

AN ABSTRACT OF THE THESIS OF

Krishnan Kolazhi for the degree of Master of Science in Computer Science

presented on June 5, 2006.

Title: Node and Topology Management for Content Distribution in

Source Constraint Networks

Abstract approved:

Thinh Nguyen

As broadband Internet becomes widely available, Peer-to-Peer (P2P) ap-

plications over the Internet are becoming increasingly popular. Such an example

is a video multicast application in which, one source streams a video to a large

number of destination nodes through an overlay multicast tree consisting of peers.

These overlay multicast-based applications, however, do not exploit the full band-

width of every peer as the leaf nodes in the overlay multicast tree do not contribute

their bandwidth to the system. On the other hand, all the peers in a properly

constructed overlay mesh can contribute their bandwidth, resulting in high overall

system throughput. This thesis provides details of an overlay topology that opti-

mizes the bandwidth usage and also discusses design issues in node and topology

management. The thesis also presents implementation details of a real world P2P

system based on the above mentioned topology. Finally the designed system is

deployed on machines across PlanetLab and the results are presented. Large scale

simulation results are also presented to verify robustness of the system.

c©Copyright by Krishnan Kolazhi

June 5, 2006

All Rights Reserved

Node and Topology Management for Content Distribution in Source Constraint
Networks

by

Krishnan Kolazhi

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented June 5, 2006
Commencement June 2007

Master of Science thesis of Krishnan Kolazhi presented on June 5, 2006

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon

State University libraries. My signature below authorizes release of my thesis to

any reader upon request.

Krishnan Kolazhi, Author

ACKNOWLEDGMENTS

I would begin by thanking my advisor Dr. Thinh Nguyen without whose

support and ideas this thesis would not have been possible. Also I would like

to thank my project group members Rohit Kamath and Phuoc Do for their co-

operation and suggestions at times when I needed them the most.

I would like to thank the Information Services Department, for keeping me

funded for the 2 years of my studies and for being accommodating so that I could

focus on my studies.

I would like to extend my gratitude to my labmate Sunand Tullimalli for

taking time off his research and helping us with PlanetLab experiments.

I would like to thank Dr. Michael Quinn, Dr. Tim Budd, Dr. Toshimi

Minoura and Dr. Rajeev Pandey whose courses and ideas have influenced me and

hence this project, a lot.

I would like to thank my family back in India for their constant support

and encouragement. Credit also goes to my cousin who has guided me thorough

tough times at the start of my course. He has always been there when I needed

any help or guidance. Also, I would like to thank my roommates and friends for

making these 2 years so wonderful. Above all, thanks to the Almighty God for

showering his blessings on me.

TABLE OF CONTENTS

Page

1 INTRODUCTION . 1

1.1 The Problem we Address . 1

1.2 Existing Solutions . 2

1.2.1 Unicast Solution . 2

1.2.2 Network Layer Solution . 2

1.2.3 Application Layer Solution . 3

1.3 Our Strategy . 5

2 OVERVIEW . 8

2.1 System Goals. 8

2.2 Thesis Contribution and Content Organization . 9

3 THEORETICAL RATIONALE FOR TOPOLOGY CONSTRUCTION. . 11

3.1 Throughput Efficiency . 11

3.2 Some Optimal Topologies. 13

3.2.1 Fully Connected Topology . 13

3.2.2 Chain Topology . 14

3.3 Balanced Mesh . 15

3.4 Cascaded Balanced Mesh . 19

3.5 b-Unbalanced Mesh . 21

3.5.1 Procedure to join a b-Unbalanced Mesh 22

3.5.2 Procedure to leave a b-Unbalanced Mesh 24

4 SYSTEM ARCHITECTURE. 26

4.1 System Overview . 26

4.1.1 Node Classification . 26

TABLE OF CONTENTS (Continued)

Page

4.1.2 Component Interaction . 27

4.2 Features of the System: . 28

4.3 Advantages of the System . 29

4.4 Drawbacks of the System . 31

5 SYSTEMWIDE COMPONENTS. 32

5.1 Wrapper Subsystem . 32

5.2 Message Subsystem. 34

6 SUPERNODE DESIGN. 40

6.1 Mesh Manager . 40

6.2 Supernode Session . 43

6.3 SuperNode Design . 47

6.4 Object Oriented Principles used in design. 53

7 SUPERNODE WORKING . 58

7.1 Handling list session requests: . 58

7.2 Handling host session request: . 58

7.3 Handling join session request:. 59

7.4 Handling peer leave requests or peer fail messages: 61

7.5 Mesh Optimization . 62

8 PERFORMANCE EVALUATION. 65

TABLE OF CONTENTS (Continued)

