U. S. Department of Agriculture, Forest Service FOREST PRODUCTS LABORATORY

In cooperation with the University of Wisconsin

MADISON, WISCONSIN

PULPING AND PAPERMAKING PROPERTIES

OF SEED FLAX STRAW

By EARL R. SCHAFER Engineer and C. E. CURRAN Principal Chemist

AUG 1 1958 GUN STAT

5.22

SCHOOL OF FORESTRY OREGON STATE COLLEGE CORVALLIS, OREGON

January 1938

PULPING AND PAPERMAKING

PROPERTIES OF SEED FLAX STRAW

By

E. R. Schafer¹, Engineer and C. E. Curran, Principal Chemist

INTRODUCTION

The utilization of seed flax straw for pulp has been the subject of investigations by both private individuals and public agencies for many years. The principal objectives of such investigations have been (1) to find a profitable use for an agricultural byproduct now largely wasted in the production of linseed; (2) to relieve a scarcity, and possibly to become nationally independent in regard to the supply of linen rags used in papermaking; and (3) to provide new papermaking materials with the view of augmenting the national resources of such raw materials. In past studies as well as in the one here reported the foregoing objectives have not been attained.

As early as 1908 the Bureau of Plant Industry of the United States Department of Agriculture began studies on the pulping of fibrous plants. Flax straw received considerable attention in this program. In 1916 a publication was issued covering the results of the work on flax straw for use in the cheaper grades of paper, such as wrappings and fiber boards $(\underline{8})^2$. At that time the supply of papermaking rags from Europe was greatly reduced because of the World War and interest was centered in the development of a substitute for linen rags in currency paper. Very good samples of paper, suitable for currency, were produced on a laboratory scale but unsatisfactory results were obtained in an endeavor to convert the small-scale experiments to mill-scale methods. In 1919 the work of the Section of Paper Plant Investigation of the Bureau of Plant Industry was discontinued and the files and equipment transferred to the Forest Products Laboratory at Madison, Wisconsin.

¹This report embodies the results of investigations by the Forest Service that have extended over more than 15 years. It has been the privilege of the authors to draw upon the vast accumulation of information that has resulted from studies on the pulping and papermaking properties of seed flax straw by various members of the Pulp and Paper Section of the Forest Products Laboratory.

2 Reference is made by underscored numbers in parentheses to "Literature Cited", p. 21.

R1159

CONTENTS

Introduction 1
Economic factors affecting flax straw utilization 2
Flax growing area and flax seed production 2
Quantity and quality of flax straw available 3
Cost of flax straw and tow
Physical and chemical composition of flax straw 4
Separation of bast fiber and shives
Commercial method 5
Experimental methods
Description of pulp and papermaking experiments 7
Processing operations 7
Types of material 7
Effects of various pulping chemicals 8
Paper, board, and chemical products produced from flax straw 12
straw

The United States Department of Commerce reported in 1923 on the results of experiments conducted on flax straw in the Paper Section of the Bureau of Standards (7). The experiments indicated that the entire flax straw was suitable for wrapping paper and that a high grade of commercial tow could be converted into an equivalent of sulphite wood pulp. The conclusions, however, were that from an economic point of view the use of flax fiber for paper of any description did not appear feasible.

The work at the Forest Products Laboratory on the pulping of lax has been concerned chiefly in attempting to develop a straw pulp with qualities superior to that obtained from woodpulp. Thisobjective appeared possible in view of the fact that the bast fiber in flax straw possesses pulping qualities not approached in any wood fiber. Although the results presented here are negative from an economic standpoint, they are not without value since they contribute many new facts to a much discussed problem (3, 4, 11, 14, 15, 16, 17, 18), the solution of which has been attempted at frequent intervals for many years.

ECONOMIC FACTORS AFFECTING FLAX STRAW UTILIZATION

Flax Growing Area and Flax Seed Production

The average area devoted to the cultivation of seel flax in the United States during the five-year period, 1906-10, was according to the Bureau of Foreign and Domestic Commerce 2,520,000 acres. After 1913 the area declined until in 1922 it was 1,113,000 acres. This decrease has been attributed to economic and agricultural causes, the chief of which was the decrease in the development of new land. Due to advances in crop rotation practices, and to increases in consumption of flaxseed products, acreage has increased considerably since 1922. The production of seed in 1924 was more than 31 million bushels, the largest flax crop ever harvested in the United States. The area devoted to seed flax reached a high point in 1930 with 3,732,000 acres but production was less than the former peak year, by nearly 10 million bushels. Acreage declined after 1930 and in 1935 the area planted was about 2 million acres and the production of seed about 5 million bushels.

From an exporting nation prior to 1908, flax seed consumption increased until, in 1927, the United States imported more than 24 million bushels of seed. Importations declined somewhat after 1927. In 1932 imports were down to about 6 million bushels, but in 1934 they had again risen to about 18 million bushels. Nearly all of this imported seed is processed in mills along the Atlantic seaboard. At the present time approximately 3 million acres seem to be sufficient to supply the needs of the flax seed mills in the Northwest. The area under cultivation in the United States and the world production of seed are tabulated in tables 1 and 2.

Quantity and Quality of Flax Straw Available

Flax seed is harvested and threshed in much the same manner as The straw as baled consists of about 30 percent of chaff, other grains. leaves, and loose detritus. The yield of flax straw is estimated to vary from one to one-sixth of a ton per acre, depending on the locality and the prevailing weather conditions. Three-quarters of a ton per acre is considered a good average. The total annual production of straw on the basis of 2-1/2 million acres under cultivation in the United States and 1/2 million acres in Canada is, therefore, approximately 2-1/4 million tons. Accurate figures on the quantity of straw used in the manufacture of upholstery, insulating materials, and rugs are not available but it is known to be very small in comparison to the amount produced. Estimates by those in close contact with the industry indicate that the annual consumption of these three products during the years 1925 to 1929 ranged from 50 to 70 thousand tons. Since 1930 it has declined year by year and the estimated consumption for 1935 was about 10,000 tons. The quantity available for use in pulp products is therefore large.

The quality of this large agricultural waste is variable. This is mainly because of the extensive area upon which it is produced, with the attendant variations in weather, diseases, and weeds from locality to locality and from year to year. In the present utilization of flax straw, care is taken in the selection of the straw used, much of it being selected in the field before harvest. For this reason some manufacturers contend that the waste is not so large as statistics appear to show. Selecting the material is necessary because tow manufacture requires a long and relatively strong fiber. Because of freight costs, the manufacturer must confine his operations to a relatively small area and, therefore, finds difficulty at times in securing material of a quality required to meet his needs.

The mixed cropping of flax with cereal grains for the purpose of improving the seed has been practiced to a small extent in some localities for more than 40 years. In recent years there has been a marked increase in the acreage of the mixed crop with a corresponding decrease in the acreage of flax grown alone (1). Under certain conditions the yield and quality of both the flax seed and the grain are improved by growing them together. The control of weeds, however, is the chief advantage of the mixed crop and makes it possible to grow flax on land that is too weedy for flax alone. The straw from the combination crop, however, is limited in its industrial use and therefore has a low value.

Cost of Flax Straw and Tow

In Minnesota, No. 1 flax straw during an 8-year period from 1922 to 1929 had an average market value of \$11 a ton, and No. 2 straw a value of \$9 a ton at the point of utilization. The No. 1 grade averages 10 inches in length and may contain a maximum of 5 percent weeds. The No. 2 straw averages 6 inches in length and may contain 10 percent weeds. The average price paid to the farmer during this period for No. 1 straw, loose in the stack, was about 2a aton, the baling cost 2a, balers profit 1, and hauling to the railroad 3a. The freight charges, within a radius of 200 miles of the point of use, were approximately 3a aton. Although at times in recent years manufacturers have been able to purchase straw at the mill for from 5b to 3a aton, the foregoing general prices have held without appreciable drop. For estimating costs in this report 10aton has been used as an average price for No. 1 straw.

The average price of medium grade upholsterers tow during the 8-year period from 1922 to 1929 was about \$30 a ton and of the fine grades of tow, about \$45 a ton. Since 1934 the price of medium tow has been about \$25 a ton. The greatly increased value of these materials as compared with the straw is due principally to the large loss of material during manufacture. The waste is commonly used as fuel to operate the plant. It has not been found profitable to market the waste for any purpose although a small quantity is used at the point of production in the manufacture of insulating materials and some attempts have been made to process it to recover the short fiber and to utilize the woody parts in stock feeds.

PHYSICAL AND CHEMICAL COMPOSITION OF FLAX STRAW

The flax plant of the variety cultivated for seed grows to approximately 25 inches in height (pl. 1). The stem of the flax straw consists of a layer of cuticular cells, a layer of cortical parenchyma, the bast fibers in groups or bundles, the cambium layer, the central hollow wooden core and the pith cells (pl. 2). From the pulp maker's point of view the most important parts are the bast fiber and the core of woody tissue. The rest, which amounts to about 10 percent of the weight of the straw, has no value for pulp and offers little difficulty in removal during the process of digestion.

The bast fiber, which may be removed by mechanical processes, separates out in long filaments sometimes extending the entire length of the straw (pl. 3). The ultimate fiber of the bast ranges from 1.25 to 1.75 inches in length and from 0.001 to 0.00125 inch in diameter. The fiber in the woody core in comparison with that in the bast fiber is very small, the dimensions being on the average 0.008 inch in length and 0.0004 inch in width. The fiber dimensions of a pulp prepared from flax straw by digestion with sodium hydroxide are given in table 3. From 70 to 75 percent of the flax straw is composed of woody fiber and 15 to 20 percent is bast fiber.

The differences in the chemical constitution of the various components of the flax straw are as great as their physical dissimilarity. The bast fiber consists of relatively pure cellulose associated with other materials that are easily removed by organic solvents and dilute

-4-

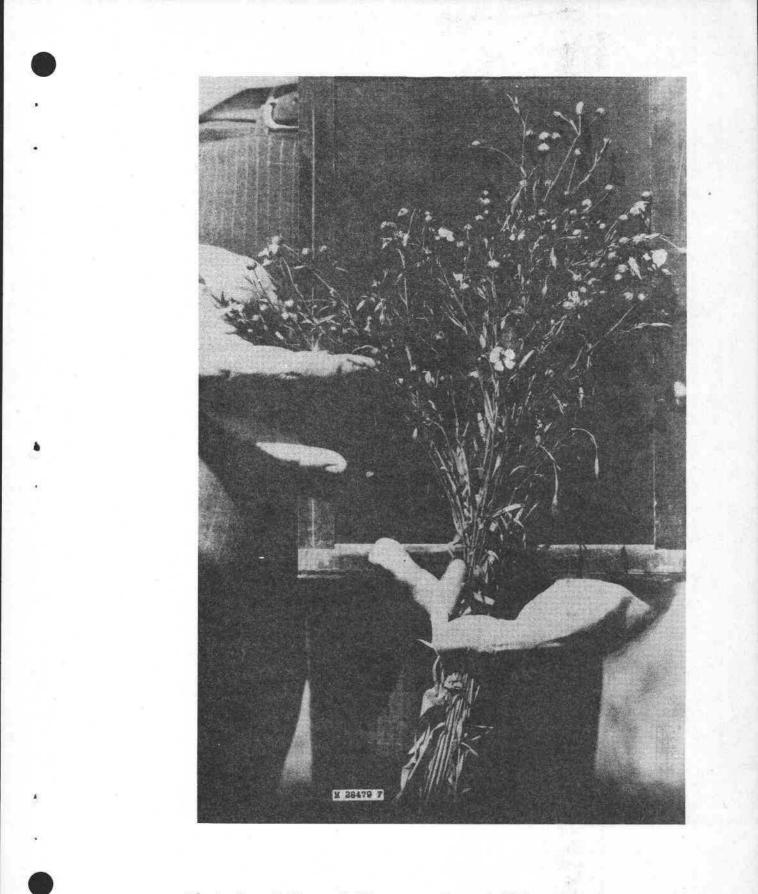


Plate 1.--Bolls and blossoms of seed flax straw. ZM28479F SCHOOL OF FORESTRY OREGON STATE COLLEGE CORVALLIS. OREGON

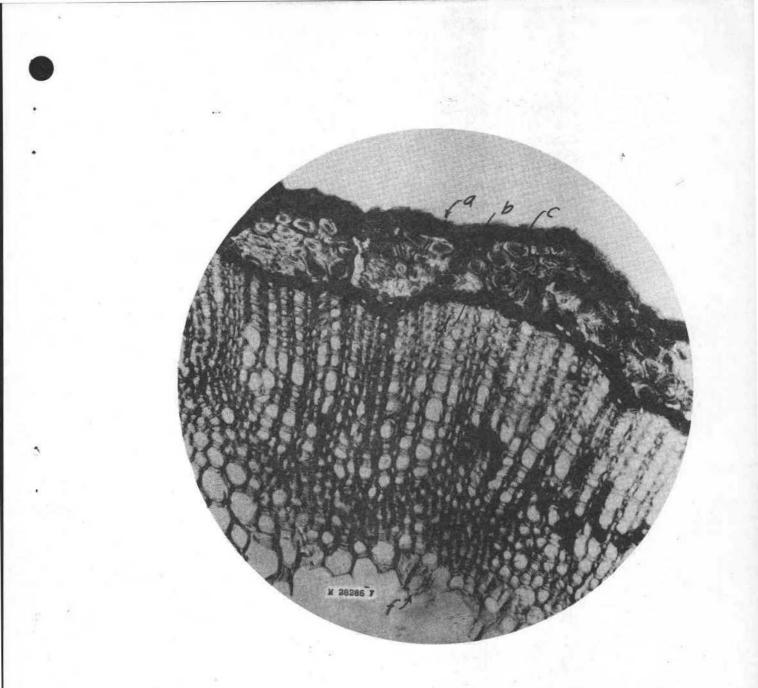


Plate 2.--Flax stem (Linum usitatissimum) transverse section. a, Cuticular layer; b, cortical parenchyma; c, bast fibers in bundles; d, cambium layer; e, central hollow woody core; f, pith cells.

ZM28286F

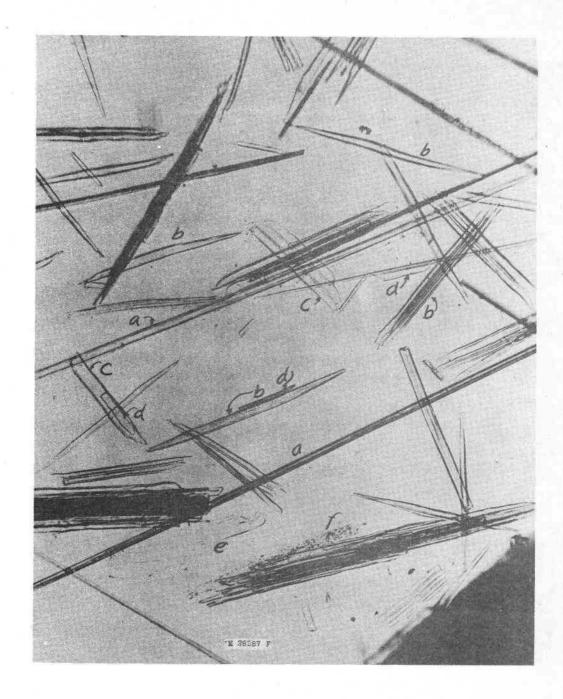


Plate 3.--Flax stem -- disintegrated. <u>a</u>, Bast fiber; <u>b</u>, wood cells; <u>c</u>, vessel; <u>d</u>, parenchyma cell; <u>e</u>, pith cells; <u>f</u>, cuticular cells.

ZM28287F

alkaline solutions (t. 4). The noncellulose materials in the shives, on the other hand, are closely combined with a relatively smaller quantity of cellulose and in practically the same proportions that are found in hardwoods.

SEPARATION OF BAST FIBER AND SHIVES

Commercial Method

The flax tow used in upholstery, flax rugs, insulation, and the like is manufactured by passing the loosely entangled straw, which may have been previously dried, through a series of fluted rolls called a flax brake. This machine breaks the woody core of the stems to relatively short lengths without undue shortening of the bast fibers. The fluted rolls are meshed in pairs set horizontally; as many as 60 pairs are used in breaking machines. As the straw passes successively through the meshed rolls a considerable quantity of the shives falls through the spaces between the rolls to a conveyor. This material, called towing mill waste, contains varying amounts of bast fiber. It is used as fuel for the operation of the towing mill equipment. The tow is cleaned further by shaking over screens as it passes from the breaks to the baler. Tow is graded for various purposes according to the amount of shives present, lesser amounts being present in the higher grades.

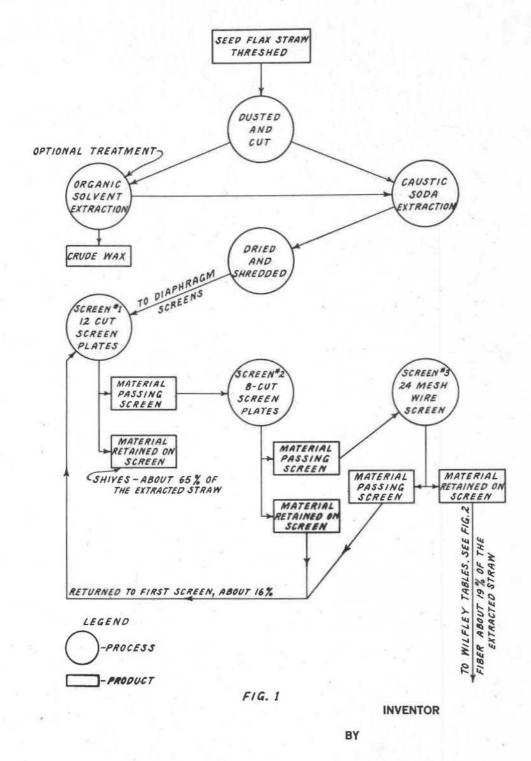
The separation of bast fiber and shives by this method, while it serves the purpose of producing a commercially usable product, is very inefficient since a bast fiber completely free of shives is never obtained. In a mill trial in which 1,500 pounds of kiln-dried straw containing about 2.5 percent of moisture were processed, the yield of fine grade tow was 31.4 percent. Further processing to an extra fine grade reduced the yield to 27.8 percent. The yield of medium grade tow is, in commercial practice, from 50 to 60 percent of the chaff-free straw.

Experimental Methods

Much experimentation has been conducted on the separation of the bast fiber and shives in seed flax straw. The work of the Bureau of Plant Industry resulted in an improvement (9) of the flax brake in which the draw or tension in the material passing from one pair of fluted rolls to another was greatly increased. This caused a violent pulling action of such intensity that the fibrous constituents of the straw were drawn over each other thereby loosening the adhering fine pieces of woody matter. The tow was much superior to the commercial product and in small-scale tests it yielded a very tough paper that appeared suited for the manufacture of bank notes. Subsequent trials both on a mill scale and on a semicommercial scale at the Forest Products Laboratory showed the tow to contain more shives than could be reduced by the milk

-5-

of lime method of digesting linen rags. Cooking trials with more drastic alkaline chemicals resulted in a fairly strong paper, but lacked sufficient strength and the required color for use in currency paper.


Many experiments on the separation of bast fiber and shives have been conducted at the Forest Products Laboratory in the course of work on flax straw. Some of the experiments were unproductive of usable information, others were only indicative. The most promising series of experiments involved the processes of extraction, shredding, screening on diaphragm screens, and final separation with a Wilfley table, an apparatus in common use for classifying metallurgical ores ($\underline{6}$). Except for the Wilfley table, all the equipment used is at the present time standard in pulp and paper mills.

Experiments with this process on semicommercial-sized equipment indicated that the power consumption on a commercial scale for the Wilfley table would be about 18-horsepower days per 1 ton each of bast fiber and shives. The power required for the extraction and screening operations prior to the Wilfley table operation was not determined. There are indications that the capacity of the Wilfley table when operating on flax fiber is low. The equivalent of passing the material over 11 commercial-sized tables was required before the two components -bast and shive -- were considered sufficiently separated. The production rate of such an installation was estimated at 0.028 of a ton each of bast fiber and shives per 24 hours. The steps in the process preceding the Wilfley table would produce an additional 0.224 ton of shives per 24 hours. Thus an installation of this size would have a capacity of about 0.28 ton of flax straw per 24 hours. Figures 1 and 2 show flow sheets of the process.

An essential requirement of the process is the production of a fiber equivalent in papermaking properties to that of linen rags. The bast fiber obtained in these experiments contained a relatively small amount of shives (as indicated by a lignin content of about 6 percent) in the form of short particles. The fiber length was less than that of linen rag half stuff but longer than that required for papermaking. Although the impurities were small in amount they existed in a difficultly soluble form. Cooking tests showed the fiber suited to pulping by the lime or the lime and soda ash processes as employed in pulping linen rags. The type of paper produced was more suited for book and magazine papers than for bond. Since it is essential that the process result in a much higher grade of paper than that obtained, the necessity for considerable more study is evident.

In view of the small proportion of the bast fiber, and its relatively mediocre quality, it is evident that any economic solution of the flax straw utilization problems would require the finding of some use for the large quantity of shives produced. The shortness of the fiber in the lignified part of the flax limits the use of pulps obtained from it to those purposes where fiber length is of relatively no importance. One of the principal uses of short-fibered pulps is in the manufacture of

-6-

ATTORNEY

Figure 1.--Flow sheet for separating bast fiber and shives in seed flax straw by means of diaphragm flatplate screens.

ZM19507F

à

5

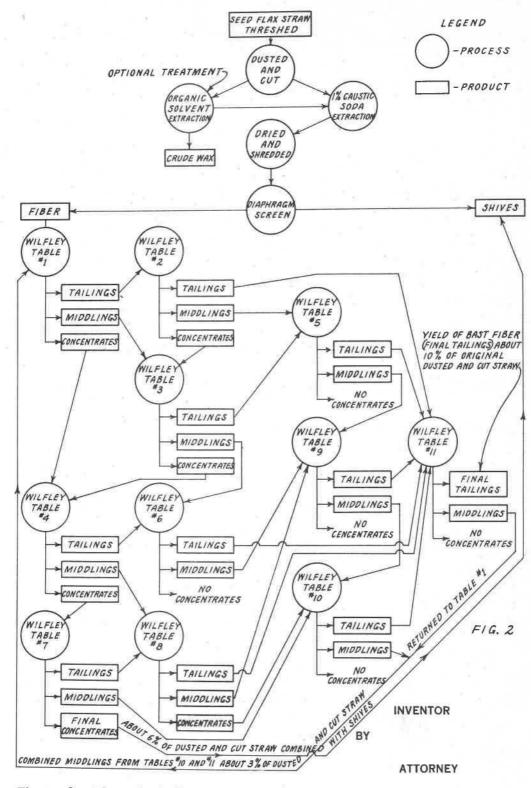


Figure 2.--Flow sheet for separating bast fiber and snives in seed flax straw by means of diaphragm flatplate screens and Wilfley tables.

ZM19508F

printing papers. Experiments on the digesting of the shives produced by this process are discussed on pages 15 to 16.

DESCRIPTION OF PULP AND PAPERMAKING EXPERIMENTS

Processing Operations

The methods used at the Forest Products Laboratory for processing the seed flax straw may be classified according to a general sequence of operations but since many variations of treatment were employed all operations were not carried out in every experiment. The operations consisted of (1) dusting and cutting, (2) cooking and washing, (3) dewatering and shredding, (4) bleaching and chlorinating, (5) beating and papermaking. This sequence, it will be observed, is general for most pulp and papermaking processes. A more complete description of the various equipment used in these experiments is given in the appendix. (p.23).

Types of Material

At the start of the work a number of digestions were made in autoclaves with a fine grade of commercial tow. Most of the work carried on later, however, was with a medium grade of tow. In a great many tests the medium tow was dusted with a loss of from 25 to 30 percent of its weight and thus it approached the grade of fine tow in quality. Both autoclave and semicommercial digestions were made with the dusted and undusted medium tow.

A large loss of bast fiber occurs in the commercial towing operation. In an experiment to recover some of this fiber a tow manufacturer produced a product which he called shaker tow. It was prepared by shredding and dusting the towing waste on shaking screens. This material was much shorter fibered than upholsterers tow. An analysis showed it to contain a high percentage of bast fiber and about half the lignin content of the original flax straw (t. 30). Several bales of this material were obtained for cooking tests.

Considerable study was also accorded the pulping of the entire straw. This included both straw containing a large amount of chaff and other extraneous matter and straw that had been dusted.

The pulping of nearly pure bast fiber was discussed in connection with the Wilfley table separation experiments (p. 6). In the course of work in a commercial laboratory on the utilization of seed flax straw for textile products, a fiber was produced by methods common to that industry, that is, by retting, breaking, picking, and carding. This fiber contained only a small amount of shives and appeared to be equal in grade to the fiber of unbleached linen. The material thus seemed suitable for high grade papers, such as bonds, writings, and condenser papers, for which new unbleached linen cuttings are now used. A quantity of this material was furnished to the Forest Products Laboratory for pulping tests. In addition to these relatively pure fiber materials, several cooks of unbleached linen rags were made, chiefly to determine the limitations of the experimental equipment in the handling of materials of known commercial value.

In any scheme for the utilization of seed flax straw in pulp and paper it is desirable that the entire straw be utilized, otherwise the venture may not be an economic possibility. For this reason some tests were made with commercial towing mill waste although this material did not receive so much attention as the entire straw or the several grades of tow mentioned.

In further regard to the complete utilization of the straw, experiments were made at the Forest Products Laboratory on the properties of flax wax. It was found in the separation experiments with the Wilfley table that the straw might to advantage (although not essential to the process) be extracted with an organic solvent, such as alcohol-benzol mixture, in the first step of the process. Upon evaporation of the solvent, a dark green, waxy and gummy residue was obtained. The properties and possible commercial value of this substance are discussed on page 17.

Effects of Various Pulping Chemicals

Upon the recommendation of persons experienced in the treatment of flax straw and linen the investigation here reported embraced pulping experiments with calcium hydroxide, sodium hydroxide, sodium sulphide, and combinations thereof. The basis of the recommendation was that in the processing of linen the physical properties of the fiber were much less impaired by lime treatments than by the stronger alkalies. Pectin is known to be closely associated with the cellulose of linen fiber. It was considered possible that the lime would cause a precipitate of calcium pectate to form on the fiber and thus produce a protective coating.

A number of other chemicals both alone and in various combinations were employed. Most of these were alkaline reagents. With the exception of the experiments made with chlorine, little work was done with acid reagents since the results of scout tests showed little promise. The complete list of the chemicals used in these tests and the data obtained are given in the appendix. Only the more important of these reagents are discussed here.

