
AN ABSTRACT OF THE THESIS OF

MEESAJJEE CHULIT for the MASTER OF SCIENCE
(Name of student) (Degree)

in Electrical and
Electronics Engineering presented on L, /972-

(Major) (Date)

Title: THE EVALUATION OF DATA FILES ACCESS METHODS

FOR AN ON-LINE INFORMATION SYSTEM

Redacted for Privacy
LouiswN. Stone

Abstract approved:

It is necessary to evaluate and compare the characteristics of

various methods of accessing data-files in order to utilize economic-

ally both the hardware and the software (Space and Time) supported

by the digital on-line system. The purpose of this paper is to

describe and evaluate the structure and use of four conventional

methods of file organization: Sequential File, Indexed Sequential

File, Partitioned File, and Direct File.

Special attention is given to the Direct File, which possesses

the fastest accessing time. Five selected Hash Coding Techniques,

each associated with three methods of handling redundant keys, are

simulated and examined with the use of a selected data model of

1024 random United States names, and the resulting "average number

of search per record retrieval" are compared with their

corresponding theoretical values. As Hash 1 has offered the best

results, it has been used to evaluate the organization of the Direct

File, and to compare this organization with that of the other files.

The CDC-3300 system hardware parameter, control cycle

time, the internal core storage, and the auxiliary storage parameters

are introduced. From these values and the average number of

searches per record retrieval, an expression of logical record file

size, or loading factor is developed. The file size, or loading

factor varies for different methods of file structure and accessing,

(based upon the selected testing program). The system character-

istics consisting of the average throughput per record retrieval,

achievable-throughput-rate capability and user operating cost per

call (unit cost) are evaluated and compared. The file system uses

the full name of the record and a fixed length numerical key.

Two common internal searches, Linear search and Binary

search, are evaluated and compared as the preliminary work of this

investigation, as shown in Appendix B.

The Evaluation of Data File Access Methods
For an On-Line Information System

by

Chu lit Meesajjee

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

June 19 73

APPROVED:

Redacted for Privacy
Prof or of Electrical an Electronics Engineering

in charge of major

Redacted for Privacy

Head of Department of Electrical and Electronics
Engineering

Redacted for Privacy

Dean of Graduate School

Date thesis is presented J)c /A, /97Z.

Typed by Ilene Anderton for Meesajjee Chu lit

ACKNOWLEDGEMENTS

The writer desires to express his most sincere appreciation

and thanks to Professor Louis N. Stone for his encouragement and

advice through the course of this study and for his help in the prepar-

ation and writing of this thesis.

Thanks go to the staff of the Operating System and to the

Control Data Corporation representatives at Oregon State University

Computer Center for supplying the source of information for this

work.

Thanks are also due to Mrs. Blanche B. Stroup for reading

and checking the format of this thesis.

The writer is grateful to the Royal, Thai Air Force Committee

and to his parents for their approval and support of this study.

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

II. METHODS OF DATA FILE ORGANIZATION
FOR ON-LINE SYSTEM 3

Data Division 3
Methods of File Organization 7

Sequential Organization 7
Indexed Sequential Organization 10
Partitioned Organization 11
Direct (Random) Organization 12

III. SEQUENTIAL FILE STRUCTURE AND USE 16
Sequential File Structure 16
Sequential File Maintenance 16

The Algorithm of Unsorted File Maintenance 17
The Algorithm of Strictly Sequential File

Maintenance 19
Sequential Disk File Use for On-Line System 23

Description of Records in File 23
Space Storage Requirements 24
Methods of Using Sequential Disk File 24
Sequential Disk File Maintenance 26
Uses of Sequential File for On-Line System 26

Evaluation of Accessing Characteristics
of Sequential Disk File 27

The Purpose of the Evaluation 28
Results of Sequential Disk File Accessing

Characteristics 31

IV. INDEXED SEQUENTIAL FILE STRUCTURE AND USE 33
Indexed Sequential File Structure 33
On-Line Indexed Sequential File Supported by

Disk Memory 33
The Use of the On-Line Indexed Sequential Disk File 40

Adding a New Record to the File 40
Up-Dating or Deleting the Record from the File 49
File Reorganization Criteria 52

Chapter Page

Handling Deletions in the Indexed Sequential
File 52

Variable-Length Records 54
Evaluation of Accessing Characteristics of the

Indexed Sequential Disk File 55
The Purpose of the Evaluation 57
Simulating Block Diagram Model 57
Results of the Evaluation of Indexed Sequential

Disk File 57

V. PARTITIONED FILE STRUCTURE AND USE 60
Partitioned File Structure 60

User's Argument Key Name 61
Directory Decoding Techniques 61
Directory and Main File Organization 63

Use of the Partitioned File 64
Adding a New Record to the File 65
Updating and Deleting the Record from the File 66
Insert Mechanism 70
Delete Mechanism 72
Use of the Partition File with Tree With Fixed

Lingth Key 75
Use of the Partitioned File with a Three

Dimension Tree Directory 76
On-Line Partitioned Disk File 76
Use of On-Line Partitioned Disk File 85

Adding the New Records to the File 86
Updating or Deleting a Record From the File 88
Adding a Member Name to the Directory 88
Deleting a Member Name From the Directory 90

Evaluation of Accessing Characteristics of the
Partitioned Disk File 91

Purpose of the Evaluation 92
Results of the Evaluation of the Partitioned Disk File 96

VI. DIRECT FILE STRUCTURE AND USE 97
Direct File Structure 9 7

General Description 97
Addressing 97
Mapping Function 98
Hash Code Redundant Handling 100

Chapter Page

Direct File Maintenance 107
Direct Disk File for On-Line System 118

Direct File Organization Supported by Disk 118
Addressing 120

Randomizing Techniques Used for Disk 126
Description of a Direct Disk File 127

On-Line Direct File Maintenance 129
Evaluation of Accessing Characteristics of the

Direct Disk File 131
Purpose of the Evaluation 133
Results of the Evaluation of the Direct Disk File 136

VII. RESULTS AND CONCLUSIONS 137
Summary of Investigation and Evaluation 137
Results of the Investigation 141

File Operating Cost per Call (Unit Cost) 162
Terminal Device Cost for 250 Calls Per Hour 165
Terminal Device Cost for 1000 Calls Per Hour 166
Terminal Device Cost for 2000 Calls Per Hour 166

Conclusions and Recommendations 176

BIBLIOGRAPHY 181

APPENDIX A 184

APPENDIX B 199

APPENDIX C 341

APPENDIX D 369

LIST OF FIGURES

Figure

Machine-oriented data division hierarchy:
Track, block.

Application-oriented data division hierarchy:
File, record, field and character.

Reel-file, Disk module interaction.

Page

2. 1

2. 2

2. 3

4

4

5

2.4 Block-record interaction. 6

2. 5 Word-field interaction. 7

2. 6 Accessing a record from sequential file. 9

2. 7 Indexed sequential record accessing. 11

2. 8 Accessing partitioned records. 12

2.9 Creation and accessing records with direct
organization file. 14

2. 10 Disk pack, Read-write heads and Cylinder
Concept of data recording. 15

3. 1 Illustration of Sequential File Structure. 16

3. 2 Addition of a new record to an unsorted file. 18

3. 3 Deletion of the record key name "S" from the file. 19

3. 4 Addition of new records to strictly sequential file. 21

3. 5 Delection and repacking of strictly sequential file. 22

3.6 A binary search of an eight-cylinder file, multi-
cylinder file. 25

Figure

Graphical representation of User queue for

Page

3. 7
CDC-3300. 28

3.8 Block diagram showing the simulating of accessing
a record from Disk Sequential File. 30

4. 1 Structure of the Indexed Sequential File. 34

4. 2 Illustration of Cylinder Overflow Area. 38

4.3 Illustration of Independent Overflow Area. 39

4. 4 An Indexed Sequential Disk File with no additions. 43

4. 5 An Indexed Sequential Disk File after the first addi-
tion to a prime track. 44

4. 6 An Indexed Sequential Disk File after subsequent
additions to a track. 45

4. 7 An Indexed Sequential Disk File after deletions
of the desired records from File. 46

4.8 Block diagram showing the simulation of accessing
a random record from Indexed Sequential Disk File. 58

5. 1 Structure of Partitioned File. 60

5. 2 Key Directory decoding pattern. 63

5.3 Partitioned file using randomizing as directory
decoding technique. 65

5. 4 Comparison of ordered table and ordered tree. 69

5. 5 Tree structure (balanced tree). 69

5. 6 Flow chart of tree search. 71

5. 7 Delection of node AIR L, the ROOT of the tree. 73

Figure Page

5. 8 Delection of BABC, the INTERNAL node of the
Tree. 74

5.9 Deletion of node BABB, the leaf of the Tree. 74

5. 10 Tree structure of Variable-Length Key names. 78

5. 11 Example of Directory in Partitioned File. 80

5. 12 Partitioned file without additions. 81

5. 13 Partitioned File after deletion of records "SOLA"
and "SMIT". 82

5. 14 Partitioned File after addition of records "EGGY"
and "MOOR". 83

5. 15 Mapping of Partitioned File on Disk Memory, using
Directory and variable length inverted list. 84

5.16 Block diagram showing the simulation of accessing
a random record from the single level Directory
Partitioned Disk File. 93

5. 17 Block diagram showing the simulation of accessing
of a random record from double level directory
Partitioned Disk File. 95

6. 1 Graphical representation of direct file organization. 98

6. 2 Addition of the new items into the file with Linear
probing. 109

6. 3 Deletion of the items which are not secondary
records from the file with Linear probing. 110

6. 4 Deletion of the items which are secondary records
from the file with linear probing. 110

6. 5 Addition of records to the file with Random probing. 113

Figure Page

_6, 6 Deletion of records in the file with Random probing. 114

6. 7 Addition of items in the file with direct chain probing. 116

6.8 Addition of secondary record, the head of the chain
when the calculated address of the new coming item
is occupied. 117

6.9 Deletion of the items which are first record and
secondary record, not the head of the chain. 117

6.10 Deletion of the item which is the secondary record,
the head of the chain. 118

6. 11 Address pattern on Disk memory. 121

6.12 Disk storage drive address format, based on D854,
disk memory. 122

6.13 Redundants and overflows in disk memory. 125

6.14 Block diagram showing the simulation of accessing
of a random record from Direct Disk File. 134

7.1 Schematics diagram of investigation and evaluation
of on-line data file systems. 142

7.2 Investigation and evaluation of characteristics of
on-line data file system. 143

7.3 Throughput time per record retrieval. 144

7.4 Average throughput time per record retrieval as the
function of file loading factors for each typical file,
code numbers 1 to 3, using full name of records in
accessing.

7.5 Average throughput time as the function of file load-
ing factors for each typical file organization method
using the full name of records in accessing.

147

148

Figure

7.6 Average throughput time per record retrieval as the
function of loading factors for each typical file code
numbers 1 to 3 using unique fixed-length key in
accessing.

7.7 Average throughput time as the function of file load-
ing factors for each typical file organization method,
code numbers 3 to 8, using unique-fixed-length key
in accessing.

7. 8 Achievable throughput-rate capability as the function
of file loading factors for each typical file, code
numbers 1 to 5, using full name of records in
accessing.

7.9 Achievable throughput-rate capability of file loading
factors for each typical file organization method, code
numbers 4 to 8, using full name of records in
accessing.

7.10 Achievable throughput-rate capacity as the function of
file loading factors for each typical file, code numbers
1 to 3, using unique fixed-length key in accessing.

7.11 Achievable throughput-rate capacity of file loading
factors for each typical file organization method,
code numbers 4 to 8, using fixed-length key in
accessing.

Page

150

151

153

154

156

157

7.12 On-line data file system configurations for handling
250, 1000, and 2000 calls per hour. 168

7.13 Customer operating cost per call (unit cost) as the
function of file loading factors, for each typical file,
code numbers 1 to 8, using full name of record in
accessing.

7.14 Customer operating cost per call as the function of
file loading factors, for a typical file, code numbers
1 to 8, using full name of record in accessing.

169

170

Figure Page

7.15 Customer operating cost per call as the function of
file loading factors, for each type of file, code
numbers 1 to 8, using record's full name in access-
ing.

7.16 Customer operating cost per call (unit cost) as the
function of file loading factors for the outstanding files,
code numbers 3, 5 and 8 using full name of records
in accessing.

171

172

LIST OF TABLES

Table Page

5.1 Illustration of full name of record and unique fixed-
length key of record. 68

5. 2 Example of Variable length key
name. 77

7.1 Data results of computation of average throughput
time per record retrieval as the function of file
loading factors, for each typical file organization
method, using the full name of records in accessing. 146

7. 2 Data results of computation of average throughput
time per record retrieval as the function of file
loading factors for each typical file organization
method using unique fixed-length key in accessing. 149

7. 3 Data results of computation of achievable throughput,
rate capability as the function of file loading factors
for each typical file organization method using the
record's full name in accessing.

7. 4 Data results of computation of achievable throughput-
rate capability as the function of file loading factors
of each typical file organization method, using
unique fixed-length key in accessing.

7. 5 Approximate formulas of average throughput time
and achievable throughput- rate capability for each
typical file.

7. 6 Data computation of customer operating cost per
call (unit cost) as the function of file loading factors
of each typical file organization method of specific
selected rates of use, using full name of records
in accessing.

152

155

158

173

LIST OF APPENDIX TABLES

Appendix Table Page

A. 1 Directory File. 185

A. 2 Results of average search time, linear and binary
search per record vs. file size. 193

A. 3 Core storage space required for internal linear and
binary search. 198

B. 1 Results of computation of an accessing time per
random record retrieval as the function of file size
for unsorted sequential disk file.

B. 2 Results of computation of average throughput time
per random record retrieval and CPU billing time
per record accessing with file system using both
unique fixed-length key and full name of records in
accessing.

B. 3 Results of computation of storage space required as
the function of file size of unsorted sequential file
with both fixed length key and record full name.

B. 4 Results of computation of customer operating cost
per call (unit cost) as the function of file loading
factor of unsorted sequential file with using the full
name of record in accessing.

B. 5 Results of computation of an accessing time per
random record retrieval from strickly sequential
disk file.

B. 6 Results of computation of average throughput time
per random record retrieval and CPU busy time per
record accessing with the file system using both
unique fixed-length key and full name of records
in accessing.

231

232

233

234

241

242

Appendix Table Page

B. 7 Results of computation of required storage space
as the function of file size in strickly sequential disk
file with using both fixed-length key and full name
of record in accessing.

B. 8 Results of computation of customer operating cost
per call (unit cost) as the function of file loading
factor of strickly sequential disk file using the full
name of record in accessing.

B. 9 Result of computation of average search time per
random access of the entry from cylinder index and
track index of indexed sequential disk file.

243

244

261

B. 10 Data results of computation of average search time
per random record retrieval with 10% using cylinder
overflow track and average disk access time per
record retrieval from the indexed sequential disk file. 262

B. 11 Data results of computation of average throughput
time per random record retrieval and CPU busy time
per record access of indexed sequential file using
both full name of records and unique fixed-length key
in accessing.

B. 12 Results of computation of storage space required as
the function of file size of indexed sequential disk file,
using both full name of record and unique fixed-length
key in accessing.

B. 13 Results of computation of customer operating cost per
call (unit cost) as the function of file loading factor of
the indexed sequential file, using the full name of
record in accessing.

B. 14 Data results of computation of disk average access
time per record retrieval as a function of file sizes
of a single level directory partitioned disk file.

263

264

265

279

Appendix Table page

B. 15 Data results of computation of average throughput
time per record retrieval as the function of file
size or loading factors of a single-level directory
partitioned disk file.

B. 16 Data results of storage space required as the function
of file size of a single level directory of partitioned
disk file.

B. 17 Results of computation of customer operating cost
per call (unit cost) as the function of file loading
factor of the single level directory partition disk
file using full name of record in accessing.

B. 18 Data results of computation of disk access time per
record retrieval as a function of file size of a double-
level directory partitioned disk file.

B. 19 Data results of computation of average throughput
time per record retrieval as the function of file size
or loading factors of a double-level directory
partitioned disk file.

B. 20 Data results of storage space required as the function
of file size of a double level directory of partitioned
disk file.

B. 21 Results of computation of customer operating cost per
call (unit cost) as the function of file loading factor of
double level directory partitioned disk file using
record's full name in accessing.

280

281

282

289

290

291

292

B. 22 Schedules of simulations of a direct file. 300

B. 23 Results of computation of expected length of search
as a function of loading factor for five hash function
with linear probing compared with statistical formula. 303

B. 24 Results of computation of expected length of search
per record, as a function of loading factor for hash 1,
with four methods of handling redundant records in
the file. 305

Appendix Table Page

B. 25 Results of expected length of search per record,
as a function of loading factor for hash 3 with four
methods of handling redundant records in the file.

B. 26 Results of computation of expected length of search
record, as a function of loading factor for hash 4,
with four methods of handling redundant records in
the file.

B. 27 Percent of search across the track and percent of
search across the cylinder of disk direct file using
Hash 1 with linear probing, random probing and
direct chain probing.

B. 28 Data results of computation of disk average access
time per record retrieval as a function of loading
factor of direct disk file using Hash 1 with linear
probing (+ 1j.

B. 29 Data results of computation of CPU busy time and
average throughput time per record retrieval of direct
disk file organization with linear probing using full
name of a record in accessing a random record from
file.

B. 30 Data results of computation of storage space required
as the function of file size of direct file organization
with linear probing using both record's full name and
fixed-length numerical code for accessing a record
from file.

B. 31 Results of computation of customer operating cost
(unit cost) as the function of file loading factor of
direct disk file with linear probing (+ 1) using full
name of record in accessing.

B. 32 Data results of computation of disk average access
time per record retrieval as a function of loading
factor of direct disk file using Hash 1 with random
probing.

307

309

313

329

330

331

332

333

Appendix Table Page

B. 33 Data results of computation of CPU busy time and
average throughput time per record retrieval of
direct disk file organization with random probing
using full name of a record in accessing a random
record from file.

B. 34 Data results of computation of storage space required
as the function of file size of direct file organization
with random probing using both record's full name
and fixed-length numerical code in accessing.

B. 35 Result of computation of customer operating cost
(unit cost) as the function of file loading factor of
direct disk file with random probing using full
name of record in accessing.

B. 36 Results of computation disk average access time per
record retrieval as a function of loading factor of
direct disk file using Hash 1 with direct chain
probing.

B. 37 Data results of computation of CPU busy time and
average throughput time per record retrieval of
direct disk file organization with direct chain probing
using full name of a record in accessing a random
record from disk file.

B. 38 Data results of computation of storage space required
as the function of file size of direct file organization
with direct chaining using both record's full name and
fixed-length numerical code for accessing a record
from the file.

B. 39 Result of computation of customer operating cost
(unit cost) as the function of file loading factor of
direct disk file with direct chain probing using full
name of record in accessing.

334

335

336

337

338

339

340

LIST OF APPENDIX FIGURES

Appendix Figure Page

A. 1 Average number of tests per record search as a
function of number of the items in the array. 194

A. 2 Average search time per record retrieval both
linear and binary search as a function of items in the
file. 195

B. 1 System block diagram of the simulator. 201

B. 2 Conventional record formats. 202

B. 3 A logical record format and disk 854, sector format. 203

B. 4 Storage space required for test program as a function
of file size. 204

B. 5 Random access of a record in a sequential disk file
in (a) is equivalent to average access of a record in
(b). Average looking-up records in the file: average
cylinders, average tracks have to be considered. 228

B. 6 Time diagram for accessing a record from sequential
disk file. 229

B. 7 Time diagram for random accessing a record in a
one-cylinder sequential disk file. 230

B. 8 Random access of a record from strickly sequential
file in (a) is equivalent to search of a desired record
in (b). 245

B. 9 Actual time path search and effective path search. 252

B. 10 Random access of a record from indexed sequential
disk file in (a) is equivalent to accessing an average
of a record in (b); Average of records, in cylinder
index, in track index, and in desired track are to be
considered in computation. 259

Appendix Figure Page

B.11 Time diagram for random accessing the record from
indexed sequential file on disk. 260

B. 12 Interaction of actual disk file and imaginary disk file. 266

B. 13 Relationship of NApT and NALS.

B. 14 Random access of a record from single level directory
partitioned disk file in (a) is equivalent to making an
average access of a record in (b).

B. 15 Random access of a record from double level
partitioned disk file in (a) is equivalent to accessing
an average record in the file as in (b).

267

277

278

B. 16 Time diagram for random accessing the record from
partitioned file, on disk. 293

B. 17 Hash 3 performed hash address. 296

B. 18 Hash 5 performing hash address. 297

B. 19 Illustration of conversion of Hash address to Disk
address. 301

B. 20 Expected length of search per record, as a function
of the loading factor for 6 selected Hash functions with
-1 displacement of records in the file. 302

B. 21 Expected length of search per record, as a function
of the loading factor for Hash 1 (H1) mapping function
with 4 methods of handling redundant records in the
file. 304

B. 22 Expected length of search per record, as a function
of loading factor for Hash 3, mapping function with
4 methods of handling redundant records in the file. 306

B. 23 Expected length of search per record, as a function
of the loading factor for Hash 4, with 4 methods of
handling redundant records in the file. 308

Appendix Figure Page

B. 24 Illustration of search across the track and search
across the cylinder of direct disk file using Hash 1,
with linear probing, random probing and direct
chain probing. 312

B. 25 Percentage of searches across the track and percent-
age of searches across the cylinder as a function of
loading factor,a, for disk direct file using Hash 1, with
linear probe, random probe and direct chain probe. 314

THE EVALUATION OF DATA FILE ACCESS METHODS
FOR AN ON-LINE INFORMATION SYSTEM

I. INTRODUCTION

It is apparent that time and space play a main role in computing

system efficiency, so that the concepts of utilizing mass storage

economically, and the reduction of processing time are the engineer-

ing goals for digital computers used in modern information processing

systems. To achieve these ends the development of a computing

system should be accomplished by more effective utilization of the

hardware or the software, or both.

Basically the computer system software development (the

problem of data organization within the constraints of information

retrieval, and the organization of files) is usually much more con-

venient than computer system hardware development. This is

especially true in the case of exis ting computing system hardware.

In a large capacity storage computing system, the concept of virtual

memory and paging is frequently utilized for economical implementa-

tion. In this type of computing system the storage is separated into

two distinct levels. The first level consists of expensive, fast-access

core storage which comprises the main core memory. The second

level is the auxiliary memory (disk, drum, or magnetic tape) which

is much less costly than the main core memory. To make the system

2

economical and practical, the auxiliary memory is used for the major-

ity or bulk storage, with inexpensive but longer access time. The

efficiency of the operation of the system therefore depends upon two

major aspects:

1. The organization of information within the two storage

levels.

2. The manner in which information is transferred between

the two levels.

By consideration of these two factors the efficiency of a com-

puting system may be improved (or optimized).

On the aspect of information organization, file organization

techniques have been given attention periodically over the years,

both from persons interested in information retrieval and from those

interested in file-oriented computer applications in business, engi-

neering, science, and government works.

For these reasons, it is essential to evaluate and compare

the characteristics of various file organization methods and their

use.

3

II. METHODS OF DATA FILE ORGANIZATION
FOR ON-LINE SYSTEM

The development of a larger and faster computer with efficient

1/0 terminals has made it possible to store and retrieve selected

information for the supporting storage of the system (disk memory).

The development of information structure and indexing techniques

permits selected data to be arranged in mass storage devices in a

manner amenable to interaction with the users. For the achievement

of this goal, the processing information (data) has to be prearranged

as follows:

Data Division

In Electronic Digital Information System a data division is

classified according to:

Machine oriented data division. This data is partitioned

into a size particularly suitable for manipulation by the

machine:

REEL (tape) or CYLINDER, TRACK (disk)

BLOCK > WORD > BIT

See illustration in Figure 2. 1.

block

4

Figure 2. 1. Machine-oriented data division hierarchy: Track, block.

2. Application oriented data division: This breaks the data

into a size convenient for human manipulation associated

with the application under consideration:

FILE > logical record or RECORD > FIELD >

CHARACTER. See Figure 2. 2.

File

.{. Record

Record
Record

Record

Field Character

Field Character
Field Character

Field Character

Figure 2. 2. Application-oriented data division hierachy: File,
record, field and character.

It is necessary to emphasize the interrelation between machine-

oriented and application-oriented data divisions.

5

Disk-module-File: The three relationships which may

exist between a Disk-module and a File are illustrated

in Figure 2.3.

several files one file one file

QQQQQ
multifile reel

Multireel file
one file

Multifile disk
module

Multidisk module file

unifile reel

Unifile disk
module

magnetic tape file

disk file

Figure 2. 3. Reel-file, Disk module interaction.

1) A Multifile-Disk Module is a disk-module containing

several files. It is the same as a multifile reel when

files are supported by magnetic tape.

2) A Multi-Disk Module File is a large single file sup-

ported by several disk-modules, It is the same as a

multireel-file.

3) A Unifile-Disk Module is a disk-module holding exactly

one file. It is also the same as a unifile reel.

Block-Record: The three relationships which may exist

between a Block and a Record are illustrated in Figure 2. 4.

6

1) A Multirecord Block. When records are very small

compared to block- size, it is economical to keep

several records in a block.

2) A Multiblock Record. A record which contains a very

large amount of imformation may require several

blocks.

3) A Unirecord Block: A single record fitting exactly

into a single block is called a "unirecord block" or

a "uniblock".

Block

Multirecord block

Block

/----,/ a record
..---

/.%

Unirecord block

Block

Block

Multiblock record

Figure 2. 4. Block-record interaction.

.1%

Record #1

Record #2

7

Word-Field: The three relationships which may exist

between a word (computer word) and a FIELD. See the

illustration in Figure 2. 5.

1) A Multifield Word. Several small fields are fit into

one word.

2) A Multiword Field. A field occupies several words.

3) A Unifield Word. A word fits exactly into one field,

Sex Age Status

Social Security no.

Figure 2. 5 Word-field interaction.

Methods of File Organization

Multiword field

Multifield word

Unifield word

There are four conventional methods of file organization for

direct access devices, to be used with disks for on-line computing

systems. These are described briefly in this chapter and discussed

fully in Chapter III through VI.

Sequential Organization

In a sequential file, the data records are organized in sequence

8

according to their successive physical locations in the file. There

are two types of organization of the records in Sequential File.

(1) In the first case the logical records are kept sequentially

in the file, but not in a sequence according to their key; this type of

file is called an "unsorted file". For example, the records of the

magnetic tape transaction file are not in any key sequence. (2) In

the second case the logical records are kept in a key sequence in

the file; this type of file is called "strictly sequential file" or "sorted

file". An example is the magnetic tape master file. The records in

the file are kept in a sequence according to their key. For the con-

version of an unsorted file into a strickly sequential file, a sorting

operation is used. Usually the sorting operation is performed off-

line. The records of the strictly sequential file are organized in

a sequence according to their key so that the file can use either

linear search or binary search to access an individual record from

the file. Binary search provides fast accessing of a record from

the strickly sequential file as the file size is increased, while

unsorted file can make use of only linear search, and performs

slowly in accessing an individual record from the file as the file

size is increased.

Within a strictly sequential file, the records are usually read

or updated in the same order in which they appear, and cannot be

deleted or added to unless the entire file is rewritten. This type of

9

file organization is commonly used when most records are processed

each time the file is used, such as for a payroll. For unsorted file,

the records are read or updated sequentially according to their

successive physical locations, and cannot be deleted without repack-

ing, but provides the simple addition to the first empty space in the

file. Seethe illustration of unsorted file and strictly sequential file

in Figure 2. 6.

Search argument

H Hill I

Search path

oval Smith 1 data 1 John data [Moore 1 data l Hill data

(a) Accessing a record from unsorted file by linear search

Search argument

r--I Moore
Search path

H Hill data John data Moore 1 data I Smith data

(b) Accessing a record from strictly sequential file by linear search.

Search argument

Smith I

Hill

,

data

00'

John data

path

Alte_

Jones data Moore data Smith data

(a) Accessing a record from strictly sequential file by binary search

Figure 2. 6. Accessing a record from sequential file.

10

The details of sequential file organization are covered in

Chapter III and sample calculation Example Ia and Ib in Appendix B.

Indexed Sequential Organization

An indexed sequential organized file is a strictly sequential

file associated with a reference index as its directory. The addition

of an index to the file system provides rapid access to individual

records in both sequential and random processing. For example,

an indexed sequential file is supported by Direct Access Storage

Device (DASD),Disk, and it may have a cylinder index stored on

cylinder zero, which contains the address of the highest key of the

record on any cylinder. This index will point to the correct cylinder.

When the access arm reaches the desired cylinder, it will search a

track index to determine on which track in that cylinder the desired

record is located (see Figure 2. 2). Separating the areas of the file

permits the user to add a new record or delete the desired record

to the file without rewriting the entire file, as is necessary in the

sequential file. Although the added records may not be physically

in key sequence, the indexes automatically organize them in key

sequence. In this type of organization, the programming system

has control over the location of each record. The user needs to only

supply the key name of the desired record. The operating system

takes care of all searching of the indexes, link field and either

11

presents the specified record to the user or notifies that it cannot

be found. See more details in Chapter III and Example 2, Appendix

B.

search argument key

CM

AAA Cyl 0 BBB Cyl 1 CCC Cyl 2 DDD

CAA TR 0 CAB

fCylinder index

Cyl = cylinder number

TR = track number

TR 1 [CAC [TR 2 I CBB TR 3 r
Track index for cylinder 2

IZZZ ICyl 199

Figure 2.7.. Indexed sequential record accessing.

Partitioned Organization

In partitioned organization, the file is divided into several

parts or "members", within each of these members, the data

records are organized in strictly sequential file fashion. A "direc-

tory" is used with this type of file organization and is of the same

nature as the index used with the Indexed Sequential File. This is

done to provide fast accessing of the random record from the file.

The directory contains the names and addresses of the members

within the file, which are arranged in alphabetical sequence. Mem-

bers may be added or deleted as required. In accessing an

12

individual record from the file, the user has to supply the name of

the file he wishes to process (name of the desired member) and the

directory is searched for "equal". The address of the corresponding

name is used as the pointer, and the access arm can be positioned

directly to this location (in case a disk memory is used). In some

cases this partioned organization file may be used with a multilevel

directory. Partitioned organization is used mainly for the storage

of sequential data, such as sub-routines, table, data items for ware-

house. See details in.Chapter IV and Example 3, Appendix II.

name supplied

spark plug

piston

Directory contains member-name

address I radiator address spark plug address

Data set "spark
plug"

Figure 2. 8. Accessing partitioned records.

Direct (Random) Organization

The Direct (Random) Organization file permits the user to add

a new record, to delete a desired record, or to access the individual

13

record directly from the file, by using a single step, directory

decoding technique (randomizing or Hash coding technique). The

record-name is converted into a unique address, to which the

device, may position itself and find the desired record. The pro-

grammer establishes the relationship between the record-name and

its address on the supporting devices. In this organization method,

the records stored in the storage devices are not in any key sequence.

They may be distributed all over the supporting area depending on

the nature of "mapping function" (Hash function). The major advan-

tage of this type of organization file is that it provides very fast

accessing of the individual record. It is possible to locate any

record in the file with one seek and one read, in case it is disk file,

which satisfies the features of the on-line information system. The

disadvantage is that it is not economical to implement this method of

organization when the file loading factor is too small. Although the

programming system provides the routines to read or write a file

of this type, the user still has great responsibility for the program-

ming required to locate the desired records, because the user him-

self establishes the relationship between the record-name and its

address on the storage device. See details in Chapter VI and Exam-

ple 4, Appendix B.

Smith

John

Moore

Ruth

Hill

Foster

record names
TR = Track on disk surface

Hash coding task,
convert record name into

a corresponding
address

Moore data INI data 11611

data ILI'Li
111

Foster data

Smith data

John data 1 11111
storage supporting devices, disk memory

Figure 2.9. Creation and accessing records with direct organization file.

TR 0

TR 1

TR 2

TR 3

TR 4

az,

001.16-- Tracks

:10.4
v,d5:2`-

Sector 11:16
sectors per

surface
Track

15

Cylinder

Disks

Comb-type
Access Assembly

00 cylinder
01 cylinder

99 cylinde

',111i21010323110rAINIMMDOW

viii Y- ACICM

Miallilli.......
V" ..I.M2' A 41/41W4/AN tff 740/407A .

I I

r sp. rr/ re, ezi

"0774ff/ /ASSII/ A

'MrAff'..../A711111111111111WO //17/A1111

100 cylinder

10 Read-Write Heads

'AV /a 4/APAP A

11111111111111=1101
r /7ANIIIWArAIIMMENNEMINNIA

ZWADE% 4 a6 I rAm mAmmme

I I II I I I MI I I I I I I I I ItOP

I 111111
HIPIEWANFAS/ ffArANW71707/7111

.1111111111111111110
LOW AOADWIIIVIZIWAMOYF

Number of the surface

Five access arms; Access mechanism of cylinder 00.

Figure 2.10. Disk pack, Read-write heads and Cylinder Concept of data recording.

16

III. SEQUENTIAL FILE STRUCTURE AND USE

Sequential File Structure

The two conventional types of sequential file organization can

be illustrated as follows.

(1) The records in the "unsorted file" are organized solely

on the basis of the successive physical locations in the

file.

(2) The records in the "sorted file" or "strictly sequential

file" are organized in the key sequence either numeric-

ally, alphabetically or both.

A "node" can represent the item or record in the file, as

shown in Figure 3. 1.

(a) Diagram of the unsorted file.

(b) Diagram of the strictly sequential file (alphabetically).

Figure 3. 1. Illustration of Sequential File Structure.

Sequential File Maintenance

Maintenance of sequential files of the system is done in the

17

same logically straightforward manner that the clerks use to main-

tain their sequential files. The system permits addition, deletion

and alteration algorithms as follows:

The Algorithm of Unsorted File Maintenance

A new record can be added to the unsorted file.

Step 1; A search is made for the first empty space which may

be located between the records in the file in case the

file is "loose list", or at the end of the file in case

the file is a "dense list" (9).

Step 2; When the first empty space is found the new record

is added to the file.

Step 3, If an empty space is not found in the file, an overflow

occurs, and an extension area must be introduced.

A record in the file can be deleted, or its data can be updated.

Step 1. A search is made for the desired record in the file.

Step 2. If the desired record is found, then desired record

is deleted or its data is updated.

Step 3. If the search is not satisfied until the end of file mark

is found, the system has to notify the user that the

desired record is not there.

The record in the file whose key name is "S" in Figure 3. 1 .

may need to be deleted or updated.

18

Search path

First empty space at
the end of the file

(a) Search is made for the first empty space, and a record
whose key name is "W" is added into the file in Figure
3. 1 (a).

Added record

(b) Graphical representation after record with key name
"W" is added to the file.

Search path
First empty space

0 0 0
(c) Search for first empty space to add a record whose

key name is "W" to the file.

Added record in the file

CO 0 0 0
(d) Graphical representation after record with key name

"W" is added to the file.

Figure 3. 2. Addition of a new record to an unsorted file.

19

The desired record, to
delete or update its data

(a) Graphical representation of unsorted file, after desired
record is found.

0 0 0 0 0 0 0
(b) Graphical representation of unsorted file after desired

record is deleted.

Figure 3. 3. Deletion of the record key name "S" from the file.

After deletion of the record with key name "S" is completed,

the file structure is changed from density list to loose list.

The Algorithm of Strictly Sequential File Maintenance

A new record can be added to the strictly sequential file.

Step 1. A search is made for the proper location for the new

added record in the file, based on the key sequence

possessed by the file.

Step 2. If the proper location in the file is found the rest of

the records can be shifted up one position to a higher

address in the file to provide the proper location for

adding a new record to the file. In some cases a

part of the rest of the records including file mark in

20

the file have to move into the new extension area of

the file, and the new extension area is now considered

as a part of the body of the main file.

Step 3. If the search is not satisfied until the end of the file

mark is found, the system has to notify the user that

an empty space is not available.

A record is deleted from the file or its data are updated.

Step 1. A search is made for the desired record in the file.

Step 2. If the search is satisfied, the desired record will be

added or its data updated depending on which is

required.

In case the user needs to delete the desired

record, all information of that record is erased; the

space is blank and all of the records which possess

a higher key than that of the deleted record have to

shift down successively one position, including the

file mark, repacking.

In case the data of the record needs to be up-

dated, then the information is to be read out.

Step 3. If the search is not satisfied, and the desired record

cannot be found in the file, the program will notify

the user "no such record in the file".

Proper location for new
added record, "LU"

21

0 0 0 0 Om
(a) graphical representation of strictly sequential file after the proper position for the new

added record is found

Start search

Proper location for new
added record "OD" is found

c -- Extension 7
area

Its

(b) graphical representation of strictly sequential file after binary search is applied and the proper
position of new added record is found

Extension area

-IF0 0 0 CO
(c) graphical representation of strictly sequential file after new records LU, OD are added.

Figure 3.4. Addition of new records to strictly sequential file.

22

r

Start search here

Proper location for new added
record "OD" is found

Extension
area

0 Cb GO CD 0 0 0
(a) graphical representation of binary search for deleted or updated data

(b) graphical representation of strictly sequential file after record OD has been deleted

0 CP 0 0 i0 0 0
(c) graphical representation of strictly sequential file after the file is repacked.

Figure 3.5. Deletion and repacking of strictly sequential file.

23

Sequential Disk File Use for On-Line System

The characteristics of a disk memory and its cost satisfy the

requirements of the on-line processing system. The analysis of

disk memory has been done by Dr. David Lepvitz (18). Consequently

the disk memory system is used as an on-line supporting storage

device.

In a sequential file supported by Direct Access Storage Devices

(DASD) disk, records are written one after the other, track by track,

cylinder by cylinder at successively higher addresses. The records

are usually in key sequence.

Description of Records in File

Actually records may be fixed or variable length, blocked or

unblocked or undefined. The records may be formatted with or

without keys. In case the file is processed (Processing file) sequenti-

ally, as is normally the case with this method of organization, there

is no need for formatting with keys. If for some reason there is an

appreciable amount of random processing, records should be

formatted with the key so that they can be located more quickly.

In the example in this thesis, commonly formatted records,

fixed-length records, blocked, are considered (see Figure 9. 2,

page

24

Space Storage Requirements

The amount of space disk storage required must be enough to

hold all the records in the file. Although it is permissible to have

the file extended, actually the space requirement is directly propor-

tionate to the number of records in the file.

Methods of Using Sequential Disk File

The sequential file provides the user with two options in

processing.

1. Sequential Processing. The time required is one search

per cylinder and one read per record (or block of records).

2. Random Processing. If a sequential file is processed

randomly, it is, at best, very inefficient. In case it is

used infrequently, the time required to locate the records

may not matter. There are several ways to program

random processing with significant differences in the time

required.

a) One possible way is to read the records sequentially

until the desired one is located, but it is the slowest

method. On the average, half of the file would have

to be read. A sequential search takes less time if the

records are formatted with the key. The search is

25

done only on search Key High or Equal to the speed

of one per track revolution. When the search condi-

tion is satisfied, the corresponding record is read.

b) Another method of processing a sequential file in a

random fashion is first to perform a binary search

of the file in order to determine in which small section

of the file the desired record is located. Then only

that small section need be searched in full. In Figure

3. 6 an eight cylinder file formatted with key is

illustrated.

Figure 3. 6. A binary search of an eight-cylinder file, multi-
cylinder file.

26

The last record in cylinder 4 is read and compared with the search

argument; then the last record in cylinder 2 or 6 is read and a com-

parison is made again. Then, depending on the result of that compari-

son, the last record in either cylinder 2 or 6 is read and a compari-

son performed again. Then, depending on the result of the

comparison, the last record in either cylinder 1, 3, 5, or 7 is read

and compared with the search argument. This last comparison

indicates in which one of the eight cylinders the desired record is to

be found. Only that cylinder need then be searched in full.

Sequential Disk File Maintenance

The maintenance of sequential file supported by DASD, disk is

straightforward, as shown previously in the graphic illustration.

Additions and deletions require a complete rewrite of a sequential

file. This is desirable from a timing standpoint only in case addi-

tion and deletions can be combined with another job that also

requires reading and updating all the records.

Uses of Sequential File for On-Line System

Sequential file organization is used on direct access storage

devices primarily for tables and intermediate storage rather than

for master files. It can be used as a master file if there is a high

percentage of activity, and if virtually all processing is sequential.

27

Evaluation of Accessing Characteristics
of Sequential Disk File

For some purposes in the comparative study of file organiza-

tion, the characteristics of sequential file accessing have to be

measured.

The strategy of evaluation presents two problems:

1. The systems disc file cannot be independently controlled.

2. Due to the system characteristics, OS-3 runs under the

influence of this user queue, with resource allocation and

I/O dependent upon the list structures connected to a

particular "program status area" (PSA). At any given

moment, the system is processing a single user whose

PSA is indicated by a pointer. Alteration of the contents

of this pointer occurs at the end of discrete time inter-

vals (16).

According to the problems mentioned the system cannot permit

measurement of the exact total time used in executing the program.

To solve problem 1. Actually the Test File is created in the

disk memory, then it is read into core memory and the simulation

of file processing is performed. But in the simulation of the sequen-

tial file, the test file is created directly in core memory as the

initial stage, and the file simulation is then performed.

28

PSA being processed
PSA

PSA

PSA

Figure 3, 7. Graphical representation of User queue for
CDC-3300.

To solve problem 2. "Compass, " symbolic language is used

for simulation. The total executing time for each program is

obtained by direct computation, that is by adding the relative instruc-

tion time together according to the logical path in the "compass"

program. This method of obtaining the executing time is also

recommended because the result is more accurate than by directly

measuring executing time.

The Purpose of the Evaluation

The purpo,se of this evaluation is to measure the following

Sequential File parameters, and to ascertain the characteristics

29

of the system.

1. To measure the internal searching time per record

retrieval with both Linear search and Binary search.

2. To compute the access time when the record is located

on the disk.

3. To measure the space storage requirement.

4. To find the characteristics of average througput time/

record retrieval, achievable throughput rate capability.

5. To find the COST/EFFECTIVENESS characteristics,

(customer operating cost per call).

6. To compare the characteristics with the other methods

of file organization technique.

The philosophy of accessing characteristics of a Sequential

File simulation can be illustrated as in Figure 3.8.

1. Each logical record in the file is considered to be fixed,

blocked, and associated with a key. See detail in Figure

9. 2, page 202.

2. The file is stored on D 854, disk memory, one W/R head

per disk surface by use of cylinder concept, see Figure

2.10, page 15. The records are stored in contiguous

areas, track by track, cylinder by cylinder, not in key

sequence for the unsorted file, and in alphabetical sequence

for the strictly Sequential file.

Simulating Block Diagram Model

Cull name of a record

(Desired record is
present to user

CPU

I

Variable tree decoding task

)64-
A track is called in

I and performs

internal search

Disk file

Cylinder

Cylinder

II

Cylinder

III

30

Figure 3.8. Block diagram showing the simulating of accessing a record from Disk Sequential File.

31

3. For accessing the desired record from the file, the full

name of the desired record is applied to the system. The

Tree with variable length key directory decoding program

converts the full name of the desired record into one word,

a uniquely fixed length key. The operating system can use

the fixed length key as search argument.

4. Since for each track of Sequential File there are 64 logical

records, it is more efficient to select linear internal

search. See the analysis of internal linear and binary

search on pages 193 - 197. So that a Sequential track is

called in and linear internal search is performed for both

unsorted and strictly Sequential File.

5. If the desired record is found, the operating system will

present it to the user.

6. If the desired record is not found, the operating system

will notify the user that it is not there. See the details

in Example 1, Appendix B.

Results of Sequential Disk File
Accessing Characteristics

The results of this simulation are shown as follows:

1. Figure 8.1. The comparison of searching parameter

(number of look-up per record retrieval vs. file size,

32

between Linear search and Binary search).

2. Figure 8. 2 shows the result of the comparison of search-

ing parameter (searching time in msec. per record

retrieval vs. file size) between Linear search and Binary

search.

3. Figure 8. 4 shows the result of the comparison of core

space requirement number of computer words vs. file

size) between Linear search and Binary search.

4. Figure 7. 1 shows the result of computation of retrieval

time per record retrieval (throughput time) when the main

records are located in disk memory.

33

IV. INDEXED SEQUENTIAL FILE STRUCTURE AND USE

Indexed Sequential File Structure

The indexed sequential file organization is in use by several

computer manufacturers. It is an automatic file management and

access method. The indexed sequential file has the same basic

structure as the partitioned file, which uses the "directory" system

in logical hierarchical relation with the "main file". However in

the indexed sequential file the directory and the record in the main

file are in physical relation according to position. In general this

file is designed to use with DASD, especially disk. Hence, the

basic structure of the indexed sequential file supported by disk is

as follows: (see the Figure 4. 1). In case the processing of the file

is based on alphabetic key, the file system has to be attached to a

directory table for the variable length full name of a record to be

converted into a unique fixed-length key name. Extra time is

needed for decoding by searching the directory table for each random

access record.

On-Line Indexed Sequential File Supported
by Disk Memory

An indexed sequential file has three major components: Index

Area, where the cylinder index and track index are located. Prime

Argument, Full Name

Directory Table use of Tree
with variable length records
names to unique fixed length
key

DONNELL DAVID

HODGE D M

JOHNSON ALBERT W

JOHNSON ARTHUR C

MOOR ARCHE

NARASIMHAN M N L

SMITH A PETE

SMITH BEVERLY

DONN

HODG

JOHN

JOHS

MOOR

NARA

SMIT

SMIH

Cylinder Index

Key:
Highest
key on
each
cylinder.

Data:
Home
address
of track
Index
for each
cylinde r

Figure 4. 1. Structure of the Indexed Sequential File.

Track Index 1 Prime Area
iNormal record
Key: Data:
High- Home
est address
key on of
track prime

track.

Data area
of Cylinder 1

Track Index 2 Overflow

Track Index 3
Overflow Record

Key: Data:
*Key of address

over- of over-
flow flow
record record

Data area
of Cylinder 2

Overflow

Data area
of Cylinder 3

Overflow

35

Area, where the normal records of the file system are located, and

Overflow Area, where the overflow records of the main file are

located.

The Cylinder Index is the "master directory" of this file

system. There is only one cylinder index. It is the higher level

index and is always present. Somewhere in the indexed sequential

file system, its entry contains a pointer to a track index. Some-

times the cylinder index may be on a different type of disk than the

rest of the file. In case it is assigned to the same disk module,

the cylinder index should be put at the beginning of the file area

(see Figure 4. 2).

The Track Index is equivalent to a "subdirectory". This is

the lowest level of index and is always present. Actually there is

one track index for each cylinder in the main file area (prime area).

Its entries point to data records and are always written on the first

track of the cylinder that they index. Each track index may contain a

special record called "Cylinder Overflow Control Record", COCR.

The operating system uses this record when an overflow exists in

the file system. The rest of each track index consists of alternating

"normal" and "overflow" entries. There are a pair of entries for

each data track in the cylinder.

The normal entry contains the home address of the prime

track, and the key of the highest record on the track.

36

The overflow entry contains the highest key record on the track

in the key area. The data area contains the home address of the

overflow area which indicates "end of the chain. " The entry is

changed when a record is added to the file and overflow exists.

The last entry of the track index is a "dummy entry" indicating

the end of the track index. The rest of track index may contain prime

data records if there is room for them. In this case, the first pair

of entries in the track index referes to this track.

Each track index entry, Normal, Overflow, Dummy, has the

same format. It is an unblocked, fixed-length record consisting of

a Count Area, a Key Area, and a Data Area. When a Key Area is

as specified by the user, in the case of a normal or overflow entry,

this area contains the key of the data record which is the entry point.

However, the area of the dummy entry has all 1 bits, which is the

highest in the collecting sequence. The Data Area is depended on

the user's specifing for example that it is 10 bytes long, contains

the full address of the track or record to which the index points and

other information such as the level of index and type of entry (based

on the IBM system).1/ The Data Area of the dummy entry is null

1/The IBM system (16) has suggested that using of the Master
Index when the cylinder index occupies more than four tracks.
Master index is the highest level of index and is optional; it is used
when the cylinder index is too time-consuming. It can be stored
permanently in core memory.

37

(all 0-bits). For illustration, see Figure 4. 4, page 43.

The Prime Area is the area in which data records are written

when the file is first created or subsequently reorganized. Addi-

tions to the file may also be written in this area. The prime area

may spand multiple cylinders, modules may consist of several non-

contiguous areas. The record in the prime area has to be written

in key sequence. Data records in the prime area must be formatted

with key. They may be blocked or unblocked. In case a record is

blocked, each logical record has to contain its key, and the key area

contains the key of the highest record in the block.

The Overflow Area may be of one of two types, a cylinder over-

flow area or an independent overflow area. Either one or both can be

used for an indexed sequential file.

a) The Cylinder Overflow Area is the most popular means of

handling overflow records. A certain number of whole

tracks, as specified by the use, are reserved in each

cylinder for overflows form the prime tracks in that

cylinder. When a cylinder overflow area is specified,

record 0, the track descriptor record in the track index

is used as a Cylinder Overflow Control Record (COCR).

See illustration in Figure 4. 2.

38

Cylinder 0 Cylinder 1 Cylinder 2 Cylinder 3 Cylinder 4 Cylinder 5

Cylinder Index

Track Index

Prime Area

Cylinder
I

Overflow Area

Figure 4. 2 Illustration of Cylinder Overflow Area.

The operating system uses the COCR to keep track of the

address of the "Last Overflow Record" in the cylinder and the num-

ber of bytes left in that cylinder overflow area. In some cases the

Operating System uses this COCR for additional information. Two

bytes of this COCR are used in case the file has variable-length

records. If the file has fixed-length records these two bytes are left

blank.

The advantage of having a cylinder overflow area is that addi-

tional searches are not required to locate overflow records. The

disadvantage is that there will be unused space, if additions are

unevenly distributed throughout the file.

b) The Independent Overflow Area provides a means of

39

placing the overflow records from anywhere in the prime

areas in a certain number of cylinders reserved solely for

overflows. The size and unit location of the independent

overflow area are specified by the user. The area must,

however, be on the same disk module as the prime area.

The advantage of having an Independent overflow area is that

less space need be reserved for overflows. A disadvantage is that

accessing overflow records requires additional searches.

