Example of Directory in Partitioned File.

c TECH |0044 | ADMI | 0000 | 0016 | AIRF |0001 | 0016 || BUIL | 0002 |[0016 |supp 0003 | 0016 | TECH | 0004 | 0016

c wooD |0032 |-UTIL | 0005 | 0012 JwasT [0006 | 0002 | WEAT| 0007 [0002 |wooOD|0008 | 0003 UNUSED

H;A Highest key in a track

v

0000 SOLA | O CIUF data of CIUF | O|FIRS data of FIRS |O|HANS data of{ { O[SOLA data of SOLA | 0001

0001 WALK | O BYRA dataof BYRA |O|HODG data of BYRA |O J{]o WALK data of WALK 00on

0002 MOSS | O FRAN data of FRAN |O|IITZ data of LUTZ |O|MORS data”.JO|MOSS data of MOSS | 0003

0003 YUON O GEOR data of GEOR | O} GRIF data of GRIF LAHR dat% eene O|YUON data of YUON 0004

0004 SMIT To DILL data of DILL |O|FOST data of FOST |O|JOHN datai|O|SMIT data of SMIT 0005

0005 | [WILL | O BARR data of BARR | O|DATE data of DATE | O|HELI da_ta} { veeee.. [OJWILL data of WILL | 0006

0006 MCDO | O FOST data of FOST |O|MCDO data of MCDO | UNUSED 0007

0007 NARA | O MACK data of MACK|O[NARA data of NARA [< HUNUSED > 0008

0008 | [NEIS | O ESON data of ESON |O|NELS data of NEIS |Of ROOD da@{af ROOD |&————— UNUSED——>{ sk

0009 < UNUSED H >
vy >

Figure 5.12. Partitioned file without addition.

I8

‘—- Update by changing from 0016 to 0015 1
c TECH | 0044 | ADMI | 0000 | 0015 H AIRF 0001 0016 || BUIL 0002 | 0016 || SUPP 0003 | 0016 {TECH | 0004 |/ 0015
c WOOD | 0032 JUTIL {0005 | 0016 [WAST | 0006 0002 || WEAT | 0007 | 0003 WOOD 0008 | 0003 UNUSED
H.A. {* Update by changing from SOLA to HANS
0000 HANS O|CLUF data of CLUF O|FIRS data of FIRS O[HANS data of HANS f{r 1 %/ / jls{t{ éf%f.é//A‘ 0001
0001 WALK O|BYRA data of BYRA Ol/HODG data of HODG O|RHOD data gtjr. cen § OIWALK data of WALK 0002
0002 MOSS O|FRAN data of FRAN O|LUTZ data of LUTZ O|MORS data of.... “ O[MOSS data of MOSS 0003
0003 YUON O|GEOR data of GEOR O|GRIF data of GRIF O|LARH data of LARH 1 O|YUON data of YUON 0004
0004 I JOHN I O|DILL data of DILL O|EGGY data of EGGY O[FOST data of)... } OlJOHN data of JOHN 0009
0005 WILL O{BARR data of BARR O|DATE data of DATE OMHEIL data of].... OfWILL data of WILL 0006
0006 MCDO O|FOST data of FOST OIMCDO data of MCDO ||« XU SED 0007
0007 l [NARAj O|MACK data of MACK OIMOOR data of MOOR OINARA data off....)&——————UNUSED ——>| 0008
0008 ROOD O|ESON data of ESON OINELS data of NELS O|ROOD data sz' ces 16-—— UNUSED ———| bokk
0009 | | smrT 1|§tt// /‘/M/tf?;o;f/in/éxjfﬂz—uwsm 1 0005
Figure 5. 13. Partitioned File after deletion of records " SOLA" and "SMIT".

Z8

Update by changing from 0016 to 0019 —l

c TECH | 0044 | ApMI 0000 | 0016 | AIRF | 0001 | o016 | BUIL | 0002 | 0016 || supP | 0003 | 0016 | TECH | 0004 | 0017
c woob | 0032 | uTiL |ooos | oo16 [wasT| ooos | 0002 | wEAT| 0007 | 0003 | wooDp| 0008 | 0003 UNUSED
! Update by changing from 0002 to 0003
H, A. I— Deleted Bit. Link _l
0000 SOLA O|CLUF data of CLUF | O|FIRS data of FIRS O|HANS d;a) ot ... O|SOLA data of SOLA | 0001
0001 | |WALK | O|BYRA dataof BYRA |O/HODG data of HODG || O RHOD da;lof e O|WALK data of WALK || 0002
0002 MOSS O[FRAN data of FRAN | O|LUTZ data of LUTZ | O|MORS dataﬁaf e uo MOSS data of MOSS || 0003
0003 YUON O|GEOR data of GEOR O|GRIF data of GRIF OILARH data of LARH O YUON data of YUON 0004
0004 l]OHN o|pILr data of KILI o ;:c,/ /é /taj é}t’ édé O|FOST dat;JL O|JOHN data of JOHN | 0009
0005 WILL O[BARR data of BARR O|DATE data of DATE O| HEIL data)!of esee O|WILL data of WILL 0006
0006 MCDO || O[FOST data of FOST | O|MCDO data of MCDO & ‘{'IL—-UNUSED 0007
0007 | [nara [O[MACK dataof MACK | O[MICGR/ /d/ &' 13«1’9()1%% O|NARA dat%f veee |l€E———UNUSED ——>{ 0008
0008 ROOD O|ESON _ data of ESON |O|NEIS data of NELS _]|O|[ROOD dataof ROOD |— UNUSED—3) #*
0009 SMIT O|SMIT data of SMIT [€ UNUSED—)L 0005

Figure 5. 14. Partitioned File after addition of records "EGGY" and "MOOR".

€8

g(?(l)l: t TECH § 0004 || ADMI 000001 AIRF 000101 BUIL 000201 § ------ }%} SUPP 000301 TECH | 000001
: 8
Count 13}
0004 WOOD |f 0032 jUTIL 000501 WAST | 000601 WEAT | 000701 §------ } -g wWOOD | 000801
a
A K r f X Record number
k—H' i | . | i l 'éO I Cylinder number and track number
DATA ‘
0000 0060 0011 DATA 000000 {0019 . 000000 0060 DATA 000000
with full name
0001 0055 0002 DATA 000000 j 0010 DATA 000000 } s 0055 DATA 000000
0002 0050 0005 DATA 000000 f 0015 DATA 000000 ? 0050 DATA 000000
o
@
0003 0047 0003 DATA 000000 | 0008 DATA 000000 } i 0047 DATA 000000
0004 0059 0001 DATA 000000 {| 0006 DATA } & (0053 DATA 001901
o
=
0005 [0058 | 0004 DATA 000000 { 0007 DATA 000000 l ‘& 0057 DATA 001916
3
0006 Unused 1y _L ¥
0019 001901 | 0056 DATA 001902 || 0059 DATA dokokokokok s ? 0058 DATA dokkokokok
&
0020 - J ‘ % ‘
*©
5]
0021 _&‘

H. A. = Home address; HK . = Highest key in themember; DATA = Data of the record with record's full name; OFP = Overflow pointer.

This typical of partitioned disk file is not popular in used for on-line information system; its characteristics are not much different from the file
system as shown in Figure 5. 12.

Figure 5.15. Mapping of Partitioned File on Disk Memory, using Directory and variable length inverted list.

¥8

85
reorganized. Deleted directory entries can be reused. See Figure
5.12-5.15. The above illustrated numbers are based on the IBM File
System (15).

Description of Main File Record. In practice the records in

the members may be of fixed or variable length, blocked, unblocked,
or undefined, and may be formatted with or without keys. See
Figure 9.2 on page 202, The records in all the members must have
identical formats, Members are stored one after another in the
order in which they are written. Deleted member data areas can be
reused to implement the Binary internal search, They have to be
written in key sequence. - See the illustrated example in Figures

5.12-5.15.

Disk Storage Space Requirement. Enough disk storage is

required to hold the sequentially organized members and the direc--
tory. When new members are added, the Operating System allocates

the additional supporting areas if the original area is full.

Use of On-Line Partitioned Disk File

The method used for the on-line partitioned file system is
based on the system mentioned before in (2) under the On-Line

Partitioned Disk File, page 79. The algorithms are

86

Adding the New Records to the File

Step 1.

Step 2.

Step 3.

Step 4.

The user initializes the operating system by calling

the specific name of the file, The operating system
will automatically load the directory into main core

memory. When the loading procedure is completed,
it will notify the user,

The user supplies the search argument key. In case
the member name and its records have hierarchical

relation, the user has to supply the member name

and the full name of the desired record to the system.

The operating system converts the supplied member
into its corresponding address by one of the methods
mentioned under Partitioned File Structure, and the
internal search, linear, or binary, or tree search

is performed.

The operating system edits the records of the desired
member on disk memory into core memory, effective
number of "blocks'!, ''sectors', or 'tracks'' of data

is called in the core memory. In this evaluation
assume that one track of data is called into core mem-

ory at a time,

87

Step 5. The internal search for proper location is performed.
Searching may be repeated block by block or track by
track until the proper location to which the new
incoming record belongs is located.

Step 6. When the proper location is found and it is empty,
the new incoming record is added there; the job is done.

Step 7. If the proper sequential location is found, and it is
not empty in that track, the operating system will
move the rest of the records higher in that track up
one position; some of the higher key records in that
prime track may be bumped out.

Step 8. The operating system will continue the search for the
first available space in the overflow area. In this
evaluation the cylinder overflow area is to be con-
sidered.

Step 9. If the first available space in the cylinder overflow
area is found, the bumped record or the new record
is written and the pointer is updated. In the overflow
area the overflow records which belong to the same
prime track of each member must be organized in the

same -chain,

88

Updating or Deleting a Record From the File

Steps 1

Step 6.

Step 7.

through 5 are the same as for adding a record to the
file (a desired record searching task).

When the desired record is found on the prime track
of the desired member, the record is updated or

its deleted-bit is set to 1 for updating or deleting
respectively.

If the desired record is not found on the prime track
of the desired member, the operating system will
continue the search for the desired record in the

overflow track by using linked list processing (chain-

search). When the desired record is found return

to Step 6; the job is done.

Adding a Member Name to the Directory

Step 1.

Step 2.

The user initializes the operating system by calling
the specific name of the file, and the operating system
automatically loads the directory into the main core
memory. After the loading procedure is finished, it
will notify the user.

The user applies some operating system editors; the

operating system will call for the member adding

89
routine., When it is ready the operating system
notifies the user,.

Step 3. The user supplies the new coming member name and
the operating system converts the supplied member
name into its corresponding fixed-length key by one
of the methods mentioned under Partitioned File
Structure,

Step 4. The operating system uses this unique key of the new
member as the search argument for searching in the
directory: the internal search, linear search, binary
search, or tree search is performed depending on
which was implemented.

Step 5. For directory searching, if the proper location is
found and it is empty space, the operating system
stores the fixed-length unique key of the new member
there. It also allocates and supplies the address of
the first record of this member (in some systems
the user has to allocate and supply the address of the
first record of the new member of the system).

Step 6. If the proper location is found and it is not empty,
the operating system will move the rest of the records
in the directory up one position and rewrite in the same

fashion as addition of a new record to the strictly

Step 7.

90
sequential file,
When the addition is finished, the operating system
will return the updated directory to disk memory by
applying an operating system editor. The job is done,
Actually the directory needs only one or a few sup-
porting tracks. Then it is not necessary to provide
the overflow area for the directory level, In case the
extension area is needed for the directory any suitable
track in the same cylinder should be assigned and the
pointer used to chain the extension track to the last

original track,

Deleting a Member Name From the Directory

Steps 1

Step 5.

through 4 are almost the same as the addition of a
new member name to the directory. The difference
is using deleting operating system editor instead of
addition operating system editor.

For directory searching, search ''equal’’ is used. If
the desired record is found its corresponding data
(that is the address of the first data record under this
deleted member) is set to all zeros. Now all data
records under the name of this deleted member are

lost in the file system. Step 1 through 5 are repeated

91
for all member names to be deleted for the directory.
In case the key of the member name is also cited in
the file record, the record is accessed, and the key

citations is deleted,

Step 6. When the deletion is completed, the operating system

returns the directory to disk memory; the job is done.

Evaluation of Accessing Characteristics
of the Partitioned Disk File

The Partitioned Disk File can be compared with other types of

file organization, when its characteristics are known. The simulation

of the partitioned disk file in this thesis is based on CDC-3300 with

Disk 854 system. The simulating strategy is as follows:

1.

For the simulation of the Partitioned File, the data
records are assumed to be fixed, and blocked, Each
record is formatted with a key, The records on the disk

are organized as ''a linked list inverted file' (11). The

logical relation between the directory and the records in
the main file is the same as that between the ''directory
inverted file'' (11) and its corresponding data record in
the main file,

Two methods of Directory Organization are evaluated

here:

92
a) Single level Directory Partitioned Disk File. See
details and computation in Example 3a, page 268.
b) Double level Directory Partitioned Disk File. See
details and computation in Example 3b, page 283.

3. The full name of the record is used for accessing the
record from the single level directory partitioned disk
file system. See Example 3a. The member key name
(the fixed-length unique key of Division names) and the
full name of the data record in the main file are used for
accessing the desired record from a double level direc-
tory partitioned disk file system. See Example 3b.

4, Simulating schemes and descriptions of both single level
directory partitioned file and double level directory
partitioned file are illustrated by block diagram model

as shown in Figure 5. 16 and Figure 5. 17 respectively.

Purpose of the Evaluation

The purpose of the evaluation is to measure the following
parameters of the Partitioned Disk File and to find out its character-
istics. The strategies of the evolution are as follows:

1. To compute the access time per record retrieval of the

data record on disk.

2. To measure the storage space requirement.

93
3. To find the characteristics of '"average throughput/time
record retrieval', and ''achievable throughput-rate-
capacity'’ system relative cost.
4, To find the '"cost/effectiveness'' characteristics (user
operating cost per call, unit cost).
5. To compare these characteristics with the other methods

of file organization,

Simulating Block Diagram Model

Disk File

- CPU

s Cylinder 1
Variable Tree

decoding task

\

Directory inter-

nal search,

Full name of record
is supplied by user.

= Cylinder 2

A data track

a cylinder over-
flow track is
called in and
internal search
is performed.

The desired record
is presented to user,

a1 Cylinder 3

Figure 5.16. Block diagram showing the simulation ‘of accessing
" a random record from the single level Directory
Partitioned Disk File.

94

The accessing of a random record from a single level directory
partitioned disk file is shown in Figure 5.16. The user supplies the
full name of the desired record to the system, the operating system
will convert this full name into a fixed-length unique key and it uses
this key to search the directory for the address of the first data
record of the desired member; that is equivalent to roughly determin-
ing in which cylinder and track the desired record should be. The
access-arm will position on the desired cylinder, and the desired
data-track is read-in; the internal search is performed. When the
search is satisfied, the operating system will present the desired
record to the user; if the search is not satisfied, the operating sys-
time will call for the ""unfound routine' and notify the user '"NO SUCH
NAME IN THE FILE'"., See more details in Example 3a, page 268,

The method of accessing a random record from the double
level directory partitioned disk file is shown in Figure 5.17. The
user supplies a unique fixed-length key of the desired member name
to the system, the operating system will search for the beginning
address of the desired sub-directory and it will notify the user when
the job is done. The user has to supply the full name of the record
to the system, the operating system will convert the full name of the
desired record into fixed-length unique key. The operating system
will use this key to search in the desired subdirectory for the

desired cylinder and track. The access-arm positions on the desired

95

cylinder and the desired data track is read-in; the internal search

is performed. When the search is satisfied the desired data record

is presented to the user; the job is done.

If the search is not satis~

fied, the operating system will call for the ''unfound routine' and

notify the user "NO SUCH NAME IN THE FILE'. See more details

in Example 3b, page

ember lixed-
length key is
upplied by use

Main Directory

search,

|
Full name of record
is supplied by user.

Variable Tree

decoding task

The desired record
is presented to user

Sub-Directory
search.

;

A desired data
track is called
in and internal
search is per-
formed.

Disk File

S

Cylinder 1

o

Cylinder 2

Cylinder 3

|
l
|
|
I
|
l
l
|
|
|
I
!
|
|
(
|
I

[—

Figure 5.17.

Cylinder 4.

Block diagram showing the simulation of accessing

of a random record from double level directory
Partitioned Disk File.

96

Results of the Evaluation of the Partitioned Disk File

Results of the evaluation of the partitioned disk file and the
comparison of this file characteristics with those of the other method

of file organization are shown in Chapter VII.

97

VI. DIRECT FILE STRUCTURE AND USE

Direct File Structure

This chapter concerns some commonly used methods of direct
(random) organization, as well as the access methods provided for

files so organized.,

General Description

With direct or random file organization, there is a definite
relationship between the key of a record and its address. This
permits rapid access to any record if the file is carefully organized,
The records will probably be distributed nonsequentially throughout
the file. To permit the key sequence processing, a preliminary

sorting routine is applied.

Addressing

In direct file organization there is no need td use the key name
directory. This saves a lot of required memory space. The major
components are ''mapping function' (Hash Function) and ''master
file''. The graphical representation of direct file organization can

be as in Figure 6. 1.

98

| '.@ldress ast?
record

Address Maste

B record

Linear Pro@-’ Address Maste
record

ull name o
a record is
_supplied by
he user

record
Chain Probe} -@dress Master
— : record
G
: record
) recorda/

i

!
Argumenty Key to Address conversion 1' Master Records
search | withreduidant records handlinig} in the file system
t

Figure 6.1 Graphical representation of direct file organization,

Mapping Function

The other well known name of the mapping function is ""hash
function'. The technique of converting the key name of a record
into the address of a record is known as ''randomizing' or ""hash
coding'., In fact, with Direct File Organization the user generally
develops a record address that ranges from zero to some maximum
address; that is, the mapping area (storage supporting space) may

be considered as a single array or table. This storage supporting

99
space is called "hash table' or ''scatter storage table'’

Hash code technique is the fastest known method of searching
and insertion, It allows either searching or insertion in one step,
unless the table is over half full. In a hash table, the position of
any item is determined by its hash code, used as its address in the
table, which is a number easily obtained from the record name of the
item. There are many techniques in performing hash coding, as
mentioned by Robert Morris (24), Schay, G., Jr., and W. G. S.
Pruth (31), Johnson, L. R. (17) and Mcllroy, M. D. (26).

From experiments the writer has found that the simplest hash
code is the ''division hash code'. If the array has length n, that is,
there are maximum n entries contained in the table, and the largest
integer that may be contained in a computer word is m, the division
hash code of a word is found by dividing it as an integer by n. This
produces a quotient and a remainder; the remainder is an integer
between 0 and n-1, and may be used as the address of the entry in
the table or table index.

Items are entered into a table with a table index which is com-
puted from the record name of the item by means of some hash
coding method, See detail in Example 4, Appendix B. As long as
no two inserted items have the same hash code, searching and
insertion are performed each in a single step regal;dless of the size

of the table, When two items have the same hash code, a collision

100
or redundancy is said to exist. In this case the second item is called
the ""'secondary record'' or "overflow record', while the first item
is called ''first record' or ""home record'. The overflow record
must be put in another place in the table. Although it takes extra
time to search or insert the overflow record, if the hash codes are
randomly distributed, the average number of searches is less than
two, even for a table that is 80 percent full.

The usual hash coding methods involve the calculation of a
k-bit field, which is assumed to be a random integer between 0 and

Zk-l. Thus the table size is restricted to the value of Zk.

Hash Code Redundant Handling

When hash coding is performed, it becomes possible for the
computed address of different keys to be the same, causing a colli-
sion between the storage locations allocated to each, Some other
place in the table must be found for one of the items. It is initially
assumed that once an item has been entered, it is never moved or
deleted. So another potential place must be found for the new entry.
In general, when the table is nearly full, many redundancies or
collisions may occur while the table is being probed for an empty
slot, Hence some procedure is needed which generates additional
calculated addresses until an empty slot is found. Of course, the

same procedure for generating additional calculated addresses

101

must be used when the item is later looked up.

In practice, when a hash coding routine is called for it is not
necessary to specify whether an item is being entered or being
looked up. What is required of the routine is to determine the address
at which the offered key belongs and to notify the user whether the
key has already been entered. Then the calling routine can make the
entry or extract the information, as appropriate. The procedure will
be to generate successive hash addresses until encountering either
a slot that containsg the desired key or a empty slot. In the latter
case, the key is entered in the empty slot, if it is entered at all.

Many methods of resolving the collisions problem have been
suggested by Robert Morris (27). The particular method to be used
in a specific application should be chosen carefully, since the method
of handling collisions will affect the efficiency of the technique and the
difficulty of the programming task, The three conventional methods
of handling the collision problems are briefly mentioned here.

Linear Probing. In linear probing, which is also called the

""open method', the filing algorithm is as follows:
1. Calculate the address of the record to be entered in the file.
2. Input the record in that location if it is empty.
3. If the previous step is not successful, add i to the address
considered in step two, where i is an integer such as

i=1, 2, 3,... etc,

102

4. Repeat step two.

In figures 6.2-6. 4 it is assumed that the size of the table is
N=8 and the following key names are going to be entered in the hash
table: MOORE, SMITH, JONES, BLACK, BROWN, JOHNSON,
BARONE, and OWEN (Details on pages 109 - 110).

In this method, upon collision, a search is made forward or
backward from fhe nominal position, the initial calculated addresses,
until the desired entry is found or an empty space is encountered.
The search is made circularly past the end of the table to the begin-
ning, if necessary. If an empty space is encountered, that space
becomes the home for the new entry.

The efficiency of the linear probing method can be analyzed by
techniques similar to those used by Schay, G., and W. G. Spruth
(31) to evaluate a related method, The result is that, to within
suitable approximation, as shown in Equation 6.1, if E is the aver-
age number of probes necessary to look up an item in the table

Then E = (1-a/2)/(1- a)

(6.1)

where o is the loading factor of the table.

Random Probing., With random probing, the algorithm of

generating successive calculated addresses to handle collisions is

as follows:

103

1. Calculate an address in the table by using some transforma-

tion (hash coding) of the key as a table index or address.

2. If the item is already at this address, or if the place is

empty, the job is done.

3. If some other key is there, call a pseudorandom number

generator for an integer offset . Make the next probe
at location 1 +p and go to step 2.

In practice the random number generator must generate every
integer from 1 to N-1, N being the size of the table, exactly once.
When the generator runs out of integers, the table is full and the
entry cannot be made. See details of the random number generator
in Example 4, Appendix B, and an example of random probing in
Figures 6.5-6.6 on pages 113 - 114.

The efficiency of the random probing method is expressed
in terms of E, the average number of probes necessary to retrieve
an item from the table. It happens to be equal to the average number
of probes which were required to enter the items originally. The
value of E depends on the fraction aof the table which is occupied
but not on the size of the table. In case N is the size of the table,
and k represents the number of items in the table.

Since E is equal to the average of the expected number of
probes to retrieval on record from the table, by mathematical

manipulation and approximation, as in equation 6.2

104

ot

E =:(=) log(l -a) (6.2)

o
where

ais the loading factor. See the details in Example 4,

Appendix B.

Deletion of entries by using this scheme is a somewhat complex
process. One cannot mark an entry as empty in order to delete it
because other entries may have collided at that place, and they
would become unreachable., The hash addresses for every entry
in the table would have to be recomputed and some of them moved
in order for the gap caused by the deleted entry to be closed up. A
much more convenient method of deletion is to reserve a special
sign for a deleted entry., When a search is made for the proper
place of a key, the search continues if a deleted entry is encountered.
A new item can be stored in place of any deleted entry. The dis-
advantage of this method is that the lookup time is not reduced when
the entries are deleted; only the lost space is reclaimed.

Direct Chain Probing. Another method of resolving collisions

is called direct chaining, and is considerably more efficient in terms
of the number of probes per record-retrieval. In this method, part
of one of the words or extra spaces in each entry is reserved for a
pointer to indicate where additional entries with the same calculated

addresses are to be found, if there are any. So all the same

105
calculated addresses are to found on a chain (or linked list) starting
at that address. The last entry on each chain must be distinguished
in some way, such as by having '""k*'' as a zero pointer, and end of
the chain.

The standard algorithm of direct chain probing is as follows:
1. When a key is to be looked up, its hash address is com-
puted, and then
— if that address is empty, the key has not been entered
— if that calculated address is occupied, search down
the chain starting from that address; if the key is not
encountered, it is not in the table,
2. When a new item is to be entered in the table, its hash
address is cofnputed and then
— if that address is empty, the item is installed there.
— if that address is occupied by the item which is the head
of the chain, the next available space (or unallocated
cell) in the table is found by a ''search for available
space routine', and the new item is placed in the new
available space. Then the new entry is inserted in the
chain, the pointers are updated both for the previous
successive entry and the new-coming entry in the same
chain, starting from the calculated address.

— if that address is occupied by an entry which is not the

106
head of the chain, i.e., by an entry which is not at its
own calculated address, then the old entry must be
moved to another slot and the new entry inserted in its
place. Search for the next available space is required
for installing the old entry, and updating the pointers
of the chain it is on,

The disadvantage of this method is that the entries must be
moved in the storage, which makes the programming of handling this
task more complicated than by other methods. Robert Morris (27)
suggested that when a newly entered item is to be placed on the chain,
it is usually more profitable to place it near the head of its chain
rather than at the end of the chain, The other inefficiency of the
direct chain method is that it requires more space.

An attractive feature of this method, from the result of an
experiment made by the writer, shows that when the table is almost
filled up or completely filled up, the new items can be placed in the
table (or even overflow area) with no change in the strategy of mak-
ing entries of looking them up. The efficiency of this method is still
quite good even after overflow has occurred.

The average number E of probes necessary to find an item
using this scheme has been calculated by Johnson, L. R,, (17) as

shown in Equation 6, 3.

107

E = 1+a/2 (6.3)
where a = k/N, the loading factor

k = mnumber of entires

N = table size.

See the values of Equation 6.3 by computation and by simula-
tion on pages 304 - 309.

The standard rule for deleting items entered by chaining is as

follows:

1. An entry not stored at its calculated address may be set as
empty and its former chain joined around it (no link con-
nected to deleted entry).

2. An entry stored at its calculated address, but with no
chain starting from it, may merely be set as empty,

3. An entry stored at its calculated address with a chain
starting from it must either be marked or deleted, or one
of the items on its chain must be moved to the calculated
address and the chain properly set up.

See the illustrated examples on pages 116 - 118 and the compu-

tation of simulation in Example 4, Appendix B.

Direct File Maintenance

Maintenance of the direct (random) file is influenced by the

mapping function and the technique of handling the secondar
pping g y

108

records selected by the user.

Suppose an effective mapping function is selected.

Case I,

When the linear probing method is chosen to handle

the secondary records.

To add a new record to the file:

Step 1.

Step 2.

Step 3.

Compute the calculated address of the record, 1, to be
added to the file.

Look up the calculated address location and input the
record in that location if it is empty. The operating
system furnished the addition for that record. Other-
wise, go to Step 3.

Add i (i=1, in the example on page 109) to its-

calculated address forming the new address, 1 +1i,

where i is an integer such thati =1, 2, 3, etc.,

depending on the user's solution and go to Step 2.

When a record in the file is deleted:

Step 1.

Step 2.

Compute the calculated address of the record, 1, to
be deleted from the file.

Look up the calculated address location and if the

key name of the record is encountered, delete it and
the deletion is finished. If that location is empty, the
operating system will notify the user that there is no

such record name in the file, Otherwise gotoStep 3.

109
Step 3. Compute the new address by 1 +1i (i = 1 in the example
in Figure 6.2) where i has the same meaning as
in the adding procedure, and repeat Step 2.
The procedure for updating the data of a record in the file is
the same as for deleting it, but when the search is matching, read
out the desired record instead of deleting it.

See the illustrated examples in Figures 6.3 and 6.4 on page

110.
Transformed
Argument Address Address Item IAddress Item
MOORE 4 —t | JONES o1 JONES (Home address)
SMITH 2 2 SMITH 2 SMITH
JONES 1 3 3 BARONE
BLACK 5 4 MOORE -4 MOORE (Home address)
BROWN 8-_] 5 BLACK 5 BLACK
JOHNSON 4 6 6 JOHNSON
BARONE 1 I 7 7 OWEN
OWEN 4_ 8 BROWN 8 BROWN
a) List of Arguments. and b)File after Stép 1and2 - ¢) After Steps 3 and 4
Transformed Addresses

Figure 6.2, Addition of the new items into the file with Linear probing.

. Transformed
Argument Address Address Item A ddress Item
MOORE 4— 1 JONES 1 JONES
(deleting argument is 2 SMITH 2 SMITH
not secondary KEY')
3 BARONE 3 BARONE
4 MOORE - - 4 ——
5 BLACK 5 BLACK
6 JOHNSON 6 JOHNSON
7 OWEN 7 OWEN
8 BROWN 8 BROWN

a) Deleting Argument and its

Transformed Address.

b) File after Steps 1 and 2

c) File after Steps 3 and 4

Figure 6.3. Deletion of the items which are not secondary records from the file with

Linear probing.

Transformed
Argument Address Address Item Address Item
OWEN 4 — 1 JONES 1 JONES
(deleting address is 2 SMITH 2 SMITH
a secondary record)
3 BA RONE 3 BA RONE
4 4
5 BLACK 5 BLACK
6 JOHNSON 6 JOHNSON
7 OWEN 7
8 BROWN 8 BROWN

a) Deleting Argument and
its Transformed A ddress

b) File after Steps 1 and 2

c) File after steps 3 and 4

Figure 6.4, Deletion of the items which are secondary records from the file with linear

probing.

110

Case II.

111

When the random probing method is chosen to handle

the secondary records.

To add a new record to the file:

Step 1.

Step 2.

Step 3.

Compute the calculated address of the record, 1, to
be added to the file.

Look up the location of the calculated address. Input
the record in that location if it is empty; then the task
for adding that record is finished; otherwise go to
Step 3.

Call pseudorandom number generator routine to
generate random number, p, compute the new address

by 1 + p, and repeat Step 2.

To delete a record from the file:

Step 1.

Step 2,

Step 3.

Compute the calculated address of the record, 1, to be
added to the file by selected mapping function.

Look up the location of the calculated address. If

the key name of the argument record and the key name
of the calculated address location are matching, delete
the recoded, and the deletion is finished. If that
location is empty, the operating system will notify the
user that there is no such record name in the file,
otherwise go to Step 3.

Call for random number generator routine again to

112

generate the new random number , compute the new
address location by 1 + p, and repeat Step 2.
The procedure for updating data of a record in the file is the
same as that for deletion, but when matching occurs the record is
read out instead of being deleted.
See the illuptrated example of addition and deletion of records
for the file with random probing, Figure 6. 5.
Case III. When the direct chain probing method is chosen to
handle the secondary records.
To add a new record to the file:
Step 1. Compute the calculated address of the argurﬁent
record, 1.

Step 2. Look up the location of the calculated address. Input
the new record in the location immediately after the
‘has'h address of the key if that location is empty; i.e.,

this record is the first record, and is also the head

of the chain, If the location of the calculated address
is not empty, éo to Step 3.

Step 3. Call for the routine to find the first available space in
the table, depending on the result of the lookup from
Step 2. 'If the hash address of the argulment record
and the hash address of the installed record are

matching, the new record becomes the secondary

113

Transformed |

Argument Address Address Items
MOORE 4 ! JONES
SMITH 2 2 SMITH
JONES 1 3

BLACK 5 > 4 MOORE
BROWN 8 =5 BLACK
JOHNSON 4 6

BARONE 1 7

OWEN 4 = 8 BROWN

a) Argument and transformed
address

b) File after first records
are added

0 = Home address

Random generator Address Items
generate value of p Nl] TONES S
suppose p = 3 ‘
2 SMITH o
Transformed
Argument Address ' \ 3
JOHNSON 4 +3=17 4 MOORE o
5 BLACK o
6
=7 JOHNSON o
8 BROWN o

a) File after secondary records
are added

Figure 6.5, Addition of records to the file with Random probing.

114

Transformed "

Argument Address Address Items Address Items

‘JONES 1 -1 JONES o 1

SMITH 2 2 SMITH o 2

JOHNSON 4 3 3
4 MOORE o 4 MOORE o
5 BLACK o 5 BLACK o
6 6
7 JOHNSON 7 JOHNSON
8 BROWN o 8 BROWN o

a) Argument and trans-
formed address

b) File after first records
JONES, SMITH are deleted

IAddress Items Address Items
Random generator 1 1
will generate value ||
of p = 3, the same 2 2
ad addition
3 3
Transformed| \
Argument Address 4 MOORE 4 MOORE
JOHNSON 4 4 3= 7 . 5 BLACK 5 BLACK
6 6
7 JOHNSON 7
8 BROWN 8 BROWN

Figure 6. 6.

c) File after the secondary

key JOHNSON is deleted

Deletion of records in the file with Random probing.

Step 4.

115

record. Install this new record in the new available

space, preceded by the hash address of the key. If
the above comparison is not matching, the new record
is the first record and is also the head of the chain

at that lookup location. Move the successive second-
ary record in that chain into lookup location and adjust
the pointers in that chain., The deletion is complete.
Otherwise go to Step 4.

If the key of the desired record is encountered at some
place down the chain, delete it, and the deleted record
is the secondary record in the chain. Update the
pointers of the chain. The deletion is finished. For
updating the data of the record in the file, the steps
are the same as for deletion, but when the desired
record is encountered it is read out instead of being
deleted, There is nothing to change, not even the

desired record at the head of the chain.

To delete a record from the file:

Step 1.

Step 2.

Compute the calculated address of the key name, 1,
to be deleted,

Look up the location of the calculated address, 1. If
it is empty, the operating system will notify the user

that there is no such record name in the file. If it is

Step 3.

116

occupied, search down the chain starting from this
location. If the key is not encountered, the operating
system will notify the user that there is no such key
in the file, Otherwise go to Step 3.

If the key of the desired record is encountered at its

calculated address, delete it and the deletion is

complete,

See the illustrated example of addition and deletion of records

in the file with direct chain probing in Figures 6.7, 6.8, 6.9, and

6.10. Note * is the end of the chain,

Transformed

Argument Address A ddress Items Chain| [Address Items Chain
MOORE 1 JONES - 1 JONES 6~
SMITH 2 SMITH - 2 SMITH *
JONES 3 - - 3 JOHNSON E*
BLACK 4 MOORE - 4 MOORE 3
BROWN 5 BLACK - 5 BLACK *
JOHNSON 6 - - 6 BARONE * g
BARONE 7 - - 7

8 BROWN - 8 BROWN *
a) Listing of arguments and b) File after addition of first records and

transformed addresses . secondary records; the pointers are updated.

Figure 6.7. Addition of items in the file with direct chain probing.

117

Transformed

Argument Address Address Items Chain| {|Address Items Chain
MOORE 4 1 JONES — 6 1 JONES 6-—
SMITH 2 2 SMITH * 2 SMITH *
JONES 1 3 JOHNSON E 3 FOSTER *
BLACK 5 4 MOORE 4 MOORE 77
BROWN 8 5 BLACK * 5 BLACK *
JOHNSON 4 ' 6 BARONE = 6 BARONE T
BARONE 1 7 7 JOHNSON ot
FOSTER 3 8 BROWN * 8 BROWN *

a) List of addition arguments b) File after addition of secondary record the head

and transformed addresses of the chain; the records, and pointers are

updated.

Figure 6.8, Addition of secondary record, the Head of the chain when the calculated address
of the new coming item is occupied.)

Tr_an;formed
Argument - ‘Address A ddress Items Chain| |[Address Items Chain
SMITH (First 2 1 1 JONES 6— 1 JONES 6 —
record) L
JOHNSON 4 2 SMITH * 2 - -
(Secondary record but -3 FOSTER * 3 FOSTER *
not the head of the chain)
—p 4 MOORE —7 4 MOORE *
5 BLACK K 5 BLACK *
6 BARONE e 6 BARONE ot
7 JOHNSON lawx 7 - -
8 BROWN * 8 BROWN *
a) List of arguments and b) File after deletion; the
transformed addresses chain is updated.

being deleted.

Figure 6,9 Deletion of the items which are first record and secondary record, not the
head of the chain.

v

118

Transformed :
Argument Address A ddress Items Chain | Address Items Chain
JONES (Second- 1 >1 JONES 6 1 BARONE *
ary record, the
head of the chain) 2 - - 2 - -
3 FOSTER * 3 FOSTER *
4 MOORE * 4 MOORE *
5 BLACK * 5 " BLACK *
6 BARONE = ed 6 - -
7 - - 7 - -
8 BROWN * 8 BROWN *
a) Deleted argument and b) File after deletion; the head
transformed address. of chain and the pointer are
updated.

Figure 6. 10, Deletion of the item which is the secondary record, the head of the chain.

Direct Disk File for On-Line System

As direct file organization permits rapid access to any record
from the file, on-line or realtime system designers have considered
this attractive feature of direct file organization, There are several
computer manufacturing companies which design their own on-line
or realtime information system, using direct file organization to

handle the information of the individual system.

Direct File Organization Supported by Disk

When the direct organization file is supported by Disk, accord-

ing to the nature of the mapping function, the records will probably

119
be distributed non-sequentially throughout the file, See illusfrated
example in Figure 6.11 on page 121. The mapping of master records
on the disk surface is the same as that in the sequential file, The
user has to figure out beforehand how many words are required for
one record (the space in core memory), and how many records can
be contained in one track, in one cylinder, or in one disk unit. The
user has to keep in mind that even the address of the block of the

master records in the disk is assigned, but the disk hardware system

as designed can be addressed only by cylinder number, head number,
and track number, Only the portion of a track (an effective number
of blocks of records transferred between core memory and disk,

one at a time), is written as read into core memory. The exact
location of the record in the file can be located directly in internal
core memory,

Therefore to address a record from disk the following strate-

gies have to be used:

1. The approximate location of the desired record has to be
known as to what cylinder or what head is to be used to
read or write the desired information, and the number of
the track in that cylinder, in which it is to be located.

2. The disk control program will set the specified head on

the desired cylinder and the desired track,

120
3. The reading or writing begins. If it is a reading process,
the number of effective blocks of information are read into
the main core memory. That is the numbers of the records,
containing in the desired track, are copies and mapped
into the core memory.
4, The desired record is located by some means (Linear
search, or Binary search if the successive records are
in sequence of keys, because sort routine has been intro-

duced beforehand).

Addressing

With direct file organization, the user generally develops a
record address that ranges from zero to some maximum track
address. However, the addresses are noncontiguous. For example,
the address of the last track on the first cylinder of an IBM disk unit
2302 is 0045, while the first track on the second cylinder is 0100,
Furthermore, the file may start at other than the first track of a
device, and it may occupy several nonadjacent areas., According
to the nature of the Disk Operating System (DOS), the user is per-
mitted to refer to a relative cylinder and a relative track address.
Suppose N tracks are allotted to a file. The user refers to relative
track ’0 through N-1. The input-output control system will convert

this number to the corresponding absolute track address.

121

T

Address Cylinder O Address Cylinder 1 Address Cylinder 2

0000 f// 0100 % 0200
00:5 ‘ / :)’145 / 0245 é Disk cylinder concept

Figure 6. 11. Address pattern on Disk memory.

With some operating systems such as the Basic Operating
System (BOS) of IBM, the user programs the steps to convert the
relative track address to an absolute track address of the format
shown in Figure 6.12 on page 122 which illustrates an absolute track
address format of D854, disk memory. KEach byte (1\ byte = 8 bits)
in the address .is a binary number. When the user wishes to refer
to a particular record, he must supply either its key or its identifier
(i.e. cylinder number, head number, and record number) as well as

the track reference.

