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Triangulateration uses geometric distance to estimate the location of user by em-

ploying techniques like received signal strength (RSS), time-of-arrival (TOA), time-

difference-of-arrival (TDOA) and image processing.

Radio frequency (RF) signal positioning using TOA or TDOA techniques gen-

erally requires timing synchronization of the anchors and/or the anchors and tar-

gets. If the desired position accuracy is high and coverage area is large, timing

synchronization will be an extremely challenging issue. The first part of this disser-

tation focuses on improving the performance or deployability of indoor localization

systems. Specifically, we propose a synchronization-free positioning network archi-

tecture that eliminates the need of timing synchronization. Another problem that

remains unsolved in RF based localization is the non-line-of-sight (NLOS) problem,

which greatly degrades the positioning performance. We propose a semidefinite

programing (SDP) with a soft-minimal method and an NLOS link identification

method with bias deduction to mitigate the NLOS error TOA systems. For TDOA

systems, NLOS mitigation is more difficult since a reference should be fixed first.

To overcome this problem, we propose a method to transform the TDOA archi-

tecture into a TOA one, and then form a SDP problem with new constraints.

To avoid the special problems and difficulties in RF signal positioning, such as

the synchronization and NLOS problems, in the second part of the dissertation, we



propose an image-tag based localization using image processing and convolutional

neural network (CNN). In the proposed method, after the segmentation of the

tag from the image, information such as the tag ID, the distance, and the angle

with reference to the camera are retrieved through CNNs. The camera position

is finally reliably and accurately estimated from such retrieved information. The

proposed method simplifies the system and provide good accuracy compare to RF

based system. In addition, the proposed method effectively resolve those issues

that exist in the traditional image-based localization, like the high cost, blind spot

problems and unreliable and not scalable for in changing environments.
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Chapter 1: Introduction

1.1 Indoor positioning

Location based services (LBSs) are a significant permissive technology that are

becoming a vital part of life. The global positioning system (GPS) [1] has been

widely used for outdoor localization and navigation and has already become an

inevitable part of life. However, the GPS generally is not suitable to establish

indoor locations, due to the signal attenuation caused by building construction

materials. Therefore, to provide a LBS that can work in both outdoor and indoor

scenarios, an indoor positioning system (IPS) should be built. IPS can be used for

many applications.

To name a few, one can consider the location detection of products stored in

a warehouse, location detection of medical personnel or equipment in a hospital,

location detection of firemen in a building on fire, detecting the location of police

dogs trained to find explosives in a building, and finding tagged maintenance tools

and equipment scattered within a factory.

The primary progress in IPS has just been made during the last ten years

or so. Therefore, both the research and commercial products in this area are

new, and many researchers in academia and industry are currently involved in the

research and development of these systems with different kinds of technologies.

Among these technologies, however, it has by now become apparent that there

is no overall solution based on a single solution, such as that provided outdoors

by satellite-based navigation. We are still far from achieving cheap, simple, and

efficient provision of global indoor positioning with an accuracy of around or less

than 1 meter. In this section, the currently available technologies are reviewed

in two dimensions: the resource/infrastructures and the technologies. The re-

sources/infrastructures refer to the physically visible or existing objects, like satel-
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lite and images. Technologies refer to the methods used to identify the location,

like timing based methods.

As shown in the list below (it’s not a complete list and it’s still growing),

many kinds of resources/infrastructures are examined and studied in the published

papers for the possible candidates of IPS.

• Satellites: Like GPS, it’s also used in the IPS but with poor accuracy.

• WiFi/Bluetooth/ZigBee/Cells infrastructures: The IPS could be achieved

through the signal strength or the timing information related to the received

signal [2, 3].

• Camera: With the images or videos from the camera, the location is esti-

mated using matching or estimation [4].

• Magnetic sensors: Using the magnetic sensor in a mobile device, the loca-

tion is estimated through the received magnetic waves from the earth, just

like a bird senses its position through an inner magnetic analysis system [5].

• Light: The location of a user can be identified by differentiating the light

source of received light strength [6].

• Inertial sensors: Motion sensors (accelerometers) and rotation sensors (gy-

roscopes) would continuously calculate via dead reckoning the position, ori-

entation, and velocity of a moving object [7].

• Ultrasonic wave: It uses the received signal strength or timing information

of the audio signal to estimate the location of a user.

• Combination of above resources: To achieve better accuracy and robust-

ness, different kinds of resources can be combined at the cost of increasing

complexity.
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From the above list, the readers can get a general idea about what different

kinds of things are used to achieve an IPS. However, there is currently no an-

swer about what resource is a better candidate for IPS, as each presents its own

advantages and disadvantages.

With the different kinds of resources, different kinds of methods and techniques

are used to estimate/identify the location of the user.

• Timing-based methods: The typical examples are time-of-arrival (TOA)

[8] and time-difference-of-arrival (TDOA) [9], as shown in Figs. 1.1 and 1.2,

respectively. Both of these exploy the time of flight of the signal from trans-

mitter to the receiver in order to calculate the distance related information

of the receiver in reference to the transmitter. This distance information can

be used to esimate the location of the user. The GPS is a typical example

using this method.

• Angle-based methods: Like angle-of-arrival (AOA), as shown in Fig. 1.3,

and angle-of-departure (DOA), angle-based methods try to determine the

relative direction of the user in reference to the fixed anchor, like a transmitter

array [10].

• Signal strength: As a signal, which includes the normal radio wave and the

lights, will degrade along the transmission line, so does the attenuation of

the received signal reflect how long it has travelled from transmitter. There-

fore, the distance between the user and the transmitter can be estimated.

With several such distances, the localization could be achieved. The typical

resources used here are WiFi/Bluetooth/ZigBee signal [11].

• Location awareness: Each wireless node, like the WiFi access point (AP)

or the Bluetooth node, has limited coverage. The mobile device can only

communicate with these nodes within their range. Therefore, the location of

the user could be known to be within the coverage range of a node when the

user is communicating with this node. Apparently, the accuracy depends on
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the coverage of the node. The typical resources used here are WiFi, Blutooth

and ZigBee nodes.

• Matching: The matching method is usually used in image or video re-

lated localization. The basic idea behind image-based localization is that

a database of structured images of the indoor environment is constructed

by using image matching and the bundle adjustment algorithm. Then each

image’s relative pose, like its position and orientation, is estimated and the

semantic locations of images are tagged. The location of the user can then

be determined by comparing a photo taken by the mobile phone to the image

in the database [12].

• Fingerprint: The system relies on the recording of the signal strength

from several transmitter nodes within range and stores this information in

a database along with the known coordinates of the client’s device in an of-

fline phase. During the online tracking phase, the current measured signal

strength from all the available transmitters is compared to those stored in the

fingerprint and the closest match is returned as the estimated user location.

Typical resource used is Wi-Fi APs [13].

• Combination of the above methods

Although there are many different kinds of possible methods to achieve IPS,

there are no methods that are dominant in IPS, as each one has advantages over

the rest. To achieve better performance, several different kinds of resources and

methods may be used, like the IPS using Wi-Fi APs and inertial sensors as the

resource and employing the received signal strength or timing-based methods to

estimate the location.

1.2 Indoor positioning with trilateration

Trilateration uses geometric distance to obtain the location of a user or target. In

radio frequency (RF) signal-related indoor localization, the distance related infor-
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Figure 1.1: TOA method.

Figure 1.2: TDOA method.
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Figure 1.3: AOA method.

mation is usually obtained through measuring the signal traveling time from the

transmitter to the receiver. Then the distance information is used to estimate the

location of the user or target through trilateration. In this case, techniques like

TOA and TDOA are usually used. Another method in RF based localization sys-

tem to estimate such distance is to measure the received signal intensity. However,

the accuracy of the obtained distance is usually low as the signal intensity can be

affected by many factors, like signal reflection and NLOS effects.

The distance could also be obtained through the image processing method.

In this section, several techniques related to trilateration that will be used in

this dissertation are discussed, like the TOA, the TDOA, and image processing.

In addition, AOA is also introduced. Although AOA is not a trilateration method,

it’s used in the final chapter.

1.2.1 Time-of-arrival (TOA)

TOA is the travel time of a radio signal from a single transmitter to a remote

single receiver. As shown in Fig. 1.1, there are three receivers (Rx1, Rx2, and

Rx3) and a transmitter, which is also the target to be localized. When the Tx

emits a signal at a known time instant, all three receivers will receive the signal at
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some time instant. Therefore, the time of flight from Tx to Rx could be estimated.

For example, the time of flight from Tx to Rx1 is t1. And the distance between

Tx and Rx1 is known through d1 = t1 ∗ c, where c is the speed of light. With

Rx1 as the center and d1 as the radium, a circle could be formed and the target

should be on the circle. With the same method, two other circles could be formed

for Rx2 and Rx3, and the common intersection of the three circles will identify the

location of the target.

In order to calculate the time of flight, like t1 for the signal travelling from Tx

to Rx1, the Tx and all Rxs should be synchronized. In in other words, the time

instant when the signal leaves the Tx should be known to all Rx.

1.2.2 Time-difference-of-arrival (TDOA)

Much like the TOA, the TDOA methods use receivers that try to record the signal

arrival time. However, in TDOA, the time instant of when the signal leaves the Tx

is unknown. In order to do localization, the arrival time instant for each receiver

is shared with all the other receivers. By setting a receiver as the reference (e.g.,

Rx1), the arrival time difference between the reference and the other receivers could

be calculated. The arrival time difference between Rx1 and Rx3 is ∆t = t3− t1, or

farther the distance difference ∆d = ∆t ∗ c, where t3 and t1 are the arrival times

for Rx1 and Rx3, respectively. With the distance difference ∆d, a parabola can

be plotted for Rx1 and Rx3, or it means the target should be on this parabola.

With the same method, another parabola could be plotted for Rx1 and Rx2, and

the intersection of the two parabolas identifies the location of the target. For

the TDOA method, all receivers should be synchronized in order to calculate the

arrival time difference.

1.2.3 Image processing

Matching is one of the main methods to localize in localization with image pro-

cessing. The distance information is not directly estimated from this method. The
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idea of matching is usually used in image or video-based localization. The basic

idea behind it is that a database of structured images of the indoor environment is

constructed by using image matching and the bundle adjustment algorithm. Then

each image’s relative pose, like its position and orientation, is estimated and the

semantic locations of images are tagged. The location of the user can then be de-

termined by comparing a photo taken by the mobile phone to the database. This is

done by combining quick image searching, matching, and the relative orientation.

1.2.4 Angle-of-arrival (AOA)

In AOA method, the receiver tries to identify the direction of the target transmit-

ter. As shown in Fig. 1.3, the two receivers (Rx1 and Rx2) measure the direction

of the Tx as θ1 and θ2 with a referenced direction. Therefore, the intersection of

the two measured directions [10] is the location of the target.

1.3 Summary of contribution

In this dissertation, we will mainly focus on the position estimation in indoor

localization with trilateration methods. Trilateration uses geometric distance to

obtain the location of user. Therefore, distance estimation is among the key tasks

in trilateration.

In RF signal-based indoor localization, as discussed earlier, TOA and TDOA

are widely used to determine the distance-related information regarding the trans-

mitter and receiver. However, several issues remain unsolved, like the synchro-

nization, and non-line-of-sight (NLOS) problem, both of which are caused by the

signal propagation nature of RF.

The first part of this dissertation focuses on resolving the issues of synchro-

nization and NLOS problems. For the synchronization problem, we propose an

algorithm to resolve the synchronization problem in the high speed multi-channel

data acquisition unit in field-programmable gate array (FPGA). Armed with this

algorithm, the sampling unit can sample four channels of its input signal at the
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speed of 3 Giga-samples per second (Gsps) while they are synchronized with each

other. Also, we propose a synchronization-free positioning network architecture

that eliminates the need for timing synchronization. For the NLOS problem, which

greatly degrades positioning performance, we propose a semidefinite programing

(SDP) process with a soft-minimal method and an NLOS link identification method

with bias reduction to mitigate the NLOS error in TOA systems. For TDOA sys-

tems, NLOS mitigation is more difficult, since a reference should be fixed first. To

overcome this problem, we propose a method to transform the TDOA architecture

into a TOA architecture, and then form an SDP problem with new constraints.

The proposed methods outperform the existing algorithms in both simulation and

experiments.

To obtain the distance information, RF based techniques like the TOA and

TDOA usually encounter several difficulties, as discussed above. We propose an

image-tag based technique to obtain the distance as well as the angle information,

which can completely avoid the most common issues in RF based localization

and can increases the positioning accuracy. In the proposed method, after the

segmentation of the tags from the image, information such as the tag ID, distance

and angle with reference to the camera are retrieved through deep neural networks.

The camera position is finally reliably and accurately estimated from such retrieved

information.

1.4 Outline of the dissertation

Chapter 2 deals with the synchronization problem. In the first part of chapter 2,

an algorithm is proposed and implemented in FPGA to achieve high speed, multi-

channel, on-board synchronization for a data acquisition unit. In the second part,

a synchronization free model is proposed. The architecture and its mathemati-

cal model are analyzed. The CRLB is derived and its performance is validated

through the simulations. Although the simulated performance of the proposed

model is little worse than the TOA and TDOA models, the synchronization free

feature eliminates the complex synchronization requirements for a high accuracy
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localization system.

Chapter 3 analyzes the NLOS problem in both TOA and TDOA systems.

As previous literature requires prior information about the NLOS to mitigate the

NLOS error, the main focus in this chapter is to use convex optimization to mitigate

the NLOS error without any prior information about NLOS. For the TOA system,

at first, a revised SDP estimator with soft-minimum method is proposed. Then

another two schemes with NLOS link identification and NLOS bias deduction are

presented. For the TDOA system, as it’s much more difficult to mitigate the NLOS

error compared to that in the TOA system, the TDOA architecture is transformed

into the TOA system and then is formed as a SDP problem with new constrains.

In RF signal-based localization with trilateration, the distance related informa-

tion is affected by synchronization, multipath, and NLOS effects, which decrease

the accuracy of localization. In chapter 4, the image-tag-based localization is pro-

posed to estimate the localization with trilateration by estimating the distance

and angle information. As the RF signal is not used, those difficulties dealing with

synchronization and NLOS issues are totally avoided. The background of image

based localization and its drawbacks are first introduced. Then a detailed flow

chart of the image tag based localization system is proposed. Each part of the

flow is analyzed in detail, with emphasis on tag segmentation, distance, and angle

information extraction with deep neural networks, like the convolutional neural

network (CNN). The performance is validated through experiments in the lab.
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Chapter 2: Synchronization problem

2.1 Introduction

RF signal positioning using TOA or TDOA techniques generally requires timing

synchronization within the anchors or between the target and anchors. If the

desired position accuracy is high and coverage area is large, timing synchronization

will be an extremely challenging issue.

For the TOA system, the transmitter and receiver pair should be synchronized.

In the TDOA system, all receivers should be synchronized with each other. For

low accuracy localization applications, synchronization is easy to achieve within

micro second lever. But high accuracy positioning applications have a strong

requirement for synchronization, and it’s difficult to achieve. For example, ultra-

wide band (UWB) signal based positioning requires nano-second level accuracy for

synchronization.

In the first part of this chapter, we are trying to solve the TDOA-based syn-

chronization problem in applications with a UWB signal. In the second part, a

synchronization free scheme is discussed, which can completely remove the synchro-

nization problem in the localization system by introducing the signal repeaters.

2.2 Synchronization in a high speed, multi-channe, data acquisition

unit

In some localization applications with a TDOA architecture, several receivers are

connected to the same data acquisition unit (DAU), which contains several analog-

to-digital converters (ADCs) and can sample the signals simultaneously. In this

case, the synchronization of TDOA is achieved through the DAU.

