CYIINDRICAI SHEAR SPECIMEN FOR QUALITY CONTROL TESI ON GLUE bONDS IN LAMINATED TIMBERS

November 1962

No. 2259

ON GLUE BONDS IN LAMINATED TIMBERS ${ }^{1}$

By
M. L. SELBO, Chemical Engineer

Forest Products Laboratory, $\underline{2}$ Forest Service U:S. Department of Agriculture

Synopsis

The quality of the glue joints in laminated beams can be evaluated by removing round plugs (with their axes perpendicular to the glue lines) from noncritical areas of the beams, such as the end trims, and testing them in shear. A standard block shear tool was modified to facilitate testing glue joints in round plugs, and comparison of results from such plugs and standard shear blocks are presented. Pros and cons of the test are discussed.

Introduction

A cylindrical specimen and a method to test it were developed at the Forest Products Laboratory to meet a need that sometimes occurs for making tests on glue joints of structural laminated wood members in service. This test also offers considerable promise as a method for quality control in production.

Because of improper exposure during erection, severe drying conditions after enclosure of the building, or other causes, checking and joint separation
${ }^{1}$ Presented at the Symposium on Timber-A Tested Material for the Engineer, Fourth Pacific Area National Meeting, American Society for Testing and Materials, October 3, 1962, at Los Angeles, Calif.
${ }^{2}$ Maintained at Madison, Wis., in cooperation with the University of Wisconsin.
sometimes develop on the surfaces of laminated timbers. When joints separate an appreciable amount at the surface, the quality of the glue bond in other parts of the timber is always questioned, and a need for some means to deter mine this has been evident for some time. It should be kept in mind, however, that surface checking in the wood is no indication of weak glue joints but rather the contrary; careful examination, often by use of a magnifying lens, is required to distinguish between joint separation and failure or checking in the wood.

As a possible solution to this problem, the Forest Products Laboratory has developed a test by which a check on the quality of the glue bond in various parts of a laminated member can be made without impairing the structural quality of the member. For quality control, the specimens could also be taken from the end trimmings that usually are removed in squaring up the ends of the members. Cylindrical shear specimens of various types have been used previously,,$\underline{4}$ but none of them appeared applicable to this particular problem.

Description of Test

The method is a modification of the glue block shear test (ASTM D 905-49). $\underline{5}$ The major difference is that the specimens used are cylindrical, about 1 inch in diameter, and with the glue joints perpendicular to the axis of the cylinder 6

The shear tool used in most of the development work was a modified glue block shear tool (figs. 1 and 2). The movable and stationary members that apply the shearing force have cylindrical holes of about the same diameter as the specimens. These holes coincide with each other when the movable shearing member is in the correct position for insertion of the specimen. Figure 2 shows a specimen in the shear tool ready for testing. The plane of the glue joint must coincide with the interface between the stationary and the movable shearing members. This was accomplished by making a fine pencil line on
$\underline{3}^{\text {Twiss, S. B. and Clougherty, L. B. A Disk Shear Test for Adhesives. }}$ ASTM Bull. Sept. 1958, p. 57.
$\underline{4}^{\text {Rhude, M. J. A Survey of Methods for Making Shear Tests of Wood. Thesis }}$ submitted in partial fulfillment of the requirements for the Degree of Master of Science (Civil Engineer), University of Wisconsin, 1950.
5American Society for Testing and Materials. Test for Strength Properties of Adhesives in Shear by Compression Loading. ASTM D 905-49.
6An earlier description of the method was published in the February 1962 issue of the Forest Products Journal (Vol. XII, No. 2). Some important modifications in the method have been made, however, since the earlier publication.
the periphery of the specimen, parallel to the glue joint and at a distance from the joint equal to the thickness of the frontal shearing member. When the specimen was inserted for testing, this pencil line coincided with the frontal face of the front shearing member. A small block of steel of exactly the same thickness as the frontal shearing member, and with a hole through it of the same diameter as that of the specimens, was used for marking the distance from the glue line equal to that of the thickness of the shearing member on the specimens.

