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Fully Efficient Pipe lined VLSI Arrays
for Solving Toeplitz Matrices

Chapter 1. Introduction

1.1 Demand for High Performance Computing

For many signal processing applications, there is a strong
demand for high performance parallel computers. For example, in
speech processing the number of required operations may reach
1,500,000 operations/second. To radar processing, requiring up to
5,000,000,000 operations/second is needed [3]. Those performance
requirements cannot be obtained by using the conventional
sequential structure.

One of the prominent solutions for achieving high-speed
computation is the use application specific ICs (ASICs). Systolic
arrays have played a significant role in the VLSI implementation of
many signal and image processing algorithms [3]. Such arrays
consist of a set of pipelined processing elements connected locally
in a regular structure providing very high throughput rate. The main
advantages of these arrays are [5,6]: (i) a regular flow of data
through the array of processors ensuring multiple computations per
memory access without increasing I/O requirements; (ii)
synchronous - regular timing with local control of data flow; and
(iii) local nearest neighbor interconnection to minimize VLSI design
complexity and long delays.

Based on the early works of number of researchers such as
Cappello [7], Fortes [4], Quinton [13], Rao [14], and others, a unified
synthesis theory of automatic derivation of systolic arrays have
been developed. The motivation of this thesis is to obtain an
efficient pipeline and systolic arrays by using the synthesis
procedures. In this case, we will examine pipeline structures for
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the Toeplitz system factorization which has numerous applications
ranging from speech, image, and neurophysics to radar, sonar,

geophysics, and astronomical signal processing [15].

For many applications, the efficiency involved. in transforming
an application problem to systolic arrays is not 100% [2]. Moreover,

due to the uniform data propagation in the array, additional delay
time for the transmission of data is required which degrades the
computational rate and the processor utilization [16,17].

It has been shown that for systolic arrays only few
consecutive processors are active at any time unit. In this case,
clustering mapping method would be need to merge several
neighboring processors onto the same node to obtain a new array
which is fully efficient [2]. Furthermore, for many fine-grain
operations, due to the locality restriction and uniform data

transmission rate of systolic arrays additional delay time is

introduced thereby reducing the computation rate. This additional
delay time could be avoided by using a Multi-Rate Array (MRA)
structure where the variables are propagated at different rates

achieving higher speedup and efficiency. We will exam both
clustering mapping method and Multi-Rate Array solutions for the
design of Toeplitz solver.

1.2 Overview of the Dissertation

The main objective of this dissertation is to show a
systematic method to design a systolic array for factorizing and
solving Toeplitz matrix which includes the Toeplitz matrix
decomposition and the back-substitution. The synthesis is specified
by four steps: (1) to specify the computation in terms of set of
recurrence equations; (2) to examine the Dependency Graph (DG); (3)
to obtain a timing function (or a schedule) specifying the time
instant for each computation in the algorithm; and (4) to obtain
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allocation functions that map each computation onto a specific
processor.

This thesis is organized in the following way. In Chapter 2, we
briefly review the Schur algorithm to solve the Toeplitz matrix. In

Chapter 3, overviews of the synthesis is presented. In Chapter 4, we
provide conventional systolic solutions for the Toeplitz Solver and
examine its performance. In Chapter 5, clustering mapping method
has been applied. In Chapter 6, the MRA solution is presented, and
finally, a comparison of the different arrays and their performance
is summarized in the conclusion.
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Chapter 2. Toeplitz Matrix

2.1 Introduction

The object of solving the Toeplitz system is to find x from the
set of linear equations

Tx .y (2.1)

where T is a (N+1) X (N+1) Toeplitz matrix, x and y are vectors of
length N+1. A symmetric Toeplitz structure T, where t(i, j) = t(li-
jI), is shown below

T .

to
ti

[ tN

ti .

to ...

tN-1

. . tN
tN -1

tO 1

This system appears in many digital signal processing
problems. For an example, the Least Mean-Squares estimation for
predicting a sequence {yt} from the observations of {xt} where the
estimated yt is calculated by taking a finite linear combination of
the present and past samples of xt. The standard procedure is to
form the "sample covariance" estimate of the second-order
statistic,

Rk = E {yt, Yt+k} (2.2)

of the stationary process {yt, t?.0}.
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(2.3)

The coefficients a can be obtained by solving the Yule-Walker
equations above, where JN is given as the minimum (error) variance
solution E {e2(N) }. The matrix Rk has is a Toeplitz matrix. Least

squares prediction of stationary time series by the autocorrelation
method of linear prediction has been studied in various applications
such as noise cancelling, spectral estimation, channel equalization,
and the linear prediction of speech [18], which involved the solution
of the vector a by factorization of the Toeplitz matrix Rk.

2.2 Solving Toeplitz Matrix

The major objective in solving the symmetric Toeplitz system
is to perform a triangular decomposition of the matrix T as

T = uTD-lu (2.4)

where D = diag[ut .. , u(N+1)], and U is an upper triangular matrix.
The solution x of (2.1) can be solved explicitly with back
substitution:

x =T-ly =U-1D(UT)-ly

which can be separated into two back-substitution steps,

g = D(UT)-ly

and

(2.5)

(2.6a)



6

x =U-ig. (2.6b)

To solve the Toeplitz system, two back-substitution steps
needs to be performed. In the following sections, detailed

algorithms required for decomposition (find U) and back-

substitution (find g and x) will be shown. Throughout the thesis,
the algorithm for decomposition will be referred to as Algorithm I
and algorithm of back-substitution will be called Algorithm II.

2.2.1 Decomposition (Schur Algorithm)

Standard Gauss or Choleski methods for solving nxn Toeplitz
system requires 0(n3) arithmetic operations. These Toeplitz solvers

are numerically unstable, when applied to arbitrary Toeplitz

systems [19]. There are several algorithms (e.g., QR Decomposition)
for obtaining the solution in 0(n2) operations [20,21]. More recently,

an algorithm has been presented for solving a Toeplitz system of
equations using 0(n log2 n) operations based on Levinson and Durbin
[21,23].

Although Levinson algorithm consists of only simple recursive
operations; the parallelism is hampered by the presence of inner
product operations which are dot product of two vectors of length n,
and does not readily lend itself to a systolic array implementation
[22]. In each one of the n recursion step, the inner product operation,
as shown by other researchers, will require a minimum of log2n
computation for additions, and to compute all the n recursions, the
total computing time amounts to 0(n log2 n) on a linear processor
array [1]. An improved Levinson algorithm has been developed to
resemble the Schur algorithm reducing time complexity to 0(n) [1].
Numerical experiments show that the stability and round-off errors
of Schur algorithm are competitive with other methods such as the
QR factorization and the Levinson algorithm [22,23].
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To demonstrate the triangularization procedure using the

Schur algorithm we use an example of 4 X 4 matrix. The problem is
to find the elements {uij} such that

r 1 0 0 0 1 rub° Lill u12 u13-1
I L21 1 0 0 1 1 0 u2i u22 u23
[ L31 L32 1 0 _IT = [ 0 0 u32 1133 i

L41 L42 L43 1 0 0 0 u43

denoted as

(2.7)

LT =U

The top rows of L and U are determined by the structure.