122

Upper portion Lower portion
A A
h A ot \
23 20 19 12 11 87 43 0
Li
7/// 8 bits = 1 byte f// Track !Secotor
. &
— p / 8 bits = 1 byte
Cylinder Sector

Figure 6.12. Disk storage drive address format, based on
D854, disk memory.

Directly Addressed File for Disk. For direct addressing, every

possible key in the file converts to a unique address. This makes
it possible to locate any record in the file with one search and one
read. The conventional technique of direct addressing is a follows:

1. Using the key as the address. In order to be able to use

the key of a record directly as its address, the record must
be of a fixed length, and the key must be numeric. One
computation is required. Divide the key by the number of
records per track; the quotient equals the relative track
address, and the remainder plus one equals the record
number (where record 0 is used as a capacity record).

This method of direct addressing not only allows minimum
disk time when processing at random, but also provides

for sequential processing, since the records are written in

key sequence. The disadvantage is that there may be a

123
large amount of unused direct access storage. A location
must be reserved for every key in the file's range, even
though many keys are not used. Furthermore, this method
is similar to hash code, and uses the numeric character
as the record's key name. For example, the user may
use the student number or social security number, worker
number or customer number as the key name of the record,

2. Using a Cross-Referenced List. With this method, each

record in the file is assigned an address and a cross-
reference list of keys and assigned addresses is maintained.
Since the address must be looked up, then the list, as

well as the file, must be kept up-to-date. The list may
itself be a file, recorded on a disk. Although any record
can be located directly when its address is known, time is
required to look up the address in the list. The index
sequential file is a variation of this method,

Indirectly Addressed File for Disk. Indirect addressing is

generally used when the range of keys for a file includes such a

high percentage of unused records that direct addressing is not
feasible. For example, customer numbers range from 0001 to 9999,
but only 3000 of the possible 9999 numbers are assigned. Indirect
addressing is also used for alphabetic keys.

With indirect addressing, the range of keys for a file is

124
compressed to the smaller desired range of addresses by some sort
of computation. This technique is called "randomizing', It
inevitably causes collision, redundant or secondary records.

Two objectives must be considered in selecting a randomizing
technique (or mapping function) for disk memory.

1. Every possible key in the file must randomize to an

address in the allotted range, and

2. The addresses should be distributed evenly across the

range so that there are few redundancies.

With disk memory, a record that is written where it ""belongs"
(at the address to which its key randomizes, or its calculated address)
is called a '""home record'., Any other records whose keys random-
ize to this address are ''overflow records', The overflow records
should be kept to a minimum because of the additional time required
to locate them.

A way to minimize overflow records is to provide more space
for the file than is actually required to hold all the records. The
term '"packing factor' or '"'loading factor' means the percentage of
allotted location that is actually used. For the indirectly addressed
file, an initial packing factor of 80-85% is suggested by IBM.(15).
For example, a 10,000 record file packed 83% would be allotted
space for 12,000 records.

The technique to minimize overflow records is to randomize

125
to track address rather than to record address. In case we random-
ize to record addresses, all redundant records cause overflows,
That is, the disk system simply cannot provide the alloted space
for the redundant records that the core memory can. See Figure
6.13a. Thirty percent of the records are redundant and 309% are
overflows. Randomizing to track address, causes many redundan-
cies, but no overflow until a track is full, As shown in Figure
6.13b, 70% of the records are redundancies (the redundant records
are two x3, y2, y4, two z2, and z3). If randomizing to record
number, the commands to locate the desired record are Seek,
Search Identifier Equal, Read Data. If randomizing to track number,
the commands are Seek, Search Identifier Equal, and Read Data. It

is evident that both sets of commands take the same amount of time,

Track x Track y Track z
z2
x3 ' z2
x1 x3 yl y2 y4 z2 z3
1T 2 3 4 1 2 3 4 1 2 3 4

a. Randomizing to record address.

x3| x3 'yl y2 v4
1 2 3 4 1 2 3 4 1 2 3 4

zl| z2 z2 z3

b. Randomizing to track accress.

Figure 6. 13. Redundants and overflows in disk memory.

126

Randomizing Techniques Used for Disk

There are many randomizing techniques to convert the key of
a record into its address in disk memory. Selecting a good one for a
particular file may require some trial and error. IBM (15) has
suggested that an effective randomizing technique should cause no
more than 207% redundancies in excess of the number of records per
track,

The most popular randomizing technique which is simple and
often gives good results is called '"Division/Remainder Method'’.
The key is divided by a prime number, a number evenly divisible
only by itself and by one, that is close to the number of addresses
alloted to the file, The remainder is used as the address.

Example 1. The problem is to load 8000 200-byte records
on a disk with randomizing to track address with 80% packing.

1. With 80% packing, 10,000 locations are required,

2. Only 16 records can be loaded per track, sd 625 tracks

are required.

3. A prime number close to 625 is 619.

4, Divide the key by prime number 619.

5. The remainder (000 to 618) equals the relative track

address.

Example 2. Same as above, but randomizing to record address.

127

1. A prime number close to 10,000 is 9973,

2. Divide the key by 9973.

3. Divide the remainder in Step. 2 by the number of records

per track, which equals 13 in this case.

4, The quotient equals the relative track address; the remain-

der plus one equals the record number.

This method can also be used both for numeric keys and non-
numeric keys. Using binary arithmetic will probably give better
results than using decimal arithmetic, since the uniqueness of the
letter and special character in the key is retained.

The division/remainder method automatically achieves the first
objective, to have all keys converted to addresses within the allotted
range. Whether it achieves the record objective for a particular
file, that is, to have few (not more than 20%) redundancies is
determined by testing (simulating) it. See details in Example 4,

Appendix B,

Description of a Direct Disk File

With direct organization, the records may be fixed-length
records, variable-length records or undefined-length records. See
Figure B, 2, page 202. They may be formatted with or without keys.

In case the file is indirectly addressed and randomizing to track

128
a.ddress'—?"/ for efficiency the records have to be formatted with keys.
If not, each record on the track must be read to determine if it is
the desired record or not. The records may be biocked or unblocked.
The access method for directly organized files in the operating sys-
tem handles physical records rather than logical records. So if the
file is indirectly addressed (by use of an alphabetical key), the
records are probably unblocked.

In most direct organization files, the record number zero, RO

of each track is used as a capacity record. It contains the address
of the last record written on the track and is used by the operating
system to determine whether a new record will fit on that track. The
capacity records, which are originally written for a file by a utility
program, are updated by the operating system as records are added
to the file. They do not account for deletions. When a track is full,
it remains full as far as the operating system is concerned, until
the file is reorganized, even though the user deletes records,

An indirectly addressed file generally consists of just one
logical area, main file area, which may actually be several non-
adjacent physical areas. The location of overflow records and

secondary records is up to the user, but they are generally put in an

E'/Ra.ndomizing to track address: key of records are converted
into their corresponding track address and count only the synonyms
in excess of the number of records per track. See Figure 6.13b
on page 125.

129
unused location in the main (and only) file area. Secondary records
can be put in a separate area if the user desires, The disadvantage
of doing this is that each overflow record will require an additional
seek, One file area should be used and a good randomizing technique
selected so that the file is not being packed too tight, The overflow
records are likely to be in the same cylinder as the home record.

This will eliminate the need for an additional seek,

On- Line Direct File Maintenance

As the user has complete freedom in deciding where records
are to be located in a direct file, he is free to select the mapping
function and the technique to handle the secondary records of the file.

When the randomizing technique is chosen, the maintenance
of the file can be performed by the following strategies.

1. When creating or adding records to the file, the user may
specify the location for a record by supplying the track
address, or he may supply just a track address and let the
operating system find a location for the record. That is,
the user supplies the key name or the full name of the
record, and the operating system converts the key name
of the record or its full name into track address, and
finds the location for the record. If ther is room on the

specified track, the operating system writes the record,

130
and updates the capacity record for files constructed with
capacity records. If the specified track is full, the
operating system continues searching for first empty
space on successively higher tracks until a first emply
space location is found. This search continues for as
many tracks as the user has specified, to a maximum of
the entire file. If a maximum search is specified and the
end of the file is reached, the search for the first empty
space will return to the beginning and continue until a
location is found or until the original track is reached.

In some operating systems such as BOS or Disk Operating
System (DOS) of IBM, during the adding operation, if the
specified track is full, the user must supply another track -
address.

When reading or updating the file, the user must supply a
key for the desired record. The operating system con-
verts it to a proper track address, The operating system
searches for that key and, in case the search is satisfied,
reads or writes back the corresponding Data Area. If a
key is not found, the operating system so indicates to the
user. A search by key is provided with two options, a

restricted or an extended one. On a restricted search,

only the track specified by the user is searched. On an

131

extended search, the operating system continues searching

on successively higher tracks for as manv tracks as the
user has specified. Actually the operating system and
Disk Control System will continue searching to the end of
the cylinder.

Furthermore, withvindirect addressing, the logic of creat-
ing, maintaining, and processing the file depends mainly
on the technique that the user has selected to handle the
overflow records in the file area.

Evaluation of Accessing Characteristics
of the Direct Disk File

The parameters of the Direct Disk File have to be measured

so that this type of file can be compared with others, For the CDC-

3300 with OS-3, the simulator provides the following strategy to be

performed for the simulation and computation of the Direct Disk File.

1.

For all cases of simulation with the Direct Disk File,
records in the file are assumed to be fixed and blocked,
formatted with keys, and randomized to track address,
Overflow records are placed in unused locations in the
main area only,

In measuring the efficiency of mapping functions (hash

coding) the alphabetic key name system is more desirable,

132
In fact the alphabetic key name, the numeric key name,
and the alphanumeric key name can be interpreted equally
well by the computer, under the same rnapping function.
However, it ic simpler and more convenient to select the
alphabetic key name (the full name of the record) for use in
the simulation.
In evaluating the efficiency of the selected hash functions,
the writer has performed experiments using only selected
names of people of the United States. Results of these
experiments appear in Example 4, Appendix B.
A random record is accessed from the direct disk file
system. All data records are stored on disk memory
(D854) and distributed according to the nature of the
selected hash function. The user has to supply the full
name of the desired record to the system. By user's
editing, the operating system will call for the selected hash
coding routine to convert the record full name into the hash
address. The operating system will use this hash address
for accessing the desired record in direct disk file. The
procedure of accessing a record from the file system is
dependent on the method selected to handle redundant
records. In this evaluation three well known methods,

linear probing, random probing, and direct chain probing

133
are to be considered., See details in Example 4, Appendix

B.

Purpose of the Evaluation

The purpose of the evaluation is to determine the following

parameters of the Direct Disk File, and its characteristics.

1. To evaluate the efficiency of the selected hash function
with three methods of handling overflow records: linear
probing, random probing, and direct chain probing, in
terms of the average number of search length per record
retrieval, based on testing programs (expected number of
searches or compares until the desired record is found
for accessing a random record from File).

2. To compute the access time when the record is located
on the disk memory, based on the selected hash coding
technique,

3. To measure the storage space requirement,

4, To find the characteristics of "average throughput/time
per record retrieval' and ''achievable throughput-rate
capability'.

5. To find the ""cost/effectivemess'' characteristics (user

or customer operating cost per call, unit cost).

134

6. To compare its characteristics with other methods of

file organization,

Simulating Block Diagram Model

Disk File

1] Cylinder 1

Hash I decoding
task

!

ull name ot the\
record is supplied

!

address of the
desired record

o] Cylinder 2

|
|
I
|
I
I
]
|
|
|
Variable length :
tree decoding |
|

|

I

|

}

I

1

I

I

|

1

1

task.

7
Fixed length key

Cylinder 3

[A desired track is
‘called in core
memory and inter-
nal search is per- |l
formed. |
i
]

V

Cylinder 4

e —— e — e e — —— —— o = g = = = e e = =] ——

Figure 6. 14. Block diagram showing the simulation of accessing
of a random record from Direct Disk File.

-

The simulation of accessing a random record from a Direct
Disk File can be illustrated as in Figure 6. 14, Each logical record

in the file is fixed, blocked, and associated with a key and a pointer.

135
The preliminary evaluation of five hash functions is determined by
internal simulation: Hash 1-5, with three methods of handling
redundant records. The results of the evaluation are shown in
Figures 9.12-9. 15, Hash 1, which possesses the best search char-
acteristics has been selected to demonstrate the results of direct
disk file accessing. The direct file is recorded on D854, disk
memory, one read/write head per disk surface by using the cylinder
concept. See Figure 2.10, page 15. The records can be stored in
contiguous areas track by track, cylinder by cylinder, not in a key
sequence, but distributed according to the nature of mapping function
(hash function), For accessing the desired record from the direct
file, the full name of the record is supplied to the system. The tree
with variable-length key directory decoding routine is called, and
converts the full name of the desired record into one word, a unique
fixed-length key. The operating system can use this fixed-length key
as search argument, Since each record of the direct disk file needs
extra space for a pointer there are 63 logical records for each track
of this file, From the results of evaluating the five selected hash
functions, it is more efficient to use Hash 1 as the selected mapping
function associate with linear, random, or direct chain probing one
at a time to compare the results with other file accessing methods.
By controlling of operating system one track (desired track) of direct

disk file is called in and the internal search by linear probing,

136

random probing, or direct chain probing is performed. If the
desired record is found; the operating system will nresent it to the
user. In case desired record is not found, the operating system

will notify the user that it is not there. See details in Example 4,

Appendix B.

Results of the Evaluation of the Direct Disk File

Results of the evaluation of the direct disk file and comparison

with the other methods of file organization are shown in Chapter VII.

137

VII. RESULTS AND CONCLUSIONS

Summary of Investigation and Evaluation

One objective of this thesis is to present a possible method
which the writer expects to be useful for people in data-processing
or digital-information-systems. This technique reduces time and
effort in the calculation of meaningful numerical values to be used
as references in determining the economic performance. To meet
this objective, the following technical terms, average throughput
time per record retrieval, achievable throughput-rate-capability,
and operating cost per performance, are defined and evaluated. A
certain system-operating assumption is also defined. In addition,
technical terms, their definitions, and equations in which they
appear are shown in Appendix B. The extensive use of curves and
tables in this chapter is intended to help the system designer and the
evaluator to better understand the trade-offs available., The reader
has to keep in mind that in all cases of the investigation the system
is assumed to be an on-line only operation and no-error with fixed-
length message arriving at a uniform input rate.

For the evaluation of the performance and operating cost of an
on-line data file system, the schematic diagram of investigation and

evaluation is presented in Figure 7.1, page 142. The following data

138

file characteristics have to be evaluated and compared:

1.

Average throughput time per record retrieval as the
function of file loading factor, for each typical file. The
description and results of the investigation are discussed
on pages 146 - 151.

Achievable throughput-rate-capability as the function of
file loading factor for each typical file, This is computed
by using general formular equation (7. 1), pagel4l . This
description and results are discussed on pages 152 - 161.
File operating cost per call (unit cost) as the function of
file loading factors for each typical file at selected rates
of call (calls per hour), to help the evaluator visualize
better the trade-offs available. Details of the description
and results of the evaluation are covered on pages 162 ~ 175.
Two common methods of internal search, linear search
and binary search, as the preliminary work for data file
internal search evaluation and compare, See details and
results of evaluation on pages 193 - 197,

Five common hash methods selected for investigation of
the values of average search-length per record retrieval
(expected number of searched per random record retrieval)
as the function of file loading factor, as the preliminary

work for selecting the best method to be used in evaluating

139
direct disk file organization., From the results of evalua-
tion and comparison, Hash I is the best hash function, and
is selected for the evaluation of the accessing character-
istics of direct disk file organization, See details and

discussion on Example 4, Appendix B, pages 294 - 311.

In making a decision as to which method of data file organiza-

tion is the most suitable one, the following criteria are to be con-

sidered;

Among techniques (types of files) with equal cost, total
cost of the system, or in some cases only operating cost,
is to be considered, depends on the objective of the
problem, The technique with the greatest effectiveness
(the one providing the maximum achievable throughput-
rate capability) is best.

Among techniques (types of files) with equal effectiveness,

the one with the least cost is best.

Thus it is reasonable to evaluate and compare the average

throughput time per record retrieval, achievable throughput-rate-

capability (the maximum rate of use of each typical file), and file

operating cost per call as the function of the file loading factor. In

fact, when a decision is made on a set of data file organization

methods, file-system parameters have to be specified:

140
a) File loading factor or file size,
b) Rate of use of file (calls per hour).

The algorithims of making decisions are:

1. Checking which type of file can be operated at the specified
rate of use, by using the curve or the table of achievable-
rate-capability, to find a set of file organization methods
(at least one) which satisfies the specified rate of use.

2. Checking with type of file from a set of files obtained
from 1. can be operated at lowest cost, by using the
curves and the table of file operating cost per call, unit
cost. If there exists more than one type of file giving the
lowest operation cost per call, go to 3.

3. Checking again a set of files obtained from 2 by using the
achievable-rate-capability curves of Table 7.3 on page

and selecting the one providing the highest achievable-
throughput-rate-capability as the typical file for decision
making, to preserve the capability of increasing rate of
use (call per hour) of the file system.,

Throughput Time Per Record Retrieval.is the response time of

the data file system starting from the entry of the last character of
the full name of a desired record or from the unique fixed length
key of desired record, and the receipt of the first character of a

reply. The throughput time of an automated savings account system

141
is illustrated in Figure 7. 3; t2-t3 is a throughput time per record
retrieval. In practice the throughput time varies depending on the
size of file and the method of accessing. Then to compute the

throughput time of a random record retrieval the average throughput

time per record retrieval is considered,

Achievable through-put-rate capability must be considered in

developing criteria for evaluating cost, and performance in a specific
data file system. It is the maximum through-put-rate at which the
system can meet such an applicable specification as response time.
A system, meeting all specifications at the acheivable through-put-
rate should be considered to have achievable through-put-rate
capability. It may be viewed to measure the expansion capability of
the system, and at times to indicate that the desired system may be
more powerful than required. The general form of the relationship
between achievable through-put-rate-capability and average through-
put time is:

Achievable throughput-rate-capability, (calls per hour)

= 3600 — average throughput time per record

retrieval, (sec) (7.1)

Results of the Investigation

The writer has examined and presented the accessing of a

desired record by each of the four methods of file organization for an

data file systems

and evaluated.

Variable length tree decoding
technique is investigated

P

Sequential disk file

||

Investigation and evaluation
of internal linear search

i |

I

(1SQ)

Indexed sequential disk file

Partitioned disk file

-

{

Y

Single level directory

Double level directory

1

Direct disk file
(DF)

Investigation and evalua-
tion. of five selected hash

and binary search. partitioned disk file partitioned disk file functions. Hash I, the
(SDPF) (DDPF) best function is considered
| T ¥
y [¥ ¥ ('
Unsorted sequen-|| Strickly Hash I, DF- Hash I, DF Hash I, DF
tial disk file sequential disk with linear prob-| Jwith random prob-| |with direct chain]
(UNSQ) {STRSQ) ing (Hash I, ing (Hash I, ing (Hash I,
DF, LP) DF, RP) DF, CH)
UNSQ using STRSQ suing ISQ using SDPF using DDPF using Hash I, DF,LP Hashl, DF, RP Hash I, DF, CH
unique fixed unique fixed unique fixed unique fixed unique fixed using unique using unique using unique
length key length key length key length key length key fixed-length key fixed~length key fixed-length key
| ‘ ‘ ‘
| I | I I I , T vy v y__
UNSQ using STRSQ using ISQ using SDPF using DDPF using Hashl, DF, LP Hash I, DF, RP Hash I, DF, RP
full name of full name of full name of full name of full name of using full name using full name using .ull name
records records records records records of records of records of records
[’) '] Y 'H K] v v
-

Gomparison and Evaluatim@-——— See details Figure 7.2 on page 143

Figure 7.1. Schematics diagram of investigation and evaluation of on-line data file systems.

v 1

CFrom Figure 7.1 on page 142)

&

All types of file organization
methods using unique fixed-
length key in accessing, The
following characteristics are
investigated and evaluated:

1. Average throughput per
record retrieval,

2. Achievable throughput-
rate capability,

For making comparison
with the corresponding results
of the file system, using full
name of records in accessing.

Special attention is paid to all
cases that use the full name of
the record in accessing. The
following characteristics are
investigated, evaluated and
compared:

1. Average throughput per
record retrieval,

2. Achievable throughput-rate
capability.

3. Customer operating cost

per call (unit cost) at
selected specific rate of
use, call per hour, as an
illustrated example,

Figure 7. 2. Investigation and evaluation of characteristics of on-line data file system.

134!

Throughput time per
record retrieval

t t t
0 tl tZ 3 4 5
‘ '4
L. Transaction
completed.
L First character of

reply given to the
customer,

LFirst character of processor
reply appears at terminal device,

~['eller enters the last
character of input message
into terminal device.

—Teller has customer's request.

Customer starts transaction with teller,.

Figure 7.3. Throughput time per record retrieval,

144!

145
on-line information system, supported by disk. The parameters of
the technical system are based on the CDC-3300 computer system
at Oregon State University Computer Center. The method of file
organization for an on-line information system has been shown to
have superior to average throughput time per record retrieval, and
also operating cost per call (unit cost). The comparative results
from simulations and computations are shown in the following graphs

and tables.

RESULTS OF THE EVALUATION AVERAGE
THROUGH-PUT TIME PER
RECORD RETRIEVAL FOR

EACH TYPICAL FILE

Table 7., 1. Data results of computation of average throughput time per record retrieval as the function of file loading factors, for each typical file

organization method, using the full name of records in accessing.

File loading factor,or 0.0156 0.0372 0. 0625 0. 2500 0. 5000 half 0. 7500 1. 0000 full
Number of records 128 512 1024 4096 8192 12288 16384
in file records records records records records records records
wag—————— Average throughput time per recPrd retrieval as the function of file loading factors ——————————-
Typical files
ms ms ms ms ms ms ms
Unsorted
sequential file 227.399 377.479 577.519 1905. 599 3632. 605 5360. 130 7087.645
Strickly
sequential file 232,371 397.510 617,582 2065. 351 4050, 113 5937.890 7922. 660
Indexed
sequential file 232.286 232,374 232.414 232.498 232,551 232.608 232. 656
Single level directory
partitioned file 182. 358 182.473 182.513 182.663 182,705 182.765 182,780
Double level directory -
partitioned file 182. 360 182.476 182.516 182.631 182.672 182,732 182,748
Direct file with
linear probing 177.470 177.550 177.590 177.671 178.573 179.714 183.519
Direct file with
random probing 177.484 177.565 177.605 178.929 180, 248 183,606 191,746
Direct file with
direct chain probing 177.468 177.549 177.589 177.769 178.572 179.708 183.420

9791

Average throughput time per record retrieval (msec)

15000 T~

10000 -~
9000 -
8000 [~
7000 —
6000 —

5000 B~
4000 |~

3000 i~

2000 -

1000 -
9200
800 |

700 -
600 |-

500 1~
400. |

300

See code number in Figure 7.5, page 148.

200 -

100 L

A | | l

0. 0625
(1024 records)

0. 2500 0, 5000 0. 7500 1, 0000 —
(4096 records) (8192 records) (12288 records) (16384 records) &
File loading factors ~

Figure 7.4, Average throughput time per record retrival as the function of file loading factors for each typical file, code numbers 1 to 3, using full
name of records in accessing,

232 I~

192 [~

189

186 |~

183

Average throughput time per call (msec)

180

@ = Unsorted sequential file

@ = Strickly sequential file

@ = Indexed sequential file '

@ = Single level directory partitioned file
(5) = Double level directory partitioned file
@ = Direct file with linear probing

@ = Direct file with random probing

= Strickly sequential file

] _1

1

]

177
0, 0625

1024 records)

Figure 7.5. Average throughput time as the function of file loading factors for each typical file organization method using the full name of records

in accessing.

0, 2500 0, 5000
(4096 records) (8192 records)

File loading factors

.0,7500
(12288 records)

1,0000
(16384 records)

8¥1

Table 7.2, Data results of computation of average throughput time per record retrieval as the function of file loading factors for each typical

file organization method using unique fixed-length key in accessing.

File loading factor, 0.0156 0.0372 0. 0625 0. 2500 0. 5000 0.7500 1. 0000
Number of records 128 512 1024 4096 8192 12288 16384
in file records records records records records records records
) ~~==—————— Average throughput time per record retrieval as the function of file loading factors — 5,
Typical files
ms ms ms ms ms ms ms
Unsorted
[sequential file 219, 004 369, 004 569, 004 1897,004 3624, 004 5351.504 7079. 004
Strickly

sequential file 223.976 389, 035 609, 067 2056.756 4041.512 5929. 289 7914.019
! Indexed
sequential file 223,891 223, 899 223, 899 223,903 223,950 223,982 224,015
iSingle level directory
Ppartitioned file 173.963 173.998 173,998 174.068 174. 104 174,139 174. 139
Double level directory
partitioned file 173.965 174, 001 174. 001 174,036 174,071 174,131 174, 107
Direct file with
linear probing 169, 075 169, 075 169, 075 169. 076 169.972 171,113 174,878
iDirect file with
random probing 169. 089 169,090 169,090 170. 334 171. 647 175. 005 183. 105
Direct file with
direct chain probing 169. 073 169, 074 169, 074 169. 174 169.971 171,107 174,779

-

6% 1

15000

:

900
800 |-
700 I~
600 I~

500 See code number in Figure 7.5, page 148.

Average throughput time per record retrival (msec)

400

300

o

)

200 [~

100] 1 i i |
0, 0625 0, 2500 0, 5000 0, 7500 1, 0000
(1024 records) (4096 records) (8192 records) (12288 records) (16384 records)';‘1
File loading factors o

Figure 7.6. Average throughput time per record retrieval as the function of loading factors for each typical file code numbers 1 to 3 using unique fixed
length key in accessing,

Average throughput time per records retrieval

223

221

183

180

177

174

170

168

See code number in Figure 7,5, page 148,

| e >
—p—p——
1 L | 1 J
0. 0625 0. 2500 0. 5000 0. 7500 1, 0000
(1024 records) (4096 records) (8192 records) (12288 records) (16384 records)

File loading factors

Figure 7.7. Average throughput time as the function of file loading factors for each typical file organization method, code numbers 3 to 8, using
unique fixed=-length key in accessing.

161

RESULTS OF THE EVALUATION
ACHIEVABLE THROUGHPUT-RATE CAPABILITY

FOR EACH TYPICAL FILE

Table 7.3. Data results of computation of achievable throughput-rate capability as the function of file loading factors for each typical file
organization method using the record's full name in accessing.

File loading factor, « 0.0156 0.0372 0. 0625 0.2500 0. 5000 0.7500 1. 0000

Number of records 128 512 1024 4096 8192 12288 16384

in file records records records records records records records

Throughput~-rate capability as the function of file loading factors ——
Typical files -
calls/hr. calls/hr. calls/hr. calls/hr. calls/hr. calls/hr. calls/hr.

Unsorted

sequential disk file 15831 9537 6234 1889 9291 672 508
Strickly

sequential disk file 15493 9056 5829 1743 889 606 453
Indexed

sequential disk file 15498 15492 15490 15484 15481 15477 15472

Single level directory

partitioned disk file 19741 19729 19725 19708 19704 19697 19696

Double level directory

partitioned disk file 19741 19729 19724 19712 19708 19701 19699

Direct desk file with

linear probing 20285 20276 20271 20262 20160 20032 19617

Direct disk file with

random probing 20284 20274 20270 20120 19973 19607 18232

Direct disk file with

direct chain probing 20285 20276 20272 20251 20160 20033 19627

261

30000

20000 | - . / 4 @ O &)

ZUpper limit of the system

(27170 calls per hour)

10000
9000 i~
8000 |~
7000 |~
6000 |-

5000 |~
4000 [

3000 |-

2000 I

1000 -
9200 I~
800
700
600

500 |~
400

Throughput-rate capability (calls per hour)

See code number in Figure 7, 5, page 148.

I L i 1
0, 0625 0.2500 0, 5000 0.7500 1. 0000

(1024 records) (4096 records) (8192 records) (12288 records) (16384 records)

File loading factors

Figure 7,8, Achievable throughput-rate capability as the function of file loading factors for each typical file, code numbers 1 to 5, using full name —
of records in accessing.

(23]

20200

20000 |

19800

19600 [

19400

19200 1

19000 I

18800 1

Throughput-rate capacity (calls per hour)

-
[o.¢]
(=]
8

See code number in Figure 7.5, page 148.

18400 [
18200 L L n y
0. 0625 0.2500 0. 5000 0.7500 1, 0000
(1024 records) (4096 records) (8192 records) (12288 records) (16384 records)G
File loading factors N

Figure 7.9, Achievable throughput-rate capability of file loading factors for each typical file organization method, code numbers 4 to 8, using full
name of records in accessing.

Table 7.4. Data results of computation of achievable throughput-rate capability as the function of file loading factors of each typical file

organization method, using unique fixed-length key in accessing.

File loading factors 0.0156 0,0372 0. 0625 0, 2500 0. 5000 0. 7500 1. 0000
Number of records 128 512 1024 4096 8192 12288 16384
in file records records records records records records records
- Throughput-rate capability as the function of file loading factors
Typical files
calls/hr calls/hr calls/hr. calls/hr calls/hr. calls/hr. calls/hr.
Unsorted
sequential disk file 16438 9756 6327 1898 993 673 509
Strickly
sequential disk file 16073 9254 5911 1750 89' 607 455
.Indexed
sequential disk file 16079 16079 16079 16078 16075 16073 16070
Single level directory
partitioned disk file 20694 20690 20690 20682 20677 20673 20673
Double level directory
partitioned disk file 20694 20690 20690 20685 20681 20674 20677
Direct disk file with
linear probing 21292 21292 21292 21292 21180 21039 20586
Direct disk file with
random disk file 2129 21290 21290 21135 20973 20571 19661
Direct disk file with
direct chain probing 21293 21292 21292 21280 21180 21039 20597

G991

27170

20000

Achievable throughput-rate capacity {calls per hour)

— Upper limit of the system e e
N (27170 calls per hour)
p—
-
B See code number in Figure 7.5, page 148.
1 1 |- 1 1
0. 0625 0, 2500 - 0,5000 0, 7500 1, 000
(1024 records) (4096 records) (8192 records) (12288 records) (16384 records)

File loading factor, ¢

Figure 7.10. Achievable throughput-rate capacity as the function of file loading factors for each typical file, code numbers 1 to 3, using unique

fixed-length key in accessing.

961

20200°
20000
—~ 198001" and
g (=)
<
g
& 19600
5
2
£ 19400
z
£
% 19200}
£
-
< 19000[
>
2
=
<
18800 See code number in Figure 7.5, page 148.
18600¢
184001
18200 L L 1 .
0. 0625 0.2500 0, 5000 0.7500 1. 0000 —_
(1024 records) (4096 records) (8192 records) (12288 records) (16384 records) (n

File loading factors

Figure 7,11, Achievable throughput-rate capacility of file loading factors for each typical file organization method, code numbers 4 to 8, using fixed
length key in accessing.

-~

Table 7.5. Approximate formulas of average throughput time and achievable throughput-rate capability for each typical file.

Approximate achievable

Typical file Approximate average throughput time throughput-rate capability Description
Unit m sec. calls/hr.
Unsorted 3600 (Sec)

T.=0.635 N + 97.453 ~ for0 £ @< 1.00

sequential file 1 N 1 T1 (Sec) orv S a3
Strickly 3600 (Sec)

T. = 0.635 N + 102.451 c for0 € o< 1.00

sequential file 2 2 T2 (Sec) orvs as
Indexed 3600 (Sec)

T, =~ 232, 3878 c.~ for 0 < 1.00
sequential file 3 3 T3(Sec) orfs ag
Single level 3600 (Sec)

T < 35.00 N)+ 182. 4268 >
partitioned disk 4= 35:00(log)N) 47 T, (Sec) for 0 € @ <1.00
Double level N 3600 (Sec)

T_= 35.00 =)+ 182, 4268 = for0 € a< 1.00
partitioned disk file 5 (log,) 5 T, (Sec) orrs @S
Direct diek file T = 177.545 . 3600 (Sec) for0 £ o< 0.25

ith 1i i 6 T
With linear probing T¢= 177.545+ 0.007875 E + 0.5 E, +0.67S E, 6 (5 for 0.25€ @< 1.00

T_ < 177. 604 3600 0< a< 0.25
Direct disk file with 7 75—(—1T (Sse: for0 s as
random probing T, 177:604 +0.0346 E_+ 0.5 E, + 0.675 E, 7 1°€¢ for 0.25€ @< 1.00

T~ 177.573 3600 (Sec) for 0 < 0.5
Direct disk file with 8 8"-’ T (s £ ol ag
direct chain probing Tg¥ 177573+ 0,019875 E__ + 0.5 E+0.675 E g (Sec) for 0.5 £ a< 1.00

841

159
From Table 7.3, the following deductions can be made:

l. Both T1 and T increase excessively when number of

records in a file or file loading factor is increased. T

2
increases most of all, so that

> > < <
T2 T1 T3, T4, TS’ T6, T_7 and T8 for 0 < o< 1,0000

as shown in curve in Figures 7.3 and 7.4 pages 144

and 147,

< < f < a<
=-;‘>C2 C1 C3, C4, CS’ C6’ C7a.ndC8 or 0 < ¢

1. 0000.

2. T3, from the approximate formula, is almost a constant

function. Its value is not increased much when the file

loading factor is increased, as in Figure 7. 4.

T3 - 232 ms/call

T.>T >T_>T7, T, T,, T d T_ for 0<a<1.0000
> 1 3 4 5 6 7an 8or a<l1,000

see Figure 7.5 and 7.6 pages 148 and 150,

— < < < d f <a< 1,
@CZ C1 C3 C4, CS’ C6’ C7an C8 or 0 <a<1, 0000

3. T4 and TS, from the approximate formula, are almost
constant functions. But when the number of records in
a file, N, is increased,
-3
T4ag x 10 (logZN) ms, to small
and

T5 a0,.25 g x 10.-3 (logZN) ms, to small

g = average search time per record in second level

directory, psec. in Figure 7.6 page 150

160

T4=T5:182mse»c. T4< T5f0r0< a< 0,25,

T4>T5 for 0.25 < a< 1.00

T > > >T >T >T T dT _ f . 0000
> T 2Ty > T, >T >T, Ty and Ty fora 1

.,$C2< C1< C3< C4< CS’ C6’ C7, andC8fora 1. 0000

4. T6, T,7 and T8, from the approximate formula, are:

L-al2, 145 625)x 107 ms

a
l-a

T6’¥ 177.4588 (7.875

for 0 < o< 0,50
T~ 177.4588 (3.4 (-a-lloge (1 -a))+137.375) x 1073
ms for 0 < ¢ < 0,25
T8°‘ 177.4588 (19.875 (a/2) + 164, 25) ms for 0 < a<
0.50
Then in the range of 0 < o< 0,50
T2>T1>T3>T4>T5>T7>T6>T8
ﬁc2< C1< C,<C,< C5< C7< C, < C8
5: Again T6’ T7 and T | from the appropriate formula,

8

are:

T6’¥ 177.4588 + 30 (E1)+50’(E2) for 0.55 < a<

1. 000

T, 177. 4588 + 30 (E,) + 50 (E) for 0,25 < a<

1. 000

161

TSN 177.4588 + 30 (ES) + 50 (Eé) for 0.5 < a<
1.000
where El = Average search across cylinder for linear

probing.

E2 = Average search across track for linear probing.

E3 = Average search across cylinder for random
probing.

E4 = Average search across track for random probing.

E5 = Average search across cylinder for direct chain
probing.

E6 = Average search across track for direct chain
probing.

As the variation of E1 to E6 is empirical, the results
from the simulation are used for evaluation in this thesis.
Then in the range of 0,5 < o< 1,000
T.> T >T_>T >T_>T_>T, >
2 1 3 4 5 7 6 T8

: < < < < <
=>C2<C1<C3 C4 C5 C7 C6 C8

The above discussion is based on the file system with the full
name of the record used in accessing., For the file system using the
unique-fixed length key in accessing, the discussion is the same.
The difference is the omission of the full name record to the fixed-

length key conversion time, about 8. 55 ms/record,

RESULTS OF THE EVALUATION

USER TOTAL CHARGE PER MONTH

FOR EACH TYPICAL FILE AT

A SELECTED SPECIFIC RATE OF CALLS

FOR ILLUSTRATION OF THE EVALUATION

162

File Operating Cost per Call (Unit Cost)

In general, when cost per performance of digital computing
system is mentioned, there are two options to be considered. One
is that the user plans to have his own computer system (buying or
renting from manufacturer), In this case cost per performance
has to be calculated based on: CPU cost, terminal devices cost,
communication cost, and operator's cost, See details of an example
in Stimler, Saul (33) page 149-160. Another is that many users
are planning to rent only CPU time from a time-sharing computer
system. In this case cost per performance per month has to be
calculated based on only CPU, busy time, cost per month, storage
space rental cost per month, terminal devices rental cost per month,
communication line charge per month, and operator's cost per
month, This investigation is concerned with only the second option,
From now on, all the terms of cost per performance have to be
replaced by customer operating cost per call, unit cost, for the
evaluation of the on-line data file.

Let the reader consider the following situation: suppose that a
designer or an evaluator works with one on-line time sharing com-
puter system. He is assigned to investigate and evaluate the per-
formance of typical file organization methods with the specified

maximurn capacity (the number of records when the file is full) and

163

current capacity (the current number of records in the file), with a
certain rate of uée (number of calls per hour) of the file. He must
help the new customer (the user) to make a decision as to which type
of file is the most suitable for him at a certain capacity and rate of
use of the data file system. In this case an evaluator needs to know
only which type of file organization method is supported by his
computer system under a certain processing assumption, and which
provides the most economical performance (lowest unit cost).

The following formula is introduced as a means for measuring
the unit cost performance averaged over the life of the file project
when the specified rate of use of the file (number of calls per hour)

is processed over the active life of the file, Then

customer operating cost/call (unit cost), U

c(i)

project cost
total specified calls

M. T(i) RcM' 300 + NT(i) (0.3) M

M
RCM

for time sharing

customer

T . RcM' (300) +NT(i) (0. 3)

= (1) x 100 cent/call (7. 2)
R
cM

where

T(i) = CPU busy time per call in hour, i = file code

numbers, 1, 2, 3, ..., 8.

164
RcM = Rate of calls per month, for illustrated example,
52500 calls per month (250 calls/hr) for low-rate
210000 calls per month (1000 calls/hr) for medium
rate
420000 calls per month (2000 calls/hr) for high

rate.

These selected rates are based on real-world

problems.
300 = CPU charge per hour in dollars
0.3 = Disk rental charge in dollar per track per month.

These figures are based on Oregon State Computer Center,

Corvallis, rate of charge for time sharing customer.

Z
n

(i) Disk space required tracks for each type of file

M

File project active life time in term of months.

The data results of computation of the unit cost, UC equation

(1)
(7. 2) as the function of file loading factor are tabulated, plotted and
compared as shown in Table 7.6 page 173 and in Figures 7.13 to

7.16 pages 169 - 172. See the details of computation of each typical

file in Appendix B, Examples 1 to 4. The terminal device rental-

cost for each selected rate of use is illustrated on page 168.

165

Transmitted characters = full name of a record + data of a
record

16 + 64 = 80 characters/call

Then
Transmitted characters for 250 calls per hour

(80 x 250) "‘— 3600 = 5. 556 characters/sec.

5.556 < 10 character per sec

It requires one teletype with 10-character per sec. with 10
characters, modem 1 unit.