UWB impulse radio has been widely used in numerous indoor localization and
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navigation applications [14–16] due to its high time resolution. But UWB impulse

system typically requires an extremely high sampling rate. For example, an one

nanosecond width of pulse requires several gigahertz of capture rate. TDOA-based

UWB localization system requires multiple synchronized channels [17]. However,

due to minute differences that exist between any two oscillators, channel-to-channel

synchronization is extremely difficult to achieve, since each channel typically uses

its own oscillator [18]. Therefore, a design where all channels share the same clock

source must be utilized in order to avoid small differences in clock frequency. In de-

signing this high-speed multichannel data-acquisition unit (DAU), signal integrity

(SI), routing delay control, and synchronization between channels must also be

considered.

For the quandary of synchronization, although the manufacturers provide a

method to synchronize channels by asserting a pulse, this method is costly and

difficult to implement due to its strict timing requirements [19]. Other meth-

ods have been proposed to synchronize two-channel converters [20–22], but these

methods are extremely difficult to implement with more than two channels.

Data transmission is also a difficult aspect of this design, as data can be gener-

ated at a rate of several GB/s. Additionally, in order to maintain signal reliability

at the input and output of each transmission line, SI must be considered. Routing

poses another challenge due to the strict routing delay requirements of a high-speed

multichannel system and the large number of interconnects present in the design.

In this section, we introduce a synchronization method in FPGA in the high-

speed, real-time, multi-channel data-acquisition unit. Our fabricated DAU has

four synchronized channels, each of which is capable of sampling the input analog

signal at a speed of up to 3 Gsps. The top-level block diagram for our system is

shown in Fig 2.1, and the photograph of our newly developed DAU is shown in

Fig. 2.2.
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Figure 2.1: DAU fabricated.

Figure 2.2: DAU diagram.
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2.2.1 Motivation

2.2.1.1 Causes of challenges

For many applications, the channels of a multichannel data acquisition system

should be synchronized so that the data in each channel are sampled at approxi-

mately the same time. For example, in TDOA-based localization, a small timing

error may contribute to a large error in range estimation. It is therefore imperative

to precisely synchronize each channel.

In our design, each ADC can sample the input analog signal at a speed of 3GHz

with an 8-bit resolution. In order to guarantee that the high speed output data can

be successfully accepted by the FPGA, the ADC concatenates four bytes together

to form data with a width of 32 bits. If the double data rate (DDR) mode is used

for the latching clock in the ADCs, its frequency can be reduced to approximately

375MHz by dividing the sampling clock frequency by four. Since each ADC will

automatically concatenate four bytes of data (or four samples) together (such that

the latching clock is 1/4 of the sampling clock), the phases of the four channels

latching clock may be different. As Fig. 2.3 shows, the phase of two channels may

have a difference of anywhere between zero and three clock cycles. This difference

might change when the system is reset [19]. Therefore, it is not only critical to

synchronize the input sampling clock to ensure identical sampling points, but also

to synchronize output latching clocks. In addition, as the DAU is a high speed and

Figure 2.3: Four possible latching clock output states.

mixed signal design, SI is an important concern. Because there are four channels
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in this DAU (each with 66 interconnects), there is a total of 264 wires that need

to be routed with approximately the same time delay between the ADCs and the

FPGA. On top of these wires, there are 4 pairs of differential 1.5GHz clock wires

between the clock buffer and ADCs.

2.2.1.2 Design challenges

There are many advantages to integrating high-speed multichannel capabilities in a

single DAU. First, all channels share the same clock source and the clock frequency

difference therefore does not exist. Second, it is easy to control and coordinate the

execution of the four channels via the use of an onboard processor. Finally, each

of the channels can be synchronized with one another, which guarantees proper

sampling. However, designing the DAU poses significant technical challenges: 1)

Synchronization of the high-speed, multichannel ADCs, 2) Storage of the large

quantities of incoming data per second, 3) SI issues related to coupling of inter-

connects (especially those running at high frequencies), 4) Meeting design-specific

routing delay constraints, 5) Keeping the system cool and properly dispersing heat

away from the board components. The following sections will discuss the causes

and related solutions to above challenges.

2.2.2 Synchronization of ADCs in a multichannel DAU

2.2.2.1 ADC synchronization in a high-speed, multichannel DAU

Fig. 2.4 shows the clock distribution path in our DAU. When the system is powered

on, the original 10MHz clock is transformed into a 1.5GHz signal by the PLL. The

clock buffer then distributes the 1.5GHz clock to four ADCs. Because our system’s

clock buffer can perfectly synchronize the four clock outputs with the input from

the VCO, the four sampling clocks at the output of the clock buffer have the same

phase. If the four sampling clocks are routed with approximately the same delay,

the phases of the four sampling clocks at the input of four ADCs should still be
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aligned. Only when the four sampling clocks at the input of ADCs have already

been synchronized, it is possible to synchronize the four latching clocks at the

output of the ADCs.

Figure 2.4: Clock distribution in our DAU.

Figure 2.5: Timing requirements for DCLK RST pulse to synchronize the multi-
channels [19].

The problem of multi-chip synchronization has been considered by the manu-

facturer, but the requirements are often too strict to implement in practical circuit

designs. Fig. 2.5 details the timing requirements for DCLK RST. In this figure,

CLK is the input sampling clock, tWR is the minimal width of the pulse, tHR is the

hold time with respect to the sampling clock, tSR is the setup time with respect to

the sampling clock, and tDO is the time delay before DCLK+. The latching clock

from ADC, is synchronized to the sampling clock.
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Synchronizing a high-speed, four-channel DAU using DCLK RST poses two

primary difficulties. First, when the sampling clock is 1.5GHz, a high speed cir-

cuit should be used to meet the setup and hold times with respect to 1.5GHz

clock. Second, the routing delay constraints for four DCLK RST pulses increase

the routing difficulty.

The author of [20] offers three possibilities for multichannel synchronization.

The first method works by “swallowing” clock pulses, and uses high speed logic

to manipulate the sampling clock of one channel as long as the data clocks are

not synchronized. The second method works by determining the offset between

the data clocks and uses a barrel shifter to change the order of the input data

for a single channel. The third method employs separate PLLs for each channel

with the data clocks compared to a reference and used as feedback. In [21], the

clock phases of two channels are compared and the phase offset is calculated. The

data in memory will subsequently be shifted forward or backward according to

the calculated phase offset. The author of [22] presents an idea to synchronize

two clocks by resetting the converter through reset pin. Each reset operation will

introduce a random clock phase. One of the chips is repeatedly reset until the

clock signals of the two channels are aligned.

The ideas in [20] are not suitable for our case. And the method described

in [21] is difficult to realize, as it requires keeping track of four distinct phase

differences, which is a difficult and error-prone task. Furthermore, the position of

the data in RAM should be updated in sample-by-sample according to the phase

offset. Adding a single additional channel can greatly increase the complexity of

these methods. While the concept in [22] seems promising, it is impossible to

implement without a built-in reset function (a function that the ADC083000 does

not provide) and can become time consuming and unreliable as the number of

channels increases.

Unlike the methods mentioned above, our method requires only two DCMs

and a small amount of FPGA logic to perform synchronization. According to

the timing requirements for DCLK RST, only setup and hold time are difficult to
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Figure 2.6: Move the pulse of DCLK RST from phase A to phase B, step by step.

meet, while the others pose no technical challenge. The basic idea is to generate a

DCLK RST pulse and subsequently move the pulse forward in time step-by-step,

as shown in Fig. 2.6. When the pulse is moved across one period of the sampling

clock, there must be some pulse with a phase that can meet the setup and hold

timing, assuming the step size is small enough.

Based on this idea, the basic procedure to synchronize the multichannel latching

clocks is as follows: 1) Set the latching clock of the first channel as the reference

clock and keep it unchanged. Assert a DCLK RST pulse to the second channel; 2)

Calculate the phase difference between channels one and two and judge whether

they have already been synchronized. If yes, go to step 4. If not, proceed to

the next step; 3) Move DCLK RST for channel two a step forward. Repeat step

2 until the two channels are synchronized; 4) Keep first channel unchanged and

assert a DCLK RST pulse to the third channel. Repeat step two until the third

and the first channel are synchronized; 5) Repeat the procedure for the remaining

channels until all of them are synchronized; The following sections discuss the

above procedures in detail.

2.2.2.2 Pulse shifting and phase difference calculation

For the ADC083000, when the input sampling clock is 1.5GHz, the latching clock

will have a frequency of 375MHz in DDR mode. The DCLK RST pulse can be

easily generated on the FPGA with the latching clock. However, the phase of the

DCLK RST pulse cannot be shifted directly in the FPGA. Here, we introduce a

method of indirectly moving the pulse. The Advanced DCM in each FPGA is
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able to shift the phase of the input clock backward or forward with a resolution of

1/256 clock periods, assuming the input clock frequency is greater than 100MHz.

Furthermore, the phase shifting can be done continuously, and the maximal range

for a phase shift is 10ns when in POSITIVE MODE [23].

As shown in Fig. 2.7, the DCLK RST pulse is always generated by the shifted

clock from a DCM. Therefore, the phase of the pulse is shifted when the phase of

the clock is shifted. If the 375MHz latching clock is used, the resolution of each step

will be about 10ps. Therefore, each sampling clock period includes about 60 steps

when its frequency is 1.5GHz. That means that, after 60 phase shifts, there must

be some pulses whose falling edge can meet the setup and hold time requirements

for DCLK RST. That’s because the required falling edge is somewhere between

two adjacent rising edges of the sampling clock.

Figure 2.7: Method to shift the phase of DCLK RST.

Fig. 2.8 shows a way to calculate the phase difference between two channels

via the use of a second DCM. Without lossing generality, assume that there are

N channels that need to be synchronized. Set the first channel’s latching clock to

be the reference clock. The basic procedure for calculating the phase difference

between two channels is as follows: 1) The phase of the latching clock for channel

one will be shifted forward by one step using the Advanced DCM and transmitted
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Figure 2.8: Method of calculating two channels’ phase difference in FPGA.

to each of the D flip-flops (DFFs) as clock input; 2) Each DFF samples the input.

The output of each DFF represents a high or low state of the latching clock; 3) For

each DCM shift, the controller counts one time when output of the DFF 1 is high

and continues unchanged when the output is low; 4) Repeat above procedures 127

times (since only half the period of latching clock, which contains 128 steps, must

be swept through) and check the sum of the counter. If the counter is greater than

a threshold value, then the two channels have been synchronized. If not, a shifted

DCLK RST will be asserted and the above procedure will restart;

Fig. 2.9 shows how a single DFF samples the latching clock using the shifted

clock. If the phases of channel 1 and 2 are perfectly aligned, the output of DFF 1

will be always high when the shifted clock is shifted from 1 to 128 steps. In that

case, the counter value will be 128. On the other hand, if the two channels are not

aligned, the counter will be some value below 128. Using this value, we can judge

whether the two clocks have been aligned.
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Figure 2.9: Description of how the shifted clock samples the latching clock 2.

2.2.2.3 Writing synchronized data into memory

At this point, the N channels have been synchronized. In an ideal case, these

channels should have identical phases when processed by the FPGA. However,

in reality, this is impossible to accomplish due to the small differences in routing

delay between each channel. This poses another challenge to synchronization when

writing data into memories within the FPGA. As a result, writing the output data

into memory poses another difficulty to the system.

In the FPGA, each channel has its own memory to temporally store the sampled

data. In order to save the data at the same time, a general write-enable signal for

each memory is necessary. As shown in Fig. 2.10, W EN is the write-enable signal

for memory and latching clocks from 1 to N have small phase difference due to the

different routing delays in the PCB. The first and last rising edge of each latching

clock forms the clock rising edge distribution area. Each channel’s memory is

composed of block memory in the FPGA to temporally store the sampled data.

In order to store the data concurrently, a W EN is asserted to all memories at

roughly the same time. As it’s possible that the rising edge of W EN may fall in

the rising edge distribution area of a latching clock (see Fig. 9), the rising edge of

W EN may be asserted after the rising edge of clock N but before all the others.

In this scenario, the data of the Nth channel will not be stored during this clock

period but the other channels’ data will.

An effective way to avoid this problem is to move the rising edge of W EN to
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a time that is always outside of the latching clock’s rising edge distribution area.

To accomplish this, we AND each of the latching clocks to get a new signal. For

simplicity, we will refer to this signal as Clock AND. We subsequently use the

falling edge of the new clock to resample W EN, thereby forcing the rising edge

of the W EN to a position shortly after the falling edge of Clock AND, as shown

in Fig. 2.10. If the new write enable signal is applied to all memories, data from

each clock period will be stored into the memory simultaneously.

Figure 2.10: A proper way to write the data into memory (assume that the rising
edge of latching clock is used and the HIGH state of W EN is active).

2.2.3 Implementation

2.2.3.1 Design implementation

As shown in Fig. 2.2, in this DAU, the four single end analog input signals are fed

into four front end signal conditioning circuits, where the analog signal is modified

according to the requests and then transmitted to ADC. The high speed data

generated by the four ADCs are then transmitted to FPGA and stored temporally.

The data can then be transferred to a computer through the Ethernet or USB port.

The system combines a Xilinx Vertex-4 xc4vsx35 FPGA with an AT91SA9G20
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ARM processor to maximize the system’s performance. Taking advantage of the

ARM’s management ability, we allow the processor to drive the system and guar-

antee that the DAU performs properly.. The FPGA in this system is used to

perform high speed data transmission, data processing, temporal data storage,

and synchronization of the four channels. These requirements can be guaranteed

by the rich resources in this FPGA, as shown in Fig. 2.11. The abundant amount

of Block RAM in the FPGA enables it to act as a large, high speed data cache.

Furthermore, the 8 DCMs inside the FPGA are important for clock management

and channel synchronization while the large amount of DSP slices are left for high

speed data processing.

Figure 2.11: Resource of Virtex-4 xc4vsx35 FPGA.

To sample the input analog signal, our system utilizes the ADC083000 chip

from Texas Instruments (TI). Each of the ADCs works in double edge sampling

mode and can sample at a rate of up to 3 Gsps (the input sampling clock operates

at 1.5 GHz). The PLL (we use an LM2531 in our design) and clock buffer are

used together to generate the required clock frequency and distribute it to the four

ADCs. The LM2531 PLL is a high performance frequency synthesizer integrated

with VCO. For the LM2531, there are two frequency bands available–low band and

high band. In low band, the output frequency can be set anywhere from 749.5MHz

to 755MHz. In high band, it can be set from 1499MHz to 1510MHz. To distribute

the clock, we use an LMK01000 clock buffer. This chip transmits its input clock to

all four ADCs with the same phases between outputs (i.e., all ADCs see the same

phase at their sampling clock input).

The single-ended analog inputs are modified by the front end signal conditioning

circuits in order to meet the needs of ADC, such as differential input and voltage

range. Two alternative analog pre-processing circuits are available and can be



24

selected by a jumper. One of the circuits has a filter to limit the frequency to

under 1.5GHz and the other allows high frequency, band-pass signals to pass to

the ADC.

The circuit board was designed using the Mentor Graphics PADS software

tool. By physically laying out the components on the board according to the rules

stated, the maximum routing delay difference between the four sampling clocks

from the clock buffer to ADCs is less than 0.013ns and the routing delay difference

between the four latching clocks is approximately 0.124ns. The maximum differ-

ence between each latching clock and its related data wires are (−327 ∼ 80ps),

(−239 ∼ −54ps), (−342 ∼ 8ps), and (−434 ∼ −16ps) for ADCs one to four,

respectively. All routing delay data is given by the PADS Layout software.