Li = [1 0 0 0]
Ui = [ ulo till u12 1113] = DO ti t2 t3]

To find the second row, we start with the following equation

[1 0 0 0 ] [to ti t2 t3
L 0 1 00 T= ti to t1 t2 (2.8)

where ti's are the elements of T. Performing row operations on both

sides of this equation:

[ 0 1 0 0
1 K(2) ] [ 1 0 0 0 v(2,0) 0 v(2,2) v(2,3) 1

L K(2) 1
T] [ 0 u(2,1) u(2,2) u(2,3) j

(2.9)

where the coefficients K(i) (also termed reflection coefficients) are
computed as:

-t1
K(2) = (2.10)



This equation can be rewritten as
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C1 K(2) 0 0 v(2,0) 0 v(2,2) v(2,3)
L K(2) 1 0 0 PH_ 0 u(2,1) u(2,2) u(2,3)

(2.11)

By comparing with the second row of the right hand side (RHS)
of Eq. 2.7, it is clear that a zero is created by the row operation and
the desired second rows of L and U are obtained as

L2 = [L21 L22 0 0] = [ K(2) 1 0 0 ]

U2 = [0 u21 u22 u23] = [0 u(2,1) u(2,2) u(2,3)]

To compute the third row of the matrices L and U, the same
procedure can be repeated. For the next recursion, we first right-

shift the second row on both sides of Eq. 2.11, i.e.,

[K(2) 1 0 0] - - -> [0 K(2) 1 0]

F 1 K(2) 0 0 F v(2,0) 0 v(2,2) v(2,3)
L 0 K(2) 1 oi T'L u(2,-1) 0 u(2,1) u(2,2) j (2.12)

Note that by using the Toeplitz structure of the matrix T, we
have u(2) in Eq. 2.11 right-shifted accordingly and the only new term
is u(2,-1), which is equal to v(2,2), since u(2,-1) = K(2) ti + t2 =
v(2,2).

Through this shift operation, the two zeros created in the
previous recursion on the RHS are realigned into the same column.
They will remain unaffected by the linear combination of the two
rows in the next recursion. With this arrangement, a similar
procedure as in the previous recursion can now be repeated:



r 1

L K(3)

where

K(3) ii 1 K(2) 0 0
1 R 0 K(2) 1 0 ]-1-=

-v(2,2)

[ v(3,0)
0

0
0

0
u(3,2)

v(3,3)
u(3,3)

(2.13)

(2.12)rx"') = u(2,1)
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Repeating this procedure for u(3) with third row on the RHS of
Eq. 2.7, clearly, the third rows of the matrices L and U are obtained:

L3 = [L31 L32
U3 = [0 0 u32

L33 0 ] = [ K(3) (K(3)K(2)+K(2)) 1 0 ]

u33] = [0 0 u(3,2) u(3,3)]

This completes the second recursion. By induction, the future
recursions can be carried out in the same manner until all the rows
of the matrices L and U are computed. Summarizing the above
procedure, pseudo-code of the algorithm (Algorithm I) can be made
[1]

/* initial conditions */
for (j = 0 to N) (

v(1, j) = u(1, j) = tj

/*main algorithm */
for (i = 1 to N) {

K(i+1) = -u(i, 1) / v(i, 0)

for (j = 0 to N) (
v(i+1, j) = v(i, j) + K(i+1) u(i, j+1)
u(i+1, j) = u(i, j+1) + K(i+1) v(i, j)

}

}
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where Toeplitz system T is an (N+1) X (N+1) matrix, uij = u(i, j).

2.2.2 Back-substitution Algorithm

Back-substitution algorithm to solve linear system of nxn

matrix system:

x =A-1B (2.13)

is shown as following expression (Algorithm II) :

n
1

xi
a i i

( bi - / aijxj) , for i = n, n-1, . . . , 2, 1
j=i+1

(2.14)

where xi,s are elements of 1xn vector x, airs are elements of nxn
matrix A, and bj's are elements of 1xn vector of B.

The objective is apply the synthesis procedures to obtain a set
of fully efficient arrays for Algorithm I and II.
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Chapter 3. Overview of the Synthesis of Array Processors

Typically, the synthesis process begins with a specification of
the algorithm to be solved in terms of a set of recurrence equation.
Earlier work on synthesizing systolic arrays was based on the
analysis of the data dependencies of such initial specifications
under the assumption that the dependencies were expressed as
constant vectors in Euclidean space. One such technique, developed
by Quinton [13] proposes the notation of Uniform Recurrence
Equations (UREs) as an adequate initial specification. A general
specification proposed by Rajopadhye [8] and Fortes [8] addresses
the problem that the Uniform Recurrence Equations (URE) are
unnecessarily restrictive as an initial specification of the

algorithm. To overcome the limitations of UREs they proposed to
permit the dependencies to be arbitrary linear (affine) functions and
to adopt Affine Recurrence Equations (AREs) as an alternative
initial specification.

Notation of recurrence equations has been well known to
mathematicians for expressing a large class of computations. In

general, the initial set of recurrence equations can be expressed as
follows:

Definition 1: A Recurrence Equation over a domain D, is defined to
be an equation of the form

f(p) = g(f(q1), f(q2) . . . f(qk))

where p E D; qi E D for i = 1 . . . k and g is a single valued function
which is strictly dependent on each of its arguments. D E Zn in
Euclidean space.
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A system of m Recurrence Equations over a domain D is defined
to be a family of m mutually recursive equations, where each of the
function fi is defined by an equation of the form

fi(p) = g(fii(qm), fi2(qi2) fik(qik))

The computation involves the evaluation of a function g at all
points in a domain D. The recurrence equation specifies how the
value of g at point p in D depends on the value of f at other points in
the domain.

Uniform Recurrence Equation defines a computation where the
dependencies can be completely described by a finite number of
constant vectors, regardless of the size of the domain [8,9].

Definition 2 A Recurrence Equation of the form f(p) = g(f(qi ),
f(q2) . . . f(qk)) is called a Uniform Recurrence Equation (URE)

i f f qi - wi = p, for i = 1 . . . k,

where wis are constant n-dimensional vectors.

A large number of interesting problems cannot be naturally
expressed as UREs. Therefore, a more general class of recurrence
equations termed Affine Recurrence Equations (AREs) had been
introduced where the dependencies are affine functions of the point.

Definition 3 A Recurrence Equation as given by Definition 1 is said
to be an Affine Recurrence Equation (ARE) if for i = 1 . . . k, qi =
A ip+bj where Ai is a constant nxn matrix and bi is a constant n-
dimensional vector. Thus the recurrence has the following form.

f(p) = g(f(A-i p+bi ), f(A2p+b2), f(Akp +bk))
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Given an algorithm specified in term of a set of recurrence
equations, its computational structure could be examined by its

dependency graph. The Dependence Graph (DG) shows the
dependence of the computation that occurs in an algorithm. By

viewing each dependency relation or computations that occur as an
arc between the corresponding variables located in the index-space,
localized dependence graph can be viewed as all variables are
(directly) dependent upon the variables of the neighboring nodes [9].

Dependence mapping aims at extracting the dependences
between the variables of the algorithm and mapping the algorithm
onto a systolic array in such a way that the dependences are
preserved. The objective is then to find the timing and allocation
function. The problem of finding optimal timing functions can be
reduced to a linear programming or a sequence of linear
programming.

