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Dot mapping is a traditional method for visualizing quantitative data, but current automated 

dot mapping techniques are limited. The most common automated method places dots 

pseudo-randomly within enumeration areas, which can result in overlapping dots and very 

dense dot clusters for areas with large values. These issues affect users’ ability to estimate 

values. Graduated dot maps use dots with different sizes that represent different values. 

With graduated dot maps the number of dots on a map is smaller and the likelihood of 

overlapping dots is smaller. This research introduces an automated method of generating 

graduated dot maps that arranges dots with blue noise patterns to avoid overlapping dots 

and uses clustering algorithms to replace densely-packed dots with dots of larger sizes. A 

user study comparing graduated dot maps, pseudo-random dot maps, blue noise dot maps, 

and area-proportional circle maps with almost 300 participants was conducted. Results 

indicate that map-users can interpret graduated dot maps more accurately than the other 

map types. In addition, map users appear to prefer graduated dot maps to the other map 

types. These findings suggest that graduated dot maps are more effective and more appealing 

than conventional dot maps. 
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1. Introduction 

Dot mapping is a method of cartographic symbolization for presenting quantitative 

information. Dot maps have a distinct advantage over other quantitative symbolization 

methods because dot maps depict both density and absolute values. Individual dots can be 

counted or estimated while the distances between dots shows the density of the 

phenomenon.  

The selection of dot size is an important consideration when designing a dot map. Dots that 

are too small can make a distribution seem sparse and insignificant and dots that are very 

large can make a distribution seem excessively dense (Robinson et al. 1995, p. 498). The 

selection of a dot unit value is equally as important. If the unit value is too large, no dots will 

be placed in areas with lower quantities, and if the unit value is too small, dots may coalesce 

to form large dark regions (Mackay 1949). Traditionally, there are two divergent schools of 

thought (Monkhouse and Wilkinson 1978, p. 27): Some posit that dot sizes and values 

should be chosen such that the dots just begin to coalesce in the area with the highest 

density of dots (Dent 1985, p.161); others argue that dots should not touch to ensure dots 

are easily countable (Imhof 1972). Hey (2012) states that dot overlap reduces the legibility of 

the map and “the overlap of dots interferes with every attempt at counting the dots”. This is 

a relevant argument, but two problems emerge: (1) dot coalescence cannot be avoided in 

cases where outliers with extremely high values are present; and (2) algorithms in commonly 

available software do not allow the user to control the coalescence of dots. Furthermore, 

automated methods rely upon randomly placing dots, which can lead to artificial local 

clusters of dots. This clustering is often misleading, as the dot patterns suggest a spatial 

pattern in the data that does not exist. 

Graduated dot maps improve upon dot maps by addressing issues of countability of large 

numbers of dots, and the coalescence of dots. Graduated dot maps use classes of differing 

dot sizes, each of which corresponds to a proportionally larger unit value. The graduated dot 

map in Figure 1, for example, uses three dot sizes to visualize a spatial distribution that 
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varies between very dense and very sparse areas. The large dots clearly illustrate pockets of 

high concentration, while the small dots effectively illustrate the sparse presence of the 

phenomenon along valley bottoms throughout the mapped area. Conceptually, there are two 

key advantages to graduated dot maps. First, graduated dot maps reduce the number of dots, 

so errors in estimation are expected to be smaller. Second, small values can be mapped 

because multiple dot unit values are used. Despite these advantages, the primary reason this 

technique is not widely used is due to a lack of both available software and algorithmic 

methodology described in the literature. Most cartographic textbooks that discuss dot maps 

do not consider graduated dot maps (for example, Tyner 2010, Slocum et al. 2009, Dent et 

al. 2009, Robinson et al. 1995) or do so only very scarcely (Kraak and Ormeling 2011, Hake 

et al. 2002). An exception is Imhof (1972) who discusses design consideration for the 

combination of graduated dot maps with area features and proportional diagrams. 

The goal of this research is to propose a methodology for creating graduated dot maps, 

evaluate their performance compared to conventional dot maps and area-proportional circle 

maps, and test whether users prefer graduated dot maps to other visualization techniques. 

The proposed algorithmic method for creating graduated dot maps does not pseudo-

randomly place dots, but arranges dots in a distribution that exhibits blue noise 

characteristics, wherein dots have “a large mutual distance and no apparent regularity 

artifacts” (Balzer et al. 2009). Regions of dense coalescing dots are identified using a 

clustering algorithm and are replaced with dots of a larger size and unit value.  

A user study with almost 300 participants was conducted to evaluate graduated dot maps 

compared to random dot maps, dot maps with blue noise patterns, and area-proportional 

circle maps. Results of the user study indicate that graduated dot maps are the preferred 

method and they do outperform conventional dot maps. 
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Figure 1: Graduated dot map with three dot sizes for 200, 1000 and 5000 swine (©Atlas of 
Switzerland, sheet 51, 1977, www.atlasofswitzerland.ch). 

2. Literature Review 

It is not clear when the first graduated dot map was produced. Robinson (1982) discusses a 

map by Petermann (1857) that shows the population of Transylvania using area-proportional 

circles, which were placed to illustrate the population distribution of all towns and 

farmsteads. While Petermann’s map is a hybrid between a dot map and an area-proportional 

symbol map, various cartographers have used graduated dot maps since then. An early 

example is a map by Penck (1921, described by Herb 1997) showing the population of 

Silesia; a later exemplary set of maps is included in the Atlas of Switzerland (1977) showing 

farm animals (Figure 1). 