Transmitted characters for 1000 calls per hour

(80 x 1000) — 3600 = 22. 22 character/sec.

22.22 < 30 characters/sec

It requires three, 10-character per sec teletypes witha 10-
character data modem 1 umit.

Transmitted characters for 2000 call per hour

(80 x 2000) — 3600 = 44. 44 character/sec

44.44 < 50 characters/sec
It requires five, 10-character per sec teletypes with a 300-

character modem 1 unit.

Terminal Device Cost for 250 Calls Per Hour

Description Monthly rental

1, 10-character-per-sec teletypewriter $100. 00

1, 10-character-per-sec modem 25.00

1 operator (he can do both as teller or programmer) 600. 00

20 miles, 10-character-per-sec channel rates,

communication line 35.00
Total $760. 00
Terminal Device Cost for 1000 Calls Per Hour
Description Monthly rental
3, 10-character teletypes $300. 00
1, 300-character-per-sec time multiplexor 500. 00
1 up-to 300 character-per-sec modem 40.00
3 operators (salaries) 1800. 00
1, 10-character-per-sec 20 mile communication line 35.00
Total $2675. 00
Terminal Device Cost for 2000 Calls Per Hour
Description Monthly rental
5, 10 -character teletypes $ 500.00
1, 300-character-per-sec line multiplexor 500. 00
1 up-to 300-character-per-sec modem 40. 00
5 operators (salaries) 3000. 00
20 miles, 10-character-per-sec, communication line 35.00
00

Total $4075.

166

167

See the details of on-line data file terminal devices required
for each specific rate of use of the records in the file, in Figure
7. 12 which follows.,

Figures 7.13, 7.14 and 7.15 illustrate how customer operating
cost per call (per unit cost) of each typical file increases as the value
of file loading factors, @, or the number of records in the file
increases when the rate of use are 250 calls per hour, 1000 calls
per hour and 2000 calls per hour respectively., For each specific
rate of use the degree of increase depends upon the value of aver-
age throughput-time per record retrieval and the number of required
tracks (disk storage space). As shown before in Figures 7.3 to 7.6
at a specific file loading factor, «, each type of file takes a different
average throughput-time per record retrieval; the degree of varia-
tion between the different type of file depends upon their methods of
accessing. Each typical file needs two types of disk storage space.
One is to support the processing program. This type of disk storage
space does not vary much for each type of file. The other storage

space is to support the data records of the file. In case the file

system uses File 1 to File 5 the required disk space for these types

of files, varies directly as the number of data records increases.

In case the file system uses File 6 to File 8, direct disk files using

hash function as their directory decoder, the required disk storage

space at any value of loading factor, is the same as when o= 1 (the

168

Terminal Communication network Processor subsystem

'subsystem

Modem

Communication line
- | cPU |
\ Disk
Teletype

Operator
(a) on-line data file system handling 250 calls per hour

Terminal subsystem Communication network Processor subsystem o

O-[h
O

Communication line
> CPU

\——— Modems —0 /" Disk

\ ~ Multiplexors —/
Teletypes

Operators

(b) on-line data file system handling 1000. calls per hous

‘Terminal subsystem Communication network Processor subsystem

O+

Modems

O__l——_}_ % Communication line cPU _‘_%

: F Disk
\——— Multiplexors ——/

Teletypes

Operators

(c) on-line data file system handling 2000 calls per hour

Figure 7.12. On-line data file system configurations for handling 250, 1000, and 2000 calls per hour.

Customer operating cost per call (cents per call)

2.8

2.7

2,6

2.4

2.3

2.2

2.0

1.9

1.8

1.7

1.6

1.5

1.4

169

r -

g s

< s

3 -
N a, ,t/./

“

B //

-

R 7~
- ~

3

St
A <

3

8

=

S
| %

See code number in Figure 7.5, page 148,
] A L i |
0. 0625 0.2500 0.5000 0.7500 1. 0000

(1024 records) (4096 records) (8192 records) (12288 records)

File loading factors

(16384 records)

Figure 7.13. Customer operating cost per call (unit cost) as the function of file loading factors, for each typical

file, code numbers 1 to 8, using full name of record in accessing.

Custemer operating cost per call (cents per call)

1.75

1.72

1.71

1,70

1,69 |

1,68

1.66

1.65

1.64

1,62

1.61

Rate of use, 1000 calls per hour

170

o
" /
/‘/
>

= o O =

See code number in Figure 7,5, page 148,

L] 1 1 1 1
0, 0625 0.2500 0,5000 0, 7500 1. 0000
(1024 records) (4096 records) (8192 records) (12288 records)

File loading factors

(16384 records)

Figure 7. 14. Customer operating cost per call as the function of file loading factors, for a typical file, code

numbers 1 to 8, using full name of record in accessing.

ustomer operating cost per call (cents per call)

LW

171
1,400

1. 390}-

1,370F \D

" _Z

For rate of use, 2000 calls per hour

1.360f

1. 350 °

See code number in Figure 7.5, page 148,

1,340
1,339 ! i 1 L —
0, 0625 0, 2500 0. 5000 0, 7500 1, 0000
(1024 records) (4096 records) (8192 records) (12288 records) (16384 records)

File loading factors

Figure 7.15. Customer operating cost per call as the function of file loading factors, for each type of file, code
numbers 1 to 8, using record's full name in accessing.

Customer operating cost per call (cents per call)

1.

.1

172

with 250 calls per hour

8 F

.71 /—‘%-_—;/—’_‘;—'__"_—_‘!:

with 1000 calls per hour

1.6

Lsl See code number in Figure 7.5, page 148,

1.4 -

J e .
with 2000 calls per hour
1.3 ! L L "
0, 0625 0.2500 0. 5000 0.7500 1. 000
(1024 records) (4096 records) (8192 records) (12288 records) (16384 records)

Figure 7. 16. Customer operating cost per call (unit cost) as the function of file loading factors for the out-
standing files, code numbers 3, 5 and 8 using full name of records in accessing.

Table 7.6. Data computation of customer operating cost per call (unit cost) as the function of file loading factors of each typical file

organization method of specific selected rates of use; using full name-of records-in accessing.

File loading factor, 0.0156 0.0372 0. 0625 0. 2500 0. 5000 0. 7500 1. 0000
Number of records 128 512 1024 4096 8192 12288 16384
in file records records records records records records records
Rate of use
Typical files calls per hr. cent cent cent cent cent cent cent
Ussorted 250 1. 82523 1.84384 1. 86880 1.98994 2.20476 2.39668 2.58874
nent'al diske il 1000 1. 65000 1. 66472 1. 88378 1. 80000 Z N N
sequentia® disk 1lle 2000 1,346 19 1.36025 1.37851 Z Z - -
Serickl 250 1. 82615 1. 84487 1. 86984 2.01828 2.21489 2.41417 2.60813
"Ct_yl diske £l 1000 1. 65041 1. 66522 1. 68445 1.79847 _ - -
sequential disk lile 2000 1. 34224 1. 36066 1.37893 Z Z Z -
Indexed 250 1. 82392 1. 83150 1. 83933 1. 88662 1.9480 2.01017 2.0.967
n ex: | disk £il 1000 1. 64811 1. 65086 1. 65331 1. 66589 1. 68146 1.69736 1. 71300
sequential disk lile 2000 1.34421 1.34615 1.34771 1.35450 1.36243 1.37062 1.37861
Sinele lovel direct 250 1. 82464 1. 83198 1. 83950 1. 88677 1.94728 2. 00906 2. 07040
ngie level directory 1000 1. 64849 1. 65139 1. 65359 1. 66642 1. 68182 1. 69762 1.71306
partitioned disk file
2000 1. 34453 1.34734 1. 34800 1.35508 1. 36298 1.37111 1.37890
Double level disect 250 1.82434 1. 83160 1. 83927 1. 88647 1.94693 2. 00880 2.07013
;_t_e e;’ed_ ;’f‘; ory 1000 1. 648 17 1. 65096 1. 65333 1. 66606 1. 68143 1.69736 1.71276
partitioned disk 1ite 2000 1. 34420 1.34625 1.34773 1.35473 1. 36258 1.37085 1. 37860
Disect disk file with 250 1. 96960 1.97209 1. 97480 1,99013 2.0096 1 2.02933 2.04967
l_“ec “b, 1ewi 1000 1. 68336 1.68417 1. 68542 1. 68973 1. 69475 1. 69979 1. 70558
inear probing 2000 1.36104 1.36144 1.36233 1.36507 1.36757 1.37027 1.37362

€Ll

Table 7.6. Continued.

File loading factor,

0.0156 0.0372 0. 0625 0. 2500 0. 5000 0. 7500 1. 000
Number of records 128 512 1024 4096 8192 12288 16384
in file records records records records records records records
Rate of use

Typical files calls per hr. cent cent cent cent cent cent cent
Direct disk file with 250 1.96970 1.97222 1. 97499 1.99026 2. 00980 2.02958 2. 05055
muzz o wi 1000 1. 68347 1. 68460 1. 68553 1. 68988 1. 69487 1. 70007 1. 70644

ndom probing 2000 1.36116 1. 36206 1.36270 1.36522 1.36776 1.37054 1. 37449
Dicect disk file with 250 1. 96960 1.97211 1, 97487 1.99007 2. 00961 2. 02927 2. 04883
dfrezt C}’mi € ";f 1000 1. 68344 1.68448 1. 68540 1. 68973 1. 69466 1. 69975 1. 70475

e 7 probing 2000 1.36102 1.36193 1. 36256 1. 36507 1.36756 1.37023 1.37280

PLI

175
file is full). This causes the customer's operating cost per call
(unit cost) of File 6 to File 8 to be a little hicher than that for File 1
to File 5 within the range of 0 < o< 0, 75. However, as for 0. 75
< a< 1, this range causes the unit cost of File 6 to File 8 to be less
than the unit cost of File 1 to File 5. Furthermore, the average
throughput time per record retrieval of File 1 and File 2 varies as
the function of (NZ$1 , where N is the number of records, in the
file system. Therefore, when the value of N is increased, the aver-
age throughput time per record retrieval of File 1 and File 2 is
enormously increased. This causes the unit cost of File 1 and File
2 to be excessively high and the achievable throughput rate capability
lower than that of the other files, when file loading factor, a, is
increased. So for the specific rate of use 1000 calls per hour and
2000 calls per hour, File 1 and File 2 cannot operate in the range of
0.500 < @< 1,000. From the results of computation and shown in
Table 7.6 and Figure 7.15 File 3 and File 5 give good result of
unit cost for 0.0078 < o< 0.75. File 8 gives the best result for

0.75 < a< 1.000. File 2 gives the worst result for 0,0078 < <

1.000, as the unit cost is excessively high,

176

Conclusions and Recommendations

From the preceding comparative results it has been shown that
eight specific types of file can be grouped into four groups; (1)
sequential disk file (Files 1 and 2), (2) Index Sequential Disk File
(File 3), (3) Partitioned disk file (Files 4 and 5), and (4) Direct
disk file (Files 6, 7 and 8). Because of the results of the investi-
gation and the methods of organization there is not much difference
between the typical files in the same group. The following conclu-
sions and recommendations may be useful to the designer or the
evaluator in deciding which typical file is the most suitable for his
specific problem.

1. In case the data file is rather static, having a low per-
centage of additions of data records to the file system,
the most suitable me‘;hod of organization is dependent on
its initial file size:

a. If the initial file size is in terms of hundred-logical-
records, or equivalent to 0 < @< 0,0156 in this
investigation, the Indexed Sequential File seems to
have the lowest customer operating cost per call,
unit cost, If the rate of use of the file required by
the customer is less than its maximum-achievable-

throughput-rate capability, 16438 calls per hour, it is

C.

177

recommended that the Indexed Sequential File be used.
For simplicity, it is also recommended the Unsorted
Sequential File to be used,

If the initial file size is in the range of thousand-
logical records to ten-thousand-logical records, i.e,
1000 < N < 10,000 or 0,0625 < a< 0,7500, The
Indexed Sequential File and the Partitioned File
especially the Double-directory partitioned disk file,
have less unit cost than other types of files, If the
rate of use of the file required by the customer is
less than its maximum achievable-throughput-rate
capability, 19701 calls per hour, it is recommended
that the Index Sequential File or the Double-directory
partitioned disk file or some other type of Multi-level-
directory partitioned disk file be used.

If the initial file size is in the range of ten-thousand
logical records to sixteen-thousand-logical-records
or more, i.e,, 10,000 <N < 16,000 or more, or
0.7500 < o< 1.0000, The Direct disk file, especially
the direct disk file using chain probing, has the lowest
unit cost and the greatest speed of accessing. If the
rate of use of the file required by the customer is

less than its maximum achievable-throughput-rate

178
capability, 20597 calls per hour, it is strongly
recommended direct disk file with direct chain prob-
ing be used,

d. From the results of the investigation it is not recom-
mended that the strictly sequential disk file be used
for the on-line-data file system,

In case the data file is a dynamic one having a high rate

of increase of records in the file, i.e., it takes only a

short period of time for the file to be full, = 1.0000, it

is recommended that the direct disk file with direct chain
probing be used.

In this evaluation all results obtained may be considered

as the optimum results, although the writer cannot

guarantee 100% perfection, since in each specific on-line
data file system there are many factors (or constraints)
to be considered. In case the reader wishes to analyze
and optimize any specific system it is recommended that

the optimizing procedure be carried out as that in the

same manner as in this investigation. Hopefully the results

obtained will still be within the span of the writer's con-
clusions and recommendations,
This investigation indicates that for the on-line data file

system using disk memory as the storage device, the

179
speed of accessing or retrieval is limited by the following
factors:

a. operating speed of disk unit (disk RPM)
b. read-write-head positioning time.
This limitation could be solved by a higher speed disk, if
one could be designed. The user will wish to select and
use the highest speed and least read-write head position-
ing time possible, if there is not too much trade off
between its operating performance and its cost.
The results of the preliminary work of this investigation
shows that of two common types of internal search, linear
search and binary search, illustrated in Appendix A, in
the range of 0 < N< 64 linear search has a higher speed
and also needs less storage space than binary search.
However, in the range of 64 < N < o , although binary
search requires more storage space because it has a
higher speed, it provides a lower unit cost of operation.
Then it is recommended that the internal search be used
as follows:

Linear search for 0 < N < 64 approximately

Binary search for 64 < N < o
The results of the preliminary work show that the Hash

decoding technique has the highest speed among the

180

directory decoding techniques which have been mentioned
in Chapter V. More work has been investigated and evalu-
ated for Hash decoding methods and the results obtained
indicate that the efficiency of Hash decoding is strongly
dependent on the expected searched records per random
accessing, E, (E— 1=> high efficiency; E > 1= low
efficiency). Results of the investigation show that the
trade-off of E is available among the different hash func- -
tions with the same method of probing at a specific file
loading factor, o. See Figure B.19 page 302. The trade-
off of E is also available among the different probing
methods (linear probing, random probing and direct-chain
probing) for a specific hash function. See Figure B. 20
page 304,

In this investigation Hash I with direct-chain probing has
proved to be the best hash decoding method in the long run,
Therefore, Hash I is selected as the mapping function for
the evaluation of the direct disk file, See more details in

Example 4, page 294.

10.

11.

181

BIBLIOGRAPHY

Bell, James R. The Quadratic Quotient Method;: A Hash
Code Eliminating Secondary Clustering. Communication of
Association Computing Machinery 13, 2 (February 1970).
107-109.

Brightman, Richard W., Bernard J. Luskin and Theodore
Tiltion. 1968. Data Processing for Decision-Making. The
Macmillan Company, New York 252-255, 352-357,

Chapin, Ned. A Comparison of File Organization Techniques.

Chapin, Ned. Common File Organization Techniques Com-
pared., Fall Joint Computer Conference, 1969. 414-421.

Cofifmann, E, G., Jr., and Eve J. Coffman. File Structure
Using Hashing Functions. Communication of the Association
for Computing Machinery, 13, 7(July, 1970).

Control Data. 3228 Disc Controller Training Manual. First
Edition. 1968.

Control Data. 1969. Computer System Compass Reference
Manual.

Filler, William, 1958. An Introduction to Probability
Theory and its Applications. John Wiley and Sons, Inc.
New York,

Flores, Ivan, 1966. Computer Programming, Prentice-

‘Hall, Inc. Englewood Cliffs, New Jersey. 246-287.

Flores, Ivan. 1969. Sorting, Englewood Cliffs, New
Jersey. DPrentice

Flores, Ivan. 1970, Data Structure and Management.
Prentice-Hall, Inc. Englewood Cliffs, New Jersey., 52-54,
225-241, 247-263, 269-279, 320-327.

12.

13.

14,

15.

16.

17.

18.

19.

20,

21.

22.

23.

182

Gaulthier, Richard L. and Stephen D. Ponto. 1970. Design-
ing Systems Programs. Prentice-Hall, Inc., Englewood
Cliffs, New Jersey. 112-156,

Hslio, David. Formal System for Information Retrieval
From File Communication of the Association for Computing

‘Machinery 13, 2 (February, 1970). 67-73

Hopgood, F. R. A. 1969. Compiling Techniques. American
Elsevier, Inc, New York, 4-27.

IBM Student Text Introduction to IBM System/360 Direct
Access Storage Device and Organization Methods. Interna-
tional Business Machines Corporation, 1969,

Jame, N, Meeker, N, Ronald Crandall, Fred A. Dayton
and G. Rose. OS-3: The Oregon State Open Shop Operating
System, Spring Joint Computer Conference, 1969, 241-248.

Johnson, L. R. An Indirect Chaining Method for Addressing
on Secondary Keys., Comm ACM 4(1961), 218-222.

Landauer, Walter I, 1963, The Balanced Tree and Its
Utilization in Information Retrieval. IEEE, Transaction
on Electronic Computers. December 1963. 863-871,

Lefkovitz, David. 1969. File Structures for on-line System
New York. Washington, Spartan Books, 27-36, 92-105,

Lombardi, Lionello. 1960, Theory of Files. Proceedings
of the 1960 Eastern Joint Computer Conference New York
IRE, 1960. 137-141,

Lowe, Thomas L., Direct-Access Memory Retrieval Using
Truncated Record Names, Software Age, September
1964, 22-23

Lum, V. Y., P.S.T. Yuen and M, Dodd., Key-to-Address
Transform Techniques - A Fundamental Performance Study
on Large Existing Formatted Files., Comm. ACM 14, 4
(April 1971), 228-239.

Maurer, W. D, An Improved Hash Code for Scatter Storage
Comm. ACM 77, 1 (Jan. 1968), 36-38.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34,

35.

183

Maurer, W, D. 1969. Programming. An Introduction to
Computer Languages and Techniques. " Holden-Day, Inc.
San Francisco, 94-109. 116-132.

McGee, William C. 1962. The Property Classification
Method of File Design and Processing, Communication of the
Association for Computing Machinery 8., 450-458,

MclIlroy, M. D. A Variant Method of File Searching Communi-
cations of the Association for Computing Machinery.

Morris, Robert. Scatter Storage Techniques. Comm.
ACM 11, 1 (Jan,1968), 38-43,

Parkhill, D. F. 1966. The Challenge of the Computer Utility.
Addison Wesley Publishing Company, Reading, Massachusetts.
121-144.

Peterson, W. W. Addressing for random-access storage.
IMB Journal. April 1957, 130-146.

Rothstein, Michael F. 1970. Guide to the Design of Real-
Time System. John Wiley and Son, Inc., New York. 8-18,
42-55, 116-137, 187-206, 225-232.

Schay, G., Jr., and Spruth, W. G. Analysis of a File
Addressing Method Comm, ACMS, 8(Aug. 1962), 459-462.

Sharpe, William F., 1969. The Economics of Computers.
The Rand Corporation. 279-363.

Stimler, Saul. 1969. Real-Time Data-Processing Systems.
A Methodology for Design and Cost/Performance Analysis.
McGraw-Hill Book Company, 17-36, 37-76, 149-170.

Sussenguth, Edward H, Use of Tree Structures for Process-
ing Files. Comm ACM 6, 5.

The Rand Corporation. 1955. - A Million Random Digits.
The Free Press. Glencoe, Illinois.

APPENDICES

184

APPENDIX A

The Analysis of Typical File

Evaluation of Internal Linear Search and Binary Search

For evaluation of the characteristics of internal linear search
and binary search, the two basic methods of internal search the
following strategies are used:

1. The model of the Test File is created in internal core

memory. The Test File should look like a directory file.
Each record of this Test File consists of two parts, key

name of the record and its address in the main file. The
operation is equivalent to simulation of the directory file.
The selected names for the Test File are shown in Table
A. 1.

2. In the arrangement of the format of the Test File record,
each record in the Test File is a ''fixed length record",
and its supported by two successive computer words,

(1 word = 24 bits). The first word contains four characters
which is the fixed-length unique key of the record in the
main file, The second word contains its corresponding

address in the main file.

185

Table A.1. Directory File,

Name selected as the record Key Name Address Location
name in the main file «Name Area) (Data Area)

Administration Division ADMI 0001
Air Field Construction Division AIRF 0014
Building Construction Division BUIL 0027
Material Division MATE 0025
Supply Division SUPP 0040
Technical Division TECH 0053 -
Utilities Division UTIL 0066

Search argument item = BUIL

output = 0027

Search argument item = BIUL

output = BIUL NO SUCH KEY IN

DIRECTORY

Illustrated example of accessing a record from directory
file.

Due to the fact that the CDC-3300 can handle only 4 characters
for a 24-bit word, it is impossible to put the full-name in the one
word name area of the Test File; only 4 characters of the full name
have to be selected. The group of 4 selected characters from the
full name is called key name of the record the main file. There are
many ways to select the 4 characters from the full name to be used
as the key name. The reader has to keep in mind that the effective
way of selecting 4 characters from the full name should provide 0%

{or slightly more) redundance of key names. Otherwise the redundant

186

key name causes ambiguity in processing the file.
In this experiment the writer has chosen to form the key name
by truncating the trailer characters of the full name. The method
is usually preferred by users, but 0% redundancy can not be guar-
anteed. The details of conversion of the full name into a fixed-length
key name are mentioned in Chapter V.
3. The symbolic program for sequential search has been per-
formed as Test 1. The desired item is searched for in the
Test File by means of linear search, The search function
flowchart is equivalent to the flowchart of sequential
cylinder indexed search as shown in Appendix C, page 343.
4, The symbolic program for binary search has been per-
formed as Test 2. The desired item is searched for in
the Test File by means of binary search. The binary

search flowchart is shown in Appendix C, page 368.

Symbolic Program for Sequential Search: (Compass)

Operation Address +

Location Code Index Comment
IDENT Test 1 Test 1 is NAME OF PROGRAM
ENTRY START Initial Statement to start program
START ENI 0,1 0 —» Bl

ENI 11,3 11 — B3

LOOP ENQ 1

187

Operation Address +

Location Code Index Comment
ENA A (A) —p Acc
AIA 1
READ 60
INI 1,1 (Bl)+1 — Bl
1JD LOOP,3 of (B3)>0; (B3) - 1—»B3,go to
LOOP
ENQ 1
ENA » KEY (KEY) — Acc.
READ 60
ENI 12,1 12 —» Bl
ENQ, S -0 Set Q = (0000000)
LDA KEY (KEY) —> Acc.
MEQ A,2
UuJp LOST
INI 1,1 (B1) + 1—B1
LDA A,l (A +(Bl)) —» Acc,
STA KEY (ACC) —» KEY
ENQ 2
ENA BLANKS
WRITE 61
UJP END
LOST ENQ 9
ENA BLANKS
WRITE 61
END SBJP
BLANKS BCD 1,
KEY BSS 1
MESSAGE BCD 7,...NO SUCH KEY IN DIRECTORY

A BSS 12

188

END START
FINIS
TALS = Average linear searching time per record retrieval
from array, file
" ‘Lspa (; ;_N) trs
=1.375 +1.375 + 2.750 + | (% 4. x 2.5 +4.125]
+1.375 +1.375 +3.125 +2.79
=5.0N+9,125 + 14.125
TALS = 5.0 N + 23, 25 usec. (based on tested-program, (8.1)
where tLSPA = Linear search program auxilliary time per
record retrieval
tLS = Logical path Linear search time per second
retrieval
Symbolic Program for Binary Search: (Compass)
Operation Address +
Location Code Index Comment
IDENT TEST?2
START ENI 0,1 0 — Bl
ENI 11,3 11 — B3
LOOP ENQ, S 1 Set (Q) —>all bits are ones
ENA A A —>Acc,
ATA A (Acc) + (B1) — (Acc)
READ 60
LDA Al (A + Bl) —> (Acc)
SCA MASK Selective complement Acc

STA A, 1l (Acc) —> (A + Bl)

189

Operation Address +

Location Code Index Comment
INI 1,1 (B1) + 1 — Bl
1IJD LOOP,3 1If (B3)> 0; (B3)-1—B3, go to LOOP
ENQ, S 1 Set (Q)—>all bits are ones
ENA KEY KEY — Acc
READ 60
SCA MASK
STA KEY (Acc) —> KEY
ENI 0,1 0 — Bl
ENI 1,2 1—> B2
LDQ KEY (KEY)— Q
LDA INC (INC) —> Acc
OVER IAI 1 (Acc) + (Bl)—>Acc
LDA TOP (TOP)—> Acc
SBA BOT (TOP)-(BOT)—Acc
ASG, S 3 Check to see if A, < KEY < A,
UIP LOST | b rhd
LDA INC
SHA -1 Computes NEXT 1/2 of Binary
AJA 5 Search interval
STA INC
LDA A,l (A + Bl)—> Acc

AQJ,EQ FOUND

AQJ, LT LESS I
TIA 1
STA TOP ? Binary search loop in upper portion
LCA INC of search Table 2 +KEY < a,
J

uJp OVER

190

Operation Address +

Location Code Index Comment
TIA 1 A
T el seare Tame P
LDA INC If KEY > a,
UJP OVER - h
FOUND INI 1,1 1\
LDA A,l If search is satisfied and prepare
SCA MASK for output
STA KEY .
ENQ 2 b
ENA BLANKS
WRITE 61 JTTY OUTPUT
UJP END
LOST ENQ 9 A
LDA KEY
SCA MASK \
STA KEY NOTIFIED THE USER
ENA BLANKS
WRITE 61 ‘
END SBJP
TOP OCT 13
BOT OCT -1
INC OCT 6
MASK OCT 4
BLANKS BCD 1,
KEY BSS 1

MESSAGE BCD

7, --NO SUCH KEY IN DIRECTORY

191

Operation Address +

Location Code Index Comment
A BSS 12
END START
FINIS
TABS = Average binary search-time per record retrieval from
array, file,
1 K K
= + - - -
taspa T fps * N [27(K-1)+ 1 +(K+1)x(N-2" +1)]
- 10.25
= (8.250 +9.995 - 10.250) + (35:30) - NATBS
TABS = 7.995 +35 - 30 'XNATBS pusec, (8.12)
where
tBSPA = Binary search program auxiliary time per record retrieval
t = Logical path Binary search time per record retrieval,

BS

192

Comparison of Storage Space Used for Internal Search

LINEAR SEARCH |BINARY SEARCH
Typical of required No. of No. of
memory location required locations | required locations
Initiation and read-in
both master record and key 13 19
Search 15 40
Reserve Spaces for Master file 2N 2N
Reserved space for
program variables 11 15
Total required space (word) 2N + 40 2N + 14
Total space requirement
(in Bit) 48 N = 960 48 N + 1776
Lets N = Number of items in array or file.
S = Number of storage spaces requirement in core
LS . .
memory for Linear search, in words.
SBS = Number of storage spaces requirement in core

memory for Binary search, in words,
y y ’

Then the general formulas are

SLS

S-BS

2N + 40

2N + 74

(8.3)

(8. 4)

The plotting results are shown in Figure B, 4, page 204.

Table A. 2. Results of average search time, linear and binary search per record vs. file size,

Number of 1 +N 1. K (K +1)*
items, N Naris© !_z_l Narps “n 2 E-DH K - Tapsiesee) Ty pglesec)
(N-2"K-1)
1 1 I 1. 000 1 28. 25 43,295
2 1.5 2 1. 500 2 30. 75 60.945
4 2.5 3 2.000 2 35. 73 78. 595
8 4.5 5 2. 625 3 45. 75 100. 657
16 8.5 9 3.375 3 65. 75 127. 132
32 16. 5 17 4.278 4 105. 75 159. 008
64 32.5 33 5. 125 5 185. 75 188.907
128 64.5 65 6.073 6 345. 75 222,371
192 96.5 97 6.714 7 505. 75 245,000
256 128. 5 129 7.039 7 665. 75 256. 471
320 160. 5 161 7.437 8 825. 75 270. 309
384 192.5 193 7.693 8 985. 75 279. 557
448 224.5 225 7.895 8 1145. 75 286. 688
512 256. 5 257 8.021 8 1305. 75 291. 136
576 288. 5 289 8. 241 8 1465. 75 298.902
640 320.5 321 8.417 8 1625. 75 304. 868
704 352.5 353 8.561 9 1785. 75 310. 198
768 384.5 385 8. 681 9 1945. 75 314, 434
832 416.5 417 8.738 9 2105. 75 376. 446
896 448, 5 449 8. 869 9 2265. 75 327. 070
960 480.5 487 8.924 9 2425. 75 323. 718
1024 512.5 573 9.011 9 2586. 75 326. 083
2048 1024.5 1025 10. 006 10 5145. 75 367. 000
4096 2048.5 2049 11.003 11 10265. 75 396. 295

%
Value of log2 N.

€61

Average number of tests per record search

25

20

15

10

1+N
NATLS = ‘(—2—)' , Linear search
N -
N 1 k k)
ATBS = _I:I- 2 (k-1y1+k+1) * (N-2 +1)| , Binary search
| | | { | 1 | |
0 10 20 30 40 50 60 70 80

Number of items in array (N)

Figure A.1. Average number of tests per record search as a function of number of the items in the array.

61

Average search time per record retrieval (usec)

500

450 |

400 +

350 ¥

250

200

150 |

100 ¢+

50 b

[i 1 1 1 1

TABS

0 10 20 30 40 50 60
Number of item in array (N)

Figure A.2. Average search time per record retrieval both linear and binary search as a function of items in the file.

70

80

g6T

196

Figure A. 1 makes a graphical comparison between the number
of average search per random record retrieval of internal linear
search and internal binary search, and also shows how the curves
rise as the number of records in the file increase. For internal

linear search the degree of increase of number of average search per

LNZ—Hl . When N—w

record retrieval, N , varies directly as

ATLS
_ z il ; L -0 =3 N is enormously increased. For internal

binary search, N varies directlyl-\Il- [ZK (k-1)-(K-1)x

ATBS
(N - ZK -1)] 9’-10g2 N when N o &N

increased very little, so that the curve of N is quite flat, provid-

ATBS

ing a great diversion between NATBS and NATLS‘

Figure A, 2 makes a graphical comparison between the average

search time by linear search, T and the average search time by

ALS

The degree of increase of T and T

binary search, T ALS ABS

ABS’
when N is increased, is the same as that described in Figure A. 1.
The curves in Figures A. 1 and A, 2 indicate that for 0 < N g 64,
internal linear search is better than internal binary search. For

64 < N < wobinary search is better than linear search, with only a
little difference between their storage space requirement. See
Table A. 3 and Figure B. 4 for how the number of core storage spaces

increases for both linear and binary search as N, number of records

in the file increases.

Table A, 3,

Core storage space required for internal linear and

binary search.

File size, N SLS SBS
Items Words Words
1 42 26
2 44 78
4 48 82
8 56 90
16 72 106
32 104 138
64 168 202
128 296 330
192 424 458
256 552 568
320 680 714
384 808 842
448 936 970
512 1064 1098
576 1192 1226
640 1320 1354
704 1448 1482
768 1576 1610
832 1704 1713
896 1832 1866
960 1960 1994
1024 2088 2122
2048 4136 4170
4096 8232 8266
SLB = Core storage space for linear search.
SBS = Core storage space for binary search.

One item = 2 successive computer records.

197

198

APPENDIX B

Analysis of Disk Access Time for Disk 854

Disk Access Time

Access time = the cylinder position time + the rotational
latency time
then: Average access time = average position time + average latency

time.

Disk Storage Drive (CDC- DISK 854 Unit)

Maximum positioning time = 165 msec,
Average positioning time, (1/3 of max. move)= 95 msec.
Cylinder to clyinder positioning time = 30 msec.
Maximum latency = 25 msec,
Average latency = 12.5 msec,

Maximum access time 190 msec,

Average access time 107.5 msec.

Full rotation time = 25 msec,

Data Transfer (CDC Disk 854 Unit)

The nominal data transfer rate, disk drive = 100, 000 bytes/.

second,

199

The data transfer is of the following nature:

1. Data is addressed and written in a storage unit in discrets
(0, 1, 2, 3, ect) blocks (sectors).

2. Data channel can read or record as little as one byte or
as many bytes as necessary to reach the end of file.

3. Reading or writing, the operation must commence at the
start of a sector,

4, When writing, if less than a full sector is written, the

remainder of the sector is automatically filled with zeroes.

Record Format

The record format for a test file is shown in Table A, 1,
page 185 and Figures B, 2 and B. 3, pages 202 - 203.

384 bits

1 logical record

1536 bits

1 sector, disk 854, data field

1 sector, disk 854 4 logical records

1 track 64 logical records

1 cylinder (10 tracks) 640 logical records

64000 logical records.

1 unit (100 cylinders)

Data Read/Write Time, TR/W

Full rotation
TR/W " Number of records per track x (Number of records
R/W)

200

25 msec,
-— ———— <
TR/W = , x N for N 64

Data Track Read in Time, TRINDT

TRINDT = 25 msec. (9.1)

Read/Write Head Positioning Time, TAR/WHPT

TAR/WHPT = 90 msec. 9. 2)
Average Waiting Time Per Track, TAWT

TAWT = 12.5 msec. (9.3)
Checking and Connecting Logical Unit Time, TRCLU

TRCLU = 0.008 msec. 19. 4)
Checking and Connecting I/0 Unit Time, TRCI/O

= 0.008 msec. (9.5)

Tre1/o ©

Record Full Name of Fixed- Length Key Search Time,)

TCFNFK

To obtain the fixed length key from the supplied record full
name, the program called '""Test 8'" is used (see Appendix C, and

the following parameters are defined and computed.,

11

-

2

4

[

2

Main storage o

o

g

N

=

Disk file
t L—___—' Disk
control
; unit
Disk drive MT control

unit

24 bit parrele information

12 bit parrele information

serial bit information

control circuit

Figure B. 1.

Q0

Magnite tape unit, MT

CPU
Main control
Information Instruction
processing processing
I/O channel
L =
Controller Controller Controller Controller
(PDP8)
20 miles F
Card
Line printer Puncher CR display Teletype

System block diagram of the simulator.

10¢

(2)

(b)

(c)

(d)

(e)

Eixed, Unblocked

[] ban] [recordane]

Count Key Data

Fixed, Blocked

l | e | [aAA] Recordaaa |lccc | Recordccc || FFF | Record fif ~—is considered in this thesis
Count Key Data

Variable, Unblocked

L | lasa] Ie [Re] Recordasa |

Count Key Data

Variable, Blocked

[| [rrr | [BL [ri]AnA] Record asa W\ [rRLccc | Recordcec [IRL FFF | Recordifi |
Count Key Data
Undefined

l J IAAAl r Record aaa
Count Key Data

Note: BL = Block length
RL = Record length

Figure B.2, Conventional record formats.

20¢

203

Items Character Computer word
(or key of a record)
1, Employee number 4 1
Name 16 4
3. Social Security and age number 9+3 3
4. Starting date M/D/Y 8 2
5. Qualifications 3 1
6. Salary per month 4 1
7. Dependents 2 1
8. Net income per year 7 2
9. Accumulate saving account 4 1
Total 60 (spare 4) 16
Illustration of logical format in a file
Location Core Memory
L 0 0 3 2
L+1
L+2
L+3
L+4
L+5 5 4 3 6
L+6 4 7 1 7
L+7 3 A 3 5
L+8 1 2 / 1
L+9 8 / 6 4
L+ 10 B S C
L+11 8 0 0 °
L+ 12]] 0 5
L+ 13 0 1 0 0
L+ 14 ’ 0 0
L+ 15 5 0 5
The mapping of a logical record in core
Sector 1 Bit Sector
Mark Mark
1 2 3 4 5
‘ 60 Bits | 36 Bits | 36 Bits 60 Bits l 36 Bits o,
' of f—
Tolerance Sync Address Head Gap Sync Data Field Tolerance
Gapl Pattern Field Pattern 1536 Bits Gap 11

d of d bit
Figure B.3. A logical record format and disk 854, sector format. End of record bi

Storage space required (in words)

2200 —

2000 [

1800 [~

1600 [~

1400 —

1200 —

1000

8001

SLS = core storage space for linear search

600 | SBS = core storage space for binary search
400
200
64 128 198 256 320 384 448 512 576 640 704 -768 832 896 960 1024
14 [L 1 | 1 L ! 1 1 A 1 1 i 1 —
0] .1 .2 .3 .4 .S ‘ .6 .7 .8 .9 1.0

Loading factor and file size

Figure B.4. Storage space required for test program as a function of file size.

¥02

SVT

SVT

205

(Read in the NAME time) +(compute no. of input-
word time) + (using the no. of word control loop
time) +(check to see if NAME = END time)

(32.250 +a) + (2.75) = (35.00 + 8000) = 8035 psec.
average read-in a record name time = (0.5 ms/
character) (16 characters) = 8000 psec.

Compliment the first bit of each word in NAME time
77. 625 psec.

(Average search time in each successive plane)

%(0 + 1og2N x 20, 125) psec,

Time required for searching each successor

7.875 psec.

search time of three dimension tree,
T +4.7T +4(—12-10g2Nx20.125) +T

1 2
(8000) + 4(11, 625) + 4(—;— 1og2N x 20,125 + 7.875

4

psec,

8077.9 +40.25 x 1og2N psec. (9.6)

AVT

Adding time for variable tree

(

TSVT) + (adding routine time)

()+4xT_ +T

T
SVT 5 8
(Item adding loop time + search for free space

loop time)

AVT

206
search for free space loop time
[(UTP**—ENI 0, 1) + (average number of search
free space) x (LAD A, 1 -=UJP* -4) + (TIA 1 —bUTf’
FREE, time)]
(6.875 +L72% x 77. 580 +8.715)
6.875 +(102.4) x 11.580 + 8. 715)
1201. 382 pusec,
Adding item loop time
34.525
[RTJ INDATA + (UJP**—UJP INDATA) + UJP
REDO]
2.75 + 102,375 + 1.375
106. 5 usec.
(8077.9 + 40,25 x logZN) + 4(1201. 382 + 34.525)

+ 106.5

13128.028 + 40. 25 logZN psec,

DVT

Deleting time of variable length key name tree
[Search time - (STA DATA, instruction time) +
(ENA,S -1, instruction time) + (STA A +1, 1
instruction time)

[T - 2.75 +1.375 + 3. 215]

SVT
8079. 75 + 40. 25 log N (9.7)

207

Communication Time

In this simulation assume the user (teletype terminal) is
located twenty miles from the computer center. The delay time of
the selected communication cable is 1. 524 nsec. per foot.

communication time = (20 miles) x (1760 x 3) (1. 524 nsec.)

i

160934. 44 nsec,

i

0.16093444 msec.

Y Tepr

i

back and forth communication time.

i

0.1609 x 2

i

0.3218 msec. (9.8)

Transfer Time of the Desired Out-Put Record
Informations From Core

For all cases of the simulation, the fixed-length logical record
16 computer words (64 characters) is used and presented back to the
user during retrieval.