Cylinder 1 Cylinder 2 Cylinder 3

Cylinder Index

Track Index

Prime Area

Cylinder X Cylinder Y

Independent
Overflow

Area

Figure 4. 3. Illustration of Independent Overflow Area.

Overflow Records must be unblOckedi they must be formatted

with keys; they must be of fixed-length or variable-length. If the

prime records are blocked, the key of an overflow record is con-

tained in both the key area and the data area so that all logical

records have the same format.

The first field of data area of overflow record is a link field,

which is used to chain together in key sequence the records that have

40

overflowed from a prime track. The link field is usually ten bytes

long and contains the same type of information as the data area of

index entries. If an overflow record is not the last link in a chain,

its link field so indicates and contains the address of the next over-

flow record in the chain. If an overflow record is the last link in a

chain, its link field so indicates and points back to the track index.

An overflow record has a link field, while a prime record does not.

The overflow record is of significance to the user only in that the

link field requires space on the disk and in core memory. The oper-

ating system presents logical records to the user in such a way that

he does not know of the difference in format.

The Use of the On-Line Indexed Sequential Disk File

In the update and maintenance operations of the Indexed

Sequential File, the prime record is of a fixed length and blocked.

The cylinder overflow area is used to handle the overflow records.

Adding a New Record to the File

There are three cases of adding new records to the file, The

standard algorithm of addition is as follows:

A new record is added to a "prime track", to create the file.

See illustrated example in Figure 4. 5, page 44.

41

Step 1. The user supplies the name of the desired record to

the system.

Step 2. The operating system decodes the full name of the

record into a fixed-length record key name by means

of one of the methods to be mentioned in Chapter V,

under the section on Directory Decoding Technique.

Now the unique record key name of a desired record

can be decoded by the directory table.

Step 3. The operating system edits and searches through the

cylinder index for a key "high" or "equal" in core

memory.

Step 4. When the search is satisfied, the address in the cor-

responding data area of the record in the cylinder

index is read.

Step 5. The reference cylinder is sought (hardware operation).

Step 6. The operating system edits and searches the track

index, for a key "high" or "equal" in core memory.

Step 7. When the search is satisfied the address in the

corresponding data area of the records in the track

index is read.

Step 8. The reference track in that cylinder with key "high"

or "equal" is sought.

42

Step 9. If the proper sequential location on the prime track is

found, and it is empty, the new record is added

there; the job is done.

Step 10. If the proper sequential location is found, and it is

not empty on that prime track, the operating system

will move the rest of the records higher on that prime

track up one position; some of the higher key records

in that prime track may be bumped out.

Step 11. The operating system will automatically continue the

search for the first available space in the cylinder

overflow area.

Step 12. If the first available space in the cylinder overflow

area is found, the bumped records or the new record

is written up in the available location in the overflow

area, and the linked list concept is introduced. The

record is placed in the cylinder overflow area for

that cylinder. If it exists and if there is a space in

it, the job is done.

Step 13. If the cylinder overflow area is full, the operating

system will continue searching for the first available

space in the independent overflow area.

Step 14. If the first available space in the independent overflow

area is encountered, the bumped record or new record

CYLINDER INDEX

I SO*BEER 0000 BUTZ 0100 CURR 0200 DYSO 0300 DUMMY 1

tData: Home address of track index One such entry for
for cylinder 00 each cylinder of

the prime data area
Key: Highest key on cylinder 00

TRACK INDEX
A pair of entries

Normal entry Overflow entry Normal entry
000210000 COCR ABRE 0001 ABRE 0255 I ADOT

Home
Address

1--Date: Home address
prime track 0001

of

PRIME DATA AREA

0001

Home
Address
0002 I

I0010

AABY

Data

ACEA

BABCT

Key: Highest key on prime
data track 0001

Normal entry
BEER 0010

AARO

Record:

ACID

BACC

AASU

Overflow entry

BEER 0100

ABRA

Overflow entry

ADOT 0255

One normal and one overflow
entry for each prime data
track on cylinder 00

Dummy entry

DUMMY

Count, Key and Data for

ACKE

IBACH I

ACNE

IBACO

ABEM

record with key "AABY"

ACTO I

BEDO I

Figure 4.4. An Indexed Sequential Disk File with no additions.

Data Record

ABRA

ADAT

BEEM

ABRE

ADOT

BEER I

CYLINDER INDEX (No change)

BEER 0000 BUTZ 0100 j CURR 0200 DYSO 03000 DUMMY

TRACK INDEX

Normal Overflow Normal

0000 COCR I ABRA 1 0001 ABRE 00111 ADOT 0002

H. A. Key of normal t--- Overflow entry changed now points
entry changed to record 1 on the track 0011

PRIME DATA AREA

10001

H. A.

0002

AABY

ACEA

OVERFLOW AREA

0011

H:A.

[AARO AASU ABBA ABEM ABER ABRA

New record
Original record moved up

ACID ACKE ACNE ADAI I ADOT

ABRE

Count Key

xxx *** xAx Rest of data I

field: This is the last link of a chain, so it
contains the original value of the track index entry
that is, tit** to indicate "end of chain".

Figure 4. 5. An Indexed Sequential Disk File after the first addition to a prime track.

ABER I

ADOT [

CYLINDER INDEX (No change)

BEER I 0000 I

TRACK INDEX

0000 I

H. A.

COCR I

BUTZ I 0100

ABRA

PRIME DATA AREA

0001

0002 I

AABY

ACEA

AARO

ACID

OVERFLOW AREA

ICURR 1 0200

0001 I I ABRE I 00123

t----Overflow entry changed - points to
address of lowest key which overflowed
from this track - record 3 on track 0012

AAS U

ACKE

AA BA

ACNE

DYSO 0300

ADOT 0002 I

IDUMMY

ABEM

ADAI

ABRA

link in this chain.0011 00111 I ABRE XXX AE 4f-x,7 X x X Rest of data

H. A. Count Key Link field: No change - this record always be the last

0012 00123 ABRC XXX 00111xM1. Rest of data

H. A. Count Key LLink field: points to next link in
chain - record 1 on track 0011

Figure 4.6. An Indexed SequentialDisk File after subsequent additions to a track.

ACKE I

CYLINDER INDEX (No change)

BEER 0000 BUTZ 0100 CURB I 0200

record

DYSO 0300 DUMMY

TRACK INDEX

Overflow entry changed - now points
1 on the track 0011

[

to

0000 COCR ABER 0001 ABRE 00111 ADOT 0002

H. A. Key: Highest key on prime
data track 0001

PRIME DATA AREA

0001

0002 I

ABBY

ACEA

OVERFLOW AREA

0011

H. A.

I 0012 1

AARO I

ACID

AASU AA BA

ACNE

00111 ABRE

Deleted Record

ABEM ABER

ADAI

This record is "end of the chain".
XXX ** XXX Rest of data I

00123 ¢ABRC XX X 00111XXX Rest of data
1.

ABRA

Deleted record (in overflow area)

ADOT [

Figure 4. 7. An Indexed Sequential Disk File after deletions of the desired records from File.

47

is written, the chain is updated, and the job is done.

Step 15. The key area of the normal index entry is updated,

containing the highest key in that prime track.

Step 16. In case the overflow exists, the data area of the

overflow index entry is also updated; it now contains

the address of the overflow record.

Example of Case I, First Addition to a Prime Track. The

first addition to a track is always handled in this way. Any record

that is higher than the original highest record on the preceding track

but lower than the original highest record on this track is written on

this track. See Figure 4.5.

Example of Case II, Subsequent Additions to a Track. Subse-

quent additions are written either on the prime track where they

belong or as part of the overflow chain from that track. In case the

addition belongs between the last prime record on a track and a

previous overflow from that track, as in the case of adding a new

record with key name ABRC, which is written in the first available

location in the overflow area, with its link field containing the address

of the next record in the chain. The link field of a previous overflow

may need to be changed; in this example it is not necessary because

the Data Area of the overflow index entry always refers to the

address of the lowest key in a chain.

If the addition belongs on a prime track as in this case, the

48

record's key name, ABER, is added in its proper sequential loca-

tion on the prime track. The bumped record, ABBE, is written in

the first available location in the overflow area.

The Key Area of the normal index entry is changed to ABRA.

The link field of a previous overflow and the Data Area of the over-

flow index entry are changed if necessary.

The similarity between the normal and overflow index entries

is that the normal entry indicates that a sequence of records starts

at the beginning of Track 0011, the last record having a key of

ABRA. The overflow entry indicates that a sequence of records

chained together by the link field starts with the third record on

Track 0012, the last record having a key of ABBE. See Figure

4.6, page 45.

Although the cylinder overflow area may eventually contain

overflow records, all prime tracks in the cylinder and the independ-

ent overflow area may eventually contain overflow records from

anywhere in the file; each prime track has its own chain.

Example of Case III, Addition of High Keys. A record with a

key higher than the current highest key in the file is placed on the

last prime track containing data records if that track is not full.

In case that track is full, the record is placed in the overflow area.

The sequence link for this record is chained to the last prime track

containing data records. The key area of higher level indexes is

49

changed to reflect the addition.

Up-Dating or Deleting the Record from the File

There are two conventional types of retrieval of the specified

records from this type of file:

Sequential Processing. The logical steps required to retrieve

all of the records in the key sequence are as follows, provided that

the prime area consists of one contiguous area (since each record

in the file is read out, no need to perform cylinder search):

Step 1. The operating system positions the access mechanism

at the track index of the first cylinder in the file. It

performs read-in operation, an internal search of the

track index and picks up two entries from internal

track index, the current overflow entry and the normal

entry.

Step 2. The operating system reads and presents to the user

each record on the specified prime track. If the end-

of-file record is read, it goes to end-of-file routine.

Step 3. If the current overflow entry has been changed the

operating system reads and presents to the user each

record in the overflow chain and then goes to Step 5.

Step 4. If the current overflow entry has not been changed,

the operating system goes immediately to Step 5.

50

Step 5. If the next prime entry is a dummy, that is if all the

records in this cylinder have been read the operating

system seeks the next cylinder by going to Step 7.

Step 6. If the next prime entry is not a dummy, go to Step 8.

Step 7. The operating system positions the access mechanism

at the track index of the next successive cylinder in

the file and performs read-in, an internal search of

its track index. A track index of this next successive

cylinder is read-in and stored at some place in core

memory which may be called "track index table". It

is the same as Step 1, but not for the first cylinder.

Go to Step 8.

Step 8. The operating system performs an internal search

through the track index table and picks up the next

pair of entries: that is the overflow entry of the next

prime track to be processed and the normal entry for

the prime track following that, and return to Step 2.

In fact, the cylinder index is used only for the initial

positioning at the beginning of the file, and reference to the

track index is necessary only once for each prime track.

Random Processing. This typical method of retrieving speci-

fied records is more suitable to the nature of an on-line information

system.

51

Step 1. The operating system reads the transaction, the full

name of a record or the fixed-length key of a record

is used as search argument.

Step 2. The operating system searches the cylinder index for

key "high" or "equal".

Step 3. When the search is satisfied, the system reads the

address in the corresponding data area.

Step 4. The operating system seeks the referenced cylinder.

Step 5. It searches the track index for the cylinder with a key

"high" or "equal" in core memory.

Step 6. When the search is satisfied the system picks up the

address in the corresponding data area.

Step 7. If the desired record is on the prime track, it is the

normal record. The operating system searches the

reference prime track for a key "equal" in core

memory and reads and presents to the user the desired

record in the main file.

Step 8. If the desired record is not on the prime track, it is

an overflow record.

a) The operating system searches the referred over-

flow track, read-in and an internal search for

identifier with equal record address is performed.

52

b) The system searches the desired record in core

along the chain.

c) If the desired record is found, the system

presents its data to the user.

d) If it is not found the system repeats Step b) by

using the address from the link field until the

specified record is found.

e) If the end of the chain is encountered, the system

goes to record-not-found-routine which notifies

the user "NO SUCH RECORD IN THE FILE. "

File Reorganization Criteria

An efficient file must be reorganized periodically for three

reasons:

1. The overflow area is eventually full.

2. During additions, increased time is required to locate

a record at random.

3. When the prime area contains many deleted records,

much space is wasted.

Handling Deletions in the Indexed Sequential File

Most operating systems do not handle deletion in any way.

The usual approach is to tag a deleted record in some way by the

53

same method as that of partitioned file organization and then to omit

it when the file is reorganized.

a) Usually the desired record is tabbed by writing all 1-bits

in the first byte of the deleted record.

b) If the tagged record is bumped off the prime track by a

subsequent addition, it is not rewritten again in the over-

flow area.

c) When the file is reorganized, any tagged records remain-

ing in the prime area can be omitted from the reorganized

file by the user.

d) When the file is processed sequentially, the deletion

records (tagged records) are not retrieved for process-

ing.

e) When the file is processed by random sequence, tagged

records are retrieved like any other record and thus

should be checked for deletion-code by the user's pro-

gram.

In some cases the operating system can automatically handle

deletion records as follows:

a) If the deleted record is the last record in the prime

track, the operating system will simple erase this record.

b) In case the desired record is somewhere in the prime

track, all the whole records in that prime track are

54

read-in. Repacking is performed in core memory, and

the repacked records are returned to the original prime

track. In case there is still an empty space left on

this prime track, an overflow record, which is the head

of the chain that belongs to this track, is shifted up to be

the highest key record of this prime track. The operat-

ing system updates data in the overflow entry and in the

normal entry which corresponds to this prime track

in the track index.

c) In case the desired record is on the cylinder overflow

track, deletion by tagging the desired record can be

performed.

Variable-Length Records

In some cases the user encounters variable-records. One way

to solve this problem is to use trailer records, the extension of the

master record with the same operating system used for the fixed-

length logical records. The trailer record may be written immedi-

ately after the associated master record. The duplicate key is not

allowed. It is necessary to add a digit or character to the true key;

that is, to use the alphanumeric key. For example 125A, the key of

the master record number 125, are added 125B, and 125C, the key of

the first and the second trailer record respectively. The trailer

record may be written as a separate file by which link list chain is

introduced.

Evaluation of Accessing Characteristics
of the Indexed Sequential Disk File

55

For comparison with other file organization methods, the

parameters of the Indexed Sequential File have to be measured.

CDC-3300 system with OS-3 is selected as the simulator. The

strategy of simulation is as follows:

1. For simulation of the Indexed Sequential Disk File, the

data records in the file are assumed to be fixed, and

blocked. See Figure 9. 2, page 202. Each record is

formatted with a key. The overflow records are placed

in cylinder overflow area only. The overflow records

of each prime track are put in a chain.

2. Data model for simulation uses the selected data model

as shown in Appendix B. See simulating block diagram

model in Figure 4. 8.

3. For accessing the proper location in disk memory, the

full name of the record has to be converted into a unique

fixed-length key name by the Variable-Length Tree-

Decoding Technique. (The detail of Variable-Length

Tree-Decoding Technique is shown in Chapter V.)

56

4. All data records are kept in disk memory, D854.

a) The Directory Table is read into core memory for

initializing and the user supplies the full name of

the records to the system. Search of the Directory

Table is performed internally.

b) If the search is satisfied, the operating system will

use the fixed length key name obtained as the argu-

ment key for retrieval of the desired record from

the file system.

c) If the search is not satisfied, the operating system

will notify the user "NO SUCH NAME IN THE FILE".

d) For accessing the data of the Cylinder Index, the

Track Index and the Data of the Main record, the

machine has to read into core memory and search

for desired item. The us er can control the operat-

ing system to return the Directory decoding routine

to disk memory after file processing task is

finished.

5. For measuring the exact accessing characteristics of

this file system, the selected record format is consid-

ered and the computation is performed. See Example 2,

Appendix B.

57

The Purpose of the Evaluation

The purpose of the evaluation is to measure the following

Indexed Sequential Disk File parameters:

1. To compute the access time per random record retrieval

when the data file is on the disk.

2. To measure the space storage requirement.

3. To find the characteristics of "average throughput time

per record retrieval" and "achievable throughput rate

capability".

4. To find the "cost/effectiveness" characteristics, ("user

or customer operating cost per call, unit cost").

5. To compare the characteristics of this file method with

the other methods of file organization.

Simulating Block Diagram Model

Simulation block diagram model, Figure 4. 8 is the illustration

of finding the accessing characteristics of a random record form

Indexed Sequential Disk File. See details in Appendix B, Example 3.

Results of the Evaluation of Indexed Sequential Disk File

Results of the evaluation of Indexed Sequential Disk File and

the comparison of the characteristics of this file with those of the

58

The full name of a
record is supplied

b use r.

I

I

I

I

I

The desired recorcN 1

is present to useryfr-- I

L

CPU

Variable Tree
decoding task

Cylinder Index
internal search

task

Track Index
internal search

task

A data prime
track/a cylinder

overflow track is
called in and

internal search
is performed

_ ___ 4 __. __.__,

Disk File

Cylinder 1

Cylinder

Cylinder

Figure 4. 8. Block diagram showing the simulation of accessing
a ramdon record from Indexed Sequential Disk File.

59

other methods of file organization technique are shown in Chapter

VII.

60

V. PARTITIONED FILE STRUCTURE AND USE

Partitioned File Structure

The partitioned file is one of common method of organization

for the on-line data processing system. It has a hierarchical file

structure which is compounded, and it requires a directory and some-

times even hierarchies of directories for maintaining association

and providing access. These directories are of table of content

type. Access is most commonly made by attribute. The speed of

access depends upon the size and number of directories used. See

Figure 5. 1.

Member
name

Record
name

)1,1.andomizing
Hashcode

ree Fixed
ngth key

hree dimensio
Tree

Directory

contains

Member

name and

starting

address

1st Member

Table
lookup
member

1

2nd Member

Fiigure 5. 1. Structure of Partitioned File.

Table
lookup
member

2

Individual
records

with key

ith Member

Table
lookup
member
ith

Individual
records

with key

Individual
records

with key

61

User's Argument Key Name

In the partitioned file, the user's argument key name or record

key name is the "key" which is used to communicate the master

record of the file, stored on the auxiliary memory units. Due the

nature of Directory and Partitioned File Organization, usually an

alphabetical string of key names is used. For convenience, the

natural language such as a person's name is used as the key name

of his own record in the file. Sometimes alphanumeric and numeric

keys can be used in the same fashion.

Directory Decoding Techniques

Directory decoding techniques for the partitioned file can be

divided into two general classes:

1. Randomizing or Hash Coding. The details of this

technique will be illustrated and discussed in Chapter VI.

2. Tree Structure Decoding. This method can be divided

into two subclasses:

a) Fixed-Length Key Decoding. Fixed length keys are

generally preferred because the decoding programs

are simple to write and fast to execute. There are

two general methods for converting a full length

name into a Fixed-Length Key, as indicated in

62

Figure 5. 2. One method is "to sample" some of the

fixed set of characters or bits from the full-length

name. A special method is to "truncate" the key

to a given number of characters. This technique is

popularly used in many systems. Another method

is to apply a randomizing technique to the full name

of the record to convert it into a range that is repre-

sented by a fixed number of bits.

The disadvantage of Fixed-Length Key decoding

is that the method cannot guarantee to offer ON of

redundancy coding.

b) Variable-Length Key Decoding. There are also

two ways to obtain the variable-length key.

(1) The full name of the record can be used as the

variable key.

(2) A unique sampling can be used for each key so

that as little of the key word is retained as is

necessary to make it completely different from

every other key. In fact this method is applied

to a small sized file. It is impractical to

implement it on a large scaled file.

The main advantage of the variable length key method

is that is provides completely unambiguous decoding.

63

KEY DIRECTORY DECODING

Randomizing Tree

1

Sampled

Fixed Length Key Variable Length Key

Randomized Complete Key Unique Sampling

Truncation
is popular

only few systems used
use full record name
as key very popular

only few systems used

Figure 5. 2. Key Directory decoding pattern.

Director and Main File Or anization

Directory. Also called "file directory" has been mentioned

before in Chapter II. Partitioned file organization is divided into

several parts called "members". A directory contains the "names"

of these members and their corresponding "addresses" (location in

the main file). The entries of a directory are organized in alpha-

betical sequence. To provide efficient file accessing a directory

can be divided into blocks. Each directory block begins with a Key

Area which contains the key name of the last member of the block.

Records in the main file are organized the same as directory entries.

Main File Body. In the partitioned file organization, the main

body consists of several "sequential subfiles" or "members". In

each of these members, the data records are arranged sequentially.

64

They may or may not be in key sequence, depending on the record-

accessing technique. If there are many data records in each member

(more than 64 records), data records should be arranged in a key

sequence so that binary search can be introduced. This arrangement

also provided the possibility of accessing the records from the main

file by sequential processing. In case the file system uses hash

coding as its directory decoding method, records in the main file

are not distributed in any key sequence. See details in Chapter VI.

Use of the Partitioned File

The method of use or maintenance of the partitioned file is

dependent on the directory decoding technique used. Three cases

will be discussed here.

Case I. The partitioned file system uses "randomizing" or

has coding to perform a key decoding task.

The details of hash coding will be discussed in Chapter VI.

After the hash address is obtained it is used as the address for the

directory table. The address of the first record in the member is

kept as an entry in the directory table, which is stored in core

memory. But in direct file organization the hash address is directly

used as the reference of the data record in the main file. There is

no need to search at the directory level.

Standard algorithms of file maintenance are as follows:

(Member name)-40

(Record name>-

Hash coding
task

Directory Table

Address Address
of table of disk

Hash
code Address
use of
of

table
address

member

65

Main File

Table Address Key X and
f-g look up

of

member

Hof member Records
under X

Table Address Key Y and
look up

of
member

of member Records
under Y

Table Address Key Z and
look up

of
member

of member Records
under Z

Figure 5. 3 Partitioned file using randomizing as directory
decoding technique.

Adding a New Record to the File

Step 1. The user supplies full name of a record.

Step 2. The operating system converts the full name of the

record being added into hash address to be used for

directory table reference.

Step 3. The system fetches the address of the member to

which record being added should belong.

Step 4. The operating system searches for the next space

available in the member.

Step 5. If the proper sequential location in the desired track

of the desired member is found, and it is empty,

the new record is added there; the job is done.

66

Step 6. If the proper sequential location is found, and it is

not empty in the track of the desired member, the

operating system will move the rest of the records

higher in that track (up one position) some of the

higher key records in that prime track may be bumped

out.

Step 7. The operating system will continue the search for

the first available space in the overflow area.

Step 8. If the first available space in overflow area is found,

the bumped record or the new record is written. In

an overflow area the overflow records which belong

to the same track of each member must be organized

in the same chain (link list can be applied for over-

flow records which belong to the same member).

Updating and Deleting the Record from the File

Step 1. The user supplies the full name of the member.

Step 2. The operating system converts the full name of

desired member into hash address to be used for

directory reference.

Step 3. The operating system fetches the address of the

member to which the desired record should belong.

67

Step 4. The user has to supply the full name of the desired

record or unique fixed-length key of the desired

record,to the system. If it is the full name of the

desired record the directory decoding technique should

be introduced (in this case the writer suggests to

use variable-length tree decoding technique) to con-

vert the full name of record into unique fixed-length

key.

Step 5. The operating system searches for the desired

record in the member by using the unique fixed-length

key of the desired record as the search argument.

Step 6. If the search is satisfied, the data in the desired

record may be updated or deleted, as the user may

wish. In case of deletion, the deletion-mark is written

on the desired record, and this deleted record area

cannot be reused until the file is reorganized.

Step 7. If the search is not satisfied in the file, the operating

system will notify the user "NO SUCH RECORD IN

THE FILE".

Case II., The partition file system uses the tree with a fixed-

length key-word by truncation to perform the key decoding task. In

this section the terms tree structure, balanced tree and unbalanced

tree will be introduced. Since in practice most of the keynames

68

within the directory possess an unbalanced tree structure, only the

technique of unbalanced tree processing will be discussed here. As

this method may cause redundancies, the operating system or the

processing program has to notify the user every time the new key

name is redundant with the existing keys. Some modification has

to be performed by the user on the new key. One possible way is to

change some of the rightmost characters in the fixed-length redundant

key into fixed-length unique key. See example in Table 5.1. When

the size of the directory table is large, the number of redundancies

will increase, so the above method is impractical. The alternative

is to use the full name of a record and convert it into a fixed-length

unique key by using the variable-length tree decoding technique to

avoid ambiguous decoding. Details will be discussed in Case III,

page 75.

Table 5.1. Illustration of full name of record and unique fixed-
length key of record.

Argument, Full Name
Fixed Length Key

by Truncation

Fixed Length Key
After Modifying

the key must be unique

ADMINISTRATION A D M I A D M I
AIR COMMAND UNIT AI R C AI R C

AIR FIELD CON-
STRUCTION AIR F AIR F

AIR FIELD LIGHT-
ING SYSTEM AI R F AI R L

BAB B MAR GAR ET BA B B B A B B
BABCOCK DANA B A B C B A B C -01
BABCOCK DONNER B A B C '164 B A B 0 -i'

Ordered Table Ordered Tree

AD MI ADMI

A I R C

AIR F AIRF

AIR L

BARBABB

BABC
B A B 0 BABO

AIRC

BABC

Figure 5. 4. Comparison of ordered table and ordered tree.

AIRL

AIRC

ADMI

(1)

Left

Right

AIRF

(I)

(i)

Left

Right

BABC

BABB

(i)

(i)

Where Left = Left pointer: Right = Right pointer

Left

Right

Figure 5. 5. Tree structure (balanced tree).

BABO

69

70

Tree Structure. The entire list structure in Figure 5. 5 is

called a "tree". Each data item in the tree is called a "node". Node

AIRL is the root. It is the base or the beginning of the tree. The

order of the tree becomes evident by its relation to the root. All

nodes left of root AIRL contain lower keys: ADMI, AIRC, and AIRF.

All nodes to the right contain higher keys: BABB, BABC, and BABO.

This same order holds for nodes of the tree other than the root. For

example, lower key AIDMI is left of node AIRC, and the higher key

AIRF is right of it.

Search Mechanism. The algorithm of search of a tree (both

balanced and unbalanced tree) is as follows:

1. The search of a tree begins at the root node. The argu-

ment search key is compared to the node key.

2. If the argument key is greater, the node right of the root

is examined.

3. If the argument key is less, the node left of the root is

examined.

4. This process continues until the desired node is found.

Figure 5.6 gives the flow chart form for the search.

Insert Mechanism

The algorithm of insertion of both a balanced and an unbalanced

tree is the same as that of searching for a tree. The insert node will

71

Pick up

Right Pointer

Stop

Figure 5. 6. Flow chart of tree search.

72

will always belong at the bottom of the tree. For high efficiency in

searching a tree in directory level the tree should be kept balanced

as much as possible. Therefore the user has to make some arrange-

ments beforehand. The task is simple, just sorting fixed-length keys

in alphabetical sequence, and selecting the middle keyname in the list

as the root of the tree.

In Figure 5. 5, AIRL should be selected as the root node of

the tree, and the user should start loading from this key name. The

corresponding sequence nodes left or right AIRC, BABC, ADIM,

AIRF, BABB, and BABO can be loaded next.

Delete Mechanism

In contrast to inserting nodes, which are always added to the

bottom of the tree, deletion nodes may be taken anywhere from the

tree. There are three cases for deleting the tree: the deleted node

is either root, internal-node, or leaf-node.

The algorithm of deleting is as follows:

1. A search is made to find the deletion node in the tree.

2. If the deletion is an internal node or the root node,

-- the search goes down one level to the left of the

desired node,

and the search continues along the last of the levels

of the tree on the right pointer.

73

If a node with a right pointer is encountered, the deletion

node is replaced by this node and the pointer in the tree

is updated. Otherwise, the search goes down, based on

the right pointer to the leaf node of the tree (the leaf node

does not have both left and right pointers). The deletion

node is replaced by the appropriate leaf node, and the

pointer in the tree is updated.

3. If the deletion node is a leaf node, it is simple deleted

and the pointers of the tree are updated. The illustration

examples are shown in Figures 5. 7 - 5.9.

AIRL

Smirch path

The new ROOT node.

BABB

Deleted node

Initial Tree

AIRF

BABO

Resultant Tree

Figure 5. 7. Deletion of node AIRL,. the ROOT of the Tree.

AIRL

Deleted nodeearc pat I

BABC

74

Rep la ed node

Initial Tree

BABB BABO

Resultant Tree

Figure 5. 8. Deletion of BABC, the INTERNAL node of the Tree.

Initial Tree

Figure 5.9. Deletion of node BABB, the leaf of the Tree.

75

The efficiency of the search is dependent on how well the tree

is balanced. In genera], in the application of the tree search structure,

the tree can be rebalanced after each insertion and deletion. The

balance mechanisms are shown by Richard L. Gauthier and Stephen D.

Ponto in Designing Systems Programs Section 8. 6 (12).

Use of the Partition File with Tree
With Fixed Length Key

The maintenance, adding, updating and deleting of the records

in the main file are by the same procedure as by those mentioned in

Case I. The alternative is to search at directory level using "tree

search".

Case III. The partitioned file system uses a tree with full

name as a variable-length key in the directory. This technique could

be called "varible-length tree decoding" or "three dimension tree".

In this method, the system performs the coding task, by

searching for the full name with computer word length, and each

fixed-length part of the full name can represent a node of the tree.

The searching task is equivalent to decoding the record name by a

tree fixed-length key with truncation, as in Case II. If redundants

exist, the ambiguity in searching the record in the main file can be

avoided if the redundant is of the higher level nodes of the tree share

storage space together; i. e. combining subtrees, two-dimension

76

trees to form three-dimension trees. Each branch of the Three

Dimension Tree which represents a different logical meaning is

located on different planes, and the corresponding branches in dif-

ferent planes are connected by pointers, which are usually called

",successors" (see Table 5. 2). So in each node of a three-dimension

tree, the extra space is needed for the successor. See illustrated

example in Figure 5.10.

Use of the Partitioned File with a
Three Dimension Tree Directory

The technique of using this typical file, in search at directory

level, is the same as that for search in tree directory. The algorithm

of adding, updating and deleting the record from the main file is the

same as that mentioned in Case II.

On-Line Partitioned Disk File

As the major structures of the partitioned file system are

Directory and Sequence Members of the main file, this file structure

can be implemented on disk memory, in one of the following ways:

1. The Directory is permanently kept in main core storage

and the Main File Body is kept on Disk Memory. This

system is obviously inefficient as the size of the Directory

and the Main File is increased.

7 7

Table 5.2. Example of Variable length key name.

Complete Key Name Data Successive Fixed Length Key

ADMI

ADMINIS

ADMINISTRATION

AIRFIELD CONSTRUCTION

AIRFIELD L IGHTING

AIR COMMAND

AIR CONDITION

BUIL

BUILDING

BUILDING CONSTRUCTION

TECHNICAL DIV.

TECH

TACTICAL AIR COMMAND

SUPPLY

UTIL

UTILITIES

ABBOTT EVERETT

ABBOTT ETT GEORGE

BABB MARGARET

BABCOCK DANA

BABCOCK DONNER

0001

0200

0221

0004

0005

0006

0007

0008

0009

0010

0011

0012

0111

0014

0015

0016

4205

7065

8693

6227

4934

ADMI

ADMI NIS-

ADMI NIST RATI ON--

AIRF IELD -CON STRU CTIO N--

AIRF IELD -LIG HTIN G--

AIR- COMM AND-

AIR- COND ITIO N - --

BUIL

BUIL DING

BUIL DING -CON STRU CTIO N - --

TECH NICA L-DI V. --

TECH

TACT ICAL -AIR -COM MAND

SUPP LY--

UTIL

UTIL TIES

ABBO TT-E VERE TT --

ABBO TT-E TT-G EORG E --

BABB -MAR GARE T - --

BABC OCK- DANA

BABC OCK- DONN ER--

AIR F

AIR

BULL)

78

TT-E

TT STRU

Note: Only some of the complete key names in Table 5. 2 are
illustrated here. s = successor.

Figure 5. 10. Tree structure of Variable-Length Key Names.

79

2. The Directory is temporarily kept in main core storage

only during the processing of the file. After the job is

done, both the Directory and part of the Main File are

returned to Disk memory. This method is rather compli-

cated in software, but it is popular in usage. Both 1 and

2 are called internal search.

3. Both Directory and Main File are kept in Disk Memory.

The searching tasks, both Directory and Main File, are

performed in CPU. The advantage is that the majority

of main core memory is not required, but the disadvantage

is that the nature of this search required more disk-time

than do the above two methods.

For comparison with the other type of file organization, the

second method above will be discussed and evaluated.

Description of Directory. In practice the simple organization

of the directory is similar to that of the strictly sequential file. The

directory record, which is in alphabetical sequence by the member

name, varies from 12 to 24 bytes in length, depending on how much

data is included. For example the directory records are grouped

into 256-byte blocks, each containing as many records as will fit

into the block. Each directory block has an eight-byte key area

containing the name of the last member in the block. If the complete

directory is full, no new member can be added, until the file is

Directory

Fixed length
Key

Cylinder, track
Address

No records/
Member

ADMI 0000 0016

AIRF 0001 0016

BUIL 0002 0016

SUPP 0003 0016

TECH 0004 0016

UTIL 0005 0012

WAST 0006 0002

WEAT 0007 0002

WOOD 0008 0003

Directory mapping in paper'file.

TECH

ADMI

0000

0016

AIRF

0001

0016

BUIL

0002

0016

SUPP

0003

0016

UTIL

0005

0012

80

WAST

0006

0002

WEAT

0007

0002

WOOD

0008

0003

b) Directory map-
ping in core memory.

Shows the beginning of a track or block

COUNT' (TECH 0044 ADMI 0000 0016 [TECH 0004 0016

COUNT] WOOD 0032 UTIL 0005 0012 WOOD 0008 0003

c) Directory mapping on Disk track; two directory blocks are shown.

Figure 5.11. Example of Directory in Partitioned File.

I 0003 I

H. A.

TECH
(

WOOD

0044 I ADMI I 0000

0032 I 'UTIL 0005

0016 I AIRF

0012 I WAST

0001 1 0016 BUIL 10002

0006 1 0002 WEATI 0007

0016 I SUPP 0003 0016 I TECH 0004 0016

0002 WOOD 0008 0003 II UNUSED

1 0000

I 0001

1

0002

1 0004

0005

0006

0007

0008

Highest key in a track

SOLA O CIIJF data of CLUF 0 FIRS data of FIRS 0

WALK O BYRA data of BYRA I OIHODG data of BYRA

HANS data ofj 0 SOLA data of SOLA 0001

0 0 WALK data of WALK 0002

MOSS 0 FRAN data of FRAN 0 UJTZ data of LUTZ 0 MORS data MOSS data of MOSS 0003

I YUON O GEOR data of GEOR OIGRIF data of GRIF IAHR data 0 I YUON data of YUON 0004

SMIT I 0 DILL data of DILL 01FOST data of FOST 101JOHN

WILL O BARR data of BARR 0 DATE data of DATE 0 HELI

IVICDO O FOST data of FOST 0 MCDO data of MCDO IC

datal

data!

4UNUSED

1

0 SMIT data of SMIT 0005

NARA O MACK data of MACK I 0 NARA data of NARA 1<

NELS

0009 I

O ESON data of ESON 0 NELS data of NEIS 10

.0 WILL data of WILL 0006

0007..j

UNUSED 0008

ROOD datakf ROOD 1. UNUSED --

UNUSED

Figure 5.12. Partitioned file without addition.

>1

AIRF 0001CI TECH 0044 I ADMI 1 0000 0015

CF WOOD 0032 I UTIL 0005 1 0016 WAST 0006

H.A.
from SOLA to HANSUpdate by changing

Update by changing from 0016 to 0015

0016 I BUIL I 0002 0016 II SUPP 0003 1 0016 II TECH 1 0004

2 WEAT 0007 1 0003 WOOD 0008 0003
F

%MI5

UNUSED
1

I I

I

0000 HANS 0 CLUF data of CLUF OIFIRS data of FIRS 0 HANS data of HANS 1 W/AT dit 0001 [

0001 1 WALK BYRA data of BYRA 0 HODG data of HODG 0 RHOD data oi 0 WALK data of WALK H 0002

0002 I MOSS 0 FRAN data of FRAN 0 LUTZ data of LUTZ 0 MORS data off 0 MOSS data of MOSS 0003

rqGEOR0003 IYUON I data of GEOR 0 GRIF data of GRIF 1 0 LARH data of LARHD OIYUON data of YUON 0004

0004 JOHN 0 DILL data of DILL OIEGGY data of EGGY 01FOST data JOHN data of JOHN 0009

I

0005 I I WILL
[

0 BARR data of BARR OIDATE data of DATE I0 HEIL data of] 0 WILL data of WILL 0 0006

0006 MCDO I 0 FOST data of FOST II O1MCDO data of MCDO UNUSED 0007

0007 INARA 10 MACK data of MACK OIMOOR data of MOOR 0 'NARA data oft
< UNUSED 0008

1

0008 ROOD I0 ESON data of ESON 0 NELS data of NELS 01ROOD data ****UNUSED

0>T7-050009 SMIT 111 W/A d,t1, ,0 <----UNUSED

Figure 5.13. Partitioned File after deletion of records "SOLA" and "SMIT".

0003

1 0006 I

1 0009 I

C

C

H. A.

0000

Update by changing from 0016 to 0019 --I,

TECH

WOOD

0044 I ADMI

0032 I UTIL

0000 0016 AIRF 0001 0016 BUIL 0002 0016 SUPP 0003 0016 I TECH 0004 0017

0005 0016 I WAST

I 0001 I

0002

1 0004 I

0005 1

0007

1 0008 I

0006 I 0002' WEAT

FDeleted Bit.

SOLA L 0 CLUF data of CLUF I 0 FIRS

0007 0003 WOOD 0008 00031 UNUSED

data of FIRS 0

Update by changing from 0002 to 0003
Link

HANS dati
1°f

0 SOLA data of SOLA 0001

WALK 0 BYRA data of BYRA 0 HODG data of HODG 0 RHOD data of 0 WALK data of WALK 0002

MOSS FRAN data of FRAN 10 LUTZ data of LUTZ 0 MORS data 0 MOSS data of MOSS II 0003

YUON 0 GEOR data of GEOR 0 GRIF data of GRIF 0 LARH data of LARH 0 YUON data of YUON II 0004

JOHN 0 DILI data of KILL 1 0"OK///tiad .%)? iddly 0 FOST data

WILL 0 BARR data of BARR 0 DATE data of DATE 0

I MCDO

I NARA

HEIL data

0 FOST data of FOST 0 MCDO data of MCDO

0 JOHN data of JOHN U 0009

1UNUSED

OIWILL data of WILL 0006

0007

OIMACK data of MACK to NARA data)}
3f

UNUSED 0008

ROOD 01 ESON data of ESON 0 NELS data of NELS OIROOD datat*of ROOD I UNUSED/ ****

SMIT OI SMIT data of SMIT

Figure 5.14. Partitioned File after addition of records "EGGY" and "MOOR".

UNUSED-,I) 0005

C

0005
ount I

TECH 0004 ADMI 000001 AIRF 000101 BUIL 000201
4,

SUPP 000301 TECH 000001

Count
WOODOOD 0032 JUTIL 000501 WAST 000601 WEAT

>-!Key--> IEOFP>1

000701 I

tr.
0
U

1 1 WOOD 000801 I

Record number
Cylinder number and track number

0000 1 0060 0011 DATA 000000 0019
DATA

with full name
000000 ill 00601 DATA 000000

0001 1 0055 0002 I DATA 000000 0010 DATA 000000

0002 0050 0005 DATA I 000000 11 0015 DATA 1 000000

0003 1 0047 0003 I DATA 1 000000 0008 DATA 000000

0004 0059 0001 DATA 000000 0006 DATA

0005 0058 1 0004

0006 [a

DATA 1 000000 0007 DATA

I

000000 I

Unused

I0055 DATA

) 0050 [DATA

1 I

000000

000000 I

0047 DATA 000000

0053 DATA 001901

0057 DATA 001916

0019 001901 0056 DATA 001902 0059 DATA I ******
-1.-

1 cal 1 0058 DATA ******

0020 III

0021 I I NH I

H. A. = Home address; HK = Highest key in the member; DATA = Data of the record with record's full name; OFP = Overflow pointer.
This typical of partitioned disk file is not popular in used for on-line information system; its characteristics are not much different from the file
system as shown in Figure 5.12.

Figure 5.15. Mapping of Partitioned File on Disk Memory, using Directory and variable length inverted list.

85

reorganized. Deleted directory entries can be reused. See Figure

5.12-5.15. The above illustrated numbers are based on the IBM File

System (15).

Description of Main File Record. In practice the records in

the members may be of fixed or variable length, blocked, unblocked,

or undefined, and may be formatted with or without keys. See

Figure 9. 2 on page 202. The records in all the members must have

identical formats. Members are stored one after another in the

order in which they are written. Deleted member data areas can be

reused to implement the Binary internal search. They have to be

written in key sequence. See the illustrated example in Figures

5. 12-5. 15.

Disk Storage Space Requirement. Enough disk storage is

required to hold the sequentially organized members and the direc-

tory. When new members are added, the Operating System allocates

the additional supporting areas if the original area is full.

Use of On-Line Partitioned Disk File

The method used for the on-line partitioned file system is

based on the system mentioned before in (2) under the On-Line

Partitioned Disk File, page 79. The algorithms are

86

Adding the New Records to the File

Step 1. The user initializes the operating system by calling

the specific name of the file. The operating system

will automatically load the directory into main core

memory. When the loading procedure is completed,

it will notify the user.

Step 2. The user supplies the search argument key. In case

the member name and its records have hierarchical

relation, the user has to supply the member name

and the full name of the desired record to the system.

Step 3. The operating system converts the supplied member

into its corresponding address by one of the methods

mentioned under Partitioned File Structure, and the

internal search, linear, or binary, or tree search

is performed.

Step 4. The operating system edits the records of the desired

member on disk memory into core memory, effective

number of "blocks", "sectors", or "tracks" of data

is called in the core memory. In this evaluation

assume that one track of data is called into core mem-

ory at a time.

87

Step 5. The internal search for proper location is performed.

Searching may be repeated block by block or track by

track until the proper location to which the new

incoming record belongs is located.

Step 6. When the proper location is found and it is empty,

the new incoming record is added there; the job is done.

Step 7. If the proper sequential location is found, and it is

not empty in that track, the operating system will

move the rest of the records higher in that track up

one position; some of the higher key records in that

prime track may be bumped out.

Step 8. The operating system will continue the search for the

first available space in the overflow area. In this

evaluation the cylinder overflow area is to be con-

sidered.

Step 9. If the first available space in the cylinder overflow

area is found, the bumped record or the new record

is written and the pointer is updated. In the overflow

area the overflow records which belong to the same

prime track of each member must be organized in the

same chain.

88

Updating or Deleting a Record From the File

Steps 1 through 5 are the same as for adding a record to the

file (a desired record searching task).

Step 6. When the desired record is found on the prime track

of the desired member, the record is updated or

its deleted-bit is set to 1 for updating or deleting

respectively.

Step 7. If the desired record is not found on the prime track

of the desired member, the operating system will

continue the search for the desired record in the

overflow track by using linked list processing (chain-

search). When the desired record is found return

to Step 6; the job is done.

Adding a Member Name to the Directory

Step 1. The user initializes the operating system by calling

the specific name of the file, and the operating system

automatically loads the directory into the main core

memory. After the loading procedure is finished, it

will notify the user.

Step 2. The user applies some operating system editors; the

operating system will call for the member adding

89

routine. When it is ready the operating system

notifies the user.

Step 3. The user supplies the new coming member name and

the operating system converts the supplied member

name into its corresponding fixed-length key by one

of the methods mentioned under Partitioned File

Structure.

Step 4. The operating system uses this unique key of the new

member as the search argument for searching in the

directory: the internal search, linear search, binary

search, or tree search is performed depending on

which was implemented.

Step 5. For directory searching, if the proper location is

found and it is empty space, the operating system

stores the fixed-length unique key of the new member

there. It also allocates and supplies the address of

the first record of this member (in some systems

the user has to allocate and supply the address of the

first record of the new member of the system).

Step 6. If the proper location is found and it is not empty,

the operating system will move the rest of the records

in the directory up one position and rewrite in the same

fashion as addition of a new record to the strictly

90

sequential file.

Step 7. When the addition is finished, the operating system

will return the updated directory to disk memory by

applying an operating system editor. The job is done.

Actually the directory needs only one or a few sup-

porting tracks. Then it is not necessary to provide

the overflow area for the directory level. In case the

extension area is needed for the directory any suitable

track in the same cylinder should be assigned and the

pointer used to chain the extension track to the last

original track.

Deleting a Member Name From the Directory

Steps 1 through 4 are almost the same as the addition of a

new member name to the directory. The difference

is using deleting operating system editor instead of

addition operating system editor.

Step 5. For directory searching, search "equal" is used. If

the desired record is found its corresponding data

(that is the address of the first data record under this

deleted member) is set to all zeros. Now all data

records under the name of this deleted member are

lost in the file system. Step 1 through 5 are repeated

91

for all member names to be deleted for the directory.

In case the key of the member name is also cited in

the file record, the record is accessed, and the key

citations is deleted.

Step 6. When the deletion is completed, the operating system

returns the directory to disk memory; the job is done.

Evaluation of Accessing Characteristics
of the Partitioned Disk File

The Partitioned Disk File can be compared with other types of

file organization, when its characteristics are known. The simulation

of the partitioned disk file in this thesis is based on CDC-3300 with

Disk 854 system. The simulating strategy is as follows:

1. For the simulation of the Partitioned File, the data

records are assumed to be fixed, and blocked. Each

record is formatted with a key. The records on the disk

are organized as "a linked list inverted file" (11). The

logical relation between the directory and the records in

the main file is the same as that between the "directory

inverted file" (11) and its corresponding data record in

the main file.

2. Two methods of Directory Organization are evaluated

here:

92

a) Single level Directory Partitioned Disk File. See

details and computation in Example 3a, page 268.

b) Double level Directory Partitioned Disk File. See

details and computation in Example 3b, page 283.

3. The full name of the record is used for accessing the

record from the single level directory partitioned disk

file system. See Example 3a. The member key name

(the fixed-length unique key of Division names) and the

full name of the data record in the main file are used for

accessing the desired record from a double level direc-

tory partitioned disk file system. See Example 3b.

4. Simulating schemes and descriptions of both single level

directory partitioned file and double level directory

partitioned file are illustrated by block diagram model

as shown in Figure 5.16 and Figure 5.17 respectively.

Purpose of the Evaluation

The purpose of the evaluation is to measure the following

parameters of the Partitioned Disk File and to find out its character-

istics. The strategies of the evolution are as follows:

1. To compute the access time per record retrieval of the

data record on disk.

2. To measure the storage space requirement.

93

3. To find the characteristics of "average throughput/time

record retrieval", and "achievable throughput-rate-

capacity" system relative cost.

4. To find the "cost /effectiveness" characteristics (user

operating cost per call, unit cost).

5. To compare these characteristics with the other methods

of file organization.

Simulating Block Diagram Model

(Full name of record
is supplied by user.

(The desired record >0....
is presented to user.

CPU

Variable Tree

Directory inter-
nal search.

A data track
a cylinder over-
flow track is
called in and
internal search
is performed.

decoding task

as.

Disk File

Cylinder 1

Cylinder

dCylinder

Figure 5. 16. Block diagram showing the simulation of accessing
a random record from the single level Directory
Partitioned Disk File.

94

The accessing of a random record from a single level directory

partitioned disk file is shown in Figure 5.16. The user supplies the

full name of the desired record to the system, the operating system

will convert this full name into a fixed-length unique key and it uses

this key to search the directory for the address of the first data

record of the desired member; that is equivalent to roughly determin-

ing in which cylinder and track the desired record should be. The

access-arm will position on the desired cylinder, and the desired

data-track is read-in; the internal search is performed. When the

search is satisfied, the operating system will present the desired

record to the user; if the search is not satisfied, the operating sys-

time will call for the "unfound routine" and notify the user "NO SUCH

NAME IN THE FILE". See more details in Example 3a, page 268.

The method of accessing a random record from the double

level directory partitioned disk file is shown in Figure 5.17. The

user supplies a unique fixed-length key of the desired member name

to the system, the operating system will search for the beginning

address of the desired sub-directory and it will notify the user when

the job is done. The user has to supply the full name of the record

to the system, the operating system will convert the full name of the

desired record into fixed-length unique key. The operating system

will use this key to search in the desired subdirectory for the

desired cylinder and track. The access-arm positions on the desired

95

cylinder and the desired data track is read-in; the internal search

is performed. When the search is satisfied the desired data record

is presented to the user; the job is done. If the search is not satis-

fied, the operating system will call for the "unfound routine" and

notify the user "NO SUCH NAME IN THE FILE". See more details

in Example 3b, page

em er ixe -
length key is
u lied b use

CPU

Full name of record
is supplied by user.

C
isThe desired record

presented to user

Main Directory

search.

V

Variable Tree
decoding task

Sub-Directory

search.

A desired data
track is called
in and internal
search is per-
formed.

Y

Disk File

Cylinder 1

Cylinder 2

Cylinder 3

Cylinder 4.

Figure 5. 17. Block diagram showing the simulation of accessing
of a random record from double level directory
Partitioned Disk File.

96

Results of the Evaluation of the Partitioned Disk File

Results of the evaluation of the partitioned disk file and the

comparison of this file characteristics with those of the other method

of file organization are shown in Chapter VII.

97

VI. DIRECT FILE STRUCTURE AND USE

Direct File Structure

This chapter concerns some commonly used methods of direct

(random) organization, as well as the access methods provided for

files so organized.

General Description

With direct or random file organization, there is a definite

relationship between the key of a record and its address. This

permits rapid access to any record if the file is carefully organized.

The records will probably be distributed nonsequentially throughout

the file. To permit the key sequence processing, a preliminary

sorting routine is applied.

Addressing

In direct file organization there is no need to use the key name

directory. This saves a lot of required memory space. The major

components are "mapping function" (Hash Function) and "master

file". The graphical representation of direct file organization can

be as in Figure 6. 1.

Address

Address

Maste
record

Maste
record

98

Linear Probe

/Full name o
a record is
supplied by
he user

Address Maste
record

ash
codin Random Probe Address Maste

record

Chain Probe >, (Address

(Address

l< Address

are arc
Argument' Key to Address conversion I Master Records
search 1 with redundant records handlixig; in the file system

1 1

Master
recor

Master
recor

Master
recor

Figure 6.1 Graphical representation of direct file organization.