Various manual and automated techniques have been proposed for conventional dot 

mapping. In addition, a number of studies have addressed the design considerations and 

perceptual implications of conventional dot maps. These studies have resulted in a set of 

design principles and tools to develop dot maps. 
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2.1. Dot Mapping Techniques 

When dots are placed manually, cartographers generally use one of three approaches: 

uniform, geographically weighted, and geographically based (Slocum et al. 2009, p. 322). 

When dots are uniformly distributed, one technique consists of placing dots near the center 

of the enumeration area, with each successive dot being placed in the largest remaining space 

(Mackay 1949). This is a choropleth mapping technique that is valuable for bivariate or 

multivariate maps when area color is used to depict different information. This method has 

the disadvantage that boundaries of enumeration areas are easily detected and the geographic 

distribution inside enumeration areas is not represented. In the geographically weighted 

approach, dots are placed such that they are shifted closer to neighboring enumeration areas 

of higher value, which creates the impression of a continuous phenomena being mapped 

because enumeration area boundaries are less visible. The geographically based approach 

places dots based on the use of ancillary data such as land cover information. Although these 

methods are common in manual cartography, automated techniques that apply these three 

approaches are not widely available.  

The most common automated method of producing dot maps is to pseudo-randomly place 

dots in an enumeration area. This method uses a random number generator to calculate 

coordinates of dot locations. Random dot placement is not a common approach in manual 

cartography because there is no evidence to support random placement and it can lead to 

unrealistic clusters and gaps in the dot pattern that imply spatial patterns that do not exist 

(Slocum et al. 2009). Dent et al. (2009) recommend the use of zones of exclusion, which 

follows the geographically based approach and is available in common GIS software. Zones 

of exclusion are created with ancillary data to define regions where dots are not to be placed.  

Prior to 1949, cartographers selected dot size, unit value, and placement without tools to 

assist them. In a landmark study, J. Ross Mackay (1949) developed a nomograph to assist in 

the selection of dot size and value. With the nomograph, a ratio of dot size to unit value is 

identified that Mackay calls “the zone of coalescence”, which enables cartographers to 

estimate the point at which dots will begin to coalesce, given the size and number of dots 
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per square inch. Although the nomograph has been a widely used tool in cartography, 

Kimerling (2009) points out that the nomograph has “serious drawbacks in the modern age 

of computer cartography”. He extends Mackay’s nomograph to include an automated 

method to define the amount of dot overlap. 

Another method proposed by Lavin (1986) addresses the problem of clusters and gaps in 

spacing of dots. His dot-density shading technique does not assign a specific unit value to 

dots; information can only be derived through dot numerousness and spacing (Lavin 1986). 

Lavin’s method is well suited for continuous data, as he suggests, but exact data values 

cannot be extracted, despite dots being a discrete symbol. He argues that the sheer 

numerousness of dots in various proximities gives the impression of continually varying 

tonal values, even though the texture is very coarse.  

Based on the suggestion that overlap of dots interferes with countability of dots, Hey (2012) 

proposed a method to produce dot maps with spiral patterns that do not have overlapping 

dots. An Archimedean spiral pattern, which is characterized by equidistant change between 

each spiral revolution, is used to determine the placement of “spiral arms”, wherein multiple 

curves of dots are placed such that dots radiate out from a single point. Although dots do 

not overlap, the dot clusters still have a very regular appearance. Hey and Bill (2014) refined 

the spiral-inspired method by introducing a new dot arrangement, addressing the regular 

appearance. The method is based on calculating potential dot positions for a given area. 

Larger dots are to reserve the space in which smaller real dots may wander. When calculating 

the final dot positions on the map, dots are shifted within the reserved space for potential 

dots to reduce pattern regularity. Dots are allowed to touch but do not overlap. 

Berg et al. (2004) studied a problem relating to dot numerousness that has utility in dot 

mapping. The primary question they study is: Given a point set representing a certain 

distribution, how can it be automatically simplified, generating a smaller point set? Most 

relevant to our research, Berg et al. (2004) tested several heuristic algorithms to simplify a 

point set and generate an approximation of the original dots with the smallest error. Tests 
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included two groups of heuristics: (1) iterative algorithms and (2) clustering algorithms. The 

most performant of iterative algorithms with the best approximation of the original points 

were “swapping” heuristics, though they require a good starting configuration (Berg et al. 

2004). The second group tested three clustering algorithms: (1) Rows and Columns; (2) 

Quadtrees; and (3) Dobkin-Tal, each of which require the number of groups as a parameter. 

Results indicate that the “rows and columns” heuristic is a very fast method of obtaining 

good quality solutions (Berg et al. 2004). Although these methods could be applied to dot 

mapping, for our research, the method of finding clusters in dots should not require the user 

to predefine the number of clusters. 

Graphical design principles for generalizing dot maps have been studied by Spiess (1990), 

and Yan and Weibel (2008) have developed an algorithm for point cluster generalization. 

They treat four basic types of information including statistical, metric, thematic, and 

topological information. The primary objective is to ensure that the four types of 

information are transmitted from the original data to the generalized result. Based on 

Voronoi diagrams, the method follows three basic procedures: (1) compute a distribution 

range, which defines the area that dots are potentially placed; (2) delete dots based on their 

selection probability; and (3) determine the number of dots in the final set. The algorithm 

presents a potential approach to generalizing clusters in graduated dot mapping applications. 