The output of logical record transfer time = 16 x 4 x0. 5625 msec.

TRWOUT = 36 msec

User's Operating Cost Per Call

The general formulae of the computation for the user's operat-
ing cost per call in our evaluations for all of the tested files can be

derived as follows:

208

1. Disk space required for supporting file system.,

If N

number of tracks on the disk required to support

T(i)
the file and processing program, for each typical
file,
N = number of records in the file, file size.
Then NT(i) = 124 + Disk-track required for supporting process-
ing program in case 1 track contains 64 logical
records (9.9)
N - N + Disk-track required for supporting processin
T(i) 63 q PP g P g

program-in case 1 track contains 63 logical
records. (9.10)

2. Disk storage space rental charge per month for user.

Since in this computation the rate of charge for on-line
disk storage is $0. 30 per track per month, based on Oregon
State University Computer Center's rate, if

RD/M = amount of charge per month for disk file in $

then, in general

RD/M = 0.30 x NT(i) (9.11)

3. The charge per month for CPU busy time.

Since the CPU busy time is not only dependent on the CPU
access time per record retrieval but also on the frequency

of using the file. So the general formulae should be:

209

If C /M= amount of charge per month for CPU busy time $

CPU
TCPU/R = CPU busy time per record retrieval in seconds as
shown in average throughput computing table of all
files.
F/hr = number of calls per hour, rate of use

= 250/hr., 1000/hr., 2000/hr are to be considered

in these computations.

In case the computer system is operated 7 hours a day, and
considering 30 days in a month, the rate of charge of CPU busy

time is $300/hr.

F/M number of calls per month

30 x 7 x (F/hr)

Then, in general

CCPU/M= 30 x 7x (F/hr) x (TCPU/R) —— 3600 x 300

= 17.5 x (F/hr) x (TCPU/R) (9.12)
CT/M = total amount of charge per month
CT/M = amount of charge per month for disk file + amount

of charge per month for CPU busy time.
Then, in general

CT/M = 0.30xN +17.5 (F/hr) (T /R) (9.13)

T(i) CPU

The result of equation (9. 13) is tabulated as a function of call/

month and for each file size, are shown in computing table of

210
customer operating cost per call (unit cost computing table) of each

typical file, See details on pages

Storage Space Required for Variable Tree

1st plane

2nd plane
3rd plane

j \ | : /— 4th plane

Number of records
(N) in the file

19

1M M/2 M/2 UM/Z

Figure B, 4, Average storage space uses for Variable Tree.

1. IfN = number of records in the file
M = number nodes of different fixed-length key, 1St
four characters in the first plane, after trunicated
%’I— = Empirical ratio

which has been measured by Thomas L. Lowe (21)

M

N = 0,85 (9.14)
2. The maximum nodes in the 2nd, 3rd, or 4th plane = M

The minimum nodes in the 2nd, 3rd, or 4th plane = O

The average of nodes in each plane = % (M +0)=M/2

211

If one node required 4 words.

3. The average storage required for variable length tree,
SAVLTR
0. 85N 0. 85N 0. 85N
= . +—=
SAVLTR (0. 85N > + > + >) x4
= 8.5N words (9.15)

Selected Sample Key Sets

In this evaluation, 15, 805 names of persons from the Corvallis
Telephone Directory have been considered as a ''parent group', and
4,096 names have been randomly selected from this parent group by
use of the standard tables of random digits, A Million Random Digits,
by the Rand Corporation (35), as a sample group or "working group'.

From now on, the 4,096 selected names are used as the Test-

model for evaluation of the system Data File.

Computation of Typical Files

Example 3a - The Unsorted Sequential Disk File

For accessing a random record from a sequential file on a
CDC 854 disk storage drive unit, assume that there are N logical
records, each 16 computer words (384 bits or 32 bytes) long, to be
formatted with keys. The data disk file is read into internal core

memory one track (64 records) at a time. The linear search is

NARASIMHAM M N L
MOORE ARCHIE
HODGED M

PAUL ALEX

KOPPES IARRY
O#DONNELL DAVID
SMITH A PETE
DATERMAN GARY
YORK BARBARA
SCHECTER LIARRY
WAKER BARBARA AN
OMFALY TODD
IAHREN SLJR
WARREN CHARLES E
FOSTER CHRIS
LUTZ JIM

NASSA R ALEXANDER
STOKER DEBORAH
GEORGE ANTHONY J
CLUFF JOHN ROBER
RAMP] EFF
WILLARD EDYTH
RHODS STANLEY C
MCDONALD BILL
SCHEIDEGGER KEN
HANSON C C
PULLEY M A

DILL MARY ROSALI
BARR ABDELSALAM
MORSE CHRUSTY
MACK CHESTER G
HFATH EDWARD H
SWEAT JEAN SISTE
TUCK MARJORY
HAUXWELL GERALD
SOLANDER ROSALYN
MCDANIEL JAMES M
MOSS JAS

GRIFFIN BRIAN
ROBEY S L
RANDALL ARTHUR
HART CHARLA
BYRAM KENNETH
WILIARD H KIRK
WALL JAMES H
HIATT GALE
FRANCE] C

YOUNG ALAN

HELIN WM J
JOHNDOHL GAIG
SFAL EDWARD H

SMITH ALBERT R
NARASIMHAMM N L
ROOD RODNEY
OWERN GEORGIA FAY
SCOTAI THERES E
ESON NELS
SCHMALL RODNEY A
MA LONE HOMER C
CORNCCHIA SHERRY
FIREY WILLIAM]
KING ARTHUR
OKBY HUSSEIN
MARTEL DONALD]
WOJCIECHOWSKIE W
NELSON LYOTA
TAM MARILYN
ROBERSON MARY E
SHERBERT JAMES L
STONE LOUIS N
LIND GORDON
OKATA RON

SHUFF FLORENCE

S HUFF FLORENCE L
HANISH C

SHUHART TOM
PHELPS DAVID W

DE HAAS CHARLES
SMITH ALEX
FORRER EUGENE
TOPE LORY

WILSON AL
DEDOLPH ROBERT E
LUTTON DONALD L
HANKE CHRIS
MCGIBNEY MICHELL
SHANAHAN MICHAEL
REGELE DAVID

RICE ALLEERTA L
GRABE DON F
TAYLOR ALICE
SCHAAD DAVID
GOLD JUDY
WOLBERG FLOYD B
ENGE JOHN

HUNT ANITA
MCNURLIN BESSIE
MYER A R

YEE WAIMUN

SAMIN HELEN
FAULHABER JUDY
MULLBOCK MARTA

KANG HENRY

EIDE STUART A
HALE CORA M
MARTENS ANITA M
PROBER DENNIS
OLIVERA W
DIMMICK GREGORY
CHIU DEREK
HARBAUGH DAVE
SNOOK DAVID P
O#CALLAGHAN DENI
POPE CARLENE
LUND FER E
LAWRENCE BESSIE
PAARMANN BILL
REYNOLDS C W
WALL MARY JANE
JOHNS JUDY

COOK ALFRED]
WOMACK CHARLES W
JONESA L

MOORE ARCHIE M
LEHNERT HM
STUART CHARLES E
OTTUM MARGARRET
JOYCE BERNICE
MCNIVEN SCOTT
GATHERCOAL FORES
HAMM PEG

WOOD BENJAMIN W
TRUMBO JOHN A
TURNNELL BLAINE
HEINDLA L
TILLEMAN PAUL
LOWRIEA C
POOLEA R

POND KHTH E
KAVANAGH ROSS
COOPERA L
HIGGINS ARTHUR
HOLCOMB G W
COATS LEIAND F |
JOHNS TOM

VARS R CHARLES
OVER TOM
HOWARD ART
NORED FRANCIS
IAMB FM
LUEBBERT EDWIN G
MYER BRUCE
NOREN CHRISTINE

212

HOSTETLER DONAL
CORWIN GERALD L
SCICK IAWRENCE
WADE BERTHA
GLASER MARGA RET
HARVEY FLIZABETH
CAHILL DON
JOHANSEN DANI EL
KESSEL JUDY
MICHA EL NFAL D
CONVERSE PAUL T
RAYMOND A F
HAITHA E
HULTBERG HD
STROBEKATHY
STROBEL KATHY
PHELPS DOUG

HERY BARBARA
EDLUND IANCE E
PEDEN MYRNA
ALLEN ARTHUR H
GWINNER DONALD B
LOWE ARTHUR L
WASHBURN F E
WILSON BONNIE
SHELDON MICHAFL
MONSON GIN

JUNG PHILLIP
GARRARD JAS L
HFATH ELIZABETH
CALL JOHN
MUCKEY BEVERLY
MCCLAFLIN JOHN
SORENSEN ANN
LIBBRECHT MARIAN
DERY RUTH
REVELS ALIC L
CUMMI NG STELLA
HOPER B R
RAINERT LINDA
BAILEY BOB
STOVALL FRANK R
WILLBERGER GALE
HALL BILL
BRETHANER MA RSHA
FESSEL WILLIAM C
CROVER STEPHEN E
HALL PENNY
MOORE BEN A
MIDDA GH JAMES E
COSLER DENNIS

REYNOLDS CHA RLEN
KLIEWER JEAN

LIND HELEN
GRIESSE CHERYL
LIND RICHARD C
CRAIGA W

HAIGHT BETSY

WA RREN DAVID R
COUPER ALAN

LIND RONALD E
KANTOR JOSEPH
THARP CHARLEY
MCGRATHB W
LEPPER CHARLES
HER LEV

OBERG KALERVO
WIKMAN CARL

ELIA SON DON

WOLF DAVE L
MASSEY MARY
JOHNSON ALBERT W
KENNEDY CHARLES
KILMARTIN JIM
JOHNSON ANDREW A
MORGAN ARTHUR
HAAK BRUCE A
EISEMAN DAVID
ROTH BEN A
KAUFFMAN A]
KALDAHL NORMAN E
WILSON BRUCE A
MIS KOWIEC C V
LIBBY HARLEY
CROSLEY BELTY
EVES S DAVID
KATO DIANE

LEHR EDGAR I
OAKS DENNIS E
CRAWFORD CAMERON
ENDERSON FRANK]
PAYNE BOB
PASSMORE LARRY W
DORN HAROLD
TILLERY JERRY O
TSUDA ALBERT H
ENLOWS HAROLD E
NUNNELLEY LEWIS
MARTIN ARNOLD
BAKER DAN A
HUECKMAN CAROL
HITCHCOCK P A

MASON C R
NUGENT DAVID D
TODD ALIAN
HSIUNG KOU YING
KAUSCHE LOUISE
GARLAND DENVIS
MACK GUY
FITZGERALD CHRIS
SEARCY JAMES T
HAY DAN

MINER GARY
EMBANKS ROYCE
PRICEB O

IAMB N J

SIPP EDWARD M
MCALISTER JAMES
TEST CHERYL
LAWRENCE FRANCIS
SCOTT ALLEN B
PATANA MERRIT
KRAUS HOWARD G
BRANT JOHN L
HUGHES ARTHUR D
CRAWFORD CHARLES
VARADY CLARA
LEE LARRY]
SOUTEN DAVID R
HUFF JIM

WEBB ALAN

SHUDY MICHAEL
JOHNSON ARTHUR C
MOBERG MARCIA
MARK DIANA
HEYER ALBERT
HAMILL BILL
PERIN CA

GRETZ HAROLD
HORTON HAZEL
STELLA AL

MA RIMAN DAVID
MCMULLEN EARL F
TROSETH STEVE
MERCER BARBARA
WILSON BURTON
MORE GARY KIELY
WILLBERGER GREG
CHEN JENNY

WILL PEGGY JO
EDWARDS A HURCIE
WEST DENNIS E
FOYLE JO ELLEN

213

WILLE CHRISTOPHE
GATTMAN LEWIS
MOORE BERNARD]
MILBRATH JOHN A
MOYLEB L

GRIFFIN CYNTHIA
SOLTE ERNEST P
HELM CRICKET
SORENSEN CLIFFOR
CHRISMAN LEON D
PAHRER E

FOSTER D L

DOTY DELIA

SWAN ANDREW
HILLA S
WASHLEURN HERBER
LEHRMAN J K

MASS SALLY
KAMPFER IAWRENCE
HALSEEA
GRISCHKOWSKY OSC
EISENBRANDT EDIT
WALLACE ARDEN H
EVANS BRIAN F
WUNDE RLICH MARTH
SEWELL HAROLD RA
ROCK JOHN
WORKINGER MAY
CRAMER BRAD

STH GER JACK

JOSI TIMOTHY

VOSS CHARLES R
HAMADA SPENCER
LACEWELL DAVID A
MEDLEY FLORENCE
JONSON A RTHUR P
HILL CHRIS

TESTER JOHN

LACH JOHN

HOOD ALPHA F
LYNCH ANNA

FRYE DANIEL E
TERREL MARK H

SA GER CHARLES E
WILKEN CALVIN
DOUGHERTY KENNET
CHARLES ARTHUR
WIEBE MIKE
HABERMAN J R
MCQUEEN MIKE

DOND PHIL
HUNDLEY GARY
MEDANIEL L W
RUDD MARIAM M
CULL APUL

LUSTO H E

RICE ARCHIE H
HAYES C W

LOTT BOB

VALLEY IRENE
VOGEL ALIAN
EVANS DARLENE
CRUDELE ANTHONY
HATHAWAY FARL
ROLOW W J
HAYDEN A A
OLSON ARTHUR E
SMITH A LEXA NDER
HUNT DEBRIE
CARLILE CAROL
ROLLER S P
MCGUINESS ERNA
MILLARD ALLEN L
OFCONNELL K
HAWES HAROLD
MCKIBBAN ROBERT
LANE CHRISTOPHER
NESS D M
HALLENBECK VERNO
JOSSIS ROBERT G
ALLEN BARBARA
PAINE HOWA RD
MASON DALE F
STUBBERT DAVID
VENDETTE ALLAN
JENKIN CLIFFORD
HASSOUN HUSSHN
NANSON A RTHUR
GARNER CARY A
PERRFARD GEORGE
ROSE BOB

MURRAY AILUN
MATTHEWS] OHN
NOLL CARROLL
PRATER LAUREN
CUTTING GEORGE
DEAN CHARLES
YENNE HERBERT
STELZER MILTON]
KERTHD H

214

EWART ROBERT B
KENNEDY D C
MEER GERALD A
GANNON SUE
SCHUDEL DA VID
SWAN RO
WOLHOWE HANS
ARMSTRONG BOB
DYSERT NELL
SLEGEL DAVID L
HOUSE CRAIG
HARRELL EVERETT
HU GHES BUDDY LEE
HENDERER CHARLES
SHEEHY HUGH F
OELKE RAYMOND A
O#DONNELL J OHN]
COUCH DICK

KING BERTHA
MEYER BARBARA
HOTCHKISS RON
GREEY EWARD A
SCULLEN HERMAN A
WILSON CARL C
SNYDERD L
HAMILTON DWIGHT
JOHNSON BERTHA
WELL LARRY W
REIMAN BILL

COX JOED

YODER MAX
LECKIE MICHAEL
PUCKETT BILL
HUSTED FRANK
KALBERER KATHLEE
SMITH BEVERLEY
GRIM DON

HOPPE JIM
VANDECOEVERING]
TRIPP G R

KULM LAVERNE
WHYLER RICHARD
LARSE LLOYD
RAOPS

YOSS JAMES K
LINDAHL DONALD G
TITMAN JOHN E
HANEL MICHAEL P
RECTOR MAVVIN C
DOHERTY DAVID T

STRODE LELAND L
KELLAR DEBBIE
HORN DON

FORD DOROTHFA
CISAR JOHN O
COPELAND BARB
TOWNE TOM
LARSE ROBERT W
JAFARI JEFF
DURHAM JOANNE
HENNEBRY H M
CRUSON JON JAY
MOSEMANN JAMES
PEDERSEN D I
LESTER L JUSTIN
POTTER A W
REYNOLDS DENNIE
VAIA SCOTT F
STREEBY LARRY
HA GOOD NANCY
MCWADE J H
HAMM RON W
GALIAGAR JILL
MILLA RD MIKE
LAWRENCE GILBERT
ROBIDART GABRIEL
MILLEMANN R E
MUMPER JERRY
WOOLERY LAWRENCE
GOSHU CARL
SMITH CAROL
LEY YVONNE
ODOM DEBORAH
HAN SON DFAN
VETICH JAY
RYAN ANNE
HAWK DIANE
STONE KATHU
WHEELER DENNI S
CURREY DEAN L
CARR BRUCEF
THRELKELD CURT
PHELPS HAROLD E
KNAPP DAVID
SAITO AL
LARSELL DAN
LENAER MIKE
JOLMA ROGER E
BROOKES VICTOR
KAILK PETER A
PECK DENNIE

DRAPER JOHN W
ROZENDAL PER H
DALRYMPLE GARY
ENGEL JOHN HOWAR
STOCK DAVID E
PETER JAMES R
IVERS ALVIN

JACKS CLINTON
LUBIN] M

LFHMAN HAL W
LUCK JOHN
KOBLITZ GORDON F
KING CHARLES S
TOWNER HERBERT B
PURDOM E E
ARNESEN MICH
SUHR GENE
SUMMERS DANI EL
RICH ANDY

HAY ROBERT

PRICE BARBARA
OLSON ARTHUR H
WICK RON
GALLAGHER DONALD
CHADWICK E B

LISS BILL
FESSENDEN PETER
GOODED M

MARCH GUY
GOWAN ENID L
LOCKE NESON
URBAN BOB

OLSEN ANTHONY
TERHAAR JOHN C
SWEARENGIN E B
PETERKORI JACK
HORTON HOWARD F
SECHER ARNOLD
GOLDBAUM FRANCES
ORDEMAND T
HALTER A N
PAQUIN JAMES E
O#CONNER KATHLUN
HILL CYNTHIA
SMITH BOG

GRAY ALDEN K
WEBER ALISON L
MCAULIFFE DEBBIE
SCHNEBLY WILLIAM
KELLER CHARLES
HA GEL PATRICK

WILBORN JACK G
HULL DANIEL F
KAKIMOTO
SACKFTT HARRY A
DALGAS C M
ROBLEY ASA A
WILT ALMA
STANGE STEVEN
ROSS ARTHUR M
HISE FRANK
HEALD JAMES R
RICKABAUGH U S
DALRYMPLE LINDA
PAPRATER ROY
GROSHART JODY
SCHMALTZ JAMES N
SCHUDEL STEVE
WALSH JAMES W E
ASHBY MERLA
EGHBALT HASSAN
CRAWFORD GEORGE
CUTHBERT ANN
JOHNSON BILLY F
SIGMA CHI
SIDLES KARES A
PHILBIN JANET
KIRBY DAVID N
HOERLING DERALD
KESTLER HULDA
KLIPPEL EA
MEAD TOM
FIEBER LESLIE E
FINSETHL C
CONVERSE RICHARD
HOLT ELEANOR
SETO FELIX
MILLER BRUCE H
SPELBRINK ROBERT
YUNG TONY
HALL BOB
MENDEL W C
HAWLEY CRYSTAL
FOUNTAIN S L
PRIC CECIL K
NORD PHILLIP M
KAPIAN EL
KENDALL JOHN
DFA THERA GE DENNI
LOOMUS BOB
HODGE WILLIAM]
SHAW C G

215

LAWRENCE H SAM
JONES ADORA A
JOHNSON BOB
PETERS ALLEN R
STROEMPLE JAN
DUNN CHARLES
JOHNSON BRAD
WELLER L]

FINE DARWIN
JORDAN A NNA
ANDELL ROBERT
RASMUSSEN MARK
HAYES CLARK
SHUM EDDY ,
NEVILLE ARTHUR $
HATHAWAY ELMER C
CARR DONALD F
SCHMALTZ MARGARE
BOIAND DALEH
SCHURMAN DONALD
LEAPTROTT JOHN
LEE AIAN DALE
KEELER ADELLE H
KUYKENDALLA L
CULLEN GARY
GUNTHER EMIL B
PHIPPS. KEN
TAYLOR C EDWARD
RICH JACK

LUND FERN E
CROWEHUGH L
STARK CECIL M
WOLSKE DAVID
RIVERA D

ROESER MARION A
REDSHAW JAMES
KENT WAYDE
COWAN BETSTY
ANDERER DAVID A
MCCLAIN DICK
MCKILLIP GREG
TORHEIM ROBERT E
TICE FDWARD
BEHRENS ROBERTS
MOE RON

WALIA CE BARRY]
TERHAAR RON
COPELAND CHAMP
STARTEN MIKE
DAY JERRY

KIEN LE CLARENCE

GENTZ KEITH R
GOSS LARRY D
CHART NONA L
SCHEIDLER DAVE
CLEM C S

THOMA GALE L
DOGGET TOM M
RICH IARRY L
WHITEANNA N
BARBER CARL
QUINLAN DA VID C
WILLE] ERALD
POST LULU

REESE H DARWIN
JOHNSON CARL
LITTLEB R
MULLEN HAZEL
OWEN JOYCE S
MINER HELEN
KRAUSED G

NEIL FORREST A
MA RTIN BOB
HIATT PETER
DORT JAMES B
FRENCH J R
UNGER STEVE
WALES J H
STEVENS ANN
YOUNG B DIANE
LEE JAMES K
SKINNER D]
DECKER FRED
TURNBULL
AMERICAN LEGION
GRANDA TAFF MAURI
HARDEN IRVING
PAYGR STEVE
ROGERS CHARLES W
HOLDEN ARNOLD G
GAROIAN LEON
HATHAWAY JAMES C
GILSON JOHN A
JACOB PHILIP
SPEES FARL
DOUGLAS DAVETTE
TAYLOR CARL BEN
PETERS BARBARA
MOGAN DAVID
GARCIA EDMUNDO
MCDONALD D LYNN
ROGERS D L

MILLER BRUCE H
FISHER BILL
ANDERSON JACK R
ELDRED CAROLYN
LUCKER CATHERINE
ENGLAND DAVID C
HASHITANT GLENN
HOYT HAROLD P
GULAN MICHAEL P
RATH ALBERT C
MATHEWS LAMONT
EMIGH ANDREY L
RUKKE DIANE
LEONARD RUTH E
VANGENT COR
STOCHR CA ROL
ROBERSON MICHAEL
ZUR WILLIAM
O#ROURKE CHARLES
STAVE CHARLES
RILEY ADELLA
MCCOLD LANCE
OKANO BOB

LONG CARL

YOST GAROLD
ROBINSON ALAN H
WATENPAUGH FRANK
SMITH DEBRA MARI
HAAS KERRY

TOY MARY THOMPSO
NOBLE DONALD
RODLEND RICK
OLIVER AVERY W
ENDI COTT STEVE
LOOP DAVID A
CARPENTER CARL
WEIS DORA

HOLDEN CHRISTINE
MCALISTER WANDA
HAMLIN LOUIS W
SCHOPPERT KENTON
PETRIE DAVID
HOSTETTER I M
RHONEW T
REINERT DAVID
DEEGAN DON
RHODEN]
HAMMACK DICK
RICHARDS CLYDE G
URE ROBERT VAN
TETZ DENNIS

216

HAWKES STEPHEN]
BENNETT C V
EDWARDS ANNE
HARDAGE ROGER
NICHOLS DARLA
COMVAY MARK
MCCIANAHAN RALPH
STEINBRUGGE DICK
KOTUO PFARL
EDELSON JOAN
BROOBECK RALPH]
ROBERT ALOYTH
DUDLEY STEVEN R
WILSON DENNIS L
GRAIG CHARLES
PARK DAN
PUGSLEY DAVID W
WHITE CIARENCE R
RED RICHARD
STEAGALL MARY
WILSON GARALD R
SMITH EWARD
VANHKEN HANS
DALRYMPLE W
HENDRI CKS JEANNI
LANKFORD DONALD
LYMAN RICHARD E
GARREN RALPH
MCKINLEY STEVEN
WIESE FRED
IWANAGA PAUL M
STUFFLEBEAM EUGE
KNEHTA THOMAS]
WALTER AUSTIN F
POMEROY LYLE J
MINGLE] G
BRYAND F
MCMACKIN TERRY
TRIPP RANDY
STONE ARCHIE
HOLM BIRDIE

LONG DAVID L
DUBOIS MAY

RICHA RDS FRANK B
ECKMANN BARBARA
GRAHAM COYNE
FERNANDEZ ENRIGV
HORN GREGORY
JACKSON BILL
ROYCE ROBERT A
WESSBECHER HOWAR

MORGAN DON E
CRUM CONNIE
EDDY HELGA

HILL DALE

COSBY H B

THOMAS QUEBIIN V
BYERS BILL

MARTIN CONNIE
SPINK THOMAS]
WEGNER ALBERT
KEASEY GILMAN
CUNNINGHA M DONNA
WHITE FRANCIS
FROTHINGHAM PHYL
YORK GEORGE
CRAVEN RICHARD
WILSON HOWARD L
HHSE JOHN
THOMAS SUZANNE
MAIER ROGER
MCNAIR ALFRED B
SIEGMUND WALT
TRICE DENICE ANN
SHIOSHI SARA
HAMBLIN DON
LANG JOHN L
REIMAN LYNN E
ELLIS BEN
WARNATH CHA RLES
EBERHARDT CLIFFO
TOBABEN CLARENCE
STUFFELBEEN CHAR
GARLAND JAMES E
FONATAN PETER R
PASLEY FLOY

HEINE DELORES
HARRICK CYNDY
MACK HARRY]
HENDRICKSON DAVE
ENYART CAROL
CRUM GA RLAND
PATTERSON ALICE
JONES RICHARD A
MYBENGA DANIEL E
KANOUSE DANIEL
LIBBY RICHARD
ECCLES TERRY L
MICHA EL ROBERT
PUN LINDA
VANDCHEY JAMES A
JORDAN GUY W

217

LEELAND ALBERT L
ROBERTS CLARENCE
PARSONS JEANETTE
MOOTHART GORDON
RICHTER EDWARD W
DEWEY GEORGE W
TODD GEORGE F
GREENWOOD RICHAR
NELSON DULCIE
WALIACE H WAYNE
FLEMING DOROTHY
IRWIN ROGER

FOOS DA VID

FOWLER GERALD A
WHITAKER CONNIE
HARMAN ALBERT L
BROWN BETTY

BA RNEBURG BRENT
HOWA RD BONNIE O
MILLIKEN MARGARE
SIHTO GEORGE
TURNER IAWRENCE
GATE ROBERT D
COOPER KENNETH G
KENNEDY KATHY
MASER K

KING JOHN PHILLI
LYDA JOHN H
STADSVOLD CYARCH
GODARD RUSSELL H
JOYCE JAMES H
CHRISTENSEN BENN
CROBOK EDNA M
HISAKA CAROL
REEVE DANIEL G
WILLEY DALE H
HOLLAMON RICHARD
LUSKY CHUCK
ELLIKER ANNE
MORGAN SALLU
NELSON MILTON
WEST GRANTON
DAVID FORBES
PARMENTER ROBERT
PHILIPPI SANDRA
FOWLER MA RILYN
BUNTING JAMES

HA RRISON BEN
ROESER THOMAS
DEDEURWAERDER CH
WALETICH MARK

MOON CARROLL C
DEARBORN RICHARD
WARE BARBARA
FELL ROSEMARY
WALSH NANCY
SCOVILLE JACK A
OLLEMAN ROGER D
GITHEN§ JENNIFER
JAGER DUANE

KHA SHOGJI EMAD
SINNARD HR
KATTER V

KNUTH LINDA
RHYNARD WAYNE E
HEATH IARRY
HOFFMAN DATE L
GUY GREG

HENDRI X MIKE
LINDBERG MARVIN
PLYER DOUGIAS C
BUCK DARRELL K
EMERICK DONALD]
DAVISON EUGENE V
DUNN ELLEN
MECHAN SIDNEY
OSBORN FRED P
WILCOX R C
LITCHFIELD A
WHEELER TERRY
BOYD FREDDIE
AUSTIN CYRUS W
GRAHAM CRAWFORD
GILBERT MIKE
STOKES DONALD B
FERRAN FRANCISCO
BURGE ANNA

WOOD EDWARD
HIGBEE BRIAN
SMITH FREDERICK]
PERKINS HA
PANDEY N N

FATO GABRIEL
WUSTRACK MIKE
VIMMERSTEDT JO
DEDRICK M C
GARG HARE PRASAD
BUNKER A LBERTA
NELSON WILLIAM R
ZENOR DANNY
CRAIG ROBERT V
GRIFFIN STEWART

WOLF DONALD §
WRIGHT GEORGE C
IRONS L M

KLINE DOUGILAS]
JANS FRED C
RYDELL ROBERT A
MATTHEWS MILDRED
BUSBY HAROLD L
GRUBB STEVE
SCHMID RICHARD A
HANSEN KENNEDY
NG DINA

WALKER RALPH DEA
OVERACKER CLAIRE
JOYNER W B

FLYNN JOAN
DONOHUE PAT
GOULD BEULAH
SMOUSE CHERILYN
WONG PATRICK
TABOR CLAYTON
HANT DONALD
NESBITT CANDICE
LEWIS ANNIE

CRUSE HOWARD
SMITH HAROLD E
NUNLEY M KIRBY
SCHWANKE WALTER
WATSON CHARLES R
HORNER GAMMY
ZOBEL DONALD B
PIECE KENNETH
WILLIAMS CLARENC
ROBINSO RAYMOND
RICE KENNETH L
FRY LOYD L
GULLEDGE MARY
FREEMAN GEORGE F
LEHAMAN GEROLD O
HOY MAE R

MC NUTT JIM

FIREY WILLIAM]
MERRICK STEPHEN
HEPNER RALPH
DOLBY MICHAEL W
KUROVOSKY DENNIS
SANDER GARY H
SEMONES RONALD R
RONNING MARYLEE
PETERS EMERSON C
GUERBER] RICHAR .

218

SCHOTHHA
FAMILY BILLIARDS
NOVAK RAYMOND P
SAWYER REBECCA
HOPSON CHERLYN
NELSON KERMIT

219

performed in internal core memory. Compute the average through-

put time per record retrieval in random sequence; assume the user

terminal is 20 miles away from CPU. The concept of computations

are illustrated in Figures B.5, B.6, and B.7 on pages 228, 229, 230,

and respectively.

1.

Computation of the number of required tracks and required
cylinders

Number of required tracks = i

Number of required cylinders = Z.

Where i and Z are the smallest integer such that

i 2 gl and Z > %6

Where numbers of records per track = 64
Number of tracks per cylinder, D854 = 10
Number of records per cylinder = 640

Computation of the average accessing time of a random
record from a sequential disk file. The concept of using
average cylinder, average track is considered. See
details in Figure B.5 on page

Since average number of required looking-up

records - N+l
2
Average number of required cylinders = Za

220

(N +1)

Where Za is an integer such that Za > > % 640

Then the records .contained in the last average cylinder =

[N+1
2

- 640 (Za - 1)] and the number of looking-up

tracks in the last average cylinder, tLLAC

. . S
Where tLLAC is the smallest integer such that tLLAC >
1 N +1

% [> - 640 (Za - 1)]

The number of looking-up records in the last track in

last average cylinder, NALT

N +1
N, - - (3

ALT - 640 (Za - 1) - 64 (

tLLAc"l)]

)

a) Total cylinder to cylinder positioning time (tTCTCP

tTCTCP 30 ms x (number of full cylinders)

30 ms (Za - 1)

)

b) Total track average waiting time (tTAWT

tTAWT 12. 5 x number of average full cylinders +

(12. 5, initial waiting time) ms

12.5 ms (Za - 1) + 12.5 ms

)

c) Total previous tracks read-in time (tPTRIN

tPTRIN = (a track read-in time + one disk r,p.m,

waiting time) x (number of full tracks

used in file)

where

221
(25. 00 + 25.00) ms x (number of average
tracks ir the file)
50 ms x (number of average full tracks
in the file)

50 ms (t 1)

LLAC

d) Average search CPU busy time per random record

retrieval for the main file (t

CPUFSQF)

tCcPUFSQF

ALT

NAFT

tcPUFSQF

(fault-loop linear search time) x (number
of average full tracks) + [(fault loop

linear search time) (N -1) + (correct

ALT

loop linear search time) (1, a desired
record)]
Average number of records in last aver-

age track.

Average number of full tracks = (t 1)

LLAC

[5.5 + 7.875 x 64) x N +[7.875

AFT

-3
N,;r-D+ 165.625 (1)] 9] x 10 ~ ms

[509.4 N +[7.875 (N 1) +

AFT ALT ~

165.625 1] x 10_3 ms

e) Average search time per random retrieval for desired

track (T

ASFSQF

)

T AsFsarF

(Fault loop linear search time) (N 1)

ALT

222

correct loop search time (1, desired

record)
-3
= [7.875 (NALT-I) +165.625] x 10 ~ ms
f) Average disk access time per random record retrieval
(TAVACFSQF)
— fimits s . +
TAVACFSQF (initial positioning time) + tTCTCP
+T T
tTAWT ¥ tPTRIN RINDT ¥ ASFSQF
= 95 ms + 30 ms (Za -1) +12.5 ms (Za -1)
+12.5 ms + 50 ms (tLLAC-l) + 25 ms
-3
. -1) + .
+[7.875 (NALT 1) + 165.625] x 10 ~ ms
= 107.5 ms + 42. 5 ms (Za -1) + 50 ms
(tLLAC -1) + 25 ms + [7.875 (NALT -1)
+165.625] x 10-3 ms (9.16)
Illustration computation for N = 1024 records in the
file
z (1024 + 1) _
a” 2x640
1 N +1 1 1024 + 1
> = [—— - - = — [—
trrac? 6a L7 2 640 (2, -D]= ¢4 [T
- 640 (1-1)]
= 9 tracks
NAFT = (tLLAC-l) = 8 full tracks
_N+1) -1 - -
NALT = > 64O(Za 1) - 64 (tLLAC 1)

223
= 513 -0-512=1
TAVACFSQF = 707.5 ms + 42.5 ms (1-1) + 50 ms (9-1)
+25 ms +[7.875 (1-1) + 165.625] x 10_3
ms
= 107.5 ms + 400 ms + 25 ms + 0, 166 ms
= 532,666 ms

The results of computation of T Equation

AVACFSQF’
(9.16) are shown in Table B. 1, page 231.
Computation of the average throughput time per record

retrieval of unsorted sequential disk file:

a) Average throughput time per random record retrieval
of unsorted sequential disk file TATHRPSQUN

From the time diagram on page 2 the following

equation can be set up:

T

TATHRPSQUN - “CBF ¥ TCFNTK ¥ TRCLU ¥ TAVACFSQF

*Trco T TrRwourt (9.17)

0.3218 +8.515 + 0,008 + 532, 666 +

0.008 + 36.00 ms

577.159 ms for N = 1024 records.

1

The results of the computation of TATHRPSQUN,

Equation (9. 17) as the function of file size are shown

in Table B. 2 on page 232.

224

ATHRPUSQF ~ 11

b) Approximate formula of T
Only the major components of search time (msec)

are considered; the minor components of search time

(nsec) are omitted.

Since TAVACFUSQF = (initial positioning time) + (cylinder
search time) + (track read time) + (read-
in the desired track)

and 44, 8878 ms = TCBF + TCFNTFN + TRCLU + TRCI/O
¥ TRWOUT

then T1 = TAVACFUSQF + 44, 8878 ms

o N+l
& 107'5(1)+30[2x630 1] +50
N +1
[2 < 630 1] +259) + 44.8878
T1 ~ 0,635 N +97.453 msec,

4, Computation of the average CPU busy time per record
retrieval fro unsorted sequential disk file using both unique
fixed-length key, and full name of a record in accessing.

a) Total CPU busy time per record accessed using unique

fixed-length key (tTCPUTSQFUN)

Since t 1) +

CPUTSQFUN [509.4 N, . +[7.875 (N

ALT

165.625]] x 10”° ms

[509.4 x8 +[7.875(1 = 1) + 165.625]]

X 10_3

225

4.242 ms For N = 1024 records

then to - pyuTSQFUN = TrcuL T tcputsorun T Trer/o *
T
RWOUT (9.18)
= 0.008 +4.242 + 0,008 + 36.00
= 40,258 ms For N = 1024 records.
b) Total CPU busy time per record access with using
full name of a record (tTCPUSQFREUN)
1 = +
Since tr - pyTSQFRUN TecentFk T FreuL T tcpuTsorun
+
TRCI/O TRWOUT (9.19)

8.515 +0.008 + 4,242 + 0.008 + 36.00

48.773 ms For N = 1024 records
Equation (9. 18) and (9. 19) as a function of file size
are computed as shown in Table B. 2 columns 9 and
10 respectively.

5. Computation of achievable-throughput-rate capability of

unsorted sequential disk file.

a) Achievable-throughput-rate capability of unsorted
file, C

_L_l

can be computed by using the general formula which
has been mentioned on page 141, Equation (7. 1) can
be rewritten. Throughput-rate capability of unsorted

sequential disk file, Cl’ (calls per hr.)

or

226

3600 — [average throughput time per call

T
3600 _
< - T where T\ = T A THR PSQUN
For illustration, from Table B.2, T, = 577.519 ms =

(1)
0.577519 sec. for file loading factor, = 0. 0625 or

N = 1024 record in the file, The file system using
the full name of record in accessing.

3600 ~
C1 = 0.577519 ¥ 6234 calls per hr,

The results of calculation of Equation (9. 20),
Achievable-throughput rate-capability of each typical
file organization method using both the full name of
record in accessing and the unique fixed-length key can
be computed in the same manner as shown above.

See results of computation in Table 7.3, page 152 and

Table 7.4, page 155.

Computation of customer's operating per call (unit cost) of

unsorted sequential disk file.

a)

Customer operating cost per call (unit cost) is

based on rental cost as the objective of the evaluation
in this thesis. By application of the general formula,

Equation (9. 21) can be rewritten as follows:

227

Customer operating cost/call of unsorted sequential file,

Ye(ny
i [.T('l) RCM (300) + N

T(4) (0.3)] x 100

R
cM (9. 21)

by using the equation (9. 13); page 209, then

5 _ L17. 5 (F/hr) (T
C(1) R M

cpy/R)* Ny (9314100

(1.5)

For illustration, from Table B, 2, page 232, T(i) =

0.48773 sec, from Table B. 4 page 234, Disk required

space, NT = 24.755 tracks, For N = 1024 or o= 0, 0625,
(1)
The selected rate of use is 250 calls/hr (RcM = 52500

call/month); 1000 calls/hr, (RC = 210000 calls per month),

M

2000 calls/hr, (RC = 420000 calls/month), Then

M

- _ [17.5(250) (0.048773) + (24.755 x 0.3)] x 100
c(1)y (52500)

1. 86880 cent per call,

The results of computation of unit cost of each typical file
organization method using the full name of record in accessing can be
computed in the same manner as shown above. The results of compu-
tation are tabulated and compared in Table 7.6, page 173. The
graphical comparison of the results is shown in Figures 7.13 - 7. 16

pages 169 - 172 respectively.

Full name of a
ecord is supplied

Variable length
tree key decoder

= desired redord, in (a)

(a) illustration of random record accessing

unique fixed length
key uses for

from sequential disk file

Full name of a
ecord is supplied

Variable length
tree key decoder

'= desired search record which is equivalent to

unique fixed length
key uses for

make a random search in (a)

(b) average search is considered for
any random accessing

cylinder O cylinder 1 cylinder 2
Tl]] —>] T|
11 C 1| C N
| |] ! |
1| C]|]
e [| C]
| 14| L]
] [\% 1 | 1
IRR 1| C 1
C — 1| C 1| = 1
[h= [j
o =5~ = oo oos- =7 ng]
= | =g | | 1
e =====0 | B==mmemad | T |
2 == | B Z]
B A Z) — | C l
Pz = 41/% [1 |]
Pzt | | 1| C]
=== 2 | L 1| L]
=== 2 | I |
22 2 Zz [H O l

FigureB .5. Random access a record in a sequential disk file in (a) is equivalent to average access of a record in (b).
Average looking-up records in the file: average cylinders, average tracks have to be considered.

