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ABSTRACT

Direct simulations are used to study turbulence and mixing in Holmboe waves. Previous results showing
that mixing in Holmboe waves is comparable to that found in the better-known Kelvin-Helmholtz (KH)
billows are extended to cover a range of stratification levels. Mixing efficiency is discussed in detail, as are
effective diffusivities of buoyancy and momentum. Entrainment rates are compared with results from
laboratory experiments. The results suggest that the ratio of the thicknesses of the shear layer and the
stratified layer is a key parameter controlling mixing. With that ratio held constant, KH billows mix more
rapidly than do Holmboe waves. Among Holmboe waves, mixing increases with increasing density differ-
ence, despite the fact that the transition to turbulence is delayed or prevented entirely by the stratification.
Results are summarized in parameterizations of the effective viscosity and diffusivity of Holmboe waves.

1. Introduction

Because active scalars in seawater (primarily tem-
perature and salinity) diffuse much more slowly than
does momentum, there is a tendency to form thin layers
of stable density stratification associated with shear on
larger vertical length scales. In the simplest case where
a single thin stratified layer lies at the center of a
thicker shear layer such that shear and stratification are
both symmetric about some central plane, the flow can
support two classes of instability, both of which may
lead to turbulence and mixing. These are the Kelvin—
Helmholtz (KH) instability, which consists of a station-
ary train of billows focused at the central plane, and the
Holmboe instability, which consists of a pair of oppo-
sitely propagating wave trains, focused above and be-
low the central plane, that interfere to form a standing
wave-like structure (Holmboe 1962; Smyth et al. 1988).
In this paper, we examine mixing processes in direct
numerical simulations (DNSs) of Holmboe instability.
The study also includes a KH case for comparison.
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Historically, KH instability has been studied more
thoroughly because the conditions for its growth occur
in both air and water and because its exponential
growth rate tends to be significantly larger (Peltier and
Caulfield 2003; Smyth et al. 2001, and references
therein). Conditions for Holmboe instability are com-
mon in aqueous environments, however, and have been
studied in exchange flows (Zhu and Lawrence 2001),
river outflows (Yoshida et al. 1998), and salt wedge
intrusions (Yonemitsu et al. 1996). Because stratifica-
tion is concentrated in a thin layer, the instability exists
even when the bulk Richardson number in the stratified
layer is much larger than the usual critical value Y4
(Miles 1961).

Smyth and Winters (2003, hereinafter SW03) suggest
that Holmboe instability may generate significant levels
of turbulence and mixing, not despite the slow growth
rate of the primary instability but because of it. The
reasoning is that the preturbulent stage of instability
evolution develops sharp scalar gradients that mix rap-
idly without a corresponding loss of kinetic energy to
dissipation. If the preturbulent phase lasts longer in a
slower-growing instability, then a slow growth rate fa-
vors strong mixing. Our objective here is to test this
hypothesis using a set of simulations that cover the rel-
evant parameter space more thoroughly than did
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SWO03. We will show that the duration of the preturbu-
lent phase is, indeed, a crucial factor governing the
amount of mixing, but also that the connection between
that duration and the growth rate of the primary insta-
bility is less simple that was assumed in SWO03.

The DNS dataset and the methods used to create it
are described in section 2. Section 3 gives a brief over-
view of the DNS results. In section 4, we discuss the
energy budget for stratified turbulence and various use-
ful measures of the efficiency of mixing. We discuss
mixing in terms of entrainment rates and diffusivities
for both velocity and buoyancy in section 5. Conclu-
sions are summarized in section 6 and are discussed in
the context of previous studies in section 7.

2. Methodology

a. The mathematical model

Our mathematical model employs the Boussinesq
equations for velocity u, density p, and buoyancy b in a
nonrotating physical space measured by the Cartesian
coordinates x, y, and z:

Ju 5
5=u><(V><u)—VH+bk+uVu, (1)
where
p 1
H—pu-i-zu-u. (2)

The variable p, is a constant characteristic density.
The buoyancy is related to the density by b = —g(p —
p,)/p,- The gravitational acceleration is denoted g, and
k is the vertical unit vector. Molecular viscous effects
are represented by the Laplacian operator, with kine-
matic viscosity v.

The augmented pressure field II is specified implic-
itly by the incompressibility condition

V-u=0, 3)
and the buoyancy evolves in accordance with

ab 5
—=-—u-Vb + kVDb, 4)
ot
in which k is a molecular diffusivity for the stratifying
scalar.
We assume periodicity in the horizontal dimensions,

fx+ Ly, 2)=f,y+ L,z =flx,y,2) (5)

in which f is any solution field and the periodicity in-
tervals L, and L, are constants. At the upper and lower
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Fi1G. 1. Velocity (solid) and buoyancy (dashed) profiles defining a
symmetric, stratified shear layer with unequal layer thicknesses.

boundaries z = *=L_/2, we impose an impermeability
condition on the vertical velocity,

le:tLZ/Z =0, (6)

and stress-free, adiabatic conditions on the horizontal
velocity components « and v and on b,

u

dv
a9z

z=*+L_2 02

ab

z=*L,2 N a9z

= 0. 7)

z2=*Lp

These imply a condition on II at the upper and lower
boundaries:

( al + b) =0 (8)
0z 2==L.2 .

b. Initial conditions

The model is initialized with a parallel flow in which
shear and stratification are concentrated in horizontal
layers centered on the plane z = 0,

_Au h2 d 9
u(z) = —-tan p ¢ an )

Ab 2
b(z) = —= tanh — z.

2 h, (10)

The constants 4, Au, and Ab represent the initial thick-
ness of the shear layer and the associated changes in
velocity and buoyancy. The thickness of the stratified
layer is &, = hyR™" (Fig. 1).
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TABLE 1. Parameters for numerical simulations: Re, and Ri, represent the initial Reynolds and Richardson numbers; L,, L, and L,
are the domain dimensions in the streamwise, cross-stream, and vertical directions, respectively; and N,, N,, and N, are the corre-

sponding coarse array sizes. The dimensions of the fine array are 2N,, 2N,, and 2N,. The parameters a and ¢ are amplitude factors for

the initial eigenfunction and random noise. For all simulations, Pr = 9 and R = 3.