Mapping Function

The other well known name of the mapping function is "hash

function". The technique of converting the key name of a record

into the address of a record is known as "randomizing" or "hash

coding". In fact, with Direct File Organization the user generally

develops a record address that ranges from zero to some maximum

address; that is, the mapping area (storage supporting space) may

be considered as a single array or table. This storage supporting

99

space is called "hash table" or "scatter storage table".

Hash code technique is the fastest known method of searching

and insertion. It allows either searching or insertion in one step,

unless the table is over half full. In a hash table, the position of

any item is determined by its hash code, used as its address in the

table, which is a number easily obtained from the record name of the

item. There are many techniques in performing hash coding, as

mentioned by Robert Morris (24), Schay, G., Jr., and W. G. S.

Pruth (31), Johnson, L. R. (17) and Mcllroy, M. D. (26).

From experiments the writer has found that the simplest hash

code is the "division hash code". If the array has length n, that is,

there are maximum n entries contained in the table, and the largest

integer that may be contained in a computer word is m, the division

hash code of a word is found by dividing it as an integer by n. This

produces a quotient and a remainder; the remainder is an integer

between 0 and n-1, and may be used as the address of the entry in

the table or table index.

Items are entered into a table with a table index which is com-

puted from the record name of the item by means of some hash

coding method. See detail in Example 4, Appendix B. As long as

no two inserted items have the same hash code, searching and

insertion are performed each in a single step regardless of the size

of the table. When two items have the same hash code, a collision

100

or redundancy is said to exist. In this case the second item is called

the "secondary record" or "overflow record", while the first item

is called "first record" or "home record". The overflow record

must be put in another place in the table. Although it takes extra

time to search or insert the overflow record, if the hash codes are

randomly distributed, the average number of searches is less than

two, even for a table that is 80 percent full.

The usual hash coding methods involve the calculation of a

k-bit field, which is assumed to be a random integer between 0 and

2k-1. Thus the table size is restricted to the value of 2k.

Hash Code Redundant Handling

When hash coding is performed, it becomes possible for the

computed address of different keys to be the same, causing a colli-

sion between the storage locations allocated to each. Some other

place in the table must be found for one of the items. It is initially

assumed that once an item has been entered, it is never moved or

deleted. So another potential place must be found for the new entry.

In general, when the table is nearly full, many redundancies or

collisions may occur while the table is being probed for an empty

slot. Hence some procedure is needed which generates additional

calculated addresses until an empty slot is found. Of course, the

same procedure for generating additional calculated addresses

101

must be used when the item is later looked up.

In practice, when a hash coding routine is called for it is not

necessary to specify whether an item is being entered or being

looked up. What is required of the routine is to determine the address

at which the offered key belongs and to notify the user whether the

key has already been entered. Then the calling routine can make the

entry or extract the information, as appropriate. The procedure will

be to generate successive hash addresses until encountering either

a slot that contains the desired key or a empty slot. In the latter

case, the key is entered in the empty slot, if it is entered at all.

Many methods of resolving the collisions problem have been

suggested by Robert Morris (27). The particular method to be used

in a specific application should be chosen carefully, since the method

of handling collisions will affect the efficiency of the technique and the

difficulty of the programming task. The three conventional methods

of handling the collision problems are briefly mentioned here.

Linear Probing. In linear probing, which is also called the

"open method", the filing algorithm is as follows:

1. Calculate the address of the record to be entered in the file.

2. Input the record in that location if it is empty.

3. If the previous step is not successful, add i to the address

considered in step two, where i is an integer such as

i = 1, 2, 3, etc.

102

4. Repeat step two.

In figures 6.2-6.4 it is assumed that the size of the table is

N=8 and the following key names are going to be entered in the hash

table: MOORE, SMITH, JONES, BLACK, BROWN, JOHNSON,

BARONE, and OWEN (Details on pages 109 - 110)

In this method, upon collision, a search is made forward or

backward from the nominal position, the initial calculated addresses,

until the desired entry is found or an empty space is encountered.

The search is made circularly past the end of the table to the begin-

ning, if necessary. If an empty space is encountered, that space

becomes the home for the new entry.

The efficiency of the linear probing method can be analyzed by

techniques similar to those used by Schay, G. , and W. G. Spruth

(31) to evaluate a related method. The result is that, to within

suitable approximation, as shown in Equation 6.1, if E is the aver-

age number of probes necessary to look up an item in the table

Then E = (1-a/2)/(1- a)
(6. 1)

where a is the loading factor of the table.

Random Probing. With random probing, the algorithm of

generating successive calculated addresses to handle collisions is

as follows:

103

1. Calculate an address in the table by using some transforma-

tion (hash coding) of the key as a table index or address.

2. If the item is already at this address, or if the place is

empty, the job is done.

3. If some other key is there, call a pseudorandom number

generator for an integer offset . Make the next probe

at location 1 + p and go to step 2.

In practice the random number generator must generate every

integer from 1 to N-1, N being the size of the table, exactly once.

When the generator runs out of integers, the table is full and the

entry cannot be made. See details of the random number generator

in Example 4, Appendix B, and an example of random probing in

Figures 6. 5-6. 6 on pages 113 114.

The efficiency of the random probing method is expressed

in terms of E, the average number of probes necessary to retrieve

an item from the table. It happens to be equal to the average number

of probes which were required to enter the items originally. The

value of E depends on the fraction a of the table which is occupied

but not on the size of the table. In case N is the size of the table,

and k represents the number of items in the table.

Since E is equal to the average of the expected number of

probes to retrieval on record from the table, by mathematical

manipulation and approximation, as in equation 6. 2

104

E=) log (1 -a) (6. 2)

where

ais the loading factor. See the details in Example 4,

Appendix B.

Deletion of entries by using this scheme is a somewhat complex

process. One cannot mark an entry as empty in order to delete it

because other entries may have collided at that place, and they

would become unreachable. The hash addresses for every entry

in the table would have to be recomputed and some of them moved

in order for the gap caused by the deleted entry to be closed up. A

much more convenient method of deletion is to reserve a special

sign for a deleted entry. When a search is made for the proper

place of a key, the search continues if a deleted entry is encountered.

A new item can be stored in place of any deleted entry. The dis-

advantage of this method is that the lookup time is not reduced when

the entries are deleted; only the lost space is reclaimed.

Direct Chain Probing. Another method of resolving collisions

is called direct chaining, and is considerably more efficient in terms

of the number of probes per record-retrieval. In this method, part

of one of the words or extra spaces in each entry is reserved for a

pointer to indicate where additional entries with the same calculated

addresses are to be found, if there are any. So all the same

105

calculated addresses are to found on a chain (or linked list) starting

at that address. The last entry on each chain must be distinguished

in some way, such as by having 11***" as a zero pointer, and end of

the chain.

The standard algorithm of direct chain probing is as follows:

1. When a key is to be looked up, its hash address is com-

puted, and then

if that address is empty, the key has not been entered

if that calculated address is occupied, search down

the chain starting from that address; if the key is not

encountered, it is not in the table.

2. When a new item is to be entered in the table, its hash

address is computed and then

if that address is empty, the item is installed there.

if that address is occupied by the item which is the head

of the chain, the next available space (or unallocated

cell) in the table is found by a "search for available

space routine", and the new item is placed in the new

available space. Then the new entry is inserted in the

chain, the pointers are updated both for the previous

successive entry and the new-coming entry in the same

chain, starting from the calculated address.

if that address is occupied by an entry which is not the

106

head of the chain, i, e., by an entry which is not at its

own calculated address, then the old entry must be

moved to another slot and the new entry inserted in its

place. Search for the next available space is required

for installing the old entry, and updating the pointers

of the chain it is on.

The disadvantage of this method is that the entries must be

moved in the storage, which makes the programming of handling this

task more complicated than by other methods. Robert Morris (27)

suggested that when a newly entered item is to be placed on the chain,

it is usually more profitable to place it near the head of its chain

rather than at the end of the chain. The other inefficiency of the

direct chain method is that it requires more space.

An attractive feature of this method, from the result of an

experiment made by the writer, shows that when the table is almost

filled up or completely filled up, the new items can be placed in the

table (or even overflow area) with no change in the strategy of mak-

ing entries of looking them up. The efficiency of this method is still

quite good even after overflow has occurred.

The average number E of probes necessary to find an item

using this scheme has been calculated by Johnson, L. R. , (17) as

shown in Equation 6.3.

107

E = 1 + a/2 (6.3)

where a = k/N, the loading factor

k = number of entires

N = table size.

See the values of Equation 6.3 by computation and by simula-

tion on pages 304 - 309.

The standard rule for deleting items entered by chaining is as

follows:

1. An entry not stored at its calculated address may be set as

empty and its former chain joined around it (no link con-

nected to deleted entry).

2. An entry stored at its calculated address, but with no

chain starting from it, may merely be set as empty.

3. An entry stored at its calculated address with a chain

starting from it must either be marked or deleted, or one

of the items on its chain must be moved to the calculated

address and the chain properly set up.

See the illustrated examples on pages 116 118 and the compu-

tation of simulation in Example 4, Appendix B.

Direct File Maintenance

Maintenance of the direct (random) file is influenced by the

mapping function and the technique of handling the secondary

108

records selected by the user.

Suppose an effective mapping function is selected.

Case I. When the linear probing method is chosen to handle

the secondary records.

To add a new record to the file:

Step 1. Compute the calculated address of the record, 1, to be

added to the file.

Step 2. Look up the calculated address location and input the

record in that location if it is empty. The operating

system furnished the addition for that record. Other-

wise, go to Step 3.

Step 3. Add i (i=1, in the example on page 109) to its

calculated address forming the new address, 1 +

where i is an integer such that i = 1, 2, 3, etc. ,

depending on the user's solution and go to Step 2..

When a record in the file is deleted:

Step 1. Compute the calculated address of the record, 1, to

be deleted from the file.

Step 2. Look up the calculated address location and if the

key name of the record is encountered, delete it and

the deletion is finished. If that location is empty, the

operating system will notify the user that there is no

such record name in the file. Otherwise go to Step 3.

109

Step 3. Compute the new address by 1 + i (i = 1 in the example

in Figure 6. 2) where i has the same meaning as

in the adding procedure, and repeat Step 2.

The procedure for updating the data of a record in the file is

the same as for deleting it, but when the search is matching, read

out the desired record instead of deleting it.

See the illustrated examples in Figures 6.3 and 6.4 on page

110.

Argument
Transformed

Address

MOORE

SMITH 2

JONES 1

BLACK

BROWN 8

JOHNSON 4

BARONE 1

OWEN 4

Address Item

JONESF1

2 SMITH

-1.... 4 MOORE

5 BLACK-91.-

6

7

-3,- 8 BROWN

L

Address Item

1 JONES (Home address)

SMITH

BARONE

MOORE (Home address)

5 BLACK

6 JOHNSON

7 OWEN

8 BROWN

a) List of Arguments and b) File after Step 1 and 2 _ c) After Steps 3 and 4
Transformed Addresses

Figure 6.2. Addition of the new items into the file with Linear probing.

110

Transformed
Argument A ddress Address Item Address Item

1 JONES 1 JONESMOORE

(deleting argument is 2 SMITH 2 SMITH

not secondary KEY)
3 BARONE 3 BARONE

MOORE --gm-- 44

5 BLACK 5 BLACK

6 JOHNSON 6 JOHNSON

7 OWEN 7 OWEN

8 BROWN 8 BROWN

a) Deleting Argument and its b) File after Steps 1. and 2 c) File after Steps 3 and 4
Transformed Address.

Figure 6.3. Deletion of the items which are not secondary records from the file with
Linear probing.

Transformed
Argument Address Address Item Address Item

OWEN 4 1 JONES 1 JONES

(deleting address is
a secondary record)

2 SMITH 2 SMITH

3 BARONE 3 BARONE

.4 4

S BLACK 5 BLACK

6 JOHNSON 6 JOHNSON

7 OWEN 7

8 BROWN 8 BROWN

a) Deleting Argument and
its Transformed Address

b) File after Steps 1 and 2 c) File after steps 3 and 4

Figure 6.4. Deletion of the items which are secondary records from the file with linear
probing.

111

Case II. When the random probing method is chosen to handle

the secondary records.

To add a new record to the file:

Step 1. Compute the calculated address of the record, 1, to

be added to the file.

Step 2. Look up the location of the calculated address. Input

the record in that location if it is empty; then the task

for adding that record is finished; otherwise go to

Step 3.

Step 3. Call pseudorandom number generator routine to

generate random number, p, compute the new address

by 1 p, and repeat Step 2.

To delete a record from the file:

Step 1. Compute the calculated address of the record, 1, to be

added to the file by selected mapping function.

Step 2, Look up the location of the calculated address. If

the key name of the argument record and the key name

of the calculated address location are matching, delete

the recoded, and the deletion is finished. If that

location is empty, the operating system will notify the

user that there is no such record name in the file,

otherwise go to Step 3.

Step 3. Call for random number generator routine again to

1 1 2

generate the new random number , compute the new

address location by 1 + p, and repeat Step 2..

The procedure for updating data of a record in the file is the

same as that for deletion, but when matching occurs the record is

read out instead of being deleted.

See the illuptrated example of addition and deletion of records

for the file with random probing, Figure 6. 5.

Case III. When the direct chain probing method is chosen to

handle the secondary records.

To add a new record to the file:

Step 1. Compute the calculated address of the argument

record, 1.

Step 2. Look up the location of the calculated address. Input

the new record in the location immediately after the

hash address of the key if that location is empty; i. e.,

this record is the first record, and is also the head

of the chain. If the location of the calculated address

is not empty, go to Step 3.

Step 3. Call for the routine to find the first available space in

the table, depending on the result of the lookup from

Step 2.. If the hash address of the argument record

and the hash address of the installed record are

matching, the new record becomes the secondary

Argument
Transformed

Address

MOORE 4

SMITH 2

JONES 1

BLACK 5

BROWN 8

JOHNSON 4

BARONE 1

OWEN 4

113

a) Argument and transformed
address

Random generator
generate value of p
suppose p = 3

Argument
Transformed

Address

JOHNSON 4 + 3 7

Address Items

JONES

2 SMITH

3

4 MOORE

5 BLACK

6

7

-- 8 BROWN

b) File after first records
are added

Address Items

1 JONES

2 SMITH

3

4 MOORE

5 BLACK

6

7

8

JOHNSON

BROWN

o = Home address a) File after secondary records
are added

Figure 6. 5. Addition of records to the file with Random probing.

Argument
Transformed

Address Address Items

JONES 1 1 JONES

SMITH 2 SMITH o2

JOHNSON 4 3

o

o

4 MOORE

5 BLACK

6

7 JOHNSON

8 BR OWN o

a) Argument and trans-
formed addre s s

Random generator
will generate value
of p = 3, the same
ad addition

Transformed
Argument Addre s s

JOHNSON 4 + = 7

114

Address Items

1

2

3

4 MOORE o

5 BLACK o

6

7 JOHNSON

8 BR OWN

b) File after first records
JONES, SMITH are deleted

Address Items Address Items

MOORE

1

3

4 MOORE

5 BLACK 5 BLACK

6

7 JOHNSON 7

8 BR OWN 8 BR OWN

c) File after the secondary
key JOHNSON is deleted

Figure 6.6. Deletion of records in the file with Random probing.

115

record. Install this new record in the new available

space, preceded by the hash address of the key. If

the above comparison is not matching, the new record

is the first record and is also the head of the chain

at that lookup location. Move the successive second-

ary record in that chain into lookup location and adjust

the pointers in that chain. The deletion is complete.

Otherwise go to Step 4.

Step 4. If the key of the desired record is encountered at some

place down the chain, delete it, and the deleted record

is the secondary record in the chain. Update the

pointers of the chain. The deletion is finished. For

updating the data of the record in the file, the steps

are the same as for deletion, but when the desired

record is encountered it is read out instead of being

deleted. There is nothing to change, not even the

desired record at the head of the chain.

To delete a record from the file:

Step 1. Compute the calculated address of the key name, 1,

to be deleted.

Step 2. Look up the location of the calculated address, 1. If

it is empty, the operating system will notify, the user

that there is no such record name in the file. If it is

116

occupied, search down the chain starting from this

location. If the key is not encountered, the operating

system will notify the user that there is no such key

in the file. Otherwise go to Step 3.

Step 3. If the key of the desired record is encountered at its

calculated address, delete it and the deletion is

complete.

See the illustrated example of addition and deletion of records

in the file with direct chain probing in Figures 6. 7, 6.8, 6.9, and

6. 10. Note * is the end of the chain.

Transformed
Argument Address Address Items Chain Address

MOORE 4 JONES

SMITH 2 2 SMITH 2

JONES 3 3

BLACK 5 4 MOORE 4

BROWN 8 5 BLACK 5

JOHNSON 4 6 6

BARONE 1 7 7

8 BROWN 8

a) Listing of arguments and
transformed addresses.

Items Chain

JONES

SMITH

6

JOHNSON r...*

MOORE L3

BLACK *

BARONE *11(-

BROWN

b) File after addition of first records and
secondary records; the pointers are updated.

Figure 6.7. Addition of items in the file with direct chain probing.

117

Transformed
Argument Address Address Items Chain Address Items Chain

MOORE 4 1 JONES 1 JONES 66

SMITH 2 2 SMITH 2 SMITH

JONES 1 3 JOHNSON 3 FOSTER

BLACK 5 4 MOORE 3 4 MOORE 7

BROWN 8 5 BLACK BLACK

JOHNSON 4 6 BARONE 6 BARONE

BARONE 1 7 7 JOHNSON

FOSTER 3. 8 BROWN 8 BROWN

a) List of addition arguments
and transformed addresses

b) File after addition of secondary record the head
of the chain; the records, and pointers are
updated.

Figure 6. 8. Addition of secondary record, the head of the chain when the calculated address
of the new coming item is occupied.

Transformed
Argument Address

SMITH (First
record)

JOHNSON

Address Items Chain

(Secondary record but
not the head of the chain

a) List of arguments and
transformed addresses
being deleted.

1 JONES

L2 SMITH

3 FOSTER

31. 4 MOORE

5 BLACK

6 BARONE

7 JOHNSON

8 BROWN

6

*

7
*

*we

Address Items Chain

1 JONES 6
2

3 FOSTER *

4 MOORE

5 BLACK

6 BARONE

8 BROWN

b) File after deletion; the
chain is updated.

Figure 6.9 Deletion of the items which are first record and secondary record, not the
head of the chain.

118

Transformed
Argument Address Address Items Chain Address Items Chain

JONES (Second-
ary record, the
head of the chain)

1 >1

2

JONES 6 1

2

BARONE

3 FOSTER 3 FOSTER

4 MOORE 4 MOORE

5 BLACK 5 BLACK

6 BARONE 6

7 7

8 BROWN 8 BROWN

a) Deleted argument and
transformed address.

b) File after deletion; the head
of chain and the pointer are
updated.

Figure 6.10. Deletion of the item which is the secondary record, the head of the chain.

Direct Disk File for On-Line System

As direct file organization permits rapid access to any record

from the file, on-line or realtime system designers have considered

this attractive feature of direct file organization. There are several

computer manufacturing companies which design their own on-line

or realtime information system, using direct file organization to

handle the information of the individual system.

Direct File Organization Supported by Disk

When the direct organization file is supported by Disk, accord-

ing to the nature of the mapping function, the records will probably

119

be distributed non-sequentially throughout the file. See illustrated

example in Figure 6.11 on page 121. The mapping of master records

on the disk surface is the same as that in the sequential file. The

user has to figure out beforehand how many words are required for

one record (the space in core memory), and how many records can

be contained in one track, in one cylinder, or in one disk unit. The

user has to keep in mind that even the address of the block of the

master records in the disk is assigned, but the disk hardware system

as designed can be addressed only by cylinder number, head number,

and track number. Only the portion of a track (an effective number

of blocks of records transferred between core memory and disk,

one at a time), is written as read into core memory. The exact

location of the record in the file can be located directly in internal

core memory.

Therefore to address a record from disk the following strate-

gies have to be used:

1. The approximate location of the desired record has to be

known as to what cylinder or what head is to be used to

read or write the desired information, and the number of

the track in that cylinder, in which it is to be located.

2. The disk control program will set the specified head on

the desired cylinder and the desired track.

120

3. The reading or writing begins. If it is a reading process,

the number of effective blocks of information are read into

the main core memory. That is the numbers of the records,

containing in the desired track, are copies and mapped

into the core memory.

4. The desired record is located by some means (Linear

search, or Binary search if the successive records are

in sequence of keys, because sort routine has been intro-

duced beforehand).

Addressing

With direct file organization, the user generally develops a

record address that ranges from zero to some maximum track

address. However, the addresses are noncontiguous. For example,

the address of the last track on the first cylinder of an IBM disk unit

2302 is 0045, while the first track on the second cylinder is 0100.

Furthermore, the file may start at other than the first track of a

device, and it may occupy several nonadjacent areas. According

to the nature of the Disk Operating System (DOS), the user is per-

mitted to refer to a relative cylinder and a relative track address.

Suppose N tracks are allotted to a file. The user refers to relative

track 0 through N-1. The input-output control system will convert

this number to the corresponding absolute track address.

Address Cylinder

0000

7 7

7

7

7

0045

0 Address Cylinder

0100

0145

1

1 Address Cylinder 2

0200

11

0245

Figure 6. 11. Address pattern on Disk memory.

121

Disk cylinder concept

With some operating systems such as the Basic Operating

System (BOS) of IBM, the user programs the steps to convert the

relative track address to an absolute track address of the format

shown in Figure 6.12 on page 122 which illustrates an absolute track

address format of D854, disk memory. Each byte (1 byte = 8 bits)

in the address is a binary number. When the user wishes to refer

to a particular record, he must supply either its key or its identifier

(i. e. cylinder number, head number, and record number) as well as

the track reference.

122

Upper portion Lower portionIfe=..iik,....
23 20 19 1211 8 7 4 3 0

/ 8 bits = 1 byte Track ISecotor

8 bits
Cylinder Sector

Figure 6.12. Disk storage drive address format, based on
D854, disk memory.

Directly Addressed File for Disk. For direct addressing, every

possible key in the file converts to a unique address. This makes

it possible to locate any record in the file with one search and one

read. The conventional technique of direct addressing is a follows:

1. Using the key as the address. In order to be able to use

the key of a record directly as its address, the record must

be of a fixed length, and the key must be numeric. One

computation is required. Divide the key by the number of

records per track; the quotient equals the relative track

address, and the remainder plus one equals the record

number (where record 0 is used as a capacity record).

This method of direct addressing not only allows minimum

disk time when processing at random, but also provides

for sequential processing, since the records are written in

key sequence. The disadvantage is that there may be a

123

large amount of unused direct access storage. A location

must be reserved for every key in the file's range, even

though many keys are not used. Furthermore, this method

is similar to hash code, and uses the numeric character

as the record's key name. For example, the user may

use the student number or social security number, worker

number or customer number as the key name of the record.

2. Using a Cross-Referenced List. With this method, each

record in the file is assigned an address and a cross-

reference list of keys and assigned addresses is maintained.

Since the address must be looked up, then the list, as

well as the file, must be kept up-to-date. The list may

itself be a file, recorded on a disk. Although any record

can be located directly when its address is known, time is

required to look up the address in the list. The index

sequential file is a variation of this method.

Indirectly Addressed File for Disk. Indirect addressing is

generally used when the range of keys for a file includes such a

high percentage of unused records that direct addressing is not

feasible. For example, customer numbers range from 0001 to 9999,

but only 3000 of the possible 9999 numbers are assigned. Indirect

addressing is also used for alphabetic keys.

With indirect addressing, the range of keys for a file is

124

compressed to the smaller desired range of addresses by some sort

of computation. This technique is called "randomizing ". It

inevitably causes collision, redundant or secondary records.

Two objectives must be considered in selecting a randomizing

technique (or mapping function) for disk memory.

1. Every possible key in the file must randomize to an

address in the allotted range, and

2. The addresses should be distributed evenly across the

range so that there are few redundancies.

With disk memory, a record that is written where it "belongs"

(at the address to which its key randomizes, or its calculated address)

is called a "home record". Any other records whose keys random-

ize to this address are "overflow records". The overflow records

should be kept to a minimum because of the additional time required

to locate them.

A way to minimize overflow records is to provide more space

for the file than is actually required to hold all the records. The

term "packing factor" or "loading factor" means the percentage of

allotted location that is actually used. For the indirectly addressed

file, an initial packing factor of 80-85% is suggested by IBM (15).

For example, a 10,000 record file packed 83% would be allotted

space for 12,000 records.

The technique to minimize overflow records is to randomize

125

to track address rather than to record address. In case we random-

ize to record addresses, all redundant records cause overflows.

That is, the disk system simply cannot provide the alloted space

for the redundant records that the core memory can. See Figure

6. 13a. Thirty percent of the records are redundant and 30% are

overflows. Randomizing to track address, causes many redundan-

cies, but no overflow until a track is full. As shown in Figure

6. 13b, 70% of the records are redundancies (the redundant records

are two x3, y2, y4, two z2, and z3). If randomizing to record

number, the commands to locate the desired record are Seek,

Search Identifier Equal, Read Data. If randomizing to track number,

the commands are Seek, Search Identifier Equal, and Read Data. It

is evident that both sets of commands take the same amount of time.

Track x

x3

x1 I I x3 I yl

Track y Track z

YZI 1 y4 1

z2
z2
z2

1 2 3 1 2 3 4

a. Randomizing to record address.

xl x3 x3 Y1 y2 y4 zlj

1 2 3 4 1 2 3 4 1

b. Randomizing to track accress.

I
z3

I I

2 3 4

z2 z2 z3

2 3 4

Figure 6. 13. Redundants and overflows in disk memory.

126

Randomizing Techniques Used for Disk

There are many randomizing techniques to convert the key of

a record into its address in disk memory. Selecting a good one for a

particular file may require some trial and error. IBM (15) has

suggested that an effective randomizing technique should cause no

more than 20% redundancies in excess of the number of records per

track.

The most popular randomizing technique which is simple and

often gives good results is called "Division/Remainder Method".

The key is divided by a prime number, a number evenly divisible

only by itself and by one, that is close to the number of addresses

alloted to the file. The remainder is used as the address.

Example 1. The problem is to load 8000 200-byte records

on a disk with randomizing to track address with 80% packing.

1. With 80% packing, 10, 000 locations are required.

2. Only 16 records can be loaded per track, s 625 tracks

are required.

3. A prime number close to 625 is 619.

4. Divide the key by prime number 619.

5. The remainder (000 to 618) equals the relative track

address.

Example 2. Same as above, but randomizing to record address.

127

1. A prime number close to 10, 000 is 9973.

2. Divide the key by 9973.

3. Divide the remainder in Step 2 by the number of records

per track, which equals 13 in this case.

4. The quotient equals the relative track address; the remain-

der plus one equals the record number.

This method can also be used both for numeric keys and non-

numeric keys. Using binary arithmetic will probably give better

results than using decimal arithmetic, since the uniqueness of the

letter and special character in the key is retained.

The division/remainder method automatically achieves the first

objective, to have all keys converted to addresses within the allotted

range. Whether it achieves the record objective for a particular

file, that is, to have few (not more than 20%) redundancies is

determined by testing (simulating) it. See details in Example 4,

Appendix B.

Description of a Direct Disk File

With direct organization, the records may be fixed-length

records, variable-length records or undefined-length records. See

Figure B. 2, page 202. They may be formatted with or without keys.

In case the file is indirectly addressed and randomizing to track

128

address-2/ for efficiency the records have to be formatted with keys.

If not, each record on the track must be read to determine if it is

the desired record or not. The records may be blocked or unblocked.

The access method for directly organized files in the operating sys-

tem handles physical records rather than logical records. So if the

file is indirectly addressed (by use of an alphabetical key), the

records are probably unblocked.

In most direct organization files, the record number zero, RO

of each track is used as a capacity record. It contains the address

of the last record written on the track and is used by the operating

system to determine whether a new record will fit on that track. The

capacity records, which are originally written for a file by a utility

program, are updated by the operating system as records are added

to the file. They do not account for deletions. When a track is full,

it remains full as far as the operating system is concerned, until

the file is reorganized, even though the user deletes records.

An indirectly addressed file generally consists of just one

logical area, main file area, which may actually be several non-

adjacent physical areas. The location of overflow records and

secondary records is up to the user, but they are generally put in an

?Randomizing to track address: key of records are converted
into their corresponding track address and count only the synonyms
in excess of the number of records per track. See Figure 6. 13b
on page 125.

129

unused location in the main (and only) file area. Secondary records

can be put in a separate area if the user desires. The disadvantage

of doing this is that each overflow record will require an additional

seek. One file area should be used and a good randomizing technique

selected so that the file is not being packed too tight. The overflow

records are likely to be in the same cylinder as the home record.

This will eliminate the need for an additional seek.

On-Line Direct File Maintenance

As the user has complete freedom in deciding where records

are to be located in a direct file, he is free to select the mapping

function and the technique to handle the secondary records of the file.

When the randomizing technique is chosen, the maintenance

of the file can be performed by the following strategies.

1. When creating or adding records to the file, the user may

specify the location for a record by supplying the track

address, or he may supply just a track address and let the

operating system find a location for the record. That is,

the user supplies the key name or the full name of the

record, and the operating system converts the key name

of the record or its full name into track address, and

finds the location for the record. If ther is room on the

specified track, the operating system writes the record,

130

and updates the capacity record for files constructed with

capacity records. If the specified track is full, the

operating system continues searching for first empty

space on successively higher tracks until a first emply

space location is found. This search continues for as

many tracks as the user has specified, to a maximum of

the entire file. If a maximum search is specified and the

end of the file is reached, the search for the first empty

space will return to the beginning and continue until a

location is found or until the original track is reached.

In some operating systems such as BOS or Disk Operating

System (DOS) of IBM, during the adding operation, if the

specified track is full, the user must supply another track

address.

2. When reading or updating the file, the user must supply a

key for the desired record. The operating system con-

verts it to a proper track address. The operating system

searches for that key and, in case the search is satisfied,

reads or writes back the corresponding Data Area. If a

key is not found, the operating system so indicates to the

user. A search by key is provided with two options, a

restricted or an extended one. On a restricted search,

only the track specified by the user is searched. On an

131

extended search, the operating system continues searching

on successively higher tracks for as many tracks as the

user has specified. Actually the operating system and

Disk Control System will continue searching to the end of

the cylinder.

Furthermore, with indirect addressing, the logic of creat-

ing, maintaining, and processing the file depends mainly

on the technique that the user has selected to handle the

overflow records in the file area.

Evaluation of Accessing Characteristics
of the Direct Disk File

The parameters of the Direct Disk File have to be measured

so that this type of file can be compared with others. For the CDC-

3300 with OS-3, the simulator provides the following strategy to be

performed for the simulation and computation of the Direct Disk File.

1. For all cases of simulation with the Direct Disk File,

records in the file are assumed to be fixed and blocked,

formatted with keys, and randomized to track address.

Overflow records are placed in unused locations in the

main area only.

2. In measuring the efficiency of mapping functions (hash

coding) the alphabetic key name system is more desirable.

132

In fact the alphabetic key name, the numeric key name,

and the alphanumeric key name can be interpreted equally

well by the computer, under the same ',Lapping function.

However, it i3 simpler and more convenient to select the

alphabetic key name (the full name of the record) for use in

the simulation.

3. In evaluating the efficiency of the selected hash functions,

the writer has performed experiments using only selected

names of people of the United States. Results of these

experiments appear in Example 4, Appendix B.

4. A random record is accessed from the direct disk file

system. All data records are stored on disk memory

(D854) and distributed according to the nature of the

selected hash function. The user has to supply the full

name of the desired record to the system. By user's

editing, the operating system will call for the selected hash

coding routine to convert the record full name into the hash

address. The operating system will use this hash address

for accessing the desired record in direct disk file. The

procedure of accessing a record from the file system is

dependent on the method selected to handle redundant

records. In this evaluation three well known methods,

linear probing, random probing, and direct chain probing

133

are to be considered. See details in Example 4, Appendix

B.

Purpose of the Evaluation

The purpose of the evaluation is to determine the following

parameters of the Direct Disk File, and its characteristics.

1. To evaluate the efficiency of the selected hash function

with three methods of handling overflow records: linear

probing, random probing, and direct chain probing, in

terms of the average number of search length per record

retrieval, based on testing programs (expected number of

searches or compares until the desired record is found

for accessing a random record from File).

2. To compute the access time when the record is located

on the disk memory, based on the selected hash coding

technique.

3. To measure the storage space requirement.

4. To find the characteristics of "average throughput/time

per record retrieval" and "achievable throughput-rate

capability".

5. To find the "cost/effectivemess'.' characteristics (user

or customer operating cost per call, unit cost).

134

6. To compare its characteristics with other methods of

file organization.

Simulating Block Diagram Model

Cull name of the
record is supplied
y the Ilse;

r
CPU

Hash I decoding
task

address of the
desired record

Variable length
tree decoding
task.

Fixed length key

A desired track is
called in core
memory and inter-
nal search is per-
formed.

Disk File

Cylinder 1

Cylinder

Cylinder

Cylinder 4

Figure 6.14. Block diagram showing the simulation of accessing
of a random record from Direct Disk File.

The simulation of accessing a random record from a Direct

Disk File can be illustrated as in Figure 6.14. Each logical record

in the file is fixed, blocked, and associated with a key and a pointer.

135

The preliminary evaluation of five hash functions is determined by

internal simulation: Hash 1-5, with three methods of handling

redundant records. The results of the evaluation are shown in

Figures 9.12-9.15. Hash 1, which possesses the best search char-

acteristics has been selected to demonstrate the results of direct

disk file accessing. The direct file is recorded on D854, disk

memory, one read/write head per disk surface by using the cylinder

concept. See Figure 2.10, page 15. The records can be stored in

contiguous areas track by track, cylinder by cylinder, not in a key

sequence, but distributed according to the nature of mapping function

(hash function). For accessing the desired record from the direct

file, the full name of the record is supplied to the system. The tree

with variable-length key directory decoding routine is called, and

converts the full name of the desired record into one word, a unique

fixed-length key. The operating system can use this fixed-length key

as search argument. Since each record of the direct disk file needs

extra space for a pointer there are 63 logical records for each track

of this file. From the results of evaluating the five selected hash

functions, it is more efficient to use Hash 1 as the selected mapping

function associate with linear, random, or direct chain probing one

at a time to compare the results with other file accessing methods.

By controlling of operating system one track (desired track) of direct

disk file is called in and the internal search by linear probing,

136

random probing, or direct chain probing is performed. If the

desired record is found; the operating system will oresent it to the

user. In case desired record is not found, the operating system

will notify the user that it is not there. See details in Example 4,

Appendix B.

Results of the Evaluation of the Direct Disk File

Results of the evaluation of the direct disk file and comparison

with the other methods of file organization are shown in Chapter VII.

137

VII. RESULTS AND CONCLUSIONS

Summary of Investigation and Evaluation

One objective of this thesis is to present a possible method

which the writer expects to be useful for people in data-processing

or digital-information-systems. This technique reduces time and

effort in the calculation of meaningful numerical values to be used

as references in determining the economic performance. To meet

this objective, the following technical terms, average throughput

time per record retrieval, achievable throughput-rate-capability,

and operating cost per performance, are defined and evaluated. A

certain system-operating assumption is also defined. In addition,

technical terms, their definitions, and equations in which they

appear are shown in Appendix B. The extensive use of curves and

tables in this chapter is intended to help the system designer and the

evaluator to better understand the trade-offs available. The reader

has to keep in mind that in all cases of the investigation the system

is assumed to be an on-line only operation and no-error with fixed-

length message arriving at a uniform input rate.

For the evaluation of the performance and operating cost of an

on-line data file system, the schematic diagram of investigation and

evaluation is presented in Figure 7.1, page 142. The following data

138

file characteristics have to be evaluated and compared:

1. Average throughput time per record retrieval as the

function of file loading factor, for each typical file. The

description and results of the investigation are discussed

on pages 146 - 151.

2. Achievable throughput-rate-capability as the function of

file loading factor for each typical file. This is computed

by using general formular equation (7. 1), page 141 . This

description and results are discussed on pages 152 - 161.

3. File operating cost per call (unit cost) as the function of

file loading factors for each typical file at selected rates

of call (calls per hour), to help the evaluator visualize

better the trade-offs available. Details of the description

and results of the evaluation are covered on pages 162 - 175.

4. Two common methods of internal search, linear search

and binary search, as the preliminary work for data file

internal search evaluation and compare. See details and

results of evaluation on pages 193 - 197.

5. Five common hash methods selected for investigation of

the values of average search-length per record retrieval

(expected number of searched per random record retrieval)

as the function of file loading factor, as the preliminary

work for selecting the best method to be used in evaluating

139

direct disk file organization. From the results of evalua-

tion and comparison, Hash I is the best hash function, and

is selected for the evaluation of the accessing character-

istics of direct disk file organization. See details and

discussion on Example 4, Appendix B, pages 294 - 311.

In making a decision as to which method of data file organiza-

tion is the most suitable one, the following criteria are to be con-

sidered:

1. Among techniques (types of files) with equal cost, total

cost of the system, or in some cases only operating cost,

is to be considered, depends on the objective of the

problem. The technique with the greatest effectiveness

(the one providing the maximum achievable throughput-

rate capability) is best.

2. Among techniques (types of files) with equal effectiveness,

the one with the least cost is best.

Thus it is reasonable to evaluate and compare the average

throughput time per record retrieval, achievable throughput-rate-

capability (the maximum rate of use of each typical file), and file

operating cost per call as the function of the file loading factor. In

fact, when a decision is made on a set of data file organization

methods, file-system parameters have to be specified:

140

a) File loading factor or file size.

b) Rate of use of file (calls per hour).

The algorithims of making decisions are:

1. Checking which type of file can be operated at the specified

rate of use, by using the curve or the table of achievable-

rate-capability, to find a set of file organization methods

(at least one) which satisfies the specified rate of use.

2. Checking with type of file from a set of files obtained

from 1. can be operated at lowest cost, by using the

curves and the table of file operating cost per call, unit

cost. If there exists more than one type of file giving the

lowest operation cost per call, go to 3.

3. Checking again a set of files obtained from 2 by using the

achievable-rate-capability curves of Table 7.3 on page

and selecting the one providing the highest achievable-

throughput-rate-capability as the typical file for decision

making, to preserve the capability of increasing rate of

use (call per hour) of the file system.

Throughput Time Per Record Retrieval is the response time of

the data file system starting from the entry of the last character of

the full name of a desired record or from the unique fixed length

key of desired record, and the receipt of the first character of a

reply. The throughput time of an automated savings account system

141

is illustrated in Figure 7. 3; t2-t3 is a throughput time per record

retrieval. In practice the throughput time varies depending on the

size of file and the method of accessing. Then to compute the

throughput time of a random record retrieval the average throughput

time per record retrieval is considered.

Achievable through-put-rate capability must be considered in

developing criteria for evaluating cost, and performance in a specific

data file system. It is the maximum through-put-rate at which the

system can meet such an applicable specification as response time.

A system, meeting all specifications at the acheivable through-put-

rate should be considered to have achievable through-put-rate

capability. It may be viewed to measure the expansion capability of

the system, and at times to indicate that the desired system may be

more powerful than required. The general form of the relationship

between achievable through-put-rate-capability and average through-

put time is:

Achievable throughput-rate-capability, (calls per hour)

= 3600 average throughput time per record

retrieval, (sec) (7. 1)

Results of the Investigation

The writer has examined and presented the accessing of a

desired record by each of the four methods of file organization for an

On-line
data file systems

Variable length tree decoding
technique is investigated

I and evaluated.

Sequential disk file

Investigation and evaluation
of internal linear search
and binary search.

Unsorted sequen-
tial disk file

(UNSQ)

Strickly
equential disk
(STRSQ)

UNSQ using
unique fixed
length key

UNSQ using
full name of
records

STRSQ suing
unique fixed
length key

STRSQ using
full name of
records

4,

Indexed sequential disk file
(ISQ)

ISQ using
unique fixed
length key

1

ISQ using
full name of
records

Partitioned disk file

Single level directory
partitioned disk file

(SDPF)

SDPF using
unique fixed
length key

SDPF using
full name of
records

Double level directory
partitioned disk file

(DDPF)

DDPF using
unique fixed
length key

DDPF using
full name of
records

Direct disk file
(DF)

V

Investigation and evalua-
tion of five selected hash
functions. Hash I, the
best function is considered.

Hash I, DF-
with linear prob-
ing (Hash I,
DF, LP)

Hash I, DF, LP
using unique
fixed-length key

Hash!, DF, LP
using full name
of records

4

Hash I, DF
with random prob-
ing (Hash I,
DF, RP)

HashI, DF, RP
using unique
fixed-length key

Hash I, DF, RP
using full name
of records

Hash I, DF
with direct chain
ing (Hash I,
DF, CH)

Hash I, DF, CH
using unique
fixed-length key

Tilsh I, DF, RP
using aril name
of records

Comparison and Evaluations

Figure 7. 1. Schematics diagram of investigation and evaluation of on-line data file systems.

See details Figure 7.2 on page 143

(From Figure 7.1 on page 142

All types of file organization
methods using unique fixed-
length key in accessing. The
following characteristics are
investigated and evaluated:

1. Average throughput per
record retrieval.

2. Achievable throughput-
rate capability.
For making comparison

with the corresponding results
of the file system, using full
name of records in accessing.

Special attention is paid to all
cases that use the full name of
the record in accessing. The
following characteristics are
investigated, evaluated and
compared:

1. Average throughput per
record retrieval.

2. Achievable throughput-rate
capability.

3. Customer operating cost
per call (unit cost) at
selected specific rate of
use, call per hour, as an
illustrated example.

Figure 7. 2. Investigation and evaluation of characteristics of on-line data file system.

Throughput time per
record retrieval

tl t2 t3 t4 t5

Transaction
completed.completed.

First character of
reply given to the
customer.

First character of processor
reply appears at terminal device.

Teller enters the last
character of input message
into terminal device.

Teller has customer's request.

Customer starts transaction with teller.

Figure 7.3. Throughput time per record retrieval.

145

on-line information system, supported by disk. The parameters of

the technical system are based on the CDC-3300 computer system

at Oregon State University Computer Center. The method of file

organization for an on-line information system has been shown to

have superior to average throughput time per record retrieval, and

also operating cost per call (unit cost). The comparative results

from simulations and computations are shown in the following graphs

and tables.

RESULTS OF THE EVALUATION AVERAGE

THROUGH-PUT TIME PER

RECORD RETRIEVAL FOR

EACH TYPICAL FILE

Table 7.,1. Data results of computation of average throughput time per record retrieval as the function of file loading factors, for each typical file
organization method, using the full name of records in accessing.

File loading factor, a 0.0156 0.0372 0.0625 0.2500 0.5000 half 0.7500 1.0000 full

Number of records
in file

128

records
512

records
1024

records
4096

records
8192

records
12288
records

16384
records

Typical files
Average throughput time per record retrieval as the function of file loading factors

ms ms ms ms ms ms ms

Unsorted
sequential file 227.399 377.479 517.519 1905.599 3632.605 5360.130 7087.645

Strickly
sequential file 232.371 397.510 617.582 2065.351 4050.113 5937.890 7922.660

Indexed
sequential file 232.286 232.374 232.414 232.498 232.551 232.608 232.656

Single level directory
partitioned file 182.358 182.473 182.513 182.663 182.705 182.765 182.780

Double level directory
partitioned file 182.360 182.476 182.516 182.631 182.672 182.732 182.748

Direct file with
linear probing 177.470 177.550 177.590 177.671 178.573 179.714 183.519

Direct file with
random probing 177.484 177.565 177.605 178.929 180.248 183.606 191.746

Direct file with
direct chain probing 177.468 177.549 177.589 177.769 178.572 179.708 183.420

15000

10000
9000
8000
7000
6000

cu, 5000

4000

.1.1i 3000

-o

2000
c.)

a)

a
1000
900

-obt, 800

E
700

'
600

b0 500
ro;-

400

300

200

100

See code number in Figure 7.5,, page 148.

0.0625
(1024 records)

0.2500
(4096 records)

0.5000 0.7500
(8192 records) (12288 records)

File loading factors

1.0000
(16384 records)

Figure 7.4. Average throughput time per record retrival as the function of file loading factors for each typical file, code numbers 1 to 3, using full
name of records in accessing.

232

192

189

186

183

180

177

= Unsorted sequential file

= Strickly sequential file

= Indexed sequential file

= Single level directory partitioned file

= Double level directory partitioned file

= Direct file with linear probing

= Direct file with random probing

= Strickly sequential file

0.0625
1024 records)

0. 2500
(4096 records)

0. 5000
(8192 records)

File loading factors

.0. 7500
(12288 records)

1.0000
(16384 records)

Figure 7.5. Average throughput time as the function of file loading factors for each typical file organization method using the full name of records
in accessing.

Table 7.2. Data results of computation of average throughput time per record retrieval as the function of file loading factors for each typical
file organization method using unique fixed-length key in accessing.

I

File loading factor, 0.0156 0. 03 72 0. 0625 0.2500 0. 5000 0. 7500 1. 0000

Number of records
in file

128

records
512

records
1024

records
4096

records
8192

records
12288
records

16384
records

Typical files
Average throughput time per record retrieval as the function of file loading factors

ms ms ms ms ms ms ms

Unsorted
sequential file 219. 004 369. 004 569. 004 189 7. 004 3624. 004 5351. 504 7079. 004

Strickly
sequential file 223.976 389. 035 609.067 2056. 756 4041. 512 5929. 289 79 14. 019

Indexed
sequential file 223. 89 1 223. 899 223. 899 223. 9 03 223.950 223. 9 82 224.015

'Single level directory
partitioned file 173.963 173.998 173. 99 8 174.068 174. 104 174. 139 174. 139

Double level directory
partitioned file 173.965 174.001 174.001 174.036 174.071 174. 131 174. 107

Direct file with
linear probing 169.075 169.075 169.075 169.076 169. 9 72 171. 113 174. 878

!Direct file with
random probing 169.089 169.090 169. 09 0 170.334 171.647 175.005 183. 105

Direct file with
direct chain probing 169.073 169.074 169.074 169. 174 169.971 171. 107 174.779

15000

loam}
9000
8000
7000
6000

5000

4000

3000

2000;

1000
900
800
700
600

500

400

300

200

100

See code number in Figure 7.5, page 148.

0. 0625 0. 2500
1024 records) (4096 records)

0.5000
(8192 records)

File loading factors

Figure 7.6. Average throughput time per record retrieval as the function of loading factors for each typical file code numbers 1 to 3 using unique fixed
length key in accessing.

0. 7500 1.0000
(12288 records) (16384 records)'rn

c.)

223

221

183

180

177

174

170

168

See code number in Figure 7.5, page 148.

0.0625
(1024 records)

0. 2500
(4096 records)

0. 5000
(8192 records)

File loading factors

Figure 7.7. Average throughput time as the function of file loading factors for each typical file organization method, code numbers 3 to 8, using
unique fixed-length key in accessing.

0. 7500
(12288 records)

1. 0000
(16384 records)

RESULTS OF THE EVALUATION

ACHIEVABLE THROUGHPUT-RATE CAPABILITY

FOR EACH TYPICAL FILE

Table 7.3. Data results of computation of achievable throughput-rate capability as the function of file loading factors for each typical file
organization method using the record's full name in accessing.

File loading factor, a 0.0156 0.0372 0.0625 0.2500 0.5000 0.7500 1.0000

Number of records
in file

128

records
512

records
1024

records
4096
records

8192
records

12288
records

16384
records

Typical files
Throughput-rate capability as the function of file loading factors

calls/hr. calls/hr. calls /hr. calls/hr. calls/hr. calls/hr. calls/hr.

Unsorted
sequential disk file 15831 9537 6234 1889 991 672 508

Strickly
sequential disk file 15493 9056 5829 1743 889 606

.

453

Indexed
sequential disk file 15498 15492 15490 15484 15481 15477 15472

Single level directory
partitioned disk file 19741 19729 19725 19708 19704 19697 19696

Double level directory
partitioned disk file 19741 19729 19724 19712 19708 19701 19699

Direct desk file with
linear probing 20285 20276 20271 20262 20160 20032 19617

Direct disk file with
random probing 20284 20274 20270 20120 19973 19607 18232

Direct disk file with
direct chain probing, 20285 20276 20272 20251 20160 20033 19627

30000
27170

20000

10000
9000
8000
7000
6000

5000

4000

3000

2000

1000
900
800
700
600

500

400

0 0
Upper limit of the system
(27170 calls per hour)

See code number in Figure 7.5, page 148.

0.0625 0.2500
(4096 records)(1024 records)

0.5000
(8192 records)

File loading factors

0.7500
(12288 records)

1.0000
(16384 records)

Figure 7.8. Achievable throughput-rate capability as the function of file loading factors for each typical file, code numbers 1 to 5, using full name
of records in accessing.

20400

20200

20000

19800

19600

O

k 19400
a.

19200

a.
ow 19000
a)
co

tico

0 18800

bap

2
E. 18600

18400

18200
0.0625

(1024 records)

See code number in Figure 7.5, page 148.

0.2500
(4096 records)

0.5000
(8192 records)

File loading factors

0.7500
(12288 records)

1.0000
(16384 records)

4=

Figure 7.9. Achievable throughput-rate capability of file loading factors for each typical file organization method, code numbers 4 to 8, using full
name of records in accessing.

Table 7.4. Data results of computation of achievable throughput-rate capability as the function of file loading factors of each typical file
organization method, using unique fixed-length key in accessing.

File loading factors 0.0156 0.0372 0.0625 0,2500 0.5000 0.7500 1.0000

Number of records
in file

128
records

512
records

1024
records

4096
records

8192
records

12288
records

16384
records

Typical files
Throughput-rate capability as the function of file loading factors

calls/hr, calls/hr, calls/hr. calls/hn calls/hr. calls/hr. calls/hr.

Unsorted
sequential disk file 16438 9756 6327 1898 993 673 509

Strickly
sequential disk file 16073 9254 5911 1750 89' 607 455

Indexed
sequential disk file 16079 16079 16079 16078 16075 16073 16070

Single level directory
partitioned disk file 20694 20690 20690 20682 20677 20673 20673

Double level directory
partitioned disk file 20694 20690 20690 20685 20681 20674 20677

Direct disk file with
linear probing 21292 21292 21292 21292 21180 21039 20$86

Direct disk file with
random disk file 2129 21290 21290 21135 20973 20571 19661

Direct disk file with
direct chain probing 21293 21292 21292 21280 21180 21039 20597

27170

20000

;-
00
%- 10000
a. 9000
X, 8000
63 7000

6000

5000
a.
u 4000
r)
cd

3000
a.
bo

2 2000

1000
< 900

800
700
600

500

400

Upper limit of the system
(27170 calls per hour)

See code number in Figure 7.5, page 148.

