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Abstract 
 
Data structures are more easily understood when 

they are presented visually rather than textually.  We have 
developed a system, Calypso, to allow the visual 
definition of data structures programs using pictorial 
pattern/action pairs in an imperative setting. We present 
several examples including rebalancing an AVL tree and 
sorting an array using the Quicksort algorithm.  These 
examples demonstrate the superiority of this visually-
based approach over textual specifications.  Calypso is 
based on a general framework for building and 
combining visual notations in various domains.  This 
framework permits Calypso to be easily extended with 
new data structures and abstractions. 

1. Introduction 

The human brain can process certain kinds of visual 
information virtually instantaneously, whereas language is 
processed sequentially.  Designing programming 
formalisms that effectively engage the brain’s fast visual 
processing capabilities could lead to programs that are 
significantly easier to understand and maintain. Many 
researchers are exploring ways of incorporating pictorial 
and other kinds of information into programming on many 
levels [1, 2]. 

The principal task of many programs is creating and 
transforming data structures, and many data structures and 
associated operations have natural pictorial 
representations familiar to most working programmers.  
Many operations on data structures are difficult to 
understand when presented in a purely textual form.  A 
data structure can only be viewed in a very local way in a 
textual program because each operation refers only to one 

or two components of the structure.  Using pictorial 
representations in which individual transformations can 
readily be seen in the context of the entire data structure 
aids substantially in understanding programs. 

The data structures programming literature has been a 
rich source of ideas and inspiration, suggesting among 
other things pictorial patterns and pattern 
transformations, the key concepts on which Calypso is 
based.  The pictures generally used to show AVL-tree 
rebalancing following the insertion of a new node form an 
excellent example.  Figure 1, adapted from [3], is taken 
from a typical presentation of this operation: 

The top patterns represent the AVL tree after 
insertion but before rebalancing, and the bottom patterns 
represent the AVL tree after rebalancing.  These patterns 
are simple and general, naturally subordinating 
unnecessary detail, yet a brief perusal is sufficient to 
garner an extraordinary amount of information.  They are 
unquestionably easier to understand than a purely textual 
description. 

Using patterns also fits well with the well-known and 
powerful “divide-and-conquer” problem solving 
approach: finding and solving subproblems, then 
combining the subproblem solutions to get the solution to 
the original problem.  In data structures programming the 
subproblems are associated with substructures such as the 
subtrees in Figure 1.  This correspondence of patterns to 
the divide-and-conquer technique suggests that such 
patterns will find natural use in a wide range of 
applications. 

This paper presents an overview of a visual 
programming language Calypso designed for specifying 
algorithms on data structures. Calypso uses compile-time 
type checking with an ML-style [4] type system with 
parametric polymorphism.  Calypso is an imperative 
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language because destructive manipulations on data 
structures are readily and intuitively represented visually, 
because current practice and education in data structures 
programming is still principally imperative, and because 
the imperative approach still results in more efficient 
programs on conventional architectures using well-
understood and tested compilation techniques.  Many 
efficiency issues simply cannot be addressed in a 
functional language.  For instance, Quicksort is more 
useful than other “fast” sort algorithms because it can be 
done wholly “in-place,” that is, without copying the 
structure being sorted.  This characteristic is critically 
dependent on how the Partition phase is implemented.  In 
functional programming languages the distinction between 
copying and non-copying algorithms cannot be expressed, 
the Partition phase becomes trivial, and the point of 
Quicksort is lost. 

Calypso is based on a general framework for building 
picture editors.  These editors allow interactive creation of 
representations of objects in various domains, such as data 
objects, pictorial patterns, and programs.  Translators 
attached to the picture editors then process these 
representations. 

Calypso was implemented in X2 [5, 6], which was 
designed by David Sandberg at Oregon State University in 
the 1980’s. 

2. Motivating Examples: What Can be Done 

2.1 AVL-Tree Rotations with Pictorial Patterns 

A good example of the use of pictorial patterns, and 
the one that provided the initial impetus for the work 
presented here, is the collection of pictures that most data 
structures textbooks use in some form to show how to 
rebalance an AVL tree after inserting a new node. 