Run

Parameter 1 2 3 4 5 6 7 8 9
Re, 1200 1200 1200 1200 1200 1200 2400 1200 1200
Ri, 1.0 0.70 0.45 0.30 0.15 0.45 0.45 0.45 0.45
L, 5.40 6.96 8.91 10.43 9.78 8.91 8.91 8.91 8.91
L, 2.70 3.48 4.45 5.22 4.89 4.45 4.45 445 4.45
L, 5.40 3.48 4.45 5.22 9.78 4.45 4.45 4.45 4.45
N, 128 128 128 128 128 160 200 128 128
N, 64 64 64 64 64 80 100 64 64
N. 128 64 64 64 128 80 100 64 64
a 0.4 04 0.4 0.4 0.4 0.4 04 0.4 0.2
Log,oc -2 -2 -2 -2 -2 -2 -2 -3 -3

The problem is nondimensionalized using the length
scale A, the velocity scale Au, and the time scale hy/Au.
These scales, together with the various physical param-
eters in the problem, combine to make a set of nondi-
mensional parameters whose values specify the prob-
lem completely. The level of stratification relative to
the shear is quantified by the initial central (or bulk)
Richardson number Ri,, which is defined as the value
of the gradient Richardson number at z = 0 and ¢t = 0,

Ri ab/oz _ AbhyR "
© 7 @woz) o T aw? (h
The nondimensional viscosity is 1/Re,,, where
hoAu
Rey = — (12)

is the initial Reynolds number. (Both the central Rich-
ardson and Reynolds numbers increase over time as the
shear layer spreads.) The relationship between viscosity
and the scalar diffusivity is expressed by the Prandtl
number:

Pr = v/k. (13)

In addition to the profiles described above, the initial
conditions included a two-part perturbation designed to
efficiently stimulate both primary and secondary insta-
bilities. First, a disturbance proportional to the eigen-
function of the fastest-growing mode was added. The
amplitude was chosen so that the maximum vertical
displacement was ah,/2, where a = 0.4 or 0.2 (see Table
1). This amplitude is large enough to efficiently stimu-
late the primary mode, yet small enough that linear
perturbation theory provides a reasonable approxima-
tion to the initial growth (SWO03). Second, a random
velocity field was added in order to excite three-dimen-

sional motions. At each point in space, the three com-
ponents of the velocity increment were chosen from a
list of random numbers whose probability distribution
was uniform between the limits +cAu/2, where ¢ = 102
or 1073 (Table 1). During the first time step, the ran-
dom motions were automatically made solenoidal by
the pressure gradient force.

The dimensions of the computational domain are set
by the wavelength of the fastest growing mode of linear
theory, which we describe in the next subsection.

c¢. Linear stability analysis

Figure 2 shows the stability characteristics of normal
modes of the velocity and density profiles (9) and (10)
versus R, the ratio of stratified layer thickness to
shear layer thickness, and J = HyAb/Au?, which is pro-
portional to the buoyancy change across the stratified
layer. Results to follow are given in terms of the central
Richardson number Ri, = JR; hence that parameter is
plotted for reference in Fig. 2d.

Figures 2a and 2b show the real and imaginary parts
of the growth rate. Significant instability is found
mainly in two regions—the stationary KH modes lying
approximately in the wedge Ri, < 0.25 (Fig. 2d) and the
oscillatory Holmboe modes with Ri, > 0.25, R~! < 0.5.
The wavenumber of the dominant instability (Fig. 2c) is
nearly uniform over much of the KH regime, but varies
considerably for Holmboe modes.

Bullets in Fig. 2 show the relationship between the
present study and SW03. SWO03 varied the central Ri-
chardson number in order to obtain KH and Holmboe
instabilities, while keeping the net buoyancy change
across the stratified layer fixed (the two circles with
crosses). That experiment produced the surprising re-
sult that the Holmboe instability (R = 3, J = 0.15,
Ri, = 0.45) mixed more effectively than did the KH
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Fi1G. 2. Stability characteristics of normal modes of the profiles in (9) and (10), with Re = 1200 and
Pr = 9. The linearized equations were discretized using a finite-difference matrix method. Modes were
assumed to be two-dimensional, and the streamwise wavenumber k was varied to find the fastest-
growing mode at each point using a golden section search with parabolic interpolation. Circles: param-
eter values used in the present study (Table 1); crosses: parameter values used in SW03.

instability (R = 1, J = 0.15, Ri, = 0.15), despite the
fact that the latter had a much larger growth rate (Fig.
2a). Here, we hold R fixed while varying J. At one
extreme, we set J = 0.05 (Ri, = 0.15) to produce KH
instability. In contrast, our most strongly stratified case
had J = 0.33 (Ri, = 1.0). This corresponds to the maxi-
mum growth rate for Holmboe modes with R = 3. Note
that this mode is strongly oscillatory, with frequency
exceeding growth rate by an order of magnitude. Be-
tween these extremes are three intermediate cases of
Holmboe waves, one of which is identical with the
Holmboe case investigated in SW03 (R = 3, J = 0.15,
Ri, = 0.45).

d. Parameter values

In accordance with the linear stability results sum-
marized above, Holmboe-like waves are typically ob-
served on stratified shear layers where the scale ratio R
is significantly greater than unity and the minimum gra-
dient Richardson number exceeds V4. For example,
Yoshida et al. (1998) observed cusped waves at a river
inflow where R ~ 4 (estimated from their Fig. 5) and

J = 0.56.1 In a second observation, R was much smaller,
and no instability was present. As usual, the parameter
choices for our DNS runs represent a compromise be-
tween realism and computational practicality, spanning
the Holmboe regime of Richardson number and scale
ratio at a Reynolds number that is small relative to
most geophysical mixing events (Table 1).