0.0625
(1024 records)

0. 2500
(4096 records)

0.5000
(8192 records)

File loading factor, a

0. 7500
(12288 records)

1.000
(16384 records)

Figure 7.10. Achievable throughput-rate capacity as the function of file loading factors for each typical file, code numbers 1 to 3, using unique
fixed-length key in accessing.

0.0625
(1024 records)

0.2500
(4096 records)

See code number in Figure 7.5, page 148.

0.5000
(8192 records)

File loading factors

0.7500
(12288 records)

0

1.0000
(16384 records) ul

Figure 7.11. Achievable throughput-rate capacility of file loading factors for each typical file organization method, code numbers 4 to 8, using fixed
length key in accessing.

Table 7.5. Approximate formulas of average throughput time and achievable throughput-rate capability for each typical file.

Typical file Approximate average throughput time
Approximate achievable

throughput-rate capability Description

Unit m sec. calls/hr.

Unsorted
sequential file T ze 0.635 N+ 97.453

1

3600 (Sec) for 0 < a ,,< 1.00C
1 T

1
(Sec)

Strickly
sequential file T 2=-0.635 N+ 102.451 3600 (Sec) for 0 < a .,.5. 1. 00c

2 T2 (Sec)

Indexed
sequential file T3=1- 232.3878

3600 (Sec)
for 0 .< a 1.00C

3 T3 (Sec)

Single level
partitioned disk T4 r--' 35.00 (log2N) + 182.4268

3600 (Sec)
for 0 < a .< 1.00

C
4 T4 (Sec)

Double level
partitioned disk file

NT = 35.00 (log -) + 182.4268
5 2 4

(Sec) for 0 < a ... 1.00
_3600

C
5 T

5
(Sec)

Direct disk file
with linear probing

T6 =:- 177.545

T6= 177.545 + 0.007875 ELP + 0.5 E
1

+ 0.675 E
2

3600 (Sec) for 0 < oi,< 0.25

for 0.25< a ..< 1. 00
C -

6 T6 (Sec)

Direct disk file with
random probing

T7 =-1 177.604

T7 r-"" 177;604 + 0.0346 ERP + 0.5 E
3

+ 0.675 E
4

3600 (Sec) for 0 < a 0.25

for 0.25< a ...< 1.00
C

7 T (Sec)
7

Direct disk file with
direct chain probing

T8'1'. 177.573

T8= 177.573 + 0.019875 EDcFl+ 0.5 E5+ 0.675 E
6

,.,3600 Sec for 0 . a .5... 0.5

for 0.5 ..< a <, 1. 00
CS

8 T8 (Sec)

159

From Table 7.3, the following deductions can be made:

1. Both T1 and T2 increase excessively when number of

records in a file or file loading factor is increased. T2

increases most of all, so that

T2 > T1 > T3, T4, T5, T6, T7 and T8 for 0 < a< 1.0000

as shown in curve in Figures 7.3 and 7.4 pages 144

and 147.

C2 < Cl < C3, C4, C5, C6, C7 and C8 for 0 < a<

1. 0000.

2. T3, from the approximate formula, is almost a constant

function. Its value is not increased much when the file

loading factor is increased, as in Figure 7.4.

T3 - 232 ms/call

T2 > T1> T3 > T4, T5, T6, T7 and T8 for 0 < a<1. 0000

see Figure 7.5 and 7.6 pages 148 and 150.

C2 < Cl < C3 < C4, C5, C6, C
7

and C8 for 0 <a< 1. 0000

3. T4 and T5, from the approximate formula, are almost

constant functions. But when the number of records in

a file, N, is increased,

T4 a g x 10-3 (log2N) ms, to small

and T5 a O. 25 g x 10-3 (log2N) ms, to small

g = average search time per record in second level

directory, p, sec. in Figure 7.6 page 150

160

T4 = T5 = 182 msec. T
4

< T
5

for 0 < a< O. 25,

T4 > T5 for 0. 25 < a< 1.00

T2 > T > T3 > T4 > T5 > T , T7, and T
8

for a 1.0000

C2 < C1 < C3 < C4 < C5, C 6'
C7, andC8fora1.0000

4. T6, T and T8, from the approximate formula, are:

-T6 177. 4588 (7. 875 1 a/ 2
1

) + 165. 625) x 10-3 ms- a

for 0 < a< 0.50

T
7

177. 4588 (3. 4 (-a-'loge (1 - a)) + 137. 375) x 10-3

ms for 0 < a < 0. 25

T
8

177.4588 (19. 875 (a/2) + 164. 25) ms for 0 < a<

0.50

Then in the range of 0 < a< 0.50

T2 > T1 > T3 > T4 > T5 > T7 > T6 > T8

C2 < C
1

< C3 < C
4

< C
5

< C
7

< C6 < C8

5 Again T6, T7 and T8 from the appropriate formula,

are:

T6= 177.4588

1. 000

T
7

177.4588

+ 30 (E
1

)

+ 30 (E
3

)

+ 50 '(E2

+ 50 (E
4)

) for 0.55 < a<

for 0. 25 < a<

1. 000

161

T8 177. 4588 + 30 (E5) + 50 (E
6)

1.000

where El = Average search across cylinder for linear

for 0. 5 < a<

probing.

E
2

= Average search across track for linear probing.

E
3

= Average search across cylinder for random

probing.

E
4

= Average search across track for random probing.

E
5

= Average search across cylinder for direct chain

probing.

E
6

= Average search across track for direct chain

probing.

As the variation of El to E
6

is empirical, the results

from the simulation are used for evaluation in this thesis.

Then in the range of 0.5 < a< 1. 000

T2 >> T
1

>> T3 > T4 > T5 > T7 > T6 > T8

C2 < Cl < C3 < C4 < C5 < C7 < C6 < C8

The above discussion is based on the file system with the full

name of the record used in accessing. For the file system using the

unique-fixed length key in accessing, the discussion is the same.

The difference is the omission of the full name record to the fixed-

length key conversion time, about 8. 55 ms/record.

RESULTS OF THE EVALUATION

USER TOTAL CHARGE PER MONTH

FOR EACH TYPICAL FILE AT

A SELECTED SPECIFIC RATE OF CALLS

FOR ILLUSTRATION OF THE EVALUATION

162

File Operating Cost per Call (Unit Cost)

In general, when cost per performance of digital computing

system is mentioned, there are two options to be considered. One

is that the user plans to have his own computer system (buying or

renting from manufacturer). In this case cost per performance

has to be calculated based on: CPU cost, terminal devices cost,

communication cost, and operator's cost. See details of an example

in Stimler, Saul (33) page 149-160. Another is that many users

are planning to rent only CPU time from a time-sharing computer

system. In this case cost per performance per month has to be

calculated based on only CPU, busy time, cost per month, storage

space rental cost per month, terminal devices rental cost per month,

communication line charge per month, and operator's cost per

month. This investigation is concerned with only the second option.

From now on, all the terms of cost per performance have to be

replaced by customer operating cost per call, unit cost, for the

evaluation of the on-line data file.

Let the reader consider the following situation: suppose that a

designer or an evaluator works with one on-line time sharing com-

puter system. He is assigned to investigate and evaluate the per-

formance of typical file organization methods with the specified

maximum capacity (the number of records when the file is full) and

163

current capacity (the current number of records in the file), with a

certain rate of use (number of calls per hour) of the file. He must

help the new customer (the user) to make a decision as to which type

of file is the most suitable for him at a certain capacity and rate of

use of the data file system. In this case an evaluator needs to know

only which type of file organization method is supported by his

computer system under a certain processing assumption, and which

provides the most economical performance (lowest unit cost).

The following formula is introduced as a means for measuring

the unit cost performance averaged over the life of the file project

when the specified rate of use of the file (number of calls per hour)

is processed over the active life of the file. Then

where

customer operating cost/call (unit cost), Uc(i)

T(i)

project cost
total specified calls

M. T(i) R cM . 300 + NT(i) (0. 3) M for time sharing
RcMM

customer

T
(1

.
)

RcM. (300) +
NT(i)

(0.3)
x 100 cent/call (7. 2)

RcM

= CPU busy time per call in hour, i = file code

numbers, 1, 2, 3, ..., 8.

164

RcM = Rate of calls per month, for illustrated example,

52500 calls per month (250 calls/hr) for low-rate

210000 calls per month (1000 calls/hr) for medium

rate

420000 calls per month (2000 calls/hr) for high

rate.

These selected rates are based on real-world

problems.

300 = CPU charge per hour in dollars

0.3 = Disk rental charge in dollar per track per month.

These figures are based on Oregon State Computer Center,

Corvallis, rate of charge for time sharing customer.

= Disk space required tracks for each type of file
NT(i)

M = File project active life time in term of months.

The data results of computation of the unit cost, Uc(i) equation

(7. 2) as the function of file loading factor are tabulated, plotted and

compared as shown in Table 7.6 page 173 and in Figures 7.13 to

7.16 pages 169 - 172. See the details of computation of each typical

file in Appendix B, Examples 1 to 4. The terminal device rental-

cost for each selected rate of use is illustrated on page 168.

165

Transmitted characters = full name of a record + data of a

record

= 16 + 64 = 80 characters/call

Then

Transmitted characters for 250 calls per hour

= (80 x 250) 3600 = 5. 556 characters/sec.

= 5. 556 < 10 character per sec

It requires one teletype with 10-character per sec. with 10

characters, modem 1 unit.

Transmitted characters for 1000 calls per hour

= (80 x 1000) . 3600 = 22. 22 character/sec.

= 22. 22 < 30 characters/sec

It requires three, 10-character per sec teletypes with a 10-

character data modem 1 unit.

Transmitted characters for 2000 call per hour

= (80 x 2000) 3600 = 44. 44 character/sec

= 44.44 < 50 characters/sec

It requires five, 10-character per sec teletypes with a 300 -

character modem 1 unit.

Terminal Device Cost for 250 Calls Per Hour

Description Monthly rental

1, 10-character-per-sec teletypewriter $100. 00

166

1, 10-character-per-sec modem 25.00

1 operator (he can do both as teller or programmer) 600.00

20 miles, 10-character-per-sec channel rates,

communication line 35.00

Total $760. 00

Terminal Device Cost for 1000 Calls Per Hour

Description Monthly rental

3, 10-character teletypes $300. 00

1, 300-character-per-sec time multiplexor 500.00

1 up-to 300 character-per-sec modem 40.00

3 operators (salaries) 1800.00

1, 10-character-per-sec 20 mile communication line 35.00

Total $2675. 00

Terminal Device Cost for 2000 Calls Per Hour

Description Monthly rental

5, 10 -character teletypes $ 500.00

1, 300-character-per-sec line multiplexor 500.00

1 up-to 300-character-per-sec modem 40.00

5 operators (salaries) 3000.00

20 miles, 10-character-per-sec, communication line 35.00

Total $4075. 00

167

See the details of on-line data file terminal devices required

for each specific rate of use of the records in the file, in Figure

7. 12 which follows.

Figures 7.13, 7.14 and 7.15 illustrate how customer operating

cost per call (per unit cost) of each typical file increases as the value

of file loading factors, a, or the number of records in the file

increases when the rate of use are 250 calls per hour, 1000 calls

per hour and 2000 calls per hour respectively. For each specific

rate of use the degree of increase depends upon the value of aver-

age throughput-time per record retrieval and the number of required

tracks (disk storage space). As shown before in Figures 7.3 to 7.6

at a specific file loading factor, a, each type of file takes a different

average throughput-time per record retrieval; the degree of varia-

tion between the different type of file depends upon their methods of

accessing. Each typical file needs two types of disk storage space.

One is to support the processing program. This type of disk storage

space does not vary much for each type of file. The other storage

space is to support the data records of the file. In case the file

system uses File 1 to File 5 the required disk space for these types

of files, varies directly as the number of data records increases.

In case the file system uses File 6 to File 8, direct disk files using

hash function as their directory decoder, the required disk storage

space at any value of loading factor, is the same as when a= 1 (the

Terminal Communication network Processor subsystem

168

subsystem
Modem

Communication line

Teletype
Operator

CPU

(a) on-line data file system handling 250 calls per hour

Terminal subsystem Communication network a .4

Communication line

Modems

Multiplexors

Teletypes

Operators

Terminal subsystem

Processor subsystem

Disk

CPU

(b) on-line data file system handling 1000 calls per hous

Communication network Processor subsystem

Disk

o-

1--
0___

Operators

Modems

Communication line

Multiplexors

Teletypes

CPU

(c) on-line data file system handling 2000 calls per hour

Disk

Figure 7. 12. On-line data file system configurations for handling 250, 1000, and 2000 calls per hour.

2.8

2.7

2.6

2.5

2.4

2.3

2.2

2.1

2.0

1.9

169

1.6

1.5

1.4

1.3
0.0625 0.2500

(1024 records) (4096 records)

See code number in Figure 7.5, page 148.

..,_ 4. .1
0.5000 0.7500 1.0000

(8192 records) (12288 records) (16384 records)
File loading factors

Figure 7.13. Customer operating cost per call (unit cost) as the function of file loading factors, for each typical
file, code numbers 1 to 8, using full name of record in accessing.

1.75

1.74

1.73

1.72

1.71

1.70
a

1.68

1.64

1.63

1.62

1.61

1.60

See code number in Figure 7.5, page 148.

0,0625 0.2500
1024 records) (4096 records)

0.5000 0.7500
(8192 records) (12288 records)

File loading factors

170

1.0000
(16384 records)

Figure 7.14. Customer operating cost per call as the function of file loading factors, for a typical file, code
numbers 1 to 8, using full name of record in accessing.

1.400

1.390

1.380

1.370

1.360

1. 350

1.340

1.339

See code number in Figure 7.5, page 148.

0.0625 0.2500
(1024 records) (4096 records)

0.5000
(8192 records)

File loading factors

0. 7500
(12288 records)

171

1.0000
(16384 records)

Figure 7.15. Customer operating cost per call as the function of file loading factors, for each type of file, code
numbers 1 to 8, using record's full name in accessing.

2.1

2.0

1.9

1.8

1.7

1.6

1.5

1.4

1.3

172

with 250 calls per hour

with 1000 calls per hour

See code number in Figure 7.5, page 148.

with 2000 calls per hour

0,0625 0.2500
(1024 records) (4096 records)

0.5000
(8192 records)

0.7500
(12288 records)

1.000
(16384 records)

Figure 7.16. Customer operating cost per call (unit cost) as the function of file loading factors for the out-
standing files, code numbers 3, 5 and 8 using full name of records in accessing.

Table 7. 6. Data computation of customer operating cost per call (unit cost) as the function of file loading factors of each typical file
organization method of specific selected rates of use, using full name of records iir -accessing.

File loading factor, 0. 0156 0. 0372 0. 0625 0. 2500 0. 5000 0. 7500 1. 0000

Number of records
in file

128

records
512

records
1024

records
4096

records
8192

records
12288
records

16384
records

Typical files
Rate of use

calls per hr. cent cent cent cent cent cent cent

Unsorted
sequential disk file

250 1. 82523 1. 84384 1. 86880 1.98994 2. 2 0476 2. 39668 2. 58874
1000 1. 65000 1.66472 1. 88378 1. 80000 - -
2000 1. 346 19 1. 36025 1. 37851 - - -

Strickly
sequential disk file

250 1.82615 1.84487 1.86984 2.01828 2.21489 2.41417 2.60813
1000 1. 65041 1. 66522 1.68445 1. 79 847 - -
2000 1. 34224 1. 36066 1.37893 -

Indexed
sequential disk file

250 1. 82392 1. 83 150 1. 83933 1. 88662 1.9480 2.01017 2. 0 967
1000 1. 64811 1. 65086 1. 65331 1.66589 1. 68146 1. 69736 1. 71300
2000 1. 34421 1. 34615 1. 34771 1. 35450 1. 36243 1. 37062 1. 37861

Single level directory
partitioned disk file

250 1. 82464 1. 83198 1. 83950 1. 88677 1.94728 2. 00906 2. 07040
1000 1. 64849 1. 65139 1. 65359 1. 66642 1. 68182 1. 69762 1. 71306
2000 1. 34453 1. 34734 1. 34800 1. 35508 1. 36298 1. 37111 1. 3789 0

Double level directory
partitioned disk file

250 1. 82434 1. 83160 1. 83927 1. 88647 1.94693 2. 00880 2.07013
1000 1. 648 17 1.65096 1.65333 1.66606 1.68143 1.69736 1. 71276
2000 1. 34420 1.34625 1.34773 1. 35473 1.36258 1.37085 1. 37860

Direct disk file with
linear probing

250 1.96960 1.97209 1.97480 1.99013 2. 00961 2.02933 2. 04967
1000 1. 68336 1. 6841 7 1. 68542 1. 68973 1. 69475 1. 69979 1. 70558
2000 1. 36104 1.36144 1. 36233 1. 36507 1. 36757 1. 37027 1. 37362

Table 7.6. Continued.

File loading factor, O. 0156 0. 0372 0. 0625 0. 2500 0. 5000 0. 7500 1. 000

Number of records
in file

128
records

512
records

1024
records

4096
records

8192
records

12288
records

16384
records

Typical files
Rate of use
calls per hr. cent cent cent cent cent cent cent

Direct disk file with
random probing

250 1.96970 1.97222 1.97499 1.99026 2.00980 2.02958 2.05055
1000 1.68347 1.68460 1.68553 1.68988 1. 69487 1. 70007 1. 70644
2000 1. 36116 1.36206 1.36270 1. 36522 1. 36776 1. 37054 1. 37449

Direct disk file with
direct chain probing

250 1.96960 1.97211 1.97487 1.99007 2. 00961 2.02927 2. 04883
1000 1. 68344 1. 68448 1. 68540 1. 68973 1. 69466 1. 69975 1. 70475
2000 1. 36102 1. 36193 1.36256 1.36507 1. 36756 1. 37023 1. 37280

175

file is full). This causes the customer's operating cost per call

(unit cost) of File 6 to File 8 to be a little hi n'her than that for File 1

to File 5 within the range of 0 < a< 0.75. However, as for 0.75

< a< 1, this range causes the unit cost of File 6 to File 8 to be less

than the unit cost of File 1 to File 5. Furthermore, the average

throughput time per record retrieval of File 1 and File 2 varies as

the function of (N
2

-I- 1)
, where N is the number of records, in the

file system. Therefore, when the value of N is increased, the aver-

age throughput time per record retrieval of File 1 and File 2 is

enormously increased. This causes the unit cost of File 1 and File

2 to be excessively high and the achievable throughput rate capability

lower than that of the other files, when file loading factor, a, is

increased. So for the specific rate of use 1000 calls per hour and

2000 calls per hour, File 1 and File 2 cannot operate in the range of

0.500 < a< 1.000. From the results of computation and shown in

Table 7. 6 and Figure 7.15 File 3 and File 5 give good result of

unit cost for 0.0078 < a< 0. 75. File 8 gives the best result for

0.75 < a< 1.000. File 2 gives the worst result for 0.0078 < a<

1.000, as the unit cost is excessively high.

176

Conclusions and Recommendations

From the preceding comparative results it has been shown that

eight specific types of file can be grouped into four groups; (1)

sequential disk file (Files 1 and 2), (2) Index Sequential Disk File

(File 3), (3) Partitioned disk file (Files 4 and 5), and (4) Direct

disk file (Files 6, 7 and 8). Because of the results of the investi-

gation and the methods of organization there is not much difference

between the typical files in the same group. The following conclu-

sions and recommendations may be useful to the designer or the

evaluator in deciding which typical file is the most suitable for his

specific problem.

1. In case the data file is rather static, having a low per-

centage of additions of data records to the file system,

the most suitable method of organization is dependent on

its initial file size;

a. If the initial file size is in terms of hundred-logical-

records, or equivalent to 0 < a< 0.0156 in this

investigation, the Indexed Sequential File seems to

have the lowest customer operating cost per call,

unit cost. If the rate of use of the file required by

the customer is less than its maximum-achievable-

throughput-rate capability, 16438 calls per hour, it is

177

recommended that the Indexed Sequential File be used.

For simplicity, it is also recommended the Unsorted

Sequential File to be used.

b. If the initial file size is in the range of thousand-

logical records to ten-thousand-logical records, i. e.

1000 < N < 10, 000 or O. 0625 < a< 0. 7500. The

Indexed Sequential File and the Partitioned File

especially the Double-directory partitioned disk file,

have less unit cost than other types of files. If the

rate of use of the file required by the customer is

less than its maximum achievable-throughput-rate

capability, 19701 calls per hour, it is recommended

that the Index Sequential File or the Double-directory

partitioned disk file or some other type of Multi-level-

directory partitioned disk file be used.

c. If the initial file size is in the range of ten-thousand

logical records to sixteen-thousand-logical-records

or more, i. e. , 10, 000 < N < 16,000 or more, or

0.7500 < a< 1. 0000. The Direct disk file, especially

the direct disk file using chain probing, has the lowest

unit cost and the greatest speed of accessing. If the

rate of use of the file required by the customer is

less than its maximum achievable-throughput-rate

178

capability, 20597 calls per hour, it is strongly

recommended direct disk file with direct chain prob-

ing be used.

d. From the results of the investigation it is not recom-

mended that the strictly sequential disk file be used

for the on-line-data file system.

2. In case the data file is a dynamic one having a high rate

of increase of records in the file, i. e. , it takes only a

short period of time for the file to be full, a = 1. 0000, it

is recommended that the direct disk file with direct chain

probing be used.

3. In this evaluation all results obtained may be considered

as the optimum results, although the writer cannot

guarantee 100% perfection, since in each specific on-line

data file system there are many factors (or constraints)

to be considered. In case the reader wishes to analyze

and optimize any specific system it is recommended that

the optimizing procedure be carried out as that in the

same manner as in this investigation. Hopefully the results

obtained will still be within the span of the writer's con-

clusions and recommendations.

4. This investigation indicates that for the on-line data file

system using disk memory as the storage device, the

179

speed of accessing or retrieval is limited by the following

factors:

a. operating speed of disk unit (disk RPM)

b. read-write-head positioning time.

This limitation could be solved by a higher speed disk, if

one could be designed. The user will wish to select and

use the highest speed and least read-write head position-

ing time possible, if there is not too much trade off

between its operating performance and its cost.

5. The results of the preliminary work of this investigation

shows that of two common types of internal search, linear

search and binary search, illustrated in Appendix A, in

the range of 0 < N< 64 linear search has a higher speed

and also needs less storage space than binary search.

However, in the range of 64 < N < oo , although binary

search requires more storage space because it has a

higher speed, it provides a lower unit cost of operation.

Then it is recommended that the internal search be used

as follows:

Linear search for 0 < N < 64 approximately

Binary search for 64 < N < oo

6. The results of the preliminary work show that the Hash

decoding technique has the highest speed among the

180

directory decoding techniques which have been mentioned

in Chapter V. More work has been investigated and evalu-

ated for Hash decoding methods and the results obtained

indicate that the efficiency of Hash decoding is strongly

dependent on the expected searched records per random

accessing, E, (E--> 1 high efficiency; E low

efficiency). Results of the investigation show that the

trade-off of E is available among the different hash func-

tions with the same method of probing at a specific file

loading factor, a See Figure B. 19 page 302. The trade-

off of E is also available among the different probing

methods (linear probing, random probing and direct-chain

probing) for a specific hash function. See Figure B. 20

page 304.

In this investigation Hash I with direct-chain probing has

proved to be the best hash decoding method in the long run.

Therefore, Hash I is selected as the mapping function for

the evaluation of the direct disk file. See more details in

Example 4, page 294.

181

BIBLIOGRAPHY

1. Bell, James R. The Quadratic Quotient Method: A Hash
Code Eliminating Secondary Clustering. Communication of
Association Computing Machinery 13, 2 (February 1970).
107 -109.

2. Brightman, Richard W. , Bernard J. Luskin and Theodore
Tiltion. 1968. Data Processing for Decision-Making. The
Macmillan Company, New York 252-255, 352-357.

3. Chapin, Ned. A Comparison of File Organization Techniques.

4. Chapin, Ned. Common File Organization Techniques Com-
pared. Fall Joint Computer Conference, 1969. 414-421.

5. Coffmann, E. G., Jr., and Eve J. Coffman. File Structure
Using Hashing Functions. Communication of the Association
for Computing Machinery. 13, 7(July, 1970).

6. Control Data. 3228 Disc Controller Training Manual. First
Edition. 1968.

7. Control Data. 1969. Computer System Compass Reference
Manual.

8. Filler, William. 19 58. An Introduction to Probability
Theory and its Applications. John Wiley and Sons, Inc.
New York.

9. Flores, Ivan. 1966. Computer Programming. Prentice-
Hall, Inc. Englewood Cliffs, New Jersey. 246-287.

10. Flores, Ivan. 1969. Sorting. Englewood Cliffs, New
Jersey. Prentice

11. Flores, Ivan. 1970. Data Structure and Management.
Prentice-Hall, Inc. Englewood Cliffs, New Jersey. 52-54,
225-241, 247-263, 269-279, 320-327.

182

12. Gaulthier, Richard L. and Stephen D. Ponto. 1970. Design-
ing Systems Programs. Prentice-Hall, Inc. , Englewood
Cliffs, New Jersey. 112-156.

13. Hslio, David. Formal System for Information Retrieval
From File Communication of the Association for Computing
Machinery 13, 2 (February, 19 70). 67-73

14. Hopgood, F. R. A. 1969. Compiling Techniques. American
Elsevier, Inc. New York. 4-27.

15. IBM Student Text Introduction to IBM System/360 Direct
Access Storage Device and Organization Methods. Interna-
tional Business Machines Corporation. 1969.

16. Jame, N. Meeker, N. Ronald Crandall, Fred A. Dayton
and G. Rose. OS-3: The Oregon State Open Shop Operating
System. Spring Joint Computer Conference, 1969, 241-248.

17. Johnson, L. R. An Indirect Chaining Method for Addressing
on Secondary Keys. Comm ACM 4(1961), 218-222.

18. Landauer, Walter I. 1963. The Balanced Tree and Its
Utilization in Information Retrieval. IEEE. Transaction
on Electronic Computers. December 1963. 863-871.

19. Lefkovitz, David. 1969. File Structures for on-line System
New York. Washington, Spartan Books. 27-36, 9 2-105.

20.. Lombardi, Lionello. 1960. Theory of Files. Proceedings
of the 1960 Eastern Joint Computer Conference New York
IRE, 1960. 137-141.

21. Lowe, Thomas L. Direct-Access Memory Retrieval Using
Truncated Record Names, Software Age, September
1964. 22-23

22. Lum, V. Y. , P. S. T. Yuen and M. Dodd. Key-to-Address
Transform Techniques - A Fundamental Performance Study
on Large Existing Formatted Files. Comm. ACM 14, 4
(April 19 71), 228-239.

23. Maurer, W. D. An Improved Hash Code for Scatter Storage
Comm. ACM 77, 1 (Jan. 1968), 36-38.

183

24. Maurer, W. D. 1969. Programming. An Introduction to
Computer Languages and Techniques. \ Holden-Day, Inc.
San Francisco, 94-109. 116-132.

25. McGee, William C. 1962. The Property Classification
Method of File Design and Processing. Communication of the
Association for Computing Machinery 8. 450-458.

26. Mcllroy, M. D. A Variant Method of File Searching Communi-
cations of the Association for Computing Machinery.

27. Morris, Robert. Scatter Storage Techniques. Comm.
ACM 11, 1 (Jan.1968), 38-43.

28. Parkhill, D. F. 1966. The Challenge of the Computer Utility.
Addison Wesley Publishing Company, Reading, Massachusetts.
121-144.

29. Peterson, W. W. Addressing for random-access storage.
IMB Journal. April 1957, 130-146.

30. Rothstein, Michael F. 1970. Guide to the Design of Real-
Time System. John Wiley and Son, Inc. New York. 8-18,
42-55, 116-137, 187-206, 225-232.

31. Schay, G., Jr., and Spruth, W. G. Analysis of a File
Addressing Method Comm. ACMS, 8(Aug. 1962), 459-462.

32. Sharpe, William F. 1969. The Economics of Computers.
The Rand Corporation. 279-363.

33. Stimler, Saul. 1969. Real-Time Data-Processing Systems.
A Methodology for Design and Cost/Performance Analysis.
McGraw-Hill Book Company. 17-36, 37-76, 149-170.

34. Sussenguth, Edward H. Use of Tree Structures for Process-
ing Files. Comm ACM 6, 5.

35. The Rand Corporation. 1955. A Million Random Digits.
The Free Press. Glencoe, Illinois.

APPENDICES

184

APPENDIX A

The Analysis of Typical File

Evaluation of Internal Linear Search and Binary Search

For evaluation of the characteristics of internal linear search

and binary search, the two basic methods of internal search the

following strategies are used:

1. The model of the Test File is created in internal core

memory. The Test File should look like a directory file.

Each record of this Test File consists of two parts, key

name of the record and its address in the main file. The

operation is equivalent to simulation of the directory file.

The selected names for the Test File are shown in Table

A. L.

2. In the arrangement of the format of the Test File record,

each record in the Test File is a "fixed length record",

and its supported by two successive computer words,

(1 word = 2.4 bits). The first word contains four characters

which is the fixed-length unique key of the record in the

main file. The second word contains its corresponding

address in the main file.

185

Table A. 1. Directory File.

Name selected as the record
name in the main file

Key Name
Name Area)

Address Location
(Data Area)

Administration Division ADMI 0001

Air Field Construction Division AIRF 0014

Building Construction Division BUIL 0027

Material Division MATE 0025

Supply Division SUPP 0040

Technical Division TECH 0053

Utilities Division UTIL 0066

Search argument item

output

Search argument item

BUIL

0027

BIUL

output = BIUL NO SUCH KEY IN
DIRECTORY

Illustrated example of accessing a record from directory
file.

Due to the fact that the CDC-3300 can handle only 4 characters

for a 24-bit word, it is impossible to put the full-name in the one

word name area of the Test File; only 4 characters of the full name

have to be selected. The group of 4 selected characters from the

full name is called key name of the record the main file. There are

many ways to select the 4 characters from the full name to be used

as the key name. The reader has to keep in mind that the effective

way of selecting 4 characters from the full name should provide 0%

(or(slightly more) redundance of key names. Otherwise the redundant

186

key name causes ambiguity in processing the file.

In this experiment the writer has chosen to form the key name

by truncating the trailer characters of the full name. The method

is usually preferred by users, but 0% redundancy can not be guar-

anteed. The details of conversion of the full name into a fixed-length

key name are mentioned in Chapter V.

3. The symbolic program for sequential search has been per-

formed as Test 1. The desired item is searched for in the

Test File by means of linear search. The search function

flowchart is equivalent to the flowchart of sequential

cylinder indexed search as shown in Appendix C, page 343.

4. The symbolic program for binary search has been per-

formed as Test 2. The desired item is searched for in

the Test File by means of binary search. The binary

search flowchart is shown in Appendix C, page 368.

Symbolic Program for Sequential Search: (Compass)

Location
Operation

Code
Address +

Index Comment

IDENT Test 1 Test 1 is NAME OF PROGRAM

ENTRY START Initial Statement to start program

START ENI 0, 1 0 --4. B1

ENI 11,3 11 --> B3

LOOP ENQ 1

Operation Address +
Location Code Index Comment

187

ENA A (A) Acc

ALA 1

READ 60

INI

IJD

1, 1 (B1)+1 B1

LOOP, 3 of (B3) >0; (B3) --a.B3, go to
LOOP

ENQ 1

ENA KEY (KEY) --0 Acc.

READ 60

ENI 12, 1 12 B1

ENQ, S -0 Set Q = (0000000)

LDA KEY (KEY) Acc.
MEQ A, 2

UJP LOST

INI 1, 1 (B1) + 1--÷B1

LDA A, 1 (A + (B1)) > Acc.
STA KEY (A) --0 KEYcc
ENQ 2

ENA BLANKS

WRITE 61

UJP END

LOST ENQ 9

ENA BLANKS

WRITE 61

END SBJP

BLANKS BCD 1,

KEY BSS 1

MESSAGE BCD 7, ...NO SUCH KEY IN DIRECTORY

A BSS 12

END

FINIS

START

188

TALS
= Average linear searching time per record retrieval

from array, file

1 + N
+ (

2
= tLSPA) tLS

1 + N= 1. 375 + 1. 375 + 2.750 + [(--) 4 x 2. 5 + 4. 125]
2

+ 1. 375 + 1. 375 + 3. 125 + 2. 79

= 5. 0 N + 9. 125 + 14. 125

T
ALS = 5. 0 N + 23. 25 p.sec. (based on tested-program. (8. 1)

where tLSPA = Linear search program auxilliary time per
record retrieval

tLS = Logical path Linear search time per second
retrieval

Symbolic Program for Binary Search: (Compass)

Operation Address +
Location Code Index Comment

IDENT TEST2

START ENI 0, 1 0 > Bl
ENI 11, 3 11 > B3

LOOP ENQ, S 1 Set (Q)>all bits are ones
ENA A A Acc.
ALA. A (Acc) + (B1) --> (Acc)

READ 60

LDA A, 1 (A + B1) > (Acc)
SCA MASK Selective complement Acc
STA A, 1 (Acc) -4 (A + B1)

189

Operation Address +
Location Code Index Comment

INI 1, 1 (B1) + 1 > B1
IJD LOOP, 3 If (B3) > 0; (B3)-1-->133, go to LOOP

ENQ, S 1 Set (a) bits are ones

ENA KEY KEY 0 Acc
READ 60

SCA MASK

STA KEY (Acc) KEY

ENI 0, 1 0 B1

ENI 1, 2 1--o B2
LDQ KEY (KEY)--3 Q

LDA INC (INC) --> Acc

OVER IAI 1 (Acc) + (B1) >Acc

LDA TOP (TOP)--oAcc
SBA BOT (TOP) -(BOT)--oAcc

ASG, S 3 Check to see if A. < KEY < A1 . + 1
UJP LOST

LDA INC

SHA -1 Computes NEXT 1/2 of Binary

AJA 2
Search interval

STA INC

LDA A,1 (A + B1)---oAcc

AQJ, EQ FOUND

AQJ, LT LESS

TIA 1

STA TOP Binary search loop in upper portion
of search Table 2 + KEY < a.

LCA INC 1

UJP OVER

190

Location
Operation

Code
Address +

Index Comment

TIA

STA

LDA

UJP

1

BOT

INC

OVER

Binary search loop in lower por-
tion of search Table
If KEY > a.

1

FOUND INI 1, 1

LDA

SCA

A, 1

MASK

If search is satisfied and prepare
for output

STA KEY

ENQ 2

ENA BLANKSj
WRITE 61 TTY OUTPUT

UJP END

LOST ENQ 9

LDA KEY

SCA MASK

STA KEY NOTIFIED THE USER

ENA BLANKS

WRITE 61

END SBJP

TOP OCT 13

BOT OCT -1

INC OCT 6

MASK OCT 4

BLANKS BCD 1,

KEY BSS 1

MESSAGE BCD 7, --NO SUCH KEY IN DIRECTORY

Operation Address +
Location Code Index

A BSS 12

END START

FINIS

TABS = Average binary search-time per record retrieval from
array, file.

= tBSPA + tBS x

- 10. 25

1

Comment

N
[2K(K-1) + 1 + (K + 1) x (N - 2K + 1)]

191

= (8. 250 + 9.995 - 10. 250) + (35: 30) NATBS

TABS = 7.995 + 35 30 x N
AT BS

p.sec. (8. 12)

where

tBSPA = Binary search program auxiliary time per record retrieval

tBS = Logical path Binary search time per record retrieval.

192

Comparison of Storage Space Used for Internal Search

Typical of required
memory location

LINEAR SEARCH
No. of

required locations

BINARY SEARCH
No. of

required locations

Initiation and read-in
both master record and key

Search

13

15

Reserve Spaces for Master file 2N

Reserved space for
program variables 11

Total required space (word) 2N + 40

Total space requirement
(in Bit) 48 N = 960

19

40

2N

15

2N + 14

48 N + 1776

Lets N = Number of items in array or file.
S

LS
= Number of storage spaces requirement in core

memory for Linear search, in words.

S
BS

= Number of storage spaces requirement in core
memory for Binary search, in words.

Then the general formulas are

SLS
= 2 N + 40 (8.3)

SBS = 2 N + 74

The plotting results are shown in Figure B.4, page 204.

(8.4)

Table A. 2. Results of average search time, linear and binary search per record vs. file size.

Number of
items, N -NATLS (1 + N)

=NATBS 1 [2K (K - 1) + (K + 1)*
N (N - 2K K - 1) TALS(Ilsec) TABS(I/sec)2

1 1 I 1.000 1 28.2.5 43.295
2 1.5 2 1.500 2 30.75 60. 945
4 2.5 3 2..000 2 35.73 78.595
8 4.5 5 2.625 3 45.75 100.657

16 8.5 9 3.375 3 65.75 127.132
32 16.5 17 4.278 4 105.75 159.008
64 32.5 33 5.125 5 185.75 188.907

128 64.5 65 6.073 6 345.75 222.371
192 96.5 97 6.714 7 505.75 245.000
256 128.5 129 7.039 7 665.75 256.471
320 160.5 161 7.437 8 825.75 270.309
384 192.5 193 7.693 8 985.75 279.557
448 224.5 225 7.895 8 1145.75 286.688
512 256.5 257 8.021 8 1305.75 291.136
576 288.5 289 8.241 8 1465.75 298.902
640 320.5 321 8.417 8 1625.75 304.868
704 352.5 353 8.561 9 1785.75 310.198
768 384.5 385 8.681 9 1945.75 314.434
832 416.5 417 8.738 9 2105.75 376.446
896 448.5 449 8.869 9 2265.75 327.070
960 480.5. 487 8.924 9 2425.75 323.718

1024 512.5 573 9.011 9 2586.75 326.083
2048 1024.5 1025 10.006 10 5145.75 367.000
4096 2048.5 2049 11.003 11 10265.75 396.295

*Value of log2 N.

25

20

15

10

(
NATLS =

1+ N)
, Linear search

2

NATBS
=

1 [
2
k

(k-1)+1+(k+1) (N-2 k +1d , Binary search

D 10 20 30 40 50 60
Number of items in array (N)

Figure A. 1. Average number of tests per record search as a function of number of the items in the array.

70 80

500

450

400

350

300

250

200

150

100

50

TAis

TABS

0 10 20 30 40 50 60 70 80
Number of item in array (N)

Figure A. 2. Average search time per record retrieval both linear and binary search as a function of items in the file.

196

Figure A. 1 makes a graphical comparison between the number

of average search per random record retrieval of internal linear

search and internal binary search, and also shows how the curves

rise as the number of records in the file increase. For internal

linear search the degree of increase of number of average search per

record retrieval, NATLS' varies directly as (N +
. When N00

2
1) 4

(N
2

1) NATLS is enormously increased. For internal

1binary search, NATBS varies directly [2K (k - 1) - jK - 1) x

(N - 2K - 1)] *--.= log2 N when N--).a4LNATBS= log2 N NATBS is

increased very little, so that the curve of NATBS is quite flat, provid-

ing a great diversion between NATBS
and NATLS

Figure A. 2 makes a graphical comparison between the average

search time by linear search, TALS
and the average search time by

binary search, TABS.
The degree of increase of TALS and TABS

when N is increased, is the same as that described in Figure A. 1.

The curves in Figures A. 1 and A. 2 indicate that for 0 < N.< 64,

internal linear search is better than internal binary search. For

64 < N < oobinary search is better than linear search, with only a

little difference between their storage space requirement. See

Table A. 3 and Figure B.4 for how the number of core storage spaces

increases for both linear and binary search as N, number of records

in the file increases.

197

Table A. 3. Core storage space required for internal linear and
binary search.

File size, N SLS SBS

Items Words Words

1 42 26
2 44 78
4 48 82
8 56 90

16 72 106
32 104 138
64 168 202

128 296 330
192 424 458
256 552 568
320 680 714
384 808 842
448 936 970
512 1064 1098
576 1192 1226
640 1320 1354
704 1448 1482
768 1576 1610
832 1704 1713
896 1832 1866
960 1960 1994

1024 2088 2122
2048 4136 4170
4096 8132 8266

S LB
= Core storage space for linear search.

S
BS

= Core storage space for binary search.

One item = 2 successive computer records.

19.8

APPENDIX B

Analysis of Disk Access Time for Disk 854

Disk Access Time

Access time = the cylinder position time + the rotational

latency time

then: Average access time = average position time + average latency

time.

Disk Storage Drive (CDC DISK 854 Unit)

= 165

95

msec.

msec.

Maximum positioning time

Average positioning time, (1/3 of max. move)=

Cylinder to clyinder positioning time = 30 msec.

Maximum latency = 25 msec.

Average latency = 12. 5 cosec.

Maximum access time = 190 msec.

Average access time = 107.5 msec.

Full rotation time = 25 msec.

Data Transfer (CDC Disk 854 Unit)

The nominal data transfer rate, disk drive = 100, 000 bytes /,

second.

199

The data transfer is of the following nature:

1. Data is addressed and written in a storage unit in discrets

(0, 1, 2, 3, ect) blocks (sectors).

2. Data channel can read or record as little as one byte or

as many bytes as necessary to reach the end of file.

3. Reading or writing, the operation must commence at the

start of a sector.

4. When writing, if less than a full sector is written, the

remainder of the sector is automatically filled with zeroes.

Record Format

The record format for a test file is shown in Table A. 1,

page 185 and Figures B. 2 and B. 3, pages 202 203..

1 logical record 384 bits

1 sector, disk 854, data field = 1536 bits

1 sector, disk 854 = 4 logical records

1 track = 64 logical records

1 cylinder (10 tracks) = 640 logical records

1 unit (100 cylinders) = 64000 logical records.

Data Read/Write Time, TR/W

Full rotation x (Number of records
R/W Number of records per track

R/W)

200

TR
/W

25
64
msec. x N for N < 64

Data Track Read in Time, TRINDT

=TRINDT 25 msec.

Read/Write Head Positioning Time, TAR/WHPT

TAR/WHPT = 90 msec.

Average Waiting Time Per Track, TAWT

TAWT = 12.5 msec.

Checking and Connecting Logical Unit Time, TRCLU

TRCLU = 0.008 msec.

Checking and Connecting I/O Unit Time, TRCl/O

= 0.008 msec.TRCl/O

(9. 1)

(9. 2)

(9. 3)

(9. 4)

(9. 5)

Record Full Name of Fixed-Length Key Search Time, TCFNFK)

To obtain the fixed length key from the supplied record full

name, the program called "Test 8" is used (see Appendix C, and

the following parameters are defined and computed.

Main storage

Disk file

Disk drive

24 bit parrele information

12 bit parrele information

serial bit information
control circuit

T.

CPU

Main control

Information
processing

Instruction
processing

I/O channel

Disk
control

unit

MT control

unit
Controller Controller Controller Controller

(PDP8)

Magnite tape unit, MT

Line. printer
Card

Puncher

Figure B. 1. System block diagram of the simulator.

CR display

20 miles 1
V

Teletype

(a)
Count

(b) F-1
Count

(c)

(d)

(e)

1

Count

Count

Count

Fixed, Unblocked

AAA

Key

Record aaa

Fixed, Blocked

FFF

Key

Data

AAA Record aaa liCCC Record ccc

Data

Variable, Unblocked

AAA
Key

BL RL Record aaa

Variable, Blocked

FFF

Data

BL RL AAA Record aaa

Key

Undefined

AAA

Key

Record aaa

Data

Note: BL = Block length
RL = Record length

FFF Record fff F is considered in this thesis

RL CCC Record ccc RL FFF Record fff

Figure B. 2. Conventional record formats.

Data

203

Items Character Computer word

(or key of a record)
1. Employee number 4 1

2. Name 16 4

3. Social Security and age number 9+3 3

4. Starting date M/D/Y 8 2

5. Qualifications 3 1

6. Salary per month 4 1

7. Dependents 2 1

8. Net income per year 7 2

9. Accumulate saving account 4 1

Total 60 (spare 4) 16

Illustration of logical format in a file

Location Core Memory

L 0 0 3 2

L+ 1
L+ 2
L+ 3
L + 4
L + 5 5 4 3 6

L + 6 4 7 1 7

L+ 7 3 A 3 5

L+ 8 1 2 / 1

L + 9 8 / 6 4

L+ 10 B S C

L + 11 8 0 0

L+ 12 0 0 0 5

L + 13 0 1 0 0

L + 14 0 0

L+ 15 5 0 5

The mapping of a logical record in core
Sector
Mark

i
2

1 Bit

4

Sector
Mark

5

60 Bits 36 Bits 36 Bits
I 603Bits 1 36 Bits 1 /

Tolerance Sync Address Head Gap Sync Data Field Tolerance
Gap I Pattern Field Pattern 1536 Bits Gap II

Figure B. 3. A logical record format and disk 854, sector format.
End of record bit

2200

2000

1800

1600

1400
.F;

1200

ti
cr

cu

co
Li. 1000
Qo
bo
co

c4 800

600

400

200

0

SBS

SLS

SLS = core storage space for linear search

SBS = core storage space for binary search

64 128 198 256 320 384 448 512 576 640 704 768 832 896 960 1024

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0
Loading factor and file size

Figure B.4. Storage space required for test program as a function of file size.

205

T1 = (Read in the NAME time) +(compute no. of input-

word time) + (using the no. of word control loop

time) +(check to see if NAME = END time)

(32. 250 + a) + (2. 75) = (35. 00 + 8000) = 8035 p, sec.

a = average read-in a record name time = (0. 5 ms/

character) (16 characters) = 8000 p,sec.

T2 = Compliment the first bit of each word in NAME time

T
3

= 77.625 p.sec.

(Average search time in each successive plane)

= 1 (0 + log2N x 20. 125) p.sec.

Time required for searching each successor

= 7.875 p, sec.

TSVT
= search time of three dimension tree.

4

= T1 + 4 T
2 2

+ 4(-1 log2N x 20. 125) + T4

1
= (8000) + 4(11. 625) + 4(-

2
log2N x 20. 125 + 7.875

p, sec.

TSVT = 8077.9 + 40. 25 x log2N p.sec. (9. 6)

TAVT = Adding time for variable tree

(TSVT) + (adding routine time)

(TSVT)
+ 4 x T5 + T8

T5 = (Item adding loop time + search for free space

loop time)

206

T6 = search for free space loop time

[(UJP**--"ENI 0, 1) + (average number of search

free space) x (LAD A, 1 --ftUJP* -4) + (TIA 1 --1UTP

FREE, time)]
4102(6. 875 +

2
x 77. 580 + 8. 715)

6. 875 + (102. 4) x 11. 580 + 8. 715)

= 1201. 382 p.sec.

T
7

= Adding item loop time

= 34. 525

T8 = [RTJ INDATA + (UJP * *--->UJP INDATA) + UJP

REDO]

= 2. 75 + 102.375 + 1. 375

= 106. 5 Fisec.

TAVT = (8077.9 + 40. 25 x log 2N) + 4(1201. 382 + 34. 515)

+ 106. 5

= 13128. 028 + 40. 25 log2N

TDVT = Deleting time of variable length key name tree

= [Search time - (STA DATA, instruction time) +

(ENA,S -1, instruction time) + (STA A + 1, 1

instruction time)

TSVT
2. 75 + 1. 375 + 3. 215]

= 8079. 75 + 40. 25 log2N (9. 7)

207

Communication Time

In this simulation assume the user (teletype terminal) is

located twenty miles from the computer center. The delay time of

the selected communication cable is 1.524 nsec. per foot.

communication time = (20 miles) x (1760 x 3) (1. 524 nsec.)

= 160934. 44 nsec.

= 0. 16093444 msec.

If TC BF
= back and forth communication time.

= 0.1609 x 2

= O. 3218 msec. (9. 8)

Transfer Time of the Desired Out-Put Record
Informations From Core

For all cases of the simulation, the fixed-length logical record

16 computer words (64 characters) is used and presented back to the

user during retrieval.

The output of logical record transfer time = 16 x 4 x0. 5625 mse,c.

TRWOUT= 36 msec

User's Operating Cost Per Call

The general formulae of the computation for the user's operat-

ing cost per call in our evaluations for all of the tested files can be

derived as follows:

208

1. Disk space required for supporting file system.

If NT(i) = number of tracks on the disk required to support

the file and processing program, for each typical

file,

N = number of records in the file, file size.

Then NT(i)
674

+ Disk-track required for supporting process-

ing program in case 1 track contains 64 logical

records (9. 9)

NT(i)
63

+ Disk-track required for supporting processing

program in case 1 track contains 63 logical

records. (9. 10)

2. Disk storage space rental charge per month for user.

Since in this computation the rate of charge for on-line

disk storage is $0. 30 per track per month, based on Oregon

State University Computer Center's rate, if

RD /M = amount of charge per month for disk file in $

then, in general

RD/M = O. 30 x NT(i) (9. 11)

3. The charge per month for CPU busy time.

Since the CPU busy time is not only dependent on the CPU

access time per record retrieval but also on the frequency

of using the file. So the general formulae should be:

209

If CCPU
/INA= amount of charge per month for CPU busy time $

TCPU /R =
CPU busy time per record retrieval in seconds as

F/hr

shown in average throughput computing table of all

files.

= number of calls per hour, rate of use

250/hr., 1000/hr., 2000/hr are to be considered

in these computations.

In case the computer system is operated 7 hours a day, and

considering 30 days in a month, the rate of charge of CPU busy

time is $300/hr.

F/M = number of calls per month

= 30 x 7 x (F/hr)

Then, in general

C CPU
/M= 30 x 7 x (F/hr) x (TCPU

/R) -- 3600 x 300

= 17.5 x (F/hr) x (TCPU /R) (9. 12)

CT/M = total amount of charge per month

CT/M = amount of charge per month for disk file + amount

of charge per month for CPU busy time.

Then, in general

CT/M = 0.30 x NT(i) + 17.5 (F/hr) (TCPU /R) (9. 13)

The result of equation (9. 13) is tabulated as a function of call/

month and for each file size, are shown in computing table of

210

customer operating cost per call (unit cost computing table) of each

typical file. See details on pages

Storage Space Required for Variable Tree

Number of records
(N) in the file M/2

1st plane

2nd plane

3rd plane

4th plane

Figure B. 4. Average storage space uses for Variable Tree.