The set of pictures in Figure 1 is from Knuth’s 
Sorting and Searching [3], but all texts that discuss AVL 
trees present the rebalancing algorithm in basically the 
same way. 

Figure 1 is interesting in many ways.  First, it is 
general.  There are two patterns and a specification of a 
small set of unconditional transformations on those 
patterns.  These pictures cover two of the four possible 
cases that can arise — the others occur when the 
directions of imbalance are opposite from the ones shown 
here, and the pictures are just reflections of the ones 
shown.  By elaborating this notation a little, and not being 
too literal about left-to-right orientation, all the possible 
cases in this situation can be represented with just these 
two pictures. 

The bars D, E, etc., represent arbitrary subtrees. These 
bars represent actual run-time objects that have attributes 
and can be referred to by other objects.  For instance, the 
subtrees in Figure 1 have an attribute height and have 
pointers from nodes A, B, and X. 

The height attribute is used together with some 
textual expressions in the variable h to specify assertions 
about the relative heights of the subtrees when the 
directions and amounts of imbalance are as shown in the 
nodes.  In these pictures the information provided by the 
height attribute notation is just intended to provide useful 
information to the human reader, but it suggests a way to 
pictorially represent a class of functions on data structures 
and usefully incorporate invocations of those functions 
into pictorial patterns. 

Figure 1 shows the transformation by labeling the 
various components and using before-after pairs, with the 
labels showing the correspondence of objects.  There are 
other ways to do this — for instance, as shown in Figure 
2, “before” positions of pointers could be represented with 
dotted lines, “after” with solid lines, and the nodes and 
subtrees left where they are.  Viewed this way, it is easy to 
see that the transformation can be represented as a set of 
direct manipulations, and the object labels are no longer 
needed.  On the other hand, this representation would 
rapidly become confusing for more complex 
transformations.  A complete system on the lines of 
Calypso would offer multiple views of transformations. 

Another interesting thing about this transformation is 
that none of the unit transformations is dependent on the 
outcome of any of the other unit transformations, so they 
can be done in any order or even simultaneously.   

 
Figure 1: AVL-Tree Rebalancing 

 
Figure 2: AVL-Tree Detail 
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The final point of interest relates to the node X in 
Case 2.  It is analogous to the height attribute 
specifications in that — in terms of tests implied by the 
pattern — it is redundant: the imbalance information on 
the two nodes imply its existence.  On the other hand, it is 
needed in the transformation specification: it must be 
referred to, and its components must be modified.  It is 
necessary to be able to distinguish “essential” components 
of a pattern — those things meant to imply run-time tests 
— from components whose existence follows from the 
fact that the run-time structure being tested matches the 
“essential” pattern. 

Figure 3 is what the AVL tree example looks like as a 
procedure in Calypso.  This picture has two levels.  The 
top level consists of a pattern formation box, a case 
object, pattern elaboration boxes, pattern manipulation 
boxes, and directed arcs linking everything together.  This 
level essentially specifies flow of control.  The bottom 
level, which consists of the pictures inside the individual 
boxes, represents pictorial patterns and operations on 
them. 

The pattern formation box f specifies the formal 
parameters and the argument structure, and provides the 
basis for an initial binding of pattern components to run-
time structure components.  All the components of the 
argument structure are assigned internal names, and run-
time values are assigned (bound) to these names when the 
procedure is invoked.  All the values bound to the names 
are functions of the formal parameters.  In this example, 
the formal parameter is the pointer at the top; all the 
bindings are expressed in terms of the run-time value of 
this pointer.  The pattern formation box is also an 
assertion about the structure of the argument — in the 
example it consists of a pointer and a tree with at least two 
nodes.  If the argument does not satisfy this assertion, 
there is a run-time error, and the result is undefined.   

The Case object c indicates that the pattern 
elaboration boxes following it are to be considered tests of 
the argument structure.  In this case there are two, and 
they test the values of the imbalance fields of the two 
nodes.  If the argument structure happens to match none of 
the patterns in the following elaboration boxes, it is again 
considered a run-time error, and the result is undefined.  