In addition to the five main cases in which Ri, is
varied, the dataset includes four auxiliary runs designed
to test sensitivity to grid resolution (run 6), Reynolds
number (run 7), and initial perturbation amplitude
(runs 8 and 9). (The auxiliary runs are all variants on
run 3, the Ri, = 0.45 case.) For all cases, the initial
Reynolds number Re, is 1200. These choices, together
with Pr = 9 (an appropriate value for water under typi-
cal geophysical conditions) and R = 3 completely

! Yoshida et al. (1998) also observed a significant offset be-
tween the centers of the shear and stratified layers, leading to an
asymmetry in the Holmboe waves. Mixing in this class of waves is
described in Carpenter et al. (2007).
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specify the equations of motion and the initial condi-
tions.

The domain length L, is set equal to the wavelength
of the fastest-growing mode. The domain width L, is
L. /2, approximately 3 times the spanwise wavelength of
the fastest-growing three-dimensional instability of KH
billows in air as described by Klaassen and Peltier
(1991). The domain height L. is set equal to L./2, ex-
cept in cases where extensive vertical motions were an-
ticipated (Table 1).

e. Numerical methods

The numerical code is an extension of that described
by Winters et al. (2004). It uses Fourier pseudospectral
discretization in all three dimensions. Time stepping is
via the third-order Adams—Bashforth operator, with
time step determined by a Courant-Friedrichs—Lewy
stability condition. Viscous and diffusive terms are in-
tegrated exactly. Buoyancy is resolved on a fine grid
with spacing equal to one-half the spacing used to re-
solve the other fields. Aliasing errors are reduced by
applying to both grids at every time step an isotropic
filter with a cosine-bell shape that decreases gradually
from amplitude 1 to 0.6 over the range 0.8-1 times the
Nyquist wavenumber. For further discussions of the nu-
merical method, see Winters et al. (2004) and Smyth et
al. (2005).

Spatial resolution is isotropic and is designed so that,
at peak turbulence levels, the smallest scales on which
significant variations exist (a few times the Batchelor
scale; see Moin and Mahesh 1998; Smyth et al. 2005) are
well resolved. Here, the streamwise (x) wavelength of
the primary instability is resolved using 128 grid nodes
for velocity and pressure and 256 nodes for buoyancy
(with corresponding grid lengths in the y and z direc-
tions to maintain isotropic resolution). An auxiliary test
run was made with 160 nodes in x for velocity and
pressure and 320 nodes for buoyancy (run 6 on Table
1). The resolution increase made no significant differ-
ence to the mixing statistics reported here, confirming
that our spatial resolution is sufficient.

3. Overview of mixing events

The Holmboe wave consists of a pair of oppositely
propagating wave trains that interfere to form a stand-
ing wave. At the state of minimum potential energy, the
isopycnals are not flat but rather form sharp crests
above and below the stratified layer. An example is
shown in Fig. 3a, which is taken from the most strongly
stratified case considered here, that for which Ri, = 1.
At the opposite point in the oscillation cycle, the state
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of maximum potential energy, the wave is approxi-
mately sinusoidal.

When stratification is reduced, the oppositely propa-
gating component waves interact more strongly, and
hence the Holmboe wave evolves complex, vortical
structures characteristic of turbulence (Figs. 3c,d; also
see SW03). At the other extreme, when Ri, < 0.25, the
component waves phase lock and wrap around each
other to form KH billows. Each billow contains mul-
tiple layers of unstable density gradients (Fig. 3e) that
quickly become turbulent (Fig. 3f).

Each of these cases involves irreversible mixing am-
plified to some degree by three-dimensional secondary
circulations. The dynamics of the secondary circula-
tions are described in detail in Smyth (2006). In each
case, the disturbance eventually dies away, leaving be-
hind a stable, parallel, stratified shear layer in which
both shear and stratified layer thicknesses have been
permanently increased through mixing.

4. The disturbance energy budget and the
efficiency of mixing

a. Theoretical development

Sheared, stratified turbulence may be viewed as the
intermediary through which kinetic energy from the
mean flow is transferred into potential energy and in-
ternal energy. In this subsection, we describe the energy
budget for a stratified shear flow in which there are no
boundary fluxes (Fig. 4).

Kinetic energy is divided into two parts describing
the mean flow and the disturbance. Similarly, potential
energy is subdivided into a “background” part, defined
as the minimum potential energy attainable via adia-
batic rearrangement of fluid parcels (Winters et al.
1995), and an “available” part, which can be converted
to background potential energy by mixing. These quan-
tities evolve according to the following equations, as
illustrated schematically in Fig. 4:

d € 14
4 K=-5-% (14)
d "= ! 15
G =s+tB-¢, (15)
P M, d 16
dtfPu——ﬁ?— [ an (16)
d =M+ O 17
dt?b_ . ()
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F1G. 3. Snapshots illustrating spatial structures of three mixing events. Each event is shown at two successive times. Colors represent
the buoyancy field; values range from 0.4Ab (red) to —0.4Ab (purple). Values outside this range are rendered transparent. (top) Run
1, Riy = 1, (a) t = 234.3, (b) t = 237.8. (middle) Run 3, Ri, = 0.45, (c) t = 143.4, (d) t = 152.9. (bottom) Run 5, Riy = 0.15, (e) t =

35.40, (f) t = 112.5.

The mean flow kinetic energy is defined as

_ 1
_ _ =2
A= <2” >

where the angle brackets denote an average over the

(18)

coordinate directions indicated in the subscript. The
mean flow is u(z, ) = (u),,. Also, § represents the
shear production

— da ! !
S= _<d_Z <Lt w >xy>z s (19)
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FIG. 4. Schematic representation of the energy partitioning described by (14)—(17). Small
boxes represent energy reservoirs. Arrows are transfers (reversible or irreversible) between
reservoirs. Larger rectangles represent alternative useful groupings of reservoirs.

where u' = u — uwand w’ = w are disturbance velocities,
and € represents rate of mean flow kinetic energy con-
version to internal energy via viscous dissipation:

(%),

Energy drawn from the mean flow by the shear pro-
duction S is converted into disturbance kinetic energy,
defined as

(20)

1
K =52+ v+ w?),,.. (21)
The buoyancy flux is given by
B=(b'W'),y.s (22)

where b’ = b — b and b(z, {) = (b),,. The viscous
dissipation rate of disturbance kinetic energy is

€ = 20(5;;8;)ryzs (23)
and
(0 N u; 24
S = ax;  ox; @4
is the disturbance strain tensor.
The total potential energy,
7= _<bz>xyz? (25)

is subdivided as 7, = P, + P,. The background potential
energy is given by

By = —(b,2); (26)

where b,(z, ) is a three-dimensionally reordered buoy-
ancy field defined as in Winters et al. (1995). A positive
buoyancy flux converts available potential energy into

disturbance kinetic energy. The mixing rate has the ex-

pression
L
~ “Nlabraz#/ .