Page

8.1 Small Scale Experiments . 65

8.1.1 System Throughput Evaluation . 65

8.1.2 Packet Delay Evaluation . 67

8.1.3 Peer Join Evaluation . 68

8.1.4 Peer Leave Evaluation . 73

8.1.5 System Throughput Evaluation of an Optimized Mesh 75

8.1.6 Packet Loss Evaluation . 78

8.2 Large Scale Simulation . 79

8.2.1 Throughput Efficiency . 79

8.2.2 Robustness Evaluation . 79

9 RELATED WORK. 83

10 FUTURE WORK . 86

11 CONCLUSION . 88

BIBLIOGRAPHY . 89

APPENDICES . 92

APPENDIX A First Appendix . 93

APPENDIX B Second Appendix . 101

LIST OF FIGURES

Figure Page

1.1 Video delivery from a single source to multiple receivers 1

1.2 Replicated Unicasting . 3

1.3 IP Multicast . 4

1.4 Vanilla Multicast . 5

1.5 Examples of (a) an overlay multicast tree; (b) a mesh topology 6

3.1 Chain topology with throughput efficiency of 0.55. 12

3.2 Fully Connected Topology . 14

3.3 Illustration of balanced mesh construction. 16

3.4 A cascaded 2-balanced mesh. 20

3.5 (a) The mesh immediately before the destruction of the small mesh;
(b) immediately after the destruction of the small mesh. 22

4.1 Component Interaction during a join request . 28

5.1 Class Diagram for Message Subsystem . 35

6.1 Class Diagram for Mesh Manager . 41

6.2 (a) BMesh linear state for b = 4 (b) BMesh span state for b = 4 42

6.3 Communication between Session Manager and Mesh Manager 44

6.4 Class Diagram for SuperNode . 49

7.1 Sequence of events for successful session hosting . 59

7.2 Sequence of events at the SuperNode for a join request 60

7.3 Sequence of events at the SuperNode for a leave request 62

7.4 (a) 15 peer topology for b = 4 without optimization (b) 15 peer topology
for b = 4 with optimization . 63

8.1 (a) Average Down Speeds for a 15-Peer Topology (b) Average Up Speeds
for a 15-Peer Topology (c) Comparison of file transfer time for a 15-Peer
topology . 66

8.2 Average Packet Delay for a 21-Peer topology . 68

LIST OF FIGURES (Continued)

Figure Page

8.3 (a) Average join times at different points in the algorithm for 21-Peer
topology (b) Number of peers joining at different logical positions for 21-
Peer topology (c) Cumulative average join time for 21-Peer topology 70

8.4 Data flow at SuperNode for join requests for 21-Peer topology 72

8.5 (a) Average leave times for a 21-Peer topology (b) Data flow at SuperNode
for leave requests for a 21-Peer topology . 74

8.6 (a) Average Down Speeds for a 15-Peer Topology (b) Average Up Speeds
for a 15-Peer Topology . 76

8.7 (a) Total data flow for join for 15-Peer topology (b) Average join time for
15-Peer Topology . 77

8.8 Packet Loss Evaluation . 78

8.9 (a) Efficiency vs. variation; (b) Efficiency vs. out-degree for different data
dissemination schemes. 80

8.10 (a) Percentage of affected nodes as a function of percentage of failed nodes
for different values of branching factor b; (b) Percentage of affected nodes
as a function of percentage of failed nodes for different allowable failures
with b = 4. 81

1. INTRODUCTION

1.1. The Problem we Address

In recent years there has been a surge in the number of applications that

make use of streaming media. Video Conferencing, remote presentations and

distance learning are stand out examples of such applications. Also a large number

of systems that make use of peer resources have been developed. Commonly called

Peer to Peer (P2P) networks, these systems make use of untapped peer potential

to facilitate sharing of information and quick data delivery. These applications

have largely influenced our lives and have the potential to affect us even more.

Imagine you being able to make a presentation from your office to an audience

world wide. These sort of applications have truly made the world a small place.

FIGURE 1.1. Video delivery from a single source to multiple receivers

To make the problem we are trying to address clearer, let us take the

following example. Consider the problem shown in Figure 1.1. It involves video

2

data delivery from a single source to multiple destinations spread across the world.