Timing Function: In this case, we restrict ourselves to linear
timing functions that is a linear function of the form [13],

t(P) = AT P at

where Al- is a constant schedule vector along the direction S and at

is a scalar constant. Timing function t is a mapping of all points in
D to the positive integers such that if p->q then t(p) > t(q). t(p) may
naturally be interpreted as the time at which f(p) is computed.
Timing function must satisfy the causality condition:

di = XT ei 1, for any e

where e is the dependency vectors and d is the propagation delay.
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Allocation Function: the allocation function maps each
computation onto a finite domain and defines the processor at which
each computation is performed. The computation g performed at any
point p in D defines the granularity of the processors. The

allocation function, which maps every point p to an (n-1)
dimensional processor space, is defined by

a(P) = xa p as

where Xa is an (n-1) x n matrix and as is an n-1 vector [10]. It is

necessary and sufficient for allocation vector Xa to satisfy the
conflict free condition:

XT u 0

In another words,

(where X: u = 0)

if t(p) = t(q), then a(p) a(q).

In the next chapter, we will apply these synthesis methods for
the pipeline structure of Toeplitz systems.
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Chapter 4. Systolic Solution of Toeplitz Solver

In Chapter 2, we have presented the decomposition algorithm
(Algorithm I) and the back-substitution algorithm (Algorithm II). To

solve the Toeplitz system, two back-substitution steps has to be
performed. In the following sections, a detailed approach for the
decomposition (find U) and back-substitution (find g and x) will be
provided.

4.1 UREs and DG for the (Schur Decomposition) Algorithm I

Algorithm I for the Schur decomposition of Toeplitz matrix is
given as

/*main algorithm */
for (i = 1 to N) {

K(i+1) = -u(i, 1) / v(i, 0)

for (j = 0 to N) {
v(i+1, j) = v(i, j) + K(i+1) u(i, j+1)
u(i+1, j) = u(i, j+1) + K(i+1) v(i, j)

}

The main algorithm is the portion which we have to consider
because the initial conditions can be obtained directly from T a s
input values. The main algorithm can be split into two separate
algorithms, algorithm la for finding the K and algorithm lb for
computing v and u, as follow:

/* Algorithm la */
for (i = 1 to N)

K(i+1) = -u(i,1) / v(i3O)
}
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/* Algorithm lb */
for (i = 1 to N) {

for (j = 0 to N) {
v(i+1, j) = v(i, j) + K(i+1) u(i, j+1)
u(i+1, j) = u(i, j+1) + K(i+1) v(i, j)

}

Formulating the AREs of Algorithm I:

AREs la: The above Algorithm la can be rewritten to produce AREs.
At each point [i,j] E D (= {[i,j] I 2 5_ i S N+1}), the computation
requires the values of u and v. Of these, the values of u and v are
inputs, and must be obtained from outside the domain.

K(i, 0) = -u(i-1, 1) / v(i-1, 0)

AREs lb: Algorithm lb can be rewritten as K can be obtained from
global broadcasting along j-axis. We note that the variables i and j
determine a domain given by D = {[i,j] I 2 i N+1, 0 j 5 N}.

v(i, j) = v(i-1, j) + K(i, 0) u(i-1, j+1)
u(i, j) = u(i-1, j+1) + K(i, 0) v(i-1, j)

Localization of Algorithm I:

We now can rewritten the AREs

K(i, j) = K(i, j-1)

In this form, each time that the statement is performed, the
indices (i, j) are different, and we have eliminated the global
broadcasting. Hence we can propagate each value of variable K along
j axis by the pair (i, j).
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j=3

j -2

j=1

j=0

K(2) K(3) K(4)

i=1 1=2 1=3 1=4

Fig. 1. Combine UREs to produce a single DG of Schur algorithm.
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Obtain UREs and DG of Algorithm I:

UREs la: At each point [i,j] e D (= {[i,j] I 2 5 i 5 N+1, j = 0})

K(i, j) = -u(i-1, j+1) / v(i, j) + K(i, j-1)
v(i, j) = v(i-1, j)

u(i, j) = u(i-1, j+1)

UREs lb: the variables i and j in D= {[i,j] I 2 5 i 5 N+1, 0 S j N}

v(i, j) = v(i-1, j) + K(i, j) u(i-1, j+1)
u(i, j) = u(i-1, j+1) + K(i, j) v(i-1, j)
K(i, j) = K(i, j-1)

Note that Eq. 4.1a and Eq. 4.1b have the same dependencies (see
Fig. 2) which allow both UREs to be combined into a single DG.
Dependency Graph (Fig. 1) combines UREs la and UREs lb and shows
the dependency relationships for the Schur algorithm.

4.2 UREs and DG for (Back-Substitution) Algorithm II

The back-substitution algorithm to solve linear system of nxn
matrix system is given as Algorithm II

1

xi = ( bi -a aijxj ) , for i = n, n-1, . . . , 2, 1
j=i+1

n

where xiis are elements of 1xn vector x, airs are elements of nxn
matrix A, and 'Di's are elements of 1xn vector of B. Algorithm II can

be decompose as follows
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ek = [0 1 ]

\\.\\ID.
ey =[ 1 0]

eu = [ 1 -1]

Fig. 2. Dependency vectors of Schur algorithm.

es . [0 -1]

ex = [-1 01

Fig. 3. Dependency vectors of Back-substitution



Algorithm Ila:

n

si = / aijxj
j=i+1

for i = n, n-1, . . . , 2; and j > i

20

It is clear that for all operations, j is greater than i. The equation

can also be written as pseudo-code form

for (i = n downto 2)
for (j = i+1 to n)

s(i) = a(i, j) * x(j) + s(i)

Algorithm Ilb:

xi =
1

ai ( bi - si)
l

for i = n, n-1, . . . , 2, 1

In order to make it consistence with the a in Algorithm Ila,

We change the index of a and also restrict that all the operations
can be performed at only i equal to j.

1

bxi= . ( i si) ,for i = j = n, n-1, . . . , 2, 1; and i = j
a i j

Formulating the AREs of Algorithm II:

AREs Ila: the Algorithm Ila can be rewritten to produce the
following AREs. The variables i and j in D= {[i,j] I 1 5 i< n-1, 2< j
n, j > i}, the computation requires the values of a and x. Of these,
the values of x is broadcasted globally as i-axis and the values of a
is presented locally. s is summed along j-axis.

s(i, j) = a(i, j) x(0, j) + s(i, j+1)
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AREs lib: the Algorithm Ilb can also be rewritten so that at each
point [i,j] E D (= {[i,j] 11 5 i s n, 1 j< n, i= j}), the computation
requires the values of a, b which presented locally and s can be
obtained from outside the domain.

x(0, D = a(i
1,

j) ( b(0, j) s(i, j+1) )

Localization of Algorithm II:

We now have to localize values x which is globally broadcasted
along i-axis

x(i, j) = x(i+1, j)

Obtain UREs and DG of Algorithm II:

UREs Ila: the variables i and j in D = {[i,j] I 1 5. i 5 n-1, 2 j 5 n, j >
i}

s(i, j) = a(i, j) x(i, j) + s(i, j+1)
x(i, j) = x(i+1, j)