(Winters et al. 1995), though in practice it is calculated
as the residual of (17). The background potential en-
ergy evolves in accordance with (17), where

(27)

K L
® = bl (28)

z
is the rate of potential energy increase due to molecular
diffusion in the absence of fluid motions.

In many ocean mixing processes, one wishes to know
the fraction of the available energy that is transferred
irreversibly into the potential energy field. This need
has led to various attempts to define the “efficiency” of
mixing. Here we will discuss three definitions, all of
which are useful in different ways. Perhaps the most
obvious definition of mixing efficiency results from
thinking of stratified turbulence as an ideal engine in
the thermodynamic sense and computing its mechanical
efficiency, that is, the ratio of work done to energy
input. “Stratified turbulence” refers to the range of ve-
locity and buoyancy fluctuations possible in a stratified
fluid and is commonly thought of as a mixture of gravity
waves and classical turbulence. We therefore identify
the energy of the stratified turbulence as X' + 2,
(shaded box on Fig. 4). The mechanical efficiency is
then the ratio ¢;(f) = M/S, where the subscript i indi-
cates that the ratio is evaluated instantaneously as a
function of time. Rather than being an ideal engine,
however, stratified turbulence is one of those engines
that is capable of returning energy to its source, like an
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electric vehicle that can use energy to recharge its bat-
tery. When the shear production is negative, the engine
is in this recharging state, and the ratio of work done to
energy input is negative. The notion of efficiency thus
becomes more complex and, perhaps, less useful than
one would like.

A second approach is based on the ideas of McEwan
(1983). We effectively abandon the mechanical analogy
by defining efficiency as the ratio of work done to en-
ergy wasted (dissipated), that is, I';(#) = M/e’. Here I'; is
also useful in estimating the buoyancy flux from obser-
vational measurements of dissipation (e.g., Moum
1996) and for discriminating between shear-driven tur-
bulence and double-diffusive mixing (e.g., St. Laurent
and Schmitt 1999). Unlike ¢;, I never becomes negative.
It can, however, become arbitrarily large when dissipa-
tion is small: I'; is related to e; by

€;
S

1

1d
|:1+?E‘(K +Tu)]. (29)

The first factor on the right-hand side is nearly equal to
e; when e; < 1, as is usually the case. This familiar
algebraic relation is supplemented by a factor describ-
ing the storage of energy by stratified turbulence, which
will tend to increase I'; when turbulence is growing and
decrease it when turbulence is decaying.

An elegant alternative approach was taken by
Caulfield and Peltier (2000), who avoided partitioning
the kinetic energy into a mean part and a disturbance
part, effectively expanding the “engine” of stratified
turbulence to include the mean flow. This engine has no
energy source; it has, instead, a finite reservoir of en-
ergy that can lose (but never gain) energy via dissipa-
tion and mixing. Caulfield and Peltier defined the effi-
ciency of this process as the ratio of mixing to total
energy expended:

M
Ei_M-f—E'i‘E’. (30)
This approach is useful in the context of large-scale
energy budgets (e.g., Munk and Wunsch 1998). Sup-
pose, for example, that a wind event supplies the ocean
current system with an increment of kinetic energy.
Eventually, we expect that this energy increment will
be shed due to instability and that a fraction of it will go
into mixing the ocean: Z; quantifies that fraction.

While instantaneous mixing efficiencies can give use-
ful insights into the mechanics of mixing, variants that
describe the cumulative mixing over a complete event
may be of greater practical use:
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Mdt
=, (31)
f Sdt
0
M dt
r=— (32)
j e dt
0
and
Mdt
0 2 (33)

f M+ e+ €)dt
0

Here I'.. is simply related to e. because the storage term
integrates to zero:

fMdt
0 e
=1=

je'e] e *
J € dt ¢
0

In high-Reynolds-number flows where € is negligible,
E. ~ €.

We now apply these ideas toward understanding the
physics of mixing in our sequence of simulated mixing
events. We begin with run 3, the Holmboe case with
Ri, = 0.45. This case is similar to the Holmboe wave
considered in SWO03, differing only in the details of the
initial noise fields. After this, we will look at the more
strongly stratified Holmboe wave (run 1) and the
weakly stratified KH wave (run 5). We next discuss
comparative results for all cases and close the section
with a look at the effects of the initial noise amplitude.

I.= (34)

b. A Holmboe wave in moderate stratification

For run 3 (Figs. 3c,d), the disturbance kinetic and
available potential energies exhibit the oscillatory
growth characteristic of Holmboe instability (Fig. 5a).
Part of this oscillation is due to a wavelike exchange of
energy between X' and 2, via the buoyancy flux. This
aspect of the oscillation vanishes when the two energy
reservoirs are added to create the total energy of the
stratified turbulence. The remaining oscillation is due
to a periodic exchange between the disturbance and
mean flow kinetic energies. The background potential
energy grows monotonically, and the most rapid growth
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Fi1G. 5. (a) Content of energy reservoirs as a function of time for Ri, = 0.45 and (b) energy
transfers appearing in the budget for the turbulent energy X' + 2,. Oscillations were attenu-
ated by application of a triangular filter with duration equal to one oscillation period. (c)

Alternative measures of mixing efficiency.

is found just after the peak in X' + 2,, when the latter
is declining rapidly.