Calcium Hydroxide

Calcium hydroxide (milk of lime process) had been used in previous work at the Bureau of Plant Industry on an extra fine grade of tow. That work as well as some other tests made later in this study demonstrated that lime is suitable either for the treatment of bast fiber containing a very small amount of shives for the production of fine papers, or for the treatment of the entire straw for the production of a strawboard, although in the latter case it was found, as shown later, that lime is not the best chemical that may be used. The amount of chemical available for reaction at any given time in a digestion with the relatively insoluble calcium hydroxide apparently has very little deleterious effect on the bast fiber. However, the resolving action of the chemical on the ligneous shives is also very mild and as a result little pulping action is obtained when shives in any appreciable quantity are present.

Sodium Hydroxide and Sodium Sulphide

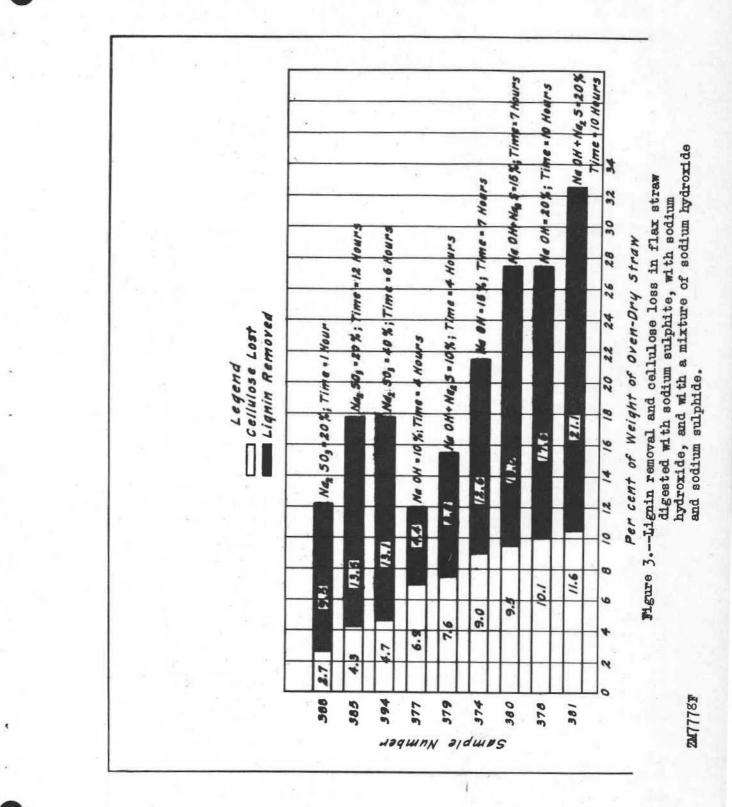
Sodium hydroxide or caustic soda (soda process) and a mixture of sodium hydroxide and sodium sulphide in various proportions (sulphate process) were used under many variable conditions. From detailed studies of the reactions of these chemicals on straw and tow in the bomb and autoclave digesters (tables 17 to 22) the following may be summarized: A chemical analysis of the pulps shows an increase in the purity of the soda pulp as the amount of sodium hydroxide and time of digestion at a given constant temperature were increased. This is shown by an increase in the content of cellulose and by a lowering of the copper number and the solubility of the pulp in 1 percent caustic soda solution. At the same time, however, increased purity was accompanied by greater losses of cellulose. The caustic-sulphide mixture (sulphate process) causes the solution of more lignin with only a little more solution of cellulose than does a sodium hydroxide digestion under the same conditions. In the course of a sulphate digestion the solution of the lignin is much slower than that of those soluble substances that may collectively be called "other than lignin", which include pentosans, easily hydrolyzed cellulose, and extractives. In a sulphate digestion the sodium hydroxide is rapidly consumed during the rising temperature period. The sodium sulphide, on the other hand, does not appear to enter the reaction until at the end of that time. During the maximum temperature period both the hydroxide and the sulphide are consumed at slow but uniformly constant rates.

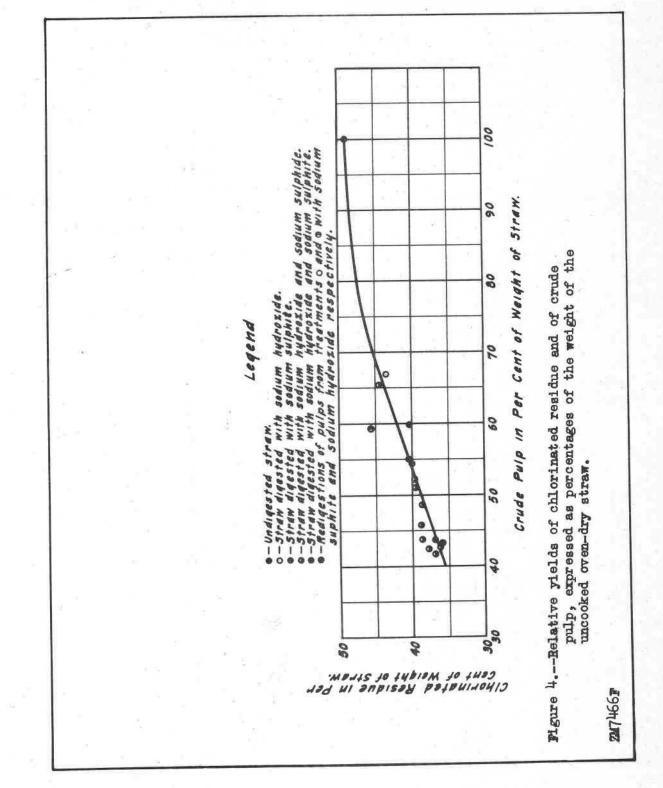
> Combinations of Calcium Hydroxide, Sodium Hydroxide, and Sodium Sulphide

fine and

The digestions of /medium tow made with combinations of calcium hydroxide, sodium hydroxide, and sodium sulphide are given in tables 5 and 6. The addition of calcium hydroxide was noted to retard the reaction

on both fiber and shives alike. When cooking conditions were made of sufficient severity to pulp the shives, by increasing the proportion of sodium hydroxide, the fiber was greatly impaired. It thus appeared that the same results would be obtained without the addition of lime. Papers made from some of the well cooked pulps produced with these chemicals are discussed on page 13.


Combinations of Sodium Sulphite, Sodium Hydroxide, and Sodium Sulphide


Digestions of both straw and tow with sodium sulphite alone, in mixture with sodium hydroxide, and alternately with sodium hydroxide or sodium hydroxide-sodium sulphide mixtures have shown this chemical to be a mild pulping reagent (tables 10,12,16). The speed and severity of the reaction, when measured in terms of yields of pulp residues, is less for sodium sulphite than for the hydroxide or hydroxide-sulphide mixtures discussed in the foregoing paragraphs (fig. 3). For equal degrees of lignin removal, less cellulose is lost by digesting with sodium sulphite than with sodium hydroxide. For equal amounts of the two chemicals, more lignin is removed by sodium hydroxide than by sodium sulphite.

When straw was digested first with 20 percent of its weight of sodium sulphite and then the residue digested with 10 percent (original straw base) of sodium hydroxide the amount of lignin dissolved was practically equal to the sum of the lignin losses caused by the action of the two chemicals directly on the straw; but when the order of the digestions was reversed the solubility of the lignin in the sodium sulphite solution was found to have been lowered by the preliminary mild treatment with sodium hydroxide. Further, when 20 percent of sodium sulphite and 10 percent of sodium hydroxide were mixed together the combination exerted only a slightly greater pulping action than the sulphite alone. This and other effects noted indicate that in a digestion with sodium sulphite alone the solution of the material, particularly of the lignin constituent, is a reaction of the bisulphite radical mainly, whereas a digestion with the mixture of chemicals the reaction of the bisulphite radical (although present in as great amount) is suppressed and the principal reaction is with the hydroxyl radical. These effects are shown by the data given in tables 23 and 24.

Combinations of Sulphur and Sodium Hydroxide

The effect of a combination of sulphur and sodium hydroxide as compared with sodium hydroxide alone in the cooking of wood, is known to be of benefit in the increasing of yields and the decreasing of bleach requirements. A study of several combinations of these chemicals in the digestion of medium tow (tables 8 and 9) showed that the degree of pulping obtained was dependent more on the amount of excess sodium hydroxide

present than upon the total available alkali that might be calculated theoretically. The reactions involved are not well known but the evidence indicates the following to be the most probable. When sulphur is heated in an excess of sodium hydroxide solution, about 75 percent of it is converted to sodium sulphide and about 25 percent of it to sodium sulphate. After the excess of sodium hydroxide has been partially consumed in the cooking reaction the sodium sulphide is converted into almost equal parts of sodium hydroxide and sodium sulfhydrate. The total available alkalinity of this type of cooking liquor is, therefore, the excess sodium hydroxide plus the sodium hydroxide produced by the transition of the sodium sulphide.

There was also evidence that when the tow was changed into the digester at the same time as the sodium hydroxide and sulphur, the material consumed most of the hydroxide before the reaction with the sulphur occurred. When the two chemicals were allowed to react before charging the tow the degree of cooking was reduced. Although well digested and bleachable pulps were obtained, the results did not indicate that this method of cooking was more advantageous than the ordinary sulphate process. It was also demonstrated in this series of experiments that when the required amounts of the chemicals to pulp the material were present, the quality of the pulp was about the same, whether low temperatures for long periods of time or high temperatures for shorter periods of time were used.

Chlorine .

Chlorine has been used in the laboratory for many years in the isolation of cellulose from plant materials. It is only in the past 15 years that manufacturing processes have been developed in which it is used as a pulping agent. The chlorine has been employed both as a gas and as a water solution, but the reactions taking place are, in principle, the same in both processes, the difference being only in the method of operation. In the commercial application of both processes the treatment consists of alternate digestions with sodium hydroxide and treatments with chlorine; consequently the success of the developments depend on the efficient utilization of electrolytic caustic soda and chlorine.

The following summarizes a study of the application of the chlorine water process to the pulping of flax straw which resulted in a sequence of operations of: (1) predigestion, (2) mechanical processing or refining, (3) chlorine treatment, and (4) refining of the pulp for the paper machine. The predigestion was not confined to the use of sodium hydroxide alone, but other chemicals were used both singly and in combination. The study with sodium hydroxide alone under a wide variety of conditions showed a linear relation between the sodium hydroxide consumed in the predigestion and the chlorine requirement in the chlorine treatment (tables 17 to 19). For each percentage (based on straw) increase of sodium hydroxide consumed about 2 percent (based on straw) less of chlorine was required. Other chemicals used in the predigestion were sodium hydroxide-sodium sulphide mixture, sodium hydroxide-sodium sulphite mixture and sodium sulphite alone. Although the degree of pulping accomplished by these chemicals was found to be of more importance in influencing the quality of the finished chlorinated pulps than the specific properties of the chemicals themselves, certain slight advantages of the hydroxide-sulphide mixture over the hydroxide alone were noted and the pulps prepared from predigestions containing sodium sulphite were of brighter color and higher strength but more hydrated.

The weight of chlorine required to render the lignin soluble in the crude predigested pulp was found to be nearly equal to that of the lignin regardless of the type of predigestion. The yield of chlorinated residue was observed to bear a definite relation to the yield of the crude pulp from which it was isolated. Between the limits of 35 and 45 percent yield of chlorinated pulp (based on original straw) the average gain in cellulose in the chlorinated pulp was 1 percent for each 3 percent increase in the yield of crude pulp (fig. 4).

Pulps prepared by the chlorine process become gelatinized or hydrated very rapidly when processed mechanically. The flax chlorine pulps (tables 25,26) were so susceptible to this effect that it was found necessary to beat or rod mill them after the predigestion and prior to the chlorine treatment. Since the chlorination of a pulp containing iron causes a discoloring that is practically impossible to remove, the usual steel construction of beaters and rod mills must be supplanted with bronze and rubber or other noncorrosive materials. The strength of the chlorine flax pulps was generally in proportion to the amount of chlorine required. On the other hand, the degree of whiteness decreased as the amount of chlorine required increased. At best, however, the color was grayish white. An addition of bleached soda wood pulp to the chlorine flax pulp increased the opacity and softness and slightly reduced the strength of waterleaf paper made therefrom.

PAPER, BOARD, AND CHEMICAL PRODUCTS

PRODUCED FROM FLAX STRAW

Bond and Ledger Papers

The work of both the Bureau of Plant Industry and the Forest Products Laboratory has shown that high grade bond and ledger papers cannot at the present time be made from material containing more shives than may be digested by the milk of lime process and that the use of more drastic cooking agents greatly reduces the strength of the bast fiber. A carded fiber prepared for textile purposes (p. 7), when cooked with calcium hydroxide, bleached, and beaten in a manner similar to that employed in the making of linen paper, yielded a strong white bond paper. These tests demonstrated that high grade paper of the type produced from rags could be made from the bast fiber of seed flax straw. The results are summarized in table 32.

Although it was not possible to produce high grade rag type papers from tow or straw, because of the necessity of using cooking conditions that impaired the strength of the bast fiber, a few bond type papers were made from tow of the grade ordinarily produced from chemical wood pulp. In this class of papers, those made from the pulps of cooks D-39, D-40, and D-46 shown in tables 6 and 11, were among the best produced from medium tow. These pulps were prepared by digesting the material in mixtures of sodium hydroxide, calcium hydroxide and sodium sulphide.

Papers that may be classified as equivalent to medium grade wood-pulp bond were made from the entire flax straw. They were lower in whiteness and contained more dirt particles than those made from the tow just described. Best among those made entirely from the straw were the papers from the pulp of cook B-217-1, shown in the tables in **tables** 25 and 26. Part of this pulp was treated successively with chlorine water and calcium hypochlorite bleach and part was bleached with the hypochlorite only as indicated by machine runs 1 and 3, respectively. Machine run 2 of this series was a mixture of 85 percent of the hypochlorite-bleached flax straw pulp and 15 percent of a commercial bleached soda-process wood pulp. The addition of bleached soda pulp lowered the strength but increased the whiteness and softness of the sheet.

Bond and writing papers were produced from shaker tow, which is a short fiber recovered from towing waste, by digesting with a mixture of sodium hydroxide and sodium sulphide. Cook D-163, machine run 4 (t. 31) was the best paper produced from shaker tow from the standpoint of color and texture. Cook D-164 machine run 1 was not so white as cook D-163, indicating that more bleach should have been used, but it was stronger. The papers may be classed as equivalent to medium grade rag bonds.

Greaseproof and Tissue Papers

The entire flax straw dusted prior to cooking was found to be suitable for the production of greaseproof and tissue papers. The data for these tests are given in table 27. Several conditions of cooking were employed but it may be of interest to note that the conditions that produced the best results (cooks D-154 and D-158) were very similar to those used for the production of the bond paper from the entire straw as just described except that a higher temperature and longer duration of cooking were used.

A high loss of material occurred on dusting the straw before the cooking, and in addition the yields of pulp on the dusted straw were low when compared with yields obtained from wood. Thus the total loss of material might be considered exorbitant. The use of undusted straw for this grade of pulp may be possible, a fact that was apparently demonstrated in the predigestion of the straw in the chlorination studies previously mentioned, but not investigated in this series of tests. The pulps were partially bleached, that is, to a light cream color. The conditions of beating of these pulps were found to be very important in developing the greaseproof properties. The duration of processing in the laboratory beaters was very prolonged. Apparently a more efficient method of hydrating the stock would be required in a commercial application of the process. Two of the best greaseproof sheets were supercalendered and waxed in a mill producing these specialities and acceptable grades of glassine paper were obtained. Several of the lighter weight sheets demonstrated the possibility of using this type of pulp for tissue manufacture.

Sodium sulphite may also be used to obtain a pulp from medium tow that is suitable for greaseproof paper. Data for cooking by this method are given in tableID and the paper test data in table 11. Pulp prepared with sodium sulphite was easily hydrated and the resulting papers possessed greaseproof quality to a pronounced degree.

Container Boards

The utilization of flax straw for corrugating board and for heavier boards, such as egg-case filler, has so far as it is known not been attempted although some experimenting has been done toward using it in leather boards ($\underline{8}$). The usual method of preparing cereal straws for strawboard is by a relatively mild digestion with lime. In these experiments flax straw, flax towing waste, and oat straw were cooked by the lime process separately and in various mixtures as shown in table 28. None of the boards made from the flax (straw or waste) or of the flaxoat straw mixtures was so good as the oat straw alone.

Flax towing waste was digested mildly with a mixture of sodium hydroxide and sodium sulphide (t. 33) and the pulp combined in various proportions with a partially cooked jack pine sulphate-process pulp for the purpose of making a high test board. The experiments were on a small scale, only sufficient pulp being used to form test sheets by hand. These were tested for bursting strength. The results show that additions of the short-fibered towing waste pulp to the longer-fibered pine pulp caused an increase in the strength of the test sheet until the towing waste pulp exceeded 75 percent of the total. Additions greater than 75 percent caused a decrease in the strength.

In addition to cooking the entire flax straw with calcium hydroxide it was also cooked with sodium carbonate, with sodium bicarbonate, with mixtures of sodium carbonate and sodium sulphite (12), mixtures of sodium carbonate and sulphur (19), and mixtures of sodium hydroxide and sodium sulphide. Calcium hydroxide was found to be the least suitable chemical for softening the shives; soda ash the best. Mixtures of sodium carbonate and sulphur, and of sodium hydroxide and sulphide were particularly effective in increasing the folding strength. The board produced by the latter mixture of chemicals was probably not stiff enough for a corrugating board but it possessed an exceptionally pleasing appearance (t. 29) and might find use where considerable flexibility in the board is required.

A study of the processing of these pulps indicated the rod mill to be more efficient than the beater in respect to both power consumed and the quality of the stock produced. The comparison, however, is subject to qualification as the variables of the beater were not studied in so much detail as those of the rod mill. It was possible to produce a board from rod-milled flax straw pulp, as indicated in table 29. by cook B-210-1, machine run 2, that was superior in strength to the lime-cooked oat strawboard prepared in the Laboratory, as well as a commercial limecooked wheat strawboard used for comparison.

A 12-inch width roll of this paper was corrugated in a fiber board mill and gave evidence that the stock would work satisfactorily in a commercial-sized roll. Both single and double lined corrugated boards were made. Although in the estimation of the operators the stock had snap and stiffness, the resulting board had a soft corrugation, that is, the corrugation was easily crushed. The results indicate the possibilities of flax straw in this grade but it is evident some technical details remain to be worked out.

Book Paper

In addition to the experiments on the use of commercial towing mill waste in container boards some work was done on this material for the production of a bleached pulp suitable for book and similar papers. These tests are given intable 34. The high chemical requirement for cooking, the large amount of calcium hypochlorite bleach needed, and the low yield obtained would not encourage the utilization of the material in this manner.

Better results from the standpoint of pulp quality were obtained by digesting shives obtained from the screening and Wilfley table experiments (p. 6). The straw from which this material was obtained had been extracted with alcohol-benzene mixture and boiling 1 percent sodium hydroxide solution prior to screening. The material used for the cooking test was the portion retained on an 8-cut screen plate and represented about 50 percent of the original straw. It was digested with 22.5 percent (oven-dry basis) of sodium hydroxide and 5.5 percent of sodium sulphide for 5 hours, 3.5 hours being at the maximum temperature of 160° C. The yield of pulp was 54.5 percent of the shives taken. The pulp bleached to a light-cream color with 20 percent of calcium hypochlorite bleach. It was a soft, short-fibered pulp and test sheets indicated it

R1159

to have properties suited for use as part of the fiber composition of book paper. The yield on the basis of original straw is very low when compared to other papermaking materials. Only a low monetary value could, therefore, be set upon it as a raw material if it were to compete with the more commonly used materials. Its use might be feasible in a mill utilizing the entire straw on the basis that any returns from it could be credited to the cost of processing the more valuable bast fiber.

Miscellaneous Paper and Board Products

The use of flax straw in the semirigid type of insulating board is well known but little has been done on the production of a rigid insulating board from this material. A few experiments were made in forming boards of this type from the pulps secured in cooks B-223 and B-225 (t. 29). The pulps were processed in both the beater and the rod mill prior to forming the boards on a small mold about 1 foot square. The rod mill was more efficient than the beater in obtaining a suitable stock. The boards possessed a dark-brown appearance and although no tests were made they seemed to be more flexible than similar commercial boards of the same density.

One of the toughest papers produced was made from medium grade tow cooked according to the conditions shown for cook D-100, in table 13 with a mixture composed of sodium sulphite and sodium sulphide. The pulp was practically impossible of bleaching with calcium hypochlorite. The paper was light brown and of a dense, hydrated texture. It is possible the paper might find use in electrical products where high density and strength are required.

The relative ease with which flax tow pulps hydrate upon beating and when formed into sheets to produce what is called a well closed sheet suggests their probable use in electrical papers. Electrical puncture tests were made² on two flax tow papers (cooks D-35 and D-36, Ts. 5,6,11). The tests were made on the sample of paper as submitted, after drying at 110° C. for 30 minutes and after immersion in mineral seal oil at 100° to 110° C. for 15 to 30 minutes. The results shown in table 38, with the dielectric strength of several other materials for comparison, indicate these papers to have excellent insulating properties. Whether such papers from flax will meet the strength requirements is not known. It is probable that much care would be necessary in the manufacture of these papers to insure removal of dirt particles that would be detrimental to the electrical insulation properties.

2Tests made by the Electrical Engineering Department, University of Wisconsin.

R1159

Flax Wax

The amount of fatty and waxy substances that may be extracted from seed flax straw by a mixture of 1 part of ethyl alcohol and 2 parts of benzene, by volume, is high in comparison with the amount obtained from other straws. Consideration of the possible commercial value of this extractive is of interest because of the desirability of making a relatively complete use of the straw in any proposed scheme of utilization.

The quantity of the extractive that may be obtained by analytical methods is shown in table 4 to be 3.7 percent. The amount will, of course, vary from sample to sample. When the extraction was carried out on from 10 to 20 pounds of straw the yield of extract was somewhat less, being from 2.5 to 3.0 percent by weight of oven-dry straw. The material obtained is a heterogeneous mixture of dark green, sticky substances and of brown, gum-like substances. When heated to the temperature of the water bath the green materials become fluid and may be poured off. The data in tables 36, 37 give some of the properties of the material and an outline of a series of treatments that caused the separation of a number of its constituents.

Commercial uses for these substances were not studied extensively but the following tests indicated certain possibilities.⁴ The fats in the crude wax were saponified with potassium carbonate and the soap emulsion diluted with a water solution of an alkali resistant coal-tar dye. This material was found to produce a smooth, nonoily polish when applied to wood or leather. However, an analysis of costs indicated the cost of extracting the wax from the straw to be from three to four times the market price of the commercial waxes generally used in such preparations.

The crude extract was treated with potassium hydroxide and alcohol to saponify the fatty constituents, dried, and extracted with petroleum ether to dissolve the unsaponifiable constituents. The residue of unsaponifiable matter obtained by evaporating the petroleum ether extract was of a yellow, coagulated, waxy character. The yield was about 18 percent of the crude extract or about 0.5 percent of the straw. Qualitative tests indicated the presence of sterols and an analysis showed the amount to be approximately 1.2 percent of the unsaponifiable matter or about 0.005 percent of the basis of the straw. Although the amount of sterol available appeared to be very small the importance of this compound in nutrition studies prompted the following investigation.

A quantity of the unsaponifiable matter was prepared, dissolved in ethyl ether, and subjected to the radiation of a quartz mercury vapor lamp. Portions of the irradiated was preparation were added to a basal

4 This work was done by the Section of Derived Products, Forest Products Laboratory.

²This work was done by Harry Steenbock, Professor of Agricultural Chemistry, University of Wisconsin. ration in quantities of 1 part, 10 parts, and 100 parts in 50,000, respectively, and fed to rachitic rats for a demonstration of its ricketscuring properties. The basal ration when fed alone to the rats was known to develop a very pronounced rachitic condition that could be readily cured by the introduction of vitamin D. At the end of a 10-day period on the irradiated ration the rats were killed and the distal ends of the radii and ulnae examined for calcium deposits. The degree of calcium deposition was found to be pronounced and indicated that the material submitted to the test contained considerable amounts of an antirachitically activatable sterol which was presumed to be ergosterol.

COST OF PRODUCING FLAX PULPS

The cost of producing pulps from flax straw is shown in table 35. Representative pulps of the various grades that may be produced from straw or tow were selected. The analysis is based on prices of chemicals prevailing in 1935. In calculating the cost of the chemicals, sodium hydroxide was considered as being prepared from soda ash and hydrated lime, sodium sulphide from salt cake, sodium sulphite and bisulphite from soda ash and sulphur, and bleaching powder from hydrated lime and chlorine.

The average overhead or operating cost for a sulphate pulp mill, in the United States, according to cost information gathered by the Timber Conservation Board in 1931, was \$12.78 per ton, exclusive of chemicals. The items entering into this cost were as follows:

Labor	\$ 3.68
Steam	2.81
Power	1.42
Repairs	.28
Mill supplies	1.65
All others	.80
Depreciation	2.14
Total	\$12.78

In the sulphate process the sodium content of the spent liquor is recovered in the form of soda ash (carbonate) and used again in the cooking process. The efficiency of recovery will vary from 80 percent (on the basis of the sodium oxide equivalent) in some of the older installations to 93 percent reported for the more modern plants. For purposes of calculation the average of 87 percent has been used in this analysis. Salt cake is introduced during the recovery operation and reduced to sodium sulphide. The efficiency of the reduction of the salt cake may be assumed to be about 90 percent.

The foregoing operating costs and efficiency ratings have also been used in estimating the cost of producing those pulps made by processes not strictly sulphate since the general methods are the same. Information on the overhead costs of operating a modern bleaching plant is not generally available. For a bleaching plant representing an investment of \$80,000, the overhead cost of operating the plant may be estimated at approximately \$3.70 per ton of air-dry bleached pulp, divided as follows:

Operation	\$1.07
Maintenance	.11
Depreciation	.50
Taxes	.27
Insurance	.02
Maintenance material	.03
Supervision	.44
Steam	.10
Power	.86
Water	.30
Total	\$3.70

In modern bleaching systems about 1.2 pounds of hydrated lime are required per pound of chlorine to be absorbed. Of this chlorine, 0.99 pound is available for the bleaching reaction. Hence, each pound of standard bleaching powder (p. 26) used in bleaching the pulp represents the consumption of 0.354 pound of chlorine and 0.425 pound of hydrated lime. In the cost analysis it was assumed that the flax pulps lost 10 percent in weight by bleaching. This loss may have been an overestimate in some cases.