In the top case, the elaboration box e0 is followed 
directly by a pattern manipulation box m0, in which the 
“rotation” shown in Knuth’s case 1 is specified.  In the 
bottom case, the elaboration box e1 after the Case object is 
followed by another pattern elaboration box e2 in which 
the left subtree of the node with the “-1” imbalance value 
is elaborated to a non-nil value.  Because this second 
elaboration box does not directly follow a Case object, it 
is an assertion about the argument structure; if this 
assertion is not satisfied, there is a run-time error.  Code is 
generated to bind the appropriate components of the 
argument structure to internal names for the new pictorial 
pattern components.  Finally, the pattern manipulation box 
m1 connected to this elaboration box specifies the 
manipulation shown in Knuth’s Case 2.  The pattern 
variable ?i communicates imbalance information to text 
expressions in m1.  

2.2 Quicksort with Pictorial Patterns 

Recursive structure objects appear again, this time as 
arbitrary sub-arrays, in the discussion of Quicksort found 
in Jon Bentley’s book Programming Pearls [7] (Figure 4).  
This use of pictorial patterns is more abstract than the 
ones seen earlier.  The first pattern pictorially represents 
an invariant, a set of relationships between data structure 
components that must hold if another iteration of an 
unspecified process is to be performed.  The second 
pattern represents the state of the data structure when the 
loop terminates — that is, when the invariant represented 
by the first pattern no longer holds.  The third pattern 
simply shows the result of exchanging two elements of the 

 
Figure 3: AVL-Tree Rotation Procedure 

 
Figure 4: Quicksort Patterns 
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second pattern.  Such an exchange is a fixed-length, non-
conditional transformation that can be specified by direct 
manipulation of the second pictorial pattern.  The patterns 
shown in Figure 4 were originally intended for use by 
humans and had to be adapted for use in Calypso, but also 
inspired some enhancements in the Calypso model and 
notations.  

The Quicksort definition shown in Figure 5 has two 
components.  The top picture defines the Quicksort 
procedure itself; the bottom picture defines the partition 
procedure used by Quicksort.  Quicksort is defined on an 
arbitrary array.  Partition is defined on an argument that 
consists of an array with at least one element and a special 
“marker” unit which is basically an integer variable whose 
value marks a “current location” in an array.  The 
Partition procedure uses the first element of its array 
argument as the partition element and partitions the rest of 
the array using that partition element.  Thus, the first 
element of the array passed to Partition is not in its proper 
location following the execution of Partition. 

These two definitions have basically the same 
structure displayed in the AVL tree example.  One 
extension is that a pattern manipulation, for instance 
where the Partition procedure is invoked, results in a 
pattern that can be further elaborated and manipulated.  
Another extension is in the Partition definition, where a 
loop construct, from-iterate-until , has been used. This 
construct starts with a structure that matches an initial 
pattern and repeatedly performs some manipulations on it 
until it matches some terminating pattern.  In the Partition 
definition, the initial pattern is an array with two markers, 
the manipulations are moving markers and interchanging 

array values, and the terminating pattern has the I marker 
at the end of the array. 

As exemplified by the use of the markers, an 
argument structure can be augmented with additional 
components in pattern manipulation boxes.  These 
additional components are local to the branch of the 
program beginning at the box where they are defined. 

Pattern variables ?v, ?q, and ?m are used to 
communicate between textual and graphical parts of the 
Quicksort specification.  Values for these variables are 
bound at run time using expressions derived by the picture 
processor at edit/compile time.   

3. System Architecture 

It became clear early in the development of Calypso 
that a number of kinds of small picture editors would be 
needed, so a significant initial effort was put into 
developing a framework for building general picture 
editors. The procedure definition editor alone consists of 
four sub-editors, one for the upper definition level 
representing control flow and one for each of the three 
kinds of pattern transformation editors.  Picture editors 
have translators that can be invoked at any time after an 
edit session with that picture is completed.  