Figure 5b shows the energy conversions that lead to
mixing. These curves have been low-pass filtered to
attenuate the strong oscillations in the shear production
and hence in the storage rate. The dominant balance is
between the shear production (dashed curve) and the
dissipation (dotted curve). Both growth and decay of
the turbulence and irreversible mixing are associated
with imperfections in this balance. The imbalance has
the character of a time lag, with production peaking
earlier than dissipation.

The time lag between production and dissipation re-
sults from the downscale energy cascade that charac-
terizes three-dimensional flow. Early in the flow evolu-
tion, the flow is dominated by large-scale structures that
drive a vigorous flux of energy from the mean flow to
the disturbance while dissipating energy at a relatively
low rate. Some of the resulting excess energy goes into
irreversible mixing, but the greater part is stored in the
turbulence. Over time, turbulent energy cascades to
smaller scales so that by the latter half of the mixing
event, small-scale motions are more prevalent. This
leads to an excess of dissipation over production (cf.
Smyth and Moum 2000), which depletes the energy of

the turbulence. As in the growth phase, a portion of this
energy imbalance is converted irreversibly into back-
ground potential energy.

The evolution of T'; (thick curve on Fig. 5c) is typical
of mixing events that originate from instabilities; I'; de-
creases from a relatively high value? early in the mixing
event to a value close to 1/Pr, the value for monochro-
matic gravity waves (Staquet and Bouruet-Aubertot
2001), after turbulence has subsided. Early in the event,
the ratio e; is smaller, indicating that, with the oscilla-
tions of the Holmboe wave averaged out, somewhat
less than 20% of the energy gained from the mean flow
via shear production goes into raising the background
potential energy 2,. Equation (29) now suggests a way
to understand variations in I';. Early in the event, some
of the energy from shear production that does not go
into 7, also does not go into dissipation, where it would
reduce the value of I';, but instead is stored as X' + 2,.
In the decay phase, I'; remains close to the wave value

2SWO03 found T'; values that were 2 times as large as those
reported here for the same case. This was due to a coding error
that resulted in €' being too small by a factor of 2; hence, I'; is too
large by the same factor. The error appears only in Figs. 12c—f of
SWO03, and it does not affect the conclusions.
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FIG. 6. As in Fig. 5 but for Ri, = 1.0.

1/Pr, and it is e; that is elevated, as energy for M comes
not from shear production, which would reduce e;, but
rather from the release of energy stored in X' + 2,. In
the final stage of decay, shear production drops to
nearly zero while weak mixing persists due to the con-
tinuing release of energy stored in the turbulence, caus-
ing e; to increase sharply.

The value of Z; shows that, of the total energy lost to
the mean flow at any given time, about 5%-10% goes
into raising . This relatively small percentage indi-
cates the importance of mean flow dissipation €, which
absorbs a significant fraction of mean flow kinetic en-
ergy in this low Reynolds number mixing event.

c¢. A Holmboe wave in strong stratification

The Holmboe wave at J = 0.33, Ri, = 1 (run 1, Figs.
3a,b) is strongly oscillatory, as predicted by linear
theory (Fig. 6). The oscillation dominates the evolution
of X' and 2, to the extent that the two are indistinguish-
able on the scale of Fig. 6a. The oscillation is much
smaller in the disturbance energy X' + 2, indicating
that the oscillatory energy transfer is almost entirely
between X' and 2, via the buoyancy flux. The maxi-
mum value of X' + 2, is just above 3 X 1072, very
similar to the maximum energy attained in the previous
case (Riy, = 0.45). In contrast, the background potential
energy grows to values much larger than those found at
Ri, = 0.45, a difference that is discussed in detail below.

500 600 700

Before plotting the energy transfers, we filter out the
fast oscillations. This reveals a second oscillation of
about 1/7 the frequency. The disturbance energy X' +
P, peaks at about t = 220. Before this, the shear pro-
duction is around 4 X 10, which is quite similar to the
range of values in the early part of run 3 (cf. Fig. 5b).
Unlike run 3, however, this run does not exhibit a sub-
sequent period of rapid disturbance growth associated
with the turbulent breakdown of the Holmboe wave.
Instead, the dissipation rate &’ grows gradually until
shortly after + = 220 when it becomes approximately
equal to the shear production and the wave begins to
decay. The mixing rate M remains near 10~ until after
t = 300. This is in marked contrast to the previous case
Ri, = 0.45, in which M decays rapidly after ¢+ = 180.
Eventually, M decreases to zero as in the previous case.

The evolution of I'; is similar to the previous case: it
is undefined near ¢ = 0, but settles down to a value near
0.4 for most of the growth phase. Then I'; decreases
gradually to a value near 1/Pr. The ratio e, is just above
5 throughout most of the growth phase. It then in-
creases to become greater than I'; for a brief period
when the disturbance energy is decreasing, before de-
creasing to a value not much different from 1/Pr late in
the run. Through most of the growth phase Z; is near
10%, and then it decreases to zero.

The main result that we find in comparing this
strongly stratified Holmboe wave with the more weakly
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F1G. 7. As in Fig. 5, but for Ri, = 0.15.

stratified case discussed previously is that the strongly
stratified wave accomplishes more mixing (cf. thick,
solid curves in Figs. 5Sa and 6a). This strong mixing hap-
pens not despite, but because of, the fact that the wave
never becomes turbulent. The growth phase, during
which mixing is relatively efficient, is sustained for
about 2 times as long because the wave fails to break,
and the ultimate result is a greater irreversible increase
in potential energy.

d. A KH billow

The KH instability at J = 0.05, Ri, = 0.15 (run 5,
Figs. 3e,f) reaches energy levels higher than in any of
the Holmboe cases considered here (Fig. 7). The linear
KH mode is not oscillatory, but at finite amplitude the
disturbance exhibits slow nutations characteristic of an
elliptical vortex in a shear flow. The shear production
rate (Fig. 7b) reaches a maximum an order of magni-
tude larger than the fastest-growing Holmboe mode at
Ri, = 1, then oscillates briefly before settling down to a
monotonic decrease. As in the Holmboe cases, the dis-
sipation rate peaks later in the event, and this peak
coincides with the release of energy stored during the
earlier, nondissipative phase. As in all cases, a slow but
steady conversion feeds energy irreversibly into the
background potential energy reservoir.