UREs Ilb: at each point [i,j] E D (= {[i,j] I 1 5 i S n, 1 j n, i = j})

x(i, j) = a(i1, ( b(i, j) - s(i, j+1) ) + x(i+1, j)

s(i, j) = s(i, j+1)

From above UREs show that the summation s pass along j-axis.
x is provided along i-axis, and a, b is presented locally. Combining
dependencies of UREs Ila and UREs Ilb, a complete Dependency Graph
can be obtained (see Fig. 3 and 4).
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i=1 s(111)

i=2 s(2,2)

1=3 s(3,3)

1=4 8(4,4)

x(1,2) x(1,3) x(1,4)

j=1 j=2 j=3 j=4

Fig. 4. Dependency Graph of Back-substitution
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4.3 Timing and Allocation Function of Systolic Solution

4.3.1 Timing and Allocation Function for Algorithm I

Timing function: A linear timing function is

t(P) = jr P at

which for dependencies (ei} must satisfy:

T
XT ei 1, for any e; (causality condition)

where [ Al X2 ] = ( 2 1 1, the delays for each dependencies are

Tdi = XT ei

dk = 1, dv = 2, du = 1

To find the offset value at, we can assign t(p) = 1. Then the
actual timing function is

t(p) =[ 2 1 I p 3 (4.1)

TAllocation function: a(p) = X. a p - as
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1=1 i=2 i=3 1=4

Fig. 5. Schedule vector S = [ 2 1 ] of Schur algorithm is obtained.
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In this mapping scheme (as shown in Fig. 6), offset value as
can be found by assigning a(p) = 1 where point p is performed at PE
1. The allocation function is:

a(p) = [ 0 1 ] p + 1 (4.2)

4.3.2 Timing and Allocation Function of Algorithm II

Timing function: di = XT ei > 1, for any e; (causality condition).

Hence, delays for all the variables (see Fig. 4):

which for dependencies {ei} must satisfy:

T
XT ei 1, for any e; (causality condition)

[X1 X2] [01] -?- 1

[ X1 X2] [01] ?1

where [ Xi X2 ] = [ -1 -1 ], the delays for each dependencies are

Tdi = XT ei

ds = 1 and dx = 1

From Fig. 7, the actual timing function will be

t(p) = [ -1 -1 ] p + 9 (4.3)
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Fig. 6. Systolic solution - allocation function of Schur algorithm.
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Allocation function: the allocation function is

a(p) = [ -1 1 ] p + 1 (4.4)

4.4 Performance Evaluation of Systolic Solution

To evaluate the performance of the Toeplitz array structure,
we will examine time complexity, space complexity, speedup as
compared to sequential algorithm, pipelining rate (throughput), and

the array efficiency defined as follows [3]:

Time Complexity: Time used by the algorithm as a function of
algorithm order of 0(n).

Speedup: Speedup is defined by the ratio of the execution time Ts on
a serial computer or uniprocessor to execution time Tp on the
parallel computer:

TS
S = Tp

(4.5)

Efficiency: Ratio of speedup to number of processors used.
Efficiency indicates the utilization rate of the available resources:

E =
P

(4.6)

Space Complexity: Area used by an algorithm as a function of
problem size (ie: number of processing elements).

Pipelining rate: The throughput per time unit.
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Evaluation of Algorithm I (Schur Algorithm)

The systolic array solution is simulated by using Systolic
Array Simulator developed by [24]. Processors interconnection
realization is shown is Fig. 8. For n x n matrix system, the array
takes n-1 steps for pre-loading data u. Computation will requires
3n-4 steps to obtain u and K values. Thus, total time required for
obtaining all results is the number of steps of pre-loading data plus
computations which will be 4n-5, the complexity is 0(n).

For the Schur algorithm, is = n x (n - 1) and Tp = 4n-5. Giving

the following speedup and efficiency

n2-n
S = 4n-5 = 0(n)

n - 1
E = 4n-5

For large number of n, E will be close to 4 . Linear speedup has

been achieved.

Evaluation of Algorithm II (Back-Substitution)

For nxn matrix system, computation will requires Tp = 2n-1
steps to obtain all the results. It has computational complexity of

n(n+1)
0(n). Ts of back-substitution on serial machine will be

2

Ts n(n+1)0 = =Tp 2(2n-1)

n+1E= 2(2n-1)
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1

For large number of n, E will be close to 4 .
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Chapter 5. Clustering Mapping Method

The systolic arrays derived by the conventional integral linear
transformation is not fully efficient, where only one out of several
consecutive processors are active at any time unit. For the
decomposition array and back-substitution array, every 1 in 2 PEs
was active in any given time. The activation period 8 of processing

elements can be obtained as:

8= Xi u (5.1)

where u is the projection direct orthogonal to the allocation

function A,a u = 0.

5.1 Toeplitz Solver with Clustering Mapping Method

It has been shown that [2] if a processor is active for only one
out of every 8 clock cycles, there may be 6 -1 other neighboring
processors such that only one of them is active at any instant. In

this case, one can merge these processors onto a single PE that is
always active. Such a processor would have the same cost as the
original processor, except for a few additional multiplexers and
registers. This merging is equivalent to using allocation function
that are not integer but rational matrices, then obtaining integral
processors labels by using the floor function. New array has the
same computation time complexity but the number of PEs is reduced
by 1/8.

5.1.1 Cluster Array for Algorithm I (Schur Algorithm)

Fig. 6 and Table 1 show the inefficiency of the conventional
solution. From Table 1, one can see that each processor is inactive
for every 1 out of 2 clock cycle. By applying eq. 5.1,
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CLK Processor 1 Processor 2 Processor 3 Processor 4

1 v10 v11 v12 u 1 1 v13

2 v10 v11 iiii v12 v13

3 v10 1111 v11 v12 u12 v13

4 K2 u20 v20 v11 u12 v12 v13

5 v20 K2 u21 v21 v12 u13 v13

6 K3 u30 v30 v21 K2 u22 v22 v13

7 v30 K3 u31 v31 v22 K2 u23 v23

8 K4 u40 v40 v31 K3 u32 v32 v23

9 v40 K4 u41 v41 v32 K3 u33 v33

10 v40 v41 K4 u42 v42 v33

11 v40 v41 v42 K4 u43 v43

processor is inactive due to inefficiency mapping

Table 1. Schur's - space-time table of conventional solution.

CLK Processor 1 Processor 2

1 v10 v11 u11 v12 v13

2 v10 v11 u11 v12 v13

3 uii v10 v11 u12 v12 v13

4 K2 u20 v20 v11 u12 v12 v13

5 K2 u21 v20 v21 u13 v12 v13

6 K3 u30 v30 v21 K2 u22 v22 v13

7 K3 u31 v30 v31 K2 u23 v22 v23

8 K4 u40 v40 v31 K3 u32 v32 v23

9 K4 u41 v40 v41 K3 u33 v32 v33

10 v40 v41 K4 u42 v42 v33

11 v40 v41 K4 u43 v42 v43

Table 2. Schur's - space-time table with clustering mapping.
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= [ 0 1 ]

or the projection direction is:

6 = u = [ 2 1 ] [0] = 2

In this case, we will be able to merge two processors into one as
show in Fig. 10. The new allocation function can be obtain from

Thus,

a(p) =

F,
A.a P as (5.2)

F[0
1

P
+ 1] (5.3)

The new array has the same computation time. The total
number of PEs is reduced by 2. Moreover, except for extra registers
to queue the data, processors in the new array have the same
function units. By studying the space-time table (see Table 1 and 2),
only one v register is added to each processor unit.