Conforming with customary practice, the material and manufacturing costs have been estimated on the air-dry basis with the usual arbitrary assumption that air-dry pulp contains 10 percent moisture. All cost items have been rounded off to the nearest 5 cents.

This analysis shows that the amounts and cost of chemicals required to pulp flax are not greater than are required for wood pulp. The yields, however, are from 10 to 20 percent lower for flax than for wood. The relation between the prices of flax straw and tow and that of wood is, therefore, the governing factor from the standpoint of costs in the utilization of flax for pulp and paper.

SUMMARY AND CONCLUSIONS

The waste flax straw from linseed production consists of a mixture of long, relatively pure, cellulose fibers and of short, lignified fibers similar to those of the hardwoods. The reactions of various chemicals, alone and in combination, on this material were found to be very similar to the reactions with wood and, therefore, the methods of cooking developed for the production of flax straw pulp are very similar to those employed in the pulping of wood.

By mechanical processes the shives, chaff, and other detritus may be separated in various degrees from the long, strong bast fibers. The relative proportions of bast fiber and shives in the mixture determine the severity of the chemical treatments required and the quality of the resulting pulp. Thus, depending on the choice of reagents and the proportions of bast fiber and shives in the material, a wide variety of papers was produced. When the bast fiber was freed from shives to such a degree that it could be reduced to a bleachable pulp by the milk of lime process, a high grade of pulp similar to that produced from linen rags was obtained. This pulp was suitable for use in bond and ledger papers. The processing of material containing varying proportions of bast fiber and shives and requiring relatively more drastic treatment resulted in an impairment of the natural strength of the bast fiber so that the pulps obtained were equivalent in quality to wood pulps. These pulps were found suitable for the medium grade bonds, greaseproof, tissue, book, and magazine papers, and for container and wall boards.

A study of the organic solvent extractives from seed flax straw indicated that they have potential commercial value.

The versatility of the seed flax straw might appear to favor its utilization since it would seem possible to turn from one grade of paper to another as conditions warranted. The complete equipment to carry on such an operation, however, would undoubtedly require a large capital investment. Assuming that a satisfactory and efficient process for the separation of bast fiber and shives was developed a balance between the production of the high grade papers and the cheaper papers would be necessary; possibly with the higher grade papers absorbing some of the cost of manufacture of the lower grade in order that the latter could compete with similar papers made from wood.

The problem of seed flax straw utilization resolves into the relation of the cost of equivalent quantities of the proposed material and the standard materials in common use. This cost must include, not only the cost of the materials themselves, delivered to the mill yard, but also the cost of handling, storage, and deterioration. It has not been possible in this investigation to analyze the cost of producing high grade paper from flax as compared with the cost of production from linen rags. In regard to the lower grades of paper, however, it appears that the price of pulpwood must rise considerably above its present level before it will be feasible to replace it with flax straw.

The relatively ideal objectives of this investigation as enumerated in the introductory pages have not been attained. There appears to be no immediate possibility of a complete utilization of what is now a large agricultural waste in linseed production or of becoming nationally independent in regard to the supply of material for paper for which linen rags now form the chief raw material. The information gained in the pulping of seed flax straw has, however, added to the store of facts relative to possible future supplies of raw materials. This study, as well as studies on wood and other plant materials, indicates that there probably will never be a lack of material from which to manufacture cellulose.

LITERATURE CITED

- Arny, A. C., Stoa, T. E., McKee, C., and Dillman, A. C. 1929. Flax cropping with wheat, oats and barley. U. S. Dept. Agr. Bull. 133, 47 pp., illus.
- Brand, C. J., and Merrill, J. L.
 1915. Sacotan as a paper-making material. U. S. Dept. Agr.
 Bull. 309, 10 pp., illus.
- Bray, M. W., and Peterson, C. E.
 1927. Pulping flax straw. I. Hydrolysis with sodium sulphite. Tech. Assoc. Papers 10:55-57. Paper Trade Jour. 84(23): 40-42, illus.
- , and Peterson, C. E.
 1928. Pulping flax straw. III. Hydrolysis and delignification with sodium hydroxide and with a mixture of sodium hydroxide and sodium sulphide. Paper Trade Jour. 86 (3): 48-50, illus.
- (5) Curran, C. E., and Baird, P. K.
 1924. Bleaching of wood pulp. Paper Trade Jour. 79(1):56-58, illus.
- (6) Heritage, C. C., Schafer, E. R., and Carpenter, L. A.
 1933. Process for separating bast fiber from shives. U. S. Public Service Patent 1,922,366 Pat. Gazette 433: 636.
- Kellogg, E. H., Shaw, M. B., and Bicking, G. W.
 1923. Seed flax straw as a paper-making material. Paper Trade Jour. 77(5):43-49.
- Merrill, J. L.
 1916. Utilization of American flax straw in the paper and fiberboard industry. U. S. Dept. Agr. Bull. 322, 24 pp., illus.
- Miller, R. N., and Swanson, W. H.
 1925. Chemistry of the sulphite process. Paper Trade Jour.
 81(11): 53-57, illus.
- Rue, J. D., Wells, S. D., and Schafer, E. R.
 1924. A study of flax straw for paper making. Paper Trade Jour. 79(13): 45-50, illus.

-21-

- Rue, J. D., and Monsson, W.
 1925. A new method of cooking straw for strawboard. Paper Trade Jour. 81(15): 52-53.
- (13) _____, and Wells, S. D. 1926. The rod mill in the pulp and paper industry. Paper Trade Jour. 83(12): 53-54, illus.
- (14) Schafer, E. R., Bray, M. W., and Peterson, C. E.
 1927. Pulping flax straw. II. Chemical studies with chlorine as a pulping agent. Paper Trade Jour. 84(8): 207-213, illus.
- (15) , and Peterson, C. E.
 1928. Pulping flax straw. IV. Further studies on hydrolysis and delignification with alkaline reagents. Paper Trade Jour. 86(3): 51-54, illus.
- (16) _____, and Peterson, C. E. 1928. Pulping flax straw. V. Production of pulp by the chlorine process. Paper Trade Jour. 87(16): 41-46, illus.
- (17) _____, and Bray, M. W. 1929. Pulping flax straw. VI. Properties of flax straw cellulose and its value in the cellulose industries. Paper Trade Jour. 89(5): 51-53, illus.
- (18) Wells, S. D., and Schafer, E. R.
 1925. Chemical constituents of flax straw. Paper Trade Jour.
 80(17): 47-50.
- (19) Wells, S. D.
 1927. Pulping process for wood, straw, grass, etc. U. S. Patent
 1,626,171, Pat. Gazette 357: 933.
- (20) _____, and Rue, J. D. 1927. The suitability of American woods for paper pulp. U. S. Dept. Agr. Bull. 1485, 101 pp., illus.

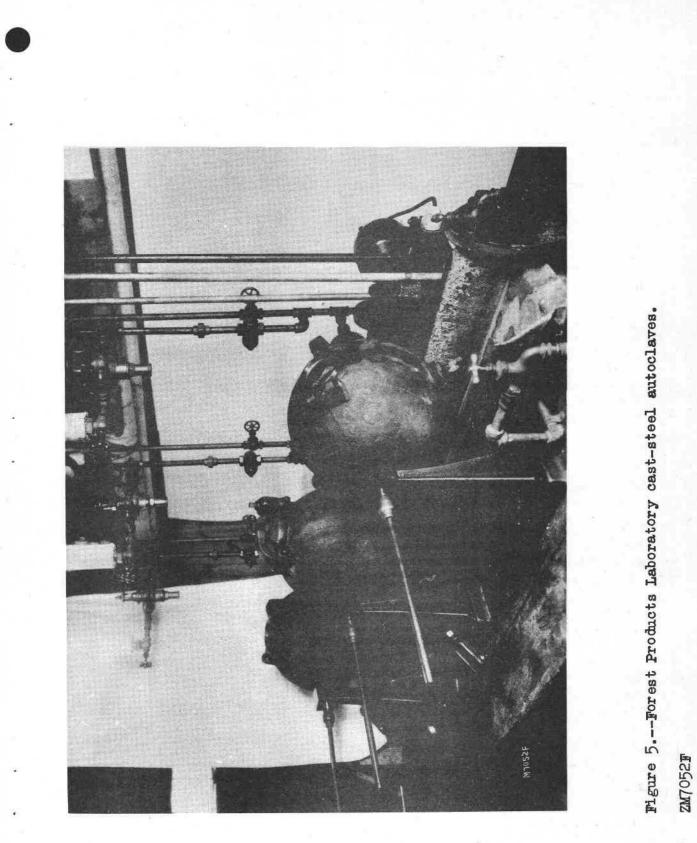
APPENDIX

Description of Equipment

Since many variations of treatment were employed in the experiments here reported, all the equipment described in the following pages was not used in every test. It has been classified, however, to conform in a general way to the sequence of operations performed on the material in process.

Dusting and Cutting

The straw or tow was dusted by hand over a 4-inch mesh wire screen, approximately 2 feet wide and 4 feet long, to remove extraneous chaff, leaves, and the like.


To facilitate packing into the digesters or for other subsequent treatment the material was cut or chopped into lengths varying from 2 inches for the longest strands of bast fiber to $1/\delta$ of an inch or less for some of the shives. The equipment used was a rag cutter such as is employed for the preparation of rags for cooking. For small scale cooking tests (bomb tests) the material was ground further so as to pass a 40mesh standard sieve.

Cooking and Washing

The material was digested or cooked in several types of pressure vessels. A large number of tests were made to study the chemical reactions with numerous chemicals and conditions of treatment. If an accurate study of these reactions was being made a small bomb containing 25 grams of the finely ground material was used. The cubic capacity of the bomb was 350 cc. The bomb was immersed in an oil bath where the temperature was controlled by an electrical thermostat to within $\pm 0.15^{\circ}$ C. of the desired temperature (10).

Larger scale digestions were made in a battery of three rotating, spherical, steel autoclaves of approximately 3 gallons capacity, shown in figure 5. The amount of material used in these autoclaves was from 1.5 to 2.0 pounds. The autoclaves were steam jacketed and the temperature was controlled by means of steam regulating valves. A description of the construction of these autoclaves has been published (<u>15</u>).

Semicommercial digestions were made on a 50 to 75-pound scale in a rotating, vertical-type digester (20, p. 14) and on a 200 to 300pound scale in a rotating, horizontal, boiler-type rag digester. The

horizontal digester, formerly used by the Bureau of Plant Industry and subsequently installed at the Forest Products Laboratory, has been described by Brand and Merrill (2, p. 22). The vertical digester was heated both by steam directed into the digester and by steam in a jacket that covers the lower half. The heating of the horizontal digester was by direct steam only. At the end of a digestion in the vertical type digester the contents were discharged by means of high steam pressure into a wooden tank with a perforated metal bottom where the spent liquors. were permitted to drain away. The horizontal digester could not be emptied in this manner, but had to be cooled by exhausting the steam pressure to the atmosphere and the admission of cold water. When sufficiently cool, the lid was removed and the contents washed into a drainer situated below the digester.

The pulps were washed free of spent cooking liquors in boxes provided with fourdrinier wire bottoms. The hose used in washing the pulps was sometimes fitted with a nozzle to obtain agitation of the pulp in the box. The force of the water from the nozzle also caused much finely divided material to be washed out. This fine material, consisting principally of disintegrated shives, was highly colored, and its removal, although causing a loss of fibrous material, aided in the securing of a whiter pulp upon bleaching.

Dewatering and Shredding

To facilitate subsequent storage and handling, the water content of the digested material was reduced by pressing in hydraulic presses, two sizes of which were available, commensurate with the scale of the digestion. The press cakes of pulp from the 2-pound cooks were broken by hand and sampled directly for the determination of the moisture content. Those from the larger scale digestions were disintegrated in a semicommercial sized, swing-hammer shredder, and the shredded pulp sampled for the moisture determination. The shredder was also used to disintegrate dried material in the experiments on separation of bast fiber and shives.

In some of the work, particularly that in connection with the Wilfley table, water was removed from the pulp by passing it over a semicommercial-sized wet machine. It was necessary, in these cases, to shred the pulp finely in order to operate the wet machine successfully. Also in some experiments the pulp prior to passing over the wet machine was screened on a flat-plate diaphragm screen. Experiments in which this equipment was used were principally those on the separation of bast fiber and shives.

Bleaching and Chlorinating

The ordinary process of bleaching with calcium hypochlorite was done in small scale tests in glass jars provided with motor-driven glass stirrers, or in the porcelain jars of a pebble mill from which the charge of pebbles had been removed. Larger quantities of pulps were bleached in a special bleaching barrel similar in design to a small cement mixer (5), or in the various small-sized beaters described later.

Pulps were treated with chlorine water in a wooden drum of about 125 gallons capacity into which quantities of the chlorine water of known strength and volume could be charged from a mixing apparatus while the drum was rotating with the pulp charge. The operation of the apparatus, shown in figure 6, has been described previously $(\underline{16})$.

Beating and Papermaking

Beaters with capacities of 5, 20, and 40 pounds each were used for processing the pulps. These beaters were equipped with the usual type of drum washers. A rod mill, 3 feet in diameter by 5 feet in length and lined with plates heavily coated with rubber, was also used (13), particularly for processing the pulps prior to the treatment with chlorine water and in the strawboard experiments. A semicommercial-sized jordan was used for the final processing before making the pulp into paper.

The pulps processed on a semicommercial scale were made into paper or strawboard on a 15-inch width paper machine (20, p. 19) equipped for forming the sheet on either a cylinder mold or a fourdrinier wire. The machine was equipped with two pairs of press rolls, eight steamheated driers, and a stack of seven, cold, calender rolls. The majority of papers made in this work were waterleaf, that is, without size or loading.

Tabular Data

During the course of the work described in the preceeding pages much data was collected on the pulping of flax. From these data only the following representative tables have been selected for presentation. Their chief value lies in placing detailed information in the hands of research workers in order that duplication in future work on flax pulping may be avoided.

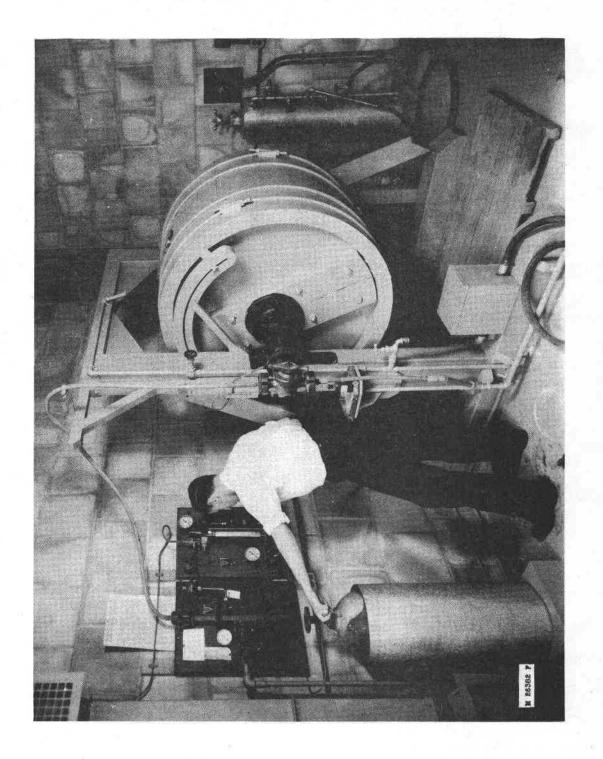


Figure 6.--Apparatus for the treatment of pulp with chlorine water.

Definitions of Terms and Units of Measurements Used in Tables

Footnote 1 appearing in each table refers, except where otherwise noted, to the following definitions of terms and measurements used in the column headings.

Chemical symbols: Na(OH), sodium hydroxide; Na₂S, sodium sulphide; NaHS, sodium sulfhydrate; Na₂SO₃, sodium sulphite; Na_HSO₃, sodium bisulphite; Na₂S₂O₄, sodium hydrosulphite; Na₂CO₃, sodium carbonate; NaHCO₃, sodium bicarbonate; Na₂PO₄, sodium phosphate; Na₂O₂, sodium peroxide; NaCl, sodium chloride; Na₂SO₄, sodium sulphate; Ca(OH)₂, calcium hydroxide; Ca(SH)₂, calcium sulfhydrate; CaSO₃, calcium sulphite; Cl₂, chlorine; S, sulphur; Zn, zinc.

Percentages or proportions are based on oven-dry weights.

The amounts of chemicals charged or used in the digestions, unless otherwise noted, are expressed as pounds per 100 pounds of fibrous material undergoing digestion.

The concentration of chemicals is expressed as grams per liter of cooking solution.

The volume of cooking liquor used is expressed as gallons per 100 pounds of fibrous material undergoing digestion.

The amounts of chemicals consumed in the digestion, unless otherwise noted, are expressed as percentages of the amounts of chemicals used. In some cases where mixtures of chemicals are used the consumption of each chemical may be given; in other cases the consumption may be based on the total chemicals charged or on the total available alkali expressed as sodium hydroxide.

The yield of pulp, unless otherwise noted, is expressed as a percentage of the oven-dry weight of the material put into the digester.

Cook numbers with prefix "A" were made from 1.5 to 2.0 pounds of fibrous material; prefix "B", 200 to 300 pounds; prefix "D", 50 to 70 pounds; no prefix, 25 grams of material ground to a sawdust-like powder.

Bleaching powder is expressed on the basis of standard powder, that is, calcium hypochlorite containing 35 percent of chlorine available for the bleaching reaction. The equivalent amount of the standard powder use is expressed as a percentage of the pulp undergoing bleaching treatment.

The machine made papers and pulp test sheets were tested in accordance with methods given in the Forest Products Laboratory Manual of Standard Methods.⁶ The samples prior to testing were brought to a moisture equilibrium in an atmosphere of 65 percent relative humidity at 72° F. The ream weight basis used is the weight of 500 sheets each 24 by 36 inches. The bursting strength is expressed in points, that is, the pounds per square inch bursting strength divided by the ream weight in pounds. The tearing strength; which is the force required to tear the sheet, is expressed in grams per pound per ream. The tensile strength is expressed as the length in meters of a strip of the paper 15 milimeters wide, which if suspended at one end would break by its own weight. The tearing, tensile, and folding strengths reported are the average of an equal number of tests of the paper in each direction, that is, the length and width of test sheets or, the "in the machine" and "across the machine" directions of machine made papers. The whiteness of the paper is expressed on the basis of the whiteness of magnesia as 100.

The chemical constituents determined by analysis of the raw materials or of the pulps, unless otherwise noted, are expressed as percentages of the samples analyzed.

Index of Chemicals Used in Pulping Tests

 Chemical
 Table

 Sodium hydroxide
 5, 17, 18, 19, 21, 22, 23, 24, 25, 26.

 Sodium phosphate
 15.

 Sodium sulphite
 10, 16, 23, 24, 25, 26, 27, 35.

 Sodium carbonate
 29, 35.

 Sodium bicarbonate
 29.

 Calcium hydroxide
 28, 29, 32.

 Calcium sulfhydrate
 14.

 Chlorine
 17, 19, 20, 25, 26.

 Sodium hydroxide and sodium sulphide
 5, 7, 20, 21, 22, 23, 24, 25, 26.

 Sodium hydroxide and sodium sulphite
 7, 23, 24, 25, 26.

 Manual of Standard Testing Methods for Pulpwood, Pulp, Stuff, and Paper.

-Manual of Standard Testing Methods for Pulpwood, Pulp, Stuff, and Paper. Compiled by Section of Pulp and Paper, Forest Products Laboratory (1928). Mimeographed report.

Chemical

Sodium hydroxide, sodium sulphite, and sodium sulphide	13•			
Sodium hydroxide, sodium bisulphite, and sodium sulphide	12.			
Sodium hydroxide, sodium sulphite, and calcium hydroxide	5,	6,	35.	
Sodium hydroxide, sodium sulphite, and calcium hydroxide	7•			
Sodium hydroxide and calcium hydroxide	5.			
Sodium hydroxide and sulphur	8,	9,	35.	
Sodium hydroxide, sulphur and calcium hydroxide	8.			
Sodium hydroxide and sodium phosphate	15.			
Sodium hydroxide and sodium hydro- sulphite	7•			
Sodium hydroxide, sodium hydrosulphite, and calcium hydroxide	7•			
Sodium hydroxide and calcium sulphite	7•			
Sodium hydroxide, zinc, and calcium hydroxide	7•			
Sodium hydroxide and sodium peroxide	7•			
Sodium carbonate and sulphur	29.			
Sodium carbonate and sodium sulphite	29.			
Sodium carbonate and calcium hydroxide	7,	32.		
Sodium sulphite and sodium sulphide	13,	35•		
Sodium sulphide and calcium hydroxide	7•			
Sodium sulfhydrate and sodium chloride	14.			
Sodium sulfhydrate and sodium sulphate	14.			
Ethyl alcohol and benzene	34	, 36	, 37	•

R1159

Table

-28-

Year :	:Iowa:	Kan-:	Mich-:	Minn-	: Mi- :	Mon-:	Ne-	:North:	South	Wis-	:Wyo-:	Other: Tota
:		sas:	igan:	esota	:ssouri:		raska	: Da- : : kota:				states:
2 1899:	126	: : 192:	1	567	: 101	(<u>3</u>):	76	: 774:	302	: 11		2 :2,15
2 1909	· ·				: 21 :		3	::,068:	519	: : 9	: 1 :	: (<u>3</u>):2,07
2 ₁₉₁₉ :	: 10:	: 12:	1	288	: : :	129:	1	: 650:	159	: : 7	: 1:	: :1,25
<u>4</u> 1922	: 8:	: 20:		310	: :	: 84:	3	: 521:	162	: : 4	: 1:	: :1,11
51924	8:	: 57:	(6)	712	: (<u>6</u>) :	: 246:	g	:::,873:	548	: : 8	: (<u>6</u>):	: 9:3,46
51926	: : : 15:	: 38:	(<u>6</u>)	814	: (<u>6</u>) :	: 165:	7	: : :1,380:	475	: : 11	: (<u>6</u>):	I2 :2,90
51928	: : : 19:	: 25:	(<u>6</u>)	726	: (<u>6</u>) :	: 183:	g	: : :1,143:	55 ⁴	: : 9	: : (<u>6</u>):	8 :2,67
51930	: 20:	: 37:		742	: 2	481:	28	: : :1,677:	702	: : 7	: 36	: •••••3,73
41932	: : : 19:	: 46:		689	: 2 :	214	3	: 826 :	165	: : 6	: 5 [.]	: ::1,97
41934	16:	: 50:		580	: 2 :	: 19:		: 268:	17	: : 5	: 1	L11 : 96
, <u>®</u> 1935:	: : : 18:	: 50:		679	: 3 :	; 76:	4	: :1,005:	190	: 6	: 2	I38 :2,07
	: :	:			:	:		: :	1	:	: :	

Table 1.--Area devoted to flax seed culture $\underline{1}$ in the United States, by thousands of acres, 1899-1935

<u>1</u> The amount of straw produced may be estimated approximately by assuming threequarters of a ton per acre.

²-Bureauof Census, U. S. Dept. of Commerce.

 $\frac{3}{2}$ Less than 100 acres.

¹⁴-Bureau of Agricultural Economics, U. S. Dept. of Agriculture.

 2 Bureau of Foreign and Domestic Commerce, U. S. Dept. of Commerce.

 $\frac{6}{5}$ Separate record not available.

Zone state only.

 $\frac{g}{P}$ Preliminary estimate.

R1159

Table 2.---Flax seed production1 in thousands of bushels for world - 1920-1934 countries and selected

3,402 5,056 Uruguay 1,542 1,970 1,475 719 2,030 996 : 19,140 : : 11,671 : 5,213 : United : •• •• : 10,520 : : 31,237 : 18,537 : 21,287 9,204 : 10,900 States •• LBureau of Agricultural Economics, U. S. Department of Agriculture, biennial survey. Republics 23,690 Socialist 11,043 31,494 27,558 16,960 20,877 29,957 : Union of Soviet 1,640 : 1,816: 2,413 : 2,179 : •• 2,472 : 2,335 : 1,872 637 Argentina : Canada : India : Lithuania : Poland Selected countries •• 1,000 1,532 1,014 1,332 1,574 626 1,108 1,011 910 : 15,040 : 3,614 : 13,920 : 4,399 : 15,200 : 2,719 : 16,640 : 5,008 : 17,440 : 9,695 : 18,520 : 5,995 : 16,080 : 7,998 : 16,760 = •• .. •• •• •• •• ••• 80,783 45,084 70,264 47,577 78,377 62,006 79,720 60,006 149,000 : 133,000 ; : 131,221 : : 150,000 : 155,100 : 153,945 : : 113,534 : 98,745 World •• Crop2 1931 1933 1935 1925 1929 1921 1923 1927

R1159

and hemp.

ZFLax

²Harvest year in Southern Hemisphere included with preceeding year in Northern Hemisphere.

Table 3.--Dimensions of the cells of flax straw pulp

Component :			H	Length					Width				Ratio total langth to	al
÷	Maxi	menti		1i nimun		Maximum : Minimum : Average : Maximum : Minimum : Average	1	Maximum	 Minimm		Average		total width	th
	Min.	1				Mm.	į	Mm.	 Mm.		Wm.		<u>Mm.</u>	
Fith cells (from central : portion of the stalk)		0.14	.,	0.08		0.10		0.08	 0.06		0.06		1.5	
Epidermal cells		п.	••	70 .	••	•08		•03	 10°	••	.02	••	4.3	
Short parenchyma cells		.13		60.	••	.11		.02	 .01	••	• 02	••	7.2	
Long parenchyma cells		04.		.18		• 29	••	40.	 •02		•03		9.2	
Spiral, pitted and other :		(2)	.` . .	(<u>5</u>)	·· ··	(2)		•02	 600.	** **	IIO.	:		:
Wood fibers (from the woody : portion of the stalk)		.426		.16		.20		.013	 600.	** **	110.		17.5	
Bast fibers (the long fiber : of the plant)	: 64.0	0		5.0	:			•039	 .010		.019	:		:

LUtilization of American flax straw in the paper and fiber board industry. U. S. Dept. Agr. Bull. 322.

Extending throughout the length of the plant.