1. If N = number of records in the file

M = number nodes of different fixed-length key, 1
st

four characters in the first plane, after trunicated

= Empirical ratio
N

which has been measured by Thomas L. Lowe (21)

M
N

= 0.85 (9. 14)

2. The maximum nodes in the 2nd, 3rd, or 4th plane = M

The minimum nodes in the 2nd, 3rd, or 4th plane = 0

1The average of nodes in each plane =
2

(M + 0) = M/2

If one node required 4 words.

3. The average storage required for variable length tree,

SAVLTR

0.85N O.

2

85N O.= (0.85N + + +
85N) x 4

SAVLTR 2

= 8.5N words

Selected Sample Key Sets

(9. 15)

211

In this evaluation, 15,805 names of persons from the Corvallis

Telephone Directory have been considered as a "parent group", and

4,096 names have been randomly selected from this parent group by

use of the standard tables of random digits, A Million Random Digits,

by the Rand Corporation (35), as a sample group or "working group".

From now on, the 4,096 selected names are used as the Test-

model for evaluation of the system Data File.

Computation of Typical Files

Example 3a - The Unsorted Sequential Disk File

For accessing a random record from a sequential file on a

CDC 854 disk storage drive unit, assume that there are N logical

records, each 16 computer words (384 bits or 32 bytes) long, to be

formatted with keys. The data disk file is read into internal core

memory one track (64 records) at a time. The linear search is

NARASIMHAM M N L
MOORE ARCHIE
HODGE D M
PAUL ALEX

KOPPES LARRY

CODONNELL DAVID

SMITH A PETE
DATERMAN GARY
YORK BARBARA

SCHECTER LARRY
WAKER BARBARA AN
OMEALY TODD
LAHREN SLJR
WARREN CHARLES E
FOSTER CHRIS
LUTZ JIM
NASSAR ALEXANDER
STOKER DEBORAH
GEORGE ANTHONY J
CLUFF JOHN ROBER

RAMP JEFF
WILLARD EDYTH
RHODS STANLEY C
MCDONALD BILL

SCHEIDEGGER KEN
HANSON C C
PULLEY M A

DILL MARY ROSALI
BA RR A BDELSA LAM

MORSE CHRUSTY
MACK CHESTER G
HEATH EDWARD H
SWEAT JEAN SISTE
TUCK MARJORY
HAUXWELL GERALD

SOLANDER ROSALYN
MCDANIEL JAMES M

MOSS JAS
GRIFFIN BRIAN
ROBEY S L

RANDALL ARTHUR
HART CHARLA
BYRAM KENNETH
WILLARD H KIRK
WALL JAMES H

HIA TT GALE
FRANCE j C
YOUNG ALAN

HELI N WM j
JOHNDOHL GAIG
SEAL EDWARD H

SMITH ALBERT R
NARASIMHAM M N L
ROOD RODNEY
OWERN GEORGIA FAY
SCOTAI THERES E
ESON NELS

SCHMALL RODNEY A
MA LONE HOMER C

CORNCCHIA SHERRY
FIREY WILLIAM J
KING ARTHUR
OKBY HUSSEIN
MARTEL DONALD J
WOJCIECHOWSKIE W
NELSON LYOTA

TAM MARILYN
ROBERSON MARY E
SHERBERT JAMES L
STONE LOUIS N
LIND GORDON
OKATA RON
SHUFF FLORENCE
S HUFF FLORENCE L
HANISH C
SHUHART TOM
PHELPS DAVID W
DE HAAS CHARLES
SMITH ALEX
FORRER EUGENE
TOPE LORY
WILSON AL
DEDOLPH ROBERT E
LUTTON DONALD L
HANKE CHRIS
MCGIBNEY MICHELL
SHANAHAN MICHAEL
REGELE DAVI D

RICE ALLEERTA L
GRABE DON F
TAYLOR ALICE
SCHAAD DAVID
GOLD JUDY
WOLBERG FLOYD B

ENGE JOHN

HUNT ANI TA
MCNURLIN BESSIE
MYER A R
YEE WAIMUN

SAMIN HELEN

FAULHABER JUDY
MULLBOCK MARTA

KANG HENRY
EIDE STUART A
HALE CORA M
MARTENS ANITA M
PROBER DENNIS

OLIVER A W
DIMMICK GREGORY
CHIU DEREK
HA RBAUGH DAVE

SNOOK DAVID P
00CALLAGHAN DENI
POPE CARLENE
LUND FER E
LAWRENCE BESSIE

PAARMANN BILL
REYNOLDS C W
WALL MARY JANE
JOHNS JUDY
COOK ALFRED J
WOMACK CHARLES W
JONES A L
MOORE ARCHIE M
LEI-INERT H M

STUART CHARLES E
OTTUM MARGARRET
JOYCE BERNICE
MCNIVEN SCOTT
GATHERCOAL FORES
HAMM PEG
WOOD BENJAMIN W
T RUMBO JOHN A
TURNNELL BLAINE

HEINDL A L
TILLEMAN PAUL
LOWRIE A C
POOLE A R
POND KEITH E
KAVANAGH ROSS
COOPER A L
HIGGINS ARTHUR
HOLCOMB G W
COATS LELAND F J
JOHNS TOM
VA RS R CHARLES
OVER TOM
HOWARD ART
NORED FRANCIS
LAMB FM
LUEBBERT EDWIN G

MYER BRUCE
NOREN CHRISTINE

212

213

HOSTETLER DONAL REYNOLDS CHARLEN MASON C R
CORWIN GERALD L KLIEWER JEAN NUGENT DAVID D

SCICK LAWRENCE LIND HELEN TODD ALLAN

WADE BERTHA GRIESSE CHERYL HSIUNG KOU YING

GLASER MARGARET LIND RICHARD C KAUSCHE LOUISE

HARVEY ELIZABETH CRAIG A W GARLAND DENVIS

CAHILL DON HAIGHT BETSY MACK GUY

JOHANSEN DANIEL WARREN DAVID R FITZGERALD CHRIS

KESSEL JUDY COUPER ALAN SFARCY JAMES T

MICHAEL NEAL D LIND RONALD E HAY DAN

CONVERSE PAUL T KANTOR JOSEPH MINER GARY

RAYMOND A F THARP CHARLEY EMBANKS ROYCE

HAITH A E MCGRATH B W PRICE B 0
HULTBERG H D LEPPER CHARLES LAMB N J

STROBEKATHY HER LEV SIPP EDWARD M

STROBEL KATHY OBERG KALERVO MCALISTER JAMES

PHELPS DOUG WIKMAN CARL TEST CHERYL

HERY BARBARA ELIA SON DON LAWRENCE FRANCIS

EDLUND LANCE E WOLF DAVE L SCOTT ALLEN B

P EDEN MYRNA MASSEY MARY PATANA MERRIT

ALLEN ARTHUR H JOHNSON ALBERT W KRAUS HOWARD G

GWINNER DONALD B KENNEDY CHARLES BRANT JOHN L

LOWE ARTHUR L KILMARTIN JIM HUGHES ARTHUR D

WAS HBURN F E JOHNSON ANDREW A CRAWFORD CHARLES

WILSON BONNIE MORGAN ARTHUR VA RADY CLARA

SHELDON MICHAEL HAAK BRUCE A LEE LARRY J

MONSON GIN EISEMAN DAVID SOUTEN DAVID R

JUNG PHILLIP ROTH BEN A HUFF JI M

GARRARD JAS L KAUFFMAN A J WEBB ALAN

HEATH ELIZABETH KALDAHL NORMAN E HUDY MICHAEL

CALL JOHN WILSON BRUCE A JOHNSON ARTHUR C

MUCKEY BEVERLY MIS KOWIEC C V MOBERG MA RCI A

MCCLAFLI N JOHN LIBBY HARLEY MARK DIANA

SORENSEN ANN CROSLEY BELTY HEYER ALBERT

LIBBRECHT MARIAN EVES S DAVID HAMILL BI LL

DERY RUTH KATO DIANE PERI N C A

REVELS ALIC L LEHR EDGAR I GRETZ HAROLD

CUMMI NG STELLA OAKS DENNIS E HORTON HAZEL

HOPER B R CRAWFORD CAMERON STELLA AL

RAINERT LINDA ENDERSON FRANK J MA RIMAN DAVID

BAILEY BOB PAYNE BOB MCMULLEN EARL F

STOVALL FRANK R PASSMORE LARRY W TROSETH STEVE

WILLBERGER GALE DORN HAROLD MERCER BARBARA

HALL BILL TILLERY JERRY 0 WILSON BURTON

BRETHANER MARSHA TSUDA ALBERT H MORE GARY KIELY

FESSEL WILLIAM C ENLOWS HAROLD E WILLBERGER GREG

CROVER STEPHEN E NUNNELLEY LEWIS CHEN JENNY

HALL PENNY MARTIN ARNOLD WILL PEGGY JO

MOORE BEN A BAKER DANA EDWARDS A HURCIE

MIDDAGH JAMES E HUECKMAN CAROL WEST DENNIS E

COSLER DENNIS HITCHCOCK P A FOYLE JO ELLEN

214

WILLE CHRISTOPHE DOND PHIL EWART ROBERT B

GATTMAN LEWI S HUNDL EY GARY KENNEDY D C

MOORE BERNARD J MEDANIEL L W METER GERALD A

MILBRATH JOHN A RUDD MARIAM M GANNON SUE

MOYLE B L CULL APUL SCHUDEL DAVID

GRIFFIN CYNTHIA LUSTO H E SWAN R 0

SOLTE ERNEST P RICE A RCHIE H WOLHOWE HANS

HELM CRICKET HAYES C W ARMSTRONG BOB

SORENSEN CLIFFOR LOTT BOB DYSERT NELL

CHRISMAN LEON D VALLEY IRENE SLEGEL DAVID L

PAHRE R E VOGEL A LIAN HOUSE CRAIG

FOSTER D L EVANS DARLENE HA RRELL EVERETT

DOTY DELLA CRUDELE ANTHONY HUGHES BUDDY LEE

SWAN ANDREW HATHAWAY EARL HENDERER CHARLES

HILL A S ROLOW W J SHEEHY HUGH F

WASHLEURN HERBER HAYDEN A A OELKE RAYMOND A

LEHRMAN J K OLSON ARTHUR E 0#DONNELL JOHN J

MASS SALLY SMITH A LEXA NDER COUCH DICK

KAMPFER LAWRENCE HUNT DEBBIE KING BERTHA

HA LSE EA CA RLILE CAROL MEYER BARBARA

GRISCHKOWSKY OSC ROLLER S P HOTCHKISS RON

EISENBRANDT EDIT MC GUINESS ERNA GREEY E"WA RD A

WALLACE A RDEN H MILLARD ALLEN L SCULLEN HERMAN A

EVANS BRIAN F OACONNELL K WILSON CARL C

WUNDE RLICH MA RTH HAWES HAROLD SNYDER D L

SEWELL HAROLD RA MCKIBBAN ROBERT HAMILTON DWIGHT

ROCK JOHN LANE CHRISTOPHER JOHNSON BERTHA

WORKINGER MAY NESS D M WELL LARRY W

CRAMER BRAD HALLENBECK VERN 0 REIMAN BILL

ST El GER JACK JOSSI S ROBERT G COX JOE D

JOSI TIMOTHY ALLEN BARBARA YODER MAX

VOSS CHARLES R PAINE HOWARD LECKIE MICHAEL

HAMADA SPENCER MASON DALE F PUCKETT BILL

LA CEWELL DAVID A STUBBERT DAVID HUSTED FRANK

MEDLEY FLORENCE VENDE'TTE ALLAN KALBERER KATHLEE

JONSON A RTHUR P JENKIN CLIFFORD SMITH BEVERLEY

HILL CHRI S HASSOUN HUSSEIN GRIM DON

TESTER JOHN NA NSON ARTHUR HOPPE JIM

LACH JOHN GARNER CARY A VANDECOEVERING J

HOOD ALPHA F PERREA RD GEORGE TRIPP G R

LYNCH A NNA ROSE BOB KULM LAVERNE

FRYE DANIEL E MURRAY AILUN WHYLER RICHARD

TERREL MARK H MATTHEWS JOHN LARSE LLOYD

SAGER CHARLES E NOLL CARROLL RAO P S

WILKEN CALVIN PRATER LAUREN YOSS JAMES K

DOUGHERTY KENNET CUTTING GEORGE LLNDAHL DONALD G

CHARLES ARTHUR DEAN CHARLES TITMAN JOHN E

WIEBE MIKE YENNE HERBERT HANEL MICHAEL P

HABERMAN J R STELZER MILTON J RECTOR MAVVI N C

MCQUEEN MIKE KERTH D H DOHERTY DAVID T

215

STRODE LEIAND L DRAPER JOHN W WILBORN JACK G

KELLAR DEBBIE ROZENDAL PER H HULL DANIEL F

HORN DON DALRYMPLE GARY KAKIMOTO

FORD DOROTHEA ENGEL JOHN HOWAR SACKETT HARRY A

CISAR JOHN 0 STOCK DAVID E DALGAS C M

COPELAND BARB PETER JAMES R ROBLEY ASA A

TOWNE TOM IVERS ALVIN WILT ALMA

LARSE ROBERT W JACKS CLINTON STANGE STEVEN

JAFARI JEFF LUBIN J M ROSS A RTHUR M

DURHAM JOANNE LEHMAN HAL W RISE FRANK

HENNEBRY H M LUCK JOHN HEALD JAMES R

CRUSON JON JAY KOBLITZ GORDON F RICKABAUGH U S

MOSEMANN JAMES KING CHARLES S DALRYMPLE LINDA

PEDERSEN D I TOWNER HERBERT B PAPRATER ROY

LESTER L JUSTIN PURDOM E E GROSHART JODY

POTTER A W A RNESEN MICH SCHMALTZ JAMES N

REYNOLDS DENNIE SUHR GENE SCHUDEL STEVE

VAIA SCOTT F SUMMERS DANI EL WALSH JAMES W E

ST REEBY LARRY RICH ANDY ASHBY MERLA

HA GOOD NANCY HAY ROBERT EGHBALT HASSAN

MCWADE J H PRICE BARBARA CRAWFORD GEORGE

HAMM RON W OLSON ARTHUR H CUTHBERT ANN

GA LIA GA R JILL WICK RON JOHNSON BILLY F

MILLARD MIKE GALLAGHER DONALD SIGMA CHI

LAWRENCE GILBERT CHADWICK E B SIDLES KARES A

ROBIDA RT GA BRI EL LISS BILL PHILBIN JANET

MILLEMANN R E FESSENDEN PETER KIRBY DAVID N

MUMPER JERRY GOODE D M HOERLING DERALD

WOOLERY LAWRENCE MARCH GUY KESTLER HULDA

GOSHU CARL GOWAN ENID L KLIPPEL E A

SMITH CAROL LOCKE NESON MEAD TOM

LEY YVONNE URBAN BOB FIEBER LESLIE E

ODOM DEBORAH OLSEN ANTHONY FINSETH L C

HANSON DEAN TERHAA R JOHN C CONVERSE RICHARD

VETICH JAY SWEARENGIN E B HOLT ELEANOR

RYAN ANNE PETERKORI JACK SETO FELIX

HAWK DIANE HORTON HOWARD F MILLER BRUCE H

STONE KATHU SECHER ARNOLD SPELBRINK ROBERT

WHEELER DENNIS GOLDBAUM FRANCES YUNG TONY

CURREY DEAN L ORDEMAN D T HALL BOB

CARR BRUCE F HALTER A N MENDEL W C

THRELKELD CURT PAQUIN JAMES E HAWLEY CRYSTAL

PHELPS HAROLD E 0000NNER KATHLUN FOUNTAIN S L

KNAPP DAVID FULL CYNTHIA PRIC CECIL K

SAITO AL SMITH BOG NORD PHILLIP M

LARSELL DAN GRAY ALDEN K KAPLAN E L

LENAER MIKE WEBER ALISON L KENDALL JOHN

JOLMA ROGER E MCAULIFFE DEBBIE DEATHERAGE DENNI

BROOKES VICTOR SCHNEBLY WILLIAM LOOMUS BOB

KALK PETER A KELLER CHARLES HODGE WI LLIAM J

PECK DENNIE HA GEL PATRI CK SHAW C G

LAWRENCE H SAM
JONES ADORA A
JOHNSON BOB
PETERS ALLEN R

STROEMPLE JAN

DUNN CHARLES
JOHNSON BRAD
WELLER L J

FINE DARWIN
JORDAN ANNA
ANDELL ROBERT
RASMUSSEN MARK
HAYES CLARK
SHUM EDDY
NEVILLE ARTHUR S
HATHAWAY ELMER C

CA RR DONALD F
SCHMALTZ MARGARE
BOLAND DALE H

S CHU RMA N DONALD

LF.APTROTT JOHN
LEE ALAN DA LE

KEELER ADELLE H

KUYKENDALL A L

CULLEN GARY
GUNTHER EMIL B
PHIPPS KEN
TAYLOR C EDWARD
RICH JACK
LUND FERN E
CROWE HUGH L
STARK CECIL M
WOLSKE DAVID
RIVERA D
ROESER MARION A
REDSHAW JAMES
KENT WAYDE
COWAN BETSTY
ANDERER DAVID A
MCCLAIN DICK
MCKILLIP GREG
TORHEIM ROBERT E
TICE EDWARD
BEHRENS ROBERTS

MOE RON
WALLA CE BARRY J

TERHAAR RON
COPELAND CHAMP

STA RT EN MIKE

DAY JERRY
KIEN LE CLARENCE

GENTZ KEITH R
GOSS LARRY D
CHART NONA L
SCHEIDLER DAVE
CLEM C S
THOMA GALE L
DOGGET TOM M
RICH LARRY L
WHITEANNA N
BARBER CARL

QUINLAN DAVID C
WILLE J ERALD

POST LULU
REESE H DARWIN

JOHNSON CARL
LITTLE B R
MULLEN HAZEL

OWEN JOYCE S
MINER HELEN
KRAUSE D G
NEIL FORREST A
MARTIN BOB
HIATT PETER
DORT JAMES B
FRENCH J R
UNGER STEVE
WALES J H
STEVENS ANN
YOUNG B DIANE
LEE JAMES K

S KINNER D J
DECKER FRED
TURNBULL
AMERICAN LEGI ON
GRANDATAFF MAURI
HARDEN IRVING
PAYGR STEVE
ROGERS CHARLES W
HOLDEN ARNOLD G
GA ROIAN LEON
HATHAWAY JAMES C
GILSON JOHN A

JACOB PHILIP
SPEES FA RL

DOUGLAS DAVETTE
TAYLOR CARL BEN
PETERS BARBARA

MOGAN DAVID

GARCIA EDMUNDO
MCDONALD D LYNN
ROGERS D L

MILLER BRUCE H
FISHER BILL
ANDERSON JACK R
ELD RED CAROLYN

LUCKER CATHERINE
ENGLAND DAVID C
HASHITANT GLENN
HOYT HAROLD P
GULAN MICHAEL P
RATH ALBERT C
MATHEWS LAMONT
EMIGH ANDREY L
RUKKE DIANE
LEONA RD RUTH E

VANGENT COR
STOCHR CAROL
ROBERSON MICHAEL
ZUR WILLIAM
OOROURKE CHARLES
STAVE CHARLES

RILEY ADELLA

MCCOLD LANCE
°KANO BOB
LONG CARL
YOST GA BOLD
ROBINSON ALAN H

WA T ENPAUGH FRANK

SMITH DEBRA MARI
HAAS KERRY
TOY MARY THOMPSO
NOBLE DONALD

RODLEND RICK
OLIVER AVERY W
ENDI COTT STEVE
LOOP DAVID A
CA RP ENT ER CARL

WEIS DORA
HOLDEN CHRISTINE
MCALISTER WANDA
HAMLIN LOUIS W
SCHOPPEPT KENTON
PETRIE DAVID
HOSTETTER I M
RHONE W T
REINERT DAVID
DEEGAN DON
RHODEN J
HAMMACK DICK
RICHARDS CLYDE G
URE ROBERT VAN
TETZ DENNIS

216

HAWKES STEPHEN J
BENNETT C V
EDWARDS ANNE
HARDA GE ROGER
NICHOLS DARLA
COMVAY MARK
MCCLANAHAN RALPH

STEINBRUGGE DICK
KOTUO PEARL
EDELSON JOAN
BROOBECK RALPH J

ROBERT ALOYTH
DUDLEY STEVEN R
WILSON DENNIS L
CRAIG CHARLES
PARK DAN
PUGSLEY DAVID W

WHITE CLARENCE R
REID RICHARD
STEAGALL MARY
WILSON GA RALD R

SMITH EWA RD

VANEIKEN HANS

DALRYMPLE W
HENDRI CKS JEANNI

LANKFORD DONALD
LYMAN RICHARD E
GA RREN RALPH
MCKINLEY STEVEN

WIESE FRED
IWANA GA PAUL M

STUFFLEBEAM EUGE
KNEHTA THOMAS J
WALTER AUSTIN F
POMEROY LYLE J
MINGLE J G
BRYAN D F
MCMACKIN TERRY
TRIPP RANDY
STONE A RCHIE

HOLM BIRDIE
LONG DAVID L
DUBOIS MAY
RICHARDS FRANK B
ECKMANN BARBARA

GRAHAM COYNE
FERNANDEZ ENRIGV

HORN GREGORY
JACKSON BILL
ROYCE ROBERT A
WESSBECHER HOWAR

MORGAN DON E
CRUM CONNI E
EDDY HELGA

HILL DALE
COS BY H B
THOMAS QUEBIIN V
BYERS BILL

MARTIN CONNIE
SPINK THOMAS J
WEGNER ALBERT

KEASEY GILMAN
CUNNINGHAM DONNA

WHITE FRANCIS
FROTHINGHAM PHYL
YORK GEORGE
CRAVEN RICHARD
WILSON HOWARD L
HEISE JOHN
THOMAS SUZANNE
MAIER ROGER
MCNAIR ALFRED B
SIEGMUND WALT
TRICE DENICE ANN
SHIOSHI SARA
HAMBLIN DON
LANG JOHN L
REIMAN LYNN E

ELLIS BEN

WA RNA T H CHARLES

E BERHA RD T CLI FF0

TOBA BEN CIA RENCE

STUFFELBEEN CHAR
GARLAND JAMES E
FONATAN PETER R
PASLEY FLOY
HEINE DELORES
HA RRICK CYNDY
MACK HARRY J
HENDRICKSON DAVE
ENYART CAROL
CRUM GARLAND
PATTERSON Ail CE
JONES RICHARD A
MYBENGA DANIEL E

KANOUSE DANIEL

LIBBY RICHARD
ECCLES TERRY L
MICHAEL ROBERT

PUN LINDA
VANDCHEY JAMES A

JORDAN GUY W

LEEIAND ALBERT L
ROBERTS CLARENCE
PARSONS JEANETTE
MOOT HA RT GORDON
RICHTER EDWARD W
DEWEY GEORGE W
TODD GEORGE F
GREENWOOD RICHAR
NELSON DULCIE
WALLACE H WAYNE
FLEMING DOROTHY
IRWIN ROGER
FOOS DAVID
FOWLER GERALD A

WHITAKER CONNIE
HARMAN ALBERT L

BROWN BETTY

BA RNEBURG BRENT
HOWA RD BONNI E 0
MILLIKEN MARGA RE

SIHTO GEORGE
TURNER LAWRENCE
GATE ROBERT D
COOPER KENNETH G
KENNEDY KATHY
MASER K
KING JOHN PHEW
LYDA JOHN H
STADSVOLD CYARCH
GODARD RUSSELL H

JOYCE JAMES H
CHRISTENSEN BENN
CROBOK EDNA M
HISA KA CAROL
REEVE DANIEL G
WILLEY DALE H
HOLIAMON RICHARD
LUSKY CHUCK
ELLIKER ANNE
MORGAN SA LLU

NELSON MILTON
WEST GRANTON
DAVID FORBES
PARMENTER ROBERT
PHILIPPI SANDRA
FOWLER MARILYN
BUNTING JAMES
HARRISON BEN
ROESER THOMAS
DEDEURWAERDER CH

WALETICH MARK

217

MOON CARROLL C WOLF DONALD S

DEARBORN RICHARD WRIGHT GEORGE C

WA RE BARBARA IRONS L M

FELL ROSEMARY KLINE DOUGLAS J

WALSH NANCY JANS FRED C

SCOVILLE JACK A RYDELL ROBERT A

OLLEMAN ROGER D MATTHEWS MILDRED

GITHEN S JENNIFER BUSBY HAROLD L

JA GER -DUANE GRUBB STEVE

KHASHOGJI EMAD SCHMID RICHARD A

SINNARD H R HANSEN KENNEDY

KATTER V NG DINA

KNUTH LINDA WALKER RALPH DEA

RHYNARD WAYNE E OVERACKER CLAIRE

HEATH LARRY JOYNER W B

HOFFMAN DATE L FLYNN JOAN

GUY GREG DONOHUE PAT

HENDRI X MI KE GOULD BEULAH

LINDBERG MARVIN SMOUSE CHERILYN

FLYER DOUGLAS C WONG PATRICK

BUCK DARRELL K TABOR CLAYTON

EMERICK DONALD J HANT DONALD

DAVISON EUGENE V NESBITT CANDICE

DUNN ELLEN LEWIS ANNIE

MECHAN SIDNEY CRUSE HOWARD

OSBORN FRED P SMITH HAROLD E

WILCOX R C NUNLEY M KIRBY

LITCHFIELD A SCHWANKE WALTER

WHEELER TERRY WATSON CHARLES R

BOYD FREDDIE HORNER GAMMY

AUSTIN CYRUS W ZOBEL DONALD B

GRAHAM CRAWFORD PIECE KENNETH

GILBERT MIKE WILLIAMS CLARENC

STOKES DONALD B ROBINSO RAYMOND

FERRAN FRANCISCO RICE KENNETH L

BURGE ANNA FRY LOYD L

WOOD EDWARD GULLED GE MARY

HIGBEE BRIAN FREEMAN GEORGE F

SMITH FREDERICK J LEHAMAN GEROLD 0

PERKINS A HOY MAE R

PANDEY N N MC NUTT JIM

FATO GABRIEL FIREY WILLIAM J

WUSTRACK MIKE MERRICK STEPHEN

VIMMERSTEDT JO HEPNER RALPH

DEDRICK M C DOLBY MICHAEL W

GA RG HARE PRASAD KUROVOSKY DENNIS

BUNKER A LBERTA SANDER GARY H

NELSON WILLIAM R SEMONES RONALD R

ZENOR DANNY RONNING MARYLEE

CRAIG ROBERT V PETERS EMERSON C

GRIFFIN STEWART GUERBERJ RICHAR.

SCHOTH H A
FAMILY BILLIARDS
NOVAK RAYMOND P
SAWYER REBECCA
HOPSON CHERLYN
NELSON KERMIT

218

219

performed in internal core memory. Compute the average through-

put time per record retrieval in random sequence; assume the user

terminal is 20 miles away from CPU. The concept of computations

are illustrated in Figures B. 5, B. 6, and B. 7 on pages 228, 229, 230,

and respectively.

1. Computation of the number of required tracks and required

cylinders

Number of required tracks = i

Number of required cylinders = Z.

Where i and Z are the smallest integer such that

i and Z >
>". 64 640

Where numbers of records per track = 64

Number of tracks per cylinder, D854 = 10

Number of records per cylinder = 640

2.. Computation of the average accessing time of a random

record from a sequential disk file. The concept of using

average cylinder, average track is considered. See

details in Figure B. 5 on page

Since average number of required looking-up

records N + 1
2

Average number of required cylinders = Za

220

Where Za is an integer such that Za > (N + 1)
2 x 640

Then the records contained in the last average cylinder =

N + 1
[- 640 (Za - 1)] and the number of looking-up

tracks in the last average cylinder, tLLAC

Where tLLAC is the smallest integer such that tLLAC >

1 N + 1
[640 (Za 1) I

64

The number of looking-up records in the last track in

last average cylinder, NALT

NALT = [(N +
2

1) - 640 (Za - 1) - 64 (tLLAC 1)]

a) Total cylinder to cylinder positioning time (tTCTCP)

tTCTCP = 30 ms x (number of full cylinders)

= 30 ms (Za 1)

b) Total track average waiting time (tTAWT)

tTAWT = 12. 5 x number of average full cylinders +

(12. 5, initial waiting time) ms

= 12.5 ms (Za 1) + 12.5 ms

c) Total previous tracks read-in time (t PTRIN)

tPTRIN = (a track read-in time + one disk r. p. m.

waiting time) x (number of full tracks

used in file)

221

= (25. 00 + 25. 00) ms x (number of average

tracks ir. the file)

50 ms x (number of average full tracks

in the file)

50 ms ('tLLAC

d) Average search CPU busy time per random record
retrieval for the main file (tCPUFSQF)

tCPUFSQF = (fault-loop linear search time) x (number

of average full tracks) + [(fault loop

linear search time) (NALT -1) + (correct

loop linear search time) (1, a desired

record)]

where NALT
= Average number of records in last aver-

age track.

NAFT Average number of full tracks = (tLLAc-1)

tCPUFSQF
[5. 5 + 7. 875 x 64) x NAFT + [7. 875

N ALT -1) + 165. 625 (1)] 9] x 10-3 ms

[509. 4 NAFT + [7. 875 (NALT -1) +

165.625]] x 10-3 ms

e) Average search time per random retrieval for desired
track (TASFSQF)

TASFSQF = (Fault loop linear search time) (NALT-0

222

correct loop search time (1, desired

record)

= [7.8" (NALT 1) + 165.625] x 10-3 ms

f) Average disk access time per random record retrieval
(TAVACFSQF)

(initial positioning time)TAVACFSQF tTCTCP

tTAWT + t PTRIN
+T

RINDT
+TASFSQF

= 95 ms + 30 ms (Za - 1) + 12.5 ms (Za -1)

+ 12.5 ms + 50 ms (tLLAc-1) + 25 ms

(7.875 (NALT
-1) + 165. 625] x 103 ms

107.5 ms + 42.5 ms (Za -1) + 50 ms

(tLLAC -1) + 25 ms + [7.875 (NALT -I)

+ 165.625] x10-3 ms (9. 16)

Illustration computation for N = 1024 records in the
file

(1024 + 1)
IZ >

a 2 x 640

1 r 1024 + 11

[

N + 1 640 (Z -1)] -
tLLAC 64 L 2 a 64 I 2

- 640 (1-1)]

= 9 tracks

NAFT = (t LLAC
-1) = 8 full tracks

+
N ALT

(N
2

1) - 640 (Za -1) 64 (tLLAC -1)

223

= 513 - 0 512 = 1

=TAVACFSQF 707. 5 rn s + 42.5 ms (1-1) + 50 ms (9-1)

+ 25 ms + [7.875 (1-1) + 165. 625] x 103

ms

= 107.5 ms + 400 ms + 25 ms + 0.166 ms

= 532.666 ms

The results of computation of TAVACFSQF' Equation

(9. 16) are shown in Table B. 1, page 231.

3. Computation of the average throughput time per record

retrieval of unsorted sequential disk file:

a) Average throughput time per random record retrieval
of unsorted sequential disk file TATHRPSQUN

From the time diagram on page 2 the following

equation can be set up:

TATHRPSQUN = TC BF
+ TCFNTK + TRCLU + TAVACFSQF

+ TTCl/O + TRWOUT (9. 17)

= 0.3218 + 8.515 + 0.008 + 532.666 +

0. 008 + 36. 00 ms

= 577.159 ms for N = 1024 records.

The results of the computation of TATHRPSQUN,

Equation (9. 17) as the function of file size are shown

in Table B. 2 on page 232.

224

b) Approximate formula of TATHRPUSQF = T1

Only the major components of search time (msec)

are considered; the minor components of search time

(p.sec) are omitted.

Since TAVACFUSQF (initial positioning time) + (cylinder=

search time) + (track read time) + (read-

in the desired track)

and 44. 8878 ms = TCBF + TCFNTFN + TRCLU + TRCl/O

+ T
RWOUT

then T1 TAVACFUSQF + 44. 8878 ms

T1

= 107.5 (1) + 30

N + 1

N + 1 + 50

8878

[2 x 630

+ 259) + 44.

453 msec.

11L 2 x 630

0.635 N + 97.

4. Computation of the average CPU busy time per record

retrieval fro unsorted sequential disk file using both unique

fixed-length key, and full name of a record in accessing.

a) Total CPU busy time per record accessed using unique
fixed-length key (tTCPUTSQFUN)

Since tCPUTSQFUN = [509. 4 NAFT + [7.875 (NALT -1) +

165.625]] x 10-3 ms

= [509.4 x 8 + [7.875 (1 = 1) + 165.625] 1

x 10-3

= 4.242 ms For N = 1024 records

then tTCPUTSQFUN = TRCUL + tCPUTSQFUN + TRCl/O

TRWOUT

= 0.008 + 4.242 + 0.008 + 36.00

(9. 18)

= 40.258 ms For N = 1024 records.

b) Total CPU busy time per record access with using
full name of a record (tTCPUSQFREUN)

Since tTCPUTSQFRUN = TCENTFK + FRCUL + tCPUTSQFUN

TRCl/O + TRWOUT
(9. 19)

225

= 8.515 + 0.008 + 4.242 + 0.008 + 36.00

= 48.773 ms For N = 1024 records

Equation (9. 18) and (9. 19) as a function of file size

are computed as shown in Table B. 2 columns 9 and

10 respectively.

5. Computation of achievable-throughput-rate capability of

unsorted sequential disk file.

a) Achievable-throughput-rate capability of unsorted
file, C

1

can be computed by using the general formula which

has been mentioned on page 141. Equation (7. 1) can

be rewritten. Throughput-rate capability of unsorted

sequential disk file, C , (calls per hr.)

226

= 3600 [average throughput time per call

(sec), T]
(1) (9.2.0)

3600or C
1 T(1)

where T = T
(1) ATHRPSQUN

For illustration, from Table B. 2, T(1) = 577.519 ms =

0.577519 sec. for file loading factor, a= 0. 0625 or

N = 1024 record in the file. The file system using

the full name of record in accessing.

3600
1 O. 577519

6234 calls per hr.

The results of calculation of Equation (9. 20),

Achievable-throughput rate-capability of each typical

file organization method using both the full name of

record in accessing and the unique fixed-length key can

be computed in the same manner as shown above.

See results of computation in Table 7.3, page 152 and

Table 7.4, page 155.

6. Computation of customer's operating per call (unit cost) of

unsorted sequential disk file.

a) Customer operating cost per call (unit cost) is

based on rental cost as the objective of the evaluation

in this thesis. By application of the general formula,

Equation (9. 21) can be rewritten as follows:

227

Customer operating cost/call of unsorted sequential file,

UC(1)

T(i) Rem (300) + NT(i) (0. 3)] x 100

RcM

by using the equation (9. 13); page 209, then

(9. 21)

17. 5 (F/hr) (TCPU /R) +NT(i) (0.3),
1

1x 100
C(1) RcM

(1. 5)

For illustration, from Table B. 2, page 232, T(i) =

0. 48773 sec, from Table B. 4 page 234, Disk required

space, NT = 24. 755 tracks. For N = 1024 or a= 0.0625.
i)

The selected rate of use is 250 calls/hr (Rem = 52500

call/month); 1000 calls/hr, (Rem = 210000 calls per month),

2000 calls/hr, (Rem = 420000 calls/month). Then

r 17.5 (250) (0. 048773) + (24. 755 x 0.3)1 x 100-
UC(1) (52500)

= 1.86880 cent per call.

The results of computation of unit cost of each typical file

organization method using the full name of record in accessing can be

computed in the same manner as shown above. The results of compu-

tation are tabulated and compared in Table 7. 6, page 173. The

graphical comparison of the results is shown in Figures 7. 13 - .7. 16

pages 169 - 172 respectively.

Full name of a
ecord is supplied

cylinder 0 cylinder 1

unique fixed length
key uses for
searching

= desired redord, in (a)

(a) illustration of random record accessing
from sequential disk file

cFull name of a
ecord is supplied

Variable length
tree key decoder

unique fixed length
key uses for
searching

cylinder 2

= desired search record which is equivalent to
make a random search in (a)

(b) average search is considered for
any random accessing

Eil,r0,711r4PAIP!../IIINI.41110M1P"...///4011
1.

Figure B .5. Random access a record in a sequential disk file in (a) is equivalent to average access of a record in (b).
Average looking-up records in the file: average cylinders, average tracks have to be considered.

i 1

track 1 -a.-

track 2

track 3 --3"-

track 100

Request read internal cpte

4

16 Sectors per track

read track 1 read track 2

Transfer time
track

1.2. 5

ms 25 ms

Waiting time
1/2 rpm

1 cylinder

read track 3 L
Internal search time, 186 x 10-3 ms

ms

waiting time
R/W head positioning time

95 ms

Transfer time
track

25 ms

SS

Total actual processing time

Transfer time
track

contains desired record

Figure B. 6. Time diagram for accessing a record from sequential disk file.

0£
Z

11
3

D
J

oQ 5 go

C
om

m
un

ic
at

io
n

tim
e

R
ea

d
in

 th
e

fu
ll

na
m

e
of

 r
ec

or
d

to

fi
xe

d
le

ng
th

 k
ey

C
on

ne
ct

 lo
gi

ca
l u

ni
t d

is
k

tim
e

R
/W

 h
ea

d
po

si
tio

ni
ng

 ti
m

e

,
T

ra
ck

 w
ai

tin
g

tim
e

1/
2

rp
m

Fi
rs

t t
ra

ck
 tr

an
sf

er
 ti

m
e,

re
ad

 in
 o

ne
 r

ev
ol

ut
io

n
tim

e,
 2

5
m

s
Fi

rs
t t

ra
ck

 in
te

rn
al

 s
ea

rc
h

on
e

re
vo

lu
tio

n,
 2

5
m

s
w

ai
tin

g
tim

e
Se

co
nd

 tr
ac

k
tr

an
sf

er
 ti

m
e

on
e

re
vo

lu
tio

n
tim

e,
 2

5
m

s

Se
co

nd
 tr

ac
k

in
te

rn
al

 s
ea

rc
h

In
te

rm
ed

ia
te

 tr
ac

ks
 s

ea
rc

h

D
es

ir
ed

 tr
ac

k
tr

an
sf

er
 ti

m
e

on
e

re
vo

lu
tio

n
tim

e,
 2

5
m

s

D
es

ir
ed

 tr
ac

k
in

te
rn

al
 s

ea
rc

h

H H

O
ut

pu
t c

ha
nn

el
 is

 b
us

y
or

T
ra

ns
fe

r
ou

tp
ut

 d
at

a
fr

om
co

re
 to

 T
T

Y

C
om

m
un

ic
at

io
n

tim
e

Table B. 1. Results of computation of an accessing time per random record retrieval as the function of file size for unsorted sequential
disk file.

4EI

v..

2
'15 1344

4) o
N ii))H 0,

.....0
F 40

.) t
1.31

r-.

a) '.1.1rt 2
.... 1, to)

.
6 ti;
44 .1"

.F.1,-0 -
g (''
g 00

ga) ...
cd
{4 a
a)
> CI'
<4 g

st
54
a)
A

ii
g 13
cu --, 'V
g° >-. Isl.)

.5>
<4 .4. a)

t
.4X' .1u wcli 4
li +.'
,11 1:10 -."'
PI -0 ral

.1) E .0
E -50
z P. Gs

... u
al
i4 054- 1
2
1 gi
0 '''''
0. '0 ti
2 2 -0
E -5gz 2 C

g...,
43
44
0u
4. U

44 000
0. .,2 g

.4I
cl.)

Z

'0
al

.1) .M

0.0
--.... F.i

cd g
44I o

C0
4.1

...
4 &

0.
a)
al
45 a)

5. 00 4.,
0 CO4,

g:F.
4) g
15, 2
4., .4.4'

G &

00
....4,...
ed

3
w
00
ca

4)>
cd

..x0 0
fl: .E.

a)

fl

4i
"0
(a

F.

.?.

ri..

.-c,
,,,0
4.

..Xu
cds.

'0
4)i. 0)

.:il .fi

-t4 .5

41.

X 4u o
cd c,

Vi,

'V rn
0) e1r. cd,-.
co g
a) I-.

< ..

"CI
4.1 ''.4, 0
En U
V) 0 0
a) r-.. .-.
U *.u 0 '"
ca 0 ..X..0 cn
0) g ;El
to co

ES4 '-' 0.
0/)>

c.-,< 0
N (N-1-1)/2 Z

a
(Z

a-1) tLLAC tLLAC -1 NALT

unit records cylinders cylinders tracks tracks records ms ms ms ms ms ms ms

128

512

1024

4096

8192

12888

16384

65

257

513

2049

4097

6145

8193

1

1

1

4

7

10

13

0

0

0

3

6

9

12

2

5

9

3

5

7

9

1

4

8

2

4

6

8

1

1

1

1

1

1

1

95

95

95

95

95

95

95

-

-

-

90

180

270

360

12.5

12.5

12.5

50.0

87.50

125.00

162.50

50

200

400

1600

3200

4800

6400

25

25

25

25

25

25

25

0.166

0.166

0.166

0.166

0.166

0.166

0.166

182.666

332.666

532.666

1860.166

3587.666

5315.166

7042.666

Note: Unsorted sequential disk file -- 64 records per track

-- 640 records per cylinder.

Table B. 2. Results of computation of average throughput time per random record retrieval and CPU billing time per record accessing with file
system using both unique fixed-length key and full name of records in accessing.

.E
a)

--,
o

'8 rs

,,,
v, ,..

44

2
U
RS44

L-
00

-..
4.

(h)
.44

00 ,g

0 4-t-
0 A
E "
0 (44

(..) .0

TJ
$.0 >,0 .
0) .xs.

wai to i0 .4,
(1) <t) Z

.-t; -9.. 2
g .;) "4 4-1 s:1

0r.... 2 C.)

,_,

UU4.
to
o
00
.9 a)

U
0) .

'-'
g .+;:.,

6'

.3.3

UU
C.) 4
cel 44

o
.. (1)'0 r.

-,
(1.) 41
b0 sa
VSf. ty0
>

"tC .41

8
4-4

Tsa.) 0
41 ----
o^ bo
0.) g
a) t
E 01 .4
H U

49

-cs
a)..
0. 1,
a) 0
,-, 0
CU

E .4;4

r2. 'i

0
8 'Po0 g
0.)

'"
I

411 TS
04 a)

xa) ..
"-... b0
.4.

P
-0 t0.)

0 cu0 41 -V

0
CU

2 g
f.
a) g
A. .--1. 2
,-. b0
4-' 12,

84 col 4.)

4)

R u ,...0 ed o

g
5 in

E g
A c."
bo0 2
2 t;
94 a9

() 0,
b0 7.g 0 4-.

-0 ,.x
g

<4 ili v

N a TCBF T
CFNTFK

T
RCLU

T
A SFSTSOF

T
RC I/O

T
RWOUT

t
TCPUSOF

t
CPUTSOFRFU

unit ms ms ms ms ms ms ms ms ms

128

512

1024

4096

8192

12288

16384

0.0078

0.0312

0.0625

0.2500

0.5000

0.7500

1.000

.3218

.3218

.3218

.3218

.3218

.3218

.3218

8.395

8.475

8.515

8.595

8.607

8.626

8.641

.008

.008

.008

.008

.008

.008

.008

182.663

332.663

532.663

1860.663

3587.663

5315.166

7042.663

.008

.008

.008

. 008

.008

.008

.008

36

36

36

36

36

36

36

36.691

38.220

40.258

52.486

68.789

85.084

101.398

45.086

46.695

48.773

61.081

77.390

93.710

110.039

227.399

377.479

577.519

1905.599

3632.605

5360.130

7087.645

Table B. 3. Results of computation of _storage space required as the function of file size of
unsorted sequential file with both fixed length key and record full name.

File size
in records

Full name of a
record program

SCFNFK

Main file search
program

SCPRS

Total required
core memory

with SCFNFK' in

Total required
core memory

without SC FNFR

Disk space
supporting the

unit words words words words track

(a) (b) (a) (b)
64 200 544 61 1024 1829 1085 1

128 200 1088 61 1024 2373 1085 2

256 200 2176 61 1024 3461 1085 4

512 200 4352 61 1024 5637 1085 8

1024 200 8704 61 1024 9989 1085 16

2048 200 17408 61 1024 18693 1085 32

409 6 200 34816 61 1024 36101 1085 64

819 2 200 69632 61 1024 70917 1085 128

12288 200 104448 61 1024 105733 1085 192

16384 200 139264 61 1024 140549 1085 256

Note: Column a = Number of computer words used for processing program.

Column b = Number of computer words used for supporting data of one track.

Table B.4. Results of computation of customer operating cost per call (unit cost) as the function of file loading factor of unsorted sequential file
with using the full name of record in accessing.

File looding
factor

Disk space
for data file

Disk space
for accessing

program

Disk space
charge per

month

TTY, line and
operator cost

per month
Rule of use
data file

CPU-time
charge per

month

CPU-line and
disk charge
per month

CPU-line and disk
charge per month

per call

Unit Tracks Tracks $ $ calls per month $ $ $

.0078
(128 records)

2 1.317 0.995 760
2675
4075

52500
210000
420000

197.25
789.01

1578.00

958.25
3465.01
5652.00

1.82523
1.65000
1. 34614

.0312
(512 records)

8 4.505 3.752
760

2675
4075

52500
210000
420000

204.27
817.17

1634.34

968.02
3495.92
5713.09

1.84384
1.66472
1.36025

0625
(1024 records)

16 8.755 7.427
760

2675
4075

52500
210000
420000

213.39
853.53

1707.03

981.12
3535.96
5789.76

1. 86880
1.68378
1.37851

. 2500
(4096 records)

24 34.255 17.477
760

2675
4075

52500
210000
420000

267.24
1068.90
2137.83

1044.72
3780.00-

1.98994
1.80000-

.5000
(8192 records)

128 68.255 28.877
760

2675
4075

52500
210000
420000

338.58
1354.32
2708.64

1157.46
-
-

2.20467
-
-

.7500
(12288 records)

192 102.255 88.28
760

2675
4075

52500
210000
420000

409.98
1639.92
3279.84

1258.26
-
-

2.39668
-
-

1.000
(16384 records)

256 136.255 117.68
760

2675
4075

52500
210000
420000

481.41
1925.67
3851.37

1359.09
-

2.58874
-

235

Example lb. Strictly Sequential Disk File

In case the file is strickly sequentially organized and the

cylinder overflow concept is used to handle the overflow records,

assume half of each cylinder overflow area to be full and the access-

ing of an overflow record use the direct chain method as in the

Direct file.

1. Computation of the required tracks and required cylinders.

In this type of file the concept of using cylinder overflow

track is introduced; the methods of calculation are as

follows;

Assume that the number of searches in the cylinder

overflow track is 10% of the number of retrieval records

from the main file (approximately 9% of total access

times).

The data records are organized in such a way that:

The number of prime track per cylinder = 9 tracks

The number of records in a prime track = 63 records

The number of cylinder overflow track = 1 track

The number of records in a cylinder overflow

track = 56 records.

Since the computation is made when the cylinder over-

flow track is half full

236

Then the number of looking-up in overflow track

56
= = 28 records.

2

assumes the overflow records which are the head of

each chain, are stored sequentially in the first nine succes-

sive spaces, but not necessarily in any key sequence (the

same as unsorted sequential file). See detail in Figure

B. 8, page 245.

Then average number of looking for the head of the chain

records 9 + 1
2

5

The average number of fault looking up for head of the

chain records = 5-1 = 4

The average number of correct looking up for head of

the chain record = 1

The number of overflow records which are not the head

of the chain = 28 9=19

Then average number of looking up these records

19+ 1
10

2

a. The average search time in cylinder overflow track
(TASOFT)

TASOFT = (initial time) + [(Fault check count loop time)

(5 1) + correct checking count loop time

(1)] + [(Fault checking chain loop time) (10 -1)

237

+ correct checking chain loop time (1)] (9. 22)

(5.5)+ [10.625 (5 - 1) + 7.875 (1)] + [(19. 25

(10 - 1) + 4. 725) + 158. 75 (1)]

5. 5 + 50. 375 + 336. 125 = 392 psec.

= 0.392 ms << 25 ms; then 50 ms, waiting and

read-in time per track is considered.

2. Computation of the average access time per record

retrieval of strickly sequential disk file.

a) The average disk access time per random record
retrieval of strickly sequential file (TAVACFSTSQF)

According to the concept of accessing a random record

from strickly sequential disk file as shown in Figure

B. 8, page 245. The TAVACFSTSQF can be computed

as follows:

In strickly sequential disk file organization, an

overflow exists when each track which is supporting

file is full, so each times when searching is performed

over a full track 10% of TASQFT is to be considered.

The the following equation can be set up:

(initial positioning time)TAVACFSTSQF tTCTCP
1

tTAWT tPTRIN + 10 (50 ms)

(tLLAC -1) + TRINDT + TASFSQF

(9. 23)

238

All parameters on right hand side of Equation (9. 23)

have the same meaning as in Example la, but the

computation is now based on 9 prime tracks per cylin-

der; each prime track contains 63 records. The

result of computation of Equation (9. 23) are shown

in Table B. 5, page 241.

3. Computation of the average throughput time per record

retrieval of strickly sequential disk file. The methods

computation are as follows:

a) Average throughput time per record retrieval of
strickly sequential disk file (TATHRPSTSQF)

From the time diagram on page 230 the following

equation can be set up.

TATHRPSTSQF = TC BF
+ TCFNTFK TRCLU

TAVACFSTSQF + TRCl/O + TRCWOUT

(9. 24)

= 0.3218 + 8. 515 + 0.008 + 572. 729

+ O. 008 + 36. 00

= 617.582 msec.

when N = 1084, a = 0.0625 for the illustration.

The results of the computation of TATHRPSTSQF'

Equation (9. 24) as the function of file size or file

loading factor, a , are shown in Table B. 6 on page 242.

239

b) The approximate formula of TATHRPSTSQF = T2

The major components of search time (msec.) are

considered; the minor components of search time

(p.sec) are omitted.