5.1.2 Cluster Array for Algorithm II (Back-Substitution)

From studying the timing and allocation diagram (Fig. 7) and
space-time table (Table 3), every processor is active for one out of
2 time units. Also from eq. 5.1
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CLK Processor 1 Processor 2 Processor 3 Processor 4

1 s4 x4 a44 b4

2 . s3 x4 a34

3 s3 x3 a33 b3 s2 x4 a24

4 . s2 x3 a23 si x4 a14

5 s2 x2 a22 b2 si x3 a13

6 . . Si x2 a12

7 sl xi all bl

processor is inactive due to inefficiency mapping

Table 3. Back-substitution - space-time of Conventional Mapping.

CLK Processor 1 Processor 2

1 s4 x4 a44 b4

2 s3 x4 a34
3 s3 x3 a33 b3 s2 x4 a24
4 s2 x3 a23 sl x4 a14
5 s2 x2 a22 b2 Si x3 a13
6 s1 x2 a12
7 Si x1 al 1 b1

Table 4. Back-substitution - space-time of clustering mapping.
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Fig. 11. Back-substitution with clustering mapping.
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A,a = [ -1 1 ]

with the projection direction along

U =L- 111

- 1
XT u = [ -1 -1 ] [_ i] = 2

We can merge 2 neighboring processors and derive a new array
which is fully efficient. The new allocation function is changed to:

1 1

a(p) = i] p + (5.4)

The new array has the same computation time and has only 1/2
number of processors as the old array. Moreover, processors in the
new array have the same function units without additional registers

required (see Table 3 and 4).

5.2 Performance Evaluation of Cluster Toeplitz Solver

Cluster Algorithm I (Schur Algorithm)

Fig. 12. shows the simulated array processors of Schur
algorithm by using clustering mapping method. Speed up on the new
structure will be the same as before (0(n)). However, the number of
processor units, which will be n/2, decrease by factor of S. The
efficiency is
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E=

E =
2(n-1)
4n-5

1

For large n, E will be close to 2 .

Cluster Algorithm II (Back-Substitution)

Simulated Back-substitution solution by using clustering
mapping method is shown in Fig. 13. The number of processor units
have been decreased by factor of 2. The efficiency is

n+1
E 2n-1

For very large number of n, E will be close to
1

. The

clustering mapping method have doubled the efficiency of both
Algorithm I and ll's arrays by decreasing number of PEs. Moreover,

the new arrays even reducing the space complexity by decreasing the
total number of registers required (as comparing Table 1,3 to Table
2,4).
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Chapter 6. Multi-Rate Array Solution

6.1 Advantage of MRA Solution

For many applications, due to the uniform data propagation of
systolic arrays additional delay time for the transmission of data is
required which degrades the computational rate and the processor
utilization. This additional delay time could be avoided by using the
Multi-Rate Array (MRA) structure where the variables are

propagated at different rates achieving higher speedup and
efficiency [17].

A MRA can be defined as a space-time domain with the
following constraints: 1) the data dependencies are spatially and
temporally local, and correspond to nearest neighbor
interconnections; 2) data dependencies preserve causality; 3)

propagation of different variables in the PE can vary. The mapping
of an algorithm on a MRA is characterized by the same constraints
which are characterizing the mapping of URE on systolic arrays [16].

In MRA, the processing time of the slowest operation is chosen
to be the basic time unit, the fast processing operation takes only a

fractional part of the basic unit 1 The slowest operation usually
f

involves complex arithmetic calculation with the largest
propagation delay and the fast operation can be as simple as
propagating values to next processor with short delay. Thus, the
hardware can take advantages of different propagation rates to
maximize the system throughput. The constraints of this type of
MRA [11,12]:

(1) dbasic = XT eslow > 1

(2)
T 1

dfrac = T efaSt >
f
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Xa # 0 (conflict free condition)

6.2 MRA Solution of Algorithm I (Schur Algorithm)

In previous chapters, allocation function has been chosen so
that v has been stored locally without any propagation is needed;
however, n-1 time units has been required for data pre-loading u
before the computations begins. By changing the allocation function,
the steps of data pre-loading can be eliminated; however, the delay
of propagating v is different from other variables u and K (as shown
in Ch. 4.4.1).

Closer examination of the Algorithm I that the variable v and u
requires the same hardware complexity both multiplications and
additions where the data values u and K are transmitted variables
and the data values v is stored locally in previous solutions. The
propagation delay of v is 2, and the propagation delay of u is only 1.
By choosing the processing time of the v operation to be the basic

1

time unit, the processing time of u operation is of the basic unit.

In this case, it will not have any performance improvement to chose
the longest delay to be the basic time unit 1 without increasing the
clock rate because both variables u and v have the same hardware
complexity. Therefore, by adding extra buffers to increase the delay
of v to be 2 as:

(1) dbasic = XTT ev = 2

(2) dfrac = AT eu = XT ek = 1.

Allocation Function: Fig. 14 shows the projection vector of X: =

[ 1 0 ]. Allocation function: a(p) = [ 1 0 p - 1
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CU< I Processor 1 Processor 2 processor 3

1 K2 u20 V20
2 K2 u21 v21

3 K2 u22 v22 K3 u30 v30
4 K2 u23 v23 K3 u31 v31

5 K3 u32 v32 K4 U40 v4 0

6 K3 u33 v33 K4 u41 v41

7 K4 u42 v42
8 K4 u43 v43

Table 5. Space-time table of MRA solution.
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6.3 Performance Evaluation of MRA Solution

The simulator of MRA shows that by eliminating the data pre-
loading u , the array requires only 3n-4 steps to finish the

computation of nxn matrix system (see Table. 5). With new
allocation function, it also requires n-1 processor units. Each

processor element requires an extra buffer for output delay of v
variables. Speed up on the MRA structure will be:

STs n(n-1)
= =Tp 3n-4

The new MRA solution still has speed up of order 0(n), but with
about 1/3 increasing in the speed. Number of processor units, which
now will be n-1. The efficiency:

S n

" 15 3n-4

1

which the efficiency is close to 3 for large of n.



Chapter 7. Combined Architecture

The final solution is given by

x =T-ly = U-1D(UT)-1y (2.5)
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where D = diag[ui, , u(N+1)]; U is an upper triangular matrix
obtained from Schur algorithm (Algorithm I). The solution x of (2.1)
can be solved by two back-substitution (Algorithm II). We have
obtained the architectures for the decomposition (Algorithm I) and

back-substitution (Algorithm II). Example, we will show how to
combine both architectures for 6 X 6 Toeplitz matrix.