Because energy transfers were not low-pass filtered,
the ratio e; exhibits complex behavior, including singu-
larities and negative values associated with sign changes

in S. Once these oscillations cease, however, we see an
increasing trend in e; that contrasts with a decreasing
trend in I';, as seen previously in the Holmboe wave
cases. This again illustrates the effect of the storage and
subsequent release of energy in a time-limited mixing
event. Again I'; is large in the early stages, reaching
peaks near 0.6; Z; evolves much as I'; does, which is not
surprising since €' > € for this case and hence ; ~ I';/
(1 + I')). In general Z; is larger than in the Holmboe
waves, reaching a peak value of 0.3.

e. Comparisons

The cumulative mixing [, M dt' is greatest by far in
the KH wave case (Fig. 8). Beside reaching the largest
final value, it grows most rapidly in the early phases.
This is counter to the result of SW03, who showed that
a KH billow with R = 1 mixes less than a Holmboe
wave with the same buoyancy difference Ab but R = 3.
Here R = 3 in all cases and Ab is varied, so there is no
discrepancy in the conclusions.

Among the Holmboe wave cases, the growth of [{
M dt' begins earliest at Ri, = 0.7, but the ultimate
amount of mixing increases monotonically with Ri,
yielding its maximum value for the nearly laminar wave
at Rip = 1.

The instantaneous mixing efficiency I'; of the Holm-
boe waves (Fig. 9) shows a clear dependence on Ri,,. In
the early phase (roughly r = 0-50), I'; is undefined be-
cause € ~ 0. Following this comes a period of elevated
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F1G. 8. Cumulative mixing vs time for KH and Holmboe events with Re, = 1200.

I';, after which I'; decreases and ultimately approaches
1/Pr. This interval of high I'; corresponds to the pretur-
bulent phase and is longest in the most strongly strati-
fied case (where transition to turbulence does not oc-
cur). The length of the preturbulent phase decreases

monotonically with decreasing Ri,, disappearing en-
tirely in the most weakly stratified case Ri, = 0.3,
where the wave breaks rapidly.

The cumulative mixing efficiency, I', = [§ M di/[§
€'dt, varied considerably among the different cases
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F1G. 9. Instantaneous mixing efficiency I'; for four Holmboe waves with Re, = 1200 and
Rij, as indicated.
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mixing over net energy loss from the mean flow.

(Fig. 10). The KH case showed the highest value.
Among the Holmboe cases, the highest I'. occurred at
Ri, = 1. The open circle on Fig. 10 indicates I', for the
high-Reynolds-number case with Re, = 2400, Ri, =
0.45. The similarity between this case and its counter-
part with Re, = 1200 suggests that dependence on the
Reynolds number is weak.

x107°
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The net fraction of mean flow energy that went into
irreversible potential energy increase . is generally
smaller than I'. but otherwise behaves similarly: it is
greatest for the weakly stratified KH wave but in-
creases monotonically with stratification for the Holm-
boe wave cases. In contrast to I',, E, is sensitive to the
Reynolds number. In the single high-Reynolds-number
case, E. increased significantly owing to the reduced
role of mean flow dissipation.

f- Dependence on the initial disturbance amplitude

The stages in a mixing event depend to some degree
on the characteristics of the initial disturbance. The
cases shown in Fig. 11 are identical except that the
initial random noise field was reduced by an order of
magnitude in the latter. The results are identical until
about ¢ = 100, at which point three-dimensional mo-
tions become significant in the run with larger initial
noise. While the mixing rate # is initially unaffected,
increased dissipation causes I'; to decrease. More im-
portant, the increased dissipation causes the turbulence
to decay so that M begins to decrease at about ¢ = 170.
In contrast, the event with lower initial noise does not
develop strong dissipation until ¢ ~ 200. The cycle of
increased dissipation, reduced I';, and finally reduced
mixing is the same except for being displaced in time.
This apparently minor difference has a major impact on

- iR akalia)

1 1 1 1

200 250 300 350 400

Fi1G. 11. (a) Mixing rate, (b) kinetic energy dissipation rate, and (c) the ratio I'; for runs 2
and 8.
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the net amount of mixing accomplished. The net mixing
was increased by nearly 20% (I, increased from 0.17 to
0.20) because the highly efficient, two-dimensional
stage lasted longer when the initial noise was reduced.

Next, we investigate dependence on the initial am-
plitude of the primary instability. Runs 8 and 9, shown
in Fig. 12, are identical except that the initial eigenfunc-
tion amplitude was halved for run 9. This has the effect
of delaying the growth of the two-dimensional Holm-
boe wave. As expected, mixing is weaker at early times
(t < 100). Dissipation is also weaker during this time,
though. For ¢ = 50-150 (after the initial phase in which
it is undefined), I'; is essentially equal for the two cases.
But, the rapidly growing two-dimensional instability in
run 8 becomes turbulent and collapses around ¢ = 200,
whereas the wave with the smaller initial amplitude
does not break until + = 250. Once again, the result of
a weaker initial perturbation is that the highly efficient
two-dimensional mixing stage is prolonged. In this case,
the net amount of mixing is increased by about 10% (I’
increased from 0.20 to 0.22).