TAVACFSTSQF (initial positioning time) + (cylinder

search time) + (track search time) +

(read-in the desired track) + 1

10

(overflow track search time)

44. 8878 (ms) = TC
BF

+ TCPNTFK + TRCLU

TRCl/O + TRWOUT

T

T

2

2

ti TAVACFSTSQF
+ 44. 8878 msec.

107.5 (1) + 30 [2Nx+6310 -1] + 50

N + 1
[2 x 630 + 25 (1) + 110

(50)

0.635 N + 102.451 msec. (9. 25)

4. For the computation of the achievable throughput-rate

capability of strickly sequential disk file, C(2), the method

of computation is the same as that illustrated in Example

la. See page 226.

Results of the computation of C(2) are shown in Table

7.3, page 152 and plotted in Figure 7.3 for comparison

with other files.

240

5. For the computation of the customer operation cost per

call of strickly sequential file, Uc(2), the method of

computation is the same as that shown in Example la.

See page 227. Results of the computation of U
C(2)

are

shown in Table 7.6, page 173 and plotted in Figures 7.12

to 7.14 at the specific rates of use 250 calls/hr., 1000

calls/hr and 2000 calls/hr for comparison with other

files.

Table B.5. Results of computation of an accessing time per random record retrieval from strickly sequential disk file.

43
c...
0
cs
a)
L.
0..
cu
NI...,,,,

a)..
R.

.... ,
O Mt

a) o
-0 0

V.
g sa.0 0
a) i
b1:1 tA
CO g
L. ..
a) --x0
< .9

L.L. 1-10 4)

a).o ,--,

g c.
o b0

11
0)W t
CO
L. a
a)
> a,

. -tc g

L.1

0
)..4) 71)

.0 .

g &a)g C.

CU P.
WI (1)
CO 11
L.

'>' '-'.. t'

41
,4
4-,

Xu
co

t" rci).4- -0o g
15 5-.."'

TMhz '

..x
0 T.

0 o
tl "15gr, .
"5 '3,'

0
"8 t

VS

7)

g 4'z .E

.E

-`6)
44
000 ..x
L. 0
'8 CO g

4,
L. ,..,

4 0
g °
Z *'.

^C)
W

Ww E,.0 .,..

p

(4 g
74 9
1:: ;"4 a

,..
4)

g... Cp

5. E, .,..4,
2 CO
L. 9
a) g
1 .9
'3= 'o a

4)
QL

V 2
a) . .
> 4".
0 a o

...x .2,
3 ..

"Erl ;

1

'Li
s0
a)
i4

..x
U
w
r".,_

a)

.2 2
4,

4 .E

I
.0
al
0)
1-.

0
VL

t.:

i.1.,) a)

.ra.

MI

¢ 4

,..1
os

a)

A
X0
LI

-0
a .)

-.4 ..0
,..Mj

N

.X
U
CO.

o
''
a)

0 -0
2

.4 :4

4) rj.,

E 0,
....4 (4

a)0 0
o
co .1:)

a) o
W U
co 4)
fi; C-.

<>4 g.

N (N-1-1)/2 Za (Z -1)
a

tLLAC t -1
LLAC

N
ALT

t
PR/WH

tTCRCTP tAWT

unit records ylinders cylinders tracks tracks records ms ms ms ms ms ms ms ms

128

512

1024

4096

8192

12288

16384

65

257

513

2049

4097

6145

8193

1

1

1

4

8

11

14

0

0

0

3

7

10

14

2

5

9

6

3

8

5

1

4

8

5

2

7

4

2

5

9

33

2

34

3

95

95

95

95

95

95

95

-

-

-

90

210

300

420

12.5

12.5

12.5

50.0

100.0

137.5

187.5

50

200

400

1600

3250

4850

6500

25

25

25

25

25

25

25

0.174

0.197

0.229

0.418

0.174

0.426

0.181

5

20

40

160

325

485

650

187.674

352.697

572.729

2020.418

.4005.174

5892.926

7877.681

Note: Strickly sequential disk file -- 63 record per track, 9 track per cylinder

- - 56 record in one cylinder overflow track

- - both 10% cylinder overflow search and internal search track by track are effecting the average throughput time.

Table B. 6. Results of computation of average throughput time per random record retrieval and CPU busy time per record accessing
with the file system using both unique fixed-length key and full name of records in accessing.

5
4,

?..

0 ..62
0

v) r.

,.,

.12
U
;,....
bo
g

;1:/
o0
a)

...t..

Z-
0
0..
r'S 0U 4-.

...40 'V
0 g
E c°

a 4
rs0 .n

-0
,..
0 >,
0 0.)

2 ..x
ed ,.49

4.4 000 g
(1.) cl

'-,c,ii

0 (A :.)

r5 t g
fa., +4 C.)

C6

c.)
...4
to
o
b0
g...- (1)

U 5cu -
4-'

x: 1o 0
U 7'8

tA
io3
a,0
U nzi
C6 Po0
t raj
TS ,-,

;-.
(1.1 cube a
,t1
Po 0)

>)
..4 "4-

4-,
0

.+.4

'0
a), 0

..-1 *---.0 .-
a+ bb
a) 0
''. ..6) t
- ..0
E-. u

2.
e0
61

4) *4
r. 0
61 cu

i:1 3'

.g3

t
Cl. bo ,
w .F.I l

iq 1 'CI t
C.)>. u 0
w 4'.0 1:1r. ..0

R 0U ,. 4.

-0,-. -c) .U ,
W

00 TJ
.F.1 8

ri. (6)

0.) bp 4-.

.5 5
E -

U co o

`8 E
4, 2
H. 4-'
.4 a
0.0 0)
59 0

".P., (4,

0 Pbo 0. -0
4(5 cil

E.-.

..; ca v.)

N a T
CBF

T
CFNTFK

TRCLU T
ASFSTSOF

T
RCl/0

TRWOUT tTCPUSOF tCPUTSOFRFU

unit MS MS MS MS ms ms ms ms MS

128 0.0078 . 3218 8.395 .008 187.674 .008 36 36. 722 45. 117 232. 371

512 0.0312 .3218 8.475 .008 352.697 .008 36 38.259 46.734 397.510

1024 0.0625 .3218 8.515 .008. 572. 729 .008 36 40. 297 48. 812 617. 582

4096 0.2500 .3218 8.595 .008 2020. 418 .008 36 52. 526 61. 121 2065. 351

8192 0.5000 .3218 8.601 .008 4005. 174 .008 36 68.835 77.436 4050. 133

12288 0.,7500 .3218 8.626 .008 5892. 926 .008 36 85. 496 94. 086 5937. 890

16384 1.0000 .3218 8.641 .008 7877. 681 .008 36 101.447 110.008 7922. 660

Table B. 7. Results of computation of required storage space as the function of file size of Strickly sequential disk file with using both fixed-
length key and full name of record in accessing.

File size
in record

Full name of record
to fixed-length conversion

sCFNFK
Search programs

SCPRS

Total required
core memory

using
full name of a record

Total required
core memory

using
fixed-length key

Disk space
supporting

Ds

Unit Words Words Words Words Track

d e a b c

128 200 1088 61 72 1024 2449 1161 3.032

512 200 4352 61 76 1024 5713 1161 9.127

1024 200 8704 61 76 1024 10065 1161 18.254

4096 200 34816 61 76 1024 36101 1161 73. 016

8192 200 69632 61 76 1024 70993 1161 145. 032

72288 200 104448 61 76 1024 105809 1161 217.040

16348 200 139264 61 76 1024 140625 1161 289.064

Note: Column a = Number of computer words used for processing search routine.

Column b = Number of computer words used for search overflow track routine.

Column c = Number of computer words used for supporting data of one track.

Column d = Number of computer words used for variable length tree search.

Column e = Number of computer words used for variable length tree supporting.

Table B. 8. Results of computation of customer operating cost per call (unit cost) as the function of file loading factor of strickly sequential disk
file using the full name of record in accessing.

File looding
factor

Disk space
for data file

Disk space
for accessing

program

Disk space
charge per

month

Terminal
devices cost
per mianth

Rule of use
data file

CPU-time
charge per

month

CPU-line and
disk charge
per month

CPU-line and disk
charge per month

per call

Unit Tracks Tracks $ $ calls per month $ $ $

.0078
(128 records)

3.032 1.392
1.33

760 52500 197.40 958.73 1.82615
2675 210000 789.55 3465,88 1.65041
4075 420000 1579.11 5637.44

At
1.54244

.0312
(512 records) 9.127 4.579 4.11

760 52500 204.45 968.56 1.84487
2675 210000 817.86 3496.97 1.66522
4075 420000 1635.69 5714.80 1.36066

.625
(1024 records) 18.254 8.829 8.13

760. 52500 213.54 981.67 1.86984
2675 210000 854.22 3537,35 1.68445
4075 420000 1708.41 5791.54 1.37893

.2500
(4096 records) 73.016 34.255 32.18

760 52500 267.42 1059.60 2.01828
2675 210000 1069.62 3776.80 1.79847
4075 42000 - - -

.5000
(8192 records) 145.032 68.329 64.01

760 52500 338.79 1162.82 2.21489
2675 210000 - - -
4075 420000 - - -

.7500
(12288 records) 217.047 102.329 95.813

760 52500 411.63 1267.44 2.41417
2675 210000 - - -
4075 420000 - - -

1.0000
(16384 records) 289.064 136.329 127.62

760 52500 481.65 1369.27 2.60813
2675 210000 - - -
4075 420000 - - -

cylinder overflow track 1

ull name of a
record is supplied

Variable length Unique fixed-len
tree decorder key used for

searching

= Desired records

(a) Random search of strickly sequential file

ull name of a
record is supplied

Variable length
tree decorder

nique fixed-len
key used for

searching .I

= Desired records in equivalent search

1st cylinder

63 record per track

4

2nd cylinder
°I I

= Overflow record which is the head of the chain

(b) Equivalent search of strickly sequential disk file.

11.".....021MWAP/redraW I/1.1W.00/10/".WW,',: I

N + 1
2

--z
3rd cylinder

Records sequential search which is
equivalent to N record random search

1st overflow record of
track one (head of the chain
of overflow record in track one)

Cylinder overflow track, 56
-4-- records/track. 10% of search

in the main file is considered.

2nd overflow record of track one.

Figure B. 8. Random access of a record from strickly sequential file in (a) is equivalent to search of a desired record in (b).

A

246

Example 2. The Indexed Sequential Disk File

For accessing a random record from an Indexed Sequential

File, supported by CDC Disk 854 unit, the following assumptions are

applied:

- There are N, the current records in the file, each record

containing 384 bits (32 bytes = 16 words, including 2 bytes,

4 character keys), in continguous area.

- First data track, prime track, contains cylinder index, track

index and data area, respectively. There are 55 records

in the first track, 63 records in the successive tracks and

56 records in cylinder overflow tracks.

- The last track in each cylinder is reserved as an overflow

area. Then there are 9 prime tracks and 1 overflow track

for the 10 track-cylinder disk file unit.

- To access a random record from the file the full name of

the record is used. The variable-length tree decoding

technique is used to convert it to a unique fixed-length key.

See details on page 75.

- File system processing programs and cylinder index are

kept in internal core memory only during operating hours.

They are kept permanently at some place in disk memory.

247

1. For the computation of the number of required tracks and

required cylinders. The following parameters are intro-

duced.

a) The number of used cylinders = Z

Where Z is the smallest integer such than Z
c

Nc = number of records in each cylinder of this

typical file

Furthermore

Z = number of records in Cylinder Indexed

For illustration, according to the writer's desired

Nc = 496 for first cylinder

Nc = 559 for the latter-cylinder

(First track = 55 records; the latter track =

63 records)

Z can be rewritten in the following form

496 (N-496) = 1 +0.945 = 1.945496 559

Z = 2 cylinder. For N = 1024

The number of record in Cylinder Index = 2

b) The number of used tracks, NUT

(9. 25)

NUT ?" 63
For N < 496 (9. 26)

where NUT is the smaller integer such that NUT
UT 63

248

NUT = 9 +9 (Z-2) +N TLC' for N> 496 (9. 27)

where 9 = Number of used tracks in first cylinder

9 (Z- 2) = Number of used tracks in successive full

cylinders

NTLC = Number of used tracks in the last used

cylinder.

(N - 496 (Z-2) 559)
63

where NTLC
is the small integar satisfies the above

inequality.

For illustration for N = 4096

Z = 8 cylinders, by Equation(9. 25)
(4096 - 496 - (8-2) 559)

N TLC- = 3. 143
63

.= 4 tracks

NUT = 9 + 9 (8-2) + 4 = 67 tracks.

2. For the computation of cylinder Index Entries and the

average search time per random entries retireval of

Cylinder Index Table. The following parameters are

introduced and compute:

a) For indexed sequential disk file

The number of cylinder index entries, NCI = Z

249

b) Cylinder Index average search time, TLSCYLI' based

on tested program. See page

=TLSCYLI 3.9375 NCI + 14.3125 p,sec. (9. 28)

Since in this designed problem, Nci < 63, internal

linear search is better than binary search. See

Figure A. 2 page 195.

For illustration

=TLSCYLI 3.9375 (8) + 14.3125

= 0.046 msec.

3. For the computation of Track Index Entries and the aver-

age search time per random entries retrieval of Track

Index Table in core memory. The following parameters

are introduced and compute:

The following reserved bits are provided in this

Indexed Sequential disk file for:

a) Home address (H. A.) Each track in prime area and a

track index reserve 24 bits (24 bits = 1 word = 2 bytes)

for the home address of a track.

b) Control Overflow Cylinder Record (COCR)

(1) Reserve 24 bits (1 word) for address of the last

overflow record in the cylinder.

(2) Reserve 24 bits (1 word) for indicating the left

250

bytes (6 bits = 1 bytes) in the cylinder overflow

area. Both (1) and (2) are located in data file at

the beginning of Track Index; There reserved

bits will be used by System Operating program.

c. Normal, Overflow and Dummy Entries. Reserve

48 bits (2 words: first word for 4 character-key and

second word for its corresponding address) for each

Normal, Overflow, and Dummy entry.

Then the number of reserved bits per Track Index

= 48 (2PT + 1, dummy)

= 48'(2PT '= 1, dummy)

= 48 (2 x 9 + 1) = 912 bits = 152 bytes.

where PT = Number of pair of Normal and Overflow

entries

= Number of data tracks in the prime area,

(P <9 in this case).

Then the number of reserved bits for data records in

Track Index =

= (one track data bit capacity) - 912 bits

= 24, 576 - 912 = 23664 bits = 986 words.

Since this system is designed with 55 data file records

in the first track (Track Index): 55 records = 880 words

Cylinder index = 60 words

251

Then (60 + 880) > 986=+(986 - 880 - 60) = 45 words

as spare storage space which might be needed for

extra information used by the operating program in

accessing of the data file.

d) In computing the average search time per random entry

retrieval, the number of average records per Track

Index is considered and computed. See details on

page 266, and Figure B.12. If

PT(i) = Number of required Track Index entries

(pairs) in Cylinder ith

PAT = Average number of pairs in each Track

AT

hidex

1

i 1

E PT(i)
=

i = Z
(9. 29)

where Z = Number of used cylinder = number of used

Track Index.
i = Z

For illustration N = 1024 Z = 2; Z PT(i) =
i = 1

20 pairs

By Equation (9. 29)

PAT = (20) = 10 pairs.

See results of computation in Table 9.9, page

There are three cases of searching entries in the

Track Index;

252

(1) Search time spent in satisfied path search,

TSSFP

(2) Search time spent in overflow path search,

TSOVFP

(3) Search time spent in fault path search, TSFLP

The assumption is that the number of searches in the

overflow cylinder is 10% of the number of searches

in the prime area (9% of total search);

5.875 psec.

0

En

(NI

O
4,

0

CI

i5.875 p, sec.

Figure B. 9. Actual time path search and effective
path search.

U
41

tr)

N-1
N-1

253

If TSTIENT = Time required for searching Track Index

entries

= Average search time of fault loop + search

time of effective correct loop
(PAT + 1-1)

= 11: 625
2

+ 15. 775 x 1

5. 8125 (PAT) + 20. 3375 ilsec.

5. 8125 (PAT - 1, dummy) + 20.3375 p,sec

(9. 30)

There is no search for a dummy, buffer record.

For illustration, N = 1024 PAT = 10 pairs,

by Equation (9.30)

TSTIENT = 5.8125 (10 - 1) + 20. 3375

= 72. 65 lisec = 0. 073 msec.

For computation of the average search time per

record retrieval of cylinder Index and Track Index,

the following formula can be set up:

The average search time per record retrieval of

Cylinder Index and Track Index, TASTCYLTI.

TASTCYLTI = TLSCYLI + TAR/WHPT + TATW

a/TRTI + TSTIE = TLSCYLI + TATIDS

(9. 31)

For illustration N = 1024

TASCYLTI = 0.022 + 95 + 12.5 + 25

254

= 132.522 ms.

4. For computation of the average throughput time of Indexed

Sequential disk file, the following parameters have to be

introduced and computed:

a) The average search time per record in desired track

in the main file of Indexed sequential disk file =

TAVADFIDSQF.

The concept of accessing a random record from the

Indexed sequential disk file is shown in Figure B. 10,

page 259, with only 10% of the search times in the

prime track made on the cylinder overflow track. This

concept is the same as that for the Strickly sequential

'Since it is assumed that there is no dropping of the Busy
Status during any random record retrieval operation, then TSTIE
is overlapped with the waiting and read-in time (50 ms) for
the desired track. It can be said that TASCLYTI is a portion of the
average throughput time per record retrieval. It is
present here as one step of the average throughput time computation.
See the results of computation of TLSCYLTI in Table B. 9, page 261,
column 5.

255

disk file. Then the following equation can be set up.

TAVACFIDSQF = TASTCYLTI + TTAWT + TRINDT

10% (TTASOFT) (9.32)

where TRINDT
Desired track read-in time, 25 ms.

TTASOFT = Total cylinder overflow track search

time

= (25 + 25) TASOFT

50.00 + 0.392 msec.

For illustration N = 1024

TAVADFIDSQF 10
1

= 132.522 + 25 + 25 + [50. 392]

187.561 msec.

See the results of computation in Table B. 10, page

262, column 13 from L.H.S.

b) The average throughput time per record retrieval of

the Indexed sequential disk file, TATHRPISQF

From the time diagram Figure B. 11, page 260, the

following equation can be set up:

TATMRFISQF
= TCBF + TCFNTFK + TRCLU

TAVACFIDSQF + TRC I/O + TRWOUT

(9. 33)

For illustration N = 1024

256

TATHRPISQF = 0.3218 + 8.515 + 0.008 + 187.561 +

0.008 + 36.00

= 232.414 msec.

See the results of computation of TATHPPISQF as

the faction of N in Table B. 11, page 260, column 11

from L. H. S.

e) The approximate formula of TATHRPISQF = T3

Only the major components of search time (msec)

are considered; the minor components of search time

(lisec) are omitted.

Then TAVACFIDSQF'-' TAR /WPT + TATW + TRTI + TATW

TDTRW + 10% (TTASQFT)

107.5 + 25 + 25 + 25 +
10

[50] =

187.5 msec.

Since 44.8878 (msec) = TC BF + TCFNTFR TRCLU

TRC I/O + TRWOUT

Then from Equation (9.33)

T3 1875 ms + 44.8878

a= 232.3878 msec. (9.34)

5. For computation of the average CPU busy time per record

retrieval for the Indexed sequential disk file, both the

unique fixed-length key and the full name of the record are

257

used in accessing. See Figure B. 11, page 260, in which

only CPU busy time components are considered.

a) Total CPU time per record accessed using unique

fixed-length key

tTCPUTISQF = TLSCYLI + TRCUL + TSTIE + TALSM

1 (T
10 ALSOFT) + TRCl/O + TRWOUT

(9. 35)

= TRCl/O + TRWOUT

= 0.022 + 0.008 + 0.073 + 0.388 + 0.039

+ 0.008 + 36.00

= 36.538 msec for N = 1024.

b) Total CPU time per record accessed using full name

of record, t TCPUTISQFUFN. This type of accessing

requires more extra time than that of a) with the full

name of the record to fixed-length key conversion time,

tCFNTFK

Then tTCPUTISQFUFN = tCFNTFK = tTCPUTISQF

= 8.515 + 36.538 = 45.053 msec.

See the results of computation in Table B. 11, page 263.

6. For the computation of core storage space and disk storage

space required, use the concept and formula that have

258

been mentioned in Appendix B, page 208.. Results

of computation are shown in Table B. 12, page 264.

7. The computation of achievable throughput rate capability

of the Indexed Sequential disk file, C(3), and Customer

operating cost per call, UC(3) , is the same as that shown

before in Example la. See illustrations on page 227.

The computed results of C(3) and U
C(3)

are tabulated in

Tables 7.3 and 7.6, pages 152 and 173, and plotted in

Figures 7. 7 7. 10; Figures 7. 12 7. 15 respectively, for

making a comparison among the results obtained from

the various types of file.

(ull name of record
supplied by user

Variable-length tree
Key decoder

= Desired record

Unique fixed-length
key used for searching

(a) Random search of a record in indexed
sequential file.

Cull name of record
s supplied by user

Variable length tree
Key decoder

Jnique fixed-length
key used for searching

Track inde cylinder 1 Track index

= Desired search record which is equivalent to making
a random search in (a)

(b) Equivalent search of desired records of file in (a).

Figure B. 10.

Cylinder overflow track

Cylinder index

Track index cylinder 0
Average value

laaagaSEVearffilM
Desired track

Cylinder overflow track Cylinder overflow track

Track index cylinder 1
Average value

Desired track

Track index cylinder 2
Average value

1/2 full overflow track, 1/2 full overflow track,
10% of using overflow track 10% of using overflow track

Desired track

1/2 full overflow track
10% of using overflow

track
Random access of a record from indexed sequential disk file in (a) is equivalent to accessing an average of a record in (b);
Average of records, in cylinder index, in track index, and in desired track are to be considered in computation. to

T

0
9

Z

A

C
om

m
un

ic
at

io
n

tim
e

R
ea

d
in

to
 c

or
e

m
em

or
y

tim
e

A
rg

um
en

t s
ea

rc
h

na
m

e

R
ec

or
d

fu
ll

na
m

e
to

 f
ix

ed
-

le
ng

th
 k

ey
 n

am
e

Se
ar

ch
 c

yl
in

de
r

in
de

x
in

 c
or

e

C
on

ne
ct

in
g

lo
gi

ca
l u

ni
t d

is
k

tim
e

R
/W

 h
ea

d
po

si
tio

ni
ng

 ti
m

e
T

ra
ck

 w
ai

tin
g

tim
e

1/
2

rp
m

Fi
rs

t t
ra

ck
 tr

an
sf

er
 ti

m
e

O
ne

 r
ev

ol
ut

io
n

tim
e

.2
5

m
s

Fi
rs

t t
ra

ck
 in

te
rn

al
 s

ea
rc

h

T
he

 d
es

ir
ed

 tr
ac

k
is

 tr
an

sf
er

ed

Se
ar

ch
 d

es
ir

ed
 r

ec
or

d
in

 c
or

e

D
es

ir
ed

 o
ve

rf
lo

w
 tr

ac
k

is
 tr

an
sf

er

Se
ar

ch
 d

es
ir

ed
 o

ve
rf

lo
w

 r
ec

or
d

C
he

ck
 o

ut
pu

t c
ha

nn
el

 is
 b

us
y

or
 n

ot
O

ut
pu

t i
nf

or
m

at
io

n
is

 tr
an

sf
er

to
 T

T
Y

C
om

m
un

ic
at

io
n

tim
e

Table B.9. Result of computation of average search time per random access of the entry from cylinder index and track index
of indexed sequential disk file.

.11

a)

1
Q) (1

fJ4 ;4

.0
cu

a)
FA

440
c. ti j

E -9
Z U

'SS
U

F4 (Na)

a) .

.5 a)

0 CO

x
2 '03
cd '9
a) g
CA - '11;-
a) t o
bO CI
ql '0 a)
r.. g r.-.
a) --.

.t U P.

X Vs
a) d

11 a) n
.. .N +2

CO '6
eX
U a) '
Ell id, :::1

F cv

..0 0

0 t)
r...

w.. a)

r. v)
.3) '-'

<4 a.

b0
.
o-

.".k
'0
vs
a)

cw

g4 7.1

0)
b0
03
T-1
a)
>
05

SC
CD

7, ..--:

-- CO

eX .,9
u 4.)

E 3

ea
0)...
ai x
-0 .8
.9 .9

'1:J .-x
ca u

r 1,

.... ^03 u
171

T: g),
0)
;-. x

11) a)

A rE

(11 CO

.-, ..VI X
in

8 C)' i '00
a) r-4 .
vii Ts ela.)ogy
b0 C.) ccl
0r. r. >, .4--

LI) r4 U 1:3ri,. .g<4 ct)

unit(N) cylinders entries words ms pairs words pairs ms ms ms ms ms

128 1 1 2 0.0183 4 8 4 95 12.5 25 .037 132.518

S12 2 2 4 0.022 12 24 6 95 12.5 25 .049 132.522

1024 2 2 4 0.022 20 40 10 95 12.5 25 .073 132.522

4096 8 8 16 0.046 75 150 10 95 12.5 25 .073 132.546

8192 15 15 30 0.073 148 296 10 95 12.5 25 .073 132.573

12288 23 23 46 0.105 222 444 10 95 12.5 25 .073 132.605

16384 30 30 60 0.132 304 608 10 95 12.5 25 .073 132.632

Note: Column 12 overlaps with waiting time for read-in the desired track. It is not effect to average throughput time.

Table B. 10. Data results of computation of average search time per random record retrieval with 10% using cylinder overflow track and average
disk access time per record retrieval from the indexed sequential disk file.

0
0) 441 0

a)
cp ,...

X, .4

a)

z
c+
a)f-1

4-10
Fi ''.
a) 0)
.0 '14"'II'z co.)

0 o
co 13k g4, *.

,o4 5.,10 u
a) t
.0 ...,

o ,5,z

.

u 0
1 ''''r. 0)

4,
.-1-1 c00 .."0
T. 0 T.
a) 0
.0 fl 141

4 0 .-
0 +-, -5.,,z .4 u

...x0 k
0$ 4)c. 0
4-, g, .
0 O.
r. 0
0).0 tpi
z ..

0
0
cr
a)F

74 .4, C.)0 ,,,
F. rzi

4/6
c.
0
U
0)
:-. 4
o) u
pp 00
dd r.
r-I 4,
0)
> r,-,

.ct o..

t
1:1

. "0
'-->,
U

.X0 C.)r. as b0
0 F.0 4-1
CU ,,,, .
F. '' C)

F..k no .
a) o a)A. ... crd

a)

... T.:
x, 0,0

/"1":+-,t:4 ..-.
cd

0
a)

.D,

0
Tj
.5.

.X..'',7
co u
.1.1 01

*
4

..x 0
CI to 0
co a)
L-. u) f,
-a .7 *
. o ..ou

44 a) ,y, cr-,4

Q.) A 2 2,',

r.ta
a)
0
C) .1:$
ce r.0..x 0

..v.1 a)
k
ka) ,i,

b0 la,
vs

iii 4)
> 0,4

unit(N) cylinder tracks tracks tracks record ms ms ms ms ms

128 1 3 - - 3 43 132.518 25 25 .332 5.039 187.557

512 2 9 - 1 10 51 132.522 25 25 .364 5.039 187.561

1024 2 9 - 9 18 57 132.522 25 25 .388 5.039 187.561

4096 8 9 54 4 67 61 132.546 25 25 .403 S. 039 187.585

8192 15 9 117 7 133 62 132.573 25 25 .407 5.039 187.612

12288 23 9 189 1 199 62 132.605 25 25 .407 5.039 187.644

16384 30 9 252 4 265 62 132.632 25 25 . 407 5.039 187.671

Note; Column 11 is overlapped with Column 12, then not considered m average throughput time. It is considered in billing time.

Table B. 11. Data results of computation of average throughput time per random record retrieval and CPU busy time per record access of indexed
sequential file using both full name of records and unique fixed-length key in accessing

CU.--1
41

%01 15
4., 00 0

0)
0) s.a

(,)

CO
g

00 p,

a) 2
.--. C)

ct
I.z. 4-4

o -0
.1-1

01 c0

-2 ,..g 0g .
a 4"
O t0 'a, 49

'0 .k
0 4)
U X
p9 A 4)0

0 0 4-'

0) 11) $:1E

td CI) r.0 x 0/

9 '''.
Cx 2 8

11
ri

Vo
.-9

00 -..-1
Lam" -1-'

..ri

U ,-I
CU Ts
0
g .4-,

3 g

CO
IA

CIu .0
0

'-.1 C).. 0)
'V r.

+I
4) Q)b0 p.
g
k; w
>

-.4 .4,

2
17

01)
F4....

Cr 0
47 ."....

(1) ..X,,

Zu.- x
F. u

2

c0.

'g
Cr +,
4) 0
,-. 0
0 4,

a a
P 3'

k II

cD -c,
0. .3)

E 00
,-1, V) 0

"X
.(3 TS IS

R 8 bg
cu ,i)

(..) ;-, ,-,

S.
cu0. -,
H o
... b0 C.)

'-' ti
0

c4

U cam. 2

4,
0 CO3, (A 01w -,o ..

O
g -0 c4

R 7:4
i'd° C '-' 'P.

>6' '-; o t
<4 O. ..«.1 3

N T
CBF

TCFNTFR T
RCLU

T
RC I/O

t
TCPUISQF

t
CPUISQRFUL

unit ms ms ms ms ms ms ms ms ms

128 0.0078 .3218 8.395 .008 187.557 .008 36 36.442 44.837 232.286

512 0.0312 .3218 8.475 .008 187.561 .008 36 36.499 44.974 232.374

1024 0.0625 .3218 8.515 .008 187.S61 .008 36 36.538 45.053 232.414

4096 0.2500 .3218 8.595 .008 187.565 .008 36 36.578 45.173 232.498

8192 0.5000 .3218 8.601 .008 187.612 .008 36 36.608 45.209 232.551

12288 0.7500 .3218 8.626 .008 187.644 .008 36 36.640 45.266 232.608

16384 1.0000 .3218 8.641 .008 187.677 .008 36 36.667 45.308 232.656

Table B. 12. Results of computation of storage space required as the function of file size of indexed sequential disk file, using both
full name of record and unique fixed-length key in accessing.

Z.9.4.:

... T
0 0

4)
N
iA 4

>.
41

o

g t r....

ri -1 Z
rE c)
0., 4. Ln

1
.....

0 t/3
'171 .. A0 oo
.....

, ,- 'LI u
,... 641 4.4

V
"0
g t/3
,x ..g 0
o u

e:" g V)

.-X
V
N

V)
4 I4

h) 2 H
4-4 4) 04

11. 4,3 V)

X
0
of
L.

E cn, .4 ,-11 2
O ci w°

-tJ

23 z,.

I. '.

(1) 5 .
;4 4)0 , ,X0 o

76 to
E. (.!i

0
cd ,
e' a'

...x

0 :11

U

c. i °
H Fe ,I-1

w oo 40 g .5td .. ++

11.3' t >,
..x 8. '
6 g 4,

unit words words words words words words words track

N

128

a

200

b

1088

a

53

b

2

a

60

b

-

a

62

b

1024 77- 1278 2566 3. 1587

512 200 4352 53 4 60 - 62 1024 77 1280 5832 11. 2539

1024 200 8704 53 4 60 - 62 1024 77 1280 19184 19. 5079

4096 200 34816 53 16 60 - 62 1024 77 1292 36308 . 75. 0317

8192 200 69632 53 30 60 - 62 1024 77 1306 71139 147. 9365

12288 200 104448 53 46 60 - 62 1024 77 1322 105970 221. 8413

16384 200 139264 53 60 60 - 62 1024 77 1336 140800 294. 873

Note: Column a - core storage space required for processing program.
Column b - core storage space required for reserving area.

Table B. 13. Results of computation of customer operating cost per call (unit cost) as the function of file loading factor of the indexed
sequential file, using the full name of record in accessing.

File loading
factor

Disk space
for data file

Disk space
for accessing

program

Disk space
charge per
month

Terminal devices
cost per
month

Rule of use
data file

CPU-time
charge per

month

CPU-time and
disk charge
per month

1

CPU-time and disk
charge per month

per call

unit tracks tracks tracks $ calls per month $ $

. 0078
(128 records) 3. 16 1.506 1.40

760 52500 196. 16 957.56 1. 82392

2675 210000 784.65 3461. OS 1.64811
4075 420000 1569.30 5645,70 1. 34421

, 0312
(512 records) 11.25 4.695 4.78

760 52500 196.76 961. 54 1. 83150

2675 210000 787.03 3466.81 1. 65086

4075 420000 1574.06 5653.84 1.34615

. 625
(1024 records) 19.51 8.945 8.54

760 52500 197. 11 965.65 1. 83933

2675 210000 788.43 3471.97 1.65331
4075 420000 1576.86 5660.40 1. 34771

.2500
(4096 records)

.

75.03
.

34.457
.

32.85
760 52500 197.63 990.48 1.88662

2675 210000 790.53 3498.38 1.66589
4075 420000 158106 5688.90 1. 35450

. 5000
(8192 records) 147.94 68. 472 64.92

760 52500_ 197.79 1022. 71 1, 94801

2675 210000 791. 16 3531.08 1.68146
4075 420000 1582.32 5722,24 1.36243

.7500
(12288 records) 221.84 102.486 97.30

760 52500 198.04 1055.34 2.01017
2675 210000. 792. 16 3564.46 1. 69736

4075 420000 1584.31 5756. 61 1. 37062

1.0000
(16384 records)

.

294.87 136.500
.

129.41
760 52500 198.22 1087.63 2. 07167

2675 210000 792.89 3597.30 1. 71300
4075 420000 1585.78 5790.19 1. 37861

266

Concept of Average Number of Records per Track and
Average Number of Searches per Track

The following concepts are introduced to compute the para-

meters and characteristics of indexed sequential disk file, Example

2 and partitioned disk file, Example 4;

Average Number of Records Per Track (NAPT)

Track index 47 A

=
3

N=n
0

+n
1
+n

2
+n

3
= 192 record.

(a) Actual disk file

N = n0 + n1 + n2 + n3 = 192 records

(b) Imaginary disk file used for
computation

Figure B. 12. Interaction of actual disk file and imaginary disk file.

In general, if n. = number of records in ith track

where i = 0, 1, 2, 3...

NUT = number of tracks used.
k = i

E n k = 0, 1, 2, , iNAPT NUT
k = 0

(9. 36)

267

Average Number of Searches per Track (N ALS)

In an indexed sequential disk file or partitioned disk file when

the desired cylinder and the desired track are located, the desired

track is read only into core memory and internal linear search is

performed. The average number of searches in the desired track

is to be considered.

In Example 3 and 4,

+
N

APT 1

ALS 2

Desired track

x5_. 00%. 07.. 0;40'", r 0" "/:. .1%"%/_ e

H
Hag- NALS

APT

Figure B. 13. Relationship of NAPT and NALS'

In Figure B. 13, NAPT = 48 words

then (48 + 1)
NALS = 24.5

2

(9.37)

= 25 (This value is used for
computation).

268

Example 3a. The Partitioned File with Single-Level Directory

For accessing a random record from a partitioned disk file

with single level directory, on CDC Disk 854 unit, the following

assumptions are applied:

- There are N, the current records in the file, each record

containing 384 unit (32 byte = 16 words, including 2 bytes,

4 character keys), in contiguous area.

- One data track contains 63 records.

- The records in the main file are stored in key sequence.

- The overflow records are held by one track; the cylinder

overflow concept as in the indexed sequential disk file is

used here.

- For accessing a random record from the file the full name

of the record is used. The variable-length tree decoding

technique is used to convert it to a unique fixed-length key.

See details on page 75.

- Directory Table and file system processing programs are

kept in internal core memory only during operation hours.

They are kept permanently at some place in disk memory.

1. For computation of the number of tracks and cylinders

required, the following parameters are introduced:

a) The number of used cylinders = Z.

where Z is the smallest integer such that Z >
Nc

Nc =

Nc =

Nc =

number of records in eacy cylinder.

504 records in first cylinder.

567 records for the latter cylinders.

Z can be rewritten in the following form:

Z >

Z

504 (N - 504)
= 1 + 0.92504

=

567

2 for N = 1024

See results of computation of Z in Table B. 14, page

column 2 from L. H. S.

b) The number of tracks used, NUT

N UT 63
> for N < 504

where NUT is the smallest cylinder such that

NUT > T3

(9.39)

269

NUT = 8 + 9 (Z - 2) + N TLC for N > 504 (9.40)

where 8 = number of tracks in the first cylinder.

9(Z-2) = number of successive tracks in successive

full cylinders.

N TLC = number of tracks used in the last cylinder

used.

270

rN _ 504 - (Z -2) 5671
63

where N TLC
is the smallest interger which satisfies the

above in equality.

For illustration

Z =

N
TLC

=

NUT =

when N

8 cylinder

[4096 540

= 4096

by Equation (9. 38)

(8 2) 5671 0159
63

4 tracks

8 + 9 (8 2)

- 3.

+ 4 = 66 tracks.

See results of computation of NUT in Table B. 14,

page 279, column 6 from L.H. S.

2. For computation of the number of entries in the directory

and the average search time per random entry accessing

from directory table, directory search is performed to

obtain the address of the corresponding track in core

memory.

a) Number of record entries in Directory, IREDP

where IREDP = NUT

For N -->. a IREDP > 64.

Then the ginary search is considered.

The average time for directory search of the single

271

level directory disk file is

=TASSLDPF 15. 245 + 35. 000 x NATBS (9. 41)

1where NATBS = [2
K (K - 1) + 1 +(K + 1) x

(N - 2K + 1)] L'"-- log2 N (9. 42)

= average number of binary search for

N records.

For illustration when N = 1024

NATBS = 3 Equation (9. 42)

thenTASSLDPF = 15. 245 + 35. 00 X 3 p.sec.

= O. 1212 ms.

See results of computation of TASSLDPF in Table

B. 12, column 5 from L. H. S.

3. For computation of the average number of records per

track (data track used) and the average search time per

random record accessing, a record is searched for from

the main file, according to one of the following cases:

- the desired record is on the desired track;

- the desired record is on the cylinder overflow track.

a) The average number of records per track = NAPT'

To compute the average search time per random record

accessing from the disk partitioned file, consider the

272

average number of logical records per track. The

method of computation has been shown in Example 2,

page . The formula is

k = i
NAPT N

1 nk, k = 0,1,2,3, ..
UT k = 0,

For illustration when N = 1024

NUT = 17 tracks

(9. 36)

1thenNAP = [1024] = 60 records/track.
T 17

If TALSDT = Average search time per random record

accessing in the desired track.

+ 1
.875 (N APTTALSDT 7

2
-1) + 167.000

based on test program.

TALSDT = 3.9375 (NAPT) + 163.0625 iisec. (9. 43).

For illustration when N = 1024 NAPT = 60

TALSDT = 3.9375 (60) + 163.0625 ilsec

= 0.399 msec.

See results of computation of NAPS, and TALSDT in

Table B.14, columns 7 and 12 from L. H.S.

b) The average access time of a random record from

the main disk file with 10% of normal track search

273

used in cylinder overflow track = TASRDFOF.

Since it is assumed that there is no dropping of the

busy status during any random retrieval operation,

then TALSDT is overlapped with 10% of the time spent

searching for overflow records. TALSDT is now

omitted. From the time diagram in Figure B. 8,

page 245, the following equation can be set up:

TASRDFOF = TAR /WHPT + T
ATW

+ T
RIND T

1 [T
10 TASOFT1 (9. 44)

= 95 + 12.5 + 25 + 5. 0392 msec.

= 137. 539 msec.

4. The average throughput time per random record retrieval

of the partitioned disk file with single level directory,

using full name of record in accessing = TATHRPSLDPF
a) From the time diagram on page the following

equation can be set up:

TATHRPSLPF = TC BF + TCFNTFK + TASSLDPF

TRCLU + TASRPDFOF + TRCl/O +

TRWOUT

For illustration when N = 1024

(9.45)

274

TATHRPSLDPF = 0.3218 + 8.515 + 0.1212 + 0.008 +

137.539 + 0.008 + 36.00

= 182.513 msec.

See the results of computation of TATHRPSLDPF in

Table B. 15, page 280.

b) The approximate formula of TATHRPSLDPF = T4'

Only the major components of search time (msec) are

considered; the minor components of search time

(lisec) are omitted.

Then T4 TASSLDPF + TAR/WHPT + TATW

+ TRINDT
10 L TTASOFT]

+ 44.8878

2-1
3[15.245 + 35.00 (log2 N)] x 10 +

137.539 + 44.8878

T4 = 35.00 (log2 N) + 182.4268 (9.46)

where 44.8878 (msec) T
C BF

+ TCFNTKF + TRCLU

TRCl/O + TRWOUT

5. For computation of the average CPU busy time per record

retrieval for the partitioned disk file, both the

unique fixed-length key and the full name of the record

275

are used in accessing. See Figure B. 14, page 227, in

which only CPU busy time components are considered.

a) Total CPU time per record accessing using unique

fixed-length key = tTCPUTSLDPV

tTCPUTSLDPF = TASSLDPF + TRCUL + TALSDT

1 (T
10 ALSOFT) + TRCl/O

TRWOUT
(9. 47)

= 0.1212 + 0.008 + 0.399 + 0.0392 +

0.008 + 36.00

= 36.575 msec. for N = 1024.

b) Total CPU time per record accessing using full name

of the record = tTCPUTSLDPFUFN; this type of

accessing requires more extra time than that of a)

by the full name of record to fixed-length unique key

conversion time, TCFNTFK.

then tTCPUTSLDPFUFN = tCFNTFN + tTCPUTSLDPF

= 8.515 + 36.575

= 45.090 msec. for N = 1024.

6. For computation of core storage space and disk storage

space required, the concept and formula that have been

mentioned in Appendix B, page 208, are used.

276

Results of the computation are shown in Table B. 16,

page 281.

7. For computation of achievable-throughput rate capability

of the single-level partitioned disk file, C(4) and the

customer operating cost per call, U
C(4)

the methods are

the same as those illustrated in Example la, pages

. The computed results of C(4) and U
C(4)

are tabulated

in Tables 7.3 and 7. 6, pages 152 and 173, and plotted in

Figures 7. 7 - 7. 10, Figures 7. 13 7. 16, pages 169 - 172..

for comparison with the results obtained from other

types of file.

ull name
record is supplie

by user

Variable-length
tree,key decoder

(Unique fixed-length
ey used for searching)

= desired records

(a) Random search for single level directory
partitioned disk file .

cull name of
record is supplie

by user

Variable-length
tree, key decoder

(Unique fixed-length key)
used for searching

Internal directory mapping and searching

al Cylinder 0

VA

Cylinder 1

= Desired search record which is equivalent to making
a random search in (a)

(b) Equivalent search of desired record in (a).

Binary search

--o

-VA

Internal directory

Desired track
MIAMMEWKAIWIr
MOMMOUWAXO:r Adlill

NAPT

ALS....................
VAIAN'ArAVAIVANIAVANFAIPaland

Desired track

Pointer

Cylinder 2

Overflow track

Figure B. 14. Random access of a record from single level directory partitioned disk file in (a) is equivalent to making an average access
of a record in (b).

(Unique fixed -lend
gth key of division
name is supplied by

the user

ull name of a
record is supplied b

the user

Y

Variable-length
tree , key decode nique fixed-length

key used for searchin

[a= Desired record in (a)

(a) Random search of double partitioned disk file.

nique fixed
length key of divisi

supplied by the

second level directory

1st level direct TY

TJ

_1st division sub file .2nd division sub file 3rd division sub file

ull name of a
record is supplied

by the user

rtg

Variable-length
tree, key decoder

Unique fixed -leng
ey used for search

= Desired search record which is equivalent
to making a random search in (a)

Desired first level
g directory search

(binary search)

Desired track-,..
11:72M11911P1VAPP:0001.111

Second level directory
linear search

Pointer

(b) Equivalent search of a desired record.

Figure B. 15. Random access of a record from double level partitioned disk file in (a) is equivalent to accessing an average record
in the file as in (b).

Overflow track

Table B. 14. Data results of computation of disk average access time per record retrieval as a function of file sizes
of a single level directory partitioned disk file.

1 U

Na) r.

(u
Cie) Fe

a: E

4
F1

0 u
;... ri:)
02 9)

,E) .,v,

'

..x
4) t
95 1:1

0 5.,
u

2, t
a

...x
t.)

fl5, +04

8 g ." ' 4

r '-'
... 81' t).-

.+.4,

..,1

t
4 11
U

5 t,
'

..n a)

g

)

g

.8

an
cp

<4
Z

10
cu).
iu t
ba9 vs
Ca r.
Fe 4,
ll)

;-.> a)

r-4

4..
r.0
0 -a
a) r.t. ca

bo
g 4)1 Z
11 3,
0 4,
+) bo
D.,

Ti ;
.4.., rj.,,

g

15
0)

.ct
°Ia

T.,"

Ca C)
01 of

rx

,g
..X 20 cd

7r;:, :
la t
Ca .1-.

0

1. -0
2
{s0

C4
CI3

a)
C)
U Ts
td PI

0eg 0
C/3.. 4)

-0
140) a)

00 cy

fil t'

unit cylinders tracks tracks tracks tracks records records ms MS ms ms ms ms

128 1 3 - - 3 2 43 .0859 107.5 25 . 332 5.0392 137.539

512 2 8 - 1 9 3 57 .1212 107.5 25 .388 5.0392 137.539

1024 2 8 - 9 17 3 60 .1212 107.5 25 .399 5.0392 137.539

4096 8 8 6 4 66 5 62 . 1918 107.5 25 .407 5.0392 137.539

8192 15 8 117 6 131 6 63 .2271 107,5 25 .411 5.039 137.539

12288 22 8 180 8 196 7 63 .2624 107.5 25 .411 5.039 137.539

16384 30 8 252 1 261 17 63 .2624 107.5 25 . 411 S. 039 137.539

Table B. 15. Data results of computation of average throughput time per record retrieval as the function of file size or loading
factors of a single-level directory partitioned disk file.

z
I

..0 8
4) k

C.: .E

bo

;11 d
4.

tv ''''
1..1 C.)0
4.. ,.

SI
0
co
c.)

g
Z

E
0 ,E,

u,

,.X

2 4
VO Pi

1 i0 . -
- ,

e-I 4)

'-' ,.<, 0
4., 4, u

0
a)

0)
:El g
.--1 '4.,

cis

v 7.)
(1) t..
..., 0
0 :.3n.)

7.1
0

ti '''
a) g

@
u ;-8

1 o

a) a)

u>u, 0

1!).o g0 ,-.
i) f.,. -
<4 3

-
ta
c.)

.2

-,
..x

a) 4-'4u 0-

...

4'o
4(2..
ri

>,
a)

11. 4 t

'4.' °1 "Fw

g A... -0 -k bo

8 ..5.
u 2

ti `8
1:).. ...)

2 "; ;
.0 -0 4- -0

8 b0 8
u . .u 2 2

to
0 o
D., 0 ..F.,

g 1 g
-0 .,..

0, 0,r ?
,.., ,..; f i .,

-.4 a. 4

unit ms ms ins ms ms ms ms ms ms ms

128 0.0078 .3218 8.395 .0859 .008 137.539 .008 36 36.473 44.868 182.358

512 0.0312 .3218 8.475 .1212 .008 137.539 .008 36 36.564 45.039 182.473

1024 0.0625 .3218 8.515 .1212 .008 137.539 .008 36 36.575 45.090 182.513

4098 0.2500 .3218 8.595 .1918 .008 137.339 .008 36 36.655 45.250 182.663

8192 0.5000 .3218 8.601 .2271 .008 137.539 .008 36 36.697 45.297 182.705

12288 0.7500 .3218 8.626 .2624 .008 137.539 .008 36 36.728 45.354 182.765

16394 1.0000 .3218 8.641 .2624 .008 137.539 .008 36 36.728 45.369 182.780

Table B. 16. Data results of storage space required as the function of file size of a
single level directory of partitioned disk file.

(1) r.
b) o....
cn U

a)
0) F.

LZ

,
a,

..x a)
0 ,.q U

(1) .50 0 io oW *. ^0
ca r.... r..., CU0 I a) ;-.

11) .55 0 CrI. Z. U PA)

..gU
k w0 .0 U
1) 2 "

0 fi'
4)

0 i6 .2

(41 *.
41 Cr
CI az) a).

.gu
Fe WM UW 0
CA cy
4) "'
41 3.

.R
50 O

Fi ai

4U 0
Ok U
W Cli. et..

'II0 w
V -
a)
> Cr
0 a.)

a)
u 1m '0
CL W
ca

1:, Z,.
01 to

. gz >.
cr a)
a) .-
k r.?4 X
7151 4 to
48 ;4 0
E-. ,2 41

a)
c.)
ca

e' 74z 1:,
"1" 4. ;4

4/ bo 0k 0
-5 ..,, 4)
cr :
2 0,, 0

,--. ... a)
m ,..., 0
0 c-. '

1-. ,9 1

'11
N

o
cr
F44) 4)

, c,),

6 a.

unit words (a) words (b) words words words words words words words tracks

128 200 1088 78 9 62 1024 77 1250 2538 4. 0318

512 200 4362 78 27 62 1024 77 1268 5830 11. 1270

1024 200 8704 78 51 62 1024 77 1292 10196 19.2540

4096 200 34816 78 198 62 1024 77 1439 36455 74. 0159

8192 200 69632 78 393 62 1024 77 1634 71466 145. 0317

12288 200 104448 78 588 62 1024 77 1829 106477 218. 0476

16384 200 139264 78 783 62 1024 77 2024 141488 291. 0635

Table B. 17. Results of computation of customer operating cost per call (unit cost) as the function of file loading factor of the single level directory
partition disk file using full name of record in accessing.

File loading
factor,

Disk space
for data file

Disk space
for accessing

program

Disk space
charge per

month

Terminal devices
cost per
month

Rule of use
data file

CPU-time
charge per

month

CPU-time and
disk charge
per month

CPU-time and disk
charge per month

per call

. unit tracks tracks $ $ calls per month $ $

.0078
(128 records) 4.032 1.479 1.653

760 52500 196.29 957.94 1.82464
2675 210000 785. 19 2461.84 1.64844
4075 420000 1570.38 5647.03 1. 34453

.0312
(512 records) 11. 127 4.693 4.746

760 52500 197.04 961.79 1.83198
2675 210000 788. 18 3467.93 1. 65139

4075 420000 1576.38 5658.84 1.34734

.625
(1024 records)

.