U=

A=

1110 1111 1112 1113 1114 u15
0 1121 1122 1123 1124 u25
0 0 1132 1133 1134 113 5
0 0 0 1143 1144 114 5
0 0 0 0 1154 1155
0 0 0 0 0 1166

all a12 a13 a14 a15 a1 6
0 a22 a23 a24 a25 a2 6
0 0 a33 a34 a35 a3 6

[
0

0

0 0 a44 a45 a4 6
0 0 0 0 a56 a56

0 0 0 0 a66

where c= A-lb for back-substitution. Now let us first consider the
first back-substitution step (UT)-1y which consists

uT

1110 0 0 0 0 0

1111 1121 0 0 0 0

1112 1122 1132 0 0 0

1113 1123 1133 1143 0 0

1114 1124 1134 1144 1154 0

u16 1125 1135 1145 1155 u65
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In order to use the systolic solution of algorithm II for first
back-substitution step, we can rearrange the input order as

and

[

r

=

[

r

a66 0 0 0 0 0

a56 a55 0 0 0 0

a46 a45 a44 0 0 0

a36 a35 a34 a33 0 0

a26 a25 a24 a23 a22 0
a16 a15 a14 a13 a12 al 1

[

r
u10 0 0 0 0 0

ull u21 0 0 0 0

u12 u22 u32 0 0 0

u13 u23 u33 u43 0 0

u14 u24 u34 1144 u54 0
1115 u25 1135 1145 1155 u65

b 6
b 5 Y2
b 4

Y

Y3

[ Y4bb

Y5

=

bl Y6

then the first back-substitution g = D(UT)-1 y can be rearrange as
follow

g = D

a66 0 0 0 0 0

a56 a55 0 0 0 0

a46 a45 a44 0 0 0

a36 a35 a34 a33 0 0

[

r
a26 a25 a24 a23 a22 0
a16 a15 a14 a13 a12 all

-1

b6
b5
b4
b3
b2
b1
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CLK U from systolic solution of Algorithm I

4 um - - - -
5 - u 1 1 - -
6 - - u12 - - -
7 - u21 _ u13 - -

8 - u22 u14
9 - - u23 u15

10 - - u32 u24
11 - - u33 u25
12 - - - u34
13 - - - u43 u35
14 - - - u44
15 - - - - u45
16 - - - - u54
17 - - - u55
18 - - - - -

19 - - - - - u65

itio obtained directly from to.

Table 6. Output from systolic solution of Algorithm I.
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CLK Input data a for systolic solution of Algorithm II

1 a66 - - - -

2 a66 - - -

3 a55 a46 -

4 a46 a36

5 a44 a35 a26
6 a34 a26 a16
7 a33 a24 a16
8 a23 a14 -

9 a22 a13 - -

10 a12
11 al 1

Table 7. Input of systolic solution of Algorithm I.
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One should notice that the space-time of data output from
Algorithm I solution (Table 6) is not the same as the input of

Algorithm II (Table 7). The following procedures shows how to
combine the two algorithms.

Procedure I: store the output U from systolic solution of Algorithm
I into (3n-2 X n) memory cells (as in form of Table 8 starting at
CLK=2).

Procedure II: perform parallel shift (see Fig. 16) and produce the
output as in the form of Table. 10a which can be directly feed into
the input of systolic solution of Algorithm II and also store into a
(2n-1 X n) LIFO I which in a last-in-first-out buffer (see Fig. 17).

The output from the systolic solution of Algorithm II can be
multiplied by the scaling operator D to generate result g and store it
into a (1 X n) LIFO ll (see Fig. 17). Now, the second step of the back-
substitution x =U-ig computation can start. U is available from
LIFO I as in form of Table 10b and g is available from LIFO II. This

is shown in Fig. 17.

For the clustering method, we use the same two procedures
described above except one has to separate the output data U from
the Algorithm I and then merge the output U rearranged in the
parallel shift. The separation and merging can be performed by using
transmission gates controlled by Flip-Flops. In this case, the size

of LIFO I is reduced into half to (2n-1 X 2).

Operation Overview

The following steps illustrates the above procedures (also see
Fig. 17):
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Fig. 16 Parallel shift for manipulating the data U which output
from Algorithm l's solution to feed into Algorithm II.
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CLK Order and position of U required for first
back-substitution step

1 u10 -

2 u11
_

- -

3 u21 u12 - - -

4 u22 u13 -

5 u32 u23 u14
6 u33 u24 u15
7 u43 u34 u25
8 u44 u35 -

9 u54 u45
10 u55 -

11 u65 - - - -

Table 8a. Required order of U for first back-substitution step.

CLK Order and position of U for second
back-substitution step

1 u65 - - - -

2 u55 - - -

3 u54 u45

4 144 u35

5 u43 u34 u14
6 u33 u24 u15
7 u32 u23 u26
8 u22 u13 -

9 u21 u12
10 u11
11 u10

Table 8b. Required order of U for second back-substitution step.
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Figure 17. Overview of combined architecture.
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Stage I: Decompose T to obtain U. This will takes 4n-5 cycles,
and the first output will start after n-1 cycle (see Table
6).

Stage II: The output data U from the decomposition (Algorithm I)

can be stored into 3n-2 memory cells immediately in one
cycle.

Stage III: Parallel shift U for data manipulation, this takes 2n-1
cycles.

Stage IV: The output of parallel shift U enters the linear pipeline
array for the back-substitution (Algorithm II) in one

cycle. Note that the data is also be stored into LIFO I at

the same time. First output of back-substitution array
is produced and following data outputs in every two
cycle after (see Table 3).

Stage V: Now we multiply (UT)-1 y with the scalar D to produce g
which can performed after the output from the first
back-substitution. This takes one cycle.

Stage VI: Stores g into LIFO II in one cycle.

Stage VII: To obtain x, the second back-substitution U'lg will take
2n-1 cycles.

Based on this, input data of T will be provided every two
cycles beginning at Stage I (clock = 1) and y also is available in
every two cycles starting at Stage IV 4n-3 cycles later. The output
of x computed every two cycles beginning after Stage VII (clock =
6n-1). The total computation steps requires then is (4n-5) + 1 +

(2n-1) + 1 + 1 + 1 + (2n-1) = 8n-3. Time complexity of complete
solution is in order of 0(n). With clustering method, the solution
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requires only n/2 processing elements instead of n developed
elsewhere [1].
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CLK U from Cluster Array of Algorithm I

4 um - .

5 u11 -

6 - u12 -

7 u21 u13
8 1122 u14
9 u23 u15
10 u32 u24
11 - u33 1.125

12 - u34
13 u43 u35

14 - 1-144

15 _ - u45
16 - - u54
17 - - u55

18 _ - -

19 - - u65

itio obtained directly from tO.

Table 9a. Output from Cluster Array of Algorithm I.
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CLK Order and position of U required for first
back-substitution step on Cluster Array

1 u10

2 u11

3 u21 u12

4 u22 u13

5 u32 u23 u14
6 u33 u24 u15
7 u43 u34 u25
8 1144 u35

9 u64 u46
10 u55 - -

11 u65 -

Table 9b. U for Cluster Array of first back-substitution step.



58

Summary

Effective pipelinability, regularity and synchronization of

systolic array structure provide an ideal implementation
environment. Different solutions of Toeplitz have been obtained at
the performance is summarized into Table 10 and 11. These three
solutions (systolic, clustering, and MRA) have achieved linear
computational complexity, space, and speed up. Efficiency vs n (size
of matrix) for different solutions have been plotted on Fig. 18 and
Fig. 19. The clustering mapping method has the highest efficiency as
compared to other cases.