R1159

Table 4 .-- Chemical composition of seed flax straw

(Expressed as percentages by weight of the oven-dry material)

	Bast fiber	:		:	straw

riginal materials;	100.0	:	100.0	:	100.0
Soluble in ethyl alcohol-benzene mixture:	2•3	:	6.5	:	3.7
Insoluble in ethyl alcohol-benzene mixture:					
Soluble in one percent sodium hydroxide : solution	29.2	::	24.2	: :	32.1
Insoluble in one percent sodium hydroxide solution:	×				
Cross and Bevan cellulose:	67.2	:	47.1	\$	48,5
Pentosans in cellulose	2,1	ł	12.8	ł	8,5
Pentosans	2.8	:	18.3	\$	12.3
Lignin:	2•9	;	24.1	:	15.8
Soluble in hot water	11.1	:	5.1	ł	9.9
Cross and Bevan cellulose:	71,9	ż	57.0	:	51:3
Pentosans in cellulose	2:4	:	11.4	Ì	8,5
Pentosans	6.0	:	25.6	:	19•4
Lignin:	10.1	:	27.9	;	24.2
Lignin:	•••••	•:	•••••	•:	25.8
Ash:	4•7	:	3.5	ł	6.0
Ash soluble in water	2.8	:	1.3	:	2.1

Table 5 .---Dignetion of fine fiax tow with mixtures of sodium hydroxids, sodium sulphide, and calcium hydroxide¹

 $= \sum_{k=1}^{n} \sum_{m \in \mathcal{N}} e^{-\frac{1}{2} \frac{m}{m}}$

24

Cook	: Previous treatment :			1			TUANIST					Ï	Max1 auto	Total	Ileio c		remarks
umber		E1nd	4	Amount		Concen-	: cooking : liquor		To maximum : J temperature:	ture f	At maximum : temperature:	ture:	terporature:	consumed	: grude		
	-			Pounda	: 0.	6. per 1.	: Gallone	1	Houre	 91	Hours	- 21		: Percent	Percent	1F :	
A-1	I Dusted, not out	: (NaOH : (Na ₂ B		1.91		16.9 }	811 :		1.00	••• 9	4.00	8	168		46.0	•••	Shives partially digested.
A-2	to	(NaOH Ma23		13.8		9.8	: 168		1.00	 g	4.00	8	166		52-0	•••	do.
11	1do	I (NaOH		14.0		9.8)	171	** **	-75	 5	4	4.35	166	: 87.0	57.0		do.
A-6	1do	(NaOH Na ₂ B		14.0		2.8 }	171		1.00	 Q	7.	1.00	148	: 77.0	58.0		Not so well digested as A-4.
57-0	: Cut, not dusted :	(NaOB Na ₂ 6		13.0		4.3 }	16 1		4.25	5	ń	3.75	148		54.0	•••	15 percent of bleaching powder insufficient to bleach all the shives.
4-3	: Dusted, not cut :	(NaoH (NaoB (Ca(OH)2		7.5		5.0 }	168		1.	: 52-	4	4.25 :	366		71.0		Buives only slightly digested.
A-5	: Dusted. Dusting loss : : 16 percent, not out : : :	(MaOH Nag5 (Ca(OH)2		64 N		2.8	1/1		ι.	.75	4.25		166	32.0	57.0	••••	Slightly better digested than A-4.
7-4	: Dusted, not cut	(Calor)		3.8		8.8) 2.8)	пі :		1.00	 Q	7.00		148	: 67.0	57.0		Pulp similar to that from cook A-6.
A-6	db	(NaOH (Na2B (Ca(OH)2		1.6		6.8) 2.8) 2.8)	ит : :	** ** **	1.50		6.50		148	1 1 85.0 1	66.0		Fulp not so well digested as that of cook &-5, of shidy it is a duplicate except for time and temperature.
A-14	i Not cut or dusted :	(NaOH 1 (Na25 1 (Ca(OH)2		3.8		6.8) 2.8) 2.8)	170		1.75	 p	ń	3.75	166		60.0		duplicate of cook A-5, except for previous treatment of the tow. Results as a for A-5.
A-18	: Cut, not dusted :	(NaOH Ka25 (Ca(OH)2		108.A		6.8) 2.8) 2.8)	170		1.25	 	ŕ	3.75	174		57.0	<	duplicate of A-5, except for temperature and time schedule. Fulp of about same quality as A-5.
P-34	: Not cut or dusted :	(NaOH Na28 (Ca(OH)2		9.4		16.8)	47 1		2.00	 Q	4	4.00	166			4	semicommercial duplication of A-5, 25 percent of bleaching powder was insufficient to bleach the shires. (See table 11 for strength of paper.)
4-19	: dut, not dusted :	(NAOH NA25 Ca(OH)2		11.0 5.0		7.8] 2.5]	: 170			-15	÷	4.25	174		40.0		Lower yield but quality about the same as A-5.
D-20	ab	(Ca(OH)2		10.2		8.7) 5.0) 6.2)	96		8.00		1.50		166				, semicommercial digestion, 25 percent of bleaching pender was insufficient to bleach the pulp to a white color.
4-21	1do	(NAOH Na28 (Ca(OH)2		0.0.0		7.8]	1 170		r.	.75	÷	4.25	. 166		56.0		Quality of pulp about same as A-5.
A-22	1db	(NaOH Na25 (Ca(OH)2		4.0		7.8) 2.8) 3.5)	170		1.00		5.	5.00	166		77.0		Shives only partially digested.
A-23		I (NAOH I (NA25 (Ca(OH)2		4.4	••••	3.18	1 170		2.00	 g	ń	3.00	174		55.0		So advantage gained by lime impregnation.
A-28	1db1	I NaOH		25.0		17.6	: 170		-	. 75	s.	: 05-5	166				Shives well digested.
A-29		I (NaOH Ca(OH)2		25.0		[9.5	170		1.00	 8	ъ.	5.00	166				Shives not so well digested as in A-28.
A-30		I (NaOH Ca(OH)2 (Na25		8.4 8.4 8.0		17.7	170			-12	ŝ	5.25 1	166				Pulp softer than either A-28 or A-29. Probably Overcooked.
16-4	1 1	(NaOH (Na25 (Ca(OH)2		8.4		14.2) 6.0) 5.7)	170		ų	л Я	ŝ	5.50	166			-1-	Bhives well digested. Fiber assmed overcooked. See also cook A-33, table 7.
A-32		I (NaOH I (Na2B I (Ca(OH)2		15.0 8.4		10.6) 6.0) 5.7)	: 170		ų	 25	ŝ	5.50	166				Shives not so well digested as in A-31. See also cook A-33, table 7.
D-35	: Mot out or dusted :	I (Nach Nacs Colory		8.4.0		31.0)	1 78		3.00	 5	-	1.75	166	13.0	43.0		A semicommercial dupilontion of A-31. Shires well Affore the semicontext of blasshells with 35 neuront of blassh-

SCHOOL OF FORESTRY OREGON STATE COLLEGE CORVALLIS, OREGON

Z M 39698 W Z

Table 6 .-- Digestion of medium flar tow with mixtures of sodium hydroxide, modium sulphids, and caloium hydroxide^{1.2}

Matrix Table <	Cook	Cook : Previous treatment	ataent		Chem	sissis	Chemicals charged	ged	Volume of		Duration of cooking2	o lo l	100k1ng3	Max 1mum		Total	-	Remarka
Image: second transmet Permate transmet Permater Permater Permate transmet Permate transmet Permate transmet Permate transmet Permater	7000			[Kind	: Amo	aunt :	Concen- tration	114uuu		mperstaur	a :At	maximum			: peumer		
				-		: Pou					Hours		HOULE	: 0.	: Pe		Percent:	
	-36	Bot out or a	husted		aOH apg a(OH)2		949	12.9	8	····*·	2.50		#*50	166		10.67	40.0 ⁴	A duplication of D-35, (see table 5) except for raw material. Pulp of about same quality. Pulp given an acid wash and bleached with 25 percent of bleaching powder.
	-38	: Out, not du	bete		NOH NOS NOH)2	** ** **	040	16.0	98	~ ~ <i>.</i> ,	2.25		4.50	166	••••	10.07	47.5	Mot so well digested as D-36. Shives bleached with an acid wash and 35 percent of bleaching powder.
	-39	do			NCH NCH NCH)2	** ** **	040	30.0	\$		2.50		4.00	1 166	<u>.</u>			Fulp similar to that of D-36, which is practically a duplicate.
	2	do			■0H 28 10H)2		049	30.0	99 11 11		5.25	••••	4 ,00	166	·	60.0	31.0	A duplicate of cook D-79.
	4	db.			абя 858 8 (ОН) 2	** ** ** ** ** **	990	43.55 178.45	8		(2.50 (1.00		3.00	100)		65.0	45.0	Not so well digested as cooks D-36 to D-40; believed due principally to poor dir- culation caused by packing digester too tighty. Pulp given an acid wesh and bleached with 14.5 percent of bleaching powder.
	왁	99			NON NOR)2		040	12.3	21		(1.00		3.00	1 100) 166)		59.0	₩£.0	Results similar to cock D-Ml. Digester packed too tightly. Fulp given am acid wah and bleeched with 12-5 percent of bleeching powder.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	đo	5 X		BOH BOH BOH BOH BOH BOH BOH BOH		949	27.9	\$ 		(1.75		3.00	120)		65.0	33.0	61 2
Out. not duated $\left\{ \begin{array}{c} \text{Made} \\ \text{(abo)H}_2 \\ (a$	4	: Cut. dusted again. Du	sting los		EOE Sola	 1	99	{ 1.75	: 65		6.50		6.00	148	** ** **	92.0	52.0	Twenty-five percent of bleaching powder was insufficient to bleach all the shives.
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$: Out, not du	sted		ACHO ACHO ACHO ACHO ACHO ACHO ACHO ACHO	300		26.5	8	••••	12.00		11.50	148		71.0	51.0	Shiwes only partially digested. Thirty par- sent of bleaching powder was insufficient to bleach all shiwes.
Out twice, not dusted: [MaOH] 14.0 27.4 1 60 1.75 6.25 170 96.0 51.0 1 dodo do 12.0 12.3 1 86 1.75 6.25 170 96.0 51.0 1 dododo 12.0 12.3 1 86 1.75 1 166 97.0 15.0 1 dodo 12.0 12.3 1 86 1.175 1 166 97.0 145.0 15.0 15.0 1	*	g	2		NOH NCS NCH)2		197	11.0	8		3.50		6.00	1 1 1 1 1 1 1 1 6 6		\$2.0	33.0	Shives digested more than in cook D-H5 be- cause of higher temperature. After an end wash, shives blesched with 30 per- cent of blesching powder.
1000 1000 1000 1000 1000 1000 1000 100		: Out twice, J	lot duste	10 H	ROH RSS R(OH)2	 	0.010	24.12 10.9	8		1.75		6.25	170		96.0	51.0	Pulp of about same quality as cook D-by. We acid wash. Fulp bisached to a light brown with 35 percent of bleaching powder.
	ŝ	do			eon ess		0.K	12.3	8					166		93.0 :	£.0	Cocked in 7 stages using one-third of the chemical for sach. Total time 10-1/2 hours. No spocial bonefit was noted. Shives were only partially digested.

 $\frac{1}{2}$ ees page $\frac{26}{6}$ for definitions of terms and units of measurements used in column headings.

2600 table 11 for the strength of the paper made from these pulps. Paper not made from the

pulp of A-85.

 $Z_{\rm M}$ here two values are given the first represents the maximum temperature of the first stage. and the other the maximum temperature of the final stage.

Z M 29700 F

Cook number	: Previous treatment	Chemical	icals charged			Tolumo of		No. of a local state of				Second of the local division of the local di	LAIN .		Dame to
		Kind	Amount	Concue-	i	votume of cooking liquor	: To	To maximum : temperature:	e: te	To maximum : At maximum : temperature: temperature		temper-	crude : pulpe	 8	Reserved to the second s
	*		: Pounds :	G. per 1	-	Gallons		HOUTS		Hours	-	ö	. Per	Percent :	
A-24	Fine tow, out, not dusted :	(HaOH Ha2SO3 Ca(OH)2	3.8	2.4.1	·· ·· ··	170		1.00		4.00		166		52.0	Pulp well digested. Shives bleachable with 20 percent of bleaching powder.
D-27	abo	(Ra0H (Ra2903 : (Ga(OH)2 :	1.6	: 17.3) : 2.3) : 10.2)	··· ··	72		2.00		4.75		166		-	Shives only partially digested.
A-15	: Fine tow, not out or : : : : dusted : :	(RaOH (Ma ₂ 90 ₃	14.0	9.8)		170		1,00		4,00		366	***	59.0	·····
4 -26	Fine tow, out, not dusted :	(Ga(OH)2:	20.9	: 14.7) : 2.0)		170		1.00		00.4		166		56.0 :	Not quite so well digested as cook A-24.
71-4	1 1 1 1 1	(NaOH 1 (Na23204	2.0	. 9.8		170		8.		4.50		166	•••	51.0 :	Shives only partially digested.
A-25		(Takon) (Takon) (Takon) (Takon)	3.6	14.7) 2.8)		170		Ŕ		4.25		166	****	54.0 :	About equal to the pulp of cook A-20.
-16	op	(RAOH (CASO ₃ :	14.0	9.8	** **	170		1.00		τ, co	••••	366	ف.	: 0°+9	Shives less digested than in cooks A-15 and A-17.
A-47	: Medium tow, out, not dusped:	(NaOH (Na ₂ 0 ₂	2.0	9.8		170		1.00		5.00	••••	3991		-	Shives only partially digested. Fiber tender.
A-46	op	(HaoH Hazoz	14.0	3.5 }	••,••	170		1.00		5.00	•• ••	391			Pulp of same quality as that of cook A-47
4-9	: Fine tow, dusted :	(Жа ₂ 8 : (са(он) ₂ :	: 4.0 :	(9.9 : (19.4 :	••••	80		.75	а. с н н	7.25		146	وب + + +	: 0.99	Shives only partly digested.
A-10	t A=9 recorded	(NaOH Na ₂ 9	8.0 8.0	1 9.6) 2.4)		100		3.00		(3.00 (2.00		146)	* *	: 0.67	Shives fairly soft.
11-4	: Fine tow, dusted, out :	(Taga : (Oa(OH) 2 :	6.3 : 10.8 :	: 7.5)		100		1.00		(4.50 (2.50		140)		76.0 1	Shives only slightly digested.
4-33	: Fine tow, out, not dusted :	(Ma.25 (Oa(OH)2	4 0 10 10	5.6)		170		•50		2.00	••••	166	<u>.</u>	1	Shives only elightly digested. This cook is a duplicate of A-31 and A-32, table 5, ex- cept for omission of sodium hydroxide.
A-12	i Fine tow, dusted, cut :	(0a(0H)2 : (Ma2003 :	12.9 : 5.4 :	: 15.5) : 6.5)	•• ••	100		•50		(3.50		160		85.0 :	Pulp of same quality as cook A-11.

Z M 29701 F

and the other the maximum temperature of the final stage.

Table S Digestion of medium flam tow with mixtures o	sodium hydroxide, sulphur	, with and without calcium hydroxidel.2
--	---------------------------	---

Cook		micals ch	arged		ioals ava for cooki		Volume of	Dureti		: Maximum	: Total : Blkali	Tield	Sleaching powder	Remarks
	Kind	Lnount	Concen- t tration	Raon	1 No ⁵ a 1	Total alkali-	liquor	To maxi-		1 sture	t consumed	: grude : pulp !		
	1	r Pounds	: <u>0.per 1</u> .	: Pounde	:Pounde:	Pounds	Gallons		*********	1 <u>°0</u> .	: Percent	r Fercent	Percent	
4-49		24.0 6.4	1 28.8 1 7.7	8.0	; 11.7 ;	14.0	100	0.50	; 4 . 50	: 168	:		••••••	Shives fairly well digested.
4-51	1 (BACH	: 24.0 : 6.4	28.8) 7.7)	1 8.0	; 11.7 ;	14.0	100	.50	7.50	1 160	······	······		Fulp of same quality as oook 4-49.
D-101	: {BaDH : S	24.0 6.4	#7.0) 1 12.4)	đ.0	11.7	14.0	61.5	2.00	4.00	168	1 92.0	36.0	29.0	
4-58	: (BaOR 1 (S	24.0 6.4	1 27.4 1 7.3	: 8.0 !	1 11.7	14.0	105	.75	4.25	166	¦	1 42.0	20.0	
A-102	: { MaOH	16.5	19:73	12.5	: 2.9 ;	14.0	100	-50	¥.50	166	: 64.0	50.0	70.0	Shives only partially cooked. Did not bleach.
A-103	: {HOAH	20.3	24.3)	10.3	1 7.3 :	14.0	100	.50	4.50	166	1 69.0	50.0	53.0	Pulp of same quality as cook A-102.
A-104	: (NaOH : (3 :	27.8 6.8	33.3}	: 5.7	1 16.1	14.0	100	-50	4.50	166	76.0	46.0	50.0	
A-105	[{ NaOH 3	16.5 1.6	19.7) 1.9}	: 12.5 : : : :	1 2.9 <i>1</i> 1 1 1 1 1 1	14.0	100	.50	4.50	166	1 84.0	55.0	70.0	Duplication of A-102, except NaOH and S heated together at 160°C, before adding tow. Shives only partially bleached.
4-106	1 (NeOR 1 5	20.3 4.0	24.3) 4.8)	10.3	7.3	14.0	100	.50	\$.50	166	67.0	49.0	65.0	Duplicate of A-103, except as indicated for cook A-105 above. Shives bleached fairly well.
A-107	: {NAOH : { 9	27.8 8.8	33:3}	5.7	16.1 /	14.0	100	-50	1 4.50 1	166	53.0	47.0	68.0	Duplicate of A-10 ^k , except as indicated for cook A-105 above. Shives bleached fairly well.
A-69	NaCH S SCA(OH)2	24.0 6.4 6.1	26.7) 7.1) 6.7)	1 14.6	; 5.4 ; 55.9 ;	17.3	108	.50	: 4.50	166	: 74.0 :	50.0	21.0	Shiwes not so well digested as in cook A-70, below.
A- 70	(NaOH (9 (Ca.(OH))	24.0 6.4 3.1	26.7) 7.1) 3.4)	11.3	1 52.9 1	15.7	108	.50	\$.50	166	1 87.0	\$6.0	20.0 t	Bleached to a light buff.
A-71	(HaOH (S (Da(OH))2	24.0 6.4 9-5	26.7) 7.1) 10.5}	8.0	11.7 12 9.2	14.0	108	.50	1 4.50	166	79.0	52.0	23.0	Shives only partially digneted.
1-63	: {%aOH ;	6.4	26-7 7.1	\$.0	; 11.7 ;	14.0	105	-50	4.50	166	1 97.0	42.0	16.0	Duplicate of 4-49. Shives bleachabls.
A-64	I (NaOR	12.7	21.9)	9.7	7,3	13.4 :	105	.50	4.50	166	97.0	44.0	24.0 1	Not so well digested as cook A-63.
A-57	t (NaOH	18.3	20.2)	1 2.1	i 11.9 i	8.1 i	109	.75	4,25	166	······		30.0	and the state of the second
A-65	: (NaCH	18.2 3.0	20.3)	10.7	; 5.5 ;	13.5	105	-50	4.50	166	96.0	44.0 ·	23.0	Pulp about same quality as cooks A-57 and A-64.
A+66	: { MaOH :		24.5) 7.1	6.0	: 11.7 :	12.0 :	105	.25	6.50	166	: 100.0	50.0 1	23.0 1	Shives only partially digested.
A-67	1 (NaOR 1	24.0 :	26.7	14.0	7.3	17.7	105	.25	: 4.50 :	: 166	t 90.0 i	i 40.0 i	14.0 1	
A-68	: (NEOH ;	24.0 1	26.7)	: : 4.0	: 14.6 :	11.7 :	108 1	,25	4.50	: : 166	: 100.0 :	1 45.0 1	21.0 1	and bleachable. Shives only partially digested.
A-50	: (B : ; (NaOH :	8.0 i 22.0 i	8.9) 26.4)	1 12.0	: 7.3 :	15.7 i	100	.50	4-50	1 168		1 11		Pulp similar to A-49 in quality
A-59	: (S : : (NeOH :	22.0 :	4.8 25.1) 6.6)	12.0	: 7.3 :	: 15.7 :	105 :	.75	4.25	1 166	1. 	1 39.0 1	22.0 1	Shiven fairly well digested.
A-60	1 (8 1 1 (NaOH :			: 12.0	: 7.3 :	15-7 i	105	.75	6.25	: 166	1. taanaan	13 (2) (3 1 2) (2) (3)	1	well digested and bleachable.
A-72	1 (B 1	4.0 1	25.1) 4.6)	: 12.0	: 7.3 :	15.7 1	106	.50		148	E anost	1		Duplicates of cooks A-50 and A-59.2
A-73	(NaOH : S :		24.9) 4.5)	0008208 0.655555		1	35320	1 1752	10.50	10-03/0	E			Shives not so well_digested as in cook A-50.4
	(WaOH :		24.9 4.5}	12.0	1 7.3 1	15.7 :	106	.50	9.50	154	: 93.0 :	42.0	32.0	than in pook A-72.4
A-74	: (NAOH : : (3 :		24.9 4.5	12.0	1 7.3 1	15.7 : T	106	.50	8.50	160	1 95.0	43.0 1	32.0	Shives only partially disected and not bleachable.Z
A-75	: (XaOH : : (S :	23.2 i 6.6 i	27.9) 7.9)	6.8	12.0 :	13.0	100	.50	4-50	166	100.0	50.0 1	30.0 ;	Shives only partially digested and not bleachable.
A-76	: (NaOH : : (S :		32.0)	1	1 16.0 1	13.0	100	-50	4.50	166	100.0	47.0	30.0	Pulp similar to that of cook A-75.
A-52	: {NaOH : : { 9 ;	30.0 : 8.0 :	36.0) 9.6)	10.0	1 14.6 1	17.5	100 1	.50	7.50	160	1			Shives only partially digested.
A-77	1 {XsOH : 1 (9 1	30.2 : 11.0 :	36.2) 13.2)	2.8	1 20.0 1	13.0 1	100 !	-50	4.50	166	100.0	53.0	30.0	Pulp similar to those from cooke A-52 and A-75.
A-78	: { MaOH : : { S :	26.7 8.8	32.0) 10.5)	4.8	16.0 j	13.0 ‡	100	-50	4.50	166	96.0	43.0	30.0	Dunlication of cook 4-76. Shives more digested and more bleachable.
A-79	1 {NAOH 1 1 8 1 1 1 1	30.2 I 11.0 I	36.2) 13.2)		1 20.0 1	13.0	100	.50	¥.50 1	166	98.0	41.0 1 1 1	1	Duplication of cook A-77. Pulp mimilar to that of cook A-78.
A-50	1 (NaOH 1 1 (S 1 1 I	13.5	40.3) 15.8)	.7	24.0 :	12.9	100 1		4.50	1 11420 5	95.0	8 anns 8	30.0	Shives well digested and bleachable. Pulp probably over cooked.

lsee page 26 for definitions of torms and units of measurements used in column beadings.

SThe material was cut but not dusted before cooking.

loalculated from the probable reaction. 8 NaOH + 4 5 = $Na_2SO_4 + 3 Na_2S + 4 H_2O$.

 $\frac{k_{\rm c}}{10\,{\rm cm}}$. Total available alkali is calculated as the sum of the excess sodium hydroxide, and that

produced by the hydrolysis of the sodium sulphide in water according to the reaction, $Na_2S + H_2O = NaOH + NaSH.$

⁵Calcium sulphide.

 \underline{f}_{dee} table 9 for semicommercial duplication of these autoclave cooks. Zses table 9 for autoolave and semiconversial digestions showing affect of longer

duration of cooking at lower temperature.