2.2. Dot Map Readability 

User studies about dot maps have largely focused on user perception of dots. Provin (1977) 

indicates that most early work in the area of dot perception was done by psychologists. 

Freeman (1911) indicated that adults were far better at estimating numbers than children 

when dots were irregularly spaced. According to Taves (1941), when small numbers of dots 

were present, users were able to accurately estimate dots however, when seven or more dots 

were present, user accuracy decreased and dots were underestimated. Kaufman et al. (1949) 

reaffirmed findings of Taves (1941) and introduced the concept of subitizing to describe 

how users perceive small numbers of stimuli. 
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Several cartographic studies dealing specifically with dot maps have been carried out. Olson 

(1975) tested users ability to estimate dot density, and found that underestimation of dot 

number is all but universal (Provin 1977). Mashoka et al. (1986) compare readability and 

preference of dot maps versus proportional circle maps. Their findings further demonstrate 

that users underestimate numbers of dots and that proportional circle maps were favored 

over dot maps for their accuracy and simplicity.  

3. Method for Creating Graduated Dot Maps 

The proposed method for creating graduated dot maps starts by creating a dot map with 

pseudo-random distribution. The pseudo-randomly placed dots are then rearranged in a 

blue-noise pattern with the capacity-constrained Voronoi tessellation (CCVT) algorithm, 

which disperses dense groups of dots such that they have a larger mutual distance while 

maintaining the density distribution of the original dots. This step does not eliminate 

coalescing dots in areas where dots are dense. Next, the Density-based spatial clustering of 

applications with noise (DBSCAN) algorithm is used to identify and subsequently remove 

dense clusters of dots. The removed dots are then used in another iteration of the CCVT 

blue-noise algorithm to create the next class of dots of a larger size and unit value. This 

process is repeated, as many times as there are sizes of dots. 

3.1. Creating a Blue-noise Dot Pattern 

The term blue noise refers to an even, isotropic, yet unstructured distribution of points (de 

Goes et al. 2012). This distribution exhibits a spectral density distribution with minimal low 

frequency components, no spikes in power and translates to dots having “a large mutual 

distance and no apparent regularity artifacts” (Balzer et al. 2009). Blue noise sampling 

distributions are ubiquitous in computer graphics (Pharr and Humphreys 2004) and have 

useful perceptual characteristics that we utilize for creating dot maps (Figure 2). Because blue 

noise distributions have well-dispersed dots, we are able to avoid local clusters of dots that 

would imply fictitious spatial patterns.  
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We use the CCVT algorithm, as proposed by Balzer et al. (2009), to produce blue noise 

patterns on dot maps. This particular algorithm provides three important functions for the 

creation of graduated dot maps: (1) it reduces the number of dots; (2) optimizes the 

distribution of points; and (3) maintains the density distribution of the original dots. The 

property of reducing the number of dots is important because it is used to develop each dot 

class. The CCVT partitions space into Voronoi regions and iteratively optimizes the 

placement of dots. Balzer et al. (2009) note that the number of iterations has a direct effect 

on the quality of the distribution of dots, pointing out “if the method is not stopped at a 

suitable iteration step, the resulting point distributions will develop regularity artifacts”. In 

order to avoid these regularities and stop the algorithm, Balzer et al. (2009) introduce a 

“capacity-constraint”, which simultaneously reduces the number of dots for a region while 

maintaining the original density of the region. The capacity-constraint is a modifiable 

parameter k that we use to reduce the number of dots. 

 
Figure 2: Dots with a pseudo-random distribution (left); dots with blue-noise pattern (right). 
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3.2. Identifying Dot Clusters 

The DBSCAN clustering algorithm was proposed by Ester et al. (1996), and has several 

advantages over other clustering algorithms for this application. Many clustering algorithms 

require the number of desired clusters as an input parameter, but in the case of identifying 

spatial dot clusters, the number of clusters is unknown. Moreover, other techniques require a 

search distance to identify clusters, which is also an impractical requirement. DBSCAN is a 

density-based clustering algorithm that requires two parameters. The user selects a density 

threshold and the minimum number of dots-per-cluster as input parameters. The minimum 

number of dots parameter is crucial because it determines the minimum number of dots 

required to constitute a cluster. For example, if the minimum number of dots is four, then 

three dots that coalesce will not be identified as a cluster and will remain in the distribution. 

We set the minimum dots parameter to two dots, in an attempt to not allow any dots to 

coalesce. 

The DBSCAN clustering algorithm uses the concept of core and density-reachable points, 

wherein an arbitrary starting point is selected and its core points are identified using the 

density threshold. Based upon the minimum number of points chosen, if there is a sufficient 

number of density-reachable points, a cluster is identified, otherwise the points are 

considered noise. Although points can be originally classified as noise, they can then be 

reclassified to a cluster point if a cluster is density-reachable. The algorithm iterates through 

all points until each point is identified as a cluster point or noise point. The primary 

advantages of the DBSCAN algorithm are that we only need to specify the density of dots 

that constitute a cluster and can discover clusters of arbitrary shape (Ester et al. 1996).  