There have been multiple approaches to solve the problem. Let us go through them

briefly.

1.2. Existing Solutions

In this section, we look at existing solutions to the single source multiple

receiver problem mentioned earlier and see the drawbacks associated with each of

them.

1.2.1. Unicast Solution

Most high-level network protocols (TCP or UDP) only provide unicast

transmission service and therefore, nodes can send data to only one other node.

All transmission with a unicast service is inherently point-to-point. The solution

to the single source multiple receiver problem using unicast is as shown in Figure

1.2. In this case, the source creates N (where N is the number of receivers) copies

of the data it wants to transmit and sends it individually to each destination

node. This solution is not very efficient due to 2 main reasons: a) Duplicate

packets b) Inability of the source to keep up with the high bit rates required by

many applications such as video streaming.

1.2.2. Network Layer Solution

In case of replicated unicasting, the major drawback was the creation of

duplicate packets. A network layer solution to this problem is called IP Multicast.

In IP Multicast, the onus of data delivery to multiple destinations is moved to the

3

FIGURE 1.2. Replicated Unicasting

routers. The source generates a single packet and addresses it to the multicast

address to which all destination nodes are subscribed. The routers handle details

of how to route these multicast packets. The drawback of this system is that the

job of data delivery is moved to the routers which are already stressed out per-

forming basic functionality. Also the solution using IP multicast is not scalable

due to compatibility issues across Autonomous Systems (AS). Finally the mul-

ticast tree topologies do not allow for optimum throughput and there was room

for improvement. Figure 1.3 shows how a source can transmit data to multiple

receivers using IP multicast.

1.2.3. Application Layer Solution

The application layer solution is also known as Overlay multicast. Over-

lay multicast aims at shifting the onus of data delivery and node organization

from routers to end systems. The advantage of overlay multicast is that physical

4

FIGURE 1.3. IP Multicast

routers need not support complex multicast operations. Instead, packet routing

and forwarding are logically done at the application layer, which leads to easy

deployment across different AS(es). However, overlay multicast techniques are

sub-optimal since identical packets may travel on the same physical link due to

the inability of the application layer to control the underlying routing. In addi-

tion, overlay multicast is not optimal in terms of throughput since the leaf nodes

do not contribute their bandwidth to the system.

Most of the current streaming applications use overlay network models

to disseminate information. One such system, the Vanilla Multicast is shown in

Figure 1.4. Even in case of Vanilla Multicast, only the bandwidth of internal nodes

is used while none of the leaf nodes contribute to the system upload capability.

For most practical purposes, the fan out for a node in case of an overlay tree

will be around 4. For fan out b less than 4, the tree is not robust and also the

average delay for packets to reach the leaf node is large. However, as b increases,

the number of nodes at the leaf level increases and hence there is more unused

5

bandwidth in the system. Thus, even some overlay multicast systems do not

deliver optimal performance.

FIGURE 1.4. Vanilla Multicast

1.3. Our Strategy

As seen in Section 1.2.3, overlay multicast is not optimal in terms of

throughput since the leaf nodes do not contribute their bandwidth to the system.

For example, consider Figure 1.5(a) in which the source wants to disseminate

a large file to all nodes in an overlay network. If the link bandwidth between

the source and node B is 100 kbps, then all the destination nodes below B (B’s

children) will receive packets at the maximum rate of 100 kbps, even though the

sending bandwidth of B can be much larger than 100 kbps, e.g. 10 Mbps.

Let us now consider a different topology in Figure 1.5(b) where there are

additional links between the destination nodes, particularly, one link from C to

B. Assume further that node C has bandwidth of 300 kbps to relay the traffic

from the source to node B. If the set of packets that B receives directly from

the source and the set of packets that B receives from C are completely disjoint,

then B can forward the useful data to its children at the maximum rate of 400

kbps, a bandwidth improvement of four times over the overlay multicast tree

6

Source host

Destination host

C
B

(a)
Source host

C
B

D E

(b)

FIGURE 1.5. Examples of (a) an overlay multicast tree; (b) a mesh topology

approach. Therefore, using proper data partitioning techniques and topology, can

help improve average throughput significantly.