The direction of the shearing force must be parallel with the grain direction of the adjoining laminations.

Cylindrical Plug Cutter

Various types of plug cutters were considered, and three types were tried. The one that produced the plug having practically no cutter marks or torn grain is shown in figure 3. This cutter is available commercially in sufficient length to produce about a 2 -inch plug. To produce plugs about 4 to 5 inches long, this cutter was cut at the base of the half cylinder, and a cylinder or barrel extension was welded to it (fig. 4).

The inside diameter of the plug cutter measured 1.015 inches. A number of plugs that were cut from laminated Douglas-fir and southern pine at approximately 12 percent moisture content were measured for length of diameter along and across the grain. This was repeated on plugs cut from materials that were at about 6 percent moisture content. The results are shown in table 1. The plugs averaged from 0.001 to 0.002 inch less in diameter than the cutter except for those cut from the pine at 6 percent moisture content, which averaged the same as the cutter. The ranges were from 1.013 to 1.015 inches for the individual pine specimens and from 1.012 to 1.014 inches for the Douglas-fir specimens.

The plugs were cut with a drill press, and various cutter speeds and feed rates were tried. When the cutter turned at 295 revolutions per minute and with axial feed rate in the range of 0.004 to 0.020 inch per revolution (equivalent to a cutting speed of about 80 feet per minute), the smoothest plugs were obtained.

Reasonably smooth plugs were also obtained at 475, 715, and 870 revolutions per minute with feed rates of 0.004 to 0.020 inch per revolution. Slight burning developed on dense wood at 870 revolutions per minute, and at $1,335 \mathrm{rev}-$ olutions per minute both burning and rough plugs resulted when dense wood
was involved. The smoothness of cut will vary somewhat, depending on the type of grain involved, and a few trials may be required to obtain the smoothest cut.

No portable equipment was developed, but this would be needed for taking plugs from laminated members in service.

Comparisons of Shear Results from
Shear Blocks and Round Plugs

Two Douglas-fir boards and two southern yellow pine boards 1 by 6 by 24 inches in size at about 12 percent moisture content were laminated with phenolresorcinol adhesive, using a 2 -minute assembly period. Similar boards were glued using 45 - and 90 -minute assembly periods. The entire procedure was repeated with casein glue on the two species. The extremely long assembly period (particularly for casein glue) was used to obtain borderline or inferior glue-joint quality. Both types of adhesives were cured at about $80^{\circ} \mathrm{F}$. for an overnight period. The laminated boards were allowed to condition for 1 week at 65 percent relative humidity and $80^{\circ} \mathrm{F}$. Equal numbers of shear blocks and round plugs were then cut from the glued assemblies in such a way that each plug was cut next to a shear block, both across and along the grain, thus affording both end and side matching.

A universal testing machine (fig. 5) was used for both the block and cylindrical plug shear tests. The rate of loading was 0.015 inch per minute.

The results are shown in tables 2 to 5 inclusive and indicate that the shear strength obtained with the round plug is somewhat lower than that obtained with the standard glue-shear block. The averages for 20 specimens ranged from 0.85 to 1.00 in the plug-to-shear block strength ratios. In slightly more than half of the results, the standard deviation showed greater variations in the data obtained with the plugs than in the data obtained with the shear blocks.

The average estimated wood failures were generally in reasonably good agreement between the two types of specimens, particularly with the resorcinolglued material.

The causes for the generally lower shear strengths that were obtained using the plugs were not investigated in detail. It is possible, however, that less pure shear develops at the glue line with the cylindrical plug than with the shear block because of the slight tolerance required in order to be able to insert the plug. Because of this tolerance, together with the compression of the wood under the shearing members, the axis of the specimen and the axes of the cylindrical holes into which the specimen is inserted may be at a slight angle with each other at the time of failure. A couple about the glue joint,
consequently, will occur that exerts a certain amount of tension perpendicular to the joint. Since wood is weaker in tension perpendicular to the grain than in shear, this couple action could contribute to the lower shear values obtained with the cylindrical specimen.