3.3. Combining CCVT Blue-noise and DBSCAN Clustering Algorithms 

The CCVT blue-noise algorithm and the DBSCAN clustering algorithm are used iteratively 

to produce a graduated dot map. The input for this algorithm consists of m enumeration 

areas with values vm to be mapped, and n dot unit values dn ordered in increasing order. The 

output is n sets sn of dot coordinates. 
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The initializing step produces a set of pseudo-random dot locations s0. The following CCVT 

blue-noise algorithm will reduce the number of dots by a factor k0, so the dot unit value d0 

for s0 is d0 = d1 / k0. For example, if the unit value of the smallest class of dots is to be 2000 

units and k0 is 2, the dot value d0 is 1000. The number of pseudo-randomly placed dots per 

enumeration area is vm / d0. 

The following procedure is then iteratively applied to create the n output dot sets. The 

CCVT blue-noise algorithm is run on sn with the reduction factor kn. This results in a 

reduction of the number of dots in sn by a factor of kn. Dots in sn have blue-noise 

characteristics, and are potentially arranged in dense clusters. The DBSCAN clustering 

algorithm is run on sn, which marks each dot as pertaining to a cluster or as a noise dot. Dots 

that are part of a cluster are removed from sn and added to sn+1. The final set sn only contains 

noise dots. The reduction factor for the next iteration is computed with kn+1 = dn+1 / dn. 

This procedure is executed n times, creating the sets sn. Note that for the last set the 

DBSCAN clustering algorithm is not run and no clustered dots are removed. The user 

selects the number n of dot classes and the dot unit values dn. Although it is possible to 

produce many classes of dot sizes, we have found that three classes is a good number in 

order to avoid confounding users’ ability to differentiate between dot sizes. The reduction 

factor for the initializing step k0 is the only parameter that users cannot be expected to be 

specify. In our experiments we used k0 = 2, which resulted in visually satisfactory results.  

Figure 3a shows the initialization step, where the set s0 of pseudo-randomly distributed dots 

is produced. The following CCVT blue-noise algorithm reduces the number of dots in s0 by 

half and stores them in s1, the unit value is d1, and the distribution has blue noise 

characteristics, shown in Figure 3b. The iterative procedure of identifying clusters and 

replacing clustered dots with fewer, larger dots, begins with using the DBSCAN clustering 

algorithm to identify clusters from sn, shown in Figure 4a. Once these dots are identified, 

they are removed from sn and added to sn+1. Dots from sn+1 are used for the next iteration. 

Figure 4b shows the result of the next iteration, where the sn dots from the first iteration 
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were retained and the dots from sn+1 were run through the algorithm again. Figure 5 shows 

the final result of two iterations, which produced three dot size classes. 

 
Figure 3a: Pseudo-random dots for the initialization step (left); Figure 3b: CCVT algorithm 
reduces the number of dots by a factor of two and creates a blue-noise distribution (right) 

 
Figure 4a: Clusters identified by the DBSCAN algorithm in red (left); Figure 4b: Dot cluster 
replacements by the CCVT blue-noise algorithm (right). 
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Figure 5: Final graduated dot map with three classes. 

3.4. User Evaluation 

The objectives of a user study were to evaluate estimation accuracy and user preferences of 

graduated dot maps compared to other map types. We hypothesize that users will more 

accurately estimate values for graduated dot maps than the other map types and that users 

will prefer graduated dot maps over the other map types. The user study compared four map 

types: dot maps with a pseudo-random dot distribution, dot maps with a blue noise dot 

distribution, graduated dot maps, and area-proportional circle maps. Perceptual scaling has 

been applied to the area-proportional circle maps. Proposed by J.J. Flannery, perceptual 
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scaling allows for compensation of the expected value underestimation (Flannery 1971, 

Slocum et al. 2009, Dent et al. 2009). The graduated dot maps in the user study were created 

with the described method, and census tract population data were used to place pseudo-

random dots for the initialization step.  

The user study was built with the Qualtrics survey platform and participants were recruited 

via Amazon Mechanical Turk, a web-based crowdsourcing service where users complete 

tasks or surveys and receive micro-payments. Heer and Bostock (2010) found that 

crowdsourcing is viable for testing graphic perception and provides high-quality responses. 

Respondents were paid $1.00 for completing the survey. The user study consisted of a 

demographic survey, a short map reading tutorial, a series of timed map-reading tasks, a map 

preference survey, and a question whether participants attempted to count or estimate dots. 

Users were not permitted to go back to any questions once a response was submitted. For 

the timed map-reading tasks, participants were shown dot maps with pseudo-random 

distributions, dot maps with blue noise distributions, graduated dot maps, and area 

proportional circle maps. The preference questions evaluated each of the map types for 

clarity and preference. 

The demographic survey collected information regarding participants’ gender, age, country 

of residence, and education level and was followed by a tutorial covering the map-reading 

tasks. The tutorial included explanations of how to read conventional dot maps, graduated 

dot maps, and area-proportional symbol maps and showed a legend for each map type. Two 

untimed example questions were shown to familiarize users with the questions and then two 

timed questions were shown. Participants could repeat the tutorial if desired. 

The map-reading tasks included 15 maps with pseudo-random dots, 15 maps with blue-noise 

dots, 15 maps with graduated dots, and 5 area-proportional circle maps. Each dot map had 

one area highlighted in gray, and users were asked to estimate the value represented by dots 

for this area. Each area-proportional symbol map had one circle highlighted in gray and 

users were asked to estimate its value. All pseudo-random and blue-noise dot maps used the 
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same unit value (200). All graduated dot maps used the same three unit values (1000, 10000, 

and 100000). Participants were shown all maps of one type before being shown the maps of 

other types. The same enumeration areas were used for the four types of maps. 