Traditional data dissemination techniques place bandwidth constraints on

individual links. This model does not reflect many networks such as DSL or wire-

less networks, where there is limited upload bandwidth but little restriction on

the download bandwidth. The thesis focusses on the data dissemination problem

in a source constraint network. In a source constraint network, bandwidth con-

straint is associated with a node’s upload bandwidth, and hence for most practical

purposes, a node’s download bandwidth can be considered infinite. The unique

feature of a source constraint network is that a node can allocate its sending rates

to each of its neighbors as long as the total sending rate does not exceed the

7

capacity. A node can have multiple links to other nodes, but the total bandwidth

is constrained to a maximum value. A lightly loaded P2P network [6] [7] of DSL

subscribers is an example of a source constraint network since the bandwidth

constraint is the node’s upload physical bandwidth, e.g. 250 kbps which is much

smaller than its download bandwidth. A peer may have multiple connections

to other peers but its total upload bandwidth must be smaller than its physical

bandwidth. Another example of source constraint network is a wireless network

where the power constraint is placed on each node. Hence, a wireless node may

be restricted to send data at a total maximum rate to other nodes, independent

of the number of its neighbors.

After a careful study, we determined that overlay multicast depends upon

a couple of key factors to deliver competent performance levels.

1. Topology

2. Contributions from each participating node towards increasing the system

throughput.

We endeavor to address the above issues by presenting an algorithm to

design an application layer mesh that exhibits near optimal throughput by having

all nodes, including the leaves, contribute to the overall system throughput.

8

2. OVERVIEW

After studying the traditionally employed approaches towards disseminat-

ing video from a single source to multiple recipients and the drawbacks associated

with each of these approaches, we propose a scalable topology capable of bet-

ter throughput by having each participating node contribute towards the system

throughput.

For the purpose of our discussion, we can safely make the following as-

sumptions.

1. The download bandwidth of a node is larger than its upload bandwidth.

Hence, the bandwidth bottleneck is due to the upload capacity of a node.

This assumption holds true for the networks consisting of DSL subscribers

or wireless networks.

2. We assume that upload capacity of all nodes is approximately the same in

order to simplify our discussion. However we do provide ways to design a

mesh in case of nodes with different upload capacities.

2.1. System Goals

The proposed topology and the associated data dissemination algorithm

are designed to achieve the following:

1. Bandwidth is fairly distributed among nodes, i.e. the total receiving rate

and sending rate of a node are equal.

2. A node can leave the network after it receives complete data without dam-

aging the connectivity of remaining nodes.

9

3. End-to-end delay from the source to any node is small in order to support

real-time applications.

4. Out-degree of any node is small for saving system resources.

5. Bandwidth usage of all nodes are optimal in the sense of average useful

throughput, a quantity defined in Section 3.1.

2.2. Thesis Contribution and Content Organization

The thesis discusses the issues involved in topology construction and pro-

vides an algorithm for constructing an efficient data dissemination topology. In

addition, the thesis provides details of the design of the SuperNode (a special node

in charge of node and topology management) and looks at different components

of the SuperNode in detail. The thesis also focusses on the working of the Su-

perNode and how requests from peers are handled by the SuperNode. Finally, a

series of experiments evaluate the performance of the overall system and look at

the mesh management overhead at the SuperNode in various scenarios.

The rest of the content is organized as follows. In Chapter 3, we define

the notion of throughput efficiency to measure the performance of any source

constraint network topology and data dissemination algorithm. In addition to

this, we propose algorithms for constructing different topologies and associated

data dissemination algorithms that maximize the throughput efficiency and at the

same time, maintain a reasonable trade-off between delay and out-degree. The

chapter on System Architecture gives a broad overview of the system designed,

along with features, advantages and disadvantages of the system. This is followed

10

by Chapter 5 which discusses design of common components which are utilized

by the entire system. Next, in Chapter 6 we discuss design issues involved while

developing the SuperNode and provide overview of the current design. In Chapter

7 we discuss the working of the SuperNode and how the SuperNode performs

desired functions in various scenarios. Following this, we present the results of

some large scale simulations and small scale deployment across PlanetLab [25]

nodes in Chapter 8. Finally, we discuss our conclusions, look at related work in

the area of data dissemination and also state future work to improve the system.

11

3. THEORETICAL RATIONALE FOR TOPOLOGY
CONSTRUCTION

The content presented in this chapter is an outcome of the joint work of

Rohit Kamath [26] and myself. The discussion in this chapter is similar to that

presented in [27].