Z M 29703 F

Table 9 .- Digestion of medium flax tow with mixtures of sodium hydroxide and suiphur showing effect of increased duration of cooking at lower temperatures.

treatment Constant Duration of controls Duration of controls Duration of controls Examine of controls Exami	Of coorting tengon- tengen t	atomatical function Duration of cooking instant Attain diage optimity of concent Part and instant Attaining instant Attaininstant		strent.				HOLV LOUD GUIXOUN	annin touc	and the second se			Viala -	Blanchtn			-		Properties of paper	of paper			
Macutt Undot For and the matrix matrix matrix matrix Contained on two states Part of the matrix matrix matrix matrix Part of the matrix matrix matrix Part of the matrix Intermatify at matrix Attermatify at attermatify at matrix Attermatify at attermatify at attermatify at attermatify at matrix Attermatify at attermatif at attermatif at attermatify at attermatify at attermatif att	mith mathem attrangth attrangth <th>Mitter Attrangth A</th> <th>-61 Cut, n</th> <th></th> <th>Che</th> <th>suical oh</th> <th>harged</th> <th>: Duratio</th> <th>m of cooking</th> <th></th> <th></th> <th></th> <th>10</th> <th>powder</th> <th>: Weight</th> <th>: Averag</th> <th>te : Bu</th> <th>reting :</th> <th>Tearing</th> <th></th> <th>: Stretoh</th> <th>A ! Folding</th> <th>: White</th>	Mitter Attrangth A	-61 Cut, n		Che	suical oh	harged	: Duratio	m of cooking				10	powder	: Weight	: Averag	te : Bu	reting :	Tearing		: Stretoh	A ! Folding	: White
Pundle 0.0 mile $Eounds$ 0.0 mile $Eounds$ 0.0 mile $Eounds$ 0.0 mile $Eonns$ $Earcent$ $Eonns$ $Earcent$ $Eonns$ $Earcent$ $Eonns$ $Earcent$ $Eonns$ $Earcent$	$ \left[\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \left[\begin{array}{c c c c c c c c c c c c c c c c c c c $	-61 Cut, n		Kind	: Amount	tration	To maxim temper-	uumiAt maxim itemper- iature		 L	** ** ** **	oruue pulp		: ream	thick:	19 :	rength :	strength				
$\begin{bmatrix} 22.0 & 44.0 \\ 4.0 & 5.0 \end{bmatrix} = 2.0 & 5.0 & 146 & 77.0 \\ 2.1 & 4.0 & 5.0 \end{bmatrix} = 0.70 & 0.97 & 6565 & 5.2 & 695 \\ 2.2 & 5.0 & 5.0 & 1.6 & 77.0 & 39.0 \\ 2.2 & 5.0 & 44.0 \\ 2.2 & 5.0 & 1.75 & 5.0 & 166 & 77.0 & 39.0 \\ 2.2 & 5.0 & 44.0 \\ 2.2 & 5.0 & 1.5 & 1.5 & 1.5 \\ 2.2 & 5.0 & 1.5 & 1.5 & 1.5 & 1.5 \\ 2.2 & 5.0 & 44.0 \\ 2.2 & 5.0 & 1.5 & 1.5 & 1.5 \\ 2.2 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 \\ 2.2 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 \\ 2.2 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 \\ 2.2 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 \\ 2.2 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 \\ 2.2 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 \\ 2.2 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 \\ 2.2 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 \\ 2.2 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 \\ 2.2 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 \\ 2.2 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 \\ 2.2 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 \\ 2.2 & 1.5 & 1.5 & 1.5 & 1.5 \\ 2.2 & 1.5 & 1.5 & 1.5 & 1.5 \\ 2.5 & 1.5 & 1.5 & 1.5 & 1.5 \\ 2.5 & 1.5 & 1.5 & 1.5 & 1.5 \\ 2.5 & 1.5 & 1.5 & 1.5 & 1.5 \\ 2.5 & 1.5 & 1.5 & 1.5 \\ 2.5 & 1.5 & 1.5 & 1.5 \\ 2.5 & 1.5 & 1.5 & 1.5 \\ 2.5 & 1.5 & 1.5 & 1.5 \\ 2.5 & 1.5 & 1.5 & 1.5 \\ 2.5 & 1.5 & 1.5 & 1.5 \\ 2.5 & 1.5 & 1.5 & 1.5 \\ 2.5 & 1.5 & 1.5 & 1.5 \\ 2.5 & 1.5 & 1.5 & 1.5 \\ 2.5 & 1.5 & 1.5 & 1.5 \\ 2.5 & 1.5 & 1.5 \\ 2.5 & 1.5 & 1.5 & 1.5 \\ 2.5 & 1.$	$ \begin{bmatrix} 6.0 & 1 & 166 & 77.0 & 42.0 & 15.0 & 254.7 & 0.0045 & 0.70 & 0.97 & 6565 & 5.2 & 695 \\ \hline 6.0 & 1 & 156 & 67.0 & 39.0 & 15.0 & 261.3 & 0050 & .68 & 1.35 & 4745 & 6.2 & 205 \\ \hline 8.0 & 1 & 155 & & 46.0 & 25.0 &$	6.0 166 77.0 42.0 15.0 254.7 0.0045 0.70 0.97 6565 5.2 695 1 6.0 156 87.0 15.0 261.3 0.0045 0.70 0.97 6565 5.2 695 1 6.0 156 87.0 15.0 261.3 0.005 .68 1.35 4745 6.2 205 1 6.0 155 450.1 25.0 25.0 29.5 .0025 .64 .66 4594 4.2 109 1 15.0 145 89.0 25.0 39.5 .0025 .64 .66 4594 4.2 109 1 25.0 140 80.0 25.0 39.5 .0025 .64 .66 4594 4.2 109 1 25.0 140 80.0 20.0 1527.4 .00250 .764 473 5.9 370 109 1 25.0 140 80.0 20.0 128 .764 4.2 109 109 100 100 <td>-61 cut, n</td> <td></td> <td></td> <td>: Founds</td> <td>.0. per 1.</td> <td>Houre</td> <td>: Hours</td> <td>0</td> <td> </td> <td>ercent :F</td> <td>percent :</td> <td>1</td> <td>: Founds</td> <td>Inche</td> <td></td> <td>ointe</td> <td>Grama</td> <td>Hetere</td> <td>: Paroent</td> <td></td> <td>: Pero</td>	-61 cut, n			: Founds	.0. per 1.	Houre	: Hours	0		ercent :F	percent :	1	: Founds	Inche		ointe	Grama	Hetere	: Paroent		: Pero
$ \begin{bmatrix} 22.0 \\ 4,1.6 \\ 7,6 \\ 7,6 \\ 8,0 \end{bmatrix} \begin{bmatrix} 1.75 \\ 6,0 \\ 6,0 \end{bmatrix} \begin{bmatrix} 6,0 \\ 1,0 \\ 6,0 \end{bmatrix} \begin{bmatrix} 6,0 \\ 1,0 \\ 6,0 \end{bmatrix} \begin{bmatrix} 6,0 \\ 1,0 \\ 1,0 \end{bmatrix} \begin{bmatrix} 6,0 \\ 1,0 \\ 1,0 \end{bmatrix} \begin{bmatrix} 1,75 \\ 6,0 \\ 1,0 \end{bmatrix} \begin{bmatrix} 6,0 \\ 1,0 \\ 1,0 \end{bmatrix} \begin{bmatrix} 1,75 \\ 1,0 \\ 1,0 \end{bmatrix} \begin{bmatrix} 6,0 \\ 1,0 \\ 1,0 \end{bmatrix} \begin{bmatrix} 1,75 \\ 1,0 \\ 1,0 \end{bmatrix} \begin{bmatrix} 6,0 \\ 1,0 \\ 1,0 \end{bmatrix} \begin{bmatrix} 1,75 \\ 1,0 \end{bmatrix} \begin{bmatrix} 6,0 \\ 1,0 \\ 1,0 \end{bmatrix} \begin{bmatrix} 1,75 \\ $	$ \begin{bmatrix} 6.0 & 166 & 67.0 & 39.0 & 15.0 & 26.13 & 0050 & 66 & 1.35 & 4745 & 6.2 & 205 \\ 8.0 & 155 & 0.05 & 25.0 & 25.0 & 0.00$	$ \begin{bmatrix} 6.0 & 166 & 67.0 & 39.0 & 15.0 & 26.13 & 0050 & .68 & 1.35 & 4745 & 6.2 & 205 \\ 8.0 & 155 & 105 & 0.01 & 25.0 & 29.5 & 0005 & .64 & 46.0 & 27.0 & 29.5 & 0005 & 0005 & 0000 & 000 & 000 & 000 & 0$			(NsOH (S	: 22.0		1 2.0	: 6.0	1 16		. 0.77	42.0 :	15.0	: 254.7	1 0.004		0.70	0.97	: 6565	. 5.2	569	
$\begin{bmatrix} 22.0 & \frac{44}{9.0} \\ 4.0 & \frac{4}{9.0} \end{bmatrix} \begin{bmatrix} 6.0 & \frac{1}{2} & \frac{1}{9.0} & \frac{1}{15} & \frac{1}{145} & \frac{45.0}{125.0} \end{bmatrix} \begin{bmatrix} 25.0 & \frac{1}{100} \\ 22.0 & \frac{40.0}{100} \end{bmatrix} \begin{bmatrix} 5.0 & \frac{1}{15.0} & \frac{1}{145} & \frac{99.0}{125.0} & \frac{20.0}{125.0} & \frac{39.5}{125.0} & \frac{1}{168} & \frac{4594}{168} & \frac{4.2}{145} & \frac{109}{109} \end{bmatrix} \begin{bmatrix} 22.0 & \frac{1}{140} \\ 44.0 & \frac{1}{160} \end{bmatrix} \begin{bmatrix} 5.0 & \frac{1}{125.0} & \frac{1}{145} & \frac{99.0}{100} & \frac{100}{1000} & \frac{25.0}{125.0} & \frac{29.5}{1000} & \frac{0028}{168} & \frac{46}{168} & \frac{49}{171} & \frac{2}{25.0} & \frac{109}{170} \end{bmatrix} \begin{bmatrix} 22.0 & \frac{1}{168} & \frac{49}{168} & \frac{49}{171} & \frac{2}{25.0} & \frac{109}{170} \end{bmatrix} $	$ \begin{bmatrix} 8.0 & 155 & \dots & 46.0 & 25.0 & \dots & 25.0 & \dots & 25.0 & \dots & 25.0 & \dots & 25.0 & 0.0 & \dots & 0.025 & 0.01 & 0.01 & \dots & 0.01 &$	$ \begin{bmatrix} 8.0 & 155 & \dots & 46.0 & 25.0 & \dots & 46.0 & 25.0 & \dots & 145 & \dots & 145 & 145 & \dots & 153.0 & 29.0 & \dots & \dots & 153.0 & 29.5 & 0.025 & .64 & .66 & 4594 & 4.2 & 109 & \dots & 155.0 & 140 & 80.0 & \dots & 25.0 & 245 & .0026 & .78 & .78 & .4934 & 5.9 & 370 & \dots & 155.0 & 1140 & 100 & \dots & 125.0 & 160 & .78 & .78 & .78 & .571 & 2.8 & 357 & 100 & \dots & 1000 & \dots & 10000 & \dots & 100000 & \dots & 1000000 & \dots & 1000000 & \dots & 1000000 & \dots & 10000000 & \dots & 10000000 & \dots & 10000000 & \dots & 10000000000$	2	db	(NaOH (S		÷	1.75	: 6.0	: 16		87.0 :	39.0 :	15.0	: 261.3		 9	. 88.	1.35	54745	: 6.2	: 205	
$ \begin{bmatrix} 22.0 \\ 4,0 \\ 6,0 \end{bmatrix} \begin{bmatrix} 5.0 \\ 5.0 \\ 5.0 \end{bmatrix} \begin{bmatrix} 15.0 \\ 15.0 \end{bmatrix} \begin{bmatrix} 145 \\ 15.0 \end{bmatrix} \begin{bmatrix} 29.0 \\ 15.0 \end{bmatrix} \begin{bmatrix} 25.0 \\ 15.0 \end{bmatrix} \begin{bmatrix} 29.0 \\ 15.0 \end{bmatrix} \begin{bmatrix} 2$	$ \left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-180-1 : Dusted		(NaOH (B	: 22.0	** **	: 6.0	: 8.0	: 15	.i.,			25.0									
$ \begin{bmatrix} 22.0 & 180.0 \\ 1.0.0 & 1 & 5.0 \\ 1.0.0 & 1 & 5.0 \\ 1.0.0 & 1 & 5.0 \\ 1.0.0 & 1 & 5.0 \\ 1.0.0 & 1 & 5.0 \\ 1.0.0 & 1 & 5.0 \\ 1.0.0 & 1 & 5.0 \\ 1.0.0 & 1 & 5.0 \\ 1.0.0 & 1 & 5.0 \\ 1.0.0 & 1 & 5.0 \\ 1.0.0 & 1 & 5.0 \\ 1.0.0 & 1 & 5.0 \\ 1.$	15.0 145 89.0 1 25.0 39.5 .0025 .64 .66 4594 4.2 109 1 1 25.0 1 140 80.0 1 20.0 1 568 .568 1 4934 1 4.2 109 1 1 25.0 1 140 80.0 1 20.0 1 568 1 .768 1 571 1 2.8 1 377 1	$\begin{bmatrix} 15.0 & \vdots & 145 \\ \vdots & 89.0 & \vdots & \dots & 25.0 \\ \vdots & 25.0 & \vdots & 140 \\ \vdots & 80.0 & \vdots & \dots & 20.0 \\ \vdots & 27.4 & \vdots & 0028 \\ \vdots & 5771 & \vdots & 5771 \\ \vdots & 5.8 & \vdots & 5771 \\ \vdots & 5.8 & \vdots & 377 \\ \vdots & 377 \\ \end{bmatrix} \begin{bmatrix} 109 & \vdots & \dots & 109 \\ 0028 & \vdots & 5771 \\ \vdots & 2.8 & \vdots & 377 \\ \vdots & 377 \\ \vdots & 377 \\ \end{bmatrix} \begin{bmatrix} 109 & \vdots & \dots & 109 \\ 00000 & \vdots & 0000 \\ \vdots & 10000 & \vdots & 178 \\ \vdots & 5771 & \vdots & 2.8 \\ \vdots & 5.8 & \vdots & 377 \\ \vdots & 327 \\ \end{bmatrix} \begin{bmatrix} 109 & \vdots & \dots & 109 \\ 00000 & \vdots & 0000 \\ \vdots & 00000 & \vdots & 00000 \\ \vdots & 00000 & \vdots \\ 00000 & 00000 & \vdots & 00000 \\ \vdots$	-180-2:	db	(NaOH			1 5.0	: 15.0	: 145	÷		53.0 :	20*0									
MaGH : 22.0 1 44.0 } 5.0 1 25.0 1 140 1 80.0 1 20.0 5 38.0 1 .0028 1 .68 1 .47 1 4934 1 5.9 1 377 1 2.8 1 347 }	: 25.0 ; 140 ; 80.0 ;; 20.0 ; (\$36.0 ; .0028 ; .68 ; .47 ; 4934 ; 5.9 ; 370 } ; In column headings.	$\begin{bmatrix} 25.0 \\ 1 \\ 27.4 \end{bmatrix}$, $\begin{bmatrix} 40.0 \\ 1 \\ 27.4 \end{bmatrix}$, $\begin{bmatrix} 20.0 \\ 27.4 \\ 27.4 \end{bmatrix}$, $\begin{bmatrix} 50.0 \\ 27.4 \\ 27.4 \end{bmatrix}$, $\begin{bmatrix} 50.0 \\ 27.4 \\ 27.4 \end{bmatrix}$, $\begin{bmatrix} 50.0 \\ 27.4 \\ 27.4 \\ 27.7 \end{bmatrix}$, $\begin{bmatrix} 57.9 \\ 27.7 \\ 27.8 \\ 27.7 \end{bmatrix}$, $\begin{bmatrix} 57.9 \\ 27.8 \\ 27.8 \\ 27.8 \end{bmatrix}$, $\begin{bmatrix} 57.9 \\ 27.8 \\ 27.8 \\ 27.8 \end{bmatrix}$, $\begin{bmatrix} 57.9 \\ 27.8 \\ 27.8 \\ 27.8 \end{bmatrix}$, $\begin{bmatrix} 57.9 \\ 27.8 \\ 27.8 \\ 27.8 \end{bmatrix}$, $\begin{bmatrix} 57.9 \\ 27.8 \\ 27.8 \\ 27.8 \end{bmatrix}$, $\begin{bmatrix} 57.9 \\ 27.8 \\ 27.8 \\ 27.8 \end{bmatrix}$, $\begin{bmatrix} 57.9 \\ 27.8 \\ 27.8 \\ 27.8 \\ 27.8 \end{bmatrix}$, $\begin{bmatrix} 57.9 \\ 27.8$	H-186 ; Dusted	i but not out :	(NaOH (5	: 22.0	** **	1 5.0	: 15.0	₹¶T :					39.5	: .002	 S		.66	4594	5.4 :	: 109	
	in column headings. 1 this line are for machine run 2.	in column headings. 1 this line are for machine run 2.		do	{NROH S	: 22.0		: 5.0	: 25.0	: 14C	•••				: (<u>538.0</u> : (<u>5</u> 27.4	.002	 80	.78	74.	4664	5.0 5.0	1 327	42

 $\mathbf{J}_{\mathbf{See}}$ footnote 2. Results in this line are for machine run 4.

Auture run 1. Skachine run 2.

Z M 39703 F

Table 10.---Digestion of medium flax tow with sodium sulphitel

						rly well but fiber Paper hydrated. Color	, but bleached hydrated.	ted. Bleached at brown color.	in cook A-114 lighter color.	ality than A-115.	Paper of a light (See table 11	(See table 11	(See table 11	(See table 11
Remarks				x		: 89.0 : 68.0 : 18.0 : 5hives digested fairly well but fiber : : : : sppeared weakened. Faper hydrated. : : : : a light buff.	24.0 : Pulp similar to cook A-111, but bleached : to a lighter color. Paper hydrated.	<pre>32.0 : Shives practically undigested. Bleached : pulp hydrated and of a light brown color.</pre>	51.0 : 37.0 : Pulp about same quality as in cook A-ll4 : but bleached to a slightly lighter color.	31.0 : Fulp of slightly better quality than A-115.	Semicommercial digestion. brown color and hydrated. for paper tests.2)	59.0 : 12.0 : Duplication of cook D-117. (See table 11 : for paper tests.2)	(4) : Duplication of cook D-117. (See table 11 : for paper tests.)	: Duplication of cook D-117. : for paper tests.)
Bleach-: ing :			••••		cent:	0.8	4.0 :	S.0	: 0.7	1.0 :	15.0 :	2.0	 ₽	मि
Bleach ing					Per	-	N.		m					
					rcent	68.0	:0*## :	58.0 :	51.0	52.0 :	57.0 :	29.0	: 0.65	: 0.65
N.P	ă.	••		• ••	4					••				
.#ax1-: Na SO3: Yield : mum : consumed: of					:Percent :Percent:Percent:	0*68	0.77	39.0	56.0	60.0	87.0	80.0	85.0	83.0
		••	••••	• ••			•• ••			••				
Hauna Hemner	ature:				:0:	130	170	124	153	162	158	158	158	158
Duration : Maxi- of cooking: mum	8	: - TX 800 :		ature : ature :	: Percent : Pounds :G. per 1. :Gallons :Hours :Hours : 0.	100 : 1.0 : 10.0 : 130	: 10.0 : 170	: 1.25 : 23.50: 124 : : : :	: 1.25 : 15.75: 153	: 1.25 : 12.75: 162	: 2.50 : 17.50: 158	: 2.50 : 17.50: 158	: 2.50 : 17.50: 158	: 2.50 : 17.50; 158
	To	1	ELUCE	ature	Hours	1.0	: 1.0	1.25	1.25	: 1.25	2.50	: 2.50	: 2.50	: 2.50
: Volume : : of	Ionb				110ns	100	100	100	100	100	080	80	080	80
Ă			•••	••••	ð									
-	: Amount : Concentra-: liquor	tion			per 1.	24.0	24.0	24.0	24.0	24.0	25.5	25.5	5-52	5.55
Na.303 charged	00:				0				· · · ·					
CD	Amount				Pounda	20.0	20.0	20.0	20.0	20.0	17.0	17.0	17.0	17.0
50 .		••	••			:		••••						
Dusting					Percen	2	33.0	33.0	33.0	33.0 :	43.0	0.04	39.0	39.0
Cook :	• ••						A-112 :	A-114 :	A-115 :	\$-116 :	: L11-0	D-115 :	: : :	D-120 :

lsee page $\frac{26}{100}$ for definitions of terms and units of measurement used in column headings.

1

ZThe medium tow was cut and dusted before cooking in all cooks

except A-111. In A-111 the tow was extracted with a 4 percent solution of sodium hydroxide, washed and treated for fifteen minutes with chlorine water before cooking.

use for glassine or greaseproof. (See also table 27 for other ZThe hydrated condition of these papers indicates their possible greaseproof papers.)

papers were of a lighter color than those of cooks D-117 and D-115 ⁴Pulps not bleached but treated with chlorine water. The resulting

and not so hydrated.

Z M 39704 F

Table 11.--Properties of some machine made flax papersL

Fol dat see tab	For pulping : data : ese table :	Grade of paper obtained	: Mschine run number		Weight : per ream	Thick- : ness Inches :	Bursting strength Points	: Tearing strength	** ** ** ** ** **	Tensile strength Meters	: Stretoh at rupture		Folding	Remarks
	 u		-			+ • • • • •	29 0			200			ECO B	times full a sufficient of the second se
			• :			: ((nn•n	60.0	1.50	••••	nco.+			066	: Factor ruit or unuigested shives; not comparable with ; commercial paper.
	 	:{ Medium grade bond		: 50	50.0 :	. 0057 1	.97	1.36	•••	4,820	4.5		143	: Paper of greas-white color. : Tub sized.
	و ::{	t {	ч» 	 302	54.7 :	: 400°.	1.09	: 1.33		7,015	0.4 1		141	l Paper of cream-white color. 3 Tub sized.
	; 9	tto		: 56	: 9-95	: 1400*	.72	: 1.31		5,910	4 H.O		837 3	t Paper of oream-white color.
	* 9	1	1	: 39	39.5 :	: 1200.	19.	1.14		5,315	: 3.3		58	11
	• 9		1	1 39	39.5 1	.0032 1	.73	: 1.38	•	5,930	: 3.2		E31	1to
				4	44.5 :	: 0£00.	¥8.	1 1.30	•••	6,015	: 7.8		963	: Paper similar to D-38 to D-40 inclusive, but of light- : buff color.
	9		н 17	: :	42.5 1	: 9032 :	\$	1.39		6,375	: # :		585	a Paper full of undigested shives; not comparable with commercial paper.
	. 9	1do1	1	104	10.5 1	: £400.	£9·	1.68	**	5,615	: 3.3	•	156	: Paper similar to D-41, but of a slightly lighter color.
	• 9	: Tough wrapper	1 1	: 38	36.0 1	: 0029 :	.63	1 1.29		4,700	1 2.9	77	641	1 A brown hydrated paper containing some undigested shives.
	 9	: Glassine grease proof : Tough wrapper		10 10 10 10 10 10	38.0 :	.0029 1 .0028 1 .0030 1	228.12	1.19		1750 1750 1750 1750	*****		688 774 122	1 A light-brown colared, hydrated paper. 1 A light-brown hydrated paper full of undgested shives.
	9 9	:(Medium grade bond	~~~ 	 84	38.5 :	: 0031 :	.87	1.27	•••	6,545			369 1	l Paper of oream milte color.
	•••••• 9	(Trapper	H NM	38.0	47.0 1 38.0 1 51.0 1	1 0400. 1 0400.	-74 -74	1.85 1.22 1.22	••••••••	2.625 5.030 4.760	6 NO		393 276 216	Pulp not bleached. Paper of dark-brown color containing many undigested shires. Pulp bleached to a light buff oclor with 30 percent of bleaching powder. Paper contained many undigested ehives.
		(*	98 	38.0 :	. 0032	-97	1.37		4.555	1. 1.		165	Pulp bleached to a light buff color with an moid weah and 70 percent of bleaching powder. Paper contained many undigested shires.
10	32	l (Linen bond do	нама 	1000 t	43.55 386.05 44.50 5		55 55 53 53 53	1.93		5,510 6,020 5,302	540.4		2, 346 2, 356 2, 397 2, 985	A tough hydrated oreau-white colored paper.
		(Medium grade bond for do	нама 	84.64 	51.3	0015	52.58			6,010	0,0,0,0 0,0,0,0 0,0,0,0		202 205 205 205	: Paper of 14ght-buff color. : Paper of alfghily lighter color than machine run 1. : Paper of orean-white color.
		: Tough wrapper		1 52	: 6.93	: 0400.	.60		: 66*	4,430	: 3.4	**	584	: A light-gray colored hydrated paper.
-	97 97	Glassine, greass proof	н 	: 33	 9	• 0030 :	. 68	: 1.05		4,617	: 3.3		635	: A light-brown colored hydrated paper containing some un-
~	10 1	1dbt		: 38	38.0 :	: 0500.	.82	•	: 16.	2,052	1 #.2		905	1
rt	10 1	1 Tough wrapper	т •	: 20	: 0.02	: 0400-	65.	••	. 86 :	6,920	: 2.4		15 1	: A light-buff colored paper not "o hydrated as D-117.
11	10	Wrapper	н 	: 63	63.2 :	: 9900-	34.	". 	- 229	675.5	1 2.4 1	÷	~	: Fulp bleached in ohlorine water. Faper not so light : colored or as hydrated as D-117.
100	10 1	: High grade bond	· 1.000000	0.02										

 $\frac{1}{266}$ page $\frac{26}{100}$ for definitions of terms and units of measurement used in column headings. Z M 29705 F

Table 12 .-- Digestion of medium flax tow with mixtures of sodium hydroxide, sodium bisulphite, and sodium sulphide 1,2

Gook number	- Rad	2010 01	amicals char i MaHSO3 i i	lia2S Ka2S	d : Chemicals avail- able for cooking ag8 : ag8 :	Chemicals avail- able for cooking MaOH 1 Mag503	1.000 (C.S.)	Volume of cooking liquor		Duration of To maximum 1 , tepperatures 1	of co. 1 At n	Duration of cooking i To maximum i At maximum i temperature:	<pre>i Maximum i temper- i ature i</pre>	-i 82	Chemi NaOH	cals cons	Chemicals consumed solf : MaHSO3 : Ma25	: of : of : crude		Bleach-: ing : powder :	Remarks
-	E Foun	1 = 50	: apand	· Founds · Pounds · Pounds · Pounds ·	Pounds	1 FOUL	1 abo	Gallons	-	HOUTE		Hours	5	-	Percents		Percent: Percent		Percent: Percents	senta	
-00	1 10.4		* * * 0		10.4	•	1 2.0	102		9*0		5.5	1 166		0.79	1 73.0	······	46.7			Shives only partially digested. Fulp slimy.
A-87	1 16.9		s.		1 16.7		* *	102		s.		4.5	1 166	• •	93.	. 94.		1 39.3	3 1 50.4		Shives only partially digested and not bleschable.
A-B8	1 16.9	 0	4.9	Ī	15.0		• • • •	100	·	9		4.5	1 166	• • •	5 3°	. 99.		•••1 51.2	2 : 70.5		Bhives more diggeted than cook A-87, but not entirely bleached with the amount of bleaching powder used.
A-89	1 15.4		2.4		14.5	1 3.0 1	•••	100		°.		4.5	1 166		94.	. 99.		48.4	4 I 70.8	nd -	Pulp quality similar to that of A-88, but not so well bleached.
A-90	6°6	 04	4.9		8.0	1 5.8		100		ۍ ۴		4.5	1 166		100.	. 99.		53.3	5 1 61.3		Shives only partially digested and not bleachable.
16-V	: 17,6		1 1 2 2 9	4	15.4		 0	100		n,		4.5	166		.94.	.17	1 32.0	1 42.6 1 1	5 13.0		Pulp of quality mimilar to cock A-88. The low amount of blackding powder required indicates probable over- cocking.
A-92	1 14.1	•	12.1 1		9*2	1 14.8	8	100	-	10		4.5	1 166	. 1	100.	1 72.	········	.1 51.0 1	1 32.5	-	Pulp of a quality similar to cook A-90.
A-94	16.7	**	17.8 1	6.3	13.1	1 21.5	* *	117		9		4.5	1 166	• •	97.	1 56.	: 34.	1 45.3	1 10.8		IP of a quality similar to A-91. Frobably overcooked.
A-95	16.7		17.8	2. 2.	13.1	21.5 1	•••••	117		s.		°	166	* * * * * *	-26	62		46.0	1 17.5	۲ • • • • • • •	duplicate of cook 4-94, except cook- ing liquor diluted with black liquor from a previous cook instead of with water. Amount of blachling powder used was not early of a buff coolor.
A-96	1.7.7		17.8	13.3	°.	1 21.5	 10	711		s.	***	4 10	166	÷		65.	44.	1 41.2	1 24.9		Shives fairly well digested but not entirely bleached with the amount of bleaching powder used.
A-97	9.9 7		14.0	10.5		1 17.0	• • 0	100		ŝ		4.5	1 166		- 86	1 66.	1 41.	1 56.0	1 34.0	-	Pulp of a quality similar to that of cook A-96.
A-98	2°2		14.0	10.5	r .	: 17.0 :	* * * 0	100		4.0		0.5	166		63.	66.	. 46.	: 46.5 :	5 45.5 1	×	duplicate of cook A-97, except for time achedule. Not so well digested as cook A-97.
4-99	2°2 2°2		14.0 1	10.5 4		1 17.0	 0	100		4°0		4.0	148	~	94.	· 69	42.	43.0	1 45.0	× 	duplicate of cook A-97, except for time schedule. Fulp similar to that of cook A-98.
A-113			16.5 1	12.4 1			1-	100		1.0	1	10.01	170		······	46.	: 51.	1 48.7	48.7		Shives only slightly digested and not

¹See page 26 for definitions of terms and units of méasurement used in column headings.