2.2.3.2 Implementation of synchronization and data transmission in

FPGA

Synchronization of the four channels is implemented on the FPGA using three state

machines, as shown in Fig. 2.12. State machine one guarantees the channels are

synchronized, one by one. The second state machine conducts DCLK RST, shifting

with a maximum of 60 shifting steps for each channel. After each shifting procedure

in state machine two, state machine three will shift the latching clock for 128 steps

and calculate the phase difference between the channels. Using ChipScope [24]4, a

program packaged in the Xilinx ISE software suite, we were able to determine that

the tasks in state machine three take approximately 96 micro-second to perform.

Therefore, the maximum amount of time used to finish synchronizing four channels

is approximately 96× 60(shifting steps)×(4-1)(channels), which equals 18ms.

Since each ADC provides data at a rate of 3GB/s, the ADC bank will produce

data at a total rate of 12GB/s [19]. In order to properly transmit and store the

data, we employ a parallel method shown in Fig. 2.13. In the FPGA, the 32-bit

width differential inputs from each ADC are first fed through a differential input

buffer (IBUFDS) to acquire single-ended data. Input double-data-rate registers
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Figure 2.12: The three level state machines used to implement synchronization in
FPGA.

(IDDRs) are then used to transfer the data from DDR mode to single-data-rate

(SDR) mode. The logic after IDDR packs the two 32-bit width output from IDDR

to form a 64-bit width data. The 64-bit width data is then written into Block

RAM (BRAM) for temporary storage. Each channel runs independently and in

parallel. The dual port BRAM in the FPGA is an ideal candidate with which to

store high speed data, as it can work at a speed of up to 400MHz and store up to

3,456KB (432KB) of data.

Figure 2.13: Data transmission and processing.
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Figure 2.14: System level implementation.

2.2.4 Experiment and results

Fig. 2.14 shows a system level experiment using UWB pulses. In the experiment,

the signal from an UWB signal generator is fed into a one-to-four splitter. The

four identical UWB signals from each splitter are transmitted to the DAU via four

identical cables. And in the DAU, the signal is sampled, temporally stored and

finally transmitted to computer via Ethernet cable. The UWB pulse has a band

width of about 0.7GHz in frequency domain and has a width of approximately

one nanosecond (ns) in time domain. The input sampling clock is set to 1.5GHz

and therefor the ADCs will work at 3 Gsps in DDR mode, which guarantees the

Nyquist Sampling Theorem in sampling the UWB pulse. Since the width of each

pulse is about 1ns, three samples can be obtained for each UWB pulse. If the four

channels are well synchronized, the sampled signal should have identical shape.

Fig. 2.15 shows the result of the above experiment, where the original UWB

signal has a total width of about 1ns, as shown on the left. The plot on the right

shows the amplitude of the sampled data in each channel. From here, its easy to

see that the four channels have already been synchronized.

2.3 Synchronization free model

2.3.1 Introduction

In section 2.2, the multichannel synchronization problem could be achieved through

the on board FPGA, as all channels are connected on the same board. If each
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Figure 2.15: UWB signal (left) and the signal sampled by four channels (right).

channel is distributed in a different location, the synchronization of these channels

will become really difficult [32]. To cover a large indoor area that requires a number

of anchors, anchor-synchronization becomes extremely difficult.

Common synchronization techniques include reference broadcast synchroniza-

tion (RBS) [34], pair-wise synchronization [35], master-slave synchronization [36],

and methods in some special applications [37–39]. Time synchronization with

above methods is generally obtained based on a sequence of exchange of beacon

messages. The message that carries timing information often suffers from various

delay and uncertainties before it reaches other nodes. In [33] the timing uncertain-

ties are categorized into four components:

• Send time: The time used to construct a beacon message at the sender;

• Access time: The delay at the medium access control (MAC) layer before

actual transmission;

• Propagation time: The time it takes a message to travel from the sender to

the receiver;

• Receive time: Time needed for a receiver to receive and decode the message,

and report it to upper layers.
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The solutions in [40, 41] are able to resolve some of these issues, and in [42] a

two-signal sensing method with acoustic signals is proposed to resolve these issues.

In practical systems, issues like clock skew and drifting must also be considered,

which means that timing synchronization is not a one-time effort, but needs to be

done continuously.

Figure 2.16: Signal repeater.

We introduce signal repeaters into the network to construct a new timing model.

An example of a signal repeater is shown in Fig. 2.16. It receives the signal from

the input and amplifies and transmits it with some unknown constant processing

time. The basic idea is to introduce a repeater whose location is fixed to work with

its nearby anchors; for networks with a large number of anchors, more repeaters

can be deployed but each works with only a subset of its neighboring anchors. The

target exchanges timing information with only a subset of anchors and the repeater

that it can reach. The key advantage is that all the anchors and the repeaters work

independently.

Compared with existing work, our contributions include: (1) The problems as-

sociated with timing synchronization as discussed above are completely resolved

by the proposed new model; (2) The system structure and network implementation

are greatly simplified; (3) A mathematical model of this scheme is developed and its

Cramér-Rao lower bound (CRLB) is analyzed, together with simulation results to

justify that the mean squared error (MSE) of the proposed scheme with the nonlin-

ear least-squares (NLLS) positioning method can approach the CRLB; and (4) The
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model can be flexibly extended to cover larger areas simply by introducing more

signal repeaters into the network, since all anchors and repeaters work indepen-

dently with the proposed scheme. However, with the same network configuration

and other system parameters, the positioning performance of the proposed scheme

is not as good as that of existing schemes assuming perfect timing-synchronization.

In any case, the performance loss is small, as will be seen from the numerical

results.

2.3.2 System description

For clarity, a simple network with one anchor, which is assumed to be a receiver,

one repeater, and one transmitter, as shown in Fig. 2.17, is used to describe

how the proposed scheme works. There are many ways to acquire the timing
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(transmitter)
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Figure 2.17: A simple network with one receiver, one repeater, and one transmitter.

information between any transmitter-receiver/repeater pair, and here we assume

the transmitter sends pulses (or any short burst of radio frequency signals) for

timing information. The transmitted pulse arrives at the receiver via two paths: a

direct path (Path 1) and a path via the repeater (Path 2). The time instants when

the transmitted positioning signal arrives at the repeater and receiver as well, as

the time instant when it leaves the repeater, are shown in Fig. 2.18: Tf is the

repetition period of the transmitter pulses, t1 and t2 are, respectively, the times it

takes the transmitted signal to reach the receiver and the repeater, t3 is the time

it takes the signal from the repeater to the receiver, and Tp, a constant, is the time

the repeater needs to process its received signal. The time difference between the
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Figure 2.18: Time instants when the transmitted signal arrives and leaves.

two paths is expressed as

∆t = t2 + t3 + Tp − t1. (2.1)

To avoid overlaps between the signals from path 1 and path 2, it is required that

∆t ≤ Tf/2.

The distance difference between the two paths is written as

∆d = dfixed + d2 − d1 = (∆t− Tp)c, (2.2)

where c is the speed of light and dfixed is a known constant. The difference between

the transmitter-position-dependent distances, with d1 and d2, is expressed as

∆d′ = d2 − d1 = ∆d− dfixed. (2.3)

Therefore, for each receiver-repeater pair, one set of range measurements d1 and

d2 could generate one hyperbola where the transmitter might be located. This is

illustrated in Fig. 2.19.

The analysis above shows that with the proposed scheme, for 2-dimensional

(2D) positioning, at least two receivers are required; for 3-dimensional (3D) posi-

tioning, at least three receivers are required. A simple example in 2D with four re-

ceivers is shown in Fig. 2.20. The major advantage is that the receivers and the re-

peater work independently with their own clocks; that is, no time-synchronization
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Figure 2.19: Time-difference model for the proposed scheme.

is required among the receivers and the repeater. Also, the proposed model is

very easy to implement, and it does not require any extra communications among

the transmitter, repeater, and receiver to exchange messages like the methods de-

scribed in [40–42]. Since only a local clock is used, there are no clock skew and

clock drifting problems.

A potential issue of the proposed model is that, although the signal from the

repeater will always arrive at the receiver after the signal directly sent by the

transmitter arrives, there is a possibility that the signal sent by the transmitter

may not be distinguishable from the signal sent by the repeater, if the transmitter

sends signals continuously. A simple way to resolve this issue is to increase the

transmission interval of the transmitted signal. For example, the transmission

interval Tf is set to be at least twice as large as the maximum value of ∆t as

shown in Fig. 2.18. In this way, the transmitter can send signals continuously

while the receiver only needs to find any pair of signals that are close to each other

in time from a block of sampled signals. Therefore, unlike existing schemes, with

the proposed model, positioning can be continuously without interruptions. This

greatly simplifies the network implementation.

2.3.3 Analysis

In this section, we build the mathematic model for 2D localization and analyze the

CRLB. Extending the analysis to 3D localization is straightforward.
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Figure 2.20: An example for 2D localization with the proposed scheme assuming
four receivers.

2.3.3.1 Mathematical model

The network, as shown in Fig. 2.21, consists of M receivers at known locations

(xi, yi)
T , i = 1, 2, · · · ,M, and one repeater at (x0, y0), which is assumed to be

located somewhere in the middle of the receivers. The processing time at the

repeater Tp is a constant, but unknown. The goal is to estimate the unknown

source location θ = (x, y)T without requiring time-synchronization among the

receivers and the repeater.

For the receiver i and repeater pair, the distance difference between the two

paths, di1 and di2-repeater-di3 as shown in Fig. 2.21, is expressed as

d̂i = (di2 + ni2) + di3 + dp − (di1 + ni1)

= (di2 + di3 + dp − di1) + (ni2 − ni1)

= di + ni, i = 1, 2, 3, · · · ,M, (2.4)

where ni1 and ni2 are, respectively, the ith receiver’s distance measurement errors

for paths 1 and 2, which are assumed to be independent Gaussian variables. Also,
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Figure 2.21: The network for the analysis.

di1, di2, and di3 are expressed as

di1 =
√

(x− xi)2 + (y − yi)2, (2.5a)

di2 =
√

(x− x0)2 + (y − y0)2, (2.5b)

di3 =
√

(x0 − xi)2 + (y0 − yi)2. (2.5c)

For one set of observations from M receivers, the observation vector can be

written as

d̂ =
[
d̂1, d̂2, · · · , d̂M

]T
= [d1, d2, · · · , dM ]T + [n1, n2, · · · , nM ]T

= d+ n, (2.6)

where [·]T denotes transpose and d̂i, di, ni, i = 1, · · · ,M, are given in Eq. (2.4).

Note that in Eqs. (2.4) and (2.6), d12 = d22 = · · · = dM2.

Let Di = (d̂i − di), i = 1, · · · ,M , which are zero-mean Gaussian random vari-

ables, and σ2
i = E[D2

i ] = σ2
i1 + σ2

i2, i = 1, · · · ,M , where E[·] denotes expecta-
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tion. Also, let D = [D1, D2, · · · , DM ]T whose covariance matrix is expressed as

C = E[DDT ]. For each set of range observations, C is written as

C=


σ2

12+σ2
11 0 · · · 0

0 σ2
22+σ2

21 · · · 0
...

...
. . .

...

0 0 · · · σ2
M2+σ2

M1

. (2.7)

2.3.3.2 Cramér-Rao lower bound

The probability density function (pdf) of d̂ given a set of range observations is

expressed as

p(d̂;θ) =
1√

(2π)M |C|
exp

(
−1

2

[
d̂− d

]T
C−1

[
d̂− d

])
, (2.8)

where C and d depend on θ and |C| is the determinant of C. The (i, j)-th element

of the Fisher information matrix (FIM) is expressed as [43]

[I(θ)]ij =

[
∂d(θ)

∂θi

]T
C−1(θ)

[
∂d(θ)

∂θj

]
+

1

2
tr

[
C−1(θ)

∂C(θ)

∂θi
C−1(θ)

∂C(θ)

∂θj

]
, (2.9)

where tr[·] denotes trace.

For the special case of independent and identically distributed (i.i.d.) range

errors, C does not depend on θ, and Eq. (2.9) simplifies to

[
I(θ)

]
ij

=

[
∂d(θ)

∂θi

]T
C−1

[
∂d(θ)

∂θj

]
. (2.10)
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In this case, for 2D positioning, θ = (x, y)T , and the FIM is written as

FIM =

[[
I(θ)

]
11

[
I(θ)

]
12[

I(θ)
]

21

[
I(θ)

]
22

]
. (2.11)

From Eq. (2.5) it is straightforward to obtain the following relationships:

∂di/∂x = (x− x0)/d12 − (x− xi)/di1, (2.12a)

∂di/∂y = (y − y0)/d12 − (y − yi)/di1. (2.12b)

Therefore,

∂d

∂x
=


x−x0
d12
− x−x1

d11
x−x0
d12
− x−x2

d21
...

x−x0
d12
− x−xM

dM1

 ;
∂d

∂y
=


y−y0
d12
− y−y1

d11
y−y0
d12
− y−y2

d21
...

y−y0
d12
− y−yM

dM1

 . (2.13)

The elements of the FIM in Eq. (2.11) are expressed as

[I(θ)]11 = [∂d/∂x]TC−1[∂d/∂x], (2.14a)

[I(θ)]22 = [∂d/∂y]TC−1[∂d/∂y], (2.14b)

[I(θ)]21 = [I(θ)]12 = [∂d/∂x]TC−1[∂d/∂y]. (2.14c)

The CRLBs are calculated as

CRLB(x) = [I−1(θ)]11 (2.15a)

CRLB(y) = [I−1(θ)]22. (2.15b)

2.3.4 Numerical results

It would be informative to compare the CRLB of the proposed scheme, which does

not require time-synchronization of the anchors, with those of the traditional TOA
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and TDOA schemes assuming perfectly synchronized anchors. For this, consider

the specific setting in Fig. 2.22, where a repeater is placed in the middle of the

four anchors; for TOA and TDOA schemes, the repeater is absent. The absolute

dimension of the space covered does not matter, because we are comparing the

relative CRLBs of various schemes. The range estimation error variance is chosen

to be σ2 = 0.01.
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Figure 2.22: Setting for CRLB calculation and positioning MSE simulation.

The CRLBs are shown in Figs. 2.23 and 2.24, for the x- and y-dimensions,

respectively. It is observed that, compared with TOA and TDOA, the CRLB of

the proposed scheme is higher. Therefore, the synchronization-free property comes

at the price of some localization performance loss.

Since most practical estimators would not reach the CRLB, it is also informative

to see how close is the positioning MSE to the CRLB. The NLLS estimator is chosen

here for MSE simulation since, given the range error model adopted, it performs

the same as the maximum likelihood estimator. For each observation, Eq. (2.6)

can be formed. The least squares (LS) estimate for θ is expressed as

θ̂LS = arg max
θ

[
d̂− d(θ)

]T [
d̂− d(θ)

]
. (2.16)

Since d(θ) is a non-linear function of θ, we linearize it using Taylor series for an
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Figure 2.23: CRLB and MSE for the x-dimension.
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Figure 2.24: CRLB and MSE for the y-dimension.

initial value θin = [xin, yin]T :

d(θ) ≈

[
d(θin) +

∂d(θ)

∂θ

∣∣∣∣
θ=θin

(θ − θin)

]
. (2.17)
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Substituting Eq. (2.17) into Eq. (2.16), we have

θ̂LS ≈ arg max
θ

[
d̂−d(θin)−∂d(θ)

∂θ

∣∣∣∣
θ=θin

(θ − θin)

]T
[
d̂− d(θin)− ∂d(θ)

∂θ

∣∣∣∣
θ=θin

(θ − θin)

]
, (2.18)

where

∂d(θ)

∂θ
=



x−x0
d12
− x−x1

d11

y−y0
d12
− y−y1

d11
...

...
x−x0
d12
− x−x1

di1

y−y0
d12
− y−y1

di1
...