For each of the three dot map types there were 10 maps with realistic administrative 

boundaries and 5 maps overlaid with a regular grid, as in Figure 6. To minimize learning 

effects, the mapped values were changed for each map, the order of maps within each type 

group was randomized, the enumeration areas of 5 maps were replaced with a regular grid, 

and maps with administrative boundaries were rotated (Figure 7). For each map, participants 

were given 10 seconds to view the map and were asked to estimate the value of the gray area. 

After 10 seconds elapsed, the map disappeared and respondents were required to enter their 

estimate. The legends for all maps of one group were identical and were shown before the 

timed maps appeared, to prevent participants from losing time to familiarize themselves with 

the legend. Each legend for the single-size dot maps showed the individual dot value as well 

as a sample of three varying densities of dots (Figure 7). Samples of varying densities are 

common in dot map legends, after Provin (1977) tested the effects of legends on estimating 

dot values and noted that users showed a marked improvement in average estimates when 

such legends were present. 
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Figure 6: Example graduated dot map with grid overlay for the user study. Subjects are asked 
to estimate the value for the gray square. 

 
Figure 7: Example maps for the user study. Subjects are asked to estimate the value for the 
gray areas. Geometry is rotated for the second map. 

= 1,000 = 10,000 = 100,000

= 200 = 1,000 = 100,000= 10,000 = 1,000 = 10,000 = 100,000
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Figure 8: One of two 2 × 2 image matrices for preference map questions. 

Five additional test maps with easily readable values were placed throughout the survey. 

Four test maps were dot maps with five to seven dots in the enumeration area of interest; 

and one test map showed area-proportional circles with the gray test circle having the same 

size as one of the circles in the legend. The test maps were used to eliminate responses from 

participants who entered random values rather than attempting to estimate values.  

For the first map preference question, participants were shown two sets of each map type 

individually and asked to rate each map from 1 to 5 based on ‘Clarity & Legibility’ and 

‘Preference & Appeal’. A rating of 5 for both questions indicates that the map is ‘Very Clear’ 

and ‘Very Appealing’, whereas a rating of 1 for both questions indicates ‘Not Clear’ and ‘Not 

Appealing’. The second type of map preference question showed participants two 2 × 2 
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image matrices (Figure 8) containing each map type, and participants were asked to rank the 

maps on each matrix. Responses ranged from 1 to 4, 1 being their ‘favorite’ and 4 being their 

‘least favorite’. Appendix 2 shows each of the specific test questions and appendix 3 shows 

each of the associated test maps. 

4. User Evaluation Results 

Of the 420 participants in the user study, 123 did not correctly respond to at least 3 of the 5 

trivial test maps. The results of these respondents were discarded and only the results from 

the 297 remaining participants were analyzed. Of the 297 participants, 149 were female, 147 

were male, 58 percent were under the age of 35 and 68 percent have completed some level 

of college education. A total of 264 participants are from the United States, 28 are from 

India, and five are from other countries. 

4.1. Dot Map Estimates 

For the dot map estimation tasks, which asked respondents to estimate the value for regions 

on the map, each of the 15 map sets, containing each type of map, was compared. The 

Kruskal-Wallis one-way ANOVA test was used to determine if each map group showed a 

significant difference in the distribution of estimates. P-values for each map set were <0.001 

(see appendix 6), indicating that the results are significant. Figure 9 shows the rate of error 

for each dot map compared to the total number of dots per test area. Appendix 4 shows 

response statistics and rates of error for each dot map. The scores indicate that user 

estimations of blue noise dot maps were more accurate than random dot maps, and 

graduated dot maps are more accurate than blue noise dot maps. In addition, the accuracy of 

user estimation is highly correlated to the number of dots per estimated value, with 

increasing numbers of dots resulting in increasing relative error. Error rates for graduated 

dot maps are low for enumeration areas with small numbers of dots; graduated dot maps 

with larger numbers of dots do not outperform conventional dot maps. Our results also 

support previous findings that users all but universally underestimate dot values (Provin 

1977). 
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Figure 9: Number of dots per test area versus relative error for the 45 dot maps used in the 
user survey. 

4.2. Graduated Dot Maps vs. Area Proportional Circle Maps 

Because graduated dot maps are similar to area-proportional circle maps, the results of the 

five area-proportional circle map estimations were compared to the results of the 15 

graduated dot maps. On average, the area-proportional circles were underestimated by 9.3%. 

The average underestimation for graduated dot maps was 6.5%. The Kruskal-Wallis one-way 

ANOVA test was used again to determine if there are significant differences in estimations 

of area-proportional circle maps and graduated dot maps. All tests returned p-values <0.001 

(see appendix 6), demonstrating significant differences in estimations between graduated dot 

maps and area-proportional circle maps. While area-proportional circle maps are less error 

prone than single size dot maps (average underestimation of 26.4%), area-proportional circle 

maps are slightly more prone to errors than graduated dot maps with a moderate number of 

dots. However, graduated dot maps with large values (and a large number of dots) are more 

error prone than area-proportional circle maps with similar values. For example, the test area 

in one graduated dot map has a total of 39 dots (3 dots with a value of 100,000, 31 dots with 

a value of 10,000, and 5 dots with a unit value of 1,000), a total value of 615,000 and an 

average error of -26.3% while an area-proportional circle map (with perceptual scaling by 
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Flannery) with a value of 405,500 has an average error of -5.3%.  Appendix 4 shows 

response statistics and rates of error for each dot map and area-proportional circle map. 