ZThe tow was cut but not dusted in each cook except A-113, in which the tow was dusted with a loss of 35 percent.

 $\frac{3}{2}$ the excess amount of sodium hydroxide and the amount of sodium sulphite available fur the digestion of the tow

were calculated from the reactions KaOH+MaHSO3=MagSO3+EgO. The amount of sodium sulphide charged was con-

eldered as unchanged by reaction with the other chemicals and, therefore, available for the digestion, although

it is known that sodium sulphite and sodium sulphide react in a complicated way.

Z M 29706 F

Table 13 .-- Digestion of medium flax tow with mixtures of sodium hydroxide, sodium sulphite, and sodium sulphidel

Cook						0	Cooking data	lata			Yield		Bleach-					Propert.	tes (Properties of the papers	aper	8	
TOOMINT		Chem	Chemical charged	harg	eđ		Duration	lo t	of cooking	1-1	orude		powder2		lght	41	10k- :	: Bursting	1	Tearing :	Te.	nsile :	Folding
	Kind	** ** **	Amoun		Concen tratio		Amount : Concen- : To maximu : tration : temper- : ature	IM:At te	m:At maximum ttemper-	ature sture	dind			0,4	4 8		per : nees : ream : nees :	uigueris.		uz Suer 18	Lee L	breaking Iength	and the second second
	-	-	Pound	01	Pounds : G. per L.:	I.	HOUTS		Hours	 .0.	Percen	14:1	Percent: Percent	: Poi	ands	11 :	: Pounds : Inches :	Points	-	Grams	× 1	Meters :	Double folds
D-100	: (Na2	(W8.25 : (M8.2503:	213.3	•••	26.6	** `**	2.00	•• ••	3.25	 166	: 42.0		45.0	ić ••••	51.9		: 0.0033 :	0.77		1.46		5,760 :	2,013
B-171	: (Na2	Na25 : Na2503:	13.3	•• ••	28.0)	••••	2.75		2.75	 166		 .	25.0		0.74	•	.0032 :	•93		1.19	۰۰÷	5,435	1,344
D-156	: (NeOH : Ne2SO3:	в 30 ₃ :	2.40 5.90		8.0) 13.0) 43.0)	·····	2.50		3.50	 166	19.0		25.0	N 	28.0		- 5200"	÷7.		1.54		5,720	285
B-172	: { Ma2 : Ma2 : (Ma2 :	н 30 ₃ ::	2.7 8.0 21.5		21.2 57.0		2.75	** ** **	2.75	 166		.	25.0	т 	34.0		: 0022	.88		1.20		5,719	1,639

<u>Tee page</u> 26 for definitions of terms and units of measurement used in column headings. \mathbb{Z}^{r} hese pulps were exceedingly difficult to bleach. The amounts of bleaching powder used

had only a slight effect.

Z M 29707 F

Table 14 .-- Digestion of modium flaw with calcium sulfhydrate and sodium sulfydrate

Cook :		Chemicals charged	rged	 	Duration of cooking	ration cooking	TO 1	: Mi	: Maximum: temper-:	: Ile. : of	d a	ii :	BLeacn-: ing :(:Maximun: Yield :Bleach-: Degree :temper-: of : ing :of white-	1	ANT TOTTONT
	Kind	: Amount:Concen- : : :tration :To : : : : : :pe	:Concen- : :tration :To :mu	. ! អ៊ី ម៉ឺ អ៊ី ន			maxi-:At maxi-: 1 tem-:mum tem-: :ature:perature:		ature : crude : pulp :	: crude : pulp :		mod:	der	: powder : ness of : : pulp test: : sheet :	ا · · · · · · · · · · · · · · · · · · ·	
		: Pounds: G. per 1.: Hours	G. per	:-	Hours		: Hours	-	:0:	Per	cent	: Fer	.cent:	: Percent: Percent: Percent :	 C+	
4-175 : :	³ Ca(SH) ₂	A-175 : ³ Ca(SH) ₂ : 15.0 : 30.0	30.0		3.0		6.5	** ***	166		h. 0	un •• •• ••	74.0 : 50.0 : : : :	144.0		Pulp unbleachable, shives brittle and fiber weakened.
A-179a: (¹⁴ NaSH : (NaCl	(_NaSH (NaCl	: 10.0 : : 10.3 :	20.0) 20.6)		3.0		3.0		166	: -	0.0		70.0 : 25.0 :	14.0		: Pulp similar to cook : A-175.
1-179B:	(⁵ NaSH (Na ₂ SO ₄	A-179B: (⁵ NaSH : 10.0 : 20.0) : (Na ₂ SO ₄ : 12.7 : 25. ⁴)	20.C	 67	3.0		3.0		166	: 7	6.0		76.0 : 50.0 : :	19.0		19.0 : Pulp similar to cook : A-175.

Son Pape

2 Color after bleaching treatment.

ZPrepared by passing hydrogen sulphide gas into milk of lime.

 $\frac{\mu}{Prepared}$ by adding hydrochloric acid to a solution of sodium sulphide.

²Prepared by adding sulphuric acid to a solution of sodium sulphide.

R1159

Jaquimu	0	Chemical	12 - 12 - 12	charged ²			Yield :	Bleach-:Degree	A.		of:Loss	ss in : Remarks
	MLOU			OQ OM		• •• •	Q,	:powder	• • • •	of pulp		strength:
	OBN	5	• ••	thosent	\$				• ••	sheet3	5.0	cloth :
: Fer	cent:	G. per		:Percent: G. per l.: Percent: G	. Der 1.	PH	rcent:	:G. per 1. : Percent: Percent: Percent		Percent		Percent:
A-173-6 :	-		÷	140.0 :	96.0	··	64.0 : :	22.5		19.0		7.5 : Shives undigested and black : in color. Did not bleach.
A-173-7 :	: 14.0 :	9.6	••	140.01	96.0		50.5:	25.0	••	27.0		18.8 :do
<u>Å-173-8</u> :	8.0 :	19.2		10.01	96.0		61.5 :	25.0		25.0		21.3 :dodo
A-173-12 : 1 : :	13.0 : :	42.3		40.0 : :	96.0		146.7 : : :	25.0		32.0		 36.2 : Shives only slightly diges- : ted. Brown in color and : did not bleach.
A-173-11 : 1	: 9.1	17.6 : 42.3		40.0 :	96.0		41.8 : :	25.0		38.0		51.3 : Shives partially digested : and difficult to bleach.
A-173-9 : 1	9.3 :	19.3 : 46.3	••	6.8 :	16.3		38.5 :	20.0		60.0		38.8 : Fulp fairly well cooked.
A-173-1 : 2	22.0 :	52.8		1.3:	3.1		39.1 :	15.0	••	h6.0		46.3 : Pulped overcooked.
A-173-5 : 2	22.0 :	52.8		3.0 :	7.2		52.4 :	12.5		65.0		56.3åoåo

3 Color after bleaching treatment.

R1159

Table 16 .-- Digestion of flax straw with sodium sulphite -- effect of cooking

conditions on yield and chemical properties of the pulps1

	Series and	: Pulping	Pulping conditions	Ma2S03	Yield	-		Ohe	mical pr	opertie	Chemical properties of the pulps	pulps		
		Duration:	Ne.303	sumed	orude	Lignin2:		Gellulose2		Pen	Pentosans2	: Sum of	:Copper	:Soluble
		:cookine:-	1	• •	d Tand	•••	Total	Dento.	70401	T	** +CN.	- : pentosan number	n-numoer	T II -
			Per :Concen- 100 :tration	- 40				Ban-		:cellu-		cellu-		RaoH
	5		20							• ••		:lignin,		
			of : straw:									:and tot.	7.	
												: pento-		
		: Hours :	Grams: G. per 1.: Percent : Percent	1. Percent	Percent	:Percent : Percent : Percent : Percent : Percent : Percent	Percent	Percent	Percent	Percent	Percent:	Percent	; Percent	Percent : Percent
	371		÷.	56.9	100.00	: 23.28 :	53.80	146.75	: 17.10	20.7	: 10.05			: 33.73 30.45
	386	3.0		61.0		: 11.76 :	51.15	43.60	10.23	1.58	2.65			1.75
SERIES I	181	 90.0 90.0			100 120	: 11.10 :	50.15	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	: 10.11	. 6.78	2.2.2	••••		: 10.52
	385	12.0	565 202 202 202 202 202 202 202 202 202 20	78.0	61.95	14.00 17.00	50.59	1000 1000 1000		1.1	1000 101 101 101 101 101 101 101 101 10	100.05	3.99	8.72
SERIES II	(393		01 01 01 01 01 01 01	26.9 26.9	62.26 64.19 62.01	: 12.10 : 11.81 : 10.16	51.00 50.00	43.60 42.38	: 9.55 : 10.02 : 9.55	: 7.43 : 7.12 : 6.73	2.44 2.90	: 105.32 : 100.75 : 100.20		: 7.29 : 8.13 : 9.61
SERIES III	(391		02 : 04 02 : 04 05 : 04	: 30.1 35.5 43.7	#67.74 #61.79	: 13.16 : : 11.50 : : 9.95 :	51.80 49.60	42.75 42.75	: 11.00 : 10.55 9.95	: 7.85 : 6.87 6.73	3.15	: 100.51 : 99.80 : 100.02		: 11.29 : 11.75

lsee page $\frac{26}{10}$ for definitions of terms and units of measurement used

in column headings.

 $\frac{2}{-0}$ this time 20 minutes was consumed in reaching the maximum temperature

of 155° C.

 $\frac{3}{2}$ Based on the original straw. All other chemical constituents are based on the sample analyzed.

HPulp was gelatinous and difficult to wash free of spent cooking liquors

and to filter in the subsequent ohemical analyses.

Z M 29710 F

Table 17 .--- Digestion of flax straw with sodium hydroxide and chlorinel. 2

Gook :															TOT HE LTON	DIT N	J			•			D IN	DONADE TONDA		2			
	Gook : NaOH charged : number :	NaOH charged : Duration : Tield	Dure	tion	11	of	5 8	Chemical consumed	cal med		Y1e	Yield of	of	1	Chl	orin	Chlorine consumed	nau	ned	ļ	T1e1	Tield of			CHI	orte	Chlorine consumed	ELSC.	pea
	Amount: Concen- : cooking	concen-	0001	Bar	C	crude		1 3	Deced	12	94	residue	ne		Pered	÷		1.			residue	0770		1	13	1.		1.	
••		HOLD BILL		-1798	hd.	dind	Dasad	5	Dasad			1			Daawa		Dasag	•	Dasad	!			-	4	09890	••	Des sea		Dageo
••	••			: mum tem-,:			100 :		TO	••	Based		Based	đ	uo		HO	••	no	**	Based :		Based		10		do	••	do
••	••		: pers	:perature2:			: amount	: +	100		do		do	**	crude:		straw	••	total	••	đo	••	tio		crude	••	straw	**	total
••		G.	•••				: charg	:pe	charged: pounds	•••	:epnro	:01	straw	-	BOda	••		1	loss in:		orude		Btraw	: 80	soda	**		:1	loss in
••	••	8					••		of		soda			**	pulp			A.	weight	•••	soda			- DG	pulp			A:	weight
	••							**	straw		pulp							•••	of		pulp					••		io:	r straw
••	••		••					••		••		••		••				8:	: straw									**	
	: Pounds: G. per 1.:	.per 1.		BIN	Per	oent	: Perce	nt:	Pounde	-	eroel	11:1	Perce	nt:	Hours : Percent: Percent	t : Pe	rcen	4	ercent	A.	rcent	: Pe	cent	:Per	ue0.	t : P	LOOI	#:P	srcent
5355 :.	······································				÷	÷		1			54.3		54.	5	38.6		38.6		82.5		:	:	-	į	:		÷	-	:
A-192-4 : 2.0 : 4.0 :	2.0 :	4.0		2.0 : 76.8	2	100	: 100.0 :		2.0	••	66.1 :			10	50.8 : 531.1 : 523.9 : 550.6 : 44.0 : 33.8 : 28.8 :		23.9		⁶⁵ 0.6	**	0.44		3.8	••	0.00	**	22.1 :	**	33.4
A-192-5 : 5.0 : 10.0 :	5.0 :	10.0		2.0	: 7	72.5	: 100.0 :		5.0	••	69.3		50.	50.3 :	39.65		28.7 :	••	57.8 :		42.7 :		30.9 :		: 1.63	••	21.5 :	**	31.1
A-192-6 : 10.0 : 20.0	10.01	20.0		4.5		2.07	: 99.	: #.96	9.9	••	68.7	~	48.	48.5 :	26.3 :		18.6 :	**	36.1	1.00	47.3 :		33.4 :		23.3 :	••	16.4 :	••	24.6
A-192-1 : 15.0 : 30.0	15.0 :	30.0		: 0.7	5	55.6	: 89.	: 0.68	13.4	••	2.77		43.1		25.3 :		: 1.41	••	24.8		Z32.9 :		Z18.3 :		23.6		13.2	**	15.7
A-192-2 : 20.0 : 40.0	: 0.05	40°0		9.5	5	51.4	: 81.5	ц 	16.3	••	88.6		钙.6	: 9	9.8		5.0 :		9.2 :		58.4 :		30.0 :		12.0 :	••	6.2		6.9
A-192-3 : 25.0 : 50.0 :	25.0 :	50.0		12.0	#	43.8	: 74.	5	74.5: 18.7	••	93.0 :		40.8	10	6.1	••	2.7 :	••	4.6:		71.3 :		31.3 :		7.4 :	•••	3.2	**	4.7

 1 See page 26 for definitions of terms and units of measurements used in

column headings.

Zsee tables 18 and 19, for the chemical analysis of the pulps.

 $2\pi\hbar$ e period of rising temperature was 2 hours, and the maximum temperature was

155° C.

Mohlorine gas method.

29ample 355 was untreated, dusted, and cut straw, ground to pass a 40

mesh sieve.

Erhese values are low because of a gas leak in the apparatus.

ZThese values are low. The finished pulp appeared to be over-chlorinated.

although the amount of chlorine consumed was apparently not excessive.

I TTL62 W Z

						Cellulo	lo	203			Per	Pentosans2					Su	: Sum of		••••	
Cook	: Yi	eld	.Li	Enin ³		Yield :Lignin ² : Total :Pento-	A.	ento-		Total		In	N .	Not in	• ••	Cellu-:free cel-:Copper:	fre	e cel-		pper:	Soluble in
number	•	of)			5	san			00:	:cellulose:cellulose:	:00	llulose		lose :	Iul	:lulose,	na:	:number:	1 percent
	: CI	crude					41	ree	••						••		lig	lignin,			NaOH
	nd :	pulp							••				••		••		and	:and total	••	••	solution
	'						••					¥					pen	:pentosans:			
	: Per	cent	- Fe	rcent	Pe	ercent	4	Terre		: Percent: Percent: Percent: Percent: Larcent:		Tercent		: Percent : Percent: Percent	Å	ercent:	E P	rcent			Percent
<u>4</u> 355	: 10	0.0		24.7		: 100.0 : 24.7 : 52.3 :		45.4	••	16.3	••	6.9		9.4		52.3 :		86.4	:	:	33.5
A-192-4: 76.8: 22.6: 51.1	:-	9.9		22.6		51.1	••	43.3 :	••	10.9	••	7.8		3.1		66.5 : 100.1	10	0.1		6.2 :	13.6
A-192-5: 72.5 : 19.9 :		2.5	**	19.9		50.3	**	42.1	••	10.5		S.2		2.3	••	69 . 4 :		100.0		4.3:	11.8
A-192-6: 70.5 : 19.2 :	: 3	0.5		19.2		48.8	••	: 6.0 ⁴	••	10.1	••	6.7		2.2		69.2 :	σ	9.66		4.2 :	9.8
A-192-1:		55.6 :		11.3 :		41.8	••	35.3	••	8.0	••	6.5	••	1.5		75.2 :	9	98.2	••	4.0 :	10.6
A-192-2: 51.4 :		μ. Γ		6.2 :		144.2		37.4	••	۲.4		6.8		.9		86.0 :		4.66		3.7 :	8.6
A-192-3: 43.8 :	:	3.8		2.4		2.4 : 39.6 :		34.6	••	5.5		5.0		·. 2		90.3 :		97.0		2.4 :	6.1

 $\overline{\lambda}Based$ on original straw. All other chemical constituents are based on sample analyzed. $\underline{\mu}See$ footnote 5, table 17.

R1159

<u>later</u> 1,2
chlorine w
with
chlorinated
pulps
soda
straw
flax
of
properties_
Chemical
19.
Table

Cook	Υī	::	ignin	2	Cel	Ju	Cellulose ³		Å Å	Pentosans $\frac{3}{2}$	M			ellulose	: Coppe.		: : :Cellulose:Copper: Soluble mher:in 1 Der-
number: r:	: oI : residue:				Total	н. 	Total : Pentosan-: Total : In : free : :cell		otal :	: In : Not in : cellulose:cellulose:	se:ce	: Not in cellulose	••••				cent NaOH solution
	Percen	14	ercen		Percent		: Percent: Percent: Percent : Percent : Percent : Percent : Percent : Percent	L A	rcent:	Percen		Percent		Percent			Percent
A-192-4: 33.8	33.8	**	0.8	••	: 32.8	••	29.5		: 3.7 :	3.3	••	0.4		0.76	: 4.0	••	12.7
A-192-5: 30.9	30.9		6.	••	: 29.8		27.3		3.1 :	2.5	••	.6	••	96.2	: 4.3	••	15.1
A-192-6: 33.4	33.4	••	2.	••	: 32.4	••	28.8	••	4.4	3.6		8	••	0.76	: 2.4	**	9.6
A-192-1: 18.3	: 18.3	••	÷.	••	: 15.7	••	15.1	••	1.1	.6	••	•	••	85.7	:19.3	**:	33.2
A-192-2: 30.0	: 30.0	••	4.	••	: 29.5	••	25.7		₽•0 :	3.8	••	сı,	••	98.5	: 2.3	••	8.5
A-192-3: 31.3	: 31.3	••	6.	••	: 30.6	(* *)	27.2	••	3.7 :	3.4	••	•3	••	: 97.7	: 3.9	••	: 11.3
1_See pa	se 26 f	or	defin	it	ions o	F	<u>l</u> See page 26 for definitions of terms and units of measurement used in column headings.	a	lits of	measur	emen	t used	in	column]	heading	to to	
Zsee table 17 for the	ole 17	foi		nd	lping (COD	pulping conditions.		8					for the second	arr lana	50.5	

R1159

ZBased on original straw. All other chemical constituents are based on sample analyzed.

Table 20 .-- The digestion of flax straw with mixtures of sodium hydroxide

Series	: :D1- :ges-				gestion				min in ₄			on by modified	: Loss of mate- : rial other
		: Dura : 0 : cook	ing2	: Ba0		harged2 :	of	:In the :sample	:Per 100 :pounds		Ohlorine consumed	: Yield of : residue	:than lignin :per 100 pounds :of straw2
		: At :maxi- :mum :tem- :per- :ature	:Tota :time :	1:		alkali NB NAOHO		:anal- :yzed : : :	t of straw	: 68.000		0:In the :Per 100 :sample :pounds :treated: of : :straw : :	
	:	: Hours	:Hour	e : Poun	ds : Poun	is : Pounds :	Percen	t:Percen	: Pounds	:Pero	ent:Pounds	:Percent:Pounds	:Pounds : Pounds
Uncooked straw1		L.,					50 #	. 27.0	27.0	: 29	.9 : 29.9	: 49.0 : 49.0	:: 22.0 : 30.2 : 3.0
<u>8</u> 4-211	74123		23567	: 16. : 14. : 17. : 17. : 17.		2 : 16.6 : 14.5 : 17.7 : 18.1 : 18.5	50.8 45.7 43.7 41.7 42.5	: 15.8 : 11.7 : 6.4 : 6.3 : 6.4	: 5.4	: 12	.0:5.5	: 84.9 : 38.8 : 88.8 : 38.8 : 88.7 : 37.0	: 32.7 : 1.5 : 32.5 : 2.1
24-212	: 34	- 157	: 2379	: 14. : 15. : 14. : 15.	4 : . 9 : . 9 : 1. 2 : 1.	: 14.5 : 16.2 : 15.9 : 15.0	52.2 48.8 43.3 42.6	: 18.7 : 14.9 : 8.5 : 7.8	: 7.3	: 16 : 11 : 7 : 6	.6 : 8.7 .2 : 5.5 .1 : 3.1 .3 : 2.7	: 76.2 : 39.8 : 79.4 : 38.8 : 83.0 : 36.0 : 85.0 : 36.2	: 30.6 : 2.7 : 31.5 : 2.7 : 33.6 : 3.6 : 34.2 : 3.1

and sodium sulphide and chlorination of the orude pulpel

18ee page 26 for definitions of terms and units of measurement used in column headings.

2The period of rising temperature was 0.5 hour from the initial temperature

to 100° C. and 1.5 hours for the additional increase to 155° C. at which

point the temperature was held constant for the time indicated.

³The volume of cooking liquor in all cooks was in the ratio of 60 gallons to 100 pounds of straw (oven-dry basis).

¹²The samples of pulps and of uncooked straw were ground to pass a 40-mesh sieve before the determinations of lignin and the oblorine requirement.

 $\frac{5}{10}$ The chlorination method is considered as removing all the remaining lignin.

Grotal available alkali is calculated as the sum of the excess sodium hydroxide

and that produced by the hydrolysis of the sodium sulphide in water according to the reaction, $Ha_2S + H_2O = HaOH = HaSH$.

IThe threshed straw was cut by means of a rag outter without preliminary dusting. $\frac{5}{10}$ In series A-211 the straw was digested with 22.5 pounds of sodium hydroxide and

5.5 pounds of sodium sulphide per 100 pounds of straw. The total available

alkali was equivalent to approximately 25 pounds of modium hydroxide.

2In series A-212 the straw was digested with 17.4 pounds of sodium hydroxide and

4.3 pounds of sodium sulphide to 100 pounds of straw. The total available

alkali was equivalent to approximately 20 pounds of sodium hydroxide.

Z M 29714 F

Table 21 .-- The digestion of flax straw with sodium hydroxide alone and with a

mixture	of	sodium	hydroxide	and	sodium	sulphidel,	2
	_		State of the local division of the local div	and the second second	and the second sec	the second s	_

ample.				1-					ing		Total			•							oon	micá sume	d	: : :	Yield of
	:				o mari um tem					1:1	laOH per	e i]	la0	8		1	1a28		:		: 8		-:	pulp
					eratur					:	straw <u>5</u>	:	Per 100):0 :t	oncen- ration	:P :	er 100	0:00:	ncen-	::		:	6	::::	
*****	:			:1	linutes	:H	r. Min	<u>n.</u> :	Hou	:8	Grams	:	Grams	:0	. per 1		Grams	:0.	per 1.	:Per	ccen	t:Pe	rcen	t:)	Percen
372	:	8	202 203	:	21 20	:	0:39 :40		1	:	15 15	::	15 15	:	30 30										
373	:	{	204 205	:	21 23	1	2:39		33	:	15 15	:	15 15	:	30 30	::		::::		:]	13.2	:::	· · · ·	::	57.08 57.08
374	:	(206 207	:	22 21	:	6:38 6:39		7	• •	15 15	::	15 15	:	30 30										
375	::	{	208 209	:	120 120	:	7:00 7:00		.9	:	15 15	:	15 15	:	30 30		•••••								
376	:::	٤	210 211	:	120 120	:	7:00 7:00		9 9	:	15 15	::	15 15	:	30 30	:. :.		::::		: 1	4.2	:::		.:	58.04 58.36
377	:	-1	212	;	22		3:38		4	:	10	:	10	:	20	:.				: 1	.0.0	:		.:	67.07
379	:	(]	216	:	20 20	:	3:40 3:40		4 4	:	10 10	:	5.5 5.5	:	17.6	:	2.2	:		:	5.5 5.5	:	1.6		61.69 63.04
380	:	{]	218	:	21 21	1	6:39 6:39	:	7	:	15 15	:	13.4 13.3	:	26.8 26.7	:	3.3 3.3	:	6.6	: 1	2.9	ł	2.6	::	50.65 49.68
378	::	{	214 215	:	20 20	:	9:40 9:40	:	10 10	:	20 20	::	50°0 50°0		40.0 40.0	:.		::::		: 1					48.64 48.89
381	:	{1	220 221	:	20 20	:	9:40 9:40		10 10	:	20 20	::	17.4		34.8 34.7	:	4.3 4.3	:	8.6	: 1	5.2	:	2.5	;	45.09

1See page 26 for definitions of terms and units of measurement used

in column headings.

 $\frac{2}{3}$ See table 22 for chemical analysis of the pulps.

²The pulps from two practically identical digestions were combined

to form the sample for chemical analysis.

The maximum temperature was 155° C.

⁵Total available alkali is calculated as the sum of the excess sodium

hydroxide and that produced by the hydrolysis of the sodium sulphide

in water according to the reaction, $Na_2S + H_2O = NaOH + NaSH$.

6The ground straw was extracted with a mixture of alcohol and benzene

(33 percent and 67 percent, respectively) previous to pulping. These yield figures are based on extracted straw. The average yield calculated similarly for unextracted straw is 56.26 percent, which is only slightly higher than the yield when the straw is not extracted with organic solvents.

LThe resulting pulp was washed free of spent cooking liquors with difficulty.