...
x−x0
d12
− x−x1

dM1

y−y0
d12
− y−y1

dM1


. (2.19)

Let

X =

[
d̂− d(θin) +

∂d(θ)

∂θ

∣∣∣∣
θ=θin

θin

]
, (2.20a)

H =

[
∂d(θ)

∂θ

∣∣∣∣
θ=θin

]
. (2.20b)

Eq. (2.18) allows us to obtain the LS solution:

θ̂LS =
[
HTC−1H

]−1

HTC−1X, (2.21)

where C is given in Eq. (2.7).
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The NLLS estimator can be implemented iteratively as

θk+1 =θk +

[ ∂d(θ)

∂θ

∣∣∣∣
θ=θk

]T
C−1

[
∂d(θ)

∂θ

∣∣∣∣
θ=θk

]−1

[ ∂d(θ)

∂θ

∣∣∣∣
θ=θk

]T
C−1

[
d̂− d(θk)

] . (2.22)

The setting in Fig. 2.22 is also used here for MSE simulation with the NLLS

estimator. The variance of the range estimation error is set to be σ2 = 0.01, or

σ2
i1 = σ2

i2 = 0.01, as shown in Eq. (2.7). The number of iterations in NLLS is set

to be K = 10.

The simulated MSEs of the proposed scheme for the x- and y-dimensions are

shown in Figs. 2.23 and 2.24, respectively, together with the CRLB results. It is

observed that the MSE is very close to the CRLB for both the x- and y-dimensions.
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Chapter 3: NLOS error mitigation with convex optimization

3.1 Introduction

Localization that uses radio wave as the resources has been widely used in many

applications, like the GPS for driving navigation and indoor positioning using Wi-

Fi and the UWB signal. Different kinds of localization architecture and techniques

have been proposed in literatures that use the radio wave as the resources, including

received sgnal strength (RSS) [11], TOA [76], TDOA [77], AOA [60]. Although

some of these technologies have been commercialized, many issues remains. One

of the key issues is the NLOS problem, which exists in localization systems using

radio wave as the resources and severely degrades the localization accuracy.

As shown in Fig. 3.1, the NLOS occurs when the signal in line-of-sight (LOS)

direction between the transmitter and receiver is blocked and the signal from

the transmitter can only reach the receiver through multipath, like the reflection.

Therefore, compared to the LOS scenario, in NLOS scenario, the signal is always

delayed in some unknown time, like the ∆t in the figure. Since neither the value

nor the distribution of the ∆t is known, it makes it difficult to estimate it and

mitigate its error. This problem has attracted a lot of investigations recently, but

majority of these assume that the prior information about the NLOS condition

and the error distribution are partially or completely known [48, 97]. In reality,

such information is difficult to obtain. Recently, convex optimization techniques

have been applied to mitigate the NLOS error without any prior information about

NLOS. Interested readers can refer to literature [50–53,71,89]. To further mitigate

the NLOS error, extra cooperation information between nodes is introduced in [56].

In addition, machine learning is also employed to identify the NLOS links [70].

In this chapter, the newly developed algorithms for the NLOS error mitigation

in TOA and TDOA system are introduced. In the first section, the NLOS error
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Figure 3.1: The NLOS scenario.

mitigation with convex optimization in TOA system is reviewed and their disad-

vantages are discussed, like the issue of infeasibility of constrains. To overcome

this issue, the soft-minimum constrain is introduced. In the second section, several

new schemas to mitigate the NLOS error are discussed. In the third section, the

specific difficulties in NLOS error mitigation in TDOA system are discussed. To

simplify and effectively reduce the NLOS error mitigation in TDOA system, the

TDOA system is first transformed into a TOA system, and then the SDP is applied

to mitigate the NLOS error in the transformed system with new constrains. The

final section concludes this chapter.

3.2 Revised SDP algorithm for NLOS error mitigation in TOA sys-

tem

3.2.1 Introduction

Convex optimization has recently been applied for NLOS mitigation in TOA local-

ization without requiring any prior information about NLOS errors [71,75,88–90].
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However, convex optimization for NLOS mitigation in TOA systems is often an

infeasible problem. To reduce the infeasible problem probability, a main strategy

adopted in existing work is to relax (or even eliminate, in some cases) related

constraints for the optimization. Such a strategy does not completely resolve the

infeasibility issue. Additionally, the positioning accuracy is often reduced because

of the relaxed or eliminated constraints applied in the optimization process.

In this section, we develop a soft-minimum method for NLOS mitigation in

TOA systems. It has a few useful properties. First, like with existing convex opti-

mization schemes, it does not require any a priori information about NLOS links

or NLOS error statistics. Second, unlike the convex optimization schemes, it does

not have the infeasibility issue. Third, it results in a higher positioning accuracy

than with existing convex optimization schemes because of the stricter constraints

applied. We will analyze the infeasible problem and develop the proposed soft-

minimum method. This method can be applied to any convex optimization algo-

rithms for NLOS error mitigation in TOA systems, but as one example, we will

apply it to the SDP algorithm [75, 89, 90] that generally has good performances

and is commonly adopted; application of the proposed method to other convex

optimization methods such as the second-order cone programming (SOCP) [71,88]

follows exactly the same process. Simulation results will be obtained to validate

that the proposed method does not have the infeasibility issue and the localization

accuracy with it is better than that with existing optimization techniques.

3.2.2 Infeasibility problem in convex optimization

Consider a TOA network with one source node, the target which is a transmitter,

and M receivers in an NLOS environment. The range measurement between the

source node and receiver i is expressed as

ri = di + bi + ni, i = 1, 2, 3, · · · ,M (3.1)
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where di is the true distance between the source node and receiver i, ni is the

measurement error, called noise, which has a Gaussian distribution with zero mean

and variance σ2, and bi represents an NLOS-caused positive bias. Note that ri can

be written as ri = cti, where ti is the signal propagation time from source node

to receiver i and c is the speed of light in free space. This relationship allows a

practical system to calculate the range measurement by measuring the time spent

by a radio frequency signal to travel from the source to the receiver. Also note that

if a LOS component exists between the source node and receiver i, then bi = 0. In

practical systems, which ones of the M links are NLOS links and the statistics of

the corresponding NLOS biases are unknown.

Convex optimization is employed in [71,75,88–90] to mitigate the NLOS error

in TOA localization systems without requiring prior information about the NLOS

links or the NLOS bias statistics. In [71, 88], the second-order cone programming

combined with constraint relaxation to mitigate the NLOS error. In [75,89,90], an

SDP method combined with constraint relaxation is used for NLOS error mitiga-

tion.

A common problem of these methods is the infeasibility issue of the convex

optimization. A constraint is introduced in these methods:

r2
i ≥ d2

i = (yi − x)T (yi − x), (3.2)

where yi is the location of the ith receiver and x is the transmitter location being

estimated. This constraint indicates that the transmitter should be located within

the circle with the ith receiver as the center and ri as the radius. For NLOS links, it

is mostly applicable since the NLOS biases in Eq. (3.12) are positive and typically

much larger than the measurement noise ni [89]. This constraint is also necessary

and critical for the convex optimization since it forces the estimated position of the

transmitter to be within all circles determined by the anchor receivers and their

radii ri [71, 75,88–90].

However, the constraint in Eq. (3.2) might not be valid in some LOS conditions,

because the LOS links do not have a large NLOS bias and the measurement noise
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ni could be negative. Hence, for LOS links, the position of the transmitter may

be located outside of the circle. In such cases, if Eq. (3.2) is included in a convex

optimization process as a constraint, the optimization will become an infeasible

problem since no such a position can be found to be within all circles formed by

the anchor receivers and their radii ri.

To cope with this situation, the work in [75,89,90] tries to relax this constraint

by adding some fixed boundaries to reduce the infeasible problem probability. The

constraint in Eq. (3.2) is loosened into

r2
i + ui ≥ d2

i = (yi − x)T (yi − x). (3.3)

This new constraint can be written into an equivalent matrix form via the Schur

complement as (
I2 yi − θ

(yi − θ)T r2
i + ui

)
< 0, (3.4)

where < denotes the matrix inequality, < 0 denotes that the matrix on the left-

hand side is positive semidefinite and ui is the fixed boundary [89] expressed as

ui = 4
√

(bi + di)2σ2
i . (3.5)

A problem of this method is that the infeasibility problem remains, although the

probability of encountering an infeasible problem is reduced. Also, the relaxed

constraint will lower the estimation accuracy.

A four-step approach is developed in [71, 88] to resolve the infeasibility prob-

lem of the convex optimization. In the first step, a strict constraint is used to

perform the estimation. In the second step, if the previous estimation is infeasi-

ble, the constraint is relaxed and perform the estimation again. In the third step,

the constraint is relaxed further if the problem is infeasible in the second step. If

the problem is still infeasible, in the fourth step the constraint is eliminated to

guarantee that the optimization converges to a solution. Although this method
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guarantees the convergence of the optimization, it takes several rounds of estima-

tions to obtain a location estimate. Also, if the final step is needed, where the

constraint is eliminated to guarantee convergence, the estimation accuracy will be

significantly reduced.

3.2.3 Proposed soft-minimum method

The goal of the soft-minimum method being developed in this section is to com-

pletely resolve the infeasibility problem of the convex optimization while the con-

straint in Eq. (3.2) is kept to be optimal.

The basic idea of the soft-minimum method is that, similar to constraint in

Eq. (3.3), we also introduce a threshold ui. The difference is that we set ui to be

variable, rather than a fixed value. Apparently, the larger the variable ui is, the

higher the probability of reaching feasible estimation. For example, as an extreme,

if we set the variable ui = ∞, then the optimization will be guaranteed to be a

feasible problem. However, if the value of ui is large, it is virtually equivalent to

removing the constraint, which will result in a poor estimation accuracy.

It is thus critical to set an optimal value for ui in the sense that ui should

be large enough to guarantee the feasibility of the optimization and still be small

enough to ensure that the constraint like the one in Eq. (3.3) is as strict as possible.

We set the variable ui as an individual term in the objective function with some

proper constant factor µ. This term is written as

µ

M∑
l=1

u2
i . (3.6)

Take the SDP algorithm in [89] as an example. With some simple revision as

discussed above, the SDP optimization problem can be expressed as

argmin
x,z,hi,ui,ci

∑M

l=1
wi(r

2
i − hi − ci)2 +

M∑
l=1

ρc2
i + µ

M∑
l=1

u2
i (3.7)
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subject to

hi =

(
yi

−1

)T (
I2 θ

θ z

)(
yi

−1

)
, (3.8a)(

I2 θ

θ z

)
< 0, (3.8b)(

I2 yi − θ
(yi − θ)T r2

i + ui

)
< 0, (3.8c)

ui ≥ 0, (3.8d)

ci ≥ 0, (3.8e)

where µ is a positive constant whose value need to be determined. Here it is

unnecessary to discuss all the details of the SDP algorithm, which can be found

in [89]; instead, we focus on the changes made to the algorithm: first, ui here is

a variable, rather than a constant; second, the value of ui is constrained to be

positive as given in Eq. (3.8d), and finally, the individual term µ
∑M

l=1 u
2
i is added

to the objective function.

With this revision, the constraints in Eqs. (3.8c) and (3.8d) will determine

appropriate values for ui to ensure that the optimization problem is feasible. At

the same time, the objective function tries to minimize the whole value for objective

function. All the terms in the objective function are positive, the value of the added

term µ
∑M

l=1 u
2
i will be minimized too. Therefore, the value of ui is minimized since

µ and ui are all positive.

Another important parameter of this soft-minimum method is the value of the

positive constant µ. This factor can be viewed as a weight: a larger µ values means

that the added term in Eq. (3.6) will carry more weight in the whole objective

function, and therefore ui can be better optimized. However, if the value for µ

is too large, the minimization of the other terms in the objective function will be

weakened, and the overall accuracy may be compromised. On the other hand, a

very small value for µ may weaken the minimization on the added term and result
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in a loose constraint in Eq. (3.8c). Therefore, a proper value for µ should be

determined first and typically this searching process can be done via simulation.

In this SDP algorithm, the objective function happens to be a minimization

problem. If it is a maximization problem, we can simply add the term −µ
∑M

l=1 u
2
i

in the objective function. In the discussion above, although the SDP algorithm

is used as an example, the process is exactly the same if the proposed method is

applied in other convex optimization schemes such as the SOCP [71,88].

3.2.4 Simulation and results

3.2.4.1 Simulation setup

In this section, the performance of the proposed soft-minimum method applied in

the SDP algorithm is evaluated via simulation and is compared with that of the

original SDP algorithm. In the simulation, the ui is set in two different cases: a)

ui for each receiver, or each link, is different, and b) ui = u, where u is a constant,

for all receivers. The estimators considered are listed in Table 3.5.

Estimator Description

SDP The original SDP algorithm for NLOS error mitigation
in TOA localization system described in [89].

P1 SDP algorithm with the proposed soft-minimum method
with different ui values for each link.

P2 SDP algorithm with the proposed soft-minimum method
with a fixed value of ui for all links, that is, ui = u.

ML-LOS The ML estimator assuming LOS links only as described
in [89].

Table 3.1: Estimators considered.

In order to obtain the best performance of the proposed method, a proper value

for µ should be determined. To this end, several different value for µ within the

range from 10 to 1000 are simulated. Also, the proposed method is simulated under

different noise conditions, namely, the standard deviation (std) of the measurement
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noise ni is set as 0.1, 0.2, 0.3, 0.4 and 0.5 meters, respectively.

The configuration of the simulation is shown in Fig. 3.19, where eight an-

chors and one source node is considered. In the simulation, 49 locations of the

source node are considered and they are uniformly distributed in a 3m×3m space.

The NLOS bias is generated according to a uniform distribution between value of

[0m, 2m]. Note that the bias information is unknown to all estimators in the sim-

ulation. The weighting elements, wi are all set to 1; that is, all links are weighted

equally. The penalization factor ρ in Eq. (3.7) is set to ρ = 0.1 as in [89].
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Figure 3.2: Simulation configuration.

For the original SDP algorithm, Eq. (3.5) is applied. But for the proposed

method, ui is a variable. The maximal likelihood (ML) estimator assuming only

LOS links (ML-LOS), which gives the best performance potentially achievable, is

used as the benchmark estimator. Both of the proposed scheme and original SDP

estimators are solved with SDPT3 in Matlab CVX toolbox.
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3.2.5 Simulation results

The average feasible optimization percentages of the SDP algorithm and the pro-

posed method are listed in Table (3.6) under different noise conditions. Note that

the percentage of feasibility is calculated as the number of feasible cases over all

simulated cases. It is observed from the simulation results that for all noise con-

ditions, optimization with the proposed methods, P1 and P2, is feasible. For the

SDP algorithm, about 4% ∼ 5% of cases are infeasible; that is, the minimization

does not converge when the boundary condition expressed in Eq. (3.5) is applied.

Noise std (m) 0.1 0.2 0.3 0.4 0.5

SDP feasibility (%) 96.1 95.5 95.5 95.4 95.4
P1 feasibility (%) 100 100 100 100 100
P2 feasibility (%) 100 100 100 100 100

Table 3.2: Average feasible optimization percentages of SDP and the proposed
methods under different noise conditions.

The positioning mean-squared error (MSE) with the SDP and the proposed

methods under different noise conditions are shown in the Fig. 3.3. The first

observation we can make from this figure is that the performances of both cases

of the proposed method, P1 and P2 as described in Table 3.5, are better than

that of the original SDP estimator, because the proposed method applies a stricter

constraint ui expressed in Eq. (3.8d). This result demonstrates that the proposed

method is able to automatically determine a smaller ui than the fixed ui in the

original SDP estimator to form a stricter constraint. The second observation we

can make from the results in this figure is that, for both cases of the proposed

method, P1 and P2, when noise is low, cases with a lower value of µ tend to

outperform cases with a larger value of µ. For example, consider the case when

std = 0.1m: the estimator with µ = 10 outperforms the estimator with µ = 1000

for both P1 and P2. The situation is reversed when noise error is high; for example,

when std = 0.5m, the estimator with µ = 1000 outperforms the estimator with
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Figure 3.3: Simulated MSE results of SDP with the proposed soft-minimum
method and the original SDP estimator (for clarity, only cases with µ = 10 and
µ = 1000 are shown).