A couple action develops with the shear block also, but might be less pronounced than that associated with the cylindrical plug specimen. The thickness of the movable shearing member was about 1-5/32 inches and the thickness of the stationary member was about $31 / 32$ inch. The use of thicker shearing members than these would result in less disalinement between the axis of the specimen and the axes of the holes into which the specimen is inserted.

In an attempt to reduce the couple action and to simplify the alinement of the glue line at the interface of the two shearing members, the shear tool was modified as shown in figures 6 and 7. (Figure 8 is a line drawing of the tool.) By means of the locking device shown on the front of the shear tool the specimen can be held securely in position, thus keeping the axis of the specimen more nearly in alinement with the axis of the holes.

A group of plugs were tested in the modified shear tool and a group of shear blocks, end-matched and side-matched to the plugs, were also tested. The diameter of these plugs were about 1.003 inch, slightly shorter than for those used in the previous tests. The results of the shear tests are shown in table 6.

Again, the average shear strength was somewhat higher when the standard block test was used; the difference between the means was significant at the 2.5 percent level, but not at the 1 percent level. The ratio of the average plug strength to average shear block strength was 0.92 , which was also the grand average ratio for all tests made before the final modification was made on the shear tool. It is believed, nevertheless, that the locking device is a definite improvement on the shear tool, particularly when the plugs do not fit too snugly (in the final tests, table 6, the diameter of the plugs was about 0.010 less than in the previous tests).

The opening in the top of the fixed shearing member greatly facilitates the positioning of the glue line at the interface of the two shearing members, and appears to be a definite improvement in the ease and speed with which the test can be carried out.

The difference in the height of shearing area between the two types of specimens could cause or contribute to the lower shear strength developed by the
cylindrical plug. Johnson and Larson 7 found a reduction in shear strength of about 10 percent in Douglas-fir when the height of the shearing area was reduced from 1.5 to 1 inch.

Lower shear strength values are apparently obtained with a l-inch-diameter cylindrical specimen than with the standard glue shear block. This does not, however, make the cylindrical specimen unsuitable for evaluation of glue joint quality. For such an evaluation, the amount of wood failure developed is equally important. In general, no consistent differences were found in the amounts of wood failure developed by the two test methods.

Discussion of Test

A larger shearing area would be expected to give less variability between individual test results, but it would also require that heavier tools be used for cutting the plugs than were used in these experiments. In some laminated members or places in laminated members, furthermore, a plug that is larger than 1 inch in diameter would be detrimental. Hence, it was thought, a l-inch plug was a suitable choice.

The suggestion has been made that shear blocks could be cut from the cylindrical plugs. It is doubtful if this would provide a more accurate evaluation of the glue joints, and it would, of course, reduce the shear area and multiply the work of preparing the test specimens. An outstanding advantage of the cylindrical specimen is the speed with which it can be prepared.

A torsion test on the plugs has also been suggested. This may have possibilities, but experience and data would have to be accumulated before the test would be applicable for assaying glue joints.

Probably many variables or factors might have an effect on the shear strength in a cylindrical plug, such as the angle between grain direction and the glue line. Investigations of the effect of such factors would have been interesting but not necessarily essential to prove the usefulness of this test method. Furthermore, time was not available for an exhaustive study of the various factors that might have affected the results.

7
Johnson, R. E., and Larson, W. C. The Effect of Length of Shear Area on the Shear Strength of Wood. Thesis submitted in partial fulfillment of the requirements for the Degree of Bachelor of Science (Civil Engineer), University of Wisconsin, 1950.

The plug cutter that was used was entirely adequate to produce samples for evaluating the test method. To obtain plugs from deep members, a much longer tool than this cutter would be needed. It has been reported that another laboratory is well underway in the development of such a plug cutter, so no work was done along these lines except that the available cutter was extended to about 4 or 5 inches in length.