3.1. Throughput Efficiency

To measure the performance of different data dissemination schemes in

source constraint networks, we define the notion of throughput efficiency:

Definition 1: Throughput efficiency is defined as

E
∆
=

∑i=N
i=0 Si

min(
∑i=N

i=0 Ci, NC0)
(3.1)

where 0 denotes the source node, i = 1...N denote N destination nodes, Si and Ci

are the useful sending rate and the sending capacity of node i, respectively.

The numerator is the sum of the useful sending rate of all the nodes in the

network. The useful sending rate is the rate at which data is sent to neighbors

such that this data is disjoint from other data that the neighbor receives. In a

data dissemination scheme, if nodes receive duplicate data, then the scheme is not

considered to be optimal. Hence a node i stops sending data to its neighbor once

it discovers that its neighbor is already receiving that data from another node. In

this case, the actual sending rate of a node would be equal to the useful sending

rate. The denominator in Definition 1 is the minimum of 2 quantities. They

are a) the total maximum sending capacity of all the nodes b) the maximum

12

C=3 C=1 C=3 C=3

3 Mbps 1 Mbps 3 Mbps

1 2 3 4

FIGURE 3.1. Chain topology with throughput efficiency of 0.55.

receiving capacity. Clearly efficiency is 1 when all nodes are sending at their

maximum capacity. However, the sending capacity of all nodes might be larger

than the allowable receiving rate, as this rate is dictated by the rate at which

data is injected into the system. To ensure that the efficiency does not reduce in

a situation where the network has a large capacity but small injected data rate,

the denominator considers the minimum of the 2 values.

Let us consider an example to see how this notion of efficiency can be used

to measure effectiveness of various topologies. Figure 3.1 shows 4 nodes connected

to each other in a chain topology. To disseminate data, node 1 sends packets at

3 Mbps to node 2. The upload capacity of node 2 is only 1 Mbps and it forwards

data at that rate to node 3. Since the receiving rate at node 3 is 1 Mbps, it cannot

do better than that even though its upload capacity is 3 Mbps. It forwards data

at 1Mbps to node 4. Thus throughput efficiency in this case is 3+1+1
3∗3 = 0.55. In

the above scenario, node 2 was acting as a bottleneck. If this node is moved to

the end of the chain, the throughput efficiency of the system is 3+3+3
3∗3 = 1.0. From

the above example it is clear that the useful sending rate depends on the network

topology.

Theorem 1: Throughput efficiency E ≤ 1 for any topology and data dis-

semination algorithm.

Proof for this Proposition can be found in APPENDIX A.

13

In the following sections, we propose a number of topologies that maximize

the throughput and at the same time, achieve trade-off in delay and out-degree.

3.2. Some Optimal Topologies

In this section we study two simple and intuitive optimal topologies and

note their drawbacks.

3.2.1. Fully Connected Topology

A fully connected topology for one source and N destination nodes is one

in which any node i is connected to all the other N nodes. Figure 3.2 shows a

fully connected topology. In this case there is no restriction in the amount of

resources consumed per node. To disseminate data, the source divides the data

into N disjoint parts and sends each part down one of its out-going connection

at a rate C/N . When the nodes receive data from the source, they forward it to

the other N − 1 destination nodes at a rate C/N . The drawback of this system is

that it is not scalable, because the amount of system resources consumed increases

linearly with N .

Theorem 2: For a fully connected topology, the following properties hold.

(a): Throughput efficiency of this scheme E = 1.

(b): The maximum node delay D is constant.

(c): Node insertion and deletion for this algorithm can affect at most N nodes

where N is the number of destination nodes.

(d): The out-degree of each node is at most N − 1 where N is the number of

destination nodes.

14

FIGURE 3.2. Fully Connected Topology

The properties can be proved as shown in APPENDIX A

Thus in this topology the time taken to receive a packet is greatly reduced

but the out degree of nodes and the number of nodes affected by leave or join is

high.

3.2.2. Chain Topology

A chain topology consists of a chain of all the N destination nodes. The

source acts the head of this chain and forwards data to node 1. This node in turn

forwards data to its neighbor and so on. A chain topology is shown in Figure 3.1.

For a chain topology, the out-degree of each node is 1 and nodes forward data to

their neighbors, at the rate of C bps.

Theorem 3: For a chain topology, the following properties hold.

(a): Throughput efficiency of this scheme E = 1.

15

(b): The maximum node delay D is O(N) where N is the number of destination

nodes.