µ = 10. Therefore, to achieve a better performance, in high-noise situations, a

relative smaller µ should be used and vice versa. The third observation we can

make from these results is that the performance of P2 is better than that of P1,

although both P1 and P2 outperform than the original SDP estimator.

In summary, the proposed methods are able to completely remove the infeasi-

bility problem and also improve the localization accuracy.

3.3 NLOS error mitigation with a bias iterative deduction scheme

in TOA based localization

3.3.1 Introduction

In last section, the revised SDP algorithm was proposed to mitigate the NLOS

error in the TOA system. Without additional information, it’s difficult to further
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mitigate the error, based on the algorithm itself. Since additional information or

prior information for NLOS, like NLOS links and NLOS error statistics, are in

general unavailable, it’s difficult to further mitigate the error.

In this and the next sections, two schemes are proposed to try to discover some

’additional’ information based on estimation. Based on the estimation, we try to

predict which links are in NLOS and how much bias the NLOS contributes to the

NLOS link. Then this predicted information is used to further mitigate the NLOS

error.

3.3.2 Motivation

Figure 3.4: LOS/NLOS condition in TOA model: (a) TOA model; (b) Observa-
tions in LOS condition; (c) Observations in NLOS condition.

The TOA model with one source node and M receivers in the NLOS environ-
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Figure 3.5: Proposed scheme with bias deduction.

ment can be shown as

ri = di + bi + ni, i = 1, 2, 3, ...,M, (3.9)

where ri = cti is the measured distance between the source node and the ith

receiver, ti is the signal propagation time from the transmitter to the ith receiver, c

is the speed of light in free space, and di is the true distance between them. The bi

represent the positive bias caused by the NLOS effect, while ni is the noise, which

is usually modeled as a Gaussian distribution with a zero mean and a variance σ2.

The NLOS occurs when the LOS direction between the source node and the

anchor node is blocked. In such conditions, the signal will be only able to arrive

at the receiver through several multipaths. As the traveling distance from the

multipath is always longer than that from the LOS route, the time spent in the

multipath route should be more than that in the LOS route. Therefore, the NLOS

condition always introduces a positive bias into the TOA model. As shown in Fig.

3.4, a simple TOA-based localization example with four anchors (Rx1∼Rx4) on

each corner of a square and a transmitter in the center, the four observed distances

(d1 ∼ d4) should be identical in LOS condition if noise is not considered. But in the

NLOS condition, the observed distances are lengthened as the additional NLOS

bias is added onto the original value, as shown in Fig. 3.4.b and 3.4.c.
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Since the NLOS bias is always positive, the proposed idea tries to remove the

bias from the observations in NLOS links, as shown in figure 2. After removing

the bias, the revised observations without bias can be used to do the location

estimation. So, the key problem for this scheme is how to remove the NLOS bias

without any a priori information about NLOS, or specifically: 1) How to identify

which links are in NLOS condition, and 2) How to obtain the bias values for the

identified NLOS link. For problem 1), in previous literature, several proposed

methods are used to identify the NLOS links with some prior information [80,97].

But they are not applicable here, as the prior information about NLOS is assumed

to be unknown. For problem 2), if the bias has already been exactly known, we

should be able to estimate the position precisely and don’t need extra mitigation

operations. Therefore, based on previous techniques, it’s difficult to identify all

NLOS links and know the value of bias for each NLOS link.

Without any prior information, we try to identify the NLOS link and estimate

the bias needing to be removed from an observation based on the estimation. Since

the estimation itself is not accurate, any decision based on it is not accurate, either.

To increase the correctness of the judgments, instead of trying to identify all NLOS

links, we simplify the problem to locate the link with the biggest estimated bias

and try to remove the bias iteratively.

3.3.3 Proposed scheme

In proposed scheme, several measures are considered and the general flow of the

procedure is shown in Fig. 3.12. The firstmeasure of this scheme is the estimator

used to estimate the bias. Apparently, the better the accuracy of the estimator

is, the higher the correctness of judgments will be in this procedure, because all

judgments are based on the results from this estimation. The second measure is

to trust the estimated bias partially (e.g., with 30% of trust). Since the estimator

is not 100% accurate, the bias estimated from it is not accurate either. However,

depending on the estimator used, we can trust the estimated bias to a certain

degree. For example, we just remove 0.3 × b from the observation, where b is the
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estimated bias with selected estimator. The third measure is to do the reduction

iteratively until some threshold is met. Because each time we just remove part

of the estimated bias, we cannot finish this procedure in single step. Instead, we

need to repeat the deduction and stop it until some threshold is met. The fourth

measure is to consider how many NLOS links to be processed in each iteration.

Among the above measures, there are some trade-offs between them. For ex-

ample, for the second measure, if we set the credibility to a very low level, e.g.,

1%, the correctness of the bias deduction will be higher than that when it’s set

to, 90%, for example. But it will greatly increase the repetition times in the third

measure and therefore increase the total computation time, and vice versa. The

situation is also true for the third and fourth measures.

So, based on the above analysis and assumptions, the general bias deduc-

tion scheme can be shown in algorithm (3), where r and b are vectors with

r = (r1, r2, ..., rM), b = (b1, b2, ..., bM), bmax is the maximal bias in b, ε is a threshold

used to judge whether a link is in NLOS or not and β is a factor with β ∈ [0, 1].

To improve the correctness of the judgments, we can revise only one observation

with the biggest estimated bias in each iteration, instead of modifying all of them,

or

rbmax
:= rbmax − βbmax, (3.10)

where bmax = max(b) and rbmax represents the related observation with the biggest

estimated bias. And the parameter β can be set to different values according to the

value bmax. For example, we can set β = 0.6 when the estimated bmax > 1 meter

Algorithm 1 : General bias deduction scheme

1: Input: r = (r1, r2, ..., rM),
2: Repeat until (bmax < ε)
3: Estimate b with an estimator,
4: Revise r as: r := r − βb,
5: Estimate with the final revised observation r.
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and β = 0.2, when bmax < 0.2 meter, based on the fact that the larger estimated

bias has a higher possibility to be a NLOS link. To prevent some special diverging

case where the estimated position may go to infinity, an additional constraint is

set as bmax < b′max, where b′max is the bmax in the previous iteration. The revised

bias deduction scheme is shown as

Algorithm 2 : Revised bias deduction scheme

1: Input: r = (r1, r2, ..., rM),
2: Repeat until (bmax < ε && bmax < b′max)
3: Estimate b with an estimator,
4: b′max = bmax,
5: β = f(bmax),
6: Revise rbmax as: rbmax

:= rbmax − βbmax,
7: Estimate with the final revised observation r.

In this algorithm, f(·) is a mapping function that is set as an error function

(ERF)

β = erf

(
bmax

γ

)
, (3.11)

where γ is a parameter used to adjust the inclination of the function. In this

simulation, γ is set to be 1. As bmax is always larger than 0, β in Eq. (3.11) will

take a value between zero and one.

3.3.4 Simulation and results

3.3.4.1 Simulation setup

In this section, the performance of the proposed scheme is evaluated by applying

to the state-of-art NLOS mitigation estimator in TOA localization.

The configuration of the simulation is shown in Fig. 3.6, where eight anchors

and one source node are considered. In the simulation, 36 locations of the source
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Figure 3.6: Simulation configuration.

node are considered and they are uniformly distributed in the 3m × 3m space.

The NLOS bias is generated according to a uniform distribution between a value

of [0m, 2m]. Note that the bias information is unknown to all estimators in the

simulation.

In the simulation, the state-of-the-art SDP estimator in [89] is chosen to be the

estimation algorithm in the scheme. For the SDP estimator, we set the weighting

elements to be wi = 1, as we assume that the measured distance is only dis-

turbed by the Gaussian noise and the NLOS effect. And the noise ni is Gaussian

distributed with zero mean and σ2 = 0.01. The penalization factor is set to be

δ = 0.1, and µi is set as µi = 3σ, according to the literature.

In the simulation, the scheme in algorithm 2 is used. The number of anchors

is M = 8 and the threshold ε is set as ε = 0.1.

3.3.4.2 Simulation results

To better understand the performance of the proposed scheme, the results for the

first five iterations (labeled as P1 to P5) and the final iteration (labeled as P-final)
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are shown. Also, it would be informative to compare them with the benchmark es-

timator: the Maximal Likelihood (ML) estimator using only LOS links (ML-LOS),

which stands for the potential best performance and is only used for comparison.

In addition, two other estimators are considered: the SDP-ROBUST estimator [71]

and the ML with all links (ML-ALL), as shown in Tab. (3.5).

The simulation results are shown in Figs. 3.15 – 3.17, which use the cumulative

distribution function (CDF) of the location errors for the considered estimators.

Fig. 3.15 shows the results in light NLOS condition when there are 1 or 2 NLOS

links among eight total links. In this scenario, from the second iteration p2, the

proposed scheme starts to outperform the SDP estimator. But the performance

after the third iteration almost stays the same. This is because in light NLOS

condition, it is enough to mitigate the bias in only one or two links in the first few

iterations.

In Fig. 3.16, when the number of NLOS links is 3, 4, or 5, the proposed

scheme starts to outperform the SDP estimator from the third iteration p3, and

each iteration provides some improvements. In light NLOS conditions, therefore,

more iterations are required to mitigate the bias when more links are in the NLOS

condition.

In severe NLOS condition, when there are 6, 7, or 8 NLOS links, the results are

shown in Fig. 3.17, where the ML-LOS is not applicable, as less than three LOS

links are available to do a 2-dimensional estimation. In this case, the proposed

method can’t improve the performance over the SDP estimator. However, the

SDP-ROBUST estimator starts to provide reasonable performance. The ML-ALL

still has the worst performance.

In this simulation, the average number of iterations for all conditions is around

12 for the proposed scheme.

In general, when applied to the SDP estimator, the proposed scheme further

improves the performance in light and median NLOS conditions over that of the

SDP estimator.
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Figure 3.7: Estimation error CDF with light NLOS conditions (NLOS=1 or 2).

3.4 NLOS link identification and discard scheme in TOA based lo-

calization

In this subsection, another scheme is introduced to further mitigate the NLOS

error.

Estimator Description

Px The proposed method with x iterations
P-final Proposed method in the final iteration

SDP-ROBUST The robust estimator in [71]
SDP The SDP estimator in [89]

ML-LOS The ML estimator with only LOS links in [89]
ML-ALL The ML estimator with all links in [89]

Table 3.3: The considered estimators.
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Figure 3.8: Estimation error CDF with median NLOS conditions (NLOS=3, 4 or
5).

3.4.1 Motivation

In the NLOS condition, the unknown bias bi, as shown in Eq. (3.9), introduces

large errors into the localization calculation. As shown in Fig. 3.10, a simple TOA-

based localization with five anchors (Rx1 ∼ Rx5) on the corner of a pentagon

and a transmitter in somewhere inside the boundary of the five receivers. The

observations in LOS condition can be seen in Fig. 3.10(b), shown as (d1 ∼ d5).

But in the NLOS condition, e.g., the fourth and fifth links are blocked by some

obstacles and the observed distances are lengthened, since an additional NLOS

bias is added, as shown in Fig. 3.10(c). Since the NLOS links introduce large

errors into the estimation, the proposed method tries to discard the NLOS links

and uses only the LOS links to do the estimation, as shown in Fig. 3.11; the fourth

and fifth NLOS links are discarded and only the first three LOS links are used.

So the key problem here is how to identify the NLOS links. In existing litera-

ture, prior information about NLOS is required to identify the NLOS links [63,78].
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Figure 3.9: Estimation error CDF with severe NLOS conditions (NLOS=6, 7 or
8).

Other methods, like machine learning [70], are also introduced to identify the NLOS

links. Here, we introduce a simple but effective scheme to identify and discard the

NLOS links by estimating the bias of each link with a location estimator. Since the

estimator is not 100% accurate, the identification of NLOS based on the estimated

bias is not 100% accurate, either. Although it’s difficult to correctly identify all

NLOS links, it’s still useful if we can eliminate some of the severe NLOS links.

3.4.2 Proposed method

Like the analysis in the last section, the focus of this scheme is to improve the

correctness of the NLOS identification and effectively discard the severe NLOS

links. In this section, a simple and effective scheme with several considerations

is proposed to identify and discard the NLOS links as shown in Fig. 3.12. The

first measure is the localization estimator used to estimate the bias. Apparently,

the better the accuracy of the estimator, the higher the correctness of judgments.
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Figure 3.10: System model.

The second measure is to trust the estimated bias partially (e.g., only the link

with the biggest estimated bias is considered and judged whether it’s a NLOS link

or not). The third measure is to introduce iterative processing, in which only

one link is discarded in one iteration. The iteration will stop when the maximum

estimated bias is smaller than a threshold or with the minimal expected number

of links is reached.

As shown in Fig. 3.12, the position is estimated by some estimator with a set

of observation r in the NLOS scenario. Then the biases b is calculated from the

estimated position. If the maximal estimated bias is larger than a threshold ξ and

the number of links is larger than the minimal number of links N , the link with

the biggest bias will be considered as a severe NLOS link and then be discarded.

The iteration will stop when one of above conditions fails and the final position

is obtained from the last estimation. In this procedure, several factors will affect

the final accuracy: the estimator used, the threshold ξ and the minimal number of
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Figure 3.11: Proposed method with NLOS links discarded.

links N . The code form of the procedure can be described as Algorithm 3. In this

Algorithm 3 : General NLOS link discard scheme

1: Input: r = (r1, r2, ..., rM),
2: Estimate b with an estimator,
3: Repeat when (bmax > ξ && n > N)
4: Discard the link rbmax

5: Estimate b′ with left links r′,
6: Estimate with the final left observation r′.

algorithm, the initial r and b are vectors r = (r1, r2, ..., rM) and b = (b1, b2, ..., bM);

bmax is the maximal bias, ξ is a threshold used to judge whether a link is NLOS or

not, N is the minimal number of links expected to keep, and rbmax is the link with

the maximal bias.

Similar to the simulation results shown in [9], the bias iterative deduction

scheme provides better NLOS error mitigation performance in light NLOS condi-

tions than that in median and severe NLOS conditions. It’s possible to transform

the median NLOS conditions into light NLOS conditions by discarding some of the

NLOS links using the proposed scheme. Based on this idea, we propose a method

that combines the proposed scheme with the one in [9]. The combined scheme is

shown as Algorithm 4. As [9] indicated, β will take the value between zero and



63

Figure 3.12: Procedure for the proposed method. r and b are observation and
related bias vectors, respectively. bmax is the maximal bias, ξ is a threshold, and
N is the minimal number of links expected to keep.

one, b′max is the bmax in previous iterations, and f(·) is a mapping function that is

set as an error function (ERF).

3.4.3 Numerical results

3.4.3.1 Correctness of discarded links to be NLOS links

It would be informative to calculate the correctness of the discarded links to be

NLOS links. For this, consider the specific setting in Fig. 3.13, where eight anchors

and 36 uniformly distributed source locations are considered. The NLOS bias bi

in Eq. (3.9) is generated according to a uniform distribution between the values

of [0m, 2m]; the variance of the noise is σ2 = 0.01.

In the simulation, the state-of-art SDP NLOS error mitigation algorithm for
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Algorithm 4 : Combined scheme

Input: r = (r1, r2, ..., rM),
2: Estimate b with an estimator,

Repeat when (bmax > ξ && n > N)
4: Discard the link rbmax

Estimate b′ with with left links r′,
6: Estimate with the final left observation r′.