8¢¢

je———————— 16 Sectors per track

~LII P[PPIl

track 1

mez = | | []][]]|

—— —

vk = [| [[] [[]]

)
f

1 cylinder

wmeoo>| [T T T [[T [[[[[]]

Request read internal cpw

read track 1 read track 2

read track 3

! -

Transfer time
track

s %

Internal search time, 186 x 10-'3 ms

]

1

125 -
ms»’p—zs ms “—'l r

Waiting time %

1/2 rpm
be—25 ms —-|<—25 ms —=]

waiting time
R/W head positioning time
95 ms

Transfer time
track

s

Transfer time
track

1
7
7
contains desired record

k—ZS ms—

.

! {5 Total actual processing time

Figure B.. 6. Time diagram for accessing a record from sequential disk file,

622

W) UOTIEDIUNWTHOD)

XLIL 03 3100 |
woay ejep ndino Iagsuer]

10 Asnq st [ouueyo mdmmo

UYOIB3s [BUIDIUT YOI} PaIlsa(]

SW 62 ‘aWI) UOIIN[OAI U0

UIT] IJSUBI) HOBIL PAIISA]

YoIeas SOBI) IIBIPIULISIU]

UYDIE3S [BUIAIUL YOBI} PUODIS

T

SW G2 ‘9] UOTINJOAII U0

3wy} I9JSUes] HOBI) PUOIIS

awp Sunrem
SW GZ ‘UOIIN[OA3L dUO

YOIeas [euIaul HOrx ISIL %
; sw gz ‘ewny
UOIIN]OAII IUO UI PEd

‘owity I9Jsuell Yoen 3Isitg

wdz g/1 2wy Surjrem qoel],

awry Suruwonytsod peay M/Y

2wIry }SIp 3run [BOI30f 3103UU0)D

43y yaBusy paxyy
03] pIOd3I JO dUIeU

[y 313 ul peay

3w} UOTIBDTUNUWIOD)

TTY

user average throughput time

<> Billing time (ms)

NOTE

TTY billihg time, period of ON-OFF to the system (hr)

3

File'space charge, depends on number of file blocks the user uses in disk memory (block/month)

Time diagram for random accessing a record in a one-cylinder sequential disk file.

Figure B.7.

230

Results of computation of an accessing time per random record retrieval as the function of file size for unsorted sequential

disk file.

Table B. 1.

a3 ostp OS ur
pIoOal Wopuel B JO
2w} $S300€ 3ZeIAAY

ms

182. 666

332.666

532.666

1860. 166

3587.666

5315. 166

7042. 666

UWIT) YOIBdS [EUIIIUL
O®I} paLISIp Y

ms

0. 166

0. 166

0. 166

0. 166

0. 166

0. 166

0. 166

awr) ur
-pEalI OB} PaIISep Y

ms

25

25

25

25

25

25

25

W) UI~-PEII SNOTAIJ

ms

50

200

400

1600

3200

4800

6400

aun
Bunirem 28esoA®e HoeL],

ms

12,5

12.5

12.5

50.0

87.50

125. 00

162. 50

awr) Suruoryrsod
I9PUI[AD O3 I9pUITAD

ms

90

180

270

360

awr) 3utuorirsod
peay M/ Y [E13Y]

ms

95

95

95

95

95

95

95

3oeX} I15B[313
Ul SpI0oaI JO Iaqump

N
ALT

records

J9puUIfAo
1sB[3y} ur paimnbar
oD [0} JO IoqUInN

-1

LLAC

t

tracks

I3pur[Ao
1se] 2y3 ur pasmnbar
wvAO.Nhu. HO k@ﬁ&ﬁ—z

LLAC

t

tracks

paimbaa
srepurjAo [ing
jo raqumu 28eraAy

(Z_-1)

cylinders

12

srapuryAo Buryzoddns
jo 1equmu 98elaAy

z

cylinders

10

13

SpI0D31 payoIeas
Jo saqumu a8eIAY

(N+1)/2

records

65

257

513

2049

4097

6145

8193

pioda1
ur 271y [0y Jo azxg

N

unit

128

512

1024

4096

8192

12888

16384

Note: Unsorted sequential disk file -~ 64 records per track

== 640 records per cylinder.

231

Table B.2.

Results of computation of average throughput time per random record retrieval and CPU billing time per record accessing with file

system using both unique fixed-length key and full name of records in accessing.

= g

8) S o > o

9 g 28 g 32

5 £ g% ¢ 8 : 5 % 5 3 R

k= 8 = o x 0 Q 5] Q 80 B &g

o 3] g o v o 99 o o % = o o

= o o] £ [ko] o [V v =3 5 @

o - + 'g e t'O o 2 o v O [E - E e a

=) % 5 a8 v % 9 5 9 & E o 8 oo 2 3

3] g = P & B & R) - © g7 g 9

o s s ° g.L.2 = = S oo o e >~‘g >~go «©
haln o 3 g4 T @ T E) Qg L 3] 3 o b 2
‘| B o g = ‘éms o = % a g ° B« D v O gOE.-.
8 i~ A5 g o oo g9 g9 o ¢ = g
§ ¢ 3 8§ | 358 | 8% S g E 8 E £ S RS s 8 g
a2 o oS8 o 8 8 o § < g = 8 - 5 Usd U «'% < £%

N o T T T T T t t
CBF CFNTFK RCLU ASFSTSOF RC1/O RWOUT] TCPUSOQF CPUTSQFRFU

unit ms ms ms ms ms ms ms ms ms
128 0.0078 .3218 8.395 . 008 182.663 . 008 36 36.691 45, 086 227.399
512 0.0312 .3218 8.475 . 008 332.663 . 008 36 38,220 46. 695 377.479
1024 0. 0625 .3218 8.515 . 008 532.663 . 008 36 40, 258 48.773 577.519
4096 0. 2500 .3218 8.595 . 008 1860. 663 : . 008 36 52.486 61,081 1905. 599
8192 0. 5000 .3218 8. 607 . 008 3587.663 . 008 36 68. 789 77.390 3632, 605
12288 0.7500 .3218 8.626 . 008 531S5. 166 . 008 36 85, 084 93.710 5360. 130
16384 1,000 .3218 8,641 ..008 7042, 663 . 008 36 101. 398 110. 039 7087. 645

(AX4

Table B, 3.

Results of computation of storage space required as the function of file size of
unsorted sequential file with both fixed length key and record full name,

Full name of a

Main file search

Total required

Total required

File size |record program program core memory core memory Disk space
inrecords SCFNFK SC PRS with SCFNFK’ in | without SCFNFR supporting the
unit words words words words track

(a) (b) (a) (b)

64 200 544 61 1024 1829 1085 1
128 200 1088 61 1024 2373 1085 2
256 200 2176 61 1024 3461 1085 4
512 200 4352 61 1024 5637 1085 8

1024 200 8704 61 1024 9989 1085 16

2048 200 17408 61 1024 18693 1085 32

4096 200 34816 61 1024 36101 1085 64

8192 200 69632 61 1024 70917 1085 128
12288 200 104448 61 1024 105733 1085 192
16384 200 139264 61 1024 140549 1085 256
Note: Column a = Number of computer words used for processing program,

Column b = Number of computer words used for supporting data of one track,

€e?

Table B.4.

with using the full name of record in accessing,

Results of computation of customer operating cost per call (unit cost)as the function of file loading factor of unsorted sequential file

Disk space Disk space TTY, line and CPU-time | CPU-line and CPU-line and disk

File looding Disk space for accessing charge per operator cost Rule of use charge per disk charge charge per month

factor for data file program month per month data file month per month per call
Unit Tracks Tracks $ $ calls per month $ $ $

0078 2 1.317 0.995 760 52500 197.25 958.25 1.82523

128 reconds 2675 210000 789.01 3465. 01 1. 65000

(128 records) 4075 420000 1578.00 5652. 00 1.34614
0312 760 52500 204.27 968. 02 1.84384

s1o ; 8 4.505 3.752 2675 210000 817.17 3495.92 1. 66472

(512 records) 4075 420000 1634.34 5713.09 1, 36025
0625 760 52500 213.39 981. 12 1. 86880

v g 16 8.755 7.427 2675 210000 853.53 3535.96 1. 68378

(records) 4075 420000 1707. 03 5789. 76 1.37851
2500 760 52500 267.24 1044.72 1.98994

1096 ; 24 34,255 17.477 2675 210000 1068.90 3780. 00 1. 80000

(records) 4075 420000 2137. 83 - -
5000 760 52500 338.58 1157.46 2.20467

2192 J 128 68.255 28.877 2675 210000 1354.32 - -

(records) 4075 420000 2708.64 - -
7500 760 52500 409.98 1258.26 2.39668

' 192 102. 255 88.28 2675 210000 1639.92 - -

(12288 records) 4075 420000 3279.84 - -

L 000 760 52500 481.41 1359, 09 2.58874
: 256 136. 255 117.68 2675 210000 1925.67 - -
16384 ds

(records) 4075 420000 3851.37

yee

235

Example 1b, Strictly Sequential Disk File

In case the file is strickly sequentially organized and the
cylinder overflow concept is used to handle the overflow records,
assume half of each cylinder overflow area to be full and the access-
ing of an overflow record use the direct chain method as in the
Direct file,

1. Computation of the required tracks and required cylinders.

In this type of file the concept of using cylinder overflow
track is introduced; the methods of calculation are as
follows:

Assume that the number of searches in the cylinder
overflow track is 10% of the number of retrieval records
from the main file (approximately 9% of total access
times).

The data records are organized in such a way that:

The number of prime track per cylinder 9 tracks

63 records

The number of records in a prime track

The number of cylinder overflow track = 1 track
The number of records in a cylinder overflow
track = 56 records,

Since the computation is made when the cylinder over-

flow track is half full

236

Then the number of looking-up in overflow track

56
2

= 28 records,

assumes the overflow records which are the head of
each chain, are stored sequentially in the first nine succes-
sive spaces, but not necessarily in any key sequence (the
same as unsorted sequential file). See detail in Figure
B. 8, page 245.
Then average number of looking for the head of the chain
9 +1

records = > = 5

The average number of fault looking up for head of the
chain records = 5-1 =4

The average number of correct looking up for head of
the chain record = 1

The number of overflow records which are not the head
of the chain = 28 - 9=19

Then average number of looking up these records =

19 + 1

> = 10

a. The average search time in cylinder overflow track

(TASOFT)

TASOF'I‘ = (initial time) + [(Fault check count loop time)

(5 - 1) + correct checking count loop time

(1)] + {(Fault checking chain loop time) (10 -1)

237
+ correct checking chain loop time (1)] (9. 22)
= (5.5 +[10.625 (5 - 1) + 7.875 (1)] + [(19. 25
(10 - 1) + 4.725) + 158. 75 (1)]
= 5,5+ 50,375 + 336.125 = 392 usec,
= 0,392 ms << 25 ms; then 50 ms, waiting and

read-in time per track is considered.

2. Computation of the average access time per record

retrieval of strickly sequential disk file.

a)

T

AVACFSTSQF

The average disk access time per random record

retrieval of strickly sequential file (TAVACFSTSQF)

According to the concept of accessing a random record
from strickly sequential disk file as shown in Figure

B. 8, page 245. The TAVACFSTSQF can be computed

as follows:

In strickly sequential disk file organization, an
overflow exists when each track which is supporting
file is full, so each times when searching is performed

over a full track 10% of TASQFT is to be considered.

The the following equation can be set up:

Ty e . + n
(initial positioning time) tTCTCP

1
teawr ttprrIN TT0 (50 ™8)

1)+ T

- +
(tprac RINDT | L ASFSQF

(9. 23)

238
All parameters on right hand side of Equation (9. 23)
have the same meaning as in Example la, but the
computation is now based on 9 prime tracks per cylin-
der; each prime track contains 63 records. The
result of computation of Equation (9. 23) are shown

in Table B.5, page 241.

Computation of the average throughput time per record

retrieval of strickly sequential disk file, The methods

computation are as follows:

a)

T

ATHRPSTSQF CB

Average throughput time per record retrieval of
. 21 disk fi
strickly sequential disk file (TATHRPSTSQF)

From the time diagram on page 230 the following
equation can be set up.

= T F+T T

RCLU ¥

Tavacrstsar T Treryo T Trewour

CFNTFK T

(9. 24)

0.3218 + 8.515 + 0.008 + 572. 729

+ 0.008 + 36.00

617,582 msec.

when N = 1084, o = 0,0625 for the illustration,
h .

The results of the computation of TATHRPSTSQF’

Equation (9. 24) as the function of file size or file

loading factor, o, are shown in Table B. 6 on page 242.

239

T

b) The approximate formula of TATHR PSTSQF = 2

The major components of search time (msec.) are
considered; the minor components of search time
(nsec) are omitted.

T AvACFSTSQF (initial positioning time) + (cylinder

search time) + (track search time) +

(read-in the desired track) + l_t)-

(overflow track search time)

44,8878 (ms) 4 TCBF + TCPNTFK + TRCLU +
TRCI/o * TRWOUT
T >~ T
2 AVACFSTSQF + 44. 8878 msec,
N +1
o~ —_—
107.5 (1) + 30 [Zx %30 1] + 50
N +1 1
[2x630 1 +25(1) + 10 (50)
T & 0.635 N + 102.451 msec. (9.25)

For the computation of the achievable throughput-rate

capability of strickly sequential disk file, the method

(2
of computation is the same as that illustrated in Example
la, See page 226.

Results of the computation of C(Z) are shown in Table
7.3, page 152 and plotted in Figure 7.3 for comparison

with other files.

240
For the computation of the customer operation cost per

call of strickly sequential file, the method of

UC(Z)’
computation is the same as that shown in Example la.
See page 227. Results of the computation of UC(Z) are
shown in Table 7.6, page 173 and plotted in Figures 7,12
to 7. 14 at the specific rates of use 250 calls/hr,, 1000

calls/hr and 2000 calls/hr for comparison with other

files.

Table B.5. Results of computation of an accessing time per random record retrieval from strickly sequential disk file.

=) ":é
3 < ¢
hal C ~ g = 1 o ® Qo
oy e e a QO = [oo] o« -] £ O
§ 2 § 2 g 2 g o g g '§ T oo 'g o] = A & b ﬁ
<] ® O 9 § 0 9 4 R o o = = - K & 2 0
(3] o 9O O I o 5 o - = (V] }:’ g ~ £ [~ 3] 3] o
2 £ 2 ET §8 |Bg | 2% 25l S50 5% | Fe Y |B g |3 S '3
3] —
5 :?,‘ 8w 7 & %S S 8 s B E_g’ e 8 $5 |8 e o 2 :g
8 % 0 ® E % .8 ikl 3~ g B 5l ¢ § ¥ ow | 8 off 0| & > 0 O
@ S £] ?e |25 |4 S8l sE| B2 |xf|eElgE|g5|es e
C g3 g & 52 [Bw | B® ol E%| 2% |25 |2CIPE|Ss5(85 |25
i < 8 < g 25 |28 |28 | 28] BRI GR [rz |[£A|l<f|<&|=d|<a
N N+1)/2 Z Z -1 t t -1 N t t t
(v a (3) LIAC | LIAC ALT | pPR/WH | TCRCTP} AWT
unit records |¢ylinders cylinders tracks | tracks records ms ms ms ms | ms ms ms ms
128 65 1 0 2 1 2 95 - 12.5 50 |25 0. 174 5 187. 674
512 257 1 0 5 4 5 95 - 12.5 200 | 25 0.197 | 20 352,697
1024 513 1 0 9 8 9 95 - 12.5 400 | 25 0.229 | 40 572.729
4096 2049 4 3 6 5 33 95 90 50.0 | 1600 |25 0.418 | 160 2020.418
8192 4097 8 7 3 2 2 95 210 100.0 }3250 |25 0.174 | 325 | 4005, 174
12288 6145 11 10 8 7 34 95 300 137.5 4850 |25 0.426 1485 5892. 926
16384 8193 l 14 14 5 4 3 95 420 187.5 |6500 |25 0. 181 | 650 7877.681

Note: Strickly sequential disk file -- 63 record per track, 9 track per cylinder
-- 56 record in one cylinder overflow track

-- both 10% cylinder overflow search and internal search track by track are effecting the average throughput time.

%2

Table B.6. Results of computation of average throughput time per random record retrieval and CPU busy time per record accessing
with the file system using both unique fixed-length key and full name of records in accessing.
o B E 2 - B g
g 8 g5 3 g y 8 5§ = 5 8
5 8 s 4 Anﬂ) S 8 6] a. S o 3 g‘ o
@ S g 5 & S ha : v § 8 " e &
o] [ot + o) s el bl B g & g
G 2 'é ws OO — o v O o £ 4 g - 9 O o
b0 @ o o g 10 w8 b B! ""ﬂ)'go a3 9 8«
= 5 g & o2 g g 5 8 8, = 3 o9 0 g H S
“:_!‘ o a8 o g 3 o =9 £ [> Y} o =t > O 5 o0 — © E
S8 | 8 :5 | §3E | §3 - 2g | 3 2 4% X
[} - g 1] e © ™ $ &
g8 2 |23 | 285 | B3 | it 23| 2 | RE3 | REz | g
5 2 = o3 £ 23 0% < T B S (S o ¢ & U & 8 < a®
N o T T T T T t t
CBF CFNTFK RCLU ASFSTSOF RCI/O RWOUT TCPUSQF CPUTSQFRFU
unit ms ms ms ms ms ms ms ms ms
128 0. 0078 .3218 8.395 . 008 187.674 . 008 36 36.722 45, 117 232,371
512 0.0312 3218 8.475 . 008 352.697 .008 36 38.259 46.734 397.510
1024 0. 0625 .3218 8.515 . 008 . 572.729 . 008 36 40, 297 48.812 617,582
4096 0.2500 .3218 8.595 . 008 2020.418 . 008 36 52.526 61,121 2065. 351
8192 0, 5000 .3218 8.601 . 008 4005, 174 . 008 36 68. 835 77.436 4050. 133
12288 0, 7500 . 3218 8.626 . 008 5892.926 .008 36 85. 496 94, 086 5937.890
16384 1. 0000 .3218 8.641 . 008 7877.681 . 008 36 101, 447 110. 008 7922. 660

(444

Table B. 7.

Results of computation of required storage space as the function of file size of Strickly sequential disk file with using both fixed~
length key and full name of record in accessing.

Total required Total required
Full name of record core memory core memory Disk space
File size to fixed-length conversion Search programs using using supporting
in record SCFNFK SCPRS full name of a record fixed~length key Ds
Unit Words Words Words Words Track
d e a b c
128 200 1088 61 72 1024 2449 1161 3.032
512 200 4352 61 76 1024 5713 1161 9.127
1024 200 8704 61 76 1024 10065 1161 18. 254
4096 200 34816 61 76 1024 36101 1161 73.016
8192 200 69632 61 76 1024 70993 1161 145. 032
72288 200 104448 61 76 1024 105809 1161 217,040
16348 200 139264 61 76 1024 140625 1161 289. 064

Note: Column a = Number of computer words used for processing search routine.

Column b = Number of computer words used for search overflow track routine.

Column ¢ = Number of computer words used for supporting data of one track.

Column d = Number of computer words used for variable length tree search.

Column e = Number of computer words used for variable length tree supporting.

12 44

Table B.8. Results of computation of customer operating cost per call (unit cost) as the function of file loading factor of strickly sequential disk

file using the full name of record in accessing.

~ Disk space Disk space - Terminal CPU-time CPU-line and CPU-line and disk
File looding Disk space | for accessing | charge per devices cost Rule of use | charge per disk charge charge per month
factor [for data file program month per miomth data file month per month per call
Unit Tracks Tracks $ $ calls per month $ $ $
.0078 3.032 1.392 760 52500 197.40 958.73 1. 82615
(128 records) 1.33 2675 210000 789.55 3465. 88 1. 65041
4075 420000 1579. 11 5637.44 1, 54244
.0312 760 52500 204,45 968.56 1, 84487
(512 records) 9. 127 4,579 4,11 2675 210000 817.86 3496.97 1. 66522
4075 420000 1635. 69 5714.80 1. 36066
.625 760 52500 213,54 981.67 1. 86984
(1024 records) 18. 254 8. 829 8.13 2675 210000 854,22 3537.35 1. 68445
4075 420000 1708.41 5791.54 1.37893
.2500 » 760 52500 267.42 1059. 60 2,01828
(4096 records) 73.016 .34, 255 32.18 2675 | 210000 1069. 62 3776.80 1.79847
4075 42000 - - -
. 5000 760 52500 338.79 1162. 82 2.21489
(8192 records) | 145.032 68. 329 64,01 2675 210000 - - -
4075 420000 - - -
. 7500 ‘ 760 52500 411.63 1267. 44 2, 41417
(12288 records) 217.047 102. 329 95, 813 2675 210000 - - -
4075 420000 - - -
1, 0000 760 52500 481. 65 1369. 27 2. 60813
(16384 records) 289,064 136. 329 127.62 2675 210000 - - -
4075 420000 - - -

¥9e

ull name of a

record is supplied

Variable length ‘
tree decorder

Unique fixed-lengti
key used for

searching

= Desired records

(a) Random search of strickly sequential file

ull name of a

record is supplied

|
l 1
[~ |

| |
[cylinder overflow track |

, 1st eylinder 3rd cylinder

n 2nd cylinder e
f 1 ~ >

63 record per track

ez ZI

Onique fixed-leng

Variable length
tree decorder

key used for
searching

= Desired records in equivalent search

(N+1)

—IE ZZ7 |

Records sequential search which is

equivalent to N record random search

1
e

Cylinder overflow track, 56

[4 = Overflow record which is the head of the chain

(b) Equivalent search of strickly sequential disk file.

records/track. 10% of search

L A J
%;H*I-»I-»I-—I—HA IA L |-

A T

1st overflow record of 2nd overflow record of track one.

track one (head of the chain
of overflow record in track one)

Figure B.8. Random access of a record from strickly sequential file in (a) is equivalent to search of a desired record in (b).

in the main file is considered.

ual
el

Sve

246

Example 2, The Indexed Sequential Disk File

For accessing a random record from an Indexed Sequential
File, supported by CDC Disk 854 unit, the following assumptions are
applied:
- There are N, the current records in the file, each record
containing 384 bits (32 bytes = 16 words, including 2 bytes,
4 character keys), in continguous area,

- First data track, prime track, contains cylinder index, track

index and data area, respectively, There are 55 records

in the first track, 63 records in the successive tracks and
56 records in cylinder overflow tracks,

- The last track in each cylinder is reserved as an overflow
area, Then there are 9 prime tracks and 1 overflow track
for the 10 track-cylinder disk file unit,

- To access a random record from the file the full name of
the record is used, The variable-length tree decoding
technique is used to convert it to a unique fixed-length key.
See details on page 75.

- File system processing programs and cylinder index are
kept in internal core memory only during operating hours.

They are kept permanently at some place in disk memory,

247

For the computation of the number of required tracks and
required cylinders, The following parameters are intro-
duced.
a) The number of used cylinders = Z

Where Z is the smallest integer such than Z > 11]\1—

Nc = number of records in each cylinder of this)

typical file

Furthermore

z = number of records in Cylinder Indexed

For illustration, according to the writer's desired

N

‘c 496 for first cylinder

N

c 559 for the latter-cylinder

(First track = 55 records; the latter track =
63 records)

Z can be rewritten in the following form

496 (N-496) _ _
Z3 496 + 559 = 1+0.945 = 1.945 (9. 25)
= Z = 2 cylinder. For N = 1024

= The number of record in Cylinder Index = 2

b) The number of used tracks, NUT

Nepr 2 . For N < 496 26
h N is the smaller int h that N > D

where N . is the integer suc at Nyr 2 3

248

= - >
NUT 9 +9 (Z2-2) +NTLC’ for N> 496 (9.27)
where 9 = Number of used tracks in first cylinder
9 (Z2-2) = Number of used tracks in successive full
cylinders
NTLC = Number of used tracks in the last used
cylinder.
o, (N - 496 - (Z-2) 559)
7
63
where NTLC is the small integar satisfies the above
inequality.

For illustration for N = 4096

zZ

N

N

= 8 cylinders, by Equation(9. 25)
_ (4096 - 496 - (8-2) 559) _

TLC 63 = 3. 143
= 4 tracks

— 9 +9 (8-2) + 4 = 67 tracks,

For the computation of cylinder Index Entries and the

average search time per random entries retireval of

Cylinder Index Table. The following parameters are

introduced and compute:

a) For indexed sequential disk file

T

he number of cylinder index entries, N zZ

cI1

249

b) Cylinder Index average search time, TLSCYLI’ based

on tested program. See page

T = 3.9375 N

LSCYLI op 143125 psec, (9. 28)

Since in this designed problem, N _,_< 63, internal

CI
linear search is better than binary search, See

Figure A. 2 page 195.

For illustration

TLSC YLI

3.9375 (8) + 14.3125

0.046 msec,

For the computation of Track Index Entries and the aver-
age search time per random entries retrieval of Track
Index Table in core memory. The following parameters
are introduced and compute:
The following reserved bits are provided in this
Indexed Sequential disk file for:

a) Home address (H.A.) Each track in prime area and a

track index reserve 24 bits (24 bits = 1 word = 2 bytes)
for the home address of a track.

b) Control Overflow Cylinder Record (COCR)

(1) Reserve 24 bits (1 word) for address of the last
overflow record in the cylinder.

(2) Reserve 24 bits (1 word) for indicating the left

250

bytes (6 bits = 1 bytes) in the cylinder overflow

area,

Both (1) and (2) are located in data file at

the beginning of Track Index; There reserved

bits will be used by System Operating program,

.c, Normal, Overflow and Dummy Entries. Reserve

48 bits (2 words: first word for 4 character-key and

second word for its corresponding address) for each

Normal, Overflow, and Dummy entry.

Then the number of reserved bits per Track Index

where PT =

48 (ZPT + 1, dummy)

48'(2P;I‘ = 1, dummy)

48 (2 x9 + 1) =912 bits = 152 bytes,
Number of pair of Normal and Overflow
entries

Number of data tracks in the prime area,

(PT\< 9 in this case).

Then the number of reserved bits for data records in

Track Index =

(one track data bit capacity) - 912 bits

24,576 - 912 = 23664 bits = 986 words.

Since this system is designed with 55 data file records

in the first track (Track Index): 55 records

Cylinder index

880 words

60 words

d)

251
Then (60 + 880) > 986==>(986 - 880 - 60) = 45 words
as spare storage space which might be needed for
extra information used by the operating program in
accessing of the data file.
In computing the average search time per random entry
retrieval, the number of average records per Track
Index is considered and computed. See details on

page 266, and Figure B.12., If

PT(i) = Number of required Track Index entries
(pairs) in Cylinder ith
PAT = Average number of pairs in each Track
Index
1 i=2
PAT = 7 z PT(i) (9. 29)
i=1
where Z = Number of used cylinder = number of used
Track Index,
i=2Z
For illustration N = 1024 Z = 2 = PT(i) =
i=1

P

AT

20 pairs
By Equation (9. 29)

(20) = 10 pairs.

™|

See results of computation in Table 9.9, page

There are three cases of searching entries in the

Track Index:

— —— —

/

252

(1) Search time spent in satisfied path search,
TSSFP

(2) Search time spent in overflow path search,
Tsovrp

(3) Search time spent in fault path search, TSFLP

The assumption is that the number of searches in the
overflow cylinder is 10% of the number of searches

in the prime area (9% of total search): °,

N

'Y
5.875 psec. 5.875 psec.
g . 9
2818 9 2 |g 5
ald a—i gl % 3% A %
I K- i Q] A l.nn' 80'
- » o
gl3 ®|§ 3 ,83 3 8
S B L A)E K
-7 Ql 3 -7 W] @
ot
el
Q
Q
-
)
9 >

Figure B.9. Actual time path search and effective
path search.

253

If TSTIENT= Time required for searching Track Index
entries
= Average search time of fault loop + search
time of effective correct loop
(P +1-1)
. T
= 11.625 A > +15.775 x 1
= 5.8125 (PAT) + 20.3375 psec.
= 5.8125 (PAT - 1, dummy) + 20. 3375 psec
(9.30)
There is no search for a dummy, buffer record.
For illustration, N = 1024 PAT = 10 pairs,
by Equation (9. 30)
TSTIENT = 5.8125 (10 - 1) + 20,3375

72.65 psec = 0,073 msec.

é€) For computation of the average search time per
record retrieval of cylinder Index and Track Index,
the following formula can be set up:
The average search time per record retrieval of

Cylinder Index andATrack Index, TASTCYLTI.

254

T +

Tastevit: = Toscyr: T Tar/wupT T TaTw

T al .

RTI * rI‘STIE LSCYLI * rI‘ATIDS
(9.31)

For illustration N = 1024

TASCYLTI 0.022 +95 +12.5 + 25

132. 522 ms.

4. For computation of the average throughput time of Indexed
Sequential disk file, the following parameters have to be
introduced and computed:

a) The average search time per record in desired track
in the main file of Indexed sequential disk file =

TAVADF IDSQF’

The concept of accessing a random record from the
Indexed sequential disk file is shown in Figure B, 10,
page 259, with only 10% of the search times in the
prime track made on the cylinder overflow track. This

concept is the same as that for the Strickly sequential

?‘/Since it is assumed that there is no dropping of the Busy
- Status during any random record retrieval operation, then TSTIE
is overlapped with the waiting and read-in time (50 ms) for
the desired track. It can be said that T is a portion of the

. ASCLYTI . .
average throughput time per record retrieval. It is
present here as one step of the average throughput time computation.
See the results of computation of T in Table B.9, page 261,

column 5,

LSCYLTI

255

disk file. Then the following equation can be set up.

= +
TAVACFIDSQF -~ TASTCYLTI ' 'TAWT * "RINDT
where TRINDT = Desired track read-in time, 25 ms,
TTASOFT = Total cylinder overflow track search
time
= (25 + 25) +TASOFT

= 50.00 + 0.392 msec.

For illustration N = 1024

T 132.522 + 25 + 25 +'ilT)-s [50.392]

AVADFIDSQF

187.561 msec.
See the results of computation in Table B. 10, page
262, column 13 from L. H.S.

b) The average throughput time per record retrieval of

the Indexed sequential disk file, TATHRPISQF

From the time diagram Figure B. 11, page 260, the

following equation can be set up:

T, omrpisaF - TcBF T TcrNTFK T TrReLu T
T vacFmsarF T Trc1/o T TrRwouT
(9. 33)

For illustration N = 1024

256

T 0.3218 +8.515 +0.008 + 187.561 +

ATHRPISQF
0.008 + 36.00
= 232.414 msec,
See the results of computation of TATHPPISQF as
the faction of N in Table B. 11, page 260, column 11
from L. H.S.

e) The approximate formula of TATHRPISQF = T3
Only the major components of search time (msec)
are considered; the minor components of search time
(usec) are omitted.

2 + +
Then T pyacrimser Tar/wer T Tatw " Trrr t Tatw
+
Torrw T 19% (TrasqrT
22 107.5 + 25 + 25 + 25 +-i-16 [50] =
187. 5 msec,
Since 44. 8878 (msec)=T + T + T +

CBF ~CFNTFR @~ RCLU
Trc10 t TrRwour
Then from Equation (9. 33)
T3 2 1875 ms + 44.8878

& 232.3878 msec. (9.34)

5. For computation of the average CPU busy time per record
retrieval for the Indexed sequential disk file, both the

unique fixed-length key and the full name of the record are

6.

257
used in accessing. See Figure B. 11, page 260, in which
only CPU busy time components are considered.

a) Total CPU time per record accessed using unique

fixed-length key

tTCPUTISQF rI‘LSCYLI ¥ rI‘RC UL ¥ rI‘STIE ¥ TALSM ¥

1

10 Tarsorr ¥

TRCI/O ¥ TRWOUT

(9.35)

+
rI‘RCI/ o rI‘RWOUT

0.022 +0.008 +0.073 +0.388 +0.039

+ 0.008 + 36.00

36.538 msec for N = 1024,
b) Total CPU time per record accessed using full name

of record, t This type of accessing

TCPUTISQFUFN’
requires more extra time than that of a) ‘with the full

name of the record to fixed-length key conversion time,

tCFNTFK

Then t1 - oy TISQFUFN - 'CFNTFK - 'TCPUTISQF

8.515 + 36.538 = 45. 053 msec.

See the results of computation in Table B. 11, page 263.

For the computation of core storage space and disk storage

space required, use the concept and formula that have

258
been mentioned in Appendix B, page 208. Results
of computation are shown in Table B. 12, page 264.
The computation of achievable throughput rate capability
of the Indexed Sequential disk file, C and Customer

(3)

operating cost per call, UC is the same as that shown

(3)°

before in Example la. See illustrations on page 227.

The computed results of C and UC are tabulated in

(3) (3)
Tables 7.3 and 7.6, pages 152 and 173, and plotted in
Figures 7.7 - 7.10; Figures 7.12 - 7. 15 respectively, for

making a comparison among the results obtained from

the various types of file.

ull name of record i
supplied by user

Variable-
Key decoder

ength tre

Unique fixed-length
key used for searching

= Desired record

(a) Random search of a record in indexed
sequential file.

ull name of record
is supplied by user

N\

oo oo 2 |

| AP 11

Track index cylinder O

Track index cylinder 1

Track index eylinder 2

N

Cylinder overflow track
>

|
>

nique fixed-length

Variable length tree|

Key decoder key used for searching

= Desired search record which is equivalent to making
a random search in (a)

(b) Equivalent search of desired records of file in (a).

Figure B. 10,

- §

=
Cylinder index

Z N2]
Track index cylinder O

|

[R N S H G U I

===

[
L il

Cylinder overflow track

= 2z

Z

Cylinder overflow track

N

Track index cylinder 1
Average value

Average value
oo /:&/ ZZ

e N

Track index cylinder 2
. + Average value

,~~ Desired track

Desired track

ez
¥ Desired track
P,

oA]
1/2 full overflow track,
10% of using overflow track

2 A]

& Z| 1

1/2 full overflow track,
10% of using overflow track

Random access of a record from indexed sequential disk file in (a) is equivalent to accessing an average of a record in (b);

Average of records, in cylinder index, in track index, and in desired track are to be considered in computation.

1/2 full overflow track
10% of using overflow
track

69¢

W} UOTIED [UNUIWOD)

ALL <1
Isysuen) st uorjeusoyur nding

j0U IO
‘Asnq st pouueyo ndino Mo3YD

PI0O21 MOJJIIA0 PATISIP OIS

—

J2JSUBI) ST {OBI} MO[JIaA0 PAIISA(]

d

ge

3JOO Ui pICOAI PAIISAP YIieag

paI3SUBI} ST ORI} PIILSIP Y],

=
Avera

master recor
search time

B e e

tracks

- —

Read in and internal
seaich intermgdiate

e
’

YOIEBdS [BUISIUT HOBI} ISIT]

Average track index search time
User average throughput time

sSWw GZ * W} UCHINJOAII dUQ ﬁ

W) I9JSUBI} HOBI} ISIT] n

wda g/ awry Bunrem HOwIL
awry Buruonysod peay M/¥

W} HSIP JIUN (21807 3ULIOUUOD
3100 UI XdpuUl OPUITAD OIS

awreu A3y
-paxXij 01 2WIeU [[N} P10y

aweu YoIeas juawnday
awr) Alowaw 3100 ojul peay

Wi} UCTIEDTUNIIOD

—— e

Time diagram for random accessing the record from indexed sequential file on disk.

Figure B. 11.

260

Table B.9. Result of computation of average search time per random access of the entry from cylinder index and track index

of indexed sequential disk file,

%o) O po
? £ & £ 8
5 o O 81 5 e g u
3 9 g X > 9 < 9
g 3 el 22| % s, |2 | s 5223
H 9 © - %o g = & % 7] J 5 o © &
g a3 . .8 9 g () o g 9 g o % s 9) [T
A S 9 280 T o B & v wd |3 | E§ | 878
© H 5 5 N © o O g 8 g2 o g o = I g g s Y ® 0 a o
i 53 3 @ »28| X = & pa | S ~B 253 gd
:8 EE '53 g = v 9 = g 8 z 8'5 gﬁ H OB 3“5—;
= 9 3 3 = 4 > g 2 9 >3 g k3] 0 $ T > 5
o 2 Z & o 8 2% 8 £ 8 3 <8 |24 F: | =& A8 < 28§
unit{ N) cylinders entries words ms pairs words pairs ms ms ms ms ms
128 1 1 2 0.0183 4 8 4 95 12,5 25 .037 132,518
512 2 2 4 0,022 12 24 6 95 12.5 25 . 049 132, 522
1024 2 2 4 0,022 20 40 10 95 12.5 25 .073 132, 522
4096 8 8 16 0. 046 75 150 10 95 12.5 25 .073 132, 546
8192 15 15 30 0,073 148 296 10 95 12.5 25 .073 132, 573
12288 23 23 46 0. 105 222 444 10 95 12.5 25 .073 132, 605
16384 30 30 60 0. 132 304 608 10 95 12.5 25 .073 132,632

Note: Column 12 overlaps with waiting time for read~in the desired track. It is not effect to average throughput time.

19¢

Table B. 10. Data results of computation of average search time per random record retrieval with 10% using cylinder overflow track and average
disk access time per record retrieval from the indexed sequential disk file.

-] a
v 'S — ¥ —g ﬁ 8
¢ 25 3 | % 4 g 3 s 8
o' ® O] « @ o & — g 8 3} 3
g 58 Fe | 5% o g 5 A o |8 %Y % % 9
S| ® A A 2 9 glo g a 29 4 0
ko) 5 > g 2 5 = 3 o o O .8 |o 5 8 % o H
Lol [§] o > ot o~ o o 00 + + b3} =
8 8 § . g g 0§ 5 O 8 g S B S Z w|8 o w S o 3
@ g gg ° & < E3 gté 5 2 g B Sy |~ E|v EE 973 g o
0 R i) S — 2 9 9 . a9 8 £ 5w 9 "9 xR H o g
= g : > G |o = 4 % >
Z A Z 5 z = Z5%| 25 rE | <& | 258 |~F|=E AE 23 <8
unit(N) cylinder tracks tracks tracks | record ms ms ms ms ms
128 1 3 - - 3 43 132.518 25 25 .332 | 5.039 187.557
512 2 9 - 1 10 51 132, 522 25 25 .364 | 5.039 187.561
1024 2 9 - 9 18 57 132,522 25 25 .388 | 5.039 187.561
4096 8 9 54 4 67 - 61 132,546 25 25 .403 | 5.039 187.585
8192 15 9 117 7 133 62 132,573 25 25 .407 | 5.039 187.612
12288 23 9 189 1 199 62 132, 605 25 25 .407 | 5.039 187. 644
16384 30 9 252 4 265 62 132,632 25 25 .407 | 5.039 187,671

Note: Column 11 is overlapped with Column 12, then not considered in average throughput time. It is considered in billing time.

29¢

Table B. 11.

sequential file using both full name of records and unique fixed-length key in accessing.