The clustering mapping method increasing the efficiency by a
factor of 5; however, it doesn't has 100% efficiency which is

because the array have to pre-load and un-load the data. The
processors will be idle for some time units to load the first data
once it finishes all computations, it becomes idle again but not all
the processors stop at the same time. Hence, the utilization of a
processor should be defined as the ratio of its active time over the
whole computation time. Indeed, in many applications, the samples
of real-time process come in infinitely. The time correspond to the
execution of an infinity of identical computations, speed up and
efficiency are then in steady state. Speed up (S) will be close to
number of processors (P). Efficiency (E) will be close to 100%.
Since in this case one neglects the amount of time spent in loading
the data and unloading the results [2,3].

Multi-Rate Array solution of Schur algorithm reduces the
number of computational steps by 25%; however, it requires n-1
processing elements as in comparison to n/2 of clustering mapping
method. Since the computations of u and v variables have the same
complexity, MRA solution cannot take advantage of short propagation
rate of u to provide additional two fold of speed up. There may have
some cases that clustering method and MRA can be combined to
both reduce number of processing elements and enhance the speed.
However, in solving the Toeplitz system, solution of MRA has 8 equal
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to one, the number of processing elements cannot be reduced by
using clustering mapping method.
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Systolic
Solution

Clustering
Mapping

Multi-Rate
Array

No. of PEs
n

n

2 n-1
No. of Registers
per PE 3 4 3

No. of Delay
Buffers per PE 0 0 1

No. of Steps 4n-5 4n-5 3n-4
Speed Up n2-n n2-n n(n-1)

4n-5 4n-5 3n-4
Efficiency n-1 2(n-1) n

4n-5 4n-5 3n-4
Computational
Complexity 0(n) 0(n) 0(n)
Order of Space 0(n) 0(n) 0(n)
Order of Speed
Up 0(n) 0(n) 0(n)
Pipeline Rate 1

2 1 1

Table 10. Summary of solutions of Schur algorithm.
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Systolic Solution Clustering Mapping

No. of PEs
n

n

2

Max. No. of Registers
per PE 4 4

No. of Steps 2n-1 2n-1
Speed Up n(n+1) n(n+1)

2(2n-1) 2(2n-1)
Efficiency n+1 n+1

2(2n-1) 2n-1
Computational
Complexity 0(n) 0(n)
Order of Space 0(n) 0(n)
Order of Speed Up 0(n) 0(n)
Pipeline Rate 1

2 1

Table 11. Summary of solutions of Back-substitution.
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Fig. 19. Efficiency Vs n for Algorithm II (Back-substitution)
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Appendix A. Simulation Code of Systolic Solution for
Schur Algorithm

(Toeplitz_Matrix

;processor type-a declaration.
((ptype-a
(var

(vreg float 0)
(ureg float 0)
(kreg float 0)
(clk int 0))

(inputs
(v float 0)
(u float 0)
(k float 0))

(outputs
(u float 0 (-1 0) 0)
(k float 0 (1 0) 0))

(code

;initialize v registers at clk 0.
((if (equal? clk 0)

(begin
(set! vreg v.in)
(set! ureg u.in)
(set! kreg k.in)
(set! u.out (+ ureg (* kreg vreg)))
(set! vreg (+ vreg (* kreg ureg)))

(set! ureg u.out)
(set! k.out kreg)
(set! clk (+ clk 1)))

(begin
(set! ureg u.in)
(set! kreg k.in)
(set! u.out (+ ureg (* kreg vreg)))
(set! vreg (+ vreg (* kreg ureg)))

(set! ureg u.out)
(set! k.out kreg)
(set! clk (+ clk 1)))

))
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))

;declaration of processor type-b.
(ptype-b
(var

(vreg float 0)
(ureg float 0)
(kreg float 0)
(clk int 0))

(inputs
(v float 0)
(u float 0)
(k float 0))

(outputs
(u float 0 (-1 0) 0)
(k float 0 (1 0) 0))

(code

;initialize v registers at clk 0.
((if (equal? clk 0)

(begin
(set! vreg v.in)
(set! ureg u.in)

(set! kreg (* (/ (- 0 ureg) vreg) k.in))
(set! u.out (+ ureg (* kreg vreg)))
(set! vreg (+ vreg (* kreg ureg)))

(set! ureg u.out)
(set! k.out kreg)
(set! clk (+ clk 1)))

(begin
(set! ureg u.in)

(set! kreg (* (/ (- 0 ureg) vreg) k.in))
(set! u.out (+ ureg (* kreg vreg)))
(set! vreg (+ vreg (* kreg ureg)))

(set! ureg u.out)
(set! k.out kreg)
(set! clk (+ clk 1)))

))
)))

((instantiate ptype-a (line (2) (4)))
(instantiate ptype-b (point (1))))
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0 ; no connections need be specified.

((input-data
((v gets v-inputs from (1) to (4)))

(input (i = 1)
G = O))

(input-data
((u gets u-inputs at (4)))
(input (i = 1)

(i = t)))

(input-data
((k gets k-inputs at (1)))
(input (i = 1)

G = t))))

(output-data
((k at (4)))))

Sample data

(v-inputs
(6 7 8 9))

(u-inputs
(3 0 4 0 5 0 0 0 0 0 0 0 0 0 0 0 0))

(k-inputs
(0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0))
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Appendix B. Simulation Code of Clustering Mapping Method
for Schur Algorithm

(Toeplitz_Matrix

;declaration of processor type-a.
((ptype-a

(var
(v_o float 9)
(v_e float 8)
(ureg float 0)
(kreg float 0)
(temp float 0)
(clk int 0))

(inputs
(u float 0)
(k float 0))

(outputs
(u float 0 (-1 0) 0)
(k float 0 (1 0) 0))

(code
((if (equal? (modulo clk 2) 0)

;even cycle operation.
(begin

(set! kreg k.in)
(set! temp (+ ureg (* kreg v_e)))
(set! v_e (+ v_e (* kreg ureg)))
(set! ureg temp)
(set! u.out ureg)
(set! clk (+ clk 1)))

;odd cycle operation.
(begin
(set! ureg u.in)
(set! temp (+ ureg (* kreg v_o)))
(set! v_o (+ v_o (* kreg ureg)))
(set! ureg temp)
(set! k.out kreg)
(set! clk (+ clk 1)))

))
))
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;declaration of processor type-b.
(ptype-b
(var

(v_o float 7)
(v_e float 6)
(ureg float 0)
(kreg float 0)
(temp float 0)
(clk int 0))

(inputs
(u float 0)
(k float 0))

(outputs
(u float 0 (-1 0) 0)
(k float 0 (1 0) 0))

(code

((if (equal? (modulo clk 2) 0)

;even cycle operation.
(begin

(set! kreg (* (/ (- 0 ureg) v_e) k.in))
(set! temp (+ ureg (* kreg v_e)))
(set! v_e (+ v_e (* kreg ureg)))
(set! ureg temp)
(set! u.out ureg)
(set! clk (+ clk 1)))

;odd cycle operation.
(begin
(set! ureg u.in)
(set! temp (+ ureg (* kreg v_o)))
(set! v_o (+ v_o (* kreg ureg)))
(set! ureg temp)
(set! k.out kreg)
(set! clk (+ clk 1)))

))
)))

((instantiate ptype-a (point (2)))
(instantiate ptype-b (point (1))))
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0 ; no connections need be specified.