4.3. Preference and Clarity 

The objective for the preference tests was to compare preferences of each map type. For 

each map type, users were shown the map and asked to provide a numerical Likert-scale 

response (see appendix 2) for questions of ‘Clarity and Legibility’ (1 = Not Clear; 3 = 

Somewhat Clear; 5 = Very Clear) and ‘Aesthetic Preference’ (1 = Not Appealing; 3 = 

Somewhat Appealing; 5 = Very Appealing). The participants were asked to rate two sets of 

maps; see Figure 8 for the four maps of one set.  

 

 
Figure 10: Mean preference and clarity ratings for two groups of four maps of the same area. 

Figure 10 shows the average of the preference and clarity responses. Results indicate that 

users found dot maps with random and blue noise distributions to be least favorable and 
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approximately equal in clarity (mean = 2.5) and preference (mean = 3). Respondents found 

graduated dot maps to be the most preferred maps with the clearest message. Area 

proportional circle maps ranked in-between. Results of the Friedman’s Test show that there 

is a significant difference between map types (p-values of <0.001 for all cases) for both sets 

of test maps (see appendix 6). 

4.4. Rank-Order Preference 

Subjects were shown the same maps that were used in the preference and clarity question in 

two 2 × 2 image matrices showing the four types on a single page (Figure 8). Using the 

matrix, they were asked to rank-order the maps from 1 to 4 (1 = ‘favorite’ and 4 = ‘least 

favorite’).  

 
Figure 11: Map rank frequency for two map sets 

Figure 11 shows a histogram of responses for each of the map types. The results show a 

clear pattern of ranks. Users ranked graduated dot maps ‘1st’ more often than any other map 

type. The results also show that area-proportional circle maps were often ranked ‘2nd" by 
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users, and blue noise dot maps ‘3rd’. Dot maps with a random distribution were most 

commonly ranked ‘last’ by respondents. Friedman’s test was used to determine if statistically 

significant differences were found between each map type in each group. P-values for each 

test were <0.001, indicating significant differences between each map type. 

4.5. Counting vs. Estimating 

Participants were asked two final questions: (1) How often users attempted to count the 

dots; and (2) whether users attempted to count dots more often for graduated dots or single-

size dots. For the first question, 78% of respondents indicated that they sometimes tried to 

count the dots, 19% of respondents indicated that they tried to count the dots every time, 

and only seven respondents estimated the dots every time. Note that attempting to count the 

dots for many maps is nearly impossible due to the large number of dots on each map. 

Responses to the second question were more evenly split. 60% of respondents stated that 

they counted the graduated dots more often, 39% stated that they counted the single-size 

dots more often, and only three respondents indicated that they did not count the dots.  

5. Conclusion 

We present a method for creating graduated dot maps that produces visually pleasing maps 

with improved estimation accuracy. Our method combines blue-noise dot distributions and 

a clustering algorithm in an easy to control Java tool, and represents the first automated 

method for producing graduated dot maps (Appendix 1 shows a screen capture of the 

graphical user interface of the developed tool, which is available at: 

http://www.nicknackmaps.com/). 

Study participants showed improved accuracy for dot estimation tasks for graduated dot 

maps compared to conventional dot maps. Our research shows that conventional dot maps 

result in a high degree of underestimation, which reaffirms the findings of Provin (1977) and 

Mashoka et al. (1986). Users also underestimate values with graduated dot maps, but to a 

much lesser extent. We observe that enumeration areas in graduated dot maps with many 
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dots do not have an advantage over conventional dot maps. However, most enumeration 

areas in graduated dot maps use considerably less dots than enumeration areas on 

conventional dot maps, which explains the observed advantage. Study participants 

underestimated the values of area-proportional circles to a slightly higher degree than 

graduated dot maps, even though Flannery’s perceptual scaling was applied to the circles. 

Study participants preferred graduated dots to conventional dot maps, blue-noise dot maps 

and area-proportional symbol maps. Respondents indicated that graduated dot maps were 

clearer, more legible, and more visually appealing than the other maps, and they ranked 

graduated dot maps as their favorite (ranked 1st) in a rank-order test. 

Although the results are favorable for graduated dot maps, there are some limitations to the 

method and a few open questions. The first limitation is that the notion of dot density can 

possibly be lost due to the reduction in the number of dots and their placement. Future 

work is needed to relocate small dots between larger dots to reclaim the density and test the 

effect on estimation accuracy. Another limitation of the proposed method is that dots are 

allowed to move outside of their enumeration area when blue-noise dot patterns are created. 

This is problematic when, for example, terrestrial-related dots are moved over lakes and 

oceans. Using ancillary data as exclusion areas for placing dots is a potential solution, 

however future work is necessary to add this additional constraint to the CCVT blue-noise 

algorithm. Furthermore, the size and displacement of dots in dense regions may create a 

cartogram effect. Due to large dots being moved outward from the center of small 

enumeration areas to prevent overlap, it may appear that the data being mapped are for a 

larger enumeration area, despite underlying geography being undistorted. 