Input: r′,
8: Repeat until (bmax < ε && bmax < b′max)

Estimate b with an estimator,
10: b′max = bmax,

β = f(bmax),
12: Revise rbmax as: rbmax

:= rbmax − βbmax,
Estimate with the final revised observation r′.

TOA localization in [89] is used as the estimator. Since we assume that the mea-

sured distance is only disturbed by the Gaussian noise and the NLOS effect, the

weighting elements for SDP is set as wi = 1. The penalization factor is set as

δ = 0.1, according to the literature, and the compensation parameter is set to

µi = 3σ.

In this calculation, when one link is discarded, we then check whether or not

this link is in NLOS. Since the distance, ri, in Eq. (3.9) is disturbed both by

Gaussian noise and NLOS effects, it’s reasonable to judge it to be a NLOS link as

long as the final error of ri is larger than some threshold. For example, when a

link with bi + ni > t, where t is some threshold and t > 0, it will be considered a

NLOS link. Here, three different thresholds are considered: t = 2σ, 3σ, and 4σ or

t = 0.2m, 0.3m, and 0.4m.

Fig. 3.14 describes the correctness for the nth discarded links, where at most

five links are allowed to be discarded. As expected, the situation when t = 0.2m

has the highest correctness, which are all above 95%, while the situation when

t = 0.4m has the lowest correctness, with all above 93.3%. Also, the first discard

has the highest correctness – all of them are above 99.5%. The correctness drops

with the increase of n and the number of discarded links.
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Figure 3.13: Simulation configuration.

3.4.3.2 Performance of the proposed scheme in NLOS mitigation

In the simulation, the performance of the proposed scheme is compared with that of

the SDP. In this simulation, the setting in Fig. 3.13 is used. To better understand

the performance of the proposed scheme, N in Algorithm 1 is set as 8 ∼ 4, or the

maximal number of links can be discarded is 1 ∼ 4, respectively, and ξ = 0.4m.

The results are shown in Fig. 3.15 to Fig. 3.17, where the cumulative distribu-

tion function (CDF) of the location error is used for the considered estimators, as

shown in Table 1. The NLOS scenarios are divided into light, median, and severe

NLOS conditions with (1, 2), (3, 4, 5), and (6, 7, 8) NLOS links out of the total

eight links, respectively.

Fig. 3.15 shows the results in the light NLOS condition, when the number

of NLOS links is 1 or 2. As expected, the ML estimator using only LOS links

(ML-LOS) has the best performance. However, it is only used as a benchmark for

comparison, as we assume the estimators don’t know which links are in the LOS

condition. The curves labeled as P4 ∼ P8 represent the condition with N = 4 ∼ 8,

respectively, or at most 4 ∼ 0 links can be discarded. In this condition, P7 and P6

greatly improve the performance, while P4 and P5 keep the same performance as
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P6. These results demonstrate that P7 and P6 can correctly discard the link with

large bias to improve the performance compared to the SDP estimator.

In Fig. 3.16, the median NLOS condition, when NLOS=3, 4, or 5 of the total

eight links, is considered. From the results, starting from P6, the performance of

the proposed scheme starts to outperform that of the SDP estimator, and P4 has

the highest performance. Fig. 3.17 shows the performance in the severe NLOS

condition, where less than three LOS links exist and, therefore, ML-LOS doesn’t

apply. In such a condition, when the majority of links are in the NLOS condition,

discarding the NLOS links doesn’t help to mitigate the NLOS error.

Compared with the SDP estimator, the proposed scheme can effectively im-

prove the performance in light to median NLOS conditions.

3.4.4 Performance of the combined scheme

In this simulation, the setting in Fig. 3.13 is used again. To better understand the

performance of the combining scheme, we apply the NLOS bias deduction scheme

to all NLOS conditions with the setting that N in Algorithm 1 is set from 8 to 5,

respectively. Both schemes use the SDP estimator as the estimation algorithm.

The results are shown from Fig. 3.15 to Fig. 3.17, where Cx stands for the

combined scheme which should keep at least x links, or N = x. To compare the

performance of the proposed scheme with the bias deduction scheme, we can refer

to P4, which stands for the best performance of the proposed scheme and C8, which

stands for the performance of the NLOS bias deduction scheme in [9]. From the

results, the two have the similar performance, but the average running time for

C8 is about 12 iterations of SDP estimation while P4 needs about three iterations,

which is only 25% of the iterations required by C8.

To see the performance of the combined scheme in Fig. 3.15 to 3.17, we can

compare the performance of Px and that of Cx, with at most x links discarded.

As expected, in the median NLOS condition, the combined scheme can further

improve the performance over both of proposed scheme and the bias deduction

scheme in [9].
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Figure 3.14: Correctness of discard for the nth discarded links in the whole simu-
lation, where 1=100%.
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Figure 3.15: Estimation error CDF with light NLOS conditions (NLOS=1 and 2).
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Figure 3.16: Estimation error CDF with median NLOS conditions (NLOS=3, 4
and 5).

0 0.5 1 1.5 2 2.5 3

Localization error (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

P
4

P
5

P
6

P
7

P
8

C
4

C
6

C
8

ML-ALL
ML-LOS
SDP

Figure 3.17: Estimation error CDF with severe NLOS conditions (NLOS=6, 7 and
8).
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Estimator Description

Px The proposed scheme with at least x links
should be kept or N = x

Cx The combined scheme with at least x links
should be kept or N = x. [9]

SDP The SDP estimator in [89]
ML-LOS The ML estimator with only LOS links in [89]
ML-ALL The ML estimator with all links in [89]

Table 3.4: The considered estimators.

3.4.5 Conclusion

In this section, a NLOS discard scheme to mitigate the NLOS error in TOA local-

ization is introduced. The basic principle of the proposed scheme and its procedure

are presented in detail. To evaluate the performance of the proposed scheme, the

correctness of the discarded links to be NLOS links is calculated, which shows

that the probability the discarded links are NLOS links is very high. From the

simulated CDF results, it’s found that the proposed scheme provides better perfor-

mance than the state-of-art SDP algorithm in light to median NLOS conditions.

Although the proposed scheme presents similar CDF performance to that of the

bias iterative deduction scheme, it uses only 25% of the iterations compared to the

bias iterative deduction scheme. In addition, the simulated CDF results also show

that the combined scheme can further improve the performance in median NLOS

conditions.

3.5 NLOS error mitigation in the TDOA system

3.5.1 Introduction

NLOS error mitigation and NLOS link identification for TOA localization have

been investigated extensively, assuming that a priori information of NLOS links

and/or NLOS error statistics is available [78–82], or other forms of system/channel
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resources are available [83–87]. Convex optimization has recently been applied for

NLOS error mitigation in TOA systems and achieves a good performance without

requiring such information [88–90].

Convex optimization for NLOS error mitigation in TDOA systems is also ex-

tensively investigated [91–96]. Issues remain unsolved of this technique for TDOA

systems include the convex hull problem, proper reference-anchor selection, and

difficulties dealing with a wider range of NLOS-caused ranging errors. In TOA sys-

tems, the NLOS error is always positive, and is typically larger than the measure-

ment noise. Hence, restricting the target to be in a circle formed by the anchor and

the target’s observation will improve the localization accuracy due to the stricter

constraint. In TDOA localization, however, the NLOS-caused ranging errors could

be positive or negative, making the problem complex. Also, convex optimization

for TDOA systems might encounter the convex hull problem; that is, the estimated

positions always lie in the convex hull formed by the sensor nodes [94]. In addition,

since a reference must be selected first to obtain the observations, it is possible

that an NLOS link might be chosen as the reference, which will further degrade

the localization performance. To avoid choosing an NLOS link as the reference,

different methods have been developed: in [92] a method that tries each anchor

as the reference to estimate the location and uses some linear combination of the

estimated locations as the final results is developed; in [94] an LOS link is identified

first, which is then used as the reference for position estimation.

These methods result in very complex estimators, and still do not effectively

solve all the problems. Also, methods developed for NLOS mitigation in TOA

localization cannot be applied directly to TDOA systems due to their architectural

differences and the issues discussed above [91].

In this section we propose a new technique that transforms a TDOA architec-

ture into a TOA architecture for NLOS mitigation in TDOA systems, and develop a

semidefinite programming method for this technique. The proposed technique has

has several advantages over existing convex optimization schemes. First, it effec-

tively resolves the aforementioned issues that existing schemes are facing for NLOS
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Figure 3.18: Transformation of TDOA model to TOA model.

mitigation in TDOA systems; second, like existing convex optimization schemes, it

does not require a priori information about NLOS links or NLOS error statistics;

and third, it achieves a much better performance than existing convex optimization

schemes, which will be validated in both simulation and real experiments.

3.5.2 Proposed method for NLOS error mitigation in TDOA local-

ization

Consider a TDOA system with M anchors, assumed to be receivers, where the first

anchor is used as the reference, without loss of generality. The distance-difference

between the source node, which is assumed to be a transmitter, to the i-th receiver

and the reference receiver, is expressed as

ri1 = ri − r1 = c (∆ti −∆t1)

= (di + bi − d1 − b1) + (ni − n1), i = 1, · · · ,M, (3.12)

where ri = c∆ti, ∆ti, and di are the measured distance, the signal propagation

time, and the true distance from the source node to the i-th anchor, respectively, bi
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represents the NLOS-caused positive bias, and ni is the range-measurement noise,

which is commonly modeled as a Gaussian variable with zero mean and variance

σ2 [91].

The basic idea we develop here is to find an effective way to transform the

TDOA architecture into a TOA architecture. In TOA systems, all anchors, as-

sumed to be receivers in this paper, must be time-synchronized with the target

transmitter; in TDOA systems, all anchors must be time-synchronized. In the

TDOA model as shown in Fig. 3.18, if receiver 1 is designated as the reference,

then ti1 will be the observed timing difference between the ith receiver and the

reference receiver. In this case, since the receivers and the transmitter are not syn-

chronized, the time the signal leaves the transmitter is unknown to all receivers.

In the TOA model, as shown in Fig. 3.18, the time instant when the signal leaves

the transmitter, t0, is known to receivers, and ti0 is the observed traveling time of

the signal from the transmitter to the ith receiver. Therefore, if t0 is acquired in

the TDOA model, a TDOA model can be transformed into a TOA model.

Since the t0 is unknown in the TDOA model, we leave t0 as a variable in the

TDOA model and transform the TDOA model into a TOA model. The resulting

TOA model with t0 being a variable is described as

ri = di + bi + ni (3.13a)

(ti − t0)c = di + bi + ni, i = 1, · · · ,M. (3.13b)

Squaring both sides of (3.13b) followed by some algebraic manipulations yields

c2t2i +c
2t20−2c2tit0−d2

i−b2
i−2bidi = 2ni(bi+di)+n2

i

= εi. (3.14)

Let

qi = b2
i + 2bidi. (3.15)
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Eq. (3.14) simplifies to

εi = c2t2i + c2t20 − 2c2tit0 − d2
i − qi. (3.16)

Note that since the measurement noise ni is generally much smaller than bi + di in

practice, the n2
i term in εi can be neglected.

The nonlinear least-squares estimator of the unknown parameters θ, q, d, t0 are

expressed as

argmin
d,b,θ,q

M∑
i=1

wi
(
c2t2i + c2t20 − 2c2tit0 − d2

i − qi
)2
,

s.t. qi = b2
i + 2bidi (3.17)

where wi is a positive weight and θ is the location of the target to be estimated.

Eq. (3.17) is non-linear and non-convex. Introduce two new variables:

s = t20 (3.18a)

hi = d2
i = ||V i− θ||22, (3.18b)

where s and t0 in (3.18a) are treated as two variables. Eq. (3.18b) can be written

in vector-matrix form by using the Schur Complement as [89]

hi =

(
V i

−1

)T (
I2 θ

θ z

)(
V i

−1

)
; (3.19a)(

I2 θ

θ z

)
< 0, (3.19b)

where z is a new variable added.

Since bi and di are positive, qi in (3.15) satisfies

qi ≥ 0, . (3.20)
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Eq. (3.17) is transformed into a semidefinite programming (SDP) problem as

argmin
h,s,c,θ,z,t0

∑M

i=1
wi
(
c2t2i + c2s− 2c2tit0 − hi − qi

)2
+

M∑
i=1

ρ(q2
i + s2) (3.21)

s.t. Eqs. (3.19) and (3.20)

where ρ is a penalization factor, which is required when the problem is ill-posed [89].

Although (3.21) can be solved mathematically, its performance is not guaranteed.

Since t0 is a key variable for the model transformation, we develop a few con-

straints on t0 to improve the estimation accuracy of t0. First, a geometric con-

straint:

(ti − t0)c+ (tj − t0)c ≥ ||(V i− V j)||2, i 6= j. (3.22)

Since the ith and jth receivers as well as the transmitter can form a triangle, (3.22)

holds because the sum of two sides of a triangle is always greater than or equal

the third side. Second, since ti is the arrival time of the signal at the ith receiver,

we have

ti ≥ t0. (3.23)

Since the biases of NLOS links in (3.13b) are positive and typically much larger

than the measurement noise ni, we can write ri as [89]

ri = (ti − t0)c ≥ di or r2
i = (ti − t0)2c2 ≥ d2

i . (3.24)
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From (3.12), we have

r2
i = (ti − t0)2c2 (3.25a)

= (t2i − tit0 + t20 − tit0)c2 (3.25b)

≤ (t2i − tit0)c2. (3.25c)

Eq. (3.25b) can be relaxed to be linear as Eq. (3.25c) since ti ≥ t0 and the time

instant are always positive; that is, t0 ≥ 0, ti ≥ 0. Therefore, we have t20− tit0 ≤ 0

and Eq. (3.25c).

From Eqs. (3.24) and (3.25), we have

(t2i − tit0)c2 ≥ r2
i ≥ d2

i = hi. (3.26)

It is possible that (3.26) may not be feasible if the bias is bi = 0 (i.e., no NLOS

error) and the noise is negative (i.e., ni < 0), since in such case, ri < di, as shown

in Eq. (3.13a). We resort to the soft-minimum method [8] to resolve this infeasible

problem. In this method, a positive variable ui is introduced in (3.26) to make it

valid:

(t2i − tit0)c2 + ui ≥ d2
i = hi, (3.27a)

ui ≥ 0. (3.27b)

A problem with this approach is that a large ui will loosen this constraint. To

ensure a strict constraint, we add the following item to the objective function

µ

M∑
i=1

u2
i , (3.28)

where µ > 0 is to be determined. With the soft-minimum method, the constraint

in (3.27) tends to choose a proper value of ui to ensure feasibility of the con-
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straint while (3.28) in the objective function optimizes the value of ui to make the

constraint tight.

The SDP problem is summarized as

argmin
h,q,θ,u,z,t0,s

∑M

i=1
wi
(
c2t2i + c2s− 2c2tit0 − hi − qi

)2
+

M∑
i=1

ρ(q2
i + s2) + µ

M∑
i=1

u2
i

s.t. Eqs. (3.19), (3.20), (3.22), (3.23), (3.27). (3.29)

3.5.3 Simulation and experimental results

3.5.3.1 Simulation setup and results
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Figure 3.19: Simulation configuration.

The performances of the methods listed in Table (3.5) are compared via simu-

lation and experimental data. The simulation configuration is shown in Fig. 3.19,

which includes eight anchors and one source node. Forty nine locations of the

source node are uniformly distributed in a 3m × 3m space. The NLOS bias is
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assumed to be uniformly distributed over [0m, 3m], and is unknown to all esti-

mators. The mean-squared error (MSE) of the estimators is simulated in different

noise conditions. The weighting elements wi are all set to 1, the penalization factor

is set as ρ = 0.01, and µ is set as µ = 1.