It has also been reported that accelerated soaking-drying tests on increment cores from laminated members have been carried out by another laboratory, hence it was decided to limit this investigation to evaluation of the joints by shear tests.

Conclusions

The test that was developed--shearing of glue joints in cylindrical plugs-appears sufficiently promising to be used, where it becomes necessary, to make tests on glue joints of laminated members in service. It also appears to have possibilities as a rapid test method for use in quality control.

When the test is properly carried out and high wood failures and shear strength are obtained, there should be reasonable assurance that the joints are of good quality.

A portable drill could probably be modified to operate a plug cutter under field conditions, but no work was done to explore this phase of sample cutting.

Table 1.--Measurements of diameter parallel to and across the grain of Douglas-fir and southern pine plugs cut with 1 -inch plug cutter at two different moisture content levels

12 percent moisture content						6 percent moisture content				
Plug No.	:	Diameter perpendicular to grain	:	Diameter paralle1. to grain		Plug No.	:	Diameter perpendicular to grain		Diameter parallel to grain
	:	In.	:	In.			:	In.		In.
$1 \mathrm{P}^{1}$:	1.014	:	1.015		1 P	:	1.014		1.014
2P	:	1.014	:	1.014		2P	:	1.013		1.015
	:		:				:			
3P	:	1.014	:	1.014		3P	:	1.014		1.015
	:		:				:			
4P	:	1.014	:	1.014		4 P	:	1.015		1.015
5P	:	1.014	:	1.014		5P	:	1.013		1.014
	:		:				-			
Average:	:	1.014	:	1.014			:	1.014		1.015
	:		-				:			
	:		:				:		:	
	:						:			
$1 \mathrm{~F}^{1}$:	1.012	:	1.013		1 F	:	1.014		1.014
	:						:			
2 F	:	1.013	:	1.013		2 F	:	1.013	:	1.014
	:						:			
3 F	:	1.014	:	1.013		3F	:	1.014		1.014
	:		.				:			
4 F	:	1.013	:	1.013	.	4F	:	1.014	:	1.014
	-			-			:			
5F	:	1.013	:	1.014	:	5 F	:	1.014		1.014
	-		:				:			
Average:	:	1.013	:	1.013	.		:	1.014		1.014
	:		-				:			
	:		:		:		:		:	

$\underline{1}_{\underline{P}}$ indicates southern pine and F indicates Douglas-fir
Table 2.--Comparisons of results of shear tests on standard glue-shear blocks 1 and about 1 -inch round
plugs cut from laminated Douglas-fir boards that were glued and cured at 80° F. With
casein glue at three different closed assembly periods

[^0]Report No. 2259
Table 3.--Comparisons of results of shear tests on standard glue-shear blocks ${ }^{1}$ and about 1 -inch round

[^1]Report No. 2259
Table 4.--Comparisons of results of shear tests on standard glue-shear blocks $=$ and about 1 -inch round

Table 5.--Comparisons of results of shear tests on standard glue-shear blocks 1 and about 1-inch round

[^2]Table 6.--Results of shear tests on standard glue shear blocks and on cylindrical plugs using modified shear tool