Picture editors are tools for building external 
representations of objects in specific domains.  These 
representations can then be translated into an internal 
representation suitable for a given application.  The term 
“picture editor” is somewhat misleading because it seems 
to imply that the representation in question is necessarily 
graphical.  In fact, the representation could be textual or 
three-dimensional.  The source code that constitutes the 
external representation of program in textual 
programming languages also fits this paradigm. 

Because it is built on this framework, Calypso is 
readily augmented with new abstractions and constructs.  
In particular, an interface object template editor could be 
added, permitting new kinds of pattern objects to be 
created and given meaning in terms of existing static 
structure and procedure definitions.  New abstractions 
could then be defined entirely within Calypso, whereas 
now interface object templates must be built in the host 
environment. 

 
Figure 5: Quicksort Program 
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4. Procedure Definitions: An Example 

 
Figure 6: A Procedure Definition 

Figure 6 is the definition of a procedure A in Calypso.  
This recursively-defined procedure takes a binary tree as 
its argument and interchanges left and right sub-trees 
throughout the tree. 

The argument structure is represented in the pattern 
formation box b0.  The symbol in the box b0 is a 
recursive-structure template for binary trees.  It represents 
the disjunction of two possibilities, that the argument is a 
binary tree node or it is the nil  object. 

The box b0 is connected to the case object c, which is 
a conditional construct.  A case object is connected via 
outgoing arrows to pattern elaboration boxes, which 
represent tests for branches of the conditional statement.  
Here there are two cases, one where the argument tree is 
non-nil  and the other where it is nil , tested in the pattern 
elaboration boxes b1 and b2, respectively.  The patterns in 
b1 and b2 are elaborations of the pattern in b0. 

In the case where the tree is non-nil , the procedure 
swaps the children pointers so that the left child field 
points to the right sub-tree and the right child field points 
to the left sub-tree and invokes itself recursively on the 
two sub-trees. These operations are represented by the 
contents of the pattern manipulation box b3.  
Reassignment of pointer values is represented by moving 
the destination feature of the arrow representing the 
pointer to the object representing the value it is to be 
assigned.  In this case, the small boxes enclosing the sub-
trees in b3 and tagged with "A" are instances of the call 
form for the procedure A being defined. 

When the argument tree is nil , A simply returns 
without performing any operations.  This null operation is 
represented by the picture in the pattern manipulation box 
b4 being identical to the picture in the pattern elaboration 
box b3. 

 procedure A(i0:BTreeP);  {argument 
     definition and binding from b0} 
 var i1,i2:BTreeP;   {from b1} 
 begin 
  if i0 <> nil  then  

 {from c and b1} 
   i1 := i0^.lc; i2 := i0^.rc; 
     {i1, i2 bindings from b1} 
   A(i1); i0^.lc := i2; A(i2); i0^.rc := i1 
     {manipulations from b3} 
  elsif i0 = nil  then skip {from c, b2  and b4} 
  else signal_error  {from c} 
  end if    {from c} 
 end proc; 

Figure 7: Generated Code 
The code generated by this picture would be similar 

to the Pascal-like procedure definition given in Figure 7. 
The variables whose names begin with "i" in that 

figure are internal variables generated by the system.  The 
values of internal variables are not modified after the 
initial assignment.  They provide a way, invariant over all 
definable manipulations, of accessing the run-time objects 
represented by pictorial pattern components.  The scope 
of internal variables in the target language code does not 
necessarily correspond to the scope of the corresponding 
pictorial pattern component.  For instance, the internal 
variables i1, i2 correspond to the child tree recursive-
structure objects bound in the elaboration box b1, whose 
scope is over the boxes b1 and b2, but the scope of the 
internal variable names i1 and i2 is over the entire 
procedure definition in the target language. 

 type 
  BTreeP = ^BTree; 
  BTree = record  
   v:integer; lc,rc:BTreeP 
  end; 

Figure 8: Structure Definitions 
The Pascal type definitions needed for this definition 

are associated with the binary tree recursive-structure 
template and the binary tree node record template, and are 
shown in Figure 8. 