Data results of computation of average throughput time per random record retrieval and CPU busy time per record access of indexed

Y | F ¥ b g 220
8= 9 9 e 8 8 9 8 g 8=

o 8 25 g B s 2 b o v A TRC I IR
Hal i Yy OO o — -~ o [[E E o o w] E
-) W 8 g ® £ 4 9 5 5 g g 09 & g d
= g 2 0o 28 &8 g & 2.0 g‘“ - 3;'52 s § F
Rl 7| EtE| s | sz P2 By |52 | B35 | gig
° o u g @ v g © o 4 o o o °
g2 | o8 Egd8l 58z | E4 s 2 £E8 | B4 |RrREF REE e
a8 | Es o888 228 | &8 <2 ol L E o &2 IR Z &%

N T T T t t

CBF CFNTFR RCLIU RCI/O TCPUISQF | CPUISQRFUL

unit ms ms ms ms ms ms ms ms ms

128 0, 0078 .3218 8.395 . 008 187.557 . 008 36 36.442 44, 837 232,286

512 0,0312 .3218 8.475 . 008 187.561 . 008 36 36.499 44,974 232.374
1024 0. 0625 .3218 8.515 . 008 187,561 . 008 36 36.538 45, 053 232.414
4096 0.2500 .3218 8.595 . 008 187. 565 . 008 36 36.578 45,173 232.498
8192 0, 5000 .3218 8.601 . 008 187.612 . 008 36 36.608 45,209 232.551
12288 0.7500 .3218 8. 626 . 008 187. 644 . 008 36 36.640 45, 266 232,608
16384 1, 0000 .3218 8.641 . 008 187,677 . 008 36 36.667 45,308 232. 656

£9¢

Table B. 12. Results of computation of storage space required as the function of file size of indexed sequential disk file, using both
full name of record and unique fixed-length key in accessing.

g
> Q g Q

5 & % 3 g @ §
- 3 2 x ~ g & 3 =)
= o Jéo g 9 3] @ 0 oz > o 3 U g &
? o] &] o = [&= o O o o
L= g 8 B v k=) %) 3] %) 2 v 0 g x g g s § 2
% O R = o al o] o & 2 | o9 9 o a8 2
s g g4 Z 24 2 % = 29 £ | 58 &8 | gE% | g4F % &2
g = g3 Y & = 3 8 3 R ¥ & B o g 8 o= Y oA v
& 8 28,0 GRS E 3o 280 | 530|288 | &83 A &%
unit words words words words words words words track

N a b a b a b a b

128 200 1088 53 2 60 - 62 1024 77 1278 2566 3. 1587
512 200 4352 53 4 60 - 62 1024 77 1280 5832 11, 2539
1024 200 8704 53 4 60 - 62 1024 77 1280 19184 19, 5079
4096 200 34816 53 16 60 - 62 1024 77 1292 36308 . 75.0317
8192 200 69632 53 30 60 - 62 1024 77 1306 71139 147.9365
12288 200 104448 53 46 60 - 62 1024 77 1322 105970 221.8413
16384 200 139264 53 60 60 - 62 1024 77 1336 140800 294, 873

Note: Column a - core storage space required for processing program,
Column b - core storage space required for reserving area.

¥9¢

Table B, 13. Results of computation of customer operatiné cost per call (unit cost) as the function of file loading factor of the indexed
sequential file, using the full name of record in accessing.

Disk space Disk space |Terminal devices CPU-time |CPU-time and | CPU-time and disk
File loading Disk space for accessing | charge per | cost per Rule of use } charge per disk charge charge per month
factor for data file program month month data file month per month per call
unit tracks tracks tracks $ calls per month $ $ $
. 0078 760 52500 196, 16 957.56 1, 82392
(128 records) 3,16 1, 506 1,40 2675 210000 784.65 3461, 05 1,64811
4075 420000 1569. 30 5645, 70 1,34421
» 0312 760 52500 196,76 961, 54 1, 83150
{512 records) 11,25 4,695 4,78 2675 210000 787,03 3466.81 1. 65086
4075 420000 1574, 06 5653, 84 1.34615
. 625 760 52500 197,11 965.65 1, 83933
(1024 records) 19,51 8,945 8,54 2675 210000 788.43 3471.97 1. 65331
4075 420000 1576.86 5660, 40 1,34771
.2500 . . . 760 52500 197,63 990, 48 1, 88662
(4096 records) 75.03 34,457 32.85 2675 210000 | 790,53 3498, 38 1, 66589
4075 420000 1581, 06 5688, 90 1,35450
. 5000 760 52500 197.79 1022,71 1,94801
(8192 records) 147,94 68,472 64.92 2675 210000 791, 16 3531.08 1.68146
4075 420000 1582.32 5722.24 1,36243
. 7500 . 760 52500 198,04 1055, 34 2.01017
(12288 records)| 221.84 102, 486 97.30 2675 210000 792. 16 3564, 46 1,69736
- 4075 420000 1584,31 5756.61 1. 37062
1, 0000 . . . 760 52500 198,22 1087.63 2,07167
(16384 records)| 294.87 136,500 129,41 2675 210000 792, 89 3597,30 1,71300
4075 420000 1585,78 5790, 18 1.37861

§9¢

266

Concept of Average Number of Records per Track and

Average Number of Searches per Track

The following concepts are introduced to compute the para-

meters and characteristics of indexed sequential disk file, Example

2 and partitioned disk file, Example 4:

Average Number of Records Per Track (N

APT)

-

n 0=' Track index V/////W////A

I AL - THANIAA A,

-

« 7777
» 777)

N=n +n +n +;n = 192 record.
0 2 3

(a) Actual disk file

Figure B, 12.

In general, if n,

UT

APT

(ot

]

—

A
=

i

S AN

o S/ A

|

=n +n +n_+n_=192
N no n1 n2 n3 records

(b) Imaginary ‘disk file used for
computation

..t
number of records in i

track
where i=0,1,2,3...
number of tracks used.
k=it
NUT kE: . nk; k=0,1,2,

Interaction of actual disk file and imaginary disk file,

267

Average Number of Searches per Track (N)

ALS

In an indexed sequential disk file or partitioned disk file when
the desired cylinder and the desired track are located, the desired
track is read only into core memory and internal linear search is
performed. The average number of searches in the desired track
is to be considered.

In Example 3 and 4,

TALS T 2 .
,—‘ Desired track _
[~ PR —
P v >

b"_ NaLs _""i

Figure B.13. Relationship of NAP.T and NALS'
In Figure B, 13, NAPT = 48 words
- 48+l
then NALS > 24.5

25 (This value is used for
computation).

[

268

Example 3a. The Partitioned File with Single-Level Directory

For accessing a random record from a partitioned disk file
with single level directory, on CDC Disk 854 unit, the following
assumptions are applied:

There are N, the current records in the file, each record

containing 384 unit (32 byte = 16 words, including 2 bytes,
4 character keys), in contiguous area,

- One data track contains 63 records.

- The records in the main file are stored in key sequence.

- The overflow records are held by one track; the cylinder
overflow concept as in the indexed sequential disk file is
used here,

- For accessing a random record from the file the full name
of the record is used. The variable-length tree decoding
technique is used to convert it to a unique fixed-length key.
See details on page 75.

- Directory Table and file system processing programs are
kept in internal core memory only during operation hours.
They are kept permanently at some place in disk memory.

1. For computation of the number of tracks and cylinders

required, the following parameters are introduced:

a) The number of used cylinders = Z.

269

where Z is the smallest integer such that Z > Nﬁ
c

Nc = number of records in eacy cylinder,
Nc = 504 records in first cylinder,
Nc = 567 records for the latter cylinders.
Z can be rewritten in the following form:
z > gg: & 5'6§04) 1+0.92

Z = 2for N = 1024

See results of computation of Z in Table B. 14, page

b4

The number of tracks used, N

column 2 from L. H. S.

UuT
N . » -~ forN < 504 (9.39)
UT 7 63 '
where NUT is the smallest cylinder such that
N
> —
Nyt Z %3
NUT = 8+9(Z - 2)+NTLC for N > 504 (9. 40)
where 8 = number of tracks in the first cylinder.
9(Z-2) = number of successive tracks in successive
full cylinders,
NTLC = number of tracks used in the last cylinder

used,

270

[N - 504 - (2 -2) 567]
z>

63
where NTLC is the smallest interger which satisfies the
above in equality.
For illustration when N = 4096
-— 7 = 8 cylinder by Equation (9. 38)
[4096 - 540 - (8 - 2) 567]
-_-_—.> = = .
N’I'LC 63 3.0159
= 4 tracks
= - + = .
NUT 8 +9 (8 -2)+4=66tracks

See results of computation of N in Table B. 14,

UT
page 279, column 6 from L.H.S.
For computation of the number of entries in the directory
and the average search time per random entry accessing
from directory table, directory search is performed to
obtain the address of the corresponding track in core

memory.

a) Number of record entries in Directory, IREDP

where IREDP = NUT

>
For N—a éIREDP 64.

Then the ginary search is considered.

The average time for directory search of the single

271
level directory disk file is

T

ASSLDPF 15. 245 + 35.000 XNATBS (9.41)

[ZK(K-1)+1+(K+1)x

1
where NATBS =N

(N - P 1)] = log, N (9. 42)

average number of binary search for
N records.

For illustration when N = 1024

N 3 Equation (9. 42)

ATBS
= X .
thenTASSLDPF 15. 245 + 35.00 3 usec.
= 0.1212 ms.
See results of computation of T in Table

ASSLDPF

B. 12, column 5 from L. H. S.
For computation of the average number of records per
track (data track used) and the average search time per
random record accessing, a record is searched for from
the main file, according to one of the following cases:
- the desired record is on the desired track;
- the desired record is on the cylinder overflow track.

Th b f d t =N .
a) e average number of records per track APT

To compute the average search time per random record

accessing from the disk partitioned file, consider the

NUT = 17 tracks
- L -
thenl\gAPTv = 17 [1024] = 60 records/track.
If TALSDT = Average search time per random record
accessing in the desired track.
N +.1
_ CAPT
Tprspr = 7-875 (05— -1) +167.000
based on test program,
TALSDT = 3.9375 (NAPT) +163.0625 psec. (9.43).
For illustration when N = 1024 NAPT = 60
TALSDT = 3.9375 (60) + 163.0625 psec
= 0.399 msec.
See results of computation of NAPT and TALSDT in
Table B. 14, columns 7 and 12 from L. H. S,
b) The average access time of a random record from

272

average number of logical records per track, The
method of computation has been shown in Example 2,
page . The formula is

k=1

nky k=03132,3,-°.i

2z
I
n ™Mo

UT k=0

(9.36)

For illustration when N = 1024

the main disk file with 10% of normal track search

273

used in cylinder overflow track TASRDFOF.

Since it is assumed that there is no dropping of the
busy status during any random retrieval operation,

then TALSDT is overlapped with 10% of the time spent

searching for overflow records. is now

TALSDT

omitted. From the time diagram in Figure B. 8,

page 245, the following equation can be set up:

+
TATW ¥ TRIND T

TASRDFOF TAR/WHPT ¥
1

10 [Trasort! (9. 44)

95 + 12.5 + 25 +5.0392 msec,

137. 539 msec,

The average throughput time per random record retrieval
of the partitioned disk file with single level directory,

. _ di i =
using full name of record in accessing TATHRPSLDPF'

a) From the time diagram on page the following
equation can be set up:

T T

ATHRPSLPF ~CBF ¥ TCFNTFK ¥ TASSLDPF ¥

TRCLU ¥ TASRPDFOF ¥ TRCI[O t

TRWOUT (9. 45)

For illustration when N = 1024

274

T 0.3218 +8.515 +0.1212 + 0,008 +

ATHRPSLDPF

137.539 +0.008 + 36.00

182. 513 msec.

See the results of computation of TATHRPSLDPF in

Table B. 15, page 280.

ATHRPSLDPF ~ L4°

b) The approximate formula of T
Only the major components of search time (msec) are

considered; the minor components of search time

(nsec) are omitted.

S
Then T , Tpsstopr T Tar/wapt T TaTw

1

t Tt ¥ 10 [TTasort!
+ 44. 8878

[15.245 +35.00 (log, N)] x 1073 +

R

137.539 + 44.8878

H
R

35.00 (log.2 N) + 182.4268 (9. 46)

where 44. 8878 (msec) 2’ TCBF + TCFNTKF + TRCLU +

+T
Trc1/0 ¥ 'rwour
For computation of the average CPU busy time per record
retrieval for the partitioned disk file, both the

unique fixed-length key and the full name of the record

275

are used in accessing, See Figure B. 14, page 227, in
which only CPU busy time components are considered.

a) Total CPU time per record accessing using unique

fixed-length key = tTCPUTSLDPF'
- +
b CPUTSLDPF Tassiopr * Treur ¥ Tarspr *
L T)+ T +
10 Yarsorr’ * 'rer/o
T
RWOUT (9. 47)

0.1212 + 0.008 + 0.399 +0.0392 +

0.008 + 36,00

36.575 msec. for N = 1024.
b) Total CPU time per record accessing using full name

of the record = this type of

b CPUTSLDPFUFN’

accessing requires more extra time than that of a)
by the full name of record to fixed-length unique key

conversion time, TCFNTFK'

then to - pyTSLDPFUFN - 'CFNTFN T 'TCPUTSLDPF

8.515 + 36.575

45.090 msec. for N = 1024.

For computation of core storage space and disk storage
space required, the concept and formula that have been

mentioned in Appendix B, page 208, are used.

.customer operating cost per call,

276
Results of the computation are shown in Table B. 16,
page 281.
For computation of achievable-throughput rate capability
of the single-level partitioned disk file, C and the

(4)
UC(4) the methods are
the same as those illustrated in Example la, pages
The computed results of C and U are tabulated
P (4) C(4)
in Tables 7.3 and 7.6, pages 152 and 173, and plotted in
Figures 7.7 - 7.10, Figures 7.13 - 7,16, pages 169 - 172.

for comparison with the results obtained from other

types of file,

Internal directory mapping and searching]

)

Variableflength Unique fixed-length
tree key decoder

ey used for searchin

= desired records

S ——

(a) Random search for single level directory

partitioned disk file.

—

Cylinder O Cylinder 1 Cylinder 2

{ __IL__..-_L_._4§

Binary search

[% Internal directory]

Desired track
= ///%/ A
jfe——N e

APT
je—N _ Pointer

ALS
SRRz —

Desired track , Overflow track

Variable-length ‘ Unique fixed-length key\ |
tree, key decoder used for searching J“—'

= Desired search record which is equivalent to making
a random search in (a)

(b) Equivalent search of desired record in (a).

Figure B, 14. Random access of a record from single level directory partitioned disk file in (a) is equivalent to making an average access
of a record in (b).

LLZ

| second level directory |

L\

record is supplied

the 1

Variable~len —1—Y
tre ke dg::h der nique fixed-length ' - |
€, ey deco key used for searchin L 1

= Desired record in (a)

(a) Random search of double partitioned disk file.

- ;_-_ 1 l
N
JU_LUEL

i
<< lst division sub file «2nd division sub file 3rd division sub file ,_

is supplied by the : t Z;V%// ~~ "] _Second level directory

g linear search

. _ ——Desired track
Variable-length Unique fixed-leng Desired first level = Desn:‘ rac //i—?
tree, key decoder ey used for searchjng| directory search] == APT—] Pointer

record is supplied

y the user
(binary search) —" AL N\
= Desired search record which is equivalent T ['} l‘_]::‘%—:l
to making a random search in (a) (b) Equivalent search of a desired record. Overflow track

Figure B. 15. Random access of a record from double level partitioned disk file in (a) is equivalent to accessing an average record
in the file as in (b).

8L¢

Table B. 14. Data results of computation of disk average access time per record retrieval as a function of file sizes
of a single level directory partitioned disk file.

5 g
" — 1] T Q
g < g 9 [}
3 Yy | e |33 4 g 2 E g = -
o 2 g 9 5 @ 5 8 e & ¢ x 9 z 9
= B g BgglE O a9 0 o T w o U o 8 9
— = s O T W I e B o 8 L Lrer] Lo
o © o > ° °o & Q oy > -~ H = 3 o
) g o 3] E -5 L N Y] 8- b=t = — (3] [V
= & & & =] 8~ B o 3] © B T e > o0 A,
N © v @ 9 g ¥ 9 > 8 Qa o0 o P o - i o g 5 o
>3 ! £ | E5]E 8 e e s 88 |22 |v¥|88| <8 g @
[V By - =) [- = U g o N o8 I
ol §§ Z. & E.EE Z 8 e z" z & Ay | 8§ |<BE|QE| S8 <@
unit cylinders tracks tracks tracks tracks records records ms ms ms ms ms ms
128 1 3 - - 3 2 43 . 0859 107.5 25 .332 . 0392 137.539
512 2 8 - 1 9 3 57 . 1212 107.5 25 .388 . 0392 137.539
1024 2 8 - 9 17 3 60 . 1212 107.5 25 .399 . 0392 137.539
4096 8 8 6 4 66 5 62 .1918 107.5 25 .407 . 0392 137.539
8192 15 8 117 6 131 6 63 .2271 107.5 25 .411 . 039 137.539
12288 22 8 180 8 196 7 63 . 2624 107.5 25 .411 . 039 137,539
16384 30 8 252 1 261 17 63 .2624 107.5 25 ' |.411 . 039 137.539

6L2

Table B. 15. Data results of computation of average throughput time per record retrieval as the function of file size or loading
factors of a single-level directory partitioned disk file.

Ry 3

o0

°§’ —_ oo T 5 8
o B < g g i g 887% R
§) g e @ o 2 g 9 % . 8

Lo} o~ + 7] E) (V] (] o 'ﬁ
a o .‘,.{ v g o w 9 E » B 3 8 8
z o0 W 8 5 o B0 o 5 -~ £ .§g. £ e 2z 9
=] Q o Yo o = [°) g o fo) At ® 0T < 0 B = I
o2 g 3 E g8 S8 | T4 o & 2 5 59: | 83 | LES
a8 S g £ RN g5 | ¢8 E = 0 £ g @ Bgug| &8
o 2 0 9 g o = 9 7 5 8 g § 5 e | 8 g PS8g8| 8 LE
o 5 = 9 o E 5 % 8 e o & s ¥ = g) Eg« 3-50 > 5 &
i 8 g O ¢ £ &0 g 38 O B <3 v8| = o 23 o288 <48

unit ms ms ms ms ms ms ms ms ms ms
128 0.0078 .3218 8.395 . 0859 008 137.539 . 008 36 36.473 44, 868 182. 358
512 0.0312 .3218 8.475 . 1212 .008 137,539 . 008 36 36.564 45,039 182.473
1024 0. 0625 .3218 8.515 . 1212 . 008 137.539 .008 36 36.575 45. 090 182.513
4098 0, 2500 .3218 8.595 .1918 . 008 137.339 .008 36 36.655 45, 250 182. 663
8192 0, 5000 .3218 8.601 .2271 . 008 137.539 .008 36 36.697 45,297 182.705
12288 0. 7500 .3218 8.626 .2624 . 008 137.539 . 008 36 36.728 45, 354 182. 765
16394 1, 0000 . 3218 8.641 . 2624 .008 137.539 . 008 36 36.728 45. 369 182. 780

08¢

Table B. 16.

Data results of storage space required as the function of file size of a
single level directory of partitioned disk file.

g 2 9
%3 .
> = = w3
yo, S 5 4 T o o & o &3
8 8 3% 8 S & g s g @ £ »3 ?
TR 88 8 5 & 2 8 R R
v B E§ 2 ol g = 2 o o " X g - w g
29 a7 4 9 8.9 w9 o & 3 = 8
& 9 £ 8 & 05‘5 a 8 ¥ 8 5% = Hu)
) - @ =] [- B o 3 el S ™ g X O
- " 5 % g o 285 c s O s o o w H o B & 4 g.
& A w & o A A35 Z A o ¥ Q& & R A §
unit words (a) words (b) words words words words words words words tracks
128 200 1088 78 9 62 1024 77 1250 2538 4,0318
512 200 4362 78 27 62 1024 77 1268 5830 11, 1270
1024 200 8704 78 51 62 1024 77 1292 10196 19,2540
4096 200 34816 78 198 62 1024 77 1439 36455 74,0159
8192 200 69632 78 393 62 1024 77 1634 71466 145, 0317
12288 200 104448 78 588 62 1024 77 1829 106477 |218.0476
16384 200 139264 78 783 62 1024 77 2024 141488 291, 0635

18¢

Table B. 17,

partition disk file using full name of record in accessing.

Results of computation of customer operating cost per call (unit cost) as the function of file loading factor of the single level directory

T
Disk space Disk space Terminal devices CPU-time CPU-time and | CPU-time and disk
File loading Disk space |for accessing charge per cost per Rule of use charge per disk charge charge per month
factor, for data file program month month data file month per month per call
1. unit tracks tracks $ $ calls per month $ $ $

i 5wl

.0078 760 52500 196. 29 957.94 1, 82464

(128 records) 4,032 1,479 1,653 2675 210000 785, 19 2461, 84 1, 64844
4075 420000 1570, 38 5647, 03 1. 34453

. 0312 760 52500 197.04 961,79 1.83198

(512 records) 11, 127 4,693 4,746 2675 210000 788,18 3467.93 1.65139
4075 420000 1576. 38 5658, 84 1.34734

.625 . . . 760 52500 197, 04 961,79 1. 83198

(1024 records) 19,254 8.957 8,463 2675 210000 789.09 3472.55 1,65359
4075 420000 1578, 15 5661, 60 1. 34800

.2500 760 52500 197,97 990, 56 1, 88677

(4096 records) 74,016 34, 601 32,585 2675 210000 791,88 3499, 48 1,66642
4075 420000 1583, 76 5691, 36 1, 35508

. 5000 760 52500 198, 18 1022, 33 1.94728

(8192 records) 145, 032 68,791 64, 147 2675 210000 792,68 3531.83 1.68182
4075 420000 1585, 41 5724, 56 1. 36298

. 7500 760 52500 198, 42 1054,76 2. 00906

(12288 records 218, 048 102,981 96,309 2675 210000 793,71 3565.02 1.69762
4075 420000 1587. 39 5758.70 1,37111

1. 0000 . . . 760 52500 198, 48 1086.96 2.07040

(16384 records) 291, 064 137,202 128,480 2675 210000 793,95 3597,43 1,71306
4075 420000 1587.92 5791,40 1,37890

28¢

283

Example 3b. The Partitioned Disk File with Double Level
Directory

To illustrate the characteristics of the partitioned file with
the multi-level directory, the following axxumptions are considered:
- That there are N records (one record for one employee)
belonging to one department, Directorate of Air Installation,

which is divided into four divisions as follows:

Division Full Name Unique Fixed-length Key~ Records in a Sub-File
Air Field Construction Div. AIRF N/4
Building Construction BUIL N/4
Technical Division TECH) N/4
Utilities Division UTIL N/4
Total N i

where N=»0 £ N < 16384, when the file is full,

- That this data file system is supported by CDC Disk 854
unit; and the organization of the data is the same as men-

tioned in Example 3a.

When this file system is organized in multilevel partitioned
file, the following features are considered:
1. The fixed-length unique key name of division names is
used for the Division Directory Entries (first level direc-
tory), and the address of the beginning of each division

(sub-sequential file) is used for its corresponding data in

284
this Directory. To retrieve any record from this parti-
tioned file, the user has to know in which division the
desired record belongs. The retrieval task starts from
searching this directory first.

The user must also supply the name of the desired record.
(In some cases the user may supply the fixed-length code
number of the desired record. The operating program will
directly use this record code number as the key of the
record for the sub-directory searching). The full name to
unique.fixed-length key conversion routine converts the
full name of the record into a fixed-length key and uses this
key for searching in the sub-directory (second-level
directory).

If the sub-directory searching is satisfied, the desired
record from the desired division main file is retrieved.

If the sub-directory searching fails, the operating system
calls for the un-found subroutine to notify the user.

In the organization of the multilevel directory partitioned
file, the higher level directory (division directory) has to
be added. More storage space is required in supporting
this directory, but it saves time in the sub-directory

search.

285

For example, when N = 16384 records, the file is full.

The required disk tracks = 261 tracks,

Then there are 261 entries in the single-level directory
of the partitioned file,

The number of average searches & log2 261 = 7, for

binary search,

Then there 261 -+ (4 = number of division) = -226-1- ==
65 entries in the sub-directory.
261

Then the number of average searches = log2 (T) =
5 for binary search for the double-level directory
partitioned disk file.

If TASSLDPF = The average binary search time for

second level directory per retrieval

record of double level directory of parti-

tioned disk file,

Equation (9. 41) in Example 3a, has to be modified and

used as follows:

N
_ ATBS
T,ssippF = 15245 +35.00 + === (9. 48)

For computation of the average throughput time per record
retrieval of double-level directory partitioned disk file,

using full name in accessing, TATHRPDLDPF

286
Equation (9. 45) in Example 3a, has to be modified and

used as follows:

2) Tprurpuippr - TcBr T Tasrippr t TernTEK
tTassiopr ¥ Treru *
T AsRPDFOF ¥ TRCI/O *
TrwouT (9. 49)
where TASFLDPF = Average linear search time for

first level directory per retrieval-
record of double level directory
directory of partitioned file.

The search program is similar to the internal cylinder

index search program of the indexed sequential disk file.

Then TASFLDPF = 3,9375 NFLDPF + 21.5625
= 3.9375(4) + 21,5625 = 37.3125
usec.
= 0,0373 msec.
where NFLDPF = 4,

according to the statement of Example 3b, there are four

divisions, i.e., there are four sub-directory files.

287

then T

ATHRPDLDPF 0.3218 +0,0373 + 8515 + 0. 859

+ 0,008 +137.539 + 0,008 +
36,00
= 182.516 msec. for N = 1024,

The results of computation of TATHRPDLDPF are shown

in Table

ATHRPDLDPF _ 's

b) The approximate formula of T
The method of computation is the same as that of

T4; the difference is as follows:

T4 = 35,00 (logzN) + 182, 4268

N
. od -_ '
T5 35,00 (log2 2) + 182. 4268

Since the average number of searches per record
. . . . N
retrieval in sub-directory is reduced to log2 7

c) Total CPU busy time per record accessed using unique

fixed-length key = tTCPUTDLDPF'
'rcPUTDLDPF - TASFLDPF T YassLDPF *
T +T + -L
RCLU " “ALSDT ' 10
(TprsorT * Trer/o * TrwourT

0.0373 + 0.859 + 0.008 + 0. 364 +

0.0392 + 0.008 + 36.00

288
= 36.543 msec for N = 1024.
d) Total CPU busy time per record accessed using full

name of the record = tTCPUTDLDPFUFN’ as men-

tioned in Example 3a.

Then t. . . byUTDLDPFUFN T

tTCPUTDLDP]:T‘ ¥ CFNTFK

36.543 + 8.515 = 45, 058

msec for N = 1024,

For computation of core storage space and disk storage
space required, the method is the same as that in Example
la. The extra disk storage space has to be considered

for supporting the first-level directory. See results of
computation in Table B, 20, page 291.

For computation of the achievable-throughput rate capa-

bility of the double-level partitioned disk file, C, _,, and

(5)

the customer operating cost per call, U the methods

C(s)’
are the same as those shown in Example la, pages
The computed results of C and U are shown in
P (5) C(5)
Tables 7.5 and 7. 6 and plotted in Figures 7.7 - 7. 10,
Figures 7.12 - 7. 15, pages 169 - 172, for comparison

with the results obtained from other types of file.

Table B. 18.

Data results of computation of disk access time per record retrieval as a function of file sizes of a double-level directory
partitioned disk file.

F
“ £ A
g 9 2] el 2] * L]
5 - & ~ @ & g £
o} o 3} ‘6 — Q & "8 o g @ -5 [od
S |8% |3 |BE 53 g =5 | 8, | & A % 9
[=3 L1 S8 . L= F= o S & 7] o ° " =
w Q1w & g 8l B Y o o -2 oo §] s 8] 5 o
K] & 8 5]% = SIS R iy S B 0w g o o B2 b]
0 = 8 o BElamo Bl oa O = g u O (VN3] - 'S wo 8 — U % Y a,
dolcs|leg|eis|l2gg|d2in | 28 4 & g g8 | g3 e | 2 E Bs | ¥8
“ 9] ‘5 g .a 4 U « = oS [& =238 T X H o 5 9 5o
SENEEIBg|Bes| BB | BT | < s | 22| BE | 3E|BE | 83| 2
w8 |AE|lzd|lz8E|lZ84|l=zE8% Z & Z < 4 & 8 £ = ks |lAa- = 8 < ©
unit tracks tracks tracks records records ms ms ms ms ms ms
128 4 32 1 1 - - 1 32 . 0505 107.5 25 0.289 5.039 132.539
512 4 123 3 3 - - 2 43 . 0859 107.5 25 0.332 5.039 137,539
1024 4 255 5 5 - - 2 51 . 0859 107.5 25 0. 364 5. 039 137.539
4096 4 1024 17 8 - 9 3 60 . 1212 107.5 25 0. 399 5.039 137.539
8192 4 2048 33 8 18 7 4 62 . 1565 107.5 25 0. 407 5,039 137.539
12288 4 3072 49 8 36 5 5 63 . 1918 107.5 25 0.411 5,039 137.539
16484 4 4096 66 8 54 4 S 62 .1918 107.5 25 0.407 5.039 137,539

Note: * Columns 13 and 14 - the time is overlapped; hence considered only column 14 for average disk accessing time per record retrieval,

682

Table B. 19. Data results of computation of average throughput time per record retrieval as the function of file size or loading factors
of a double-level directory partitioned disk file.

< 00
a ¥ W g e g
i 3 - 85 |3 fs |2 |9
g £ 5 | @ 5 E) 2 fm | vy |Dg.
0 S o - 2‘2 - &83 [+]) E'—'s E“' 8‘”‘4—1
‘5 B =5 | E S d & B 5 E I8+ 9 |28 g 3%
w'§ g 3 "§‘ £ 8.9 & g @ o 'z,_,‘ﬂ < e|g >~ 8 & > = < 2 9
] 0 E o3 & B 5 9 g g 9 = glZ2 E..’.i:a 83 g 9 E
B O L2 5 g < 8 o = T g 2 T s 2B g by 2T B le o 8T
9 8 £ o A L o§ g o 5 @ o 9 I g & wsls="5
=5 = 9 c & 2x5|lad 5 < o 8 288 2ElEelRE>IRES] Y &2 3
i & w8 O 28| A g a8 | o8 R EE I CEEIEERIE R TR
unit ms ms ms ms ms ms ms ms ms ms ms
128 -. 0078 .3218 8.395 0.0373 . 0505 . 008 137.539 .008 | 36 36.432 44, 828 182. 360
512 .0312 .3218 8.475 0.0373 . 0859 . 008 137.539 .008 | 36 36.511 44.986 182. 476
1024 . 0625 .3218 8.515 0.0373 . 0859 . 008 137.539 .008 | 36 36.543 45.058 182. 516
4096 . 2500 .3218 8.595 0.0373 L7212 . 008 137.539 .008 | 36 36.613 45,208 182. 631
8192 . 5000 .3218 8.601 0.0373 . 1565 . 008 137.539 .008 | 36 36.647 45. 248 182. 672
12288 . 7500 .3218 8.626 0.0373 .1918 . 008 137.539 .008 { 36 36.696 45,322 182.732
16384 1. 0000 .3218 8.641 0.0373 .1918 . 008 137.539 .008 | 36 36.692 45.333 182,748

062

Table B.20. Data results of storage space required as the function of file size of a double level directory

of partitioned disk file.

o
w o 9 8.2 9 e B2 50|80 E . g
° %« & LR g § 8 18 alg8g|ggs 3
(Y] g @ o w H = oo “a @ =) o .
9 g§ 5.2 g o 989 o z T 8| T]
0 & 3} g w 'Y &] o o g O o 9 O § o
N o g A o 8 . 9 H & oo S a9 0 0 Bl R - - O
& O sy 95 0 o .H B s aoHo9 B HE|goeog |3 98 e
o 8 o o = 3 o o 8 A8 B0 = & 38,0 53 |8 o0oglf8o_ 0 &
2 EERN Bi% 5§38 SSgE lEE|eed|ciRE Be
7% & o O = [a s I 4 a 8 88 = 288 o & [SR] B aa s @
unit a b a b a b a b |words |words words tracks
128 200 1088 57 12 78 12 62 1024 77 1322 2610 4,0318
512 200 4362 57 12 78 36 62 1024} 77 1346 5908 11,1270
1024 200 8704 57 12 78 60 62 10241 77 1370 10274 19, 2540
1 4096 200 34816 57 12 78 204 62 1024 77 1513 36530 74,0159
8192 200 69632 57 12 78 396 62 1024} 77 1206 71530 145, 0317
12288 200 10448 57 12 78 588 62 1024} 77 1898 106546 218,0476
16384 200 139264 57 12 78 792 62 1024 77 2102 141566 291, 0635

162

Table B.21.

directory partitioned disk file using record's full name in accessing,

Results of computation of customer operating cost per call (unit cost) as the function of file loading factor of double level

Disk space Disk space | Terminal devices CPU-time CPU-time and {CPU-time and disk
File loading Disk space [for accessing charge per cost per Rule of use { charge per disk charge charge per month
factor for data file program month month data file month per month per call
unit tracks tracks $ $ calls per month $ $ $
. 0078 760 52500 196, 11 957.78 1,82434
128 records) 4, 032 1,549 1,67 2675 210000 784,50 3461, 17 1, 64817
4075 420000 1568,97 5645, 64 1.34420
,0312 760 52500 196. 83 961.60 1,83160
{512 records) 11, 127 4,770 4,77 2675 210000 787.26 3467.03 1.65096
4075 420000 1574, 52 5654, 29 1,34625
. 625 760 52500 197, 13 965, 62 1, 83927
(1024 records) 19,254 9,033 8.49 2675 210000 788.52 3472,01 1,65333
4075 420000 1577,01 5660, 50 1,34173
.2500 760 52500 197,79 990, 40 1, 88657
(4096 records) 74.016 34,674 32,61 2675 210000 791,13 3498,74 1, 66606
4075 420000 1582.29 5689,90 1, 35473
. 5000 . . . 760 52500 197,97 1022, 14 1.94633
(8192 records) 145, 032 68,854 64, 17 2675 210000 791,85 3531, 02 1,68143
4075 420000 1583, 67 5722, 84 1. 36258
. 7500 760 52500 198,30 1054, 63 2, 00880
12288 records) 218, 048 103, 049 96.33 2675 210000 793, 14 3564. 47 1,69736
4075 420000 1586. 28 5757.61 1,37085
1, 0000 760 52500 198,33 1086, 82 2.07013
16384 records) 291, 064 137.248 128, 49 2675 210000 793,32 3596, 81 1,71276
4075 420000 1586, 64 5790, 13 1,37860

262

293

————-=-7

W} WOTIEBOMUNIIIOD)

ALL 3
PI0221 TeAdwIIal Indino IdJsuel],

jou 10 Asnq St O/ HO2YD

W} YOIEds YOrI} MOJIIIA0 [BUIIU] ’

HOBI} MO[JIRA0
ur yoIeas 2a8erdAy

AT} YOIBds HOBI} PAIISIAP [BUIIIU] — ‘

2w} yoexn paudrsap
ur yoIeas 3BeroAy

Average search for desired record time
User average throughput time

I

wdsz g/7 awry Bumarem NoRIL

swry Buuoryrsod peay m/¥

2uury ysTp 3tun [eordor Suroauuo))

yoIeds
Tewraqur A10302m(q

2100 ur ‘owreu A3y pP3usi-paxrg
103 dn 300 9213 d[qELIEA

Time diagram for random accessing the record from partitioned file, on disk.

yoIeas juawms3ie |
Atowrawr 2100 OJUI peay

AW} UOTIEDIUNWOD)

4

Figure B, 16,

TTY

294

Example 4. Direct Disk File

To illustrate the characteristics of Direct or Random Disk
File organization, the accessing of a random record from the Direct
Disl File, assume that there are N (0 < N g 16384) logical records
in the file, each record being the same as mentioned in Examples
2 and 3.

Each record is formatted with a key. The full name of the
record is not more than four words, 16 characters. In case the full
name of the record is more than words, the rest will be truncated, so
that only the first four words are used to convert into a fixed-length
bits by hash coding technique. This fixed-length bits (hash address)
will represent the cylinder number, track number, to which the
logical record belongs, and address of the records when they are
mapped in internal core. See Figure B, 19, page 301.

Five hash coding techniques are simulated to evaluate the
average length of search per record retrieval with three methods
of handling the redundant keys. But only the best method of hash
coding has been selected for computing the results with those of
other methods of the organization. No overflow area will be consi-
dered for the direct file.

1. Four Hash Coding Techniques are as follows:

a) Hash 1. In this method the first four words of the

b)

295
full name of the record are ""exclusive or'' together bit
by bit. Square the results and take only 10 lower bits
of the 12 middle bits as the hash address of each logi-
cal record on the disk storage.

Hash address = (Wl, Ex. ORW Ex. ORW3 Ex. or W4)2

2
and takes only 10 low bits of the 12 middle bits of the

results as Hash address.

Where Wl' WZ' W3, W4 are the binary number of the
first four successive words respectively.

Hash 2. In this method, add the first four successive
words together, square the result and také only 10
lower bit of 12 middle bits as Hash address.

Hash address = (W1 +W +W3 + W4)'2 and take 10

2
lower bit of 12 middle bits.

Where Wl' W_, W_, W _ are the binary numbers of

2 3 4
the first four words, respectively.
Hash 3. In this method the right-most character of
each of the first-four words is to be considered as
the ''Selected Character, ' and the third bit from the
right-most end of each ""Selected Character'' is kept as
the string code in Q register. Shift left A and

Q, 10 bits position. Use the results in A register

as Hash Address. See Figure B. 17.

296

{ 1 Selected characters
C|H]JU|L ||!I T MI|| E| E E
1 OO 1 1jop 0 1|00 |1
e iSH 3o fed i |+2—*—1—>| e 2 >ie-5 -3}

A \ O

All bits set = zero .

A, after shift left AQ 10 bits

Take (A) as Hash address, it is.equivalent to take
10 lower bits of (A) as Hash address,

Figure B,17, Hash 3 performed hash address.

d) Hash 4. In this method the first four words of the full
name of the record are '"Exclusive or'' together bit by
bit. Power fourth the result and take only 10 lower

bits of 12 middle bits of the result as the Hash Address.

Hash address = (W, Ex, ORW, Ex. ORW, Ex. ORW4)4

and take only 10 lower bits of 12 middle bits of the
result ag Hash address.

e) Hash 5. In this method multiply the first-four words
of the full name of the record and take only 24 bits

of the lower middle range bits of the result as a

(Wlxwz)*(w3x .

w4)

by EUA instruction

297

"'Selected String Code'. Take 10 lower bits of 12

middle bits of A, The result of the operation

is used as the Hash address, See Figure B. 17 fo

illustration.
A Q
—- Rt Rio
- RoL R
A Q E
{_‘ The result of W1 x W2 X / _,J

w xW4

Y

by SHA -12, instruction —— take 10.lower bits of (A) as Hash

Address

Where W.W_W_W are the same as mentioned in Hash 1, 2, 4

1

RlL

RZL
'EL

RlU

RZU

By

2 3

4
lower part of result 1

lower part of result 2

wwer part of E register

upper part of the result 1

upper part of the result 2

upper part of E register

Figure B. 18, Hash 5 performing hash address.