19. 254
.

8.957
.

8.463
760 52500 197.04 961.79 1.83198

2675 210000 789.09 3472.55 1. 65359
4075 420000 1578.15 5661.60 1.34800

.2500
(4096 records) 74.016 34.601 32.585

760 52500 197.97 990. 56 1. 88677

267S 210000 791.88 3499.48 1.66642
4075 420000 1583.76 5691.36 1.35508

.5000
(8192 records) 145. 032 68. 791 64. 147

760 52500 198. 18 1022. 33 1.94728
2675 210000 792.68 3531.83 1. 68182
4075 420000 1585.41 5724.56 1.36298

.7500
(12288 records 218. 048 102. 981 96. 309

760 52500 198.42 1054.76 2.00906
2675 210000 793.71 3565.02 1. 69762
4075 420000 1587.39 5758.70 1.37111

1.0000
(16384 records)

,

291.064
.

137.202
.

128.480
760 52500 198.48 1086.96 2.07040

267S 210000 793.95 3597.43 1.71306
4075 420000 1587.92 5791.40 1.37890

283

Example 3b. The Partitioned Disk File with Double Level
Directory

To illustrate the characteristics of the partitioned file with

the multi-level directory, the following axxumptions are considered:

- That there are N records (one record for one employee)

belonging to one department, Directorate of Air Installation,

which is divided into four divisions as follows:

Division Full Name Unique Fixed-length Key Records in a Sub-File

Air Field Construction Div. AIRF

Building Construction BUIL

Technical Division TECH

Utilities Division UTIL

N/4

N/4

N/4

N/4

Total N

where '1\1,>C) < N < 16384, when the file is full.

- That this data file system is supported by CDC Disk 854

unit; and the organization of the data is the same as men-

tioned in Example 3a.

When this file system is organized in multilevel partitioned

file, the following features are considered:

1. The fixed-length unique key name of division names is

used for the Division Directory Entries (first level direc-

tory), and the address of the beginning of each division

(sub-sequential file) is used for its corresponding data in

284

this Directory. To retrieve any record from this parti-

tioned file, the user has to know in which division the

desired record belongs. The retrieval task starts from

searching this directory first.

Z. The user must also supply the name of the desired record.

(In some cases the user may supply the fixed-length code

number of the desired record. The operating program will

directly use this record code number as the key of the

record for the sub-directory searching). The full name to

unique fixed-length key conversion routine converts the

full name of the record into a fixed-length key and uses this

key for searching in the sub-directory (second-level

directory).

3. If the sub-directory searching is satisfied, the desired

record from the desired division main file is retrieved.

4. If the sub-directory searching fails, the operating system

calls for the un-found subroutine to notify the user.

5. In the organization of the multilevel directory partitioned

file, the higher level directory (division directory) has to

be added. More storage space is required in supporting

this directory, but it saves time in the sub-directory

search.

285

For example, when N = 16384 records, the file is full.

The required disk tracks = 261 tracks,

Then there are 261 entries in the single-level directory

of the partitioned file.

The number of average searches log2 261 = 7, for

binary search.

Then there 261 -1- (4 = number of division) = 261
4

65 entries in the sub-directory.
6Then the number of average searches =It log

2
(

1-4) -

5 for binary search for the double-level directory

partitioned disk file.

= The average binary search time forIf TASSLDPF

second level directory per retrieval

record of double level directory of parti-

tioned disk file,

Equation (9. 41) in Example 3a, has to be modified and

used as follows:

TASSLDPF = 15. 245 + 35. 00 + T BS (9. 48)

6. For computation of the average throughput time per record

retrieval of double-level directory partitioned disk file,

using full name in accessing, TATHRPDLDPF

286

Equation (9. 45) in Example 3a, has to be modified and

used as follows:

a) TATHRPHLDPF = TC BF
+ TASFLDPF + TCFNTFK

+ TASFLDPF + TRCLU

TASRPDFOF + TRCl/O

TRWOUT (9.49)

where T = Average linear search time for
ASFLDPF

first level directory per retrieval-

record of double level directory

directory of partitioned file.

The search program is similar to the internal cylinder

index search program of the indexed sequential disk file.

Then TASFLDPF

where NFLDPF

= 3.9375 NFLDPF + 21. 5625

= 3. 9375 (4) + 21. 5625 = 37. 3125

p,sec.

= 0.0373 msec.

= 4,

according to the statement of Example 3b, there are four

divisions, i. e., there are four sub-directory files.

287

then TATHRPDLDPF = O. 3218 + 0. 0373 + 8515 + 0.859

+ 0. 008 + 137. 539 + O. 008 +

36. 00

= 182.516 msec. for N = 1024.

The results of computation of TATHRPDLDPF are shown

in Table

b) The approximate formula of TATHRPDLDPF = T5

The method of computation is the same as that of

T4; the difference is as follows:

35. 00 (log2N) + 182. 4268

35. 00 (log2 4) + 182. 4268

Since the average number of searches per record

retrieval in sub-directory is reduced to log2 4 .

c) Total CPU busy time per record accessed using unique

fixed-length key = tTCPUTDLDPF'

tTCPUTDLDPF = TASFLDPF + TASSLDPF

+
1TRCLU + TALSDT

10

(TALSOFT) + TRCl/O + TRWOUT

= O. 0373 + 0.859 + O. 008 + 0. 364 +

O. 0392 + O. 008 + 36. 00

288

= 36. 543 msec for N = 1024.

d) Total CPU busy time per record accessed using full

name of the record = tTCPUTDLDPFUFN, as men-

tioned in Example 3a.

Then tTCPUTDLDPFUFN
= t + TTCPUTDLDPF CFNTFK

= 36. 543 + 8. 515 = 45. 058

msec for N = 1024.

7. For computation of core storage space and disk storage

space required, the method is the same as that in Example

la. The extra disk storage space has to be considered

for supporting the first-level directory. See results of

computation in Table B. 20, page 291.

8. For computation of the achievable-throughput rate capa-

bility of the double-level partitioned disk file, C(5), and

the customer operating cost per call, UC(5), the methods

are the same as those shown in Example la, pages

. The computed results of C(5) and UC(5)
are shown in

Tables 7.5 and 7.6 and plotted in Figures 7. 7 - 7. 10,

Figures 7. 12 - 7. 15, pages 169 - 172, for comparison

with the results obtained from other types of file.

Table B. 18. Data results of computation of disk access time per record retrieval as a function of file sizes of a double-level directory
partitioned disk file.

'-1

4) 1-'

8
01 r.

--,
iZ .

0
4-' Cr),
.., g
121 a)

..r;;-
002 .

<,. 011
L. P
,2

F.owz ra.

F
CD

,--i 0.
1-1 4
2 ..C)

4-1 f.
4-'

r.. -0 r.
0)

2) A -0
cr. a)g ..

z 4).

4
FA

C.) a)
nt -0
a.
.W g r..4

(1)4-1 1,
o .. -°,
F. L) P
2 4' c)

41 c_,

g cuz ., ga.

-0-'

0),-1 g.5
4. a.) F.

-I-' 0)4-1 go .m "ig
r. .;,0 ° -'.. -

I) °a)oca,
Z 1.1 b1

A
as cy

Li 1:3.1
15' -1

;4 U2 t
ellg

Z .5.

M
E-.

z<4

o
U
Ua.,

--N
CU o
b0 03
c0 r.
a) ;.,> cu

'tt 0.

..g

0 c0

11 .
a)

a)

r..4 --i.. cl
.-c g
do a)
g -ia'

C/) ..-I

g

b0 P,

.4-.

0 b0
.2 g..4
-, -'-'...
' roa. 3

..0
a)

.F.
,),
CU

"0

.,54
1 ti

"CS
as 0
4.) 0
g .t.'

*
i.gu

u 05
cc, 4)k ca

'V W
0)

VI 4-,
0.)

CI -

2
01 *
>0 t

k8y
-1 V)

TS
1.

u
i,I 4)

'0 r.-.

CI) 1:14
b0
cd cil

Q) 0> 0
<4 al

unit tracks tracks tracks records records ms ms ms ms ms ms

128 4 32 1 1 - - 1 32 .0505 107. S 2S 0. 289 5.039 132. 539

512 4 123 3 3 - - 2 43 . 0859 107. 5 25 0. 332 5.039 137. 539

1024 4 255 5 5 - - 2 51 .0859 107.5 25 0.364 5.039 137.539

4096 4 1024 17 8 - 9 3 60 .1212 107.5 25 0.399 5.039 137. 539

8192 4 2048 33 8 18 7 4 62 .1565 107.5 25 0.407 5.039 137. 539

12288 4 3072 49 8 36 5 5 63 . 19 18 107.5 25 0.411 5.039 137. 539

16484 4 4096 66 8 54 4 5 62 . 19 18 107.5 25 0.407 5. 039 137. 539

Note: * Columns 13 and 14 - the time is overlapped hence considered only column 14 for average disk accessing time per record retrieval.

Table B. 19. Data results of computation of average throughput time per record retrieval as the function of file size or loading factors
of a double-level directory partitioned disk file.

..,

. 0
En U
0 ;4

.--1

ET.: ..
I

00

"0 ti
0 ,,,

-.1 0. Qt)

[.. 4.
4

a
o
--.4,
to
0.,-
0

0 +,

49 1.0

a) bo o

41 -3-1) r.o a)

,.,4

1.1.. 44 U

.)
4a
.,..,

2u .-o

CI iii
I.

l' I
.i. 0
U col

. to'0 0
I &.,

o 4a'tn ...
I

4

.2
b0
o'-'

..,,,

1)' ;11

0
(-) §

ca X
41 ..1-'..

u c,
to .,0
t, u...., a) 0
'ti 1-',., `Z
01 Q) 0
b0 n., >
0 0r. G)

..'' --g 2

o
--04

4ia

° OJ
..-x --.4-,

M

.4-,
0
13.

.1.1... "h

3 to
ell g Tj

--' 87-1 4 u

..E

b0 Ci.

E i l'.-

3
0 (b)

E g
*.,-, o

2
ap Ts

b0 1.

E 1 F.)

00

..49-

'''l
,D 00 U ...,, ct, ,.- "o

F-. . T-

.c, % 2 (,;e.)

unit ms ms ms ms ins ms ms ins ins ms Ms

128 .0078 .3218 8.395 0.0373 .0505 .008 137.539 .008 36 36.432 44.828 182.360

512 .0312 .3218 8.475 0.0373 .0859 . 008 137.539 . 008 36 36.511 44.986 182.476

1024 .0625 .3218 8.515 0.0373 .0859 .008 137.539 .008 36 36.543 45,058 182.516

4096 .2500 .3218 8.595 0.0373 .7212 .008 137.539 .008 36 36.613 45.208 182.631

8192 .5000 .3218 8.601 0.0373 .1565 .008 137.539 .008 36 36.647 45.248 182.672

12288 .7500 .3218 8.626 0.0373 .1918 .008 137.539 .008 36 36.696 45.322 182.732

16384 1.0000 .3218 8.641 0.0373 .1918 .008 137.539 .008 36 36.692 45.333 182.748

Table B.20. Data results of storage space required as the function of file size of a double level directory
of partitioned disk file.

w r'i- 11

8
(1) r.a)

-,-1 0
r..

o)

0 .4 .to o I:14

(h) ,, .2 4. - 4 tu

'Ll 7 5
1=1 ,, g ato .p o a)
,.... s. U ,...

F a)
CO .0 U
w w
co) 1. fa,

cll ce,

V, ml0 co

c.) 0 .
0 0 0

.,.. 0 ce
a' ;:-4 _,,

-o

RI AgP ..,,0 ca
a) 4)FA

...nz .4 .0
, 0 0 ,,

^C) ttl' cil 6'0 o a) 0..
C/3 v) v) til

CU.I ,1C;.
g Q ... 0- r-, 0 U

2 V a

0 a)
t4 i.

..00 2
t. ..

/3) 0

8 F:

-o b4 .X
.2i 10

.lif 8 g,, -...., ,,
, U 0.)

g Fat. 1

"0 b°

.5 .g °
a 8
,.. -.,..,

U 0

44 I. ,,-, 4

-a
(3.)

co

,g U
8 E.

unit a b a b a b a b words words words tracks

128 200 1088 57 12 78 12 62 1024 77 1322 2610 4.0318

512 200 4362 57 12 78 36 62 1024 77 1346 5908 11. 1270

1024 200 8704 57 12 78 60 62 1024 77 1370 10274 19. 2540

4096 200 34816 57 12 78 204 62 1024 77 1513 36530 74. 0159

8192 200 69632 57 12 78 396 62 1024 77 1206 71530 145. 0317

12288 200 10448 57 12 78 588 62 1024 77 1898 106546 218. 0476

16384 200 139264 57 12 78 792 62 1024 77 2102 141566 291. 0635

Table B.21. Results of computation of customer operating cost per call (unit cost) as the function of file loading factor of double level
directory partitioned disk file using record's full name in accessing.

File loading
factor

Disk space
for data file

Disk space
for accessing

program

Disk space
charge per
month

Terminal devices
cost per
month

Rule of use
data file

CPU-time
charge per
month

CPU-time and
disk charge
per month

CPU-time and disk
charge per month

per call

unit tracks tracks $ $ calls per month $ $ $

.0078
(128 records) 4.032 1.549 1.67

760 52500 196.11 957.78 1.82434
2675 210000 784.50 3461. 17 1.64817
4075 420000 1568.97 5645.64 1. 34420

. 0312

(512 records) 11. 127 4.770 4.77
760 52500 196.83 961.60 1. 83160

2675 210000 787.26 3467.03 1.65096
4075 420000 1574. 52 5654. 29 1. 34625

.625
(1024 records) 19.254 9.033 8.49

760 52500 197. 13 965.62 1. 83927
2675 210000 788.52 3472.01 1.65333
4075 420000 1577.01 5660.50 1. 34173

.2500
(4096 records) 74.016 34.674 32.61

760 52500 197.79 990.40 1.88657
2675 210000 791. 13 3498.74 1.66606
4075 420000 1582.29 5689.90 1.35473

.5000
(8192 records) 145. 032 68. 854

,

64. 17
760 52500 197.97 1022. 14 1. 94633

2675 210000 79 1. 85 353 1. 02 1. 68143
4075 420000 1583.67 5722.84 1.36258

.7500
(12288 records) 218.048 103.049 96.33

760 52500 198.30 1054.63 2. 00880
2675 210000 793. 14 3564.47 1. 69736
4075 420000 1586.28 5757.61 1.37085

1. 0000
(16384 records) 291.064 137.248 128.49

760 52500 198.33 1086.82 2. 07013
2675 210000 793.32 3596.81 1.71276
4075 420000 1586.64 5790.13 1.37860

a
r rn 17
4 5 0 5 5' O

Q ro ft
) 0 0 5 as m a. 1) 0 0 a:

£
6Z

C
om

m
un

ic
at

io
n

tim
e

R
ea

d
in

to
 c

or
e

m
em

or
y

ar
gu

m
en

t s
ea

rc
h

V
ar

ia
bl

e
tr

ee
 lo

ok
 u

p
fo

r
Fi

xe
d-

le
ng

th
 k

ey
 n

am
e,

 in
 c

or
e

D
ir

ec
to

ry
 in

te
rn

al
se

ar
ch

C
on

ne
ct

in
g

lo
gi

ca
l u

ni
t d

is
k

tim
e

R
/W

 h
ea

d
po

si
tio

ni
ng

 ti
m

e

T
ra

ck
 w

ai
tin

g
tim

e
1/

2
rp

m

A
ve

ra
ge

 s
ea

rc
h

in
de

si
gn

ed
 tr

ac
k

tim
e

In
te

rn
al

 d
es

ir
ed

 tr
ac

k
se

ar
ch

 ti
m

e

A
ve

ra
ge

 s
ea

rc
h

in
ov

er
fl

ow
 tr

ac
k

In
te

rn
al

 o
ve

rf
lo

w
 tr

ac
k

se
ar

ch
 ti

m
e

'C
he

ck
 I

/O
 is

 b
us

y
or

 n
ot

T
ra

ns
fe

r
ou

tp
ut

 r
et

ri
ev

al
 r

ec
or

d
to

 T
T

Y

C
om

m
un

ic
at

io
n

tim
e

294

Example 4. Direct Disk File

To illustrate the characteristics of Direct or Random Disk

File organization, the accessing of a random record from the Direct

Disl File, assume that there are N (0 < N < 16384) logical records

in the file, each record being the same as mentioned in Examples

2 and 3.

Each record is formatted with a key. The full name of the

record is not more than four words, 16 characters. In case the full

name of the record is more than words, the rest will be truncated, so

that only the first four words are used to convert into a fixed-length

bits by hash coding technique. This fixed-length bits (hash address)

will represent the cylinder number, track number, to which the

logical record belongs, and address of the records when they are

mapped in internal core. See Figure B. 19, page 301.

Five hash coding techniques are simulated to evaluate the

average length of search per record retrieval with three methods

of handling the redundant keys. But only the best method of hash

coding has been selected for computing the results with those of

other methods of the organization. No overflow area will be consi-

dered for the direct file.

1. Four Hash Coding Techniques are as follows:

a) Hash 1. In this method the first four words of the

295

full name of the record are "exclusive or" together bit

by bit. Square the results and take only 10 lower bits

of the 12 middle bits as the hash address of each logi-

cal record on the disk storage.

Hash address = (W1, Ex. ORW
2

Ex. ORW
3

Ex. or W4)

and takes only 10 low bits of the 12 middle bits of the

results as Hash address.

Where W1, W2, W3, W4 are the binary number of the

first four successive words respectively.

b) Hash 2. In this method, add the first four successive

words together, square the result and take only 10

lower bit of 12 middle bits as Hash address.

2

Hash address = (W1 + W2 + W3 + W4) 2 0.nd take 10

lower bit of 12 middle bits.

Where W1, W2, W3, W4 are the binary numbers of

the first four words, respectively.

c) Hash 3. In this method the right-most character of

each of the first-four words is to be considered as

the "Selected Character, " and the third bit from the

right-most end of each "Selected Character" is kept as

the string code in Q register. Shift left A and

Q, 10 bits position. Use the results in A register

as Hash Address. See Figure B. 17.

A

JM
1 0 0

14- 4 -sic-4 -at

A

0 1 0 0 1

fe-2 141

0

All bits set = zero
440
PPA4. 1

A, after shift left AQ 10 bits

296

LSelected characters

E

N0 1 0 0 1

1E-2 4-5 -Di

Take (A) as Hash address, it is equivalent to take
10 lower bits of (A) as Hash address.

Figure B. 17. Hash 3 performed hash address.

d) Hash 4. In this method the first four words of the full

name of the record are "Exclusive or" together bit by

bit. Power fourth the result and take only 10 lower

bits of 12 middle bits of the result as the Hash Address.

Hash address = (W
1

Ex. ORW
2

Ex. ORW
3

Ex. ORW 4)4

and take only 10 lower bits of 12 middle bits of the

result as Hash address.

e) Hash 5. In this method multiply the first-four words

of the full name of the record and take only 24 bits

of the lower middle range bits of the result as a

297

W x W2

W2 x W3

(W
1
xW

2
)*(W 3x --a

W4)

by EUA instruction

"Selected String Code". Take 10 lOwer bits of 12

middle bits of A. The result of the operation

is used as the Hash address. See Figure B. 17 fo

illustration.

41111.

A 0

R1L
R10

R2L R
2U

A Q EL

The result of W1 x W2 x

Wax W4

by SHA -12, instruction = take 10:lower bits of (A) as Hash
Address

Where W
1
W

2
W

3
W4 are the same as mentioned in Hash 1, 2, 4

R1L =

R2L =

EL =

RUT =

R2U =

EU =

lower part of result 1

lower part of result 2

ittwer part of E register

upper part of the result 1

upper part of the result 2

upper part of E register

Figure B. 18. Hash 5 performing hash address.

298

2.. There are three methods of handling a redundant key

in the Direct File.

a) Linear probing. In this method the linear search

for both the first empty space and the desired record

is simulated i = -1, + 3, + 1, and + 1 with records with

the same hash address grouped together, and value of

i are used from the statistical formula. The results

of the simulation are computed and plotted as a func-

tion of File Size as shown in Figures B. 20 - B.23,

pages 302 - 308 where i is the interval search desig-

nator, while the minus sign indicates that the search

is backward to the beginning of the table, and the

positive sign indicates that the search is forward to

the end of the table.

Random probing. In this method its detail the follow-

ing algorithm of pseudorandom number generator is

selected and performed:

-- Initialize an integer R by setting R equal to 1

every time the random number routine is called.

Then on each successive call for a random num-

ber set R = R*5

-- Use only low-order n + 2 bits of the product and

replace the result in R

299

-- Set p= R/4 and return to hash coding program.

The results of simulation are computed and plotted as

shown in Figures B. 20 - B.23, pages 302 308.

c) Direct chain probing. The simulation of direct chain-

ing to handle the redundant key is as follows:

-- From the result of measuring the average number

of searches, it is reasonable to use Hash 1 as the

hash address generator.

-- The search routine is to find the first empty space

by i = +1 interval search simulation.

-- Each logical record needs one extra word for a

pointer. See the result of the simulation on

Figures B. 20 - B. 23 on pages 302 - 308, showing

the average search length as a function of file

size.

3. The simulation of four hash coding techniques in the three

methods of handling a redundant key are shown in Table

B. 22.

The most effective results of simulation in (3) are com-

puted and plotted as in Tables B. 23 - B. 25, Figures

B. 20 - B. 23.

300

Table B. 22. Schedules of simulations of a direct file.

Redundant key
handling method HASH 1 HASH 2 HASH 3 HASH 4 Formulas

Linear i = -1

Linear i = -3

Linear i = +1

Linear i = +1 group

Random

Direct chain

ye s

ye s

yes

yes

yes

ye s

yes

yes

yes

ye s

yes

ye s

yes

yes

yes

--

--

yes

--

yes

ye s

4, Selected hash coding can be used for evaluation of direct

disk file organization. According to the results of the

simulations in (3), it is evident that Hash 1 gives the best

results, average search length per probing.

6 bit

Fectch
1.375

1.325

1.375

1.375

1.375

1.375

1.375

1.375

1.375

1.375

1.375

1.375

1.375

1.375

1.375

1. 375

1.375

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Ext-ution
0.00

1.375

0.687

0.687

1.375

1.375

0.000

1.375

1.375

1.375

1. 375

0.000

1.375

1.375

0.000

0.000

1.375

ANA, 5 77777 B
Address

STA

SHA -10

SHA -12

STA CYL

LDA Address

ANA, S 277 B

STA Address

LDA CYL

ADA Address

STA Disk

ANA, S 77 B

STA LOC

5

LDA Disk

SHA -3

SHA 3

STA Disk

Total 'at 0, 37 ms.

15 bit Hash

z bits

5 bit

Hash address

8 bit

8 bit

8 bit

5 bi bit

bite bi

bit 5 b

301

Address

Hash address

Cyl

5 bi

Address

8 bit

Disk

5 bit 8 bits

LOC

Disk

5 bit bi

upper portion

Figure B. 19. Illustration of conversion of Hash address to Disk address. lower portion

6

5

Ss4'

0
U

4

0.

U

a)

..g
;..
ca
0.)

3

a)

U
41 2
fil

0

Figure B. 20..

.2 .3 .4 .5
Loading factor, P

.7 .8 .9 1.0

Expected length of search per record, as a function of the loading factor for .6 selected Hash functions with -1 displacement
of records in the file.

Table B. 23., Results of computation of expected length of search as a function of loading factor for five hash function with linear probing
compared with statistical formula.

Items
N

File
loading

1 factor
in %

Hash 3 Hash 1 Hash 2 Hash 5 Hash 4

1 -P/2
ST

ST
E =

N
1+- ST

STE = 1+ N ST
ST

N
E = 1+- ST

ST

N
E = 1+ ST

STE= 1+-
N

E -
1 - p

64 6. 12 16 1.250 4 1.063 3 1.047 3 1.047 3 1.047 1, 0

128 12.50 111 1. 870 12 1. 094 12 1.094 15 1. 117 8 1.063 1. 066

199 18.72 457 3. 130 33 1. 172 25 1. 130 28 1. 145 23 1. 120 1. 115

256 25.00 814 4. 180 60 1.234 39 1. 152 40 1, 156 49 1. 192 1. 167

320 3 1. 20 19 17 6.990 95 1.297 82 1.257 59 1. 184 78 1.244 1, 227

384 37.50 4165 11, 840 157 1.410 131 1.342 90 1.234 124 1.322 1, 300

448 43. 70 7254 17. 190 217 1.485 213 1.476 126 1.281 166 1.437 1, 389

512 50.00 16408 28.480 317 1.620 316 1.616 217 1, 423 260 1.507 1.500

576 56.40 16580 33.910 456 1.790 463 1.800 335 1.581 397 1.690 1. 647

640 62.50 23675 37.890 595 1.931 681 2.060 510 1.796 499 1.780 1, 9 11

704 68.60 31552 45.810 910 2.292 1084 2.540 697 1.990 703 1.999 2.092

768 75.50 42556 56.410 1178 2.530 1659 3.160 1035 2.350 971 2.264 2.541

832 81.25
I

, 56866 69.340 1713 3.060 2237 3.680 1594 2.920 1265 2.520 3.167

896 87.50 70060 79. 190 2463 3.760 3382 4,780 3023 4.380 1821 3. 032 4.500

960 93. 80 9 1673 96.490 4375 5.900 6897 8. 160 6257 7. 500 3397 4, 538 8. 565

1024 100. 00 , 132298 130. 190 13965 14. 600 24974 25. 300 20709 27,200 16508 17. 121 --

ST = Total number of searches before hit the desired record.

E = Average number of searches per random record accessing.

6

5

4

3

2

0

Figure B. 21,

.1 .2 .3 .4 .5 6 .7 .8 .9
Loading factor, p

Expected length of search per record, as a function of the loading factor for Hash 1 (H1) mapping function with 4 methods of
handling redundant records in the file.

1.0

Table B. 24. Results of computation of expected length of search per record, as a function of loading factor for hash 1,
with four methods of handling redundant records in the file.

N = No.
items in
file n

i

%

full
capacity

Hash 1, i = -1 Hash 1, i = 3 Hash, random Hash 1, chain

ST
ST, ST

= 1 +
N

ST
E = 1 +

N
ST

:QM'E= 1+
N

E-
N

64 6. 12 4 1.063 5 1.023 4 1.063 68 1.063

128 12. 50 12 1.094 12 1.094 10 1.015 138 1. 080

192 18.72 33 1. 172 28 1. 146 26 1. 135 214 1. 130

256 25.00 60 1.234 54 1. 2 15 46 1. 180 296 1.150

320 31.20 95 1.297 83 1.260 78 1.246 378 1.180

384 37.50 157 1.410 132 1.344 117 1.302 468 1.220

448 43.70 217 1.485 193 1.430 168 1.375 557 1.240

512 50.00 317 1.620 284 1.550 244 1.476 659 1.290

576 56.40 456 1.790 410 1.710 341 1.590 762 1.320

640 62.50 595 1.931 549 1.860 413 1.640 849 1.330

704 68.60 910 2.292 760 2.080 580 1.820 954 1.360

768 75.50 1178 2.530 1111 2. 4 10 723 1.940 1066 1.390

832 81.25 1713 3.060 159 1 2. 9 10 951 2.140 1188 1.420

896 87.50 2463 3.760 2482 3.780 1390 2.500 1300 1.450

960 93.80 4375 5.900 4862 6.070 2139 3.220 1423 1.480

1024 100. 00 13965 14.600 17962 18. 600 5839 6. 100 1556 1. 520

6

5

4

3

on

tl)
2

a.

1

0

Figure B.22.

H3 (Direct chain)

I I I I I I I I I

.1 .2 .3 .4 .5 .6 .7 .8 .9

Loading factor, p

Expected length of search per record, as a function of loading factor for Hash 3, mapping function with 4 methods of handling
redundant records in the file.

1.0

Table B. 25. Results of expected length of search per record, as a function of loading factor for hash 3 with four methods of handling
redundant records in the file.

N = No.
items in
file n

i

%

full
capacity

Hash 3, (-1) Hash 3, (-3) Hash 3, random Hash 3 chain

ST
ST

E= 1+
N

S
T

ST
E= 1+

N
S

T

ST
E= 1+

N
ScT

S

E =
sal

N

64 6. 12 16 1.250 16 1.250 19 1.290 76 1. 190

128 12.50 111 1.870 82 1.640 73 1.570 173 1.350

192 18.72 451 3.350 205 2.060 153 1.790 298 1.450

256 25.00 814 4.180 343 2.330 264 2.030 386 1.500

320 31.20 19 17 6.990 852 3.660 478 2.500 556 1.730

384 37.50 4165 11. 840 1688 5.390 704 2. 830 730 1.900

448 43. 70 7254 17. 190 2715 7.060 898 3.000 884 1.970

512 50.00 16580 33.910 4131 9.060 1156 3.260 1069 2.080

576 56.40 16408 29.480 6144 11.660 1478 3.560 129 1 2.240

640 62.50 23615 37. 890 8759 14. 680 19 17 4. 000 1547 2.420

704 68.60 31552 45.810 11500 15.330 2376 4.370 1782 2.530

768 75.50 42556 56.410 15398 21.040 2934 4.820 2040 2,650

832 81.25 56866 69.340 20057 25, 100 3536 5.250 2274 2, 740

896 87. 50 70060 79. 190 25090 29. 000 4165 6. 650 2495 2. 780

960 93.80 91673 96. 490 33558 35. 950 5186 7.400 2741 2.850

1024 100. 00 132298 130. 790 50926 50. 730 9576 10. 350 3056 2.920

6

Wy

0

;. 4

cd

fA

`.6 3

bo

0. 2

0

H4 (Direct Chain)

I I I I I I I I I

.1 .2 .3 .4 .5 .6 .7 .8 .9
Loading factor, p

Figure B. 23, Expected length of search per record, as a function of the loading factor for Hash 4, with 4 methods of handling redundant
records in the file.

Table B. 26. Results of computation of expected length of search record, as a function of loading factor for hash 4, with four methods
of handling redundant records in the file.

N = No.
items in
file n

1

full
capacity

Hash 4, i = -1 Hash 4, 1 = -3 Hash 4, random Hash 4, chain

S
T

ST
E= 1 +

N
ST

ST
E= 1 +-

N
S

T

ST
E= 1 +-

N
S
cT

S
c

E =
N

64 6. 12 3 1.047 4 1.063 3 1.047 67 1. 047

124 12.50 8 1.063 8 1.063 7 1.056 135 1. 055

192 18.72 23 1.120 21 1.110 22 1.115 209 1.089

256 25.00 49 1.191 45 1.170 49 1.191 291 1.137

320 31.20 78 1.244 76 1.238 84 1.263 376 1.175

384 37.50 124 1.323 112 1.292 129 1.336 459 1.195

448 43.70 166 1.370 154 1.343 171 1.382 549 1. 215

512 50.00 260 1.510 215 1.420 243 1.475 644 1.258

576 50.40 397 1.690 314 1.545 319 1.554 750 1.302

640 62.50 499 1.780 410 1.640 407 1.636 852 1.331

704 68.60 703 1.998 585 1.830 568 1.807 968 1.375

768 75.50 971 2.200 865 2.130 753 1.986 1093 1.431

832 81.25 1265 2.520 1228 2.470 1011 2.215 1208 1.452

896 87.50 1821 3.040 2085 3.330 1328 2.482 1316 1.468

960 93.80 3397 4.300 4359 5.550 1972 3.054 1451 1.511

1024 100. 00 16508 17. 100 17108 17. 700 6842 7.682 1580 1. 543

310

Figure B. 20 makes a graphical comparison among five related

hash functions with linear probing by (-1) and the expected value

obtained from the linear probing formula I

1

- a/
. This graph

a
2

STshows how the expected search per record retrieval (E = 1 + N)

increases when the number of records in the Table or the file loading

factor increases. Every curve follows the general trend of E.; i. e.,

when a is a small there are many available spaces, the number of

secondary records (redundant records) is less; then the expected

number of search records per random accessing is less. But for

a 1.000 the table is almost full; it is not easy to find a space

available and the expected number of searched records per random

accessing is enormously high.

Increase in the value of E, is dependent on the scattering pat-

tern of the calculated hash addresses for each investigated hash

function. Data in Table B. 23 indicated that Hash 1 is the best hash

function. Hash 3 offered the worst results.

Figure B. 21 shows how the expected searched record per

random accessing, E, increases as the values of file loading factor;

a, increases in Hash 1, with three methods of handling redundant

records: linear probing by (-1) and (-3), random probing and direct

chain probing. The rate of increase of E is dependent on the method

of handling redundant records from the results of both simulation

and computation. Hash 1 with direct chain probing gives the best

311

results. Hash 1 with random probing gives worse results than Hash

1 with direct chain probing. Hash 1 with linear probing gives worse

results than Hash 1 with random probing. Hash 1 with (- 1) linear

probing is a little worse than Hash 1 with (-3) linear probing for

Q < < 0. 825; it is better than Hash 1 with (-3) linear probing

for 0. 825 < a < 1. 000 when the table is almost full.

Figure B. 21, Table B. 25 and Figure B. 22, Table B. 26, make

a graphical comparison of Hash 3 and Hash 4, the objective of which

is the same as that in Figure B. 19 and Table B. 23. From the

comparative results shown in Table B. 23 - B. 26 and Figures B. 19 -

B. 22 it is clear that Hash 1 gives the best results and is the reason-

able selection for evaluating the direct disk file, for making a compari-

son with the results of the other types of files as shown in Appendix

B, Example 4.

(Full name of record
is supplied

HR = Home record
DR = Desired record

Hash 1
Operation

HR

Random search across track

Random search across cylinde

HR

Linear search across c linde

312

U

T

U

c am search across
cylinder

Figure B. 24. Illustration of search across the track and search across the cylinder of direct
disk file using Hash 1, with linear probing, random probing and direct
chain probing.

Table B. 27. Percent of search across the track and percent of search across the cylinder of disk direct file using Hash 1 with linear probing,
random probing and direct chain probing.

File size
in records

Loading
factor,a (%)

Linear probing (+1) Random probing Direct chain probing

number of search
across track, %

number of search
across cylinder, %

number of search
across track, %

number of search
across cylinder, %

number of search
across track, %

number of search
across cylinder, %

64 6. 12 0 0.000 0 0.000 0 0. 000 0 0.000 0 0. 000 0 0. 000

128 12.50 0 0.000 0 0.000 0 0. 000 0 0. 000 0 0.000 0 0. 000

192 18. 72 0 0.000 0 0.000 3 1.563 0 0. 000 0 0.000 0 0.000

256 25.00 1 0.390 0 0.000 5 1.953 1 0.390 1 0, 390 0 0.000

320 31.20 3 0.938 0 0.000 8 2.500 2 0.625 3 0.938 0. 0.000

384 37.50 3 0.781 0 0.000 12 3. 125 3 0.781 3 0.781 0 0.000

448 43. 70 4 0. 893 0 0.000 14 3. 125 3 0.670 4 0. 893 0 0. 000

512 50.00 9 1. 758 0 0.000 22 4.297 3 0.586 9 7. 758 0 0.000

576 50.40 12 2.083 0 0.000 29 5.035 5 0. 868 12 2.083 0 0. 000

640 62. 50 14 2. 188 2 0. 195 37 5.781 5 0. 787 14 2. 188 2 0. 195

704 68.60 18 2.557 4 0.568 50 7.102 11 1.563 18 2.557 4 0.568

768 75.50 24 3.125 5 0.651 67 8.734 17 2.214 24 3.125 5 0.651

832 81.25 36 4.327 5 0.607 93 11. 178 25 3.005 36 4.327 5 0.601

896 87.50 45 5.022 7 0.781 115 72.835 36 4.018 45 5.022 7 0.781

960 93.80 62 6.458 12 1.250 146 15.208 52 5.417 62 6.458 12 1.250

1024 100.00 91 8.887 19 1.855 175 17.090 80 7.813 91 8.887 19 1.855

20

r.

U
"13 15

C.)

r.

0
L.

cd

Vl

-g
C.)

10

O

be
eU

4)

a)

5

O=
O=
O=
O=

Percentage of searches across track vs. file loading factor,a , of Hash 1, for linear probe and direct chain probe.

Percentage of searches across cylinder vs. file loading factor, a , of Hash 1, for linear probe and direct chain probe.

Percentage of searches across track vs. file loading factor of Hash 1, for random probe.

Percentage of searches across cylinder vs file loading factor of Hash 1, for random probe.

Total number of searches across track x 100
Percentage of searches across track =

Total random number of accesses of un-repeated key in the file

Total number of searches across cylinder x 100
Percentage of searches across cylinder =

Total number of random access of un-repeated key in the file

This simulation is made of 1024 records in full file

0.061 0.125 0.187 0.250 0.312 0.375 0.437 0.500 0.564 0.625 0.686 0.755 0.813 0.875 0.938 1.00
Loading Factor

Figure B.25. Percentage of searches across the track and percentage of searches across the cylinder as a function of loading factor, a, for disk
direct file using Hash 1, with linear probe, random probe and direct chain probe.

315

4. Selected hash coding can be used for evaluation of direct

disk file organization. According to the results of the

simulation in (3), it is evident that Hash 1 gives the best

results, average search length per record retrieval, E,

and follow its statistical formula. Hence it is reasonable

to select Hash 1 for "selected hash coding", for evaluation

and comparison with other file organization methods.

5. The evaluation of the direct disk file using Hash 1 with

linear probing is as follows:

a) For the computation of the average throughput time

of direct disk file with linear probing,

If TATHRPDFLP = Average throughput time per

record retrieval from direct disk

file with linear probing

from the diagram Figure B. 24, the following

equation can be set up:

TATHRPDFLP = TC BF
+ TCFNTFK + T

HASH 1

TRCLU + TASRDFLP + TRCl/O

where T
HASH 1

TRWOUT (9. 50)

= Hash 1 decoding time per record

retrieval

316

= 0.071 ms (based on the tested pro-

gram on page 352.

TASRDFLP = Average access time per record

where TLPSACT
T

including internal search with linear

probing and search across track

and cylinder.

= TAR/WHPT + TAWT + TRINDT

T
LS

+ TLPSACT + TLPSACYL

(4. 51)

= Linear probing search across track

El

100 (TAWT + TRINDT)

(25 + 25)
100

El = 0.5 El

E
1

= Total number or searches across the track using linear probing
Total random accesses of un-repeated keys in the file

x 100

El, the empirical parameter, is obtained by simula-

tion.

and TLPSACYL = Linear probing search across the

cylinder

- 2 (TAR/WHPT + TAWT
100

TRINDT) (9. 52)

E

100
(30 + 12.5 + 25) = 0.675 E

2

where

317

Total number of searches across the cylinder using linear probingE2 - Total random accesses of un- repeated keys in the file

x 100

E
1

and E2, the empirical values, are obtained by

simulation

Then Equation (9. 51) becomes

TASRDFLP = 95 + 12.5 + 25 + T LPS + 0.5

PLPSACT + 0.675 PLPSACYL

= 132.5 + TLPST + 0.5 E
1

+ 0.675 E
2

For illustration, when N = 12288 (a= 0. 75) from

Figure B. 24, page 314, E1 = 3. 125 %, E2 = 0.651

TLPS = Linear search in the track contain-

ing the desired record

7.875 (ELF - 1) + 165.625

where ELP Expected number of searcher per

ELP

record retrieval with linear probing
(1 - a/2)
(1 - a)

a= file loading factor

= 2.5 for N = 12288

(9. 53)

318

Then T LPS = 7. 875 (2. 5 - 1) + 165. 625 =

177 p.sec = 0.177 msec.

TASRDFLP = 132.5 + O. 177 + 0. 5x3. 125 +

0.675x 0.651

= 134.679 ms

From Equation (9. 50)

TATHRPDFLP = 0.3218 + 8. 626 + O. 071 + 0.008 +

134. 679 + O. 008 + 36. 00

= 179. 714 for N = 12288 or a = 0. 75

See results of computation in Table B. 29, page 330.

b) Approximate formula of TATHRPDFLP = T6

Only major components of search time (msec) are

considered; the minor components of search time

(p.sec) are omitted.

T6 TAR /WPT + TAWT + TRINDT

TLPS + 44.959

where 44.969 01 TC BF + TCFNTFR + TRCLU

T
6

TRCl/O + TRWOUT + T
HASH 1

L.= 95 + 12.5 + 25 + T LPS + O. 5 x

10 2E1 + 0.675 x 10-2 E
2

132. 5 + (7. 875 ELP + 157. 375)

10
3 0.005 E

1
+ 0.00675 E

2
+ 44.959

319

T6 ="1- 177.545+ 0.007875 ELP + 0.5 E1

+ 0. 675 E
2

ms

for O. 25 < a< 1. 0

177. 545 ms for O. 0 < a < 0. 25

Total CPU busy time per record accessed using unique

fixed-length key, tTCPUTDFLP

tTCPUTDFLP = THASH 1
+ TRCLU + TLPS

TRCl/ 0 + TRWOUT (9. 54)

= 0.071 +0.008 + O. 177 +0.008 +

36. 00

= 36. 264 msec. N = 12288 ,

a = 0. 75

d) Total CPU busy time per record accessed using full

name of the record, tTCPUTDFLPUFN

tTCPUTDFLPUFN = tTCPUTDFLP + T
C FN T FN

= 36. 264 + 8. 626 = 44. 890 msec.

for N = 12288, a = 0. 75

6. The evaluation of direct disk file using Hash 1 with random

probing is as follows:

a) For computation of the average throughput time of the

direct disk file with linear probing

320

= Average throughput time per recordIf TATHRPDFRP

retrieval from direct disk file with

random probing.

From the time diagram Figure B. 25, page the

following equation can be set up:

TATHRPDFRP= TC BF
+ TCFNTFK + T

HASH 1

TRCLU + TASRDFRP + TRCl/O

+ T
RWOUT (9. 55)

where TASRDFRP = Average access time per record

retrieval including internal search

with random probing and search

across track and cylinder.

= TAR /WHPT + TAWT + TRINDT

TLS + TRPSACT
+ TR

PSAC YL

(9. 56)

where TRPSACT = Random probing search across

track
E

3

100
(T

AWT
+ TRINDT) = 0. 5 E

3

Totalnumber of searches across the track of random probingE3 - x 100Total random accesses of un- repeated keys in the file

and TR SACYL
= Random probing search across the

cylinder.

E
4

100
(TAR /WHPT + TAWT

TRINDT

E
4 (30 + 12.5 + 25) = 0.675 E4

4

(9. 57)

where

321

Total number of searches across cylinder of random probing
E - x 100

4 Total random accesses of un- repeated keys in the file

E3, E
4

the empirical values, are obtained by simula-

tion, Figure B. 24 on page 314.

= 95 + 12. 5 + 25 + TRPS + 0. 5 E +Then TASRDFRP

0. 675 E
4

132. 5 + TRPS + O. 5 E
3

+ 0. 675 E
4

For illustration when N = 12288 (a= 0. 75) from Figure

B. 24, page 314.

E
3

= 8. 734%; E4 = 2. 217 %

TRPS = Random search time in the track

containing the desired record

= 34. 625 (ERP -1) + 179. 375 (based

on test program, page 354.

where ERP = Expected number of searches per

record retrieval using random prob-

ing.

322

ERP - I log
e

(1 - a) where a= file
a

loading factor, (9. 58)

= 1.84 for N = 12288.

then TRPS = 34.625 (1.84 - 1) + 179.375 =

208. 46 + 0. 209 ms.

TASRDFRD = 132. 5 + 0. 209 + 0. 5 * 8. 734 +

0.675 * 2.217

= 138.571 msec.

then TATHRPDFRP
= O. 3218 + 8. 626 + O. 071 + O. 008 +

138. 571 + O. 008 +3600

= 183. 606 msec. for N = 12288

or a= 0. 75

See the results of computation of TATHRPDFRP in

Table B. 33 on page 334.

b) Approximate formula of TATHRPDFRP = T7

Only major components of search time (msec) are

considered; the minor components of search time

(p.sec) are omitted.

T7 = TAR /WPT + TAWT + TRINDT

TR
+ 44.959

where 44.959 T
C BF

+ TCFNTFR + TRCLU

TRCl/O + TRWOUT + T HASH 1

T

T

7

7

T7

323

95 + 12. 5 + 25 + (34. 625 ERP +

155. 75) 10
3

+ O. 5 E
3

+ O. 675 E
4
+

44. 959

177. 604 + O. 0346 ER + O. 5 E3 +

0. 675 E
4

for 0 a < a< 1. 000

177. 604 for 0 < a< 0. 25

c) Total CPU busy time per record accessed using unique

fixed-length key =
tTCPUTDFRP'

tTCPUTDFRP = THASH 1
+ TRCLU + TRPS

TRCl/O + TRWOUT

= O. 071 + O. 008 + 0. 209 + O. 008 +

36. 00

= 36. 296 msec for N = 12288 or

a= 0. 75

Total CPU busy time per record accessed using full

name of the record = tTCPUTDFRPUFN.

tTCPUTDRDUFN = tTCPUTDFRP + TCFNTFK

= 36. 296 + 8. 626 = 44.922 msec

for N = 12288, a= 0. 75

7. The evaluation of direct disk file using Hash 1 with direct

324

chain probing is as follows:

a) For the computation of the average throughput time of

direct file with direct chain probing,

If TATHRPDFDCH Average throughput time per

record retrieval from direct disk

file with random probing

From the time diagram Figure B. 25 the following

equation can be set up:

TATHRPDFDCH = TCBF + T CFNTFK + T
HASH 1

where TASDFDCH

where TDCHSACT

+ TRCLU + TASRDFRP

TRCl/O + TRWOUT (9. 59)

= Average access time per record

retrieval including internal search

with direct chain probing and

search across track and clyinder.

+ T= TAR /WHPT AWT
+ TRINDT

TDCH + TRPSACT + TRPSACYL

= Direct chain probing search

across track
E

5

100
(TAWT

+ TRINDT) = 0.5 E
5

(9. 60)

325

where E
5

= Totalnumber of searches across the track of direct chain
Total number of un- repeated records accessed from the file

x 100

TDCHSACYL = Direct chain search time across

the cylinder

E6

100
(TAR /WHPT + T

AWT

TRINDT). (9. 61)

E
6

=
100

(30 + 12. 5 + 25) = O. 675

E
6

msec.

where

Totalnumber of searches across the cylinder of direct chain probing
E6 Total number of un- repeated records accessed from file

x 100

E
5

and E
6

are the empirical values obtained by simula-

tion as shown in Figure B. 24, page 314. In this

investigation the method of finding the available space

for successive records in the chain is the same as

that of linear probing. Hence the value of El = E5

and E
2

= E
6.

Then TASRDFCHD = 95 + 12.5 + 25 + TDCHS + O. 5 E
5

+ O. 675 E
6

326

= 132. 5 + TDCHS + 0.5 E
6

+

0.675 E
6

For illustration when N = 12288 (a = 0. 75) from

Figure B. 24, page 314.

E5 = El = 3. 125%; E
6

= E
2

= O. 651%

TDCHS
= Direct chain probing in the track

where EDCH

containing the desired record

= 164. 25 + 19. 875 (EDCH -1)

= Expected number of searches per

record retrieval using direct

chain probing

aEDCH = 1 +
2

where a = file loading

factor (9. 62)

= 1. 375 for N = 12288 or a= O. 75

Then T
DCHS = 164. 25 + 19.875 (1.375 - 1) =

171. 703 p.sec = 0. 172 msec.

TASRDFDCH = 132.5 + O. 172 + O. 5x 3. 125 +

0.675 x 0.651

= 134. 673 msec.

Then TATHRPDFDCH = 0.3218 + 8.626 + 0.071 + 0.008 +

36. 00

= 179. 708 msec.

327

See the results of computation of T inATHRPDFDCH

Table B. 36 on page 337.

b) Approximate formula of TATHRPDFDCH = T8

Only major components of search time (msec)) are

considered; the minor components of search time

(ilsec) are omitted.

T8 =-' TAR /WPT + TAWT + TRINDT

TDCHS + 44.959

where 44.959 TCBF + TCFNTFK + TRCLU

TRCl/0 + TRWOUT + T
HASH 1

T

T

8

8

T8

-.11- 95 + 12. 5 + 25 + (19. 875 EDCH

144. 375) x 10
-3 + O. 5 E

5
+

0. 675 E
6

+ 44. 959

177. 573 + O. 019875 EDCH +

0. 5 E
8

= 0. 675 E6 msec. for

0.5,< a< 1.00.

Ctt 177. 573 cosec for 0 < a< 0. 5

c) Total CPU busy time per record accessed using unique

fixed-length key = tTCPUTDFDCHP.

tTCPUTDFDCHP = THASH 1
+ TRCLU

+ TDCHS +

TRCl/O + TRWOUT

328

= 36. 259 + 8. 626

= 44.885 msec for N = 12288,

a= 0. 75

8. For computation of core storage space and disk storage

space required for the direct disk file using linear probing,

random probing and direct chain probing, the method is the

same as that in Example la. The extra disk storage space

is reserved for supporting the file system processing

program. See the results of computation in Tables B. 29,

B. 33 and B.37 on pages 330 - 338.

9. For computation of the achievable-throughput rate capability

of the direct disk file C(6)' C(7) and C(8) and the customer

operating cost per call, unit cost, UC(6)' U
C(7)

and U
C(8)

the methods are the same as those shown in Example la,

pages 226 - 227. The computing results of C(6)' C(7) and

C(8) are shown in Table 7. 4, page 155. The computed

results of UC(6)' U
C(7)

and U
C(8)

are shown in Tables

B.30, B. 34 and B. 38, pages 331 339 respectively.

for comparison with the results obtained from the various

other types of file. See results of computation in Table

7.6, page 173.