The following figures are a series of snapshots of the 
process of constructing the procedure definition shown in 
Figure 6. 

Before this series of snapshots, a new procedure 
definition form pictorial object has been instantiated (this 
would look like Figure 6 with no internal structure), and 
the user has specified the procedure name (A) and double-
clicked on the interior of the form.  This action invokes 
the clickOp for the interior feature, which activates the 
procedure definition Picture editor. 
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Figure 9: Snapshot 1 

In snapshot 1, the pattern formation box pictorial 
object template has been selected from the palette 
representing the pictorial syntax environment and a 
pattern formation box is being placed on the left side of 
the procedure definition picture. 

In snapshot 2, the user has double-clicked on the 
interior of the pattern formation box, activating the editor 
for a pattern formation picture.  Note the presence of a 
new picture window and associated pictorial syntax 
environment palette.  The binary tree recursive-structure 
template has been selected from the palette and the 
recursive-structure object is being placed in the picture. 

In snapshot 3, the pattern formation picture has been 
closed, a case pictorial object, an arrow pictorial object, 
and a pattern elaboration box have been added to the main 
procedure formation picture, and an arrow is being placed 
between the case object and the pattern elaboration box. 

 

In snapshot 4, the arrow between the case object and 
the pattern elaboration box has been placed, and the 
system has copied the binary tree recursive structure 
object in the pattern formation box to the pattern 
elaboration box.  Since the pattern in the pattern 
elaboration box must be an elaboration of the pattern in 
the pattern formation box, the system provides the pattern 
in the pattern formation box as a starting place for the 
elaboration. 

In snapshot 5, a second pattern elaboration box and 
an arrow connecting it to the case object have been added 
to the main picture, and the editor for pattern elaboration 
picture has been activated. 

In snapshot 6, the user has double-clicked on the 
binary tree recursive structure object, bringing up a palette 
from which the non-nil  alternative is being selected for 
incorporation into the elaboration picture.   

 
Figure 10: Snapshot 2 

 
Figure 11: Snapshot 3 

 
Figure 12: Snapshot 4 

 
Figure 13: Snapshot 5 

 
Figure 14: Snapshot 6 
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Figure 15: Snapshot 7 

In snapshot 7, the pattern elaboration box has been 
edited to specify that the recursive structure object must 
represent the value nil , and the two pattern manipulation 
boxes have been added and connected with arrows to the 
elaboration boxes.  Calypso has copied the patterns from 
the elaboration boxes to the connected manipulation 
boxes.  The manipulation boxes, as they stand in this 
snapshot, both represent the Null  transformation. 

In snapshot 8, the top pattern manipulation box 
picture is being edited.  Note that the pictorial syntax 
environment palette for this picture includes a pictorial 
object template, procedure A's call form, from which are 
generated pictorial objects representing the invocation of 
procedure A. 

5. Related Work 

Calypso is related to a number of systems described 
in the visual programming literature.  It is a significant 
generalization of these systems because it is based on a 
framework that permits the formation of complex 
representations of objects in arbitrary domains, allowing 
new kinds of abstractions to be created at all levels.  
Because this framework does not distinguish between 
pictorial and textual representations, Calypso can integrate 
pictures and text more flexibly and with an unprecedented 
fineness of granularity. 

AMBIT/G [8] is the earliest system that clearly 
addresses the same general issues as Calypso. AMBIT/G 
is based on pattern matching and on representing data 
structure transformations as before/after pairs, with 
succeed/fail arcs connecting the patterns to indicate flow 
of control.  The notion of recursive-structure templates is 

not used. The principal problem with AMBIT/G is that it 
has no abstraction mechanisms, so the pictures quickly 
become large and intricate  

Pygmalion [9] is a graphical programming-by-
example system that permits the definition of operations 
on data structures.  It permits the formation, graphical 
representation, and composition of objects in diverse 
domains, for instance electrical circuit components.  
Pygmalion uses concrete examples and dynamic 
representations of programs exclusively. 