298

2. There are three methods of handling a redundant key

in the Direct Flile.

a)

b)

Linear probing. In this method the linear search
for both the first empty space and the desired record
is simulated i = -1,+ 3, + 1, and + 1 with records with
the same hash address grouped together, and value of
i are used from the statistical formula. The results
of the simulation are computed and plotted as a func-
tion of File Size as shown in Figures B, 20 - B.23,
pages 302 - 308 where i is the interval search desig- .
nator, while the minus sign indicates that the search
is backward to the beginning of the table, and the
positive sign indicates that the search is forward to
the end of the table.
Random probing. In this method its detail the follow-
ing algorithm of pseudorandom number generator is
selected and performed:
-- Initialize an integer R by setting R equal to 1
every time the random number routine is called,
-- Then on each successive call for a random num-
ber set R = R*5
-- Use only low-order n + 2 bits of the product and

replace the result in R

299

-- Set p= R/4 and return to hash coding program.,

The results of simulationare computed and plotted as

shown in Figures B. 20 - B.23, pages 302 - 308.

Direct chain probing. The simulation of direct chain-

ing to handle the redundant key is-as follows:

-- From the result of measuring the average number
of searches, it is reasonable to use Hash 1 as the
hash address generator.

-- The search routine is to find the first empty space
by i = +1 interval search simulation.

-- Each logical record needs one extra word for a
pointer. See the result of the simulation on
Figures B. 20 - B. 23 on pages 302 - 308, showing
the average search length as a function of file

size,

The simulation of four hash coding techniques in the three

methods of handling a redundant key are shown in Table

B.

22.

The most effective results of simulation in (3) are com-

puted and plotted as in Tables B. 23 - B. 25, Figures

B. 20 = B. 23(

Table B. 22.

Schedules of simulations of a direct file.

300

Redundant key

handling method HASH 1 |HASH 2 |HASH 3 [HASH 4 |Formulas
Linear i = -1 yes . yes yes yes ---
Linear i = -3 yes --- yes yes ---
Linear i = +1 yes --- --- --- yes
Linear i = +1 group| yes --- “-- --- -
Random yes --- yes yes yes
Direct chain yes --- yes yes yes

Selected hash coding can be used for evaluation of direct

disk file organization,

According to the results of the

simulations in (3), it is evident that Hash 1 gives the best

results, average search length per probing.

Fectch Extution
1.375 + 0,00
1.325 + 1.375
1,375 + 0.687
1.375 + 0.687
1,375 + 1.375
1,375 + 1,375
1,375 + 0,000
1.375 + 1.375
1,375 + 1.375
1,375 + 1.375
1.375 + 1.375
1.375 + 0.000
1.375 + 1.375
1.375 + 1.375
1,375 + 0,000
1,375 + 0,000
1,375 + - 1,375

Total~ 0,37 ms,

Figure B. 19, Illustration of conversion of Hash address to Disk address.

ANA, S

STA

SHA

SHA

STA

LDA

ANA, S

STA

LDA

ADA

STA

ANA, S

STA

LDA

SHA

SHA
STA

77777 B
Address

-10

-12

CYL

Address

277 B

Address

CYL

Address

Disk

77 B

LoC

Disk

-3

Disk

// 15 bit Hash

///////s bit
s T

Hash address

7.

8 bit

\

st 7

/15 bit//)] 8 bit

A ddress

301

.

Hash addressJ

Cyl

/////SbiW

Address

|8 bt

Disk

%k bit}///]8 bits |

777
00000 de
Vs vl b
LTIE
r// bit Sb@ Disk
As bit EbiO
—

upper portion

lower portion

Expected length of search per record (Es)

H3(-1)

LF

H2(-1)

H5(-1)

H4(-1)

1 i]] i | 1)
3 .5

Loading factor, P

Figure B. 20. Expected length of search per record, as a function of the loading factor for 6 selected Hash functions with ~1 displacement
of records in the file.

20¢

Table B. 23..

L

Results of computation of expected length of search as a function of loading factor for five hash function with linear probing
compared with statistical formula,

File . Hash 3 Hash 1 Hash 2 Hash 5 Hash 4

Items ls:i:lzrg ST ST ST ST ST 1-p/2

N in % ST E= 1+ ST E= 1+.?~I‘ ST E= 1+ ST E= 1+-;I" ST E= 1+? E= 1- p
64 6. 12 16 1,250 4 1, 063 3 1,047 3 1,047 3 1,047 1,0

128 12,50 111 1,870 12 1,094 12 1,094 15 1,117 8 1,063 1, 066
199 18,72 457 3,130 33 1,172 25 1,130 28 1, 145 23 1,120 1,115
256 25.00 814 4, 180 60 1,234 39 1, 152 40 1,156 49 1, 192 1, 167
320 31,20 1917 6.990 95 1,297 82 1,257 59 1,184 78 1,244 1,227
384 37.50 4165 11, 840 157 1,410 131 1,342 920 1,234 124 1,322 1,300
448 43,70 7254 - 17,190 217 1,485 213 1,476 126 1,281 166 1,437 1,389
512 50. 00 16408 28.480 317 1,620 316 1,616 217 1,423 260 1,507 1,500
576 56,40 16580 33.910 456 1,790 463 1,800 335 1,581 397 1,690 1,647
640 62,50 23675 37.890 595 1,931 681 2,060 510 1,796 499 1,780 1,911
704 68.60 31552 45, 810 910 2,292 1084 2,540 697 1,990 703 1,999 2.092
768 75.50 42556 56,410 1178 2.530 1659 3,160 1035 2,350 971 2,264 2,541
832 81,25 56866 69, 340 1713 3, 060 2237 3,680 1594 2,920 1265 2.520 3,167
896 87.50 70060 79, 190 2463 3,760 3382 4,780 3023 4,380 1821 3,032 4, 500
9260 93,80 91673 96. 490 4375 5,900 6897 8. 160 6257 7.500 3397 4,538 8, 565

1024 100, 00 132298 130. 190 13965 14, 600 24974 25,300 20709 27,200 16508 17,121 -

S_. = Total number of searches before hit the desired record.

T

E = Average number of searches per random record accessing,

£0¢

Expected length of search per record (Fs)
w

H1 (Direct chain)

Figure B. 21,

]] 1 | | 1 1 I |
.1 .2 .3 .4 .5 6

Loading factor, P

Expected length of search per record, as a function of the loading factor for Hash 1 (H1) mapping function with 4 methods of
handling redundant records in the file.

1.0

$0E

Table B. 24,

Results of computation of expected length of search per record, as a function of loading factor for hash 1,
with four methods of handling redundant records in the file.

Hash 1, i= -1 Hash 1, i=3 Hash, random Hash 1, chain
N = No. % | s s s <
lftlel:li:n c::ilcity St E=1 FTF St E=1+ _1\-11 St E=1+ _f\JI St E= -QNIL
64 6.12 4 1,063 5 ‘ 1,023 4 1,063 68 1,063
128 12,50 12 1,094 12 1,094 10 1,015 138 1,080
192 18,72 33 1,172 28 1, 146 26 1,135 214 1, 130
256 25.00 60 1,234 54 1,215 46 1,180 296 1,150
320 31,20 95 1,297 83 1,260 78 1,246 378 1,180
384 37.50 157 1.410 132 1.344 117 1,302 468 V lk. 220
448 43,70 217 1.485 193 1.430 168 1,375 557 1,240
512 50. 00 317 1,620 284 1,550 244 1.476 659 1,290
576 56.40 456 1,790 410 1,710 341 1.590 762 1,320
640 62,50 595 1,931 549 1, 860 413 1.640 849 1.330
704 68, 60 910 2.292 760 2.080 580 1,820 954 1,360
768 75.50 1178 2,530 1111 2.410 723 1,940 1066 1,390
832 81,25 1713 3.060 1591 2.910 951 2. 140 1188 1,420
896 87.50 2463 3,760 2482 3.780 1390 2.500 1300 1,450
960 93,80 4375 5.900 4862 6,070 2139 3.220 1423 1,480
1024 100, 00 13965 14, 600 17962 18. 600 5839 6. 100 1556 1.520

G0¢ -

Expected length of search per record (E;)

H3(-1)
H3(-3)

H3 (Random)

. H3 (Direct chain)

I l ! | | l | | { |

Figure B.22.

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

Loading factor, p

Expected length of search per record, as a function of loading factor for Hash 3, mapping function with 4 methods of handling
redundant records in the file,

90¢

Table B, 25,

Results of expected length of search per record, as a function of loading factor for hash 3 with four methods of handling
redundant records in the file,

Hash 3, (-1) Hash 3, (-3) Hash 3, random Hash 3, chain
i\ie_mljz; fu?l _S_T f_’_I‘_ fl z('_r_)_
file n, capacity St E=1+%| 5t E=1+701 5t E=1+3 Set E="N

64 6.12 16 1.250 16 1,250 19 1.290 76 1. 190
128 12,50 111 1,870 82 1.640 73 1.570 173 1.350
192k 18,72 451 3,350 205 2,060 153 1.790 298 1,450
256 25.00 814 4. 180 343 2,330 264 2,030 386 1. 500
320 31.20 1917 6.990 852 3.660 478 2,500 556 1.730
384 37.50 4165 11,840 1688 5.390 704 2.830 730 1.900
448 43,70 7254 17.190 2715 7.060 898 3,000 884 1,970
512 50.00 16580 33.910 4131 9. 060 1156 3,260 1069 2,080
576 © 56.40 16408 29,480 6144 11,660 1478 3.560 1291 2.240
640 62.50 23615 37.890 8759 14, 680 1917 4, 000 1547 2.420
704 68.60 31552 45.810 11500 15.330 2376 4,370 1782 2.530
768 75.50 42556 56,410 15398 21.040 29034 4,820 2040 2.650
832 81.25 56866 69. 340 20057 25, 100 3536 5.250 .. 2274 2,740
896 87.50 70060 79.190 25090 29,000 4165 6.650 2495 2,780
960 93.80 91673 96. 490 33558 35.950 5186 7. 400 2741 2.850
1024 100, 00 132298 130, 790 50026 50.730 9576 10. 350 3056 2,920

Log

Expected length of search per record (E)

H4 (Direct Chain)

6

s b

4

3 |-

s

! .

0 1 | | | |
.1 .2 .3 .4 .5

Loading factor, p

Figure B. 23. Expected length of search per record, as a function of the loading factor for Hash 4, with 4 methods of handling redundant

records in the file,

80¢

Table B. 26,

Results of computation of expected length of search record, as a function of loading factor for hash 4, with four methods
of handling redundant records in the file.

Hash 4, i= -1 Hash 4, 1= -3 Hash 4, random Hash 4, chain

if:\i:lsN i(:; f:fll ST ST ST SCT

file ni capacity ST E=1+ -I\? ST =1 +—N— ST E=1 +-I;- SCT E= —N-
64 6. 12 3 1,047 4 1.063 3 1. 047 67 1. 047
124 12,50 8 1,063 8 1,063 7 1,056 135 1,055
192 18.72 23 1. 120 21 1,110 22 1.115 209 1.089
256 25,00 49 1. 191 45 1.170 49 1,191 291 1,137
320 31,20 78 1,244 76 1,238 84 1.263 376 1. 175
384 37.50 124 1.323 112 1,292 129 1.336 459 1,195
448 43,70 166 1.370 154 1,343 171 1,382 549 1,225
512 50. 00 260 1.510 215 1,420 243 1,475 644 1,258
576 50.40 397 1,690 314 1,545 319 1,554 750 1,302
640 62.50 499 1,780 410 1.640 407 1,636 852 1,331
704 68.60 703 1,998 585 1,830 568 1,807 968 1,375
768 75.50 971 2.200 865 2.130 753 1.986 1093 1,431
832 81,25 1265 2.520 1228 2,470 1011 2.215 1208 1,452
896 87.50 1821 3.040 2085 3.330 1328 2.482 1316 1. 468
960 93, 80 3397 4,300 4359 5.550 1972 3,054 1451 1.511
1024 100. 00 16508 17, 100 17108 17.700 6842 7.682 1580 1,543

60¢€

310

Figure B. 20 makes a graphical comparison among five related

hash functions with linear probing by (-1) and the expected value

obtained from the linear probing formula lfﬂ This graph
-«
shows how the expected search per record retrieval (E =1 + SET)

increases when the number of records in the Table or the file loading
factor increases, Every curve follows the general trend of E.; i.e.,
when ois a small there are many available spaces, the number of
secondary records (redundant records) is less; then the expected
number of search records per random accessing is less. But for

a —>» 1.000 the table is almost full; it is not easy to find a space
available and the expected number of searched records per random
accessing is enormously high,

Increase in the value of E, is dependent on the scattering pat-
tern of the calculated hash addresses for each investigated hash
function., Data in Table B. 23 indicated that Hash 1 is the best hash
function. Hash 3 offered the worst results,

Figure B. 21 shows how the expected searched record per
random accessing, E, increases as the values of file loading factor;
a, increases in Hash 1, with three methods of handling redundant
records: linear probing by (-1) and (-3), random probing and direct
chain probing. The rate of increase of E is dependent on the method
of handling redundant records from the results of both simulation

and computation., Hash 1 with direct chain probing gives the best

311

results. Hash 1 with random probing gives worse results than Hash
1 with direct chain probing. Hash 1 with linear probing gives worse
results than Hash 1 with random probing. Hash 1 with (-1) linear
probing is a little worse than Hash 1 with (-3) linear probing for
O < ¢ < 0.825; it is better than Hash 1 with (-3) linear probing
for 0.825 < a < 1.000 when the table is almost full.

Figure B. 21, Table B. 25 and Figure B. 22, Table B. 26, make
a graphical comparison of Hash 3 and Hash 4, the objective of which
is the same as that in Figure B. 19 and Table B. 23. From the
‘comparative results shown in Table B. 23 - B. 26 and Figures B. 19 -
B. 22 it is clear that Hash 1 gives the best results and is the reason-
able selection for evaluating the direct disk file, for making a compari-
son with the results of the other types of files as shown in Appendix

B, Example 4.

312

]]
.\7
=),
Random search across track g
s
7% S 5
/ 1 ~__)
% HA |y

Random search across cylinde

(2 1

TN
, Hash 1 HR | 7%3% js 5
Full name of record Operation] ’g
C is supplied }’ NN =
HR }z Dy

Linear search across cylinde

4 chain search across
P V' cylinder

7

HR = Home record Z }é
DR = Desired record

i
i

Figure B.24, Illustration of search across the track and search across the cylinder of direct
disk file using Hash 1, with linear probing, random probing and direct

Cylinder

th

i

L
|

chain probing.

Table B.27,

Percent of search across the track and percent of search across the cylinder of disk direct file using Hash 1 with linear probing;,
random probing and direct chain probing.

Linear probing (+1) Random probing Direct chain probing

File size Loading number of search number of search number of séarch number of search number of search number of search
in records | factor,y (%) | across track, % across cylinder, % across track, % across cylinder, % across track, % across cylinder, %
64 6, 12 0 0. 000 0 0. 000 0 0. 000 0 0. 000 0 0. 000 0 0. 000

128 12.50 0 0. 000 0 0. 000 0 0. 000 0 0. 000 0 0. 000 0 0. 000
192 18.72 0 0. 000 0 0. 000 3 1,563 0 0. 000 0 0. 000 0 0. 000
256 25.00 1 0.390 0 0, 000 5 1.953 1 0.390 1 0, 390 0 0. 000
320 31.20 3 0.938 0 0. 000 8 2,500 2 0. 625 3 0.938 0. 0. 000
384 37,50 3 0.781 0 0. 000 12 3.125 3 0.781 3 0.781 0 0. 000
448 43.70 4 0.893 0 0. 000 14 3,125 3 0.670 4 0, 893 0 0. 000
512 50.00 9 1.758 0 0. 000 22 4,297 3 0. 586 9 7.758 0 0. 000
576 50. 40 12 2.083 0 0. 000 29 5. 035 5 0.868 12 2.083 0 0. 000
640 62,50 14 2,188 2 0. 195 37 5.781 5 0.787 14 2.188 2 0. 195
704 68.60 18 2.557 4 0.568 50‘ 7.102 11 1,563 18 2.557 4 0.568
768 » 75.50 | 24 3. 125 5 0.651 67 8.734 17 2.214 24 3.125 5 0.651
832 81.25 36 4.327 5 0. 607 93 11.178 | 25 3,005 36 4,327 5 0.601
896 87.50 | 45 5.022 7 0.781 115 72,835 | 36 4.018 45 5.022 7 0.781
960 93.80 | 62 6.458 | 12 1,250 146 15. 208 52 5.417 62 6.458 12 1,250
1024 100.00 | 91 8.887 | 19 1.855 175 17.090 | 80 7.813 91 8. 887 19 1,855

Percentage of searches across track and cylinder

20

15

10

@ = Percentage of searches across track vs. file loading factor,&r, of Hash 1, for linear probe and direct chain probe.

@ = Percentage of searches across cylinder vs. file loading factor, oy , of Hash 1, for linear probe and direct chain probe.

@ = Percentage of searches across track vs. file loading factor of Hash 1, for random probe,

@ = Percentage of searches across cylinder vs file loading factor of Hash 1, for random probe.

Total number of searches across track x 100

Percentage of searches across track = -
8 Total random number of accesses of un-repeated key in the file

Total number of searches across cylinder x 100

Percentage of searches across cylinder =
g Y Total number of random access of un~repeated key in the file

This simulation is made of 1024 records in full file

—
T - —

Y 4 e
NS e

A — N S = ¢ i 1 1 1 1

0.061 0.125 0.187 0.250 0.312 0.375 0.437 0.500 0.564 0.625 0.68 0.755 0.813 0.875 0.938 1,00
Loading Factor

Figure B.25, Percentage of searches across the track and percentage of searches across the cylinder as a function of loading factor, a, for disk

direct file using Hash 1, with linear probe, random probe and direct chain probe,

yie

315
Selected hash coding can be used for evaluation of direct
disk file organization. According to the results of the
simulation in (3), it is evident that Hash 1 gives the best
results, average search length per record retrieval, E,
and follow its statistical formula. Hence it is reasonable

to select Hash 1 for ''selected hash coding', for evaluation

and comparison with o“ther file organization methods.
The evaluation of the direct disk file using Hash 1 with
linear probing is as follows:

a) For the computation of the average throughput time

of direct disk file with linear probing,

If

TATHRPDFLP = Average throughput time per
record retrieval from direct disk
file with linear probing

from the diagram Figure B. 24, the following
equation can be set up:
TarurporLp - Tcr tTernTrk THAsH 1Y
Treru * Tasrorrp ¥ Trer/o ?
TRWOUT (9.50)
where THASH 1 = Hash 1 decoding time per record

retrieval

316

I

0.071 ms (based on the tested pro-
gram on page 352.

= i d
TASRDFLP Average access time per recor

including internal search with linear
probing and search across track
and cylinder,

T

+
TAR/WHPT * AWT * TRINDT

+ T
Trs T Tupsact 7 "LpPsacyL

(4.51)

where TLPSACT = Linear probing search across track

E, :
= — (T
100 "awt T TrinDT

25 + 25 E =0.5E

100 ‘ 1 ’ 1

E_ = Total number or searches across the track using linear probing
Total random accesses of un-repeated keys in the file

x 100

El’ the empirical parameter, is obtained by simula-

tion.
and TLPSACYL = Linear probing search across the
cylinder
E
S (TAR/WHPT ¥ TAWT ¥

(9.52)

317

E
2 -
100 (30 +12,5 + 25) = 0,675 E2
where
E = Total number of searches across the cylinder using linear probing
2 Total random accesses of un-repeated keys in the file

x 100
E_and EZ’ the empirical values, are obtained by
simulation

Then Equation (9.51) becomes

95+12.5+25+TL +0.5

T ASRDFLP PS
‘ +
P psact 79075 PrpsacyL
- 132.5 4T $+0.5E. +0.675 E
132.5 +T_ oo 5E 675 E,

For illustration, when N = 12288 («= 0. 75) from

Figure B, 24, page 314, E1 = 3.125%, E2 = 0.651 %.

TLPS = Linear search in the track contain-

ing the desired record

= E -
7.875 (LP 1) + 165,625
where ELP = Expected number of searcher per
record retrieval with linear probing
ELP = % a = file loading factor

(9.53)

2.5 for N = 12288

b)

318

Then TLPS = 7.875 (2.5 - 1) + 165.625 =
177 psec = 0,177 msec,
TASRDFLP = 132.5 +0,177 +0.5x3,125 +

0.675x 0.651

134.679 ms
From Equation (9. 50)

rI‘ATHR PDFLP

0.3218 +8.626 +0.071 + 0,008 +

134,679 + 0.008 + 36,00

179.714 for N = 12288 or a= 0.75
See results of computation in Table B, 29, page 330.

T

Approximate formula of T | 1ip pyprp = Tg

Only major components of search time (msec) are

considered; the minor components of search time

(nsec) are omitted,

Ty - TAR/WPT *Tawr T TRinpT ¥

TLPS + 44,959

~s
where 44. 969 TC BF + TCFNTFR + rI‘RCLU ¥

Trer/o P Trwout T TaasH 1

H
R

6 95+12.5+25+TLPS+0.5x

10'2 E + 0.675 x 10”2 E,

R

132.5 +(7.875 EL + 157.375)

P

10'3 0.005 E1 +0.00675 E2 + 44,959

319

= . . + 0.
T 177.545+ 0.007875 ELP 0.5 E1

+0.675 E2 ms
for 0.25 < g 1.0
22 177.545 ms for 0.0 < o < 0.25

c) Total CPU busy time per record accessed using unique

fixed-length key, t

TCPUTDFLP
trcpurpFLe - TmasH1 T TrReru T Trps *
T (9. 54)

TRCI/O * RwWOUT
0.071 +0.008 +0.177 + 0.008 +

36.00

36,264 msec. N = 12288,

a = 0.75
d) Total CPU busy time per record accessed using full

name of the record, tTCPUTDFLPUFN

L CPUTDFLPUFN = 'TCPUTDFLP @ LCFNTFN

36,264 + 8.626 = 44, 890 msec.

for N = 12288, o =0.75

The evaluation of direct disk file using Hash 1 with random

probing is as follows:
a) For computation of the average throughput time of the

direct disk file with linear probing

320

If TATHRPDFRP = ‘Average throughput time per record

retrieval from direct disk file with
random probing.
From the time diagram Figure B. 25, page the
following equation can be set up:

T T

ATHRPDFRP: TCBF * TCFNTFK * HASH 1 ¥

TRCLU * TASRDFRP * TRCI/O

* TRWOUT (9.55)

where TASRDFRP = Average access time per record

retrieval including internal search
with random probing and search
across track and cylinder.

T

TAR/WHPT ¥ AWT * TRINDT *

TLS * TRPSACT ¥ TRPSACYL

(9. 56)

where TRPSACT = Random probing search across

track

)=0.5E

100 TAWT * TRINDT 3

_ Totalnumber of searchesacrossthe track of random probing
3 Total randomaccesses of un-repeated keys inthe file

E x 100

and TRPSACYL = Random probing search across the

-cylinder,

E

e

321
E

4
— +
100 (TAR/WHPT + TAWT

TRINDT) (9.57)

E
4
oo (30 +12.5 +25)=0.675 E,

where

Totalnumber of gearchesacrosscylinder of random probing

Total randomaccesses of un-repeated keys inthe file x 100

E3, E4 the empirical values, are obtained by simula-
tion, Figure B, 24 on page 314.

Then T

. : + .
ASRDFRP 95 +12.5 + 25 + TRPS 0.5 E3 +

. B
0.675 4

.5 E . E
132.5+TRPS+05 3+0 675 4

For illustration when N = 12288 (a= 0. 75) from Figure

B. 24, page 314.

E, = 8.734%; E, = 2.217 %
TRPS = Random search time in the track
containing the desired record
= 34,625 (ERP -1) +179.375 (based
on test program, page 354.
where E = Expected number of searches per

RP

record retrieval using random prob-

ing.

RP

then T

rI‘ASRDFRD

then T

See the results of computation of T

RPS

ATHRPDFRP

322

_la 1oge (1 - @ where o= file
loading factor, (9.58)
1.84 for N = 12288.

34,625 (1.84 - 1) +179.375 =

208. 46 + 0, 209 ms,

132.5 + 0,209 +0,5 * 8, 734 +
0.675 * 2,217

138.571 msec.

= 0,3218 +8.626+ 0.071 +0.008 +
138.571 + 0,008 + 3600
= 183.606 msec. for N = 12288

or a= 0.75

ATHRPDFRP

Table B. 33 on page 334.

b) Approximate formula of T

ATHRPDFRP - 17

Only major components of search time (msec) are

considered; the minor components of search time

(nsec) are omitted,

rI‘7 rI‘AR/WPT + rI‘AWT + rI‘RINDT +
+ .
TRPS 44.959
where 44,959 =~ T +

CBF rI‘CFNTFR ¥ rI‘RCLU *

TRCI/O * rI‘RWOUT * rI‘HASH 1

323

>
T, 95 +12.5 + 25 +(34.625 Ep, +
155.75)10'3 +0.5E, +0.675 E4+
44.959
~
T, 177.604 +0.0346 B, + 0.5 E, +
0.675 E4for 0o < o< 1.000
T ™ 177.604 for 0< o< 0.25

7
c) Total CPU busy time per record accessed using unique

fixed-length key = tTCPUTDFRP'

L CPUTDFRP - T +

THASH 1 ¥ TRCLU * RPS
rI‘RCI/O * TRWOUT

0.071 + 0,008 +0.209 +0.008 +

36.00

36.296 msec for N = 12288 or

a=0.75

d) Total CPU busy time per record accessed using full

name of the record = tr oy HFRPUFN,

1:TCPUTDRDUFN 1:TCPUTDFRP + TCFNTFK
= 36.296 + 8.626 = 44,922 msec
for N = 12288, o= 0.75

7. The evaluation of direct disk file using Hash 1 with direct

324

chain probing is as follows:

a) For the computation of the average throughput time of
direct file with direct chain probing,

If TATHRPDFDCH = Average throughput time per

record retrieval from direct disk

file with random probing

From the time diagram Figure B. 25 the following

equation can be set up:

T

ATHRPDFDCH CBF tT

T

T CFNTFK ¥ HASH 1

* TRCLU * TASRDFRP ¥

Treryo T Trwour (9.59)

where TASDFDCH = Average access time per record

retrieval including internal search
with direct chain probing and

search across track and clyinder.

= T + T

+ T +
AR/WHPT AWT RINDT

T T T

DCH+ RPSACT * RPSACYL

where TDCHSACT .. = Direct chain probing search

across track
E
5

(T T)=0.5E

100 AWT * RINDT 5

(9. 60)

325

where E = Totalnumber of searchesacrossthetrackofdirectchain
Totalnumber of un-repeated records accessed fromthe file

x 100

TDCHSACYL = Direct chain search time across

the cylinder

E

100 T *

+
(TAR/WHPT AWT

T (9.61)

RINDT)«
E

Tog (30 +12.5+25)=0.675

E msec,

6

where

_ Totalnumber of searchesacrossthecylinder of direct chain probing
¢ Totalnumber of un-repeated recordsaccessed fromfile

E

x 100

E5 and E, are the empirical values obtained by simula-

6
tion as shown in Figure B. 24, page 314. In this

investigation the method of finding the available space
for successive records in the chain is the same as

that of linear probing. Hence the value of E1 = E5

ndE =E .,
ane =T e

= . .5 E
Then TASRDFCHD 95 +12.5 + 25 + TDCHS +0.5 5

+0.675 E6

326
= 132.5 +TDCHS + 0.5 E6 +

E
0.675 6
For illustration when N = 12288 (¢= 0. 75) from

Figure B. 24, page 314.

=k = . ; E =E = .
E5) 3.125% 6 5 0.651%

TDCHS Direct chain probing in the track

containing the desired record

= 164.25 +19.875 (E 1)

DCH ~

= E
where EDCH xpected number of searches per

record retrieval using direct

chain probing

- 24 = fi :
EDCH = 1+ > where o= file loading

factor (9. 62)
= 1,375 for N = 12288 or ¢= 0. 75

Then TDCHS = 164.25 +19.875 (1.375 - 1) =

171. 703 psec = 0,172 msec.

T ASRDFDCH = 132.5+0.172 +0.5x 3,125 +

0.675 x 0,651
= 134,673 msec,

Then T 0.3218 +8.626 + 0.071 + 0.008 +

ATHRPDFDCH _
36.00

= 179. 708 msec,

c)

327
See the results of computation of TATHRPDFDCH in
Table B, 36 on page 337.

ATHRPDFDCH ~ ©8

Approximate formula of T
Only major components of search time (msec) are

considered; the minor components of search time

(nsec) are omitted,

o + +

T8 TAR/WPT rI‘AWT * TRINDT
TDCHS + 44,959

where 44,959 ~ T

CBF ¥ TCFNTFK ¥ TRCLU ¥

Trero T Trwour t Thasu 1

o7
T 95 +12.5 + 25 + (19. 875 EDCH+

144, 375) x 10'3 +0.5 E5 +

0.675 Eé + 44.959

o .
T 177.573 + 0,.019875 EDCH +

0.5 E8 = 0. 675vE6 msec. for

0.5.< a< 1.00,
T8 ™2 177.573 msec for 0 < g< 0.5

Total CPU busy time per record accessed using unique

fixed-length key = L CPUTDFDCHP"

trcpurprpeup - THasH 1T Treru t Tocus

TRCI/O ¥ TRWOUT

328

1l

36.259 + 8,626

1l

44, 885 msec for N = 12288,

a= 0,75

For computation of core storage space and disk storage
space reguired for the-direct disk file using linear probing,
random probing and direct chain probing, the method is the
same as that in Example la. The extra disk storage space
is reserved for supporting the file system processing
program. See the results of computation in Tables B. 29,
B. 33 and B. 37 on pages 330 - 338,

For computation of the achievable-throughput rate capability
of the direct disk file C C and C and the customer

(6)" (7) (8)

operating cost per call, unit cost, U and U

c6)y Ye(r) c(8)

the methods are the same as those shown in Example la,

pages 226 - 227. The computing results of C(6)’ C(7) and
C(8) are shown in Table 7.4, page 155. The computed
results of UC(6)’ UC(?) and UC(8) are shown in Tables

B. 30, B.34 and B. 38, pages 331 - 339 respectively.
for comparison with the results obtained from the various
other types of file, See results of computation in Table

7.6, page 173.

Table B. 28.

using Hash 1with Linear probing (+1)

Data results of computation of disk average access time per record retrieval as a function of loading factor of direct disk file

| B
ol e .x
[G8lg | @ ¢ | = .
Q =1
5 g REE o 5 ; ” g 4
5 g i 55 b 9 2 3 8 g E
g 5 9 g%| & k= § o g 5 g o g8 & 5 g
3 (51 & w5 2 =t - 8 13) Qo + |
IR o0 & g o g] 2 8 g o @ © § o - & 0
B g 3 B [T) e+ T e 0 o = o e < g g 9
w O — v © o o X « ~ 3] [V
QL el o B H Q| A [3] T X u 9 g o = e g o M
= g o 8 I B g § s A g ® 3 = i
i 8 3 = & < as]OE = .8 © H < 24 v 8 »w O a a
cylinder = tracks_. ms ms ms ms % ms - ¥l % ms ms
128 0,0078 27 261 1. 000 95 12.5 25 0. 166 - - - - 132, 666
512 0.0312 27 261 1,020 95 12.5 25 0. 166 - - - - 132. 666
1024 0. 0625 27 261 1,030 95 12,5 25 0. 166 - - - - 132,666
4096 0, 2500 27 261 1,167 95 12.5 25 0. 167 - - - - 132, 667
8192 0. 5000 27 261 1. 500 95 12,5 25 0,170 1,785 | 0.893 §0,.000 | O.000 133,563
12288 0.7500 27 261 2.500 95 12.5 25 0. 177 3.125 1,563 |0.651 } 0,439 134, 679
*
16384 1, 0000 27 261 14. 600 95 12.5 25 0.273 8.887 | 4,444 1,855 1,252 138, 469
Note: E=(1- /2)/(1 - o) for linear probing.

* The value is obtained by simulation.

(Direct file 16 words/record, 64 records per track).

62¢

Table B.29.

Data results of computation of CPU busy time and average throughput time per record retrieval of direct disk file organization
with Linear probing using full name of a record in accessing a random record from file.

1
g cl &
o «
< — 4 .5 [3] } o
< - = “d =t
% " 3 S o B E 5 £ s & 5 2
o o« 0 ‘o o Q 0 — g © o E &
S s] | s) " g 9 Y g g %
2 g8 w g < 2 E x 3 O B > o o E < o
© o o o (o]] I ~ |2 e 2 a a
9 0 9 9 5 o o - z o © o g
3 =29 9 9 H & i 0 = = >
o B g5 3 g o © e o 80 g g ° .52 3 ERCEE
N o D] E - E U g 0 E Q e lR=] ° L [R ¥ =1 g
@ o g = g o s 00 < B o 0w U 2 0w 9 0D -
v 2 E g =88 el g 5 SEL | &% | ®& g5 8 298 3 285
e O Gl O had] [Z]
o 8 Oo¢d .8 &8 ol 0= <+ & | OF < 8 58 8 D ow o 5 8 A
ms ms ms ms ms ms ms ms ms ms
128 0.3218 8.395 .071 , 008 132,666 . 008 36 36,253 44, 648 177.470
512 0.3218 8.475 .071 . 008 132,666 . 008 36 36,253 44,728 177. 550
1024 0.3218 8.515 ,071 , 008 132, 666 . 008 36 36,253 44,768 177. 590
4096 0,3218 8.595 . 071 , 008 132. 667 . 008 36 36. 254 44, 849 177.671
8192 0.3218 8.601 .071 . 008 133. 563 .008 36 36.257 44, 858 178.573
12288 0.3218 8,626 .071 . 008 134, 679 . 008 36 36,264 44,890 179.714
16382 0.3218 8.641 .071 . 008 138. 469 . 008 36 36.360 45, 001 183,519

Note: ms or msec¢ = millisecond.

T
“HASH1

= 0,34 ms + 0.37 ms = 0.071 msec.

= Hash 1 decoding time + hash address to disk address conversion time, see Figure B. 18, page

o¢ce

Table B.30.

Data results of computation of storage space required as the function of file size of direct file organization with linear probing using

both record's full name and fixed length numerical code for accessing a record from file.

~ g &
= = 2 5 B 5 o "F: o
X g ° g 2o 9 g Z g
«© o < [, e

Q I > P =l)]
= 1) Al] - U o= o [] o
9 v 9 o 9 = Q =
“E’ 3 < 0 2 &0 3 2853 3
3 =] ; — 8 @ = g 3 g‘u @ & §

a3 & o g 2= =g w §
2 5 § § 3 g 5 £ E5r | TE-
o & w” ol) TS s % £ 238 - 4%

words (a) words (b} words (a} | words (b) a b

128 200 1088 24 2 20 61 1024 1131 2419
512 200 4352 24 2 20 61 1024 1131 5663
1024 200 8704 24 2 20 61 1024 1131 10035
4096 200 34816 24 2 20 61 1024 1131 36147
8192 200 69632 24 2 20 61 1024 131 70963
12288 200 104448 24 2 20 61 1024 1131 105779
16384 200 139264 24 2 20 61 1024 1131 140696

1¢¢

Table B.31.

with linear probing (+ 1) using full name of record in accessing,

Results of computation of customer operating cost (unit cost) as the function of file loading factor of direct disk file

Disk space Disk space |Terminal devices CPU-time CPU-time and |[CPU=time and disk

File loading |Disk space for accessing charge per cost per Rule of use charge per disk charge charge per month

factor for data file program month month data file month per month per call
unit tracks tracks $ $ calls per month $ $ $

. 0078 760 52500 195,34 1034, 05 1,96960
(128 records) 261 1,362 78,71 2675 210000 781,35 3535, 06 1, 68336
4075 420000 1562, 67 5716, 38 1,36104
.0312 760 52500 195, 69 1035, 35 1,97209
{512 records) 261 4,530 79,66 2675 210000 782,73 3537, 39 1, 68447
) 4075 420000 1565, 49 5720, 15 1,36194
. 625 760 52500 195, 87 1036, 81 1, 97480
(1024 records) 261 8. 800 80,94 2675 210000 783,45 3589, 39 1, 68542
’ 4075 420000 1565, 87 5721, 81 1,36233
. 2500 760 52500 196, 23 1044, 82 1,99013
(4096 records) 261 34, 300 88,59 2675 210000 784, 86 3548.45 1,68973
4075 420000 1569, 72 5733, 31 1, 36507
. 5000 760 52500 196,26 1055, 05 2.00961
(8192 records) 261 68, 300 98,79 2675 210000 785,01 3558,98 1,69475
4075 420000 1570. 02 5743,79 1,36757
. 7500 760 52500 196, 41 1065, 40 2,02933
(12288 records)l 261 102, 300 108,99 2675 210000 785,58 3569, 57 1, 69979
4075 420000 1571, 16 5755, 15 1, 37027
1. 0000 760 52500 196, 89 1076, 08 2, 04967
(16384 records)] 261 136, 300 119, 19 2675 210000 787.54 3581,73 1, 70558
4075 420000 1575, 03 5801,92 1, 37362

Z2¢ee

Table B.32. Data results of computation of disk average access time per record retrieval as a function of loading factor of
direct disk file using Hash 1with random probing.

00
g
2 8 e g
g P g S g 00 E o :
8 4 B g 3 2 g @ S, 2 2 g b
@ o & f @ B o 2 = 5 e | 8 £ g 5 v 5 g g g
o B o & g & 09 % B! g! o 0B 8 « B & 5 58
B o0 a8 g 9 g 2 g | Ha t o @ o O
N o g 3 =] g 20 g 5 < -~ -~ 1 ¥ go_q 8 = e = g w9
=8 |4 s 82 55 S| de |3l 8EEl g% g8 % 5
S = © S ow = 250 - E ® E U o > 95 T ® T = A D
& 8 S = 20 < a ¥ (N BT | KB < & a »w B 8 » O 8 0O a
unit with Hash 1, E ms ms ms ms % ms % ms ms
128 00,0078 27 261 1.03 92 12.5 25 0. 180 - - - - 132. 680
512 0.0312 27 261 1,04 95 12.5 25 0. 181 - - - - 132. 681
1024 0. 0625 27 261 1.04 95 12.5 25 0. 181 - - - - 132,681
4096 0.2500 27 261 1. 16 95 1.25 25 0. 185 1,953 0.977 0.390 0. 263 133,925
8192 0. 5000 27 261 1.39 95 12.5 25 0. 193 4,297 2. 149 0. 586 0. 396 135. 238
12288 0. 2500 27 261 1.84 95 12.5 25 0.209 8.734 4,363 2.214 1,493 138.571
%
16384 1. 0000 27 261 6.70 95 12.5 25 0.377 17.090 8.545 7.812 5.274 146. 696

Note: E= - g1 log (1 - @) for random probing.
e
* The value is obtained from simulation.

Direct file random probing uses 16 words per record, 64 record per track.

et

Table B.33.

Data results of computation of CPU busy time and average throughput time per record retrieval of direct disk file organization with

random probing using full name of a record in accessing a random record from file.