Note that in the objective function in (3.29), timing information such as t0 and

ti, and the square of the speed of light c2 are directly involved in the calculation.

Since c2 is much greater than the difference between ti and t0, the calculation with

computers involving these might cause a loss in precision since a tiny change in t0

will cause large error in the final estimation. To avoid this potential precision loss,

we multiply ti by 108 while multiply c is scaled by 10−8. This normalization does

not affect the final result but can avoid the precision loss.

Table 3.5: Estimators considered in the performance comparison.
Estimator Description

PROPOSED The proposed estimator.
SDR-ROBUST The robust semidefinite relaxation for NLOS

mitigation in [91].
SDP The SDP estimator in [94].

ML-LOS The ML estimator with only LOS links in [89].

Simulation results are shown in Fig. (3.20), where

• Condition 1: Out of the 8 links, up to 5 are NLOS links;

• Condition 2: Out of the 8 links, up to 2 links are LOS links, which represents

an unrealistically severe NLOS situation.

The performance of ML-LOS, which assumes the best scenario where all links are

LOS links and ML estimator is used, is included as the benchmark. Note that the

ML-LOS is not applicable for Condition 2 since at least 3 links are required for

2-dimensional positioning.

It is observed from Fig. (3.20) that under Condition 1, the proposed estimator

significantly outperforms other convex optimization estimators, and its perfor-
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mance approaches that of ML-LOS when σ ≥ 0.3m. In Condition 2, the unre-

alistically severe NLOS situation, the proposed estimator still outperforms other

estimators when σ ≤ 0.4m, which represents an unrealistically large range error

(the maximum dimension of the space is 1.5m); after this point, SDR-ROBUST

starts to perform slightly better than the proposed method.

In addition, since the TDOA system has been transformed to be a TOA system,

the convex hull problem, reference selection challenges, and difficulties due to the

wider range of NLOS-caused ranging errors are completely avoided.

3.5.3.2 Experiment setup and results

A TDOA localization system with 80 MHz bandwidth Wi-Fi signal (IEEE 802.11ac)

is set up in a laboratory to test the proposed algorithm. The setup is shown in Fig.

3.21. Due to limited number of hardware components available, only four receivers

are used and all receivers are placed on the same wall (with the same x-coordinate).

This is set up to determine the y-coordinate of the target because the receivers

are placed on the same plane, and the receive antennas are separated by a maxi-

mum of 1.5m along the z-direction. If the x-coordinate of the target needs to be

estimated as well, more receivers can be placed along the y-direction. An iPhone

6 plus is used as the transmitter. NLOS propagation for each target position is

created by randomly blocking 0 to 4 links of the signal between the target and the

receivers. For each position, 500 sets of data are acquired. The average error and

its standard deviation (std) of the y-coordinate estimates are shown in Table (3.6).

Because of the receiver gain is very low, due to limitation of available hardware,

for some positions marked in red in Fig. 3.21, the received signals are too weak

to generate valid results for any algorithm. Thus, these positions are excluded in

the comparison. Also, since SDP-ROBUST requires prior information of the upper

bound of NLOS bias, or the maximal NLOS bias, in this experiment, it is chosen

to be 3 meters, which maximize its performance compared to other settings, like

2, 4 or 5 meters. These experimental results also show that the proposed scheme

has a superior performance than state-of-the-art existing schemes.
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Table 3.6: Average error and std for target positions in y-direction.
Proposed SDP SDP-ROBUST

Average error (cm) 105.4 155.1 135.3
Error std (cm) 130.8 181 142.2
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Figure 3.20: MSE results for different σ and NLOS conditions.
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Chapter 4: Image-tag-based indoor localization with deep learning

4.1 Introduction and motivation

In previous chapters, RF signal-based indoor localization with trilateration meth-

ods such as the TOA and TDOA, are discussed. However, in those methods, the

accuracy of distance related information is easily degraded, due to many RF signal

propagation related problems, including multipath problem, the NLOS problem

and the synchronization problem. In order to conquer those problems, several

algorithms have been proposed. Although the proposed algorithms are able to

mitigate the errors, it’s still difficult to completely eliminate such errors. In this

chapter, we resort to some other methods to obtain the distance and angle infor-

mation, like the image based method, so that those issues caused by the RF signal

propagation are completely avoided.

In fact, image-based methods such as the image-based indoor localization have

been existing for a while. The basic idea of image based localization is to localize

the camera through matching the cemera’s captured image to one of the images

in the database. The images in the database are previously captured within the

building and each is tagged with the location where they were captured. Therefore,

if the newly captured image can be matched to one image in the database, the

location of the camera can be estimated.

However, there are several common issues and drawbacks for the image match-

ing or feature matching method.

• One issue is that doing localization based on naturally-occurring features can

be computationally intensive, but we want to be able to run our application

on a mobile device with limited computing power.

• Another issue is that, in a large building, there can be many locations that
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have a similar appearance, thus potentially confusing an image-based recog-

nition system.

• The third issue is that it’s unreliable to the environmental changes since all

algorithms are based on natural features.

• The fourth is the heavy calculation required in the image or feature matching

system.

• The last but not the least issue is that it’s not scalable. If we want to extend

the coverage of an existing image based localization system, we need to train

the whole system again with the additional images.

The matching method in image based localization is not a trilateration related

method, as it doesn’t include the distance estimation. In this chapter, we propose

an image-tag-based localization, which tries to mimic the RF signal-based indoor

localization with trilateration to estimate the distance and angle related informa-

tion from the image. And then we use such information to estimate the target’s

location.

Compared to the RF signal-based indoor localization method, the signal prop-

agation related issues, such as multipath and NLOS effects, are completely avoided

in the distance estimation with proposed image-tag-based indoor localization.

Compared to existing image-based indoor localization, the proposed image-tag-

based localization has several advantages. In this method, the tags only need to

be trained for time, and then they can be used anywhere. The system is easy

to set up and simple in application. Since the tags can be distributed anywhere,

there are no blind spot problems and the accuracy can be guaranteed. Also, all

information is extracted from the segmented tags, and it has nothing to do with the

environment, and therefore it’s robust to environment change. Finally, if we have

enough trained tags, it’s easy to extend an existing system by simply distributing

additional tags to those extended parts without any additional training.
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4.2 Related works

Image-based indoor localization has drawn lots of attention [106]. Different kinds

of methods have been proposed, like image matching using SIFT features [4, 107,

108]. The basic idea behind is that a database of structured images of the indoor

environment is constructed by using image matching and the bundle adjustment

algorithm. Then, each image’s relative pose, like its position and orientation, is

estimated, and the semantic locations of images are tagged. The location of the

user can then be determined by comparing a photo taken by the mobile phone to

the database. This is done by combining quick image searching, matching, and

relative orientation. Although the searching is speeded up, constructing the visual

words is complex and costly. In other methods [109, 110], a topological map is

built from a series of images, a panoramic photo, or a video sequence, and then

is refined by learning vector quantization (LVQ). During the searching stage, the

nearest neighbor rule is used to detect the similar regions in the query image.

This method assumes that the navigation path is unique in the topological map.

Therefore, the query image can be misclassified in some cases.

However, there are several issues remaining in the image-based localization

method. The first is the blind spot issue. Since many parts of the building look

similar, algorithms can’t distinguish them and therefore will fail to match the

location correctly. The second issue is scalability. For example, if a new part of

a building needs to join the originally existing positioning system, the images for

the new parts need to be re-trained together with the old images in the database

to extract the features. Also, both feature extraction and matching processes

require heavy calculations. Besides, it’s not robust to environment changes. For

example, if the decoration of part of a building changes, the photos taken from that

part will not be able to match any images in the database. The fifth is the high

requirements for hardware, as all photos for each building should be pre-stored in

some server or database for further use. The sixth but not the least problematic

issue is the repeated heavy calculation tasks, as each building needs to repeat the

whole process (taking all photos, putting them in a database and extracting the
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features).

In addition, camera pose estimation is also used in the indoor localization

[111,116]. However, the accuracy of pose estimation relies on the accuracy of local

corner or point detection in the image. When the image is blurred or taken from

far away, the accuracy of corner/point detection will decrease and, therefore, the

accuracy of pose estimation decreases, which can be seen in the results of [111].

4.3 Image tag-based localization with deep learning

The whole pipeline of the proposed image tag based localization method is shown in

Fig. 4.1. At first, N different tags are designed, where N should be large enough to

cover different areas. Then three convolutional neural networks (CNN) are trained

to predict the tag ID, distance, and angle, respectively. Note that these tasks are

only necessary for one time, which means that once the tags are designed and the

CNN models are trained, it can be used anywhere without additional training.

Then, to build a localization system for a building, the tags are distributed within

the building–usually attached on the walls. When doing localization, as shown in

Fig. 4.2, a user in the building can randomly take a photo. If there are one or

more tags in the photo, they are segmented out from the photo and then used to

predict the tag ID, the distance, and the angle information with the previously

trained CNNs. The distance here refers to the distance between user (or camera)

and the tag, while the angle refers to the angle formed by the line perpendicular to

the tag and the line between the user and the tag, shown as d and θ, respectively,

in Fig. 4.2. Finally the location of the user can be estimated with the method

shown in Fig. 4.3, where an intersection between a semi-circle and a line could

be found and it’s the location of the user. If there are more than one tag in the

photo, the accuracy will improve since more information is available.

In the following subsections, each part of the proposed flow will be introduced

in order.
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Figure 4.1: The general flow for image tag based localization.

4.3.1 Tag design

As discussed before, the tag is used for information extraction through CNN. To

fit this idea, the design of the tag should meet the following requirements: 1) It’s

easy to create a large amount of different tags in order to cover a large area; 2) It

has simple features, so that it can be seen clearly from far distance; 3) It has non-

symmetric features, as the positive and negative angles need to be distinguished;

4) For reliable segmentation, the features should be shape-based, not color based.

Although it’s easier to segment the tag from the photo with color-based features,

which are used in [111], it’s not robust as the change of the lighting in the building

may cause the segmentation to fail; 5) It should have a common feature for all tags

for the purpose of tag segmentation, distance, and angle information extraction.

There are existing tags designed for different purposes. A list of current de-

tectors is quoted [119]: each of them uses a kind of visual tag with different main

characteristics. A few examples are shown in Fig. 4.4.

QR-Code: It uses a quadrilateral visual tag where the information is stored in

a binary pixel matrix from 1817 to 7089 characters, depending on the alphabet
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Figure 4.2: The general flow for image tag based localization.

Figure 4.3: Precisely locate the target with extracted information.

used. The main problem of its visual tag is its detection speed, which is rather

slow, due to the significant amount of information stored inside the visual tag.

Maxicode: This system, which is used in the postal service of the USA, is a

quadrilateral visual tag, where the information is stored in a hexagonal binary pixel

matrix. Unlike the previous one, its visual tag can store up to 93 characters, which

means it can be quickly detected, since the information stored is significantly less

in comparison with the previous one.

CyberCode: In this system, the information is stored in a binary pixel matrix.

Unlike the previous cases, its visual tag is designed to be detected quickly and
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Figure 4.4: Existing tags designed for different purposes [119].

robustly in front of significant perspective views.

ReacTIVision: This system, which is used in the famous Reactable, uses a very

simplistic quadrilateral visual tag, wherein the information is stored according to

the shape of its internal pattern.

ARToolkit: It’s considered the first in positioning applications and uses a

quadrilateral visual tag where the information is stored according to the shape

of its internal pattern. Moreover, the fact of using a detection system based on

the recognition of the pattern of its visual tag, pro-vokes that this pattern should

be at once complex, in terms of being unusual to find it in a natural environment,

and simple, in terms of being able to be quickly detected.

ARTag: This system, successor of the AR-ToolKit, uses a quadrilateral visual

tag, wherein the information is stored in a binary pixel matrix, which, in this case,

is protected by an FEC code. As in several previous cases, its visual tag is quick

to detect, due to the little information stored in the matrix. Furthermore, it is

robust against rotation and perspective views. In specific terms, its visual tag can

store up to 36 characters.

As discussed above, the QR-Code and Maxicode are only used for near distance

applications. While the other tags could be read from long distances, they either

miss a common feature or a non-symmetric feature. Motivated by the tags shown

in Fig. 4.4, we designed a vision tag that meets all requirements.

The designed tag is shown in Fig. 4.5. The upper left, non-symmetric square

feature is composed of small circles, which are designed for segmentation, distance,

and angle information extraction. As the square forms the boundary of the tag,

the segmentation is done by identifying the boundary. The reason for the use of
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Figure 4.5: Tag design.

small circles to form a square instead of using a square with solid lines is that

the small circles enrich the features. The rich features can help distinguish the

tag from the background and, therefore, simplify segmentation. However, overly

complex features will cause issues; for example, it can’t be seen clearly from a far

distance. So it’s a trade-off between the simple features and the visibility from a

far distance. Also, this square shape is the common part of all tags and its shape

and size will change when seen from different distances and angles. So the distance

and angle information is encoded in the distortion of the square.

The bottom left shows some example features that are used to fill the inner

blank space of the square to generate different tags through combination and per-

mutation of their features. Note that more such features can be designed and,

therefore, a large number of different tags can be designed easily. The right side

of the figure shows an example tag with filled features.

4.3.2 Tag segmentation

Tag segmentation is critical, since all the following processes are based on cor-

rect segmentation. Different kinds of approaches have been proposed to do image

segmentation and achieve a good performance, like the method using Deep Convo-

lutional Encoder-Decoder Architecture [112], which aims at precisely segmenting

the boundary of an object, like a dog, from an image. Instead of precisely segment-

ing the exact boundary of the square feature object, we only need to use a square

window to segment the square feature (note that the outer square feature could
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become a parallel, echelon, or other shape when viewed from different angles and

distance). And we want to make full use of this identical common feature for all

tags. The square, as shown in Fig. 4.5, was used to develop a simple, accurate, and

robust segmentation method. Another consideration is that there may be more

than one tag in a photo, and therefore each tag should be correctly segmented. A

good segmentation should be correct, complete, and precise, as shown in Fig. 4.6.

Figure 4.6: Example of segmented tags.

The best known template matching methods are SIFT [117] and SURF [118].

However, SIFT is not robust to lighting change and blurring, and it will include

the incomplete and occluded segmentations, which are not desired in the proposed

method. To correctly find a template in the target image, at least three key

points are required. In addition, additional operations are required to segment

multiple tags in an image. To overcome these issues, we develope an accurate

and robust segmentation method for possible multiple tags with three steps: key

feature searching, clustering, and prediction.

Key feature searching learns the key features in the template and then tries to

find out the similar features in the target image and locate them. As shown in the

top of Fig. 4.7, many key features are found (the dots in the top-right plot); among

them, part of the key features are caused by the environment instead of the tags.

In the second step, the hierarchical clustering method is employed to cluster these

dots [114]. With some proper threshold, several main clusters can be found. As

the example shown in the middle of Fig. 5, there are three main clusters, which are

labeled as c1, c2, and c3, respectively. Based on each cluster of dots, we segment

the patches out of the image with a square window that can exactly cover all key
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points. The segmented patches could be complete tags, incomplete tags, occluded

tags, or non-tags, as shown in Fig. 4.6. In the third step, a simple CNN is trained

to judge whether the segmented patch is a complete tag or not and it will keep

only the patches with complete tags and discard all the other patches.

To be specific, the two-class CNN mentioned here is basically a one class-CNN

problem, as it only tries to predict whether the input is a tag or not [120]. The

issue for one-class classification is that it’s easy to define what the class is. For

example, the input segmented patches are judged to be tags as long as they contain

a tag. However, it’s difficult to define what’s not a tag, as the environment can be

different and it’s therefore not able to emulate all scenarios that are not tags.