Shear		lock	Cylindrical		plug
Shear strength	:	Estimated wood failure	Shear strength		Estimated wood failure
P.s.i.	:	Percent	$: \quad \underline{\text { P.s.1. }}$		Percent
1,527	:	95	: 1,316	:	95
1,640	:	95	: 1,595	:	100
1,700	:	80	1,532	:	95
1,513	:	95	1,639	:	95
1,414	:	100	: 1,101	:	100
	:		: 1,620	:	
1,607	:	95	1,620	:	90
1,460	:	100	1,323	:	100
1,467	:	100	: 1,715	:	95
1,660	:	100	: 1,487	:	100
1,367	:	95	: 1,633	:	100
1,740	:	75	1,335	:	95
	:		:	:	
1,280	:	90	: 1,539	:	100
1,860	:	100	: 1,722	:	95
1,860	:	90	1,835	:	95
1,813	:	95	1,785	:	100
1,727	:	100	: 1,532	,	95
1,853	:	100	: 1,614	,	100
	:		:	:	
1,840	:	90	1,861	:	85
1,793	:	95	: 1,601	:	95
1,787	:	90	: 1,633	:	60
1,820	:	80	1,658	:	85
1,853	:	100	1,690	:	95
1,780	:	90	1,677	:	95
	:		: 1,750	:	
1,600	:	80	1,759	:	80
1,820	:	90	1,734	:	85
1,800	:	70	: 1,462	:	80 95
1,793	:	100	: 1,608	:	95 100
1,660	:	95	: 1,405	:	100 95
1,593	:	95	1,171	-	95
	:		: 1,297	:	
1,370	:	90	: 1,297	:	100
1,100	:	95	: 1,070	:	100
1,327	:	100	: ${ }^{962}$:	75
1,473	:	95	: 1,000	:	95 95
1,113 1,733	:	100 90	: 1,772	:	95
			:	:	
1,513	:	90	1,272	:	95
1,380	:	85	1,082	:	95
1,800	:	95	1,411	:	90
1,947	:	95	: 1,810	:	95
			:	:	
Average:	:		1,497	:	93
1,625	:	93	: 1,497	:	93
		STAND	deviation		
216.5	:		: 253.1	:	

Figure 1.--Front view of shear tool for testing cylindrical specimens. The two cylindrical holes must coincide before specimen can be inserted.

Figure 2. --Shear tool with cylindrical specimen inserted for testing. A broken specimen and a plug cutter are shown at the base of the tool.

Figure 3.--Cutter for making 1 -inch cylindrical plugs about 2 inches long.

Z M 116036

Figure 4.--Cutter after extension was added so plugs
4 to 5 inches in length could be cut.

Figure 5.--Testing glue joints in cylindrical specimens in universal testing machine.
Z M 116354

Figure 6. --Modified shear tool for testing glue joints in cylindrical plugs. A device for holding the specimen securely in place during test is shown in front of the tool.

Z M 121064

Figure 7.--Modified shear tool with plug-holding device in place and specimen ready for testing.

Figure 8.--Modified glue-block shear tool for shear testing glue joints in cylindrical specimens.

SUBJECT LISTS OF PUBLICATIONS ISSUED BY THE
 FOREST PRODUCTS LABORATORY

The following are obtainable free on request from the Director, Forest Products Laboratory, Madison 5, Wisconsin.

List of publications on
Box and Crate Construction and Packaging Data

List of publications on
Chemistry of Wood and
Derived Products
List of publications on
Fungus Defects in Forest
Products and Decay in Trees
List of publications on
Glue, Glued Products, and Veneer

List of publications on
Growth, Structure, and Identification of Wood

List of publications on
Mechanical Properties and
Structural Uses of Wood and Wood Products

Partial list of publications for
Architects, Builders, Engineers, and Retail Lumbermen

List of publications on
Fire Protection
List of publications on
Logging, Milling, and
Utilization of Timber
Products

List of publications on
Pulp and Paper
List of publications on Seasoning of Wood

List of publications on Structural Sandwich,
Plastic Laminates, and
Wood-Base Aircraft
Components
List of publications on
Wood Finishing
List of publications on
Wood Preservation
Partial list of publications for Furniture Manufacturers, Woodworkers and Teachers of Woodshop Practice

Note: Since Forest Products Laboratory publications are so varied in subject, no single list is issued. Instead a list is made up for each Laboratory division. Twice a year, December 31 and June 30, a list is made up showing new reports for the previous 6 months. This is the only item sent regularly to the Laboratory's mailing list. Anyone who has asked for and received the proper subject lists and who has had his name placed on the mailing list can keep up to date on Forest Products Laboratory publications. Each subject list carries descriptions of all other subject lists.

[^0]: ${ }^{1}$ In accordance with ASTM D805-52.

[^1]:

[^2]: $1_{\text {In }}$ accordance with ASTM D805-52.