Future work is also needed to determine an appropriate number of dot classes for graduated 

dot maps. We chose three classes of dots in order to prevent confounding users’ ability to 

detect differences between classes, however we do not attempt to evaluate the influence of 

the number of classes on estimation accuracy. Another open question is related to the 

concept of subitizing. Coined by Kaufman et al. (1949), subitizing refers to the judgment of 

small numbers of stimuli, a process that is more accurate, more confident, and more rapid 
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than estimating or counting. Kaufman et al. (1949) indicate that subitizing is done when the 

number of stimuli is less than six. We hypothesize that graduated dot maps are interpreted 

with a combination of counting, estimation and subitizing. Future work could evaluate the 

processes by which users derive values for graduated dot maps. Subitizing seems to also be 

relevant for the selection of appropriate unit values for graduated dot maps. In order to 

minimize estimation errors, the unit values could be chosen such that map readers’ subitize 

rather than estimate or count when extracting values for an enumeration area. Optimum unit 

values could be determined that maximize the number of enumeration areas in a map that 

only use four or five dots of each class (the numbers suitable for subitizing). The unit values, 

however, need to be numbers that are simple to sum and multiply and easy to remember, 

otherwise the advantage of subitizing would be defeated by error-prone calculations 

necessary to compute enumeration values.  

In addition to the number of dot classes, the size of dots represents an area of potential 

research. Given the purpose of the dot map, future work could determine whether area-

proportional dots have an advantage over graduated dots. If the purpose of the map is to 

allow map readers to count dots, creating area-proportional dot sizes may not be necessary. 

Conversely, if the purpose is to show density then it could be advantageous to use area-

proportional dots. 
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Appendices 

1. Figure 12: Graphical User Interface of Java Tool to Create Graduated 
Dot Maps 

 
The graphical user interface has basic functionality to select the appropriate field for the 

input shapefile and choose the parameters for the dot map. Users can select the type of dot 

map they wish to create, which produces a shapefile with the parameters as attributes. 
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2. Test Questions 

The following table includes the four questions posed in the user study. Each question was 

repeated for each map shown in the survey. 

Dot Map Estimates Estimate the value for the gray area. You have 10 seconds. 

Preference & Clarity 

In this portion of the survey you will be shown a series of 
maps and be asked to rate them from 1 to 5 based on two 
factors: (1) Clarity & Legibility and (2) Aesthetic Preference 
 
1. Clarity & Legibility 

• 1 = Not Clear 
• 3 = Somewhat Clear 
• 5 = Very Clear 

 
2. Aesthetic Preference 

• 1 = Not Appealing 
• 3 = Somewhat Appealing 
• 5 = Very Appealing 

Rank-order Preference Rank the maps from 1 to 4, 1 being your ‘favorite’ and 4 being 
your ‘least favorite’. 

Counting vs. Estimating 

1. How often did you count the dots 
• I never tried to count the dots. I always 

estimated the values represented by the dots 
• I sometimes tried to count the dots. 
• I tried to count the dots every time. 

2. Did you count more often with dots with different 
sizes or dots with a single size? 

• I counted the dots with different sizes more 
often. 

• I counted single-size dots more often. 
• I did not count the dots for either sizes. 

Table 1: Four questions used for the user study. 
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3. Survey Test Maps 

The following section contains all test maps used for the user study, including 50 maps used 

for estimation questions and 8 maps used for preference questions.  

 

Figure 13: Dot Map Estimates: Pseudo-Random Dot Maps 
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Figure 14: Dot Map Estimates: Blue Noise Dot Maps 
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Figure 15: Dot Map Estimates: Graduated Dot Maps 
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Figure 16: Dot Map Estimates: Area Proportional Circle Maps 
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Figure 17: Preference and Clarity (set 1):  
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Figure 18: Preference and Clarity (set 2):  
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Figure 19: Rank-order Preference (set 1) 
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Figure 20: Rank-order Preference (set 2):  
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4. Map Estimate Results 

The values in the first three columns of the table are descriptive statistics of responses 

generated with the 15 pseudo-random dot maps. The Dot Unit Error is a measure of 

estimation error expressed relative to the dot unit value. The last column is the total number 

of dots present for the gray test area on the maps. For the area-proportional circle maps, 

Error is the total percent error for the test area. 

 

Pseudo-Random Dot Maps 

Mean Median Mode Dot Unit Error No. of Dots 
61,557.85 60,000 60,000 -0.27 422 
8,235.61 7,900 6,000 -0.19 51 
4,752.50 5,000 5,000 -0.21 30 

35,260.79 32,000 30,000 -0.31 255 
17,361.32 16,000 20,000 -0.32 128 

105,998.38 105,000 100,000 0.22 434 
329,414.16 305,000 300,000 -0.37 2614 
142,160.28 112,000 100,000 -0.02 723 

8,101.94 8,000 6,000 -0.30 58 
22,560.29 21,000 20,000 -0.39 184 
28,306.66 25,000 30,000 -0.20 177 
7,258.67 6,800 8,000 -0.29 106 
3,027.38 3,000 3,000 0.01 15 

42,893.59 25,000 30,000 -0.14 250 
47,458.82 42,000 40,000 -0.58 452 

Table 2: Pseudo-random dot map statistical results. 
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Blue Noise Dot Maps 

Mean Median Mode Dot Unit Error No. of Dots 
48,622.43 45,000 50,000 -0.32 356 
7,549.49 7,500 8,000 -0.12 43 
4,846.77 5,000 5,000 -0.13 28 

32,241.95 30,000 30,000 -0.11 181 
14,213.83 13,000 12,000 -0.35 109 

101,805.73 104,000 100,000 0.45 352 
321,961.09 300,000 300,000 -0.27 2194 
127,453.59 105,700 100,000 0.09 583 

7,604.71 7,000 8,000 -0.16 45 
22,004.78 22,000 20,000 -0.24 145 
25,618.06 23,000 20,000 -0.12 146 
7,083.25 7,000 8,000 -0.14 41 
2,648.21 2,800 2,800 0.02 13 

21,717.40 20,000 20,000 -0.44 194 
41,599.45 40,000 40,000 -0.44 372 

Table 3: Blue-noise dot map statistical results. 