PiP [10] is a pictorial programming-by-demonstration 
system that permits operations on data structures to be 
specified by direct manipulation of graphical 
representations of those structures.  PiP is based on the 
functional programming model. PiP does not have 
recursive-structure templates.  Transformations are 
specified and shown in individual windows that provide 
only local views. 

ThinkPad [11] uses direct manipulation of pictorial 
representations of record structures to specify data 
structure transformations.  The graphically specified 
programs are translated into Prolog.  Pointer relationships 
between nodes are not shown, and ThinkPad does not 
have recursive-structure templates.  The data structure 
pictures in ThinkPad are only patterns in the sense that 
they impose type constraints on function arguments.  
Their use is to allow record structures and record structure 
components to be referenced via mouse-clicking rather 
than using textual names in forming conditions and 
expressions.   

The stated objectives for DataLab [12] are similar to 
those for Calypso, and within its range of expression the 
programs look very similar to the ones created using 
Calypso.  However, DataLab was not designed with 
extendibility in mind and only operates on data structures 
composed of records and pointers.  DataLab has 
something that looks like a recursive-structure template, 
but it has no real functionality — it cannot be elaborated 
from a fixed set of choices, and it cannot be used to 
express constraints.   

GRClass [13] is a system for pictorial specification of 
algorithms on graph data structures.  These structures are 
represented as relations, in the database sense.  Many-one 
relationships are permitted, but not many-many. GRClass 
provides a static representation of programs, but like 
ThinkPad and other systems this representation is spread 
over several windows. 

Pfeiffer [14,15] describes a visual language using 
pattern/action pairs for manipulating graph data structures.  
The language has a notion of type declaration, but does 
not seem to otherwise provide for data abstraction.  Since 
all data structures are represented as graphs, with different 
kinds of relationships denoted by differently labeled arcs, 

 
Figure 16: Snapshot 8 
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there is inadequate differentiation among pattern 
components. 

ChemTrains [16] is a graphical simulation language 
that uses pattern/result picture pairs. ChemTrains was 
developed for non-programmers, and does not use 
procedural abstractions.  Its only control structure is the 
repeated application of elements of a set of pattern/result 
pairs to a picture constituting a data structure until none of 
the pattern/result pairs is applicable to the resulting 
picture.  ChemTrains does not have the notion of 
recursive-structure templates; parts of a data structure not 
relevant to a pattern are simply left out of that pattern.   

DEAL [17] is a visual language addressing many of 
the same issues and using a very similar approach to 
Calypso.  It is based on the functional programming 
model, though it provides some constructs, such as 
iteration, that give it an imperative flavor.  It permits 
implicit iteration, and as a consequence of the 
representation used for that construct, the pictorial 
patterns do not necessarily mean all that they might seem 
to imply.  Two distinct elements in a pattern might refer to 
the same entity, and the fact that one element in a pattern 
representing an array is to the left of another element in 
the array does not necessarily mean that its index in the 
array is smaller.  This could be confusing in some 
circumstances.   

A general system for integrating visual and textual 
programming languages is proposed in [18].  As an 
example the paper presents an AVL tree maintenance 
procedure formed in a language combining Prolog and 
pictorial data structure patterns.  Since pictures and text 
are treated as fundamentally different entities, a rich 
interaction and blending of the two forms is not possible. 

6. Conclusions 

We have presented Calypso, a system for visually 
specifying algorithms on data structures.  Calypso is 
applicable to the entire range of data structures and can be 
readily extended with pictorial representations of new 
abstract data types and control structures. Using pictorial 
patterns permits the effect of local actions on the complete 
structure to be readily grasped.  Recursive-structure 
templates enlarge the class of specifiable constraints.  The 
breakdown of effectiveness that many visual languages 
suffer when applied to large and complex problems should 
not be an issue with Calypso because of its support for 
multiple levels of abstraction and variety of pictorial 
relationships.  The approach used in Calypso promises to 
be a significant leap forward in the interaction of 
programmers with computers. 
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