5. Entrainment and diffusivity

In all cases, both the shear layer and the stratified
layer thickened over time due to the combination of
molecular diffusion, turbulent mixing, and wave mo-
tions (Fig. 13). Layer thicknesses were calculated as

L2

hy= f [1 = f/Af1]dz, (35)
—L2

where f(z,t) represents the mean profile of either ve-

locity or buoyancy and Af'is its net change. Both /,, and

h,, exhibited an initial period of roughly linear growth

modulated by oscillations. This growth rate was used to

construct a dimensionless entrainment rate

E,=——L. (36)

02 L L L
50 100 150

L L L
200 250 300 350

1

F1G. 13. Thicknesses of the shear layer (solid) and stratified
layer (dashed) for run 3, the Holmboe wave with Ri, = 0.45.
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For the Holmboe cases, E, exceeds E,, (Fig. 14). The
difference is slight at Ri, = 0.3 but becomes more pro-
nounced with increasing stratification. In the KH case,
E, was slightly larger than E,, and both were larger
than the largest values found in the Holmboe cases. In
the Holmboe cases, the entrainment rate describing the
thickening of the shear layer shows no distinct depen-
dence on stratification, being within 10% of 0.005 in all
cases. In contrast, the thickening of the stratified layer
is slower and more dependent on stratification. It is
clear that entrainment is strongly decreased by stable
stratification in all cases, as the comparable entrain-
ment rate for an unstratified shear layer is O(107")
(e.g., Rogers and Moser 1994).

The diffusivity K" describing irreversible scalar mix-
ing is computed instantaneously based on the Winters
and D’Asaro (1996) formalism. At each time step, the
buoyancy field is resorted to form the state of minimum
potential energy %, as described in section 4a. The evo-
lution of 2, is then used to define a spatially uniform
(but temporally varying) diffusivity. A detailed descrip-
tion of the method may be found in Smyth et al. (2005).

In each case, this diffusivity rises to a maximum then
decays as the disturbance subsides (Fig. 15). The peak
diffusivity decreases with increasing stratification, and
is much larger in the KH case than in the Holmboe
cases. This dependence on stratification is partially
countered by the fact that the interval during which K
is significantly greater than the molecular level lasts
longer in the more strongly stratified cases. Also, the
fluxes may be larger in the more strongly stratified
cases because the gradients are larger.

Unfortunately, we know of no way to compute an
instantaneous momentum diffusivity that describes ir-
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reversible mixing only. Instead, we compute character-
istic diffusivities for each event based on the kinetic
energy budget. The eddy viscosity is defined via the
shear production rate:

Koom = ffS dt / f f((aﬁ/az)2>Z dt, (37)
0 0

where the time integrals span the entire mixing event.
Similarly, we compute a net mass diffusivity based on
the buoyancy flux:

Lz (7
Kbuoy = - A_b 0

As is true of the entrainment rate, the net diffusivi-
ties for the KH case are much larger than those for the
Holmboe cases (Fig. 16). The diffusivities are approxi-
mately independent of Ri, for the Holmboe cases. Al-
though there is a hint of systematic decrease in Ki,oy,
the present data are insufficient to assess its signifi-
cance. The disturbance Prandtl number K., om/Kpyoy 1S
near unity for the KH case and is about 3 for all Holm-
boe cases.

The net diffusivities for the Holmboe cases are low
(i.e., comparable to molecular values) as a result of the
low Reynolds numbers attained in these DNS experi-
ments. Based on scaling arguments, one would expect
the eddy diffusivities to increase in direct proportion to
the Reynolds number. In an auxiliary simulation with
Re = 2400 (run 7, plus sign and asterisk on Fig. 16), the
nondimensional diffusivities essentially equaled their
values in the corresponding Re = 1200 run (i.e., after
doubling Re, the diffusivities increased by only a few
tens of percent). This means that, in dimensional terms,
the diffusivities scale with Reynolds number, as ex-
pected. Based on the mean values for the Holmboe
cases, we suggest that Holmboe wave diffusivities may
be predicted as Kom = 3.6 X 107*AoAu and Ky, =
1.2 X 10~*hyAu. This prediction is of limited practical
value, as the initial layer depth is difficult to specify in
practice. In cases studied here, however, the shear layer
thickened by a factor of 2.0 = 0.5, including the run at
higher Reynolds number.

The shear layer thickness, observed at any given
time, would therefore be between 1 and 2.0 = 0.5 times
hy. One could assume that 4, is the observed shear layer
thickness % divided by 1.5, and is correct to within a
factor of 2. Based on this, we propose the parameter-
ization

Bdt. (38)

Koom =24 X107 hAu and Ky, = 0.8 X 107" hAu,
(39)
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where /& and Au are the instantaneous thickness of the
shear layer and velocity change across it. This param-
eterization should be used with caution when Ri; > 1
or Rey > 10°.

6. Conclusions

We have investigated various aspects of mixing in a
set of simulations consisting of four Holmboe waves at
various levels of stratification and a single KH wave,
along with auxiliary Holmboe wave simulations in
which the Reynolds number and the initial noise levels
were varied. The main conclusions are as follows.

e Both KH billows and Holmboe waves follow a life
cycle that is probably characteristic of time-limited,
shear-driven mixing events in general. First, shear
production causes a transfer of energy from the mean
flow to the disturbance energy reservoir, X' + Z,.
When the instability grows to asufficiently large am-
plitude, secondary circulations grow and, in most
cases, trigger the onset of turbulence and the break-
down of the primary instability. Beyond this point,
shear production decreases and energy stored in the
disturbance decays. Disturbance energy cascades to
small scales over time so that its decrease in the later
phase is mostly due to viscous dissipation. At each
stage of the event, a small fraction of the energy
transfer goes irreversibly into raising the background
potential energy.

e We have examined three ratios that quantify the ef-
ficiency of mixing in different ways. Two of these
become large at some point in the event—I'; = M/e’
is large in the growth phase mainly because its de-
nominator is small. The reverse is true of e; = M/,
which is large later in the decay phase because its
denominator is small: Z; behaves very differently, in-
creasing to a peak value when mixing is strongest,

!
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F1G. 16. Nondimensional net diffusivities computed using (37)
and (38). Open (solid) circles indicate disturbance viscosity (mass
diffusivity). Horizontal dashed (solid) lines indicated the mean
viscosity (mass diffusivity) for the four Holmboe cases with Re, =
1200.
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then decaying again. These changes are associated
with storage and subsequent release of energy by the
disturbance. Here Z; is relatively small, peaking at
0.20 for the KH billow and less than 0.10 for the
Holmboe waves.

e When stratification is strong, the transition to turbu-
lence occurs late or not at all. As a result, the two-
dimensional Holmboe wave train, along with its char-
acteristic large values of I';, persists for a relatively
long time.