. %
4
=]
- g ¢ 3 o " o B o B
Gz “ g g 2y S g 5 3 g E B £ g
s 8 w g g = ~x B o H T g o S &
w o 3 9 0 o0 E W & < &) _‘g a g
3 i 3 § g g e T8y | g = B 5 &
9 B Sw g o o E] v —~ O EE s EE 20 B9
3 8 g~ g - g >Es | 248 | 8 oD P o 2 w? &
'y EEE | 33 88| B+ S3g | By | BB 253 £ 3 28
= 8 O% & e 8 ol o 8 <858 | O H < & SRR 5 8 5 8 B
unit ms ms ms ms ms ms ms ms ms ms
128 0.3218 8.395 .071 . 008 132, 180 . 008 36 36,267 44,662 177. 484
512 0.3128 8,475 .071 . 008 132, 681 . 008 36 36.268 44,743 177,515
1024 0.3218 8.515 .071 . 008 132, 681 .008 36 36.268 44,783 177. 605
4096 0.3218 8.595 .071 . 008 133,925 .008 36 36.272 44,267 178,929
8192 0.3218 8.601 .071 .008 135, 238 . 008 36 36.280 44,881 180, 248
12288 0.3218 8,626 .071 .008 138, 571 .008 36 36.296 44,922 183, 606
16384 0.3218 8,641 .071 . 008 146. 696 . 008 36 36. 464 45,105 191, 746

pee

Table B, 34.

Data results of computation of storage space required as the function of file size of direct file organization with random

probing using both record's full name and fixed-length numerical code in accessing.

> -] E [
g 8 & 38 85 .3
85 8 o 2 g .8 o L =]
v b0 o @ 2 3, v o 9 o & 9

=1 o v o [*] s V =
o g 9 @' g o o o 8 % O b uy
£ g 7 —- 2 “ 8 v 4 —- =B e
v =% 5 5, 4 3 9% o G- s 8 g
P 5 X % 0 o o8 & °g @ © 5w
[<H [STRS I & PR [I B
unit words (a) words (b) words (a) | words(b) | words(a) | words (b) words words words
128 200 1088 24 2 80 1024 20 1148 2438
512 200 4352 24 2 80 1024 20 1148 5702
1024 200 8704 24 2 80 1024 20 1148 10054
4096 200 34816 24 2 80 1024 20 1148 36166
8196 200 69632 24 2 80 1024 20 1148 70982
12288 200 104448 24 2 80 1024 20 1148 105798
16384 200 139264 24 2 80 1024 20 1148 140614

gee

Table B.3S.

with random probing using full name of record in accessing.

Result of computation of customer operating cost (unit cost) as the function of file loading factor of direct disk file

Disk space Disk space |Terminal devices CPU-time CPU-time and | CPU-time and disk
File loading Disk space for accessing | charge per cost per Rule of use charge per disk charge charge per month
factor for data file program month month data file month "\\ per month per call
unit tracks tracks tracks $ calls per month $ $ $
. 0078 760 52500 195.39 1034. 10 1.96970
(128 records) 261 1,381 78.71 2675 210000 781.59 3535.30 1.68347
4075 420000 1563. 18 5716. 89 1.36116
. 0312 760 52500 195.75 1035. 42 1.97222
(512 records) 261 4.568 79.67 2675 210000 783.00 3537.67 1. 68560
4075 420000 1566. 00 5720. 67 1. 36206
. 625 760 52500 195.93 1036. 87 1.97499
(1024 records) 261 8.818 80.96 2675 210000 783.69 3539.63 1. 68553
4075 420000 1567. 41 5723.35 1.36270
.2500 . . 760 52500 196. 29 1044. 89 1.99026
(4096 records) 261 34.318 88.60 2675 210000 785. 16 3548.76 1,68988
4075 420000 1570. 35 5733.95 1.36522
. 5000 760 52500 196. 35 1055. 15 2. 00098
(8192 records) 261 68.318 98.80 2675 210000 785.43 3559,23 1. 69487
4075 420000 1570. 83 5744.63 1.36776
. 7500 760 52500 196,53 1065.53 2.02958
(12288 records} 261 102,318 109, 000 2675 210000 786. 15 3570. 15 1.70070
4075 420000 1512.27 5756.27 1.37054
1. 0000 760 52500 197,34 1076. 54 2. 05055
(16384 records) 261 136.318 119.20 2675 210000 789.33 3583.53 1. 70644
4075 420000 1578. 69 5772.89 1.37449

9¢€

Table B.36. - Results of computation disk average access time per record retrieval as a function of loading factor of direct disk file
using Hash 1 with direct chain probing.

21w
o= |5 ! g
= O =} ~— g at
) S § é g 00 ! E §. 8 . 9 o o
g g = ‘2 g o H 3 d g o g §
] 00 9 g8 & 5,18 ¢ g g g © 9 g § 9
0 T ‘:o o 8 o g F @ g a |8 E o D o g S8 g 9
88 |8 ° 2% PEalg =T TE 25| §: 5% 2 g
°8 |3 v 28 §EslselgelRs 588 £ £ 4 %5 -
— 9] ksl oed
=8 |8 A7 & 28|08 |2 RE |2 88 S B S A &
unit cylinders | tracks records ms ms | ms ms % ms %ms ms
128 | 0,078 28 274 1.01 95 12,5 | 25 0. 164 - - - - 132,664
512 | 0.0312 28 274 1.02 95 | 12.5]| 25 0. 165 - - - - 132,665
1024 | 0. 0625 28 274 1,03 95 1.25 | 25 0. 165 - - - - 132,665
4096 | 0.2500 28 274 1.13 95 12,51 25 0.167 }10.390 | 0.09 - - 132.765
8192 0. 5000 28 274 1.25 95 12.5 1 25 0. 169 1.758 | 0, 893 - - 133,562
12288 | 0.7500 28 274 1.38 95 12,5 | 25 0.172 3.215 1.563 0.657 | 0.439 134, 673
16384 1,0000 |- 28 274 1.50 95 12.5 | 25 0.174 8.887 | 4.444 1.855 1,252 138. 370

Note: E= 1+ o /2 for direct chain probing.

Direct file with direct chain probing use 17 words per record; 60 records per track.

Lee

Table B.37. Data results of computation of CPU busy time and average throughput time per record retrieval of direct disk file organization with
direct chain probing using full name of a record in accessing a random record from disk file,
B © ~
= o - a (V] et w B
5 3 3 $ & 5 T E 8 S &
o bh o O] a (M) a‘ [V]
23 3 £ ‘B & o s 5 9 g g 2 g %
= g et o — o O b — P I I}]
9 o 5 E o g I < 3] L 3 a g 2 o
g | 25 | % S| 2R | 384 | 5, |2 g2 B | iit
0B g9 g g T 4 © —~ O g g - 52 Ry gg*
N o DO © o - a8 b0 8 O z . o he Be] b0 w3y
o & £ e o g2 | & 552 1 3|8y 2 Y 2% | 258
v & fou @ s 9 o 9 & . . g9
= £ 0 3 > 2 g < g = g a3 2 a 9§ a2 9
o O & e 28 38 <8 & CEREE: 5 2 SIER: SRR
unit ms ms ms ms ms ms ms ms ms ms
128 0,3218 8.395 .071 . 008 132, 664 . 008 36 36.261 44,646 177. 468
512 0,3218 8.475 .071 .008 132, 665 . 008 36 36. 252 44,727 177,543
1024 0.3218 8.515 .071 .008 132, 665 . 008 36 36.252 44,767 177, 589
4096 0.3218 8.595 .071 . 008 132,765 . 008 36 36. 254 44, 849 177.769
8192 0.3218 8.601 .071 . 008 133, 562 . 008 36 36.256 44, 857 178.572
12288 0.3218 8.626 .071 .008 134, 673 . 008 36 36. 259 44, 885 179.708
16384 0.3218 8.641 . 071 . 008 138,370 .008 36 36.261 44,902 183. 420

8¢e¢

Table B.38. Data results of computationb of storage space required as the function of file size of direct file organization

with direct chaining using both record's full name and fixed-length numerical code for accessing a record
from the file.

. - | b %
S] o 9 <

o g b v X s e

= § 3 g 8 2 t & 58

& o .M 9 g U v o g © ;‘:."

) 2 2 0 8 ? 8 g S g9 3 =

@ g & g = 0 o H .2 8§ 83

K] o - " Lo - T g w 3 L1
@ o E o a5 @ o — -?o — 'E
= R=] -] > « 0O o 95
@ = @ g & @ 2 g 2 .5 g 5 8 0o
= = v T & =T I8 3 B 48 -
unit words (a) words (b) words (a) | words(b) |word (a) word (b) words words words
128 200 1088 24 2 69 1024 20 1139 2427
512 200 4352 24 2 69 1024 20 1139 5691
1024 200 8704 24 2 69 1024 20 1139 10043
4096 200 34816 24 2 69 1024 20 1139 36155
8192 200 69632 24 2 69 1024 20 1139 70971
12299 200 104448 24 2 69 1024 20 1139 105787
16384 200 139264 24 2 69 1024 20 1139 140603

6¢¢

Table B. 39. Result of computation of customer operating cost (unit cost) as the function of file loading factor of direct disk file
with direct chain probing using full name of record in accessing,

Disk space Disk space |Terminal devices CPU-time CPU-time and | CPU-time and disk

File loading Disk space for accessing charge per cost per Rule of use charge per disk charge charge per month

factor Jfor data file program month month data file month per month per call
unit tracks tracks tracks $ calls per month $ $ $

.0078 760 52500 195.33 1034, 04 1. 96960
(128 records) 261 1.370 78.71 2675 210000 781.31 3535.02 1. 68334
4075 420000 1562.61 5716.32 1.36102
0.0312 760 52500 195. 68 1035, 36 1.97211
(512 records) 261 4,558 79.68 2675 210000 782.73 3537.41 1. 68448
4075 420000 1565. 46 5720. 14 1.36193
.625 760 52500 195,87 1036. 81 1.97487
(1024 records) 261 8,808 80,94 2675 210000 783,42 3539. 36 1. 68540
4075 420000 1566. 84 5722,78 1. 36256
. 2500 760 52500 196. 20 1044, 79 1. 99007
(4096 records) 261 34, 308 88.59 2675 210000 784.86 3548.45 1. 68973
4075 420000 1569.72 5733.31 1.36507
. 5000 760 52500 196. 26 1055, 05 2. 00961
(8192 records) 261 68.308 98,79 2675 210000 785.00 3558.79 1. 69466
4075 420000 1569.99 5743.78 1.36756
. 7500 760 52500 196. 38" 1065. 37 2. 02927
(12288 records] 261 102, 308 108,99 2675 210000 785.49 3569.48 1. 69975
4075 420000 1570.98 5754.97 1.37023
1, 0000 760 52500 196, 44 1075. 64 2. 04883
(16384 records) 261 136,308 119, 20 2675 210000 785.79 3579.99 1.70475
4075 420000 1571.58 5765.78 1.37280

ove

341

APPENDIX C

Flow Charts, Tested Programs and Time Analysis

Symbolic Program for Search in Sequential Cylinder Index Track

LOCATION OPERATION CODE ADDRESS COMMENT
IDENT TEST 1C
ENTRY START
START ENI 0,1
ENI 11,3
LOOP ENQ 1 (read in data, one word at a time)
ENA A
AlA 1
INI 1, 1
IJD 1LOOP, 3
ENQ 1
ENA KEY
READ 60
ENI 0,1
ENI 5,2
LDQ KEY
LOOP 1 LDA Ayl
AQJ, LT NEXT
INI 1,1
LDA Al
STA KEY1
ENQ 11
ENA BLANKS
WRITE 61
uJp END
NEXT INI 2,1
IJD 100P 1,2
STQ LOSS
ENQ 9
ENA BLANK 2 ((In case search is lost)
WRITE 61
END SBJP
BLANKS BCD 1,
KEY BSS 1
MESSAGE 1 BCD 8, HASH ADDRESS IN THE FILE IS
KEY 1 BSS 1
BLANK 2 BCD 1,
LOSS BSS 1
MESSAGE BCD 7, NO SUCH KEY IN DIRECTORY
A BSS 12 -

342

Average linear search time for cylinder index search = T

ALSCYL
NC +1

TALSCYL = Fault loop search time (2—_1) +

(1) corect loop search time

N -1
= 7.875 (C—lz—) +18.25

Tarscyn = 3-9375 N, +14.3125 psec.
where N = number of entries in cylinder index,

Cl

Flow Chart of Sequential Cylinder Index Search

Start

Initialize

Bl’ B2

Key —>Q

Inerement

Index B, + 2—B
ndex B 1

Yes

>

A4

Read item table
cc

No

B1+ 1—>B1

Store A, 1
at Key

y

write out
KEY and
MESSAGE

Stop

343

Data

Key

Data

Key

Data

Cylinder table
mapping in core

Note: Flow chart of search for a desired record in the main file is the same as above.

344

Symbolic Program for Search in Track Index of Indexed Sequential File

IOCATION

IDENT
ENTRY
START

LOOP

LOOP 1

OVERFLOW

NEXT PAIR

END

BILANKS
DATANOR
MESSAGE 1
BIANK 1
DATA OFIOW
MESSAGE 2
KEY

OPERATION CODE

TEST 1D
START

ENI

ENQ

ENA

AIA
READ 60
INI

D

LDA
AQJ, LT
INI
LDA
STA
ENQ
ENA
WRITE
uJP

INI
LDA
AQJLT
INI
LDA
STA
ENQ
ENA
WRITE
uJP

INI

D
SBJP
BCD
BSS
BCD
BCD
BSS
BCD
BSS

ADDRESS

0,1 }
23,3

KEY [

0,1
5,2 4
KEY
Al
OVERFLOW |
14,1)
Al
DATANOR

: r
BLANKS

61
END J
2,1]
A, 1l

NEXTPA IR
14,1

Al .;>

DATAOFLO
9

BLANK 1 |
61
END J

1,1
LOOP 1, 2

L

i e i Y

co

2
2
2
-

|

(initializes read-in operation)
(read-in data one word at a time,
and stores at location A, A+1, A+2,

vovs A+23)

(read-in "key" and stores at KEY)

- ¢

(if key is in prime track, stores
data of normal entry at DATANOR,
and notify the user)

(if key is in overflow track, “stores
data of overflow entry at DATAOFLO,
and notify the user)

(if the current pair is not satisfied,
goes to next pair, performs loop -
operation)

ADDRESS OF DESIRED TRACK

ADDRESS OF OVERFLOW TRACK

345

LOCATION OPERATION CODE ADDRESS COMMENT
A BSS 24

END START

FINIS

LOGOCFF

‘346

Flow Chart of Search for Desired Track Address in Track Index

C Start)
Setindexregiste
ead in Key Arg
Q g

B2=B2+1
Bi=Bl+1
go to the next pair

!

Yes

Bl=Bl+2
Pick up Key 2
Key — AM

Bl=Bl+1

Pick up DATA 2
& store at DATA
OVF

—

i

Pick up
DATA 1 store
at DATA NOR

Print out
DATA 1 with
MESSAGE 1

Print out DATA 2
with
MESSAGE 2

=)

Note(1): Key Argu = Key argument

Key 1 = Key of normal record
Key 2 = Key of overflow record
Data 1 = Data of normal record

Data 2 = Date of overflow record

(2) Program time analysis has been

shown on pages 252.

347

Symbolic Program for Sequential Search for a Record in Main File

IOCATION

IDENT
ENTRY
START

LOOP

LOOP 1

LOOP 2

NEXT

END
BLANKS
OUTPUT
BLANK 2
KEY
MESSAGE
A

OPERATION CODE

TEST 1A
START
ENI
ENI
ENQ: S
ENA
AlA
READ
INI

D
ENQ, S
ENA
READ
ENI

ENI
LDQ
LDA
LDA
AQJ, LT
STA
ENI

INI
LDA
STA

1

ENQ
ENA
WRITE
yJp

INI

D
ENQ
ENA
WRITE
SBJP
BCD
BSS
BCD
BSS
BCD
BSS
END
FINIS

ADDRESS COMMENT

(Test 1A is the name of the program)
(Initial statement to start program)

0,1 (initializes read-in operation)
47,3
1
A (read~-in data one word at a time,
1 and stores at locations:
0 A, A+1, A+2,...,A+1007)
LOOP 3
(read~-in argument key and
stores at KEY)
O, 1
Use x_ as counter set x_ = 1= 62
62,3 (seargh the table, the 3es1red
KEY track, if the desired record is found,
Al . moves the desired record and stores
Al at OUTPUT, OUTPUT+},...,
NEXT OUTPUT+15; present it to the user)
OUTPUT
~-14, 2
1,1 [
Al
OUTPUT + 15,2
LOOP 2,2
17,
BLANKS
61
END J
16, 1 (if the current record is not satisfied,
LOOP 1,3 } goes to the next record)
8
BLANK 2 (in case search is lost, it will notify
61 the user)
1
16
1
1
6, NO SUCH KEY IN FILE
48

Note: 1) The search flow chart is almost the same as in sequential cylinder index search, page

2) There are 63 logical record per one prime track.

348

TALS = Average search time per random record retrieval

in the main file

TLSCL = Linear search for correct loop time

= 18.75 +2.75 +1.375 + 16%9
= 167.00 psec.

TLSFL = Linear search for fault loop time

N +1
= 7.875 (_AZPl_ -1)

+

ALS TLSCL TLSFL

= 3.937 5N, . +163.0625 psec.

PT

Where NAPT = Average number of record per track.

349

Symbolic Program Seguential Search for a Record in Overflow Area

IOCATION

OPERATION CODE

IDENT TEST 1B
ENTRY START
START ENI
ENI
LOOP ENQ
ENA
AIA
READ
INI
D
ENQ
ENA
READ
ENQ
ENA
READ
ENI
ENI
LDQ
BEGIN LDA
AQJ, NE
LDA
LDQ
AQJ, LT
INI

LOOP 1 LDA
STA
INI
I
ENQ
ENA
WRITE
UJP
CHEK LINK INI
LDA
STA
UJP
NEXT ENI
D
NEXRECOD INI
D
ENQ
ENA
WRITE

ADDRESS COMMENT
01 (Initializes read=-in operation)
53,3
1 3
A (read=-in data one word at a time,
1 and stores at locations: A, A+l1,
60 - A+2,..., A+1007)
1,1
LOOP, 3
1
KEY (read-in argument key and stores
60 4 at KEY)
1
DATACFLO r (read~in overflow pointer and stores
60 at DATACFLO)
0,1 { (initializes for searching in
3,2 » overflow track)
DATACFLO
Al 3
NEXT (search the current overflow récord
A+2, 1 by checking the pointer first, and
KEY checking the key, secondly. If the
CHEK LINK search is satisfied, move the desired
2,1 record and store at OUTPUT, ...,
-15,3 , OUTPUT + 16, present it to the
ALl user)
OUTPUT+15, 3
1,1
LOOP 1,3
17
BLANKS
61 “
END W (if the current record is not the
1,2 + desired record, picks up the link-
A1l pointer and goes to the next record
LINK in the chain)
NEX RECOD
18, 1
BEGIN, 2
17,1
NEWREC, 2 -J (notify the user in case the search
11 } needs to be performed in the next
BLANK 2 record in the same chain)
61

LOCATION

END
BLANKS
OUTPUT
BLANK 2
LINK
MESSAGE
KEY

A
DATACFLO

LOGOFF

OPERATION CODE

SBJP
BCD
BSS
BCD
BSS
BCD
BSS
BSS
BSS
END
FINIS

ADDRESS COMMENT
L
16
1
1
7, GO TO NEXT RECORD ROUTINE
1
54
1
START

Note: There are 56 logical records in overflow track. See time analysis on page 236.

350

351

Flow Chart of Search in Overflow Track

o)

Initialize
A Count
B 1—-» 0 A
Bp""' 56 A+1 Pointer
] A+2l - Key
Pick up
DATAOVFL
(DATAOVFL) Data
_’Q
Count
Pointer
Pick up Key
A,eount A
cc
Data
B, + 18 —=B, Mapping in
B2=B2 -1 core
to to next record
Pick up
(Key)—=Q
4
B +2 — B
(A1) —= A
Pick Key in re&Snd
No Pick up ‘Store
new pointer pointer at
LINK
Yes l
Write out write out
16 words, LINK with
desired record message

"D

Symbolic Program of Hash 1 to Perform Hash Address

IOCATION

IDENT
ENTRY
START

DUMP

END
BLANK 2
NAME
MESSAGE
LOC

DONE
BLANK 1
MESSAGE 1

OPERATION CODE

TEST 9A
START
ENA
ENQ
WRITE
ENA
ENQ
READ
QSG, S
ENQ
X00Q, S
NQ
SHAQ
TAI
LAD
UJP
STA
1s1

UJP
LDA
LDQ
AQJ, EQ
LDA
SCA
SCA
SCA
STA
MUA
SHA
ANA, S
TAI
STA
ENQ
ENA
WRITE
SBJP

352

ADDRESS COMMENT

MESS 1 (prints "NAME =")

2

21

NAME (reads in the NAME up to

4 16 characters)

20

0 -

0]

-0 (compute number of words input)
: [

24

1 J

BIANK 1

* 42 . (stores blanks spaces which is not
NAME, 1 used)

31)

* w2 h

NAME (checks to see if KEY =$ END)
DONE [

DUMP J

NAME 3

NAME+1 (perform Hash 1 by "exclusive or"
NAME+2 all 4 words together; square the
NAME+3 result; take 24 middle bits &nd
MULT (consider only 10 lower bits as hash
MULT address)

-12

1777B

1 P

10C } (stores hash address at 1OC)

10

BLANKS 2

21 (presents hash address to the user)
1

4

4,. HASH ADDRESS=

1

1,. $ END

1,

2, NAME =

353

Flow Chart of Hash 1 to Perform Hash Address

‘ Start ’

|

Initialize

and print out
"NAME ="

User supplies

full name of a
record &< 4 words}
‘ by TTY
Compute No.

word the user
input (0-»3)

Put blanks (spaces)
in any of a input
word not used

\ Compute address
of the record
by use HASH 1

Store Hash
address at
LocC

Y

Write out
Hash address
with message

Stop

Note: See time analysis on page 316.

Symbolic Program of Random Search in the Main File

IOCATION

IDENT
ENTRY
START

REDO

SEARCH

FOUND

LOOP 1

OPERATION CODE

TEST 9C
START
ENI
ENI
ENQ, S
ENA
AlA
READ
INI

D
ENQ, §
ENA
READ
ENA

"STA

ENI
ENA
STA
LDA
SHA
ADA
ANA, S
SHA
TAI
LDA
LDQ
AQJ, EQ
INI
LDA
SHA
ADA
ANA, S
STA
LDQ
AQJ, LT
ENQ@
ENA
WRITE
uJP
STA
ENI
INI
LDA
STA
1
ENQ
ENA
WRITE

ADDRESS

0,1
24,3

20,1
REDO, 3 J

A, 1
KEY

FOUND —>
1,2

RAND

2

RAND

77778 }
RAND

FULL

SEARCH

10

BLANKS

61

END

OUTPUT
-14,2

1,1

Al

OUTPUT +15
LOOP 1,2

17

BLANKS

61

354

COMMENT

(Initial setting)

(Read in data)

(Read in key)

(max. beginning address of record
in track)

(initializes R = 1 every time
random generator is called)

divide (A)by 4
cc

(keeps 10 lower bit of ACC the less
of them set = zeros)

check table at location (A + 1p) its
content is = KEY or not

R*%5 —» A
cc

keep 12 lower bit of Acc

the less of them set = zero

jump to SEARCH if (A)< Q

LOCATION

END
BLANKS
OUTPUT
BLANK
KEY
MESSAGE
FULL
'RAND

A

LOC

Note: See time analysis on pages 319 ~ 320.

OPERATION CODE

SBJP
BCD
BSS
BCD
BSS
BCD
BSS
BSS
BSS
BCD
END
FINIS

ADDRESS COMMENT

1
1
8 NO SUCH KEY IN THIS FILE
1
1

355

356

If TRSDF = Average random search time per record

retrieval of direct disk file, for internal

search,
TCLRSDF = Average correct loop random search time/record
retrieval
= 35,375 +9x (16) = 179.375 pusec.
TFLRSDF = Average fault loop random search time/record
retrieval
= 34, 625 usec.
Then Toepr = Tcirspr ¥ Trirspr * (F -1
= 179.375 + 34.625 (E-1) psec. .
Where E = Average search length of random probing
==(1/a) log (1-~0)
Where « = Loading factor of table.

357

Flow Chart of Random Search in the Direct Disk File

(Start)

Initialize and buil
up tab'le A+O Key
Read in the Key A+l
Store max. Key
at FULL Data
A+ 15
A+ 16 Key
Set
R=1
Data
Set
[- g = 10 lower
its of R/4 \A—___‘
Set
R= 10 + 2 lower /\"—'\’—“\
bitof Rx 5
* No at location A+ 991 Key
A+ p =
1007 Data
Yes A+
Pick up Mapping in
the desired core
record and output
Write out]
the desired
record

Note: In this experiment when p= 169 random search is satisfied.

Symbolic Program for Search with Chain in Direct Disk File

IOCATION

IDENT
ENTRY
START

REDO

LOOP 1

FOUND

LOOP 2

NONE

END
BIANKS
OUTPUT
BIANK 1
KEY
MESSAGE 1
A

END CHAIN
LOC

OPERATION CODE

TEST 9 B
START
ENI

ENI
ENQ, S
ENA
AIA
READ
INI

D
ENQ, S
ENA
READ
ENI
LDQ
LDA
AQJ, EQ
INI

LDA
LDQ
AQJ, EQ
TAI

uJp
STA

INI
LDA
STA
U1
ENQ
ENA
WRITE
UJP
ENQ
END
WRITE
SBJP
BCD
BSS
BCD
BSS
BCD
BSS
BCD,
BSS

FINIS

ADDRESS COMMENT
3

0,1

67,3 (1020 word track)

1

A

1 > (reads in data)

60

1,1

REDO, 3 y

)

KEY (read in Key—»KEY)

60

0,1

KEY (set B1=0, KEY—-=Q)

Al } (Current record = desired record
FOUND of not)

-1,1

Al

ENDCHAIN } (pointer of current record = kk
NONE or not)

.]

(LOC)—=B,,

LOOP 1 B point to next record in chain
OUTPUT

~41,2

1,1 (If the current record is desired
Al record print out the data)
OUTPUT+16,2¢

LOOP 2,2

18

BLANKS

61

END :

10

BLANK 1 (If the current record is not the
61 desired record notify the user)
1

16

1,

1

8, NO SUCH KEY IN DESIRED TRACK

68

1, %k

359

T CLSCH Correct loop search time for chain
= 18.875 + 9% (17, no. words per record) +1.375
= 164,250 psec. (based on test program
TFLSCH = Fault loop search time for chain.

= 19.875 usec. (based on test program)
The value of expected search per record retrieval, E, is
obtained by simulation, as shown in Figures B. 20 and Table B. 23,
page 303. The statistical value of e can be computed directly from

the equation.

- R
E= 1+ >
Then TASCH = Average chain search
- - <
" Terseu M * Tprsen (1 H 72 V)
= 164.250 +19.875 (a/2)
Where « = File loading factor.

Elow‘ Chart of Chain Search in Direct Disk File

(Start }

Initialize B = 0
(Key) —= Q

i.e. A —> B
cc

(A=1) —>B

No
Yes
End of Chain
routine - write
out message
Key = Argument key in searching

Arg

B1+1——>B

(A+1) —>A_

C

(A) —--»ACC

Write éut
desired record
(17 words)

A+1
A+2

360

Key 1

Pointer

Data 1

Key 2

Pointer

Data 2

S~ ~—

(T

Key i

k%K%

Data i
(end of

chain)

Mapping in
core

361

Symbolic Program of Variable Tree Decoding of Full Name of Record to Fixed-Length Key Name

LOCATION OPERATION CODE ADDRESS COMMENT
START IDENT TEST 8
ENTRY ‘ START .
START LDAQ DNAME
ENI 2,1
X REQ 40
ENI 3,1
X REQ 40
ENQ 4
CNTL 40
ENI 0,1
ENQ 1
ENA A
AlA 1
READ 40
SHA 3
AZ],LT * + 23
LDA Al
SCA MASK
STA Al
ENQ 1 (Read-in the random names which
ENA A+l » have been stored in file "DATA 8")
AlA 1
READ 40
ENQ 1
ENA A+2
AlA 1
READ 40
ENQ 1
ENA A+3
AlA 1
READ 40
ENQ 1
ENA A+4
AlA 1
READ 40
INI 5,1
ISE 400, 1
UJP * =27
REDO ENQ 2
ENA MESS 1
WRITE 61 (Prints "NAME=")
ENQ 20
ENA NAME
READ 60 (Reads in the NAME (up to 80
X0Q, S -0 characters))
INQ 19 (Computes # of words input)

SHAQ 24

LOCATION

LESS

FREE

OPERATION CODE

AQJ, EQ
LDA
SCA
STA
181

uJP
ENI
ENI
LDA
AZ], Q
LDQ
AQJ, EQ
AQJ, LT
LDA
AZJ, LT
TAI
uJP
RTJ
LDA
STA
ujP
IDA
AZJ, LT
TAI
uJP
RTJ
LDA
STA
uJP
uJP
STI
ENI
LDA

ADDRESS COMMENT

FOUND
LOOP
FOUND+5 (Use that # of words to control
*+10

2

FOUND+11

0,2

NAME

DONE (Check to see if NAME = § END)
DUMP
NAME, 2
MASK) (Compliment first bit of each
NAME, 2
Xk, 2
*=4

0,1

0,2 T

Al (only if the tree is empty)
EMPTY
NAME, 2 T
FOUND r (Test for right, left or successor)
LESS
A+3, 1
*+3 \
1 Move left
OVER
FREE

1AS
A+3,1
ADDITEM
A+4, 1
*+3

'

OVER
FREE

1AS

A+4, 1
ADDITEM
*3k

SAVE 1, 1
0,1

Al

J\

I

(No left pointer, add iewnode)

Move right

(No right pointer, add new node)

S) W — W | S

362

IOCATION

INDATA

FOUND

OPERATION CODE

AZ], EQ
INI

ISE
uJP
ENQ
ENA
WRITE
uJP
TIA
STA
LDI
uJP
uJP
ENQ
ENA
WRITE
ENQ
ENA
AIA
READ
uJP
ENA
uJP
ISE
uJP
LDA
AZJ,LT
STA
ENI
LDA
SCA
STA
D

ENQ
WRITE
ENA
ENQ
WRITE
uJP
RTJ
uJP
LDA
AZJ, LT
" TAI
INI
uJp

ADDRESS

*+8
5,1
400, 1
*-4

MESS 3
61
DUMP

SAVE 1, 1
FREE
sk

MESS 2
61

A+1

1

60
INDATA
0
ADDITEM
Kok, 2
MORE
A+1,1
NEW
DATA
*%, 2
NAME, 2
MASK
NAME, 2
*-3, 2
B1

*ok

61

B2

2

61
REDO
INDATA
REDO
A+2, 1
LOOP

1

1,2
OVER

363

COMMENT

\ (Subroutine to find next 5 words
of available space)

(Subroutine to pick up data for name)

(only for completely empty)

(See if data is there go to new
if no data)

? (If the looking variable length key
name produces matching and also
has data i.e., complete matching;

so print out the information)

(Incompletes matching and no data)

Matching not yet complete, try
next word from

LOCATION

ADDITEM

LOOP

DUMP

OPERATION CODE

TAI
LDA
STA
ENA, S
ENQ, S
STAQ
STAQ
151
UJP
UJP
RTJ
LDA
STA
ujP
RTJ
uJP
ENQ
CNTL
ENI
LDA
SCA
STA
ENQ
ENA
AIA
WRITE
ENQ
ENA
AIA
WRITE
ENQ
ENA
AIA
WRITE
ENQ
ENA
AIA
WRITE
ENQ
ENA
AIA
WRITE
INI
ISE
UJP
ENQ
CNTL
ENI

ADDRESS

1
NAME, 2
Al

-1

-1
A+1,1
A+3, 1
%, 2
*42

*+5
FREE
LAS
A+2, 1
ADDITEM
INDATA
REDO

4

40

0,1

Al
MASK
Al

1

A

1

40

1

A+1

40
A+2
40
A+3
40
A+4
40
5,1
400, 1
+=25
40

2,1
40

J U

COMMENT

(Add the rest of the words in
name to the tree structure)

(Returns the variable length
tree structure in to DATA 8)

364

365

LOCATION OPERATION CODE ADDRESS COMMENT
END SBJP
DNAME BCD 2, DATA 8
MESS 1 BCD 2, NAME =
MESS 2 BCD 2, DATA =
MESS 3 BCD 7, NO MORE SPACE AVAILABLE
MASK OCT 40000000
LAS BSS 1
SAVE 1 BSS 1
Bt BCD 1
NAME BSS 20
B2 BCD 1
DATA BSS 1
DONE BCD 1, $ END
A BSS 400
END START
FINIS

Note: Time analysis for search path is shown on page 200.

START

Initialize
tree
structure

Y

TTY print
"NAME = "

Y

USER supply
KEY name
max 80
characters

Read in
KEY

name

Y

Compute # of

words input KEY

name to control
the loop

No

Complement 1st
bit of each word
in name

Check

TREE is empty
or not

FLOW CHART OF THE SIMUIATION OF ADDING AND DELETING KEY NAME WITH VARIABLE
LENGTH USING TREE

DUMP
TREE INTO
DISC

STOP

366

EY, Partial

of the name

Left pointer
is empty or

Right pointer
is empty or

Pick up Left
pointer

Pick up Right
pointer

Yes

complete
matching

)
_/

i

Pick up the
successor

!

Load pointer into
hiﬁdex register, X1

Form the string of
KEY name
Example

Tech Technical

empty or not

=(-1)

_Y
Print out
"DATA = "

Remove the DATA
from tree

1

USER supplies
DATA

[

The program

add DATA in
TREE

Print out NAME
and DATA is

deleted

367

FLOW CHART OF THE SIMULATION OF BINARY SEARCH USE ADDING AND RETRIEVAL

ITEMS FROM FILE

< START ,

Initialize Binary
search. Set
Xl=0

Q = KEY name
INC ~A

BOT = X1

y

Subroutine
recompute
INC

Pick up the word
which X1 points to
inA

< INC ~ A

B1) TOP = X1
¥
Subroutine
recompute
INC

=

)

Complement of

INC ~ A

B1

Print out

the search
is complete

-«

STOP

368

CR
COCR
/M
cpu

DASD

DCH

F/hr

369

APPENDIX D

List of Symbols

Cost/bit of core memory, in this case a = $0,12

Cost/bit of disk memory, in this case b =
$0, 00025

Achievable throughput-rate capability of a
specific file i

Cathad Ray display

Cylinder overflow control record

Amount of charge per month for CPU busy time
Direct access storage devices

Disk storage space required in bits
Expectation or average number of search per
record retrieval from a type of file

See detail on page 161

Expected number of searches per record
retrieval with linear probing of direct file

Expected number of searches per record
retrieval with random probing of direct file

Expected number of searches per record
retrieval with direct chain of direct file

Number of calls/hour

N,n

ALS
APT

ATBS

CIl

FLDPF

oT

N

TLC

370

Number of calls/month
Hash'1

Hash 2

Hash 3

Hash 4

Hash 5

Number of record entries in directory
Number of required track index

Random address location in Hash Table

File project active life in terms of months
Number of logical records in the file, file size
Average number of searches per track
Average number of records per track

Average number of looking up item with
binary search

Number of cylinder index entries

Number of entries in first level directory of
partitioned file

Number of records in overflow track

Number of tracks on disk required to support
the file

Number of tracks on disk required for specific
file i

Number of tracks used in the last cylinder

RD/M

AVLTR

cT

TaLsM

TALSOFT

TALT

TAR /WHP

TASDFDCH

371

Number of tracks used

Number of pairs,normal entry, overflow entry
in track index

Average number of pairs in each track index
Random number

Rate of use, calls per month

Amount of charge per month for disk file

Average core storage space required for
variable length tree

Core storage space used for supporting com-
puter program in bits

Core storage space used for supporting the
data file which is transfered from disk into
core

Number of search length for each file size

Expectation of searches per record retrieval
when direct file uses direct chain probing

Average linear search a random record from
the main file

Average time to search a record in clyinder
overflow track

Transfer and average search time in the last
track

Average read/write head positioning time
Average access time per record retrieval

including internal search with direct chain
probing and search across track and cylinder

Symbol

TASD LDPF
TASF SQF

TASRDF OF

TASRDFCH

T
ASRDFLP

T
ARSDFRP

TASRF TIDFOF

TASSLDPF
T

ATHRPDFDCH
T

ATHRPDFLP
T

ATHRPDFRP
T

ATHRPISQ

TATHR PSLDPF

372

Average search time for first level of directory
of double partitioned file

Average search time per record retrieval,
in the main file for disk sequential file

Average access time of a random record from
in the main disk file with 10% of normal track
search used in cylinder overflow track including
disk times

Average access time per record of direct file
with direct chain

Average access time per record from disk
direct file with linear probing

Average access time per record of direct file
random probing

Average time required to read in and perform
internal search per record retrieval from disk
file, with 9% cylinder overflow search, includ-
ing track index search

Average time search for directory search of
partitioned file with single level directory

Average throughput per record retrieval
direct file with direct chain

Average throughput per records retrieval of
direct file with linear probing

Average throughput per record retrieval with
direct file for random probing

Average throughput time of accessing a random
record from indexed sequential disk file

Average throughput time per record retrieval
of single level directory partitioned disk file

TCPU/R

rI‘CFNTFK

Thcus

rI‘DCHSAC T

T

DCHSACYL

rI‘DRPM

TFLSCH

T.

1

T,.

(1)
ThasH 1

Terscu

t1LAC
T ps
T psacT

T LPSACYL

Trs

TLSC YLI

373

Average track-waiting time
Communication back and forth time
CPU busy time per record retrieval in seconds

Time required to convert record's full name
to fixed-length key name

Direct chain probing in the track containing
the desired record

Direct chain probing search across track
Direct chain search time across the cylinder
Disk revolution time

Fault loop search time for chain

Average throughput time of specific file, i

CPU busy time per call in hour of the specific
file, i

Hash 1 decoding time per record retrieval
Correct loop search time for chain
Number of looking up track in last cylinder

Linear search in the track containing the
desired record

Linear probing search across track

Linear probing search across the cylinder

Time required for sequential search a record
in the main file

Time required for cylinder index search/
record

TR PSACT
T
RPSACYL

TRSDFDCH

TRSDFRP

TR TRI
TRWOUT
TSFLP
TSOVFP
TSSFP
TS’I‘IENT

tTC PUTDFDCHP

tTC PUTDFDCHUFN

tTC PUTDFLP

374

Time required to check and connect I/O
logical unit

Time required to request and connect the
logical disk unit

Random search time in the track containing
the desired record

Random probing search across track

Random probing search across cylinder
Average time required for an internal random
search for a record from direct file with
direct chain probing

Average time required for an internal random
search of desired record from direct file with
random probing

Read track index time

Time required to write out the desired record
Search time spent in fault loop path

Search time spent in overflow path

Search time spent in satisfied path

Time required for search track index entries
Total CPU busy time per record accessed
using unique fixed-length key for direct file
with direct chain probing

Total CPU busy time per record accessed
using full name of the record for direct file

with direct chain probing

Total CPU busy time per record accessed
using unique fixed-length key

Symbol

tTC PUTDFRP

tTC PUTDLDPF

tTC PUTDLDPFUFN

tTC PUTDRPUFN

‘rcPuTISQF
Ueli)

Z

375

Total CPU busy time per record accessed
using unique fixed-length key for direct disk
file with random probing

Total CPU busy time per record accessed
using unique fixed-length key for double
directory partitioned file

Total CPU busy time per record accessed
using full name of the record for double
directory partitioned file

Total CPU busy time per record accessed
using full name of the record for direct disk

file with random probing

Total CPU time per record accessed using
unique fixed-length key

User or customer operating cost per call
(unit cost) of the specific file, i

Number of required cylinders to support the
file

Average number of required cylinders