However, in our case, the not complete and occluded tags are important exam-

ples of the non-tag category. In the training process, lots of different kinds of not

complete and occluded examples are used to tell the CNN that these are non-tags

instead of tags.

4.3.3 Tag classification

Since tags are distributed in the building and associated with real positions, if the

segmented tags can be correctly identified, hence the general location of the camera

could be known. Since each tag has its own special features (or a combination of

features), an exact mapping between tags and ID can be built. To identify each

tag, neural network with manually made features are used in [111]. Those manually

made features are specially designed for their tags and are not guaranteed to be

the best features. To improve the performance, a CNN, which is able to extract

the required features, is trained to predict the ID of the segmented tag. The

configuration for the classification-based CNN is shown on the left side of Fig. 4.8.

4.3.4 Distance and angle extraction

As discussed in previous sections, the distance and angle information are to be

extracted from the segmented tag, as shown in Fig. 4.2.
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Figure 4.7: Tag segmentation.

The distance refers to the distance between the tag and the camera. It’s under-

standable that there is a certain mapping relationship between the distance and

the shape and largeness of the tag that appears in the photo, even when the photo

is taken from different angles. To be specific, the mapping between the tags and

distances is a many-to-one function mapping; mathematically, it’s defined as

d = f(tagd), (4.1a)

d 6= f(tagd′ ), d
′ 6= d, (4.1b)
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Figure 4.8: Configuration for the classification and regression based CNN.

where d is the real distance between the tag and the camera and tagd represents

the tags taken at distance d. Note that d is not related to the angles, θ, as shown

in Fig. 4.3.

An example of such mapping is shown in Fig. 4.9, where the top tags are

taken from 3 meters away while the bottom ones are taken from 7 meters away at

different angles.

Therefore, theoretically, a function, as Eq. (4.1) exists that can find the dis-

tance through each tag. Unfortunately, such a function is difficult to build math-

ematically due to the complexity of the changing in the shape of the tag in the
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image. A good way is to approximate this function through neural networks, like

CNN, which is a good candidate, as it’s able to extract the required features au-

tomatically. Since the distance is a continuous value, the regression-based CNN

could be used.

Based on the above analysis, if enough and correct data and labels are provided,

the CNN should be able to approximate the function in Eq. (4.1) with infinitely

small error.

Figure 4.9: An example for the mapping relationship between distance and the
size of the segmented tag.

For the angle information, some mapping relation between the angle (θ) and

the shape of the tag in the photo can also be observed, which can be seen in Fig.

4.9. However, the shape of the tag in the image is not only affected by the angle,

θ, it’s also affected by the rotation angle of the phone, β, as shown in Fig. 4.10.

So, the mapping between the angle, θ, and the shape of the tag and rotation

angle, β, is a function mapping that can be mathimatically described as

θ = f(tagθ, β), (4.2a)

θ 6= f(tagθ′ , β
′
), θ 6= θ

′
, β 6= β

′
, (4.2b)

where tagθ represents the tag taken at the angle of θ.

One issue for this mapping is that the rotation angle, β, is difficult to obtain.

However, when the camera is rotated in different angles, the tag will locate in
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Figure 4.10: Camera rotation. Left: without rotation; Right: with rotation β.

different locations in the image, as shown in Fig. 4.11. Also, the mapping between

the rotation angle, β, and the location of the tag in the image is a one-to-one

function mapping:

β = f(tagl), (4.3)

where the tagl represents the location of tag in the image. Therefore, we have:

θ = f(tagθ, tagl), (4.4a)

θ 6= f(tagθ′ , tagl′ ), θ 6= θ
′
, tagl 6= tagl′ . (4.4b)

Based on the above analysis, the mapping between the tag and the location of

the tag in the image and the angle, θ, is a function mapping. Similar to the

distance extraction, instead of building an exact function mathematically, we try

to approximate it with a CNN.

Figure 4.11: An example for rotating the phone horizontally when fixing the loca-
tion of the phone and the tag on the wall.

To clearly tell the CNN the location of the tag in the image, we manually make
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an image, as shown in the left part of Fig. 4.12, where some black points in a blank

(white color) image are used to represent the location of the tag in an image. The

size of the manually-made image is shrunk to the same size of the segmented tag, so

that they can be concatenated together and passed to CNN. Since we have already

segmented the tag from the photo in previous sections, we have already known the

location of the tag in the photo and therefore, this manually-made image could be

easily done.

Figure 4.12: Manually-made image for CNN. Left: An example for a manually-
made, black-and-white image to represent the location of the tag in the photo.
Right: Concatenate the manually-made image and the segmented tag as the input
to CNN.

4.3.5 Location estimation

With the tag ID, distance, and angle information, the location of the camera could

be estimated using the method shown in Fig. 4.3. Note that, if more than one tag

appears in a photo, the accuracy of location estimation could be improved.

4.4 Experiments and results

To validate these ideas and methods, we conducted experiments and tests in our

lab according to the flow in Fig. 4.1.

The tags with a size of 19cm× 19cm were printed with black-and-white color,



96

as shown in Fig. 4.5. To test the tag segmentation and tag classification, only

10 different tags were used, due to the time limits. In the testing, each tag was

attached on the wall in the lab and around 1000 photos were taken for each tag

from different distances and angles with an iPhone 5S. To speed up the photo

taking process, the burst function in iPhone is used. However, there were many

blurred images with the burst function.

In the segmentation, since the tag in the photo could be small or large and have

different shapes, a square shape was used to segment the tag from the photo. As

the segmented images vary in size, they were padded with some value (e.g., 128),

to the same dimension (e.g., 198× 198 pixels), as shown in the bottom of Fig. 4.9,

where the small dark square is the segmented image, while the outer gray square

is padded with some value.

In the data set, there are around 10,000 photos for 10 tags. After discarding

about 500 bad images that couldn’t be recognized by average human sight capa-

bility, all photos were segmented using the proposed methods. There were about

9,100 photos that could be correctly segmented, which is about 96% of the total

photos. For the failed cases, many of them were blurred photos.

After the segmentation, each of the segmented tags is labeled with its own ID,

or the label for CNN. The classification-based CNN, as shown in the left part of

Fig. 4.8, is trained with 80% of the segmented tags and validated on the remaining

20%. The validation accuracy is around 98%. This accuracy could be improved

further with larger training sets, as less than 1,000 training data per class is a

small data set compared to the Cifar10 and ImageNet datasets.

To train the regression-based CNN for distance and angle prediction, an ex-

periment has was set up in our lab, as shown in Fig. 4.13, where there are 117

training positions and 46 testing positions. Due to the space limitation, the maxi-

mal distance was around 8 meters. For each training and testing position, around

300 photos were taken with the burst function in iPhone 5S. Therefore, there were

around 30,000 photos for training and 10,000 photos for testing.

In the training, each tag in the photo was segmented and labeled with its real
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Figure 4.13: The setup for distance and angle extraction training and testing.

distance and angle. Note that the distance and angle were normalized to within

the range of [0, 1] to facilitate the learning. For the distance, it was normalized

by 10 meters; for example the original 5 meters in distance was normalized as 0.5.

And the angle was normalized by 180◦ (i.e., the 90◦ was normalized as 0.5).

All data for training (here refers to the segmented tags) were normalized with

general mean and variance calculated from all training data. While in validation,

all testing data were normalized with the mean and variance from training data.

Both distance and angle were trained with the same regression-based CNN

architecture, as shown in the right side of Fig. 4.8, and with the manually-made

image, as shown in Fig. 4.12. The segmented tag and the manually-made image

are both grey images with only one channel. Note that the distance and angle are

trained separately. In addition, to simplify the experiments, we only consider the

two-dimensional case, or we only consider the x-axis and y-axis and discard the

z-axis by putting the tag and the phone on the same height.

The testing results for distance and angle are shown in Fig. 4.14 and 4.15,
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Figure 4.14: The testing results for distance extraction.

respectively.

The distance prediction, as shown in Fig. 4.14, has a low mean of absolute

error, most of which is less than 10 centimeters (cm). It also has a low standard

deviation (std).

The mean of absolute error for angle prediction, as shown in Fig. 4.15, is less

than 6◦, with half of them less than 3◦. The std of angle error is around 0◦ to 6◦,

with a burst of error of 12◦ when the angle is 90◦. In general, the error of angle

increases when the camera is around 90◦, probably because in these areas, the

change of the shape in the tag is small and difficult to recognize and distinguish

by the CNN.

To test the localization estimation, the experiments with one or two tags were

set up in the lab.

In one tag scenario, each photo contain one tag. The position of the phone

was found through the intersection of the semi-circle and the line, as shown in

Fig. 4.3. The configuration and the results for one tag location testing is shown in

Fig. 4.16, where the dots represent the testing locations. For each testing location,

around 100 photo were taken. From the testing results, which are shown as the

red triangles in the figure, the average location error is around 1 meter. However,
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Figure 4.15: The testing results for angle extraction.

the location error around the 90◦ direction could be up to nearly 2 meters, as the

angle prediction in this area has a relatively higher error. Note that the location

error will also increase with the distance, as the error of angle will be enlarged

along with the distance.

In two tag scenarios, each photo taken contains two tags. So, for each testing

position, two distance and two angle information could be used to estimate the

location. In the estimation, the position is found through the intersections of two

circles and the angle information is used to distinguish which intersection is the

one we are looking for, as there are two intersections for two intersected circles.

Due to the high accuracy and robustness of the distance prediction, the average

location error is less than 20cm.

4.5 Performance analysis

As discussed in previous sections, both distance, d, and the angle, θ, have their

own function mapping. In theory, it’s possible to approximate the function with

small enough errors. The possible causes for the errors in the results in the last

section, especially for the error of the angle are discussed below.

Firstly, the training data is not enough. Both distance and angle are continuous

value. However, for the distance, only the data that locates on the limit locations
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Figure 4.16: The location estimation results for only one tag.

are given, like 2m, 2.5m, 3m, etc. For the data about angle, 15◦ is used to sample

the data from 30◦ to 150◦. The potential method to improve the performance is

to increase the sampling locations for both distance and angle (e.g., the 5◦ could

be used to sample the angle data).

Secondly, as the angle is related to the shape instead of the largeness of the tag,

it’s possible to up-sample the tag when the tag is small or far away, to increase its

resolution and therefore to help the CNN perform better.

Thirdly, it would be helpful to increase the measurement accuracy of the data

with such information the real distance or angle of the sampled data, as the errors

in Fig. (4.14) and (4.15) are not consistent, especially for the error caused by the

angle (e.g., the mean of absolute error for the angle from 40◦ to 80◦ jumps between

0◦ to around 4◦, which is more likely caused by measurement errors).
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Figure 4.17: The location estimation results for two tags.

4.6 Conclusion and discussion

In this chapter, an image tag-based method for indoor localization is proposed. It

trains several CNNs to classify the tag ID and to predict the distance and angle

information of the segmented tag in the photo taken by the camera. With this

information, the location of the user could be exactly identified.

It has several advantages over existing image-based localization methods. Firstly,

it doesn’t have the blind spot issue; Secondly, it only needs to be trained one time

and then can be used anywhere; Thirdly, it’s scalable; Fourthly, the calculation

requirements for the predictions are not high compared to those of image match-

ing in image-based localization. Fifthly, it’s robust to environmental changes. In

addition, the localization accuracy could be high if the tags are densely distributed.
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These ideas are validated by several experiments set up in the lab. The local-

ization experiments show that with one tag only, the average localization accuracy

is around 1 meter. If two tags are used, the average localization accuracy could be

less than 20cm.

Consequently, the experimental results prove that the proposed method is prac-

tical and provides good performance.

However, there are still several issues needs to be resolved in the future. The

accuracy of the angle should be improved further, as the localization error caused

by the angle will increase with distance. Also, there may be cases that no tags

are taken in the photo if the tags are not so densely distributed in a building. A

possibly practical application is that it can be combined with the inertial system

in the phone to achieve an accurate and simple localization system [115]. The

advantage of inertial sensor-based localization is that it can track the phone from a

known position without any additional information. But it needs a known position

from the start, and the degree of error will increase and accumulate as the track

lengthens. Since the proposed system provides accurate positioning in a two-tag

case, these accurate positions can serve as the starting known positions for the

inertial sensors to track the phone.



103

Chapter 5: Conclusion and future works

5.1 Conclusion

This dissertation proposes solutions to address the technical challenges associated

with indoor localization using trilateration, which uses geometric distance to ob-

tain the location of the user. In RF signal-based indoor localization, TOA and

TDOA are widely used to determine the distance related information regarding

the transmitter and receiver. However, several issues remain unsolved, like the

synchronization and NLOS problems, both of which are caused by the signal prop-

agation nature of RF.

The first part of this dissertation focuses on resolving the issues of synchro-

nization and NLOS. For the synchronization problem, we propose an algorithm to

resolve the synchronization problem in the high speed multi-channel data acquisi-

tion unit in a FPGA. Armed with this algorithm, the sampling unit can sample four

channel of input signal at the speed of 3 Gsps while they are synchronized. Also,

we propose a synchronization-free positioning network architecture that eliminates

the need of timing synchronization.

For the NLOS problem, which greatly degrades the positioning performance,

we propose a SDP with soft-minimal method to eliminate the infeasibility problem.

To further mitigate the NLOS error, an NLOS link identification method with bias

deduction to mitigate the NLOS error in TOA systems. For TDOA systems, NLOS

mitigation is more difficult, since a reference should be fixed first. To overcome

this problem, we propose a method to transform the TDOA architecture into a

TOA one, and then form an SDP problem with new constraints. The proposed

methods outperform the existing algorithms in both simulation and experiments.

To obtain the distance information, the RF-based techniques, like the TOA

and TDOA, encountered several difficulties, as discussed above. We propose an
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image tag-based technique to obtain the distance and angle information, which can

completely avoid such issues that are common in RF-based localization and can

increase the positioning accuracy. In the proposed method, after the segmentation

of the tags from the image, information such as the tag ID, distance, and angle

with reference to the camera are retrieved through deep neural networks. The

camera position is finally reliably and accurately estimated from such retrieved

information.

5.2 Future works

In this dissertation, the indoor localization with trilateration is discussed with RF

signal and image processing, respectively. For RF signal based indoor localization,

solutions to synchronization and NLOS problems are proposed. However, several

issues/problems still need to be addressed: 1) In severe NLOS condition, it’s still

difficult to improve the localization accuracy. 2) In the synchronization free model,

since the repeater is introduced, which complicates the whole system, it’s necessary

to discern how to simplify the system.

For the image-tag-based localization, we only study the 2D version. It’s valu-

able to extend this to a 3D version. Since the system is trained and tested with one

specific camera, it’s necessary to figure out a way to extend this system to other

cameras with different parameters, or even to the same camera but with slight

differences caused by manufacturing factors. In the domain of indoor localization,

no single technology dominates, since different kinds of technologies have their own

advantages over others. In addition, several measures can be taken to perfect the

proposed system. Firstly, it’s helpful to create more training data. Both distance

and angle are continuous values. However, for the distance, only the data that

locates on the limited locations are given, like 2m , 2.5m, 3m, etc. For the data of

the angle, 15◦ is used to sample the data from 30◦ to 150◦. The potential method

to improve the performance is to increase the sampling locations for both distance

and angles (e.g., the 5◦ could be used to sample the angle data). Secondly, as

the angle is related to the shape instead of the largeness of the tag, it’s possible
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to up-sample the tag when the tag is small or is taken from far away, to increase

its resolution and, therefore, help the CNN perform better. Thirdly, it would be

helpful to increase the measurement accuracy of the data, like the real distance or

angle of the sampled data, as the errors in Figs. (4.14) and (4.15) are not consis-

tent, especially for the error of the angle (e.g., the mean of absolute error for the

angle from 40◦ to 80◦ jumps between 0◦ and around 4◦, which is more likely caused

by measurement errors).
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