 

Graduated Dot Maps 

Mean Median Mode Dot Unit Error No. of Dots 
447,872.79 450,000 500,000 -0.272 39 
52,711.69 53,000 53,000 -0.005 8 
23,719.30 24,000 24,000 -0.012 15 

174,833.34 180,000 180,000 -0.050 22 
179,141.18 180,000 180,000 -0.037 33 
286,345.49 300,000 300,000 -0.094 16 

1,510,342.75 1,750,000 2,000,000 -0.331 91 
569,009.25 570,000 570,000 -0.002 21 
154,424.81 155,000 156,000 -0.004 21 
219,531.48 220,000 220,000 -0.011 24 
122,483.27 124,000 124,000 -0.012 16 
48,000.00 48,000 48,000 0.000 12 
13,000.00 13,000 13,000 0.000 13 
73,837.13 72,000 72,000 -0.141 41 

154,224.63 155,000 155,000 -0.011 22 
Table 4: Graduated dot map statistical results. 
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Area Proportional Circle Maps 

Mean Median Mode Error 
380,814.46 400,000 500,000 -6.09% 
349,531.48 400,000 400,000 -7.04% 
101,540.72 100,000 100,000 -18.77% 
88,146.76 95,000 100,000 -21.30% 

197,147.71 200,000 250,000 0.00% 
Table 5: Area-proportional circle map statistical results. 
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5. Map Preference and Clarity Results 

Table 6 and 7 show measures of central tendency for the clarity and preference test maps. 

Table 8 shows the frequency statistics for each of the rank-order preference maps. 

Clarity 
  Mean Median Mode 
Pseudo-random (set 1) 2.96 3 3 
Blue Noise (set 1) 3 3 3 
Graduated (set 1) 4.12 4 4 
Area-proportional (set 1) 3.1 3 3 
Pseudo-random (set 2) 3.05 3 3 
Blue Noise (set 2) 3.1 3 3 
Graduated (set 2) 4.25 4 5 
Area-proportional (set 2) 3.77 4 5 

Table 6: Clarity statistical results. 

 

Preference 
  Mean Median Mode 
Pseudo-random (set 1) 2.96 3 3 
Blue Noise (set 1) 3 3 3 
Graduated (set 1) 4.12 4 4 
Area-proportional (set 1) 3.1 3 3 
Pseudo-random (set 2) 3.05 3 3 
Blue Noise (set 2) 3.1 3 3 
Graduated (set 2) 4.25 4 5 
Area-proportional (set 2) 3.77 4 5 

Table 7: Preference statistical results. 

 

Rank Frequencies 
 1st 2nd 3rd 4th 

Pseudo-random (set 1) 32 74 91 100 
Blue Noise (set 1) 28 79 142 48 
Graduated (set 1) 161 68 50 18 
Area-proportional (set 1) 76 76 14 131 
Pseudo-random (set 2) 30 52 97 118 
Blue Noise (set 2) 19 76 145 57 
Graduated (set 2) 146 95 43 13 
Area-proportional (set 2) 102 74 12 109 

Table 8: Rank-order statistical results. 
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Significance Tests 

Tables 9-12 show hypothesis test results for map comparisons. The critical values listed were 

used to reject the null hypothesis. The Sig (p-values) values are the test statistics used to 

reject the null hypothesis. 

Kruskal-Wallis one-way ANOVA 
Map Set Critical Sig 

Set 1 0.05 <0.001 
Set 2 0.05 <0.001 
Set 3 0.05 <0.001 
Set 4 0.05 <0.001 
Set 5 0.05 <0.001 
Set 6 0.05 <0.001 
Set 7 0.05 <0.001 
Set 8 0.05 <0.001 
Set 9 0.05 <0.001 
Set 10 0.05 <0.001 
Set 11 0.05 <0.001 
Set 12 0.05 <0.001 
Set 13 0.05 <0.001 
Set 14 0.05 <0.001 
Set 15 0.05 <0.001 

Table 9: Kruskal-Wallis test results for each map set containing three dot map types 

Kruskal-Wallis one-way ANOVA 
Map  Critical Sig 

Map 1 0.05 <0.001 
Map 2 0.05 <0.001 
Map 3 0.05 <0.001 
Map 4 0.05 <0.001 
Map 5 0.05 <0.001 

Table 10: Kruskal-Wallis test results for the area-proportional circle map set  

Friedman’s two-way ANOVA 
Map Set Critical Sig 

Clarity (set 1) 0.05 <0.001 
Preference (set 1) 0.05 <0.001 
Clarity (set 2) 0.05 <0.001 
Preference (set 2) 0.05 <0.001 

Table 11: Friedman’s test results for clarity and preference map sets  
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Friedman’s two-way ANOVA 

Map Set Critical Sig 
Set 1 0.05 <0.001 
Set 2 0.05 <0.001 

Table 12: Friedman’s test results for rank-order preference map sets  
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