Z M 29715 F

Table 22 .-- Ohemical properties of pulps from flax straw digested with sodium hydroxide

and with a mixture of sodium hydroxide and sodium sulphide

: Copper: Quantity	solution solution	: Percent	2010-10-10 200-10 2010-10 200-10 200-10 200-10 200-10 200-10 200-10 200-10 200-10 200-10 200-10 200-10 200-10 200-10 200-10 200-10 200	4 L-4000 MM
Sum of : Cop	pencosan-inumosi solutore ilree cel-: : : : : : : : :lignin, : : : : : : : : : : : : : : : : : : :	Percent :	1011.63 1001.938 1011.64 1011.64 1011.63 1011.64 1001.64 1001.64 1001.64 1001.64 1001.64 1001.64 1001.64 1001.64 1001.64 1001.64 1001.64 1001.64 1001.64 1001.64 10000	1001.04 1001.06 1001.06 1002.01 1002.05
	cellulose: cellulose: lignin cellulose: cellulose: 11gnin : sand to: : pentos:	: Percent :	10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	
Pentosana ⁴	In cellulose	Percent	040000	000000 000000 00000
	Total	:Percent:	011000	010001804
Cellulose ⁴	Pentosan- free	Percent	4 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7	2000 2000 2000 2000 2000 2000 2000 200
	Total	:Percent:Percent:	10444444 10404444	2233323 20000000
Lignin ⁴		:Percent	111.23 113.53 111.28 111.28 10.58	8440 8440 847 947 947 947 947 947 947 947 947 947 9
: r:Average	of pulp?	: Percent	555.26 556.26 566.26	67.07 555.757 555.775 555.775 555.775 555.775 555.775 555.775 555.775 555.775 555.775 555.775 555.775 555.775 555.775 555.775 555.775 555.7775 555.7775 555.7775 555.7775 555.7775 555.7775 555.7775 555.7775 555.7775 555.7775 555.7775 555.7775 555.7775 555.7775 555.7775 555.77777 555.7777 555.77777 555.777777 555.77777 555.77777 555.77777777
Total : Alkalinity: Average :		: Percent	555555	2001100 2002
Total :		: Hours :	042200	58444¢
and .			5771 5772 5775 5775 5775	377 3779 3774 3774 3774 3774
Series and			SERIES I	SERIES II

¹3ee page 26 for definitions of terms and units of measurement used in column headings.

2see table 21 for other pulping conditions.

Zrhe pulps from two practically identical digestions were combined to form

the sample for chemical analysis.

H Based on original straw. All other chemical constituents are based on the

sample analyzed.

 5_{3} ample 371 was untreated, dusted and out straw, ground to pass a 40 mesh sieve. Z M 29716 F Table 23---Digestion of flax stees (in series A-215) with modium bydrosids and with modium mulphite. Both individually and in various mituries, some of which induced softum mulphide¹

Digestion number2	a Material		Chemical oh	Chemical oharged	pegre		20	Duration		Amount of obseited con- :	heaton	L con-	T10	Tield of orude pulp	aburde	dind	Lignin	In or	Lignin in orude pulp2 ichlorination by a modified Roe method2	i chlor	instim	i by a mo	dified	Roe #	athod5	• •• •	Loss of
		Kind	:Amount per	per 10	mod 00	Amount per 100 pounds2 of-:	1	Ing at			2						In the	1	ar 100	1	Chlorine consumed	: perms	Tisld	I OI	Tisld of residue	1	ther
			i Material 1 cooked	rial		Straw		temper-	80	pooked		#9710		cocked		#1120	sample snaly sed	** ** ** **	pounds of straw	In the sample treated	1	Per 100 1 pounds of atrast	In the sample treated		Per 100 pounds of straw		than 11g- nin per 100 pounds of straw
	1		: Pounds	nde	4	Pounds		Hours	24	Pounds		Pounds	-	Pounda	i Po	Pounds :	Pel cent	nt 1	Pounds	: Percent	ent :	Pounds :	Percent	-	Pounds	-	Pounda
	: Uncooked straw :	l				1. 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		100000	Testers.				disco		·····1		27.0	•	27.0	: 29.9	- 6	6.63	49.0		0.94	-	24.0
٦	: StrawZ.	HAOH	1 10	10.0	*	10.0		e u		10.01		10.0	**	67.0	1	: 0.76	30.1	-	20.2	: 32.9	. 6	22.0	64.6	ж	¥3.5	-	3.3
ŝ	1	Ka2803 1		20.05	-	20.05	-	9		18.3		18.3		59.2	-	59.2 :	20.4	-	12.1	1 17.1	 M	10.1	1.1	-	12.7		1.4
'n	1do	(Made (Ma2303		20.0		10.0)		21	5-	13.6		13.6)		54.5		54.5	21.8	•••	6.11	17.6	 9	9.6	13-7		40.2		4°2
IR	: Pulp from digestion 1 :	Na2303	8	50.0	*	13.4	*	9		9*0		6.0	*	89+3	1 5	59*8	26.5		15-9	: 23.6	*	14.1	: 67.6		4.04		3.5
5	: Fulp from digention 25 :	RADE	1 20	10.0	+	5-9	**	D#		8.7		5.1		3.6	4	43.6 :	11.9		5.2	1 9.	: 1.6	4.2	: 84.6		36.9	**	1.5
4	: StrawZ	(MaOH (Ma2S	10.04	10 N 10 N		2.2)		ev.		(8.8) (0.4)		65.5	40° 46	65.5		: 5-59	29+3		19.2	28.2	ey.	16.5	66.2		7.44		1.6
48	: Fulp from digestion 4 :	Ka2603	1 20	50.0	-	13.1		se,		2.6		6.3	**	84.0	11 17	: 0*55	22.5	**	12.4	: 17.8		9-8	: 73-5	•	4.04	**	2.2
5a	: Pulp from dignstion 25 :	Haus (Haus		10°.0		5.2)		cu		1.12		4.3)		73.4	*	#3.4	14.0		6.3	12.3	5	5.3	83.0		36.0		1.0

See page 26 for definitions of terms and units of measurement used in column headings.

Zane indicates a redigestion.

 3 the volume of cooking liquor in all cooke was in the ratio of 60 gallons to 100 pounds of strem (oven-dry basis).

Athe period of rising temperature was 0.5 hour from the initial temperature to 100° C. and 1.5 hours for the additional

increase to 155° 0, at which point the temperature was held constant for the time indicated.

Drue amples of pulps and of uncooked straw were ground to pass a 40-meah size before the determinations of lightn and the oblorias requirement.

 $\tilde{\mathbf{b}}_{\mathbf{f}}$ be oblicingtion method is considered as removing all the remaining lignin.

Zhos threshed straw was out by means of a rag outtor without preliminary dusting.

Zpuip 25 was divided for redigentious 2R and 5R.

a 11765 M 2

Table 24.--<u>Total loss of lignin and of material other than lignin in various alkaline</u> <u>digestions (in series A-215) of flax straw</u>

: Digestion number :	Ч	 : 1 25 :		2		2 JR		2 _{2R}		μ		द्य _भ स		25R
Chemicals used and sequence of treatments	NaOH	 12503	Na:	NaOH : Na ₂ SO ₃ : NaOH and : NaOH : Na ₂ SO ₃ : followe : together : by : Na ₂ SO ₃ : Na ₂ SO ₃		D ₃ :NaOH and : NaOH : Na ₂ SO ₃ :followed : together : by : : Na ₂ SO ₃ : : a ² SO ₃ : : by : : a ² SO ₃ :		: Na ₂ SO ₃ :NaOH and :NaOH and :followed : Na ₂ S : Na ₂ S by :together :together NaOH : *by : NaOH : *by *	:	tOH and Na2S gether	: Na : to : fo : N	NaOH and Na2S together followed by Na2SO3	fo to to	: Na2 ^{SO} 3 :followed : by :NaOH and : Na2 ^S :together
Loss of lignin in percent:		L4.9		6.8 : 14.9 : 15.1	••	11.1		21.8		7.8		14.6		20.7
Loss of material other than: lignin in percent		 26.2 : 25.9		30.4		29.1	•• ••	34.6		26.7		30.4		35-9
Total loss of constituents : in percent		 t0.8		33.0 : 40.8 : 45.5		140.2	•• ••	56.4		34.5		45.0		56.6

<u>1</u>Pulp 25 was divided for redigestions 2R and 5R.

 $\leq v_{alues}$ in these columns are the combined losses caused by the two treatments.

R1159

1	W	Alkaline digestion2	stion	out					Rod milling						0	Chlorination				
	Chomical cites of the cites of	ioal charged ³	ple ple	:Duration:Total of Stawall cookings Nava consu consu :pound : strum	icn:Total Savalible: NacH Sconeumed Spounde strue	Yleld : of orude : pulp :	Run 6 number 6	:Constat-	Kind	r pul	Rate of Run 6 - mailing : number 6 p:	** *		Mumber of ablori ations	Total ifotal n- consum iper 10 iper 20 iper 20	ade 000 ade	al iBle ne : po ce : ent:	Chemical Bleaching Yield of 1996 in Powder Dieschad alkaline Powder Dieschad Solling treatment	Yleld of: bleached: pulp	RemarksI
	: Founda	de : Pounde		Hours :	Pounds	:Percent:		: Percent		Pounds 1	1 Pounds 1	- 5			: Founds	ude ;	100	Pounde :P	Percent :	
	MaCH : 15.0	0 : 15.0	•••	 0	14.2 :	52.8 :	1. 2	5 : 9.3	. : Steel :	133	48		55	01.04	: 21.8	.6 1 Ma 303		16.1 1.	43.5	
	NaOH I 15.1	1 1 15.1		••••	13.5 .	52.4	nime S	0.6	1 Bronze 1 1do1	266	898		-1910	CV DI OI	1 28.9		** ** **	2002	32.5	
	(NaOH 1 13.4) (Na25 1 3.3)	5): 15.1		 01	14.6 :	: £.64	a1 ~	: 9.0	1do1	127 :	23			0101	: 12	17.6 1do1 15.1 1do1		1.0 11		
	(Nage 13.4) (Nage 13.3)	5) : 15.1		 0		48.8	-10) 	0.0	1do1	1127	21			OI OL	125.6	1do.	11			Sodium bicarbonate added during obiorination treatments.
10 11	(MacH : 17.4) (Ma2S : 4.3)	4): 19.6 3): 19.6			16,8 :	54.2	40	5.6	1 Steel 1 1do1	128 1	23			-	12.2	.2		5.0	2.1	Treated with hydrochloric sold and washed before blesching,
ada 003	(MaCH : 17.4) (Ma28 : 4.3) :	5) : 19.6 5) : :		 n	17.3	4.05		0,0,0,0,0 0,0,0,0,0 0,0,0,0,0	Bronge :	5555	20223		N 10400	нанан	44944 	11.1 1 do 11.4 1do 10.8 1do 11.7 1do		10.0	35.5	
11; UI	(NacH : 17.4) (Nac2 : 4.3)	\$): 19.6 ; ;		 n	13.5	47.6 :	۲ · · · ·	0'6 :- 2'2	do1	130	л.		N	nn.	12.3	5 do1		6.0 8.0 1		Beater run number 1, digestion B-214-3.
43 49	(KaOH : 17.4) (Ka28 : 4.3)	3): 19.6			16.5	42.6 :		6.00	1do	130	0.000		20 20	-	2	7.5 1do1		32.0		Pulp not oblorinated; bleached only.
a a	: (NacH 1 8.8) ; (Na2B 1 2.2)	5 : 6.9				70.0	40	: 14.3	1do1	88	15			cu	1. 21.4			3.0	[Fulp not chlorinated or bleached.
-	0.02 : 20.0		·;·····			62.0	- a - a -	6.0 13.0	do do do	208 208 62 130	ч к ° ч ч		# H 0m in 101-10		16.6 16.6 17.4 17.4	Me29 MaOH		11.0 5.5 9.0 12.0 12.0		No alkalion boiling treatment, digestion prefer . No alkalion boiling treatment,
0 0	(MacH 1 10.0) :-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	····	 ø		53.4 :	Han	0006	do do	2006 2006 1300	889		10.00	нннн	19.5	60 1do1		0.000 1111		Bester run number 1, digestion H-224-1.

Here page 26 for definitions of terms and units of measurement used in oolumn headings. The stress without preliminary dusting was out before pulping by seams of a rag outlear.

 $\frac{1}{2}$ The volume of cocking liquor was in the ratio of 60 gallons to 100 pounds of straw

(oven-dry hasis).

 $\frac{1}{2}$ for a static static solution of the excess solute hydroxide and that produced by the hydrolysis of the sodium sulphids in water according to the reaction, Ns23 + E20 = NaOH + NaSH.

 $\frac{1}{2}$ for the supersture was 0.5 hour from the initial temperature to 100° G. and 1.5 hour for the additional increase to 155° C. at which point the temperature was held constant for the predstermined time. Rhere numbers are grouped (that is, 1 and 2), the runs indicated were dupiloates within

 $\mathbf{I}_{\mathsf{M00}}$ table 26 for the properties of papers made from these pulpe. the practical limits of operation.

7 W 29719 F

Table 25 .-- Pulping of flax siraw by the chlorine processi

Table 26 .- Summary of the processing and the properties of paper from flax strew pulp prepared by the ollorine processal

1 Remarke5			. Wot whorinated or i bleached. i Iantfiolently chlorinat. i ed. yellow from steel i rode.		I Tot more and, formation wild. Insufficiently chierin- ated.		: WallOb, added to chibring water.	: Tellow from steel rods.				i Mpt chlorinated or blanobed.	fo similar boiling treatment prior to blasobilg.	of the chlorics 7.7 percent was bleaching	Insufficiently oblark- mated. Paper very diriy.
	AT Date	Percent	1.9	1	3.8		1.6	3.6	meat	10.40 	0,0	5		r.	وبوب وب
	Tint the		OTHER	Nobs Tellow Green	Orangs		Yellov	do	Tellow : Tellow :	: Yallow : Orange	Reilow Red	Tallow Drange	Fone Fone	do Purple-	Red Orange Lone
Color	r hus Lumi- nost- ty	Perc	6.7		5.0	¥.5.	2.6	1.5	1500	9.4	8.1	1.8	5 117	L L	1.3
1	Primary Tins 1		Tallow	r Orange 1do	do		Orange	1do1	Red Orange Red	Orange Yellow	Orsage	Yellow	Blue do	Purpls- blue bruge Peacock- blue	Orange Tellow Orange
	E CONTRACTOR OF	Por-1	2	884	2 2	1 99	: 49	191	TRAR	62 : 67 :	3 39	54	5 523		15 252
	Poldis	Touble:	26 392	101	1,236	22	8	572	1,174 390 182 204	395	3638	19	372 1,362 1,157	334	542 786 216
	Stretch: fallure	MetersiPercent:	1.54	3.255	1.65 1 h.40	2.15	2.22	5.5	555 8 56 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5.33	1496 1496	1.26 I	5.5.4 5.5.5 5.5.5 5.5.5 5.5 5.5 5.5 5.5	5.5 8 4.4	5 833
Strength	iten of	Meteral	2.979 1 5.425 1	5.478 1	3,869 5,224 6,260	5,010	4,164	5.967 1	5.018	5.748 :	4,969 4,951 4,1999 4,622	5,049	5.049 1 5.198 4.705 4.731	5.839	4,760 1 4,760 1 4,275 1 4,935 1
	Tear-1 Ing	Grant 1	39 <i>R</i>	831	138		- 19	*** 202	5.5.8.6	: 55 :	5854	63	23 26 <u>6</u> 2	8 88	\$ 522
	Buret-	Pointe:Grame:	19°.	2,8,2	99 96	1.1	s. 	6.22	2.828	6.8	278	-37 -18-	4 2008		13. 15.
Form	Weight Thick-Eurer-FourierFourierStreetonFolding Thicks	Inch	10.00461 1 .00261 1 1 1	10600.1	1 ,0033 1 ,0033	1 .0032	: .0036:	1 .00301	100400	1 .0035:	1 0036: 0050: 0034:	:0500. 1	00385	00500	00321
	Tolgh	Pounds:	⊈ 	\$8\$ ****	3 4 4	¥ 	8	P.9	3638	6.92 1.02	9848	12 S	5 1983	33 8 2	¥ 834
Refining and papermaking	Trois in the second sec	1001 1001 1001	1 1 100 1 1 Nome : Wone : 2 100 1	1 1 100 1	1 100 Mons 2 100	1	2 1 100 1	2 1 55 1 15 1. do. 1. do do	1 100 1 Blue : Light 2 100 1 1 Kone 3 79 21 : None : do 4 56 14 40	2 100 1do1do	1 100 Bluedo	Z 100 11 Monedo	1 100	100 100 85 115 de	1 100
	deo.	Pounds	5.9	26.19	19.0	4.71	15.6	14.0	14.6	12.5	9.3	Sone 22.5	222.8 119.1 119.1	15.00	25.6
Ohlor Instion-	Run ; Susberfotal number, : Susberfotal number, : Solds-consum inta- fer 10 : tions : pounds : cruds : : punds		1.2		 a a 	1 2 1	 N 	1 1 1	3,2,6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	23.2 1 1 :	1,2 1 1 1 3 1 1 1 1	1,2 2	1 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ດີ 6 ດີ 4 ມີ 1 ມີ 1 ມີ 1 ມີ 1 ມີ 1 ມີ 1 ມີ 1 ມີ 1
-1	ng 1301		*****		*****	***	y :			****	** ** ** **				
2 21	:Consist-:Rate of i rence : milling: : : : : : : : : : : : : : : : : : : :	nt :Pounds :Per	*		53 1 1 1 1 1	8	••••	ដ 	969 1 1 1 1	: 15	22 11	15 16 18	к к *		132
Rod willing 2		1 Parcont	£.6 	0.00	9.0 1 1 6.5	1 9.0		5.6 1	0.000 0.000	1 9.0	1 9.0	114-3 11 111-0	6.0 1 1 1 6.0	0.6	896
1	Trumber 2		a.1	1 5,2	N H	1,2		1,2	3,4,5	-	2,3	-			
	Total IDura- seall- tion able tof alkall took- chargeding	1 Hours	6	61 	¢.	6	** **	*	m 	n 	~	#	**		
5		Pounde	15.0	.1 15.1	1 15.1	1 15.1		19.6	19.6	.: 19.6	1 19.6	9.9			
g (Ifype of digestion		Boda	do 15.1	1 Sulphate	do		1		:op	qo	do	Sodium i mulphite		Cauntic : . sodm and: eodium ; sulphite;
	Migra- Milon		B-205-1 : Soda	B-205-2	B-206-1	B-206-2		1-412-8	B-214-2	B-214-3	1-/12-8	1-122-B	1-222-8		1-12-5

Jage page 25 for definitions of terms and units of measurement used in column headings.

Reor more detailed data see table 25.

Jabbare sumbhis are grouped avarage values from table 25 are tabulated.

 $\frac{1}{2}$ where within include the chlorine used as bleaching powder; all of it is expressed as 01_2 .

Zames dys was added alum was always used to set the color.

rume 2. J. and 4; digention 3-21+3; anothis runs 1 and 2; digention 5-217-1, anothine runs 1 and 2; and digention B-224-1, anothine runs 1, 2, 3, fine best papers, as judged first by color, second by hydration and formation, and third by strangth, were obtained in digestion B-214-2, machine

5. mut 7.

ZFirst of the run.

flast of the run.

2Beater run, see table 25. Z W 39720 F Teble 27 .-- Preparation of gresserroof and Manue papers from flag airan

worker a free man 1 haven	d'southant		Vanish was and		Concession in the second second		Concession of the local division of the loca	Contraction of the local division of the loc	A R R R R R R R	The second second		States and	The subscription of the su	And a local division of the local division o	Name and Address of		Butto the Branches	120 TO 10		and the second se					atal ada	TO IN	wohime.	Properties of machine made pupers	Bara.		-	
	Bustley,	Dusting 1 Not witer Dusta 1 Not witer Dusta 1 Color	Xind		Concen- tration	Volume of a Duration of cooking Amaximum cooking 134000 per romaximum autors 134000 per romaximum autor 100 pounda respor- temper-	per 17	purati purati	on of a	nextme nextme	The second		Commung- Lisn of available albail	Tista of trude publy based on downed		Bleach- ing pomisel	Capacity If beater used	2 .	Buration p Hell to F Frash	 Deration of beating Machine Ault to Noll on number reach bed-plate 	sting plate	Machir Fun Bumber	Field of Breach Copyetty Derive of backbar Machine 1 Weight I Michobest Grangth Michol Machine 1 Weight Machine 1 Weight I Michobest Grangth and Machine 1 Weighted Machine 1 Weighted Michol Machine 1 Weighted Machine 1 Weighted Machine 1 Backstown 1 Weighted Machine 1 Weighted Machine 1 Backstown 1 Weighted Machine 1 W	ē	ti etnes	in in the second	Burste 1	Tear I Ing I	Strongth	Birength Birst- i Tanion i Polding the i Ing i	1-12	Interfe
	Terseri	From		Founds	9. per 1.	Gellons	 a	ROUTE		Koure.			Farcent	Paroant	1. Barris 1. C. C.	Percent :	Pounds		Rears	.	lisura		Fou	Pounds	Inthes	1 201		ant.	· Points Grans Metorn	Devela-		
D-149	12,0	9	(Back	0.03	12.0]	20	• •	2.0		4.0	a 	172	90	47		91	8		1.75		5.65	н	- 30	1 1 1 1	0.0033		0.62	1.95.1	4,200	40 7		Hot greaseprosf.
D-150	1 1.55	1.8	(Wath I	10.0	10.8	20		8-0		4*0	H 	170 1	90	90	•••	2	8		1.50	· · ·	0.17	٦	- 25	1 0.55	.0020	••	ę	1.60 1	4,632	8	+ Kor	More hydrated than D-149 but not greaseprouf.
191-0	46.0 =	10.0	(Radie)	80.0 8.4	10.0	22	••	2.3		4.5	a 	162 1	12	9		1	8	••	1,8	.e.	6.33			47.0 1	9200*		4	1.42 1	4,460	1 222	Nor -	Kore hydrated than D-149 or D-150 but not greaseproof.
D-152 1	5.M.	79	(Tage	17.6	10.6)	8	***	2*5		•	а 	160 1	2	4		3	<u>Q</u> er	•••	88 44		8.25	ы 0)	32	10.0	0800* 9100*		10.	84	4,860	102	And And	Greaseproof. More greaseproof than machine run 1.
P-155	31.5	1 .0	(Sadi (4.4	10.6	2		21 52		212.5	130	 8	n F	10		3	***		225	44d	3.08	400	728	0.00	.0030		10.00	50 50 50 50 50 50 50 50 50 50 50 50 50 5	6,063 5,706 6,087	141	Annual and	Greamprouf. dt More Treamprouf. than machine runs 1 and 20
D-1044 1	(9)	9	Hadden a	19.1	10.0	3		2.0		6.0	1 160	= # 9	15	88 8		2	9		3.05	÷	5, 50 1	4	1 36	34.0 +	\$000*			1 95.	5,238	1 155	i Gre	Greaseproaf.
1-154b	· (5)	1. 1.	· (Kade ·	17.0	10.0}	20		2.0		8.0	1 160	**	8	8		1						-										
D-158a	(S)	6°.4	(WACH :	17.6	42.3	8		2.0		6.0	a ••	160 1	34	8		13	Peo -	••	5+30		1 43*2	*	. 18	1 8182				1.52	1 1.52 1 5,013 1	e 	Int .	Hut at greaterproof as D-154 and.
D-158b	9	9-9	Match	17.6	42.3	20	**	5.3	++	7.5	я +	160 +	88	20		11		•••	1.60	a 	1111	a				in the		1			Teo Teo	1
D-1554	. (9)	6.9	Rigspa .	30.0	47.0		••	5.75		7.25	1 170			89		13			1.40	a 	5.56	**						1				
- 156b -	1	10.5	Costeg.	30.0	21.2	8	**	9.9	••	7.5	1 170			8		5	20	••	8		1.50	4									del 1	1

Årne andourt of blanchling powher used was only sufficient to blanch the pulp to a light broasish yollow. Mass extracted. Magneture contents coupled an additional 9.25 hours from 180° is 110° C. Extension but less not determined. Jattenede but less not determined. Pulp from come p-180% and P-180% were combined for this basisr run.

	:Cook:M	achine run	:		of			erties of -made pape	rs
	:ber :		: Kind : :	:Amount :basedon : total : charge	ing ³	Weight per ream	: ness :	Burst- : ing : strength:	ing
			:	Percent		Pounds	Inches	Points	Grams
(2 1	: Towing waste		Rod mill Beater		0,020 .014	0.20	1.11 1.23
	(: 5: (: 5:	2 1	: :Towing waste :Oat straw		: Rod mill Beater	: 165 : 157	: .017 : .016	.25 .25	.64 .62
3-201	(: 4 : (: 4 : (: :	2 1	: :Towing waste :Oat straw	-	: Rod mill: Beater	: : 146 : 152	015 015	.34 ,30	.58 .61
	(: : (: 3 : (: :	2 1	: :Towing waste :Oat stray		: Rod mill Beater	: ; 132 ; 118	: : .013 : .013	· 39 · 40	.64 .78
	(: 2 : (: 2 :	2	:Oat straw	4	Rod mill Beater	; 118 ; 127	.012 .014	,47 ,38	.90 2.43
, 1	(: 4; (: ,	2 1	:Flax straw :Oat straw	: 25 : 75	Rod mill Beater	94 104	.010 : .012	,35 ,34	84 ,97
	(: 3 :	2	:Flax straw :Oat straw	: 50 : 50	Rod mill Beater	85 94	.010 .010	.29 .32	.77
3-202		2	Flax straw Oat straw	· 75 · 25	Rod mill Beater	85 95	.009 .009	•39 •28	.64 .68
	(: 1:	j.	Flax straw	: 100	Rod mill Beater	96 96	.009 .009	29 26	.92 .63

Table 28.--Preparation of strawboard from flax towing mill waste, flax straw, and bat straw alone and in various mixtures¹

-See page 26 for definitions of terms and units of measurement used in column headings.

²The cooking conditions were 10.4 pounds of lime (96 percent Ca(OH)₂) and 16 gallons of liquor per 100 pounds of raw material (dry basis), 3 hours to maximum temperature, 5 hours at maximum temperature, and an average maximum temperature of 137° C. for all cooks except B-201-1 in which 12 pounds of lime and 19.5 gallons of liquor per 100 pounds of dry material were used, 3 hours to maximum temperature 7 hours at maximum temperature, and an average maximum temperature of 137° C.

\$1

²The rod mill contained approximately 3,700 pounds of solid steel rods and was operated continuously at 27 r.p.m. The beater was of 40 pounds capacity.