e The high values of I'; in the preturbulent phase do not
indicate especially strong mixing, as those values are
high primarily because €’ is small. The latter fact,
however, indicates that turbulent breakdown is not
occurring. The longer this state persists, the greater
the net mixing. As a result, the net mixing due to
Holmboe waves is greatest when the laminar phase
lasts longest, that is, in the strongly stratified cases.

o Similarly, the cumulative mixing efficiency of Holm-
boe waves, by any measure, is greatest in the most
strongly stratified cases. (If we continued the se-
quence of simulations to still higher Ri,, it is possible
that this trend would eventually reverse.)

e The present results pertain to relatively low Reynolds
number events; however, I'; appears to be quite in-
sensitive to Re,. Smyth et al. (2001) have demon-
strated similar Reynolds number independence of I’;
in KH billows. In contrast, Z; involves mean flow dis-
sipation and is therefore distinctly larger in the higher
Reynolds number case.

o Entrainment rates (scaled by Au) for the KH billow
are (2-3) X 1072 For the Holmboe waves, momen-
tum entrainment rates are (4-5) X 10~ for all Ri,,
while the scalar entrainment rate is smaller and de-
creases with increasing Ri,,.

e The instantaneous scalar diffusivity of the KH billow
reaches a peak value two orders of magnitude above
the molecular value. Among the Holmboe waves, the
maximum value is smaller and decreases at stronger
stratification, but the interval over which large values
persist increases.

o Net diffusivites are large for the KH case, small and
fairly uniform among the Holmboe cases. Dimen-
sional diffusivities appear to be proportional to the
Reynolds number. Our results are summarized in
(39), which may be used to parameterize eddy viscos-
ity and diffusivity in Holmboe waves in this param-
eter range. A salient feature of (39) is that the effec-
tive Prandtl number for Holmboe waves is approxi-
mately 3. The data hint that the scalar diffusivity
decreases at higher Riy; if so, the effective Prandtl
number would increase further in that parameter re-
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gime. Further experiments are needed to test this
possibility.

¢ Mixing events that begin in an environment relatively
free of preexisting turbulence mix more effectively.
This is because the onset of turbulence (which mixes
vigorously but inefficiently and thus annihilates the
wave) is delayed.

7. Discussion

In studies of turbulent Kelvin—-Helmholtz billows,
Smyth et al. (2001) showed that I'; is highest early in the
mixing event, when the flow is not yet turbulent. This
result, together with the alignment statistics of KH bil-
lows (Smyth 1999), suggested the following interpreta-
tion. In the preturbulent phase, the strain field evolves
slowly enough that scalar gradients are able to ap-
proach the optimal alignment for compression, leading
to rapid diffusion, even though the velocity field is only
weakly dissipative. Thus, any mixing event that involves
a lengthy preturbulent phase is likely to achieve signifi-
cant mixing with a relatively small expenditure of ki-
netic energy.

This view was challenged by the results of SW03, who
found elevated mixing efficiency in a preturbulent
Holmboe wave, despite the fact that the preturbulent
strain field was oscillatory. Values of I'; in preturbulent
Holmboe waves are generally not as large as those
found in KH billows, however [Figs. 5c, 6¢, 7¢c; Smyth et
al. (2001)]. This suggests that preturbulent Holmboe
waves are intermediate between preturbulent KH bil-
lows and fully developed turbulence, both in terms of
persistent strain and in terms of efficient mixing. Thus,
the hypothesis that high mixing efficiency in preturbu-
lent flows is caused by persistent strain remains viable.

SWO03’s suggestion that a low linear growth rate may
favor effective mixing is not supported by the present
results; in fact, the overall level of mixing correlates
positively with the linear growth rate of the primary
instability. Our results do, however, support SW03’s
suggestion that a long preturbulent phase favors effec-
tive mixing. SWO03 assumed that a slower-growing pri-
mary instability would necessarily take longer to be-
come turbulent. We have seen that this is not so; the
strongly stratified Holmboe cases become turbulent
later than the weakly stratified cases despite their
higher growth rates. The ultimate effect of this delayed
transition to turbulence is increased net mixing. In the
extreme case Ri, = 1, the primary growth rate is a
maximum but the transition to turbulence is suppressed
entirely. The result is a very long preturbulent phase,
and the greatest irreversible potential energy gain of all
the Holmboe waves.
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To compare mixing in KH and Holmboe waves,
SWO03 held the buoyancy difference across the stratified
layer constant and varied its thickness; specifically, they
set R = 3 to obtain a Holmboe wave and R = 1 for a
KH wave. They found that levels of potential energy
gain were similar in the two cases; in fact, the Holmboe
wave generated a somewhat greater level of mixing.
Taken by itself, this result would appear to suggest that
the intrinsic mechanisms of the KH and Holmboe
waves are similarly effective at generating mixing. The
laboratory experiments of Strang and Fernando (2001)
contradict this conclusion, showing that mixing is sig-
nificantly stronger, by various measures, in the KH
case.

The present results resolve this discrepancy. In con-
trast to SWO03, we have held R constant at 3 while vary-
ing the buoyancy change across the stratified layer.
(This distinction is illustrated in Fig. 2.) The present
approach is a better approximation to that taken in
laboratory experiments (e.g., Strang and Fernando
2001). The KH billow with R = 3 turns out to mix much
more effectively than Holmboe waves with the same R.
Taken together, these results show that the scale ratio R
is a (and perhaps the) crucial factor in determining mix-
ing efficiency in stratified shear layers. This is not hard
to understand when one notes that, in flows with large
R, scalar gradients are concentrated in the regions of
strongest shear.

The effective Prandtl number for Holmboe waves is
approximately 3 in the parameter range 0.45 < Ri, = 1,
and may trend toward higher values at higher Ri,. This
property is potentially important for the longevity of
Holmboe waves (and their associated mixing) since it
tends to maintain the sharpness of the density interface
relative to the shear layer. As noted by Alexakis (2005),
the regime Ri, > 1 may be complicated by higher har-
monics of the fundamental Holmboe instability.
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