Table B. 28. Data results of computation of disk average access time per record retrieval as a function of loading factor of direct disk file
using Hash 1 with Linear probing (+11

N 0,-.
ci3 C)

CI)
0) r.I-,

--, o4., -

i.0.I,
it

0 ti.
3

/30
0

....I

.H
au

u
rit .3

,...,

.:

T. .g0 0
9 ?
'a k

al 0 ,,7
05 cd ini. 0-1 0
4., U

ig) .
..4 al CO

w

.0
1:1

-4

.73
ri
.,_,

1....1

>-.U ,5I

.41

;
eg
U
0

Er::

...X
U
0
$4
4.,

a)
a

7 '4'
"Cf ..-X
co 0. .
C4 11

0

Cql -cs

l'
b0 ;-.CO 4
8 2 cp> . 0

....4 (1.3 ..
',a. VI .I-

v`;:1)

-0 4-'U 4.
co 0. ..V) .I.J

CA 4)

8
0-, ...
. ,..

tv-0 -0

cs '''
a) '",'

V) U

.41

tu 0
VI (I)

71 kk
.-, a)
CI :a.

cylinder =. tracks ms ms ms ms V, ms ' % ms ms

128 0,0078 27 261 1.000 95 12.5 25 0.166 - - - - 132.666

512 0.0312 27 261 1.020 95 12.5 25 0.166 - - - - 132.666

1024 0.0625 27 261 1.030 95 12.5 25 0.166 - - - 132.666

4096 0.2500 27 261 1.167 95 12.5 25 0.167 - - - - 132.667

8192 0.5000 27 261 1.500 95 12.5 25 0.170 1.785 0.893 0.000 0.000 133.563

12288 0.7500 27 261 2.500 95 12.5 25 0.177 3.125 1.563 0.651 0.439 134.679

16384 1.0000 27 261 14.600
*

95 12.5 25 0.273 8.887 4.444 1.855 1.252 138.469

Note: E = (1 - a /2)/(1 - a) for linear probing.

* The value is obtained by simulation.

(Direct file 16 words/record, 64 records per track).

Table B.29. Data results of computation of CPU busy time and average throughput time per record retrieval of direct disk file organization
with Linear probing using full name of a record in accessing a random record from file.

a) 1
.E 8
al cam

g44 ..

At
CI "H
2 -0
4-, g
Cli C49.. .-

c)

el) I0 A
(.4) 4-,I

. 1
4-1 1:1o 0
E -0. F.1a ..0$4

1-1 0 W
(8 1

1000 ,
-0

g4-1 .,...

"g 'II
cd

.-,0
0

.mbo 0
E

1--1

b0 4,
-1
+j *.0 .1:3
a)
0 4-'r4

8
0

h)H -0 -U 40 00 F.
COt ',3)

4) 8bp E 0
CC) 4) cu
c Pt
6) 0
Ct ± $:14

.._,.
(.,-bo

,2,

2

-9 p.,
-xc .+J

0 ,--`
-00

la'
o
W

ri

I-I
0
CI
6) G)

' "4.-1

..0 0)

VOA0 4,
el!

4, A

;LI R
M 0 li5 . 8

A i_),

,-H ,...0

Cd

1- 0
-2 ,-,
4.4 4-i,, 0u 4.,g .
6 v. zi

A
00. z

" 20

i 41
.0

0 g

.
b0 r. 44
F.,1 8 '4,,

6 2

MS ms ms ms ms ms MS ms MS ms

128 0.3218 .8.395 .071 .008 132.666 .008 36 36.253 44.648 177.470

512 0.3218 8.475 .071 .008 132.666 .008 36 36.253 44.728 177.550

1024 0.3218 8.515 .071 .008 132.666 .008 36 36.253 44.768 177.590

4096 0.3218 8.595 .071 .008 132.667 .008 36 36.254 44.849 177.671

8192 0.3218 8.601 .071 .008 133.563 .008 36 36.257 44.858 178.573

12288 0.3218 8.626 .071 .008 134.679 .008 36 36.264 44.890 179.714

16382 0.3218 8.641 .071 .008 138.469 .008 36 36.360 45.001 183.519

Note: ms or msec = millisecond.

= Hash 1 decoding time + hash address to disk address conversion time, see Figure B. 18, page
HASH1

= 0.34 ms + 0.37 ms = 0.071 msec.

Table B.30. Data results of computation of storage space required as the function of file size of direct file organization with linear probing using
both record's full name and fixed length numerical code for accessing a record from file.

N14

a)
,--,..
$44

,
a)

..x

2

i
0

'-' U
[44 C6

2
b0
0r.
04
,-,

a)

0 M
X ra..

r4X 0tel

78 'At0 >4,
CU 0

e0 U0 ,
C) Cfl

a i
1 0

to
...4

13 40. 15,
CU
C/3 C440
Ca 0)

44 A
o.. 40
0 4-...

4' .3)0
..04,0 4441 0

U

i TIci) 5'
"",0 `g.'4, gl0 ..

E-, 2

.0
4-, a)

i'
CU g
C.) ,
V3 '-' 0
a. 2 ?.,

k
os
0 V3

k- `ti

words (a) words (b) words (a) words (b) a b

128 200 1088 24 2 20 61 1024 1131 2419

512 200 4352 24 2 20 61 1024 1131 5663

1024 200 8704 24 2 20 61 1024 1131 10035

4096 200 34816 24 2 20 61 1024 1131 36147

8192 200 69632 24 2 20 61 1024 131

1

70963

12288 200 104448 24 2 20 61 1024 1131 105779

16384 200 139264 24 2 20 61 1024 1131 140696

Table B.31. Results of computation of customer operating cost (unit cost) as the function of file loading factor of direct disk file
with linear probing (+ 1) using full name of record in accessing.

File loading
factor for

Disk space
data file

Disk space
for accessing

program

Disk space
charge per
month

Terminal devices
cost per
month

Rule of use
data file

CPU-time
charge per

month

CPU-time and
disk charge
per month

CPU-time and disk
charge per month

per call

unit tracks tracks $ $ calls per month $ $ $

.0078
(128 records) 261 1.362 78.71

760 52500 195,34 1034.05 1. 96960
2675 210000 781.35 3535.06 1.68336
4075 420000 1562.67 5716.38 1.36104

.0312
(512 records) 261 4.530 79.66

760 52500 195.69 1035.35 1.97209
2675 210000 782.73 3537.39 1.68447
4075 420000 1565.49 5720. 15 1. 36194

. 625
(1024 records) 261 8.800 80.94

760 52500 195.87 1036.81 1. 97480
2675 210000 783.45 3539.39 1.68542
4075 420000 1565.87 5721.81 1.36233

.2500
(4096 records) 261 34. 300 88.59

760 52500 196.23 1044.82 1.99013
2675 210000 784.86 3548.45 1. 68973
4075 420000 1569.72 5733.31 1.36507

. 5000
(8192 records) 261 68. 300 98.79

760 52500 196.26 1055.05 2. 00961
2675 210000 785.01 3558.98 1.69475
4075 420000 1570.02 5743.79 1.36757

.7500
(12288 records) 261 102. 300 108.99

760 52500 196. 41 1065.40 2. 02933
2675 210000 785.58 3569.57 1. 69979
4075 420000 1571. 16 5755. 15 1. 37027

1.0000
(16384 records) 261 136. 300

I

119. 19
760 52500 196.89 1076.08 2.04967

2675 210000 787.54 3581.73 1. 70558
4075 420000 1575.03 5801.92 1.37362

Table B.32. Data results of computation of disk average access time per record retrieval as a function of loading factor of
direct disk file using Hash 1 with random probing.

-re. .
',1 8

a)
G) r.-I-1 0

Is. ..

$.7
O
(1

......

1
3

A
la0 Ug CO

.-1 F.

p. i,

0 4 11).

g .0 Ti
0) U

r.-1 Cd ..".-. c, ..
fs. 0 U

,4
U ,,r. .
CIS 0)

- 0 0V 't$ ttla) g
vs to 11
;-, F. k
cu 0

C-1 o> cu< 0. c.

CO

4
0
O..
4-,

g.
,_. .

ql .1
., a)

3..A
U .4.+

CO

,-,,,

..) a)

4 4
E-. '.,..

w .0

Ti
45t c-0

c4 ti

ce

E
4' (. .,.p,

CO 82 t 2
cd t.,< g a.

c4 t)0 ..
.4 -,-.

0 0 1

vi g .4

a g
2
0 1-1

0)4 -0
I

t,), c' 4

1.1

2 "2. 0
a; .%)

C'I
a)ci a.

unit with Hash 1, E ms ms ms ms % ms % ms ms

128 0.0078 27 261 1.03 92 12.5 25 0. 180 - - - - 132. 680

512 0. 0312 27 261 1.04 95 12.5 25 0.181 - - - - 132. 681

1024 0. 0625 27 261 1.04 95 12.5 25 0. 181 - - - - 132. 681

4096 0.2500 27 261 1. 16 95 1.25 25 0, 185 1.953 0.977 0.390 0. 263 133. 925

8192 0.5000 27 261 1.39 95 12.5 25 0. 193 4.297 2. 149 0. 586 0, 396 135. 238

12288 0.2500 27 261 1.84 95 12.5 25 0.209 8. 734 4. 363 2. 214 1.493 138. 571

16384 1.0000 27 261
*

6. 70 95 12, 5 25 0.377 17. 090 8.545 7. 812 5.274 146. 696

Note: E = - a i loge (1 - a) for random probing.

* The value is obtained from simulation.

Direct file random probing uses 16 words per record, 64 record per track.

Table B.33 . Data results of computation of CPU busy time and average throughput time per record retrieval of direct disk file organization with
random probing using full name of a record in accessing a random record from file.

a) 1
V 8
6) r-

k:

.41

U
alo ,..A u
COt

° '0 4.11 4-1

41 It)0 0
I?,

cs '0 -2
,.,... 8

4. 2

10
,,,

.++

44
CO

'ED'

a60 .,..,

...., ...
'-.0

;-,1

U

En tlla aU :00

I.X 44 a/
Ea p,

61 ,-1 0
b0 al U

vs 2 2
p.

4-, (,)
<4 . CI,

cd

r.1
00
0

I -i,i
1 '8
0

00

4
.0

-'.

....
0
0
r-, S
44 .i+1

.f1D 1)

a)

4
zg R
b0 u 12

A' 2

Ed g
0 'I-I

0

4_,5 0
'V

00-
6' 2

4
td 0

41 20

g g
r'g ,,, .4. E

.. u ..,
2 R.

unit ins ms ms ms ms ms ms ms ms ms

128 0.3218 8.395 .071 .008 132.180 .008 36 36.267 44.662 177.484

512 0.3128 8.475 .071 .008 132.681 .008 36 36.268 44.743 177.515

1024 0.3218 8.515 .071 .008 132.681 .008 36 36.268 44.783 177.605

4096 0.3218 8.595 .071 .008 133.925 .008 36 36.272 44.267 178.929

8192 0.3218 8.601 .071 .008 135.238 .008 36 36.280 44.881 180.248

12288 0.3218 8.626 .071 .008 138.571 .008 36 36.296 44.922 183.606

16384 0.3238 8.641 .071 .008 146.696 .008 36 36.464 45.105 191.746

Table B.34. Data results of computation of storage space required as the function of file size of direct file organization with random
probing using both record's full name and fixed-length numerical code in accessing.

4)
N.v.
a)

L..

CU

X
2 -0,..,
a) ow

E o)
to .-

Tit

.74
0

f.x. .-.

cl)
ui nz,

.-1 (L)

.

z0 CX 2

1 5b°
cd
4, -0

a) in..
. -8
c0 0

V.

"0

A 4'
.-0

Cr cl
4.
(1) .4u -ci
co -xFt Clla. 0 cdv) 4-

10
{-1 rg
0 (t)... ,..,
G, i

e. ;Li
co b0t -1 '

I-. R

CU

cd ..
F., 8

0 b0 s-0 0 0
.,_.

7e '' `9
4-,0 r. co
F.F. .2 Pi

unit words (a) words (b) words (a) words (b) words (a) words (b) words words words

128 200 1088 24 2 80 1024 20 1148 2438

512 200 4352 24 2 80 1024 20 1148 5702

1024 200 8704 24 2 80 1024 20 1148 10054

4096 200 34816 24 2 80 1024 20 1148 36166

8196 200 69632 24 2 80 1024 20 1148 70982

12288 200 104448 24 2 80 1024 20 1148 105798

16384 200 139264 24 2 80 1024 20 1148 140614

Table B.35. Result of computation of customer operating cost (unit cost) as the function of file loading factor of direct disk file
with random probing using full name of record in accessing.

File loading
factor

Disk space
for data file

Disk space
for accessing

program

Disk space
charge per
month

i

Terminal devices
cost per
month

Rule of use
data file

CPU-time
charge per
month '

CPU-time and
disk charge
per month

CPU-time and disk
charge per month

per call

unit tracks tracks tracks $ calls per month

.0078
(128 records) 261 1.381 78. 71

760 52500 195.39 1034.10 1.96970
2675 210000 781.59 3535.30 1, 68347

4075 420000 1563.18 5716.89 1.36116

. 0312
(512 records) 261 4.568 79.67

760 52500 195. 75 1035.42 1.97222
2675 210000 783.00 3537.67 1.68560
4075 420000 1566.00 5720.67 1. 36206

.625
(1024 records) 261 8.818 80.96

760 52500 195.93 1036.87 1.97499
2675 210000 783.69 3539.63 1.68553
4075 420000 1567.41 5723.35 1. 36270

.2500
(4096 records) 261 34.318 88.60

760 52500 196.29 1044. 89 1.99026

2675 210000 785. 16 3548.76 1.68988
4075 420000 1570.35 5733.95 1.36522

.5000
(8192 records) 261 68.318 98.80

760 52500 196.35 1055.15 2.00098
2675 210000 785.43 3559.23 1. 69487

4075 420000 1570. 83 5744.63 1. 36776

.7500
(12288 records) 261 102.318 109.000

760 52500 196.53 1065.53 2.02958
2675 210000 786. 15 3570. 15 1. 70070
4075 420000 1512.27 5756.27 1. 37054

1.0000
(16384 records) 261 136.318 119.20

760 52500 197.34 1076.54 2. 05055
2675 210000 789.33 3583.53 1.70644
4075 420000 1578.69 5772.89 1. 37449

Table B. 36. Results of computation disk average access time per record retrieval as a function of loading factor of direct disk file
using Hash 1 with direct chain probing.

.1 ''i

i;., 5,

0Pi0
CO

? '
c$

CO

a) 0
4:: k

A g ii.'

[4
.-46'V

8
.0 0
4 ,?, x
2
''' 0 --
cu -0b0 g ,
Ls Wc. 'a1

<4 ri. ct

b0
g..
g

.44

a
t

pc:c

.5 a)

(..) -4,

.P.o,
,

g
..x ,,,,

u a)

E.-. ..,

I. ..o g
.., '14
i 4"

.tri -X

r4 -b

06 c.

E a,.
14 (1)A
4) 1'
,b43 X '0
r. ° k
< :1.' iz

I

E
8 <k)

as g
,4
c.) ,x
,..,,.

k
Q.) 4..,

I

g...
2 0
a)0 ...
U 4-'
CO 0.,

,:u
..s9

TS) 5.,
c/3 c..)

a)

E...

.4
Uk
ca 'V
a) kc. 0
a) 0k ac

..X
Pi

CA Pr,-, cu

A Cc.

unit cylinders tracks records ms ms ms ms % ms %ms ms

128 0.078 28 274 1.01 95 12.5 25 0.164 - - - - 132.664

512 0.0312 28 274 1.02 95 12.5 25 0.165 - - - 132.665

1024 0.0625 28 274 1.03 95 1.25 25 0.165 - - - - 132.665

4096 0.2500 28 274 1.13 95 12.5 25 0.167 0.390 0.09 - - 132.765

8192 0.5000 28 274 1.25 95 12.5 25 0.169 1.758 0.893 - - 133.562

12288 0.7500 28 274 1.38 95 12.5 25 0.172 3.215 1.563 0.657 0.439 134.673

16384 1.0000 28 274 1.50 95 12.5 25 0.174 8.887 4.444 1.855 1.252 138.370

Note: E = 1 + a /2 for direct chain probing.

Direct file with direct chain probing use 17 words per record; 60 records per track.

Table B. 3 7 . Data results of computation of CPU busy time and average throughput time per record retrieval of direct disk file organization with
direct chain probing using full name of a record in accessing a random record from disk file.

a) rcq

.V,
0

{1) ;-..--
, - 1 g

Ix. ..

rZt04.
.,9 v
4.., 50 CO0
o uz ed

-°

§ ;)
U .4.,

13

0g
0)

co co

1/ p.,

`g to
of ..g -0

8
"5
Sz. "Ci

10
c.)
a)

Cd P.,

X -4.

I
Ccii

....
bo

.2, eu
Eb0 ...

. 'I'
1 61g :8
0 . 4 --,-0 0

VI 4)

la O.0 *,gos 4
U

1 1 4..4
'10 °I roca ,.,

b0 ed U0 po a)
' 6 cri i

> 'L. t
44 a.

0

r cug
"-. 41 '-.4U 0

4'0
a)

3

8
0

(1)Ft E
<4 7-1

4 4)
VO

*1
a)

,..I ,
1

c, 4;

z:-.1

bo U
0.. >..

3 A

, 0
a)

Psa

.:-.4

.1:7b0 I.4
si 0 0- o E
5 i'.). 7.1

4- 440 E
a) .5_

sg a)- A
2 w 'b0 .0
b0 el r.
5i L. 0.. 0 u
5 g 2

unit ms ms ms ms ms ms ms ms ms ms

128 0.3218 8.395 .071 .008 132.664 .008 36 36.261 44.646 177.468

512 0.3218 8.475 .071 .008 132.665 .008 36 36.252 44.727 177.543

1024 0.3218 8.515 .071 .008 132.665 .008 36 36.252 44.767 177.589

4096 0.3218 8.595 .071 .008 132.765 .008 36 36.254 44.849 177.769

8192 0.3218 8.601 .071 .008 133.562 .008 36 36.256 44.857 178.572

12288 0.3218 8.626 .071 .008 134.673 .008 36 36.259 44.885 179.708

16384 0.3218 8.641 .071 .008 138.370 .008 36 36.261 44.902 183.420

Table B.38. Data results of computation of storage space required as the function of file size of direct file organization
with direct chaining using both record's full name and fixed-length numerical code for accessing a record
from the file.

1
a)

4..-.
..-1W

..-X

0

tc9: X
0

'5 0
41.4 t.),

-o
C0 43

00 4..40 0
,-. ,-.

4.)

tO "
X ti

C) 00Flt ..
0 N14 ml

CO-
4,4 C.)
Lo4

9 c..)

CO i

2
0 to

"Ci r, r4

8 , .2
,...1 r0 i-1

al 4)

-x
ci :11

t

'5
4)

41) o
o 0. >-.. . 4.)

la, S' --

ca ,b0

0 *4
H .-,

4, 0)

.5
41) 0
o
a ---5'ca ,
, bo 4
44
44 g0 .. U
E- 22

unit words (a) words (b) words (a) words (b) word (a) word (b) words words words

128 200 1088 24 2 69 1024 20 1139 2427

512 200 4352 24 2 69 1024 20 1139 5691

1024 200 8704 24 2 69 1024 20 1139 10043

4096 200 34816 24 2 69 1024 20 1139 36155

8192 200 69632 24 2 69 1024 20 1139 70971

12299 200 104448 24 2 69 1024 20 1139 105787

16384 200 139264 24 2 69 1024 20 1139 140603

Table B. 39. Result of computation of customer operating cost (unit cost) as the function of file loading factor of direct disk file
with direct chain probing using full name of record in accessing.

File loading

factor
Disk space

for data file

Disk space

for accessing

program

Disk space

charge per

month

Terminal devices

cost per
month

Rule of use
data file

CPU-time

charge per
month

CPU-time and

disk charge
per month

CPU-time and disk

charge per month
per call

unit tracks tracks tracks $ calls per month $ $ $

.0078
(128 records) 261 1. 370 78. 71

760 52500 195.33 1034.04 1.96960
2675 210000 781.31 3535.02 1.68334
4075 420000 1562.61 5716.32 1. 36102

O. 0312
(512 records) 261 4.558 79.68

760 52500 195.68 1035. 36 1.97211
2675 210000 782.73 3537.41 1.68448
4075 420000 1565.46 5720. 14 1.36193

.625
(1024 records) 261 8.808 80.94

760 52500 195.87 1036.81 1.97487
2675 210000 783.42 3539.36 1.68540

4075 420000 1566.84 5722.78 1.36256

.2500

(4096 records) 261 34.308 88.59

760 , 52500 196.20 1044.79 1.99007

2675 210000 784.86 3548.45 1.68973

4075 420000 1569.72 5733.31 1.36507

.5000

(8192 records) 261 68.308 98.79

760 52500 196.26 1055.05 2.00961

2675 210000 785.00 3558.79 1.69466

4075 420000 1569.99 5743.78 1.36756

.7500

(12288 records) 261 102.308 108.99

760 52500 196.38 1065.37 2.02927

2675 210000 785.49 3569.48 1.69975

4075 420000 1570.98 5754.97 1.37023

1.0000

(16384 records) 261 136.308 119.20

760 52500 196.44 1075.64 2.04883

2675 210000 785.79 3579.99 1.70475

4075 420000 1571.58 5765.78 1.37280

341

APPENDIX C

Flow Charts, Tested Programs and Time Analysis

Symbolic Program for Search in Sequential Cylinder Index Track

LOCATION OPERATION CODE ADDRESS COMMENT

IDENT TEST 1C
ENTRY START
START ENI 0, 1

ENI 11, 3

LOOP ENQ 1 (read in data, one word at a time)
ENA A

AIA 1

INI 1, 1

IJD LOOP, 3
ENQ 1

ENA KEY

READ 60
ENI 0, 1

ENI 5, 2

LDQ KEY

LOOP 1 LDA A, 1
AQJ, LT NEXT

INI 1, 1

LDA A, 1
STA KEY1

ENQ 11

ENA BLANKS

WRITE 61

UJP END

NEXT INI 2, 1

IJD LOOP 1, 2
STQ LOSS

ENQ 9

ENA BLANK 2 ((In case search is lost)
WRITE 61

END SBJP

BLANKS BCD 1,

KEY BSS 1

MESSAGE 1 BCD 8, HASH ADDRESS IN THE FILE IS

KEY 1 BSS 1

BLANK 2 BCD 1,

LOSS BSS 1

MESSAGE BCD 7, NO SUCH KEY IN DIRECTORY

A BSS 12

END

342

Average linear search time for cylinder index search = TALSCYL
NCI +1

TALSCYL = Fault loop search time (
2

-1) +

(1) corect loop search time

7..875 (NC1
2

-1
) + 18.25

TALSCYL = 3.9375 N Cl + 14.3125 p.sec.

where N CI
= number of entries in cylinder index.

Flow Chart of Sequential Cylinder Index Search

Start

Initialize
B1, B2

Key >

Inerement
Index B

1
+ 2B1

Read item table

A, 1
CC

B
1

+ 1-->B1

Store A, 1
at Key

write out
KEY and
MESSAGE

(Stop

343

Key

Data

Key

Data

Key

Data

Cylinder table
mapping in core

Note: Flow chart of search for a desired record in the main file is the same as above.

344

Symbolic Program for Search in Track Index of Indexed Sequential File

LOCATION OPERATION CODE ADDRESS COMMENT

IDENT TEST 1 D
ENTRY START
START ENI 0, 1

ENI 23, 3 (initializes read-in operation)
LOOP ENQ 1

ENA

AIA

READ 60

A

1

(read-in data one word at a time,
and stores at location A, A+1, A+2,

, A+23)
INI 1, 1

UD LOOP, 3 (read-in "key" and stores at KEY)
ENQ 1

ENA KEY

READ 60
ENI 0, 1

ENI 5, 2

LDQ KEY

LOOP 1 LDA A, 1
AQJ, LT OVERFLOW

INI 1, 1 (if key is in prime track, stores
LDA

STA

A, 1
DATANOR

data of normal entry at DATANOR,
and notify the user)

ENQ 9

ENA BLANKS

WRITE 61

UJP END

OVERFLOW INI 2, 1
LDA A, 1 (if key is in overflow track, stores
AQJLT
INI

NEXTPA IR
1, 1

data of overflow entry at DATAOFLO,
and notify the user)

LDA A, 1
STA DATAOFLO
ENQ 9

ENA BLANK 1
WRITE 61

NEXT PAIR
UJP

INI

END

1, 1

(if the current pair is not satisfied,
goes to next pair, performs loop -

IJD LOOP 1, 2 operation)
END SBJP

BLANKS

DATANOR
BCD

BSS

1,

1

MESSAGE 1
BLANK 1

BCD

BCD

7, ADDRESS OF DESIRED TRACK

1

DATA 0 ROW BSS 1

MESSAGE 2 BCD 7 ADDRESS OF OVERFLOW TRACK

KEY BSS 1

345

LOCATION OPERATION CODE ADDRESS COMMENT

A BSS 24

END START
FINIS

LOGOFF

Flow Chart of Search for Desired Track Address in Track Index

Yes

C Start

V

Set index registe,
ead in

4
Key Arg

Pick up
Key 1- -A

ey 1> Key
argu.

No

B2 = B2 + 1
B1 = B + 1

go to the next pair

B1 = 81 + 2
Pick up Key 2
Keya- A

Cr

ey 2). Key Arg.

Yes

Bi = Bi + 1
Pick up DATA 2
& store at DATA
ow

Print out DATA 2
with

MESSAGE 2

Print out
DATA 1 with
MESSAGE 1

Stop

Note(1): Key Argu = Key argument
Key 1
Key 2
Data 1
Data 2

= Key of normal record
= Key of overflow record
= Data of normal record
= Date of overflow record

(2) Program time analysis has been
shown on pages 252.

346

347

Symbolic Program for Sequential Search for a Record in Main File

LOCATION OPERATION CODE ADDRESS COMMENT

IDENT TEST 1A (Test lA is the name of the program)
ENTRY START (Initial statement to start program)
START ENI 0, 1

47, 3 1
read-in operation)

ENI

LOOP ENQ, S
1ENA A 1 (read-in data one word at a time,

AIA 1 and stores at locations:
READ 0 A, A+1, A+2, ..., A+1007)
INI 1, 1

IJD LOOP, 3

ENQ, S 1 (read-in argument key and
ENA KEY

I
stores at KEY)

READ 60

ENI 0, 1
Use x2 as counter set x = 1 = 62

ENI 62, 3 (search the table, the desired
LDQ KEY track, if the desired record is found,

LOOP 1 LDA A, 1 moves the desired record and stores
LDA A, 1 at OUTPUT, OUTPUT+1, ...,
AQJ, LT NEXT OUTPUT+15; present it to the user)
STA OUTPUT
ENI -14, 2

LOOP 2 INI 1, 1

LDA A, 1

STA OUTPUT + 15,2
IJI LOOP 2, 2

ENQ 17,

ENA BLANKS

WRITE 61

UJP END

NEXT INI 16, 1 1 (if the current record is not satisfied,
IJD LOOP 1, 3 goes to the next record)
ENQ 8

ENA BLANK 2

I
(in case search is lost, it will notify

WRITE 61 the user)
END SBJP

BLANKS BCD 1,

OUTPUT BSS 16

BLANK 2 BCD 1,

KEY BSS 1

MESSAGE BCD 6, NO SUCH KEY IN FILE

A BSS 48

END

FINIS
Note: 1) The search flow chart is almost the same as in sequential cylinder index search, page

2) There are 63 logical record per one prime track.

348

TALS
= Average search time per random record retrieval

in the main file

TLSCL = Linear search for correct loop time

= 18.75 + 2.75 + 1.375 + 1649

= 167.00 p.sec.

= Linear search for fault loop timeTLSFL

N
= 7.875 (

APT +1

2

T
ALS

TLSCL + TLSFL=

= 3.937 5NAP1. + 163.0625 ilsec.

Where NAPT = Average number of record per track.

3 49

Symbolic Program Sequential Search for a Record in Overflow Area

LOCATION OPERATION CODE ADDRESS COMMENT

IDENT TEST 1B
ENTRY START
START ENI 0, 1

ENI 53, 3

LOOP ENQ 1

ENA A

AIA 1

READ 60
INI 1, 1

IJD LOOP, 3
ENQ 1

ENA KEY

READ 60
ENQ 1

ENA DATAOFLO

READ 60
ENI 0, 1

ENI 3, 2
LDQ DATAOFLO

BEGIN LDA A, 1
AQJ, NE NEXT

LDA A+2, 1

LDQ KEY

AQJ, LT CHEK LINK

INI 2, 1
ENI -15, 3

LOOP 1 LDA A, 1
STA OUTPUT+ 15,

INI 1, 1

IJI LOOP 1, 3

ENQ 17

ENA BLANKS

WRITE 61
UJP END

CHEK LINK INI 1, 2

LDA A, 1
STA LINK

UJP NEX RECOD
NEXT ENI 18, 1

IJD BEGIN, 2

NEXRECOD INI 17, 1

IJD NEW REC, 2

ENQ 11

ENA BLANK 2

WRITE 61

3

} (Initializes read-in operation)

1

(read-in data one word at a time,
and stores at locations: A, A+1,
A+2, . . . , A+ 1007)

(read-in argument key and stores
at KEY)

(read-in overflow pointer and stores
at DATAOFLO)
(initializes for searching in
overflow track)

(search the current oveaflow record
by checking the pointer first, and
checking the key, secondly. If the
search is satisfied, move the desired
record and store at OUTPUT, ...,
OUTPUT + 16, present it to the
user)

1

(if the current record is not the
desired record, picks up the link-
pointer and goes to the next record
in the chain)

(notify the user in case the search
1 needs to be performed in the next

record in the same chain)

350

LOCATION OPERATION CODE ADDRESS COMMENT

END SBJP

BLANKS BC .D 1,

OUTPUT BSS 16

BLANK 2 BCD 1

LINK BSS 1

MESSAGE BCD 7, GO TO NEXT RECORD ROUTINE

KEY BSS 1

A BSS 54

DATAOFLO BSS 1

END START

FINIS

LOGOFF

Note: There are 56 logical records in overflow track. See time analysis on page 236.

Flow Chart of Search in Overflow Track

Start

Initialize
B 0
B2s. 56

Pick up
(DA TAOVF L)

Pick up
A, eount -b.Acc

ATAOVF L
Count

to to next record
Yes

Pick up
(Key) --0Q

B + 2 * B
1 1

(A, 1) --ias A
Pick Key in regrd

Pick up

new pointer

A

A + 1

A + 2

Count
Pointer

Key

Data

Count

Pointer

Key

Data

Mapping in
core

Store
pointer at

L INK

Yes

Write out
16 words,

desired record

write out
LINK with
message

351

Symbolic Program of Hash 1 to Perform Hash Address

LOCATION OPERATION CODE ADDRESS COMMENT

IDENT TEST 9A

ENTRY START
START ENA

ENQ

WRITE
ENA

ENQ

READ

QSG, S
ENQ

XOQ, S
lon?
SHAQ

TAI
LAD

UJP

STA

ISI
UJP

LDA

LDQ

AQJ, EQ
LDA

SCA

SCA

SCA

STA

MUA
SHA

ANA, S
TAI
STA

DUMP ENQ

ENA

WRITE
END SBJP

BLANK 2 BC D

NAME BSS

MESSAGE BCD

LOC BSS

DONE BC D

BLANK 1 BC D

MESSAGE 1 BCD

END

FINIS

MESS 1

2

21

NAME
4
20
0
0
-0
3

24

1

BLANK 1

* +2
NAME, 1
3, 1
* -2
NAME

DONE

DUMP

NAME

NAME+1

NAME+2

NAME+3

MULT
MULT
-12
1777B

1

LOC

10

BLANKS 2

21

}

}

I

1

(prints "NAME =")

(reads in the NAME up to
16 characters)

(compute number of words input)

(stores blank, spaces which is not
used)

(checks to see if KEY = $ END)

(perform Hash 1 by "exclusive or"
all 4 words together; square the
result; take 24 middle bits quid
consider only 10 lower bits as hash
address)

(stores hash address at LOC)

(presents hash address to the user)

1

4
4, HASH ADDRESS=
1

$ END
1,

2, NAME =

352

Flow Chart of Hash 1 to Perform Hash Address

Start

Initialize
and print out
"NAME = "

Compute No.
word the user
input (0-0.3)

Put blanks (spaces
in any of a input
word not used

t
Compute address
of the record

by use HASH 1

Store Hash
address at
LOC

Write out
Hash address

with message

Stop

Note: See time analysis on page 316.

User supplies
full name of a
record < 4 words

by TTY

353

354

Symbolic Program of Random Search in the Main File

LOCATION OPERATION CODE ADDRESS COMMENT

IDENT TEST 9C
ENTRY START
START ENI 0, 1

ENI 24, 3 (Initial setting)
REDO ENQ, S 1

ENA A

(Read in data)AIA 1

READ 60
INI 20, 1

IJD REDO, 3

ENQ, S 1

ENA KEY (Read in key)
READ 60

ENA 499 (max. beginning address of record
STA FULL in track)
ENI 0, 2

ENA 1 ,i. (initializes R = 1 every time
STA RAND random generator is called)

SEARCH LDA RAND

SHA -2). divide (A
cc

) by 4

ADA LOC

ANA, S 1777B (keeps 10 lower bit of A the less
cc

SHA 4 of them set = zeros)
TAI 1

LDA A, 1

LDQ KEY

AO) EQ FOUND
check table at location (A + 1 p) its

>
INI 1, 2

content is = KEY or not

LDA RAND

1
SHA 2 R * 5 ---6, Acc
ADA RAND
ANA, S 7777B

i
keep 12 lower bit of A

STA RAND the less of them set = zero
LDQ FULL

AQJ, LT SEARCH jump to SEARCH if (A)< Q
ENQ 10

ENA BLANKS

WRITE 61

UJP END

FOUND STA OUTPUT

ENI -14, 2
LOOP 1 INI 1, 1

LDA A, 1

STA OUTPUT +15
IJI LOOP 1, 2

ENQ 17

ENA BLANKS

WRITE 61

355

LOCATION OPERATION CODE ADDRESS COMMENT

END SBJP

BLANKS BCD 1,

OUTPUT BSS 16

BLANK BCD 1,

KEY BSS 1

MESSAGE BCD 8, NO SUCH KEY IN THIS FILE

FULL BSS 1

RAND BSS 1

A BSS 500

LOC BCD 1, 000

END START
FINIS

Note: See time analysis on pages 319 - 320.

356

If TRSDF = Average random search time per record

retrieval of direct disk file, for internal

search.

TCLRSDF= Average correct loop random search time/record

retrieval

= 35.375 + 9x (16) = 179.375 p.sec.

TFLRSDF= Average fault loop random search time/record

retrieval

= 34.625 p,sec.

Then TRSDF = TCLRSDF + TFLRSDF x (E -1)

= 179.375 + 34.625 (E- 1) p,sec.

Where E = Average search length of random probing

= -(1/a) log (1-, a)

Where a = Loading factor of table.

Flow Chart of Random Search in the Direct Disk File

Start

v
Initialize and build
up table
Read in the Key
Store max. Key
at FULL

Set
= 10 lower

its of R/4

Write out
the desired

record

Note: In this experiment when p = 169 random search is satisfied.

A + 0
A + 1

A+ 15

A+ 16

A + 991

A + 1007

Key

Data

Key

Data

\,,../'..........,....,
"...'..-....--.................+......,,,

Key

Data

Mapping in
core

357

Symbolic Program for Search with Chain in Direct Disk File

LOCATION OPERATION CODE ADDRESS COMMENT

IDENT TEST 9 B

ENTRY START
START ENI

ENI

REDO ENQ, S

ENA

AIA
READ

INI
IJ D

ENQ, S
ENA

READ

ENI

LOOP 1 LDQ

LDA

AQJ, EQ
INI
LDA

LDQ

AQJ, EQ
TAI

UJP

FOUND STA
ENI

LOOP 2 INI
LDA

STA
IJ I

ENQ
ENA

WRITE
UJP

NONE ENQ

END

W RITE

END SBJP

BLANKS BCD

OUTPUT BSS

BLANK 1 BCD

KEY BSS

MESSAGE 1 BCD

A BSS

END CHAIN BCD,

LOC BSS

END

FINIS

0, 1
67, 3
1

A

1

60
1, 1

REDO, 3
1

KEY

60
0, 1

KEY

A, 1
FOUND
-1, 1
A, 1

ENDCHAIN
NONE
1

LOOP 1

OUTPUT
-41, 2
1, 1

A, 1
OUTPUT +16, 2
LOOP 2, 2

18

BLANKS

61
END
10

BLANK 1
61

(1020 word track)

(reads in data)

(read in KeyI.-KEY)

I(set B1=0, KEY--..Q)

1, (Current record = desired record
of not)

(pointer of current record = ***
or not)

(LOC)--A.B1,
B

1
point to next record in chain

(If the current record is desired
record print out the data)

I(If the current record is not the
desired record notify the user)

1

16

1,

1

8, NO SUCH KEY IN DESIRED TRACK

68
1, *14

1

358

359

= Correct loop search time for chainT CLSCH

18. 875 + 9* (17, no. words per record) +1. 375

= 164. 250 p, sec. (based on test program

TFLSCH = Fault loop search time for chain.

= 19. 875 p.sec. (based on test program)

The value of expected search per record retrieval, E, is

obtained by simulation, as shown in Figures B. 20 and Table B. 23,

page 303. The statistical value of e can be computed directly from

the equation.

Then TASCH

a
E = 1 + 2

= Average chain search

a= TCLSCH
(1) + TFLSCH (1 +

2
1)

= 164. 250 + 19. 875 (a/2)

Where a = File loading factor.

how Chart of Chain Search in Direct Disk File

Start

V

Initialize B1 = 0
(Key) 0 Q

(A; 1 A. B
i. e. Act --> B1

1

(A) --A.A
CC

No

+ 1 --PB
1 1

(A+ 1) ---,..Acc

End of Chain
routine - write
out message

Write out
desired record

(17 words)

Key = Argument key in searching
Arg

Stop

A

A + 1

A + 2

360

Key 1

Pointer

Data 1

Key 2

Pointer

Data 2

-"--".......-.

Key i

Data i
(end of
chain)

Mapping in

core

361

Symbolic Program of Variable Tree Decoding of Full Name of Record to Fixed-Length Key Name

LOCATION OPERATION CODE ADDRESS COMMENT

START IDENT TEST 8
ENTRY START

START LDAQ DNAME

ENI 2, 1

X REQ 40

ENI 3, 1

X REQ 40

ENQ 4

CNTL 40
ENI 0, 1

ENQ 1

ENA A

AIA 1

READ 40

SHA 3

AZJ, LT * + 23
LDA A, 1

SCA MASK

STA A, 1

ENQ 1 (Read-in the random names which
ENA A+1 have been stored in file "DATA 8")
AIA 1

READ 40

ENQ 1

ENA A+2

ALA 1

READ 40

ENQ 1

ENA A+3

ALA 1

READ 40
ENQ 1

ENA A+4

AIA 1

READ 40
INI 5, 1

ISE 400, 1

UJP * -27
REDO ENQ 2

ENA MESS I
WRITE 61 (Prints "NAME=")

ENQ 20

ENA NAME

READ 60 (Reads in the NAME (up to 80
XOQ, S -0 characters))
INQ 19 (Computes # of words input)
SHAQ 24

LOCATION OPERATION CODE ADDRESS COMMENT

LESS

F REE

SWA FOUND

SWA LOOP

SWA FOUNDS
SWA *+10

INA 2

SWA FOUND+11

ENI 0, 2

LDA NAME

LDQ DONE

AQJ, EQ DUMP

IDA NAME, 2
SCA MASK

STA NAME, 2

ISI **, 2
UJP *-4
ENI 0, 1

ENI 0, 2

LDA A, 1
AZJ, EQ EMPTY
LDQ NAME, 2

AQJ, EQ FOUND

AQJ, LT LESS

LDA A+3, 1
AZJ, LT *+3

TAI 1

UJP OVER

RTJ FREE

LDA LAS

STA A+3, 1

UJP ADDITEM
IDA A+4, 1

AZJ, LT *+3

TAI
UJP OVER

RTJ FREE

LDA LAS

STA A+4, 1
UJP ADDITEM
UJP **

STI SAVE 1, 1

ENI 0, 1

LDA A, 1

}
(Use that # of words to control

(Check to see if NAME = $ END)

(Compliment first bit of each

only if the tree is empty)

Test for right, left or successor)

Move left

(No left pointer, add new node)

Move right

(No right pointer, add new node)

362

363

LOCATION OPERATION CODE ADDRESS COMMENT

AZJ, EQ *+8

INI 5, 1

ISE 400, 1
UJP *-4
ENQ 7

ENA MESS 3

WRITE 61

UJP DUMP

TIA 1

STA LAS

LDI SAVE 1, 1

UJP FREE

INDATA UJP **

ENQ 2

ENA MESS 2

WRITE 61

ENQ 1

ENA A+1

AIA 1

READ 60

UJP INDATA

EMPTY ENA 0

UJP ADDITEM

FOUND ISE **, 2

UJP MORE
LDA A+1, 1
AZJ, LT NEW

STA DATA

ENI **, 2

LDA NAME, 2

SCA MASK

STA NAME, 2
IJD *-3, 2
ENA B1

ENQ **

WRITE 61

ENA B2

ENQ 2

WRITE 61

UJP REDO

RTJ INDATA

UJP REDO

LDA A+2, 1

AZJ, LT LOOP

TAI 1

INI 1, 2

UJP OVER

(Subroutine to find next 5 words
of available space)

(Subroutine to pick up data for name)

(only for completely empty)

(See if data is there go to new
if no data)

(If the looking variable length key
name produces matching and also
has data i. e. , complete matching;
so print out the information)

(Incompletes matching and no data)

Matching not yet complete, try
next word from

364

LOCATION OPERATION CODE ADDRESS COMMENT

ADDITEM TAI
LDA

STA

1

NAME, 2
A, 1

ENA, S -1
ENQ, S -1
STAQ A+1, 1

STAQ A+3, 1

LOOP ISI **, 2 (Add the rest of the words in
UJP *-F2 name to the tree structure)
UJP *+5

RTJ FREE

LDA LAS

STA A+2, 1
UJP ADDITEM

RTJ INDATA

UJP REDO

DUMP ENQ 4

CNTL 40
ENI 0, 1

LDA A, I
SCA MASK

STA A, 1

ENQ 1

ENA A

AIA 1

WRITE 40
ENQ 1

ENA A+1

AIA 1

WRITE 40 (Returns the variable length
ENQ 1 tree structure in to DATA 8)
ENA A+2

AIA 1

WRITE 40
ENQ 1

ENA A+3

AIA 1

WRITE 40
ENQ 1

ENA A+4

AIA 1

WRITE 40

INI 5, 1

ISE 400, 1

UJP +-25
ENQ 2

CNTL 40
ENI 2, 1

XREQ 40 I

365

LOCATION OPERATION CODE ADDRESS COMMENT

END SBJP

DNAME BCD 2, DATA 8

MESS 1 BCD 2, NAME =

MESS 2 BCD 2, DATA =

MESS 3 BCD 7, NO MORE SPACE AVAILABLE

MASK OCT 40000000

LAS BSS 1

SAVE 1 BSS 1

B1 BCD 1,

NAME BSS 20

B2 BCD 1,

DATA BSS 1

DONE BCD 1, $ END

A BSS 400

END START
FINIS

Note: Time analysis for search path is shown on page 200.

FLOW CHART OF THE SIMULATION OF ADDING AND DELETING KEY NAME WITH VARIABLE
366

LENGTH USING TREE

Yes

START

Initialize
tree

structure

\TTY print
"NAME = "

USER supply
KEY name
max 80
characters

T

Read in
KEY

name

DUMP
TREE INTO

DISC

Yes

resent
EY, Partial

of the name
matches toto g name

in tre
Compare

EY NAME
Name in

tree
KEY <
Tree

eck
Left pointer
is empty or

not

Pick up Left
pointer

KEY >
Tree

heck
Right pointer

is empty or
not

No

Pick up Right
pointer

Check
DATA is

empty or not
(-1)

No

Check
the name in

tree has successo
or not

Pick up the
successor

Form the string of
KEY name
Example

Tech Technical

Load pointer into
index register, XI

Print out
"DATA = "

USER supplies
DATA Print out NAM

and
DATA

Remove the DATA
from tree

Print out NAME
and DATA is

deleted

The program

add DATA in
TREE

+.4
START

New cycle

J

367

FLOW CHART OF THE SIMULATION OF BINARY SEARCH USE ADDING AND RETRIEVAL
ITEMS FROM FILE

START

Initialize Binary
search. Set

= 0
Q = KEY name

I NC A

BOT = Xl
Yes

X1 = X1 + A

Pick up the word
which Xl points to

in A

Subroutine

recompute
INC

1

INC -*A

B1 TOP = X1

Subroutine
recompute

INC

Complement of
INC -'A

Yes

B1

Print out
the search
is complete

STOP

368

Symbol

a

b

CR

COCR

C /Mcpu

DASD

Ds

E

El' E2, E3, E4,
E

5'
E

6

E LP

ERP

EDCH

F/hr

369

APPENDIX D

List of Symbols

Cost/bit of core memory, in this case a = $0. 12

Cost/bit of disk memory, in this case b =
$0. 00025

Achievable throughput-rate capability of a
specific file i

Cathad Ray display

Cylinder overflow control record

Amount of charge per month for CPU busy time

Direct access storage devices

Disk storage space required in bits

Expectation or average number of search per
record retrieval from a type of file

See detail on page 161

Expected
retrieval

Expected
retrieval

Expected
retrieval

number of searches per record
with linear probing of direct file

number of searches per record
with random probing of direct file

number of searches per record
with direct chain of direct file

Number of calls/hour

370

Symbol

F/M Number of calls/month

HI Hash 1

H2 Hash 2

H3 Hash 3

H4 Hash 4

H5 Hash 5

IREDP
Number of record entries in directory

IT Number of required track index

1 Random address location in Hash Table

M File project active life in terms of months

N,n Number of logical records in the file, file size

NALS
Average number of searches per track

NAPT
Average number of records per track

NAT BS
Average number of looking up item with
binary search

NCI Number of cylinder index entries

NFLDPF Number of entries in first level directory of
partitioned file

NOT

NT

NT(i)

NTLC

Number of records in overflow track

Number of tracks on disk required to support
the file

Number of tracks on disk required for specific
file i

Number of tracks used in the last cylinder

Symbol

NUT

PT

371

Number of tracks used

Number of pairs, normal entry, overflow entry
in track index

PAT Average number of pairs in each track index

R Random number

RCM Rate of use, calls per month

RD /M Amount of charge per month for disk file

Average core storage space required for
SAVLTR

SP

SSD Core storage space used for supporting the
data file which is transfered from disk into
core

variable length tree

Core storage space used for supporting com-
puter program in bits

ST

ScT

TALSM

TALSOFT

TALT

Number of search length for each file size

Expectation of searches per record retrieval
when direct file uses direct chain probing

Average linear search a random record from
the main file

Average time to search a record in clyinder
overflow track

Transfer and average search time in the last
track

Average read/write head positioning timeTAR /WHP

TASDFDCH Average access time per record retrieval
including internal search with direct chain
probing and search across track and cylinder

Symbol

TASDLDPF

TASFSQF

372

Average search time for first level of directory
of double partitioned file

Average search time per record retrieval,
in the main file for disk sequential file

Average access time of a random record fromTASRDFOF
in the main disk file with 10% of normal track
search used in cylinder overflow track including
disk times

TASRDFCH

TASRDFLP

TARSDFRP

Average access time per record of direct file
with direct chain

Average access time per record from disk
direct file with linear probing

Average access time per record of direct file
random probing

Average time required to read in and performTASRFTIDFOF
internal search per record retrieval from disk
file, with 9% cylinder overflow search, includ-
ing track index search

TASSLDPF

TATHRPDFDCH

TATHRPDFLP

TATHR PDFR P

TATHR PISQ

TATHRPSLDPF

Average time search for directory search of
partitioned file with single level directory

Average throughput per record retrieval
direct file with direct chain

Average throughput per records retrieval of
direct file with linear probing

Average throughput per record retrieval with
direct file for random probing

Average throughput time of accessing a random
record from indexed sequential disk file

Average throughput time per record retrieval
of single level directory partitioned disk file

373

Symbol

TATW Average track-waiting time

TC
BF

Communication back and forth time

TCPU/R CPU busy time per record retrieval in seconds

Time required to convert record's full nameTCFNTFK
to fixed-length key name

TDCHS Direct chain probing in the track containing
the desired record

TDCHSACT Direct chain probing search across track

TDCHSACYL Direct chain search time across the cylinder

TDRPM
Disk revolution time

TFLSCH Fault loop search time for chain

T. Average throughput time of specific file, i

T() CPU busy time per call in hour of the specific
i file, i

THASH 1
Hash 1 decoding time per record retrieval

TCLSCH Correct loop search time for chain

tLLAC Number of looking up track in last cylinder

TLPS
Linear search in the track containing the
desired record

TLPSACT Linear probing search across track

TLPSACYL Linear probing search across the cylinder

TLS Time required for sequential search a record

TLSCYLI

in the main file

Time required for cylinder index search/
record

Symbol

TRCl/O

T
RC LU

TR

Time required to check and connect I/O
logical unit

Time required to request and connect the
logical disk unit

Random search time in the track containing
the desired record

374

TRPSACT Random probing search across track

TRPSACYL Random probing search across cylinder

TRSDFDCH Average time required for an internal random
search for a record from direct file with
direct chain probing

TRSDFRP Average time required for an internal random
search of desired record from direct file with
random probing

TRTRI Read track index time

TRWOUT Time required to write out the desired record

TSFLP Search time spent in fault loop path

TSOVFP Search time spent in overflow path

TSSFP Search time spent in satisfied path

TSTIENT Time required for search track index entries

tTCPUTDFDCHP Total CPU busy time per record accessed
using unique fixed-length key for direct file
with direct chain probing

tTCPUTDFDCHUFN Total CPU busy time per record accessed
using full name of the record for direct file
with direct chain probing

tTCPUTDFLP Total CPU busy time per record accessed
using unique fixed-length key

375

Symbol

tTCPUTDFRP Total CPU busy time per record accessed
using unique fixed-length key for direct disk
file with random probing

tTCPUTDLDPF Total CPU busy time per record accessed
using unique fixed-length key for double
directory partitioned file

tTCPUTDLDPFUFN Total CPU busy time per record accessed
using full name of the record for double
directory partitioned file

tTCPUTDRPUFN Total CPU busy time per record accessed
using full name of the record for direct disk
file with random probing

tTCPUTISQF

U (i)

Za

Total CPU time per record accessed using
unique fixed-length key

User or customer operating cost per call
(unit cost) of the specific file, i

Number of required cylinders to support the
file

Average number of required cylinders