Table 29 .-- julping flax straw for atrawboard-

and and	-				Cooking	-				-					H	Rod millings	No.						-	-	ropert	Properties of machine made papers	chine made	paper		1
and		Chemios	Chemicals charged		a Durution of cooking : Average	n of	Tooking	ava :	1 ager	Fulp 1	Rođ	-	Roda				-	Consta-	- 1	Duration 1		1 -	1	Machines	Welight			Teariz	ST 3	lding
number	i Kind		Amount 1	Concer- tration	Concec-:To maxim tratignitemper-	tempe	the maximu	-1 maxim mi tempe i ature	temper- 1 ature 1		run run number	kind 1	Runber	1.1.	Velght	1		tence	-	Builling	81111ng	t then		Tun I	ream	see se	atrengthistrengthistrength	etreng	the st	rengt
-																of oven- dry pulp				destante.		1 10 000	3							
		2-	ercent	Percent 1 G. per 1	I HOUTS		Hours			Percents				1 Founds	- apa	Founds	1	Percent	1	nutes	Minutee Tons per	IND Caypi	3.		Pounda	I <u>Inchea</u> l	Pointe	Grams	1	Double folds
B-166	I Ca(OH)2	+ 2()H	18.6	1 112.0 1	. 2.0	-	14.5	+ 1	160 1.		41	i Solid steel i	52	1 3,	3,720 4.								-		74	10.008 4	0.20	0,83	-	-
B-189	Ca(0H)2	0H)2 +	10.0	1 00.00 1	1,0	-	11.0	1 1	130		ų,	****** do	22	. 3,	3,720 1.								:		118	· 010 ·	.30	rr.	-	2
B-206-1	1 Xa2003	- 200	14.0	1 78.0 1	3.0		9.0 10		137 1.	Ī	ୟହି	solid bronzes	37	1 3,	3,660 1	200		8.0	11			0.11	11		10	1 600° .	38	2.14		89
B-210-1	1 He2003	: \$oc	14.0	1 78.0	3.0	• •	2.5		151	······		I Bolid steel :	20	-	120 1	122	-	4.0	-	200	12.		1	-	8	1 600* 1	38	1.48	-	
B-210-2	Na2CO3	503	14.0	78.0	3.0	• • •	2.5		137	76	2 63 6		1010	5 m m	1000	129		200		100		45.0			285	500. 1	222			2-10
											1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	do do	20000 2000		3,720	127		0.00		202	35	27.0 24.6		****	12288	010		91-1 11-1		
B-216-1	1 Kap OQ	**	14.0	1 78.0 1	5*0		5°9		137 1.		-1 10	I Iron pipe 1	45	1 1.6	1,090 1	114		0.5		110	90.		-		**	1 900 1	89.	1.22		
											01.4	do	9		- 060	49				510	5	0.00	-		5	000. 1	2	1.34		a
		•••				• •					# 10	1do1	4	11.	- 080	38		8.0		320	88		11	**	22	. 000	54	1.15		410
A-197-1 A-197-2 &-197-3	I NaHCOS I NaHCOS I EaHCOS	888	15.9	64.4	1.55		5 5 6 8 6 8 6 8 6 8 6		160 1	77							H							111						111
B-209-1	i KaHCOS	8	22.4	1 75.0 1	3.0		5.6		137 :	99	40	a Solid bronzet	37	1 3,660	1 095	123		9.5		120	.23		11		86	007 .	- 33	1.28		*2
B-213-1	# (Wa2COS		8°0	38.4):	3.0		5°2	1 137		70 .	10	: Solid steel :	20.00	1 3,720	500	123		50		100 1	32				85	1 010. 1	225	1.40		8-
B-213-2	# (Ma2CO3		12.0	10.01	3.0		2.5	1 137		1 12	н Q	1do1	00 00	1 3,720	02	123		9.6		100 1	22.				89	1 110. 1	. 55.	1.13		
B-221-1	I (Mach		8.8	1 17.6)1	2.0		5.0		155 1	1 02	-	I Solid bronzet	38	1 3,7	3,750 4	82		14.3		180 1	61.	1 71.0		77	115	1 600* 1	1 12.	1.17		3
B-223-1	: (Sulphur	bur :	0.0	18.2)1	3.0		6.0	. 130	2	Ϊ	72	s Solid steel :	8	1 3,4	3,475 1	116		8.7		30	.72	1 17.5	181		104	1110. 1	.16	90.		17 84
3-223-2	* (Sulphur		10.0	1 36.4)1 1 3.6)1	1.0		0.0		130 1	72 :	61		20	1 3,4	3,475 1	SLI		10.2		* 06	-29	: 54.0	1 81		82	1 000 1	33	.98		• 0
B-223-3	Sulphur		1.5	5.5	1.0		0*9		130	2	ณคร	40	202		3,475 -	145 137 139		12.4		505	80 40	: 52.0 : 61.8 : 56.6			108	010	1989	1.45		1995
B-255-1	I (WagCO3		14.0	76.4	3.0		5.8	A .	137	29 2	Q1074		222		3,475	145	****	12.4		5000	200.52	35.7 1 35.7 1 46.5	aci		106 106	010	5888	1.62		35.05
	I Compe	srcial,	11me-c	Commercial, lime-cooked wheat strawboard	t strawbo	oard		1																	109	. 010. 1	. 12.	.58	-	

26 for definitions of terms and units of measurement used in column headings. Iges page

Rod mill operated batchwise (unless otherwise noted) at 28 r.p.m.

Apose not include the stray power or transmission losses.

⁴pulp run once through rod mill, screened on a gyratory riddle, and beaten in a beater of 5 pounda capacity.

 \overline{a} pulp through rod mill once, finished in a beater of 20 pounds capacity.

Sulp passed through rod mill twice.

The state of the state s before running on the paper machine.

Beater run.

	Shaker tow	:	Flax straw
:	Percent	:	Percent
Soluble in hot water	10.3	:	9•9
Soluble in 1 percent sodium hydroxide solution : (corrected for hot water soluble)	18.8	::	32.1
Soluble in alcohol-benzol	15.6	:	3.7
Cellulose (Cross and Bevan)	50.2	:	51.3
Pentosans in cellulose	3.8	:	4.2
Pentosans, total:	10.3	:	19.4
Lignin:	13.4	:	24.2

Table 30 .--- Chemical analysis of shaker tow and flax straw

See page 26 for definitions of terms and units of measurement used in column headings.

Table 31 .-- Digestion of shaker tow with mixtures of sodium hydroxide and sodium eulphided

Cook	** *			100000000000000000000000000000000000000	Cooking data	g data	ALC: NO.	10000	and the second second				Ble	Sulfost	Bleaching and beating data	ing dat	10					Propert	ites of	Properties of machine-made papers	made pa	BIG		
		hemicals	Chemiosis charged	t Dutt	Atton of	: Duration of cooking :	Kaxi-		: Alkal1 : oonsumed	: Tield		Beater		Blenching : 0 powder : e	Consist-	I	Duration of beating	1	Machine : run :	Weight	: Thiok-		ing : T	Tearing	Folding	th : Tena	Tensile 1 strength 1	Stretch
			Amount: conconcertromakaramarar vepor- tration remper- teapper- ature ature ature ature	n tempe ature		At maxis temper- sture	and te	The		: ; ;		mberc				Roll to: 1 touch : 1 bed : 1 plate :	to: Roll o 1 : bed 1 : plate	18	aber	reem								
		Foun	Pounds :0. per 1.:	5	Roure :	HOULE		:0	Percent	Percent	비		Parcent		Percent	HOUTE	Bours	 mi		Pounds	: Inches	i Points		Grame	Double Folds	: Meters		Percent
D-161	: (NaOH	13.	2 : 19.5) 5 : 5.9)		3.00 :	90 ° †	•••	160	92 92		•••	н	1 15	.i.,	F	1.50	1 1.25			43.5	: 0.0035	1 0.60		0.37	£11	1 4,953		
D-162	: (NaOH	13.4	12.5 1 5.7		4.25 : :	4.75		150	10 1	09 	•••	ч	8	÷		1.92	91. :	** **		41.5	: .0030 :	19. 1	•••	1.08	361	#66"# I		3.5
D-163	1 (Ma03 1 (Ma23	12.2	8 : 24.4 7.7		6.75	2.85	** ** ** ** **	150	s		.	dente.	 222233	•••••		0.4490 6.64400 6.6440000000000	20000	** ** ** ** **		33425	00400 00000 00000 00000		*****	448412 848412	222 272 272 272	2000 2000 2000 2000 2000 2000 2000 200	89985	Mamam
D-164	I (HaOH :	1 20.1	1 : 30.1)		5.00 :	•		140	\$	ŧ		-	۳ ۲5		3.5	1.50	9			ł1.5	0£00* :	1. 1.03		1.13	561	: 5,465	5	

lese page 26 for definitions of terms and units of measurement used in column headings. Seater of 50 pounds capacity. Face.

 $\overset{1}{\mathcal{M}}$ this pulp contained undigested shives that were not bleached white with the amount of bleaching powder used.

Z M 29725 F

Table	32Properties	of	papers	produced	from	carded	flax	fiber	compared	with
	linen ra	gp	apers1							

Cook	:Bleachin	ng and b	eating	:Weigh	t:Th	ick-:	Burst-	-:	Tear - :	Fold-:	Ten- :	Stretch
number	;											
	:Bleach-	: Durati	on of	: ream	:	:		S	tre	ngth	:	rupture
	: ing	: beati	ing≟	:	:	:		;	:	:	:	
	: powder				:	:		:		:	:	
		: Roll to			:	:		:	:	:	:	
		: touch		100	:	:		:	:	:	:	
		: bed			:	•		:	:		•	
		: plate	plate	:		:		:	:			
	:Percent	_ <u>Ho</u> ı	urs_	:Pound	<u>s:In</u> :	ches:	Points	<u>s</u> : :		Double: folds:	Meters:	Percent
D-220-1	: .: 8.1	: 5.60	0.67	: : 43.5	: :0.	: 0030:	0.79	::	1.36 :	: 2,245:	; 5,921	5.4
-D-220-2	: 2: 12.1	7.00	.17	: 37.6	:.	: 0023:	.83	:	1.94 :	2,667:	5,987:	5.6
² D-54	: : 12.0	: (<u>6</u>)	(<u>6</u>)	: 44.5	:.	: 0035:	.83	:	1.90 :	: 2,985:	5,302:	7.1
(<u>7</u>)	: :	: :		: 50.0	:.	: 00 35 :	1.04	::		: 3,563:	: 6,360:	7.4
	:	:		:	:	:		:	:	:	:	- and a second

¹See page 26 for definitions of terms and units of measurement used in column headings.

²-Beater of 50 pounds capacity. Consistence from 3.5 to 4.0 percent.

²Carded fiber cooked with 15 percent of calcium hydroxide based on carded fiber; 60 gallons of solution per 100 pounds of material; cooking schedule, 2 hours to 130° C., 10 hours at 130° C.

4 -Carded fiber cooked under conditions of cook D-220-1, except the time at 130° C. was 8 hours.

⁵Linen rags cooked with 4.0 percent of calcium hydroxide and 0.5 percent of sodium carbonate; 50 gallons of solution per 100 pounds of rags; cooking schedule, 1.75 hours to 130° C., 11.25 hours at 130° C.

⁶Not recorded. Four machine runs were made from this pulp, each under different beating conditions. The best paper made, machine run 4, is shown here for comparison with the carded fiber. See table 11, for all machine runs.

7-A commercial linen rag paper of high white color.

Table	33 Burs	ting	stre	ngth c	of ha	ind-	for	rmed
	ter	st bo	oards	compo	sed	of	fla	x
	tor	ving	mill	waste	e and	l ja	ick	pine
	pu	lpsl						

Fur	ni	sh	:	Proj	pe:	rties of bo	oar	·d.
Flax wasto2	:	Jack pine	:	Weight per ream		Thickness	:	Bursting strength
Percent	:	Percent	:	Pounds	:	Inches	:	Points
10	:	90	:	254	:	0.038	:	0.16
25	:	75	:	190	:	.024	:	.23
50	:	50	:	162	:	•020	:	•29
75	:	25	:	208	;	.024	:	•31
90	:	10	:	144	:	•019	:	•27
100	;	0	:	149		•019	:	.17

See page 26 for definitions of terms and units of measurement used in column headings.

2 The towing waste was cooked with 10 percent of sodium hydroxide and 4 percent of sodium sulphide by weight of the waste for 8 hours at a maximum temperature of 148° C. The jack pine was half-cooked by the sulphate process (commonly termed the semikraft process). The two pulps were beaten together in a small experimental beater.

R1159

Table 34 .-- Digestion of towing mill waste with mixtures

of sodium hydroxide and sodium sulphide

for the production of a bleachable $pulp^{\perp}$

Cook			C	hemio	Ble	2		Volume	: D	ura-	:1	azi-		Total		Yield of	: :Bleach- : ing	: Color of the shives
II CUBCC I		Kind	1	Amoun	t:0	oncen- ration	:	liquor	:0	of ook-		tem-	:	- acco sumed		orude pulp2	:powder	: in the :bleached : pulp_
	:		1	Pound	a:0	.per 1.		Gallone	:H	ours	:	°0.	:	Percen	::	Percent	Percent	
A-1		(NaOH (Na ₂ S				16.0) 5.5)			:	8	:	139	:	84		48.5	¦	¦
∿ -2	:	(NaOH (Na ₂ S	:::	13.0 4.5	:	16.0) 5.5)			:	8	:	165	::	96	:	33.6	į	ŀ
A-3		(NaOH (Na29				14.0) 4.0)		150	:	5	::	139	:	82	:	44.1	¦	······
A-4	::	(NaOH (Na ₂ S	:	9.9 10.0	:	10.0) 10.3)			:	5	:	139	:::	86		46.9	;	······
A-5	:	(NaOH (Na ₂ S	::	17.4	:	14.0) 4.0)		150	:	5	::	165	::	'93	:	39.2	!	·····
₽-6	:	(NaOH (Na2S	::	20.0	:	16.0) 4.0)			:	5	::	165		90	:::	35.0	¦	······
A-7	:::	(NaOH (Na ₂ S	:	15.0 10.0	:	16.0) 10.6)			**	5	:	165	::::	91	:::	38.6	: 30.0	: Yellow :
A-S		(NaOH (Na ₂ S				16.0) 8.0)			:	5	: :	165	:::	81	::	32.0	: 30.0	:do
54-9		(NaOH (Na ₂ S				16.0) 10.6)		112	:	5	:	165	:::	83	:	35.0	: 25.0	:do
6 _{A-10}	:	(NaOH	:	15.0	:	16.0) 10.6)		112	:	5	:	165	:::	96	:::	37.9	: 30.0	: Light brown
5 _{A-11}	:	(NaOH (Na _o S	::	15.0 10.0	:	16.0) 10.6)		112	:	5	:	165	:	90	:::	42.5	: 45.0	:do
5 _{A-12}	:::	(NaOH (Na ₂ S		20.0	:	16.0) 12.0)		148	:	5	::	165		76	:::	29.6	: I30.0	: Light yellow
5 _{≜-13}	:	(NaOH (NaoS	:	25.0	:	16.0) 9.6)	::	180	:	5	:	165		68		31.5	: I25.0	:do
5 _{A-14}	:	(NaOH (NaoS	:	30.0	:	24.0) 12.0)			: :	5	:	165		65	:	30.2	; I22.5	:do

 $\frac{1}{3}$ See page $\frac{26}{2}$ for definitions of terms and units of

measurement used in column headings.

2 with the exception of cooks 1 and 2, the material
was screened before cooking, with a loss of

about 20 percent of fine dust and dirt. The amounts of the chemicals and the yields are based on the screened material.

2The time to reach maximum temperature was 1.5 hours. $\frac{4}{2}$ The predominating color of the sheet was the light

oream of the bast fiber. The sheets were sprinkled with the undisintegrated shives, whose color was as noted. Some of the sheets were also sprinkled with dirt introduced with the raw material.

Ematerial was boiled 4 hours with water and then washed with hot water before cooking.

- ^DMaterial percolated with a cold 2 to 1 mixture (by volume) of ethyl alcohol and benzene until the solvent was no longer of a green color.
- IPulp bleached in two stages; about half of the bleaching chemical used in each stage.

Z₩ 29728 F

Table 35 --- Estimated cost of production of representative types of flax pulse on basis of prices prevailing in 1935

- Anna	· Buin muttable for :	Type of flar	Ohemical	1081#	-dossid: lo blaty:	oI:BISB				COBE		dual admentary fronte annot conta to tab	fri-sty		and non	4		2010/01/02/2010	10-2					- dand namewark fronte antonio Minto 10 1000
Tager		material used	Kinds	Amount	mount : bleacbed	oven-dry: ing un- ;powder bleacbed: pulp ;	 93	Flax		Soda ash	ishter 	Line5		Bulph	- Sec.	Selt	oake ^Z	Sulphur ⁶ Salt cake ^Z Total [§]	6	Chlorine ² Ine ⁵ . 2 ¹⁰⁶⁻¹ Totalli ^{od}		1 aer	1 Un 1 Ulea 1 ed 1 ed 1 pulp	oh-iTot
				Percen	tt:Percet	th there	ent : Pol	nds:Doll	ST8:PO	unde: Dc	lare!!	Percent: Percent: Percent: Pounds: Pollars Pounds: Dollars; Pounds; Pollars; Pounds; Pollars; Pounds; Dollars; Pounds;	lars:P	ounde: D	lars:	:spunod	Dollars	: Dollars	: Pound	IS: DOLLEY	s i Pound	st Bolla	rs: Doll	ars: Dol
D-163	. Kedium grade type of rug bond : Shaker tow : NaoH	: Shaker tow		12-5	1.09 1 5	57	5:0:3	+IO : 65.	25 : 5	: 105	6.15 :	4.0 1 15.0 1 15.0 1 3410 1 15.2 5 901 1 6.15 361 3.05 1 252 1 1.75 1 102 35 1 106 1 2.10 1 128 1 1.10 113.70 1 120.60	1:05		-	522	1.75	: 102.35	100	1 2.10	: 126	1	0 :113.	70 : 12
94-4C	: Wood-pulp type of bond Medum tor, : ReOR and the state of bond and dusted : 38-26 : cafor	: Medium tor, not dunted	: RaOH : Ma28 : Ca(OH) = :		14.1: 33.0 1 5-5 : 53.0 :		9 . 0 . 6	200 : 77.	50:1	1 260	12.70	35.0 6200 77.50 1032 12.70 1040 6.55	5.55			:: 699	4.65			56-4 - 52 - 1	: 298		2	45 I 12
D-61-62	D-61-62	do	: WaOH : Sulphur :		22.01 : 0.5 1.0.1	2 2 2	5 : 0 : 5	50 : 63.	1 : 01	310 :	16.10 :	1 15.0 ; 5050 ; 63.10 ; 1310 ; 16.10 ; 945 ; 8.05 ; 178 ; 1.60 ;; 86.15 ; 106 ; 2.10 ; 128 ; 1.10 ; 95.70 ; 102.60	3.05	178 :	1.60 :	-		1 86.15	: 10	5: 2.10	: 126		. 35.	01 : 02
811-a	: Semiblesched greuseprof, :	do1	: Ka ₃₀₁	1 17.0	: 59-1			+70 : 43.	9	: Tha	5.40	17.0 i 59.0 i 12.0 i 3470 i 43.40 i 444 i 5.40 iii 132 i 1.20 iii 58.40 i 65 i 1.70 i 108 i		132 :	1.20			1 58.40	 	1.70	108		5 : 64.	.85 : 64.90 : 71.15
D-152	: Dueted stram: MaOH	: Dusted straw: NaOH ; dusting loss; Na ₂ S ; 32 percent <u>12;</u>	E Na ₂ S	1.	17.6 :1228.5 4.4 :		: : : :	150 : 35.	: 06	: 061	15.30 :	13.0 7160 39.90 1490 12.00 1070 9.10 1 565 4.10 61.50 9.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	9.10 : :			585	4.10	: 5.13 :		: 1'%	ă 	•• • • •	5 1 68.	35 : 74.15 : :
B-217-1	B-217-1 : Medium grade type of wood- : Straw, not : MeOH : puip bond dusted : Wa25	: Straw, not : dusted	I NaOH	: 17:	17.4 : 42.6	2 	1 : 0.3	500 : 2 ⁴ .	: :	: 596	12.10 :	32.0 1 4800 1 84.00 1 955 1 12.10 1 710 1 6.05 1 353 1 2.70 1 45.30 1 227 1 4.55 1 272 2.30 1 90.35 1 50.90	: 50.9			383 :	2.70	: 5 .3		7 1 1.55	575		0 : 50.	35 : 6
B-210-2	B-210-2 : Straw board Has 000 Straw board	do1	: Ha2003	: 14.4	0 : 76.		e	£t: 569	÷.	335 :	÷ 01.4	14.0 1 76.0 1 2695 1 13.45 1 335 1 4.10 1		h.				: 27.00		1	- Anne	1		
D-100	D-100 I Dense, tough, dark-colored : Medium tow, : Fa2503 : specialities	: Medium tow,	: Fa2903	1 23.	3 : 42.			570 : 60	\$; 	782 :	9.60	21.5; 42.0; 75.10; 60.65; 782; 9.60;; 234; 2.10; 1200; 5.40; 75.10;;		234 :	5.10	1200	8.40	1.35.10	<u>.</u>		-			-

TOT 101 See page

ZAIT-dry pulp is assumed to contain 10 percent moisture.

Material on the basis of 12 percent molsture content. Straw at \$10 per ton, medium tow at \$25 per ton, and

shaker tow at \$50 per ton.

¹Boda ach, light, 58 percent MagO at \$1.23 per 100 pounds.

Zime, hydraied, 96 percent Oa(OH) 2 at \$0.85 per 100 pounds.

Soutphur at \$0.90 per 100 pounds.

Zait cake, 96 percent Ha₂90₄ at \$0.70 per 100 pounds. An efficiency of reduction of the sulphate to mulphide is taken as 90 percent. Stotal cost of unbleached air-diy pulp includes the cost of anterials plus \$12.50 pulp will overhead and credited with the recovery

us of parotas on sum overals of entropy anyone and the required based on 0.354 pound of obloring and 0.455 of lise for 20therine at #2 per 100 pounds. The amounts of obloring and 11ms required based on 0.354 pound of obloring and 0.455 of lise for of 67 percent of the modium content of the spant cooking liquor in the form of mode, ash.

each pound of bleaching powder required.

10Based on the assumption of 10 percent loss of pulp by blanching.

Lifotal cost of bleached air-dry pulp includes cost of materials plue \$3.70 bleach mill overnead. litverage for the three pooks.

X 29729 F 2

Table	36	Chemical	constants	s of	the	ethy	71 al	cohol-
		benzene	soluble	mate	erial	in	seed	flax
		straw						-

Determination		:	Sample number 2
Saponification value	147.6	:	125.6
Iodine valuenumber:	114.5	:	88.1
Unsaponifiable matterpercent:	42.8	:	37.2
Free fatty acidspercent:	3.5	:	8.4

Intersection of the constants.
Intersection of the constants.

R1159

Table 37.--Outline of the fractionation of the crude extract¹ obtained by treating flax straw with cold ethyl alcohol-benzene mixture

Treated with hot water: Soluble--A dark brown viscous solid.^{\pm} (10 percent) Insoluble -- Treated with carbon tetrachloride: 2 Soluble--A dark green viscous solid. -(82 percent) Insoluble--A dark brown granular solid (8 percent) Treated with carbon tetrachloride: $\frac{2}{2}$ Β. Soluble--A dark green viscous solid. $\frac{1}{2}$ (87 percent) Insoluble--Treated with ethyl alcohol. $\frac{2}{2}$ Soluble--A dark brown viscous solid. (12 percent) Insoluble -- A dark brown granular solid. (1 percent) C. Treated with hot ethyl alcohol: Soluble -- Allowed to cool: Soluble --- A dark green viscous solid. (83 percent) Insoluble -- A light green waxy solid. (10 percent) Insoluble -- A dark brown waxy solid. (7 percent) Treated with petroleum ether: D. Soluble -- A dark green soft wax (65 percent). Treated with boiling ethyl alcohol: Soluble -- Allowed to cool: Soluble²-A dark green viscous solid.¹ (71 percent) Insoluble²-A hard light green solid. (2 percent) Insoluble-A brownish green sticky resin. (27 percent) Insoluble -- (35 percent). Treated with boiling petroleum ether: Soluble--A hard green wax. \pm (33 percent) Insoluble -- (67 percent). Treated with ethyl ether: Soluble $\leq -A$ green resinous solid, $\leq (51 \text{ percent})$ Treated with boiling ethyl alcohol: Soluble -- (94 percent) Allowed to cool: Soluble -- (83 percent) Insoluble--(17 percent) Insoluble--(6 percent) Insoluble--(49 percent) Treated with chloroform: Soluble--A brown powdery solid.^{\perp} (100) percent) Ε. Treated with alcoholic-potash, dried and extracted with petroleum ether: Soluble --- Unsaponifiable matter, 18 percent, yellow curdy wax. 1 Treated with acetic anhydride: Precipitate --- Hydrocarbons found to contain 1.2 percent of sterol, basis unsaponifiable matter. Insoluble -- (82 percent) Treated with acetone: Soluble -- Treated with sodium carbonate solution, dried and extracted with ethyl ether: Soluble--Hydrocarbons (not identified) Insoluble -- Saponifiable matter. Extracted with water: Soluble--Acidified: Precipitate -- Brown, sticky fatty acids.

Residue obtained after evaporation of solvent.

	!	Thi	ickness	:	1000 C C C C C C C C C C C C C C C C C C	ectric ength
Material	:-		: As used : dynamo w			
	:	Inches	Inche	<u>s</u> :	Volts :	Volts
Flax cook D-35 (: oven-dry: oiled :	.0055	: : :	:	952 : 949 : 4,586 :	173 173 835
Flax cook D-36 (: air-dry : oven-dry: oiled :		: : : :			260 260 1,241
Asbestos paper	: ::		: 0.004-0.	: 020 :	: :	125
Cotton, double covering	;, shellacked:		: : .015	025 :	: 	275
Cloth, oiled	: :		: : .005	: 030	······	500
Paper, oiled, double co	: at		: .006	: 010		700
Paper, paraffined	: 		: .002	: 800		900
Paper, brown	: :		: : .005	: 010	: :	175
Silk, single covering,	: shellacked:		: .001	003 : :	: :	475

Table 38.--Dielectric strength of flax papers compared with similar commercial materials¹

¹Data for commercial materials taken from "Mechanical Engineers Handbook," Marks, second edition, 1924, page 1695.