((input-data
((u gets u-inputs at (2)))
(input (i = 1)

0 = t)))

(input-data
((k gets k-inputs at (1)))
(input (i = 1)

0 = t))))

(output-data
((k at (2)))))

Sample data

(u-inputs
(0 3 0 4 0 5 0 0 0 0 0 0 0 0 0 0 0 0))

(k-inputs
(0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0))
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Appendix C. Simulation Code of MRA Solution for Schur
Algorithm

(Toeplitz_Matrix

;declaration of processor type-a.
((ptype-a

(var
(ureg float 0)
(kreg float 0)
(vreg float 0)
(cik int 0))

(inputs
(v float 0)
(u float 0)
(k float 0))

(outputs
(v float 0 (1 0) 1)
(u float 0 (1 0) 0))

(code

;check divided by zero.
((if (equal? (+ v.in 0.0) 0.0)

(begin
(set! kreg kreg)
(set! u.out (+ u.in (* kreg v.in)))
(set! v.out (+ v.in (* kreg u.in)))

(set! ureg u.out)
(set! vreg v.out)
(set! cik (+ clk 1)))

(begin
(set! kreg (+ (* (/ (- 0 u.in) v.in) k.in) kreg))

(set! u.out (+ u.in (* kreg v.in)))
(set! v.out (+ v.in (* kreg u.in)))

(set! ureg u.out)
(set! vreg v.out)
(set! clk (+ clk 1)))

))
)))

((instantiate ptype-a (line (1) (3))))
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0 ; no connections need be specified.

((input-data
((k gets k-inputs from (1) to (3)))
(input (i = t)

(1 = PIDi)))

(input-data
((u gets u-inputs at (1)))
(input (i = 1)

G = t)))

(input-data
((v gets v-inputs at (1)))
(input (i = 1)

U = t))))

(output-data
((u at (3)))))

Sample data

(v-inputs
(6 7 8 9

(u-inputs
(3 4 5 0

(k-inputs

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0))

0))

(1 0 0)
(0 0 0)
(0 1 0)
(0 0 0)
(0 0 1)
(0 0 0)
(0 0 0))
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Appendix D. Simulation Code of Systolic Solution for
Back-Substitution

(Back_Substitution

;processor type-a declaration.
((ptype-a
(var

(sreg float 0)
(xreg float 0)
(clk int 0))

(inputs
(s float 0)
(x float 0)
(a float 0))

(outputs
(s float 0 (-1 0) 0)
(x float 0 (1 0) 0))

(code
((if (equal? clk 0)

(begin
(set! xreg x.in)
(set! sreg s.in)
(set! sreg (+ sreg (* a.in xreg)))
(set! x.out xreg)
(set! s.out sreg)
(set! clk (+ clk 1)))

(begin
(set! xreg x.in)
(set! sreg s.in)
(set! sreg (+ sreg (* a.in xreg)))
(set! x.out xreg)
(set! s.out sreg)
(set! clk (+ clk 1)))

))
))

;declaration of processor type-b.
(ptype-b
(var

(sreg float 0)
(xreg float 0)
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(clk int 0))
(inputs
(s float 0)
(x float 0)
(a float 0)
(b float 0))

(outputs
(s float 0 (-1 0) 0)
(x float 0 (1 0) 0))

(code
((if (equal? (+ a.in 0.0) 0.0)

(begin
(set! xreg x.in)
(set! sreg s.in)
(set! sreg 0)
(set! xreg sreg)
(set! s.out sreg)
(set! x.out xreg)
(set! clk (+ clk 1)))

(begin
(set! xreg x.in)
(set! sreg s.in)
(set! sreg (/ (- bin sreg) a.in))

(set! xreg sreg)
(set! s.out sreg)
(set! x.out xreg)
(set! clk (+ clk 1)))

))
)))

((instantiate ptype-a (line (2) (4)))
(instantiate ptype-b (point (1))))

0 ; no connections need be specified.

((input-data
((s gets s-inputs at (4)))
(input (i = 1)

(j = t)))

(input-data
((a gets a-inputs from (1) to (4)))
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(input (i = t)
a = PPi)))

(input-data
((x gets x-inputs at (1)))
(input (i = 1)

a = t)))

(input-data
((b gets b-inputs at (1)))
(input (i = 1)

U = t))))

(output-data
((s at (1)))))

Sample data

(s-inputs
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0))

(a-inputs
(1 0 0 0)
(0 3 0 0)
(2 0 6 0)
(0 5 0 10)
(4 0 9 0)
(0 8 0 0)
(7 0 0 0)
(0 0 0 0)
(0 0 0 0)
(0 0 0 0))

(x-inputs
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0))

(b-inputs
(1 0 2 0 3 0 4 0 0 0 0 0 0 0 0 0 0))
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Appendix E. Simulation Code of Clustering Mapping Method
for Back-Substitution

(Back_Substitution

;processor type-a declaration.
((ptype-a

(var
(sreg float 0)
(xreg float 0)
(clk int 0))

(inputs
(s float 0)
(x float 0)
(a float 0))

(outputs
(s float 0 (-1 0) 0)
(x float 0 (1 0) 0))

(code
((if (equal? (modulo clk 2) 0)

(begin
(set! xreg x.in)
(set! sreg (+ sreg (* a.in xreg)))

(set! s.out sreg)
(set! clk (+ clk 1)))

(begin
(set! sreg s.in)
(set! sreg (+ sreg (* a.in xreg)))

(set! x.out xreg)
(set! clk (+ clk 1)))

))
))

;declaration of processor type-b.
(ptype-b
(var
(sreg float 0)
(xreg float 0)
(clk int 0))

(inputs
(s float 0)
(x float 0)
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(a float 0)
(b float 0))

(outputs
(s float 0 (-1 0) 0)
(x float 0 (1 0) 0))

(code
((if (equal? (modulo clk 2) 0)

(begin
(set! xreg x.in)
(set! sreg (/ (- b.in sreg) a.in))

(set! xreg sreg)
(set! s.out sreg)
(set! clk (+ clk 1)))

(begin
(set! sreg s.in)
(set! sreg (+ sreg (* a.in xreg)))
(set! x.out xreg)
(set! clk (+ clk 1)))

))
)))

((instantiate ptype-a (point (2)))
(instantiate ptype-b (point (1))))

0 ; no connections need be specified.

((input-data
((s gets s-inputs at (2)))
(input (i = 1)

0 = t)))

(input-data
((a gets a-inputs from (1) to (2)))
(input (i = t)

0 = PPi)))

(input-data
((x gets x-inputs at (1)))
(input (i = 1)

(i = t)))

(input-data
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((b gets b-inputs at (1)))
(input (1 = 1)

U = t))))

(output-data
((s at (1)))))

Sample data

(s-inputs
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0))

(a-inputs
(1 0)
(3 0)
(2 6)
(5 10)
(4 9)
(8 0)
(7 0)
(0 0)
(0 0)
(0 0))

(x-inputs
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0))

(b-inputs
(1 0 2 0 3 0 4 0 0 0 0 0 0 0 0 0 0))