(c): Node insertion and deletion for this algorithm affects constant number of

nodes.

(d): The out-degree of each node is constant.

The properties can be proved as shown in APPENDIX A

Thus this topology is efficient in terms of number of outgoing connections

and number of nodes affected by a join or leave but increases packet delay.

3.3. Balanced Mesh

The 2 optimal topologies presented in the previous section were extreme

cases for minimizing node out-degree or delay. The topologies did not consider

a trade off between out-degree and delay to achieve better overall performance.

Our aim is to construct a topology that provides high throughput efficiency with

low out-degree and small delay. We assume that upload bandwidth of all nodes

is similar. The proposed topology takes form of a balanced mesh. A balanced

mesh is a balanced tree in which the leaf nodes connect to each other and to their

ancestors in a systematic manner to provide efficient data dissemination. Figure

3.3 shows an example of a balanced mesh with b = 2.

For the Figure 3.3, the data dissemination algorithm is as follows. The

source partitions the data into two disjoint parts and sends it down the left and

right subtree. Thus all nodes including the leaf nodes receive data that was sent

down their subtree. Each leaf node then connects to a leaf node in the other

group to receive data from that group. Hence the leaf nodes are the first to

16

Source

1 2

3 4 5 6

7 8 9 10 11 12 13 14

0

A B

A A B B

A

B B

A

B

B B B B
A A A

A

A

FIGURE 3.3. Illustration of balanced mesh construction.

receive complete data. Figure 3.3 shows nodes 7 and 11, 8 and 12, 9 and 13, 10

and 14 connected to each other. The internal nodes still do not have data from

the other group. Note that the leaf nodes have made only 1 connection so far and

hence they still have unused bandwidth. The leaf nodes forward the data from the

other group to their ancestors and hence the internal nodes also receive complete

data. A leaf node starts by trying to forward data to its parent. If its parent

already receives data from the leaf nodes sibling, then the leaf node forwards data

to its grandparent. For example, node 7 forwards data to its parent (node 3).

Since node 3 already receives that data from node 7, node 8 forwards data to its

grandparent (node 1). Node 9 forwards the data to its parent (node 4) while node

10 does not forward any data to its ancestor since there is no node in need to data

in its group. The process is repeated by leaf nodes in the right subtree.

We now present the general algorithm for constructing a b-balanced mesh.

The algorithm ensures that (a) all the nodes receive complete data, (b) no node

has out-degree of more than b, (c) the number of hops from the source to the des-

tination nodes is O(logb N) where N is total number of nodes, and (d) throughput

efficiency E = 1.

17

To describe the algorithm, we first label the nodes as shown in Figure 3.3.

The nodes are labeled from low to high in a breadth-first manner. Within a level,

the nodes are labeled from left to right.

Algorithm for constructing the balanced mesh is as follows.

1. Using the source as the root, first construct a balanced tree with each inter-

nal node having out-degree of b.

2. Label the leftmost group as group 0 and the rightmost group as group b−1.

Assuming the tree has i levels, each leaf node j in the leftmost group is then

connected to b− 1 other leaf nodes in each of the different b− 1 groups. In

particular, node j in the leftmost group g is connected to nodes k = j+bi−1m

where m = 1, 2, ...(b − 1) − g. Also node k connects to j. This process

continues for all groups g, ranging from 0 to b − 2. These groups have

groups to their right to whom they can connect.

3. Each leaf node (except the rightmost) of the same parent is connected back

to its parent. The rightmost leaf node is then connected to its lowest ancestor

without b incoming connections. Thus each parent of a leaf node will have b

incoming connections. b− 1 connections from its children and 1 connection

from its parent. The grandparent will also have b incoming connections. 1

connection from its parent and b−1 connections from the rightmost child of

its first b− 1 children. This process continues till all ancestors have exactly

b incoming connections. At the end of topology construction, the rightmost

leaf node in each of the b groups does not connect back to its ancestors.

Hence the system still has b(C/b) = C bps unused capacity.

18

The pseudocode for construction of the Balanced mesh for N nodes is

presented in APPENDIX B. Given the balanced mesh, the data dissemination

algorithm is as follows.

1. The source splits the data into b partitions. It sends one partition down

each of the b groups at the rate of C/b bps per group. The internal node

forwards this data each of its children at the rate of C/b.

2. A leaf node forwards data got from its parent to b − 1 leaf nodes of other

groups to whom it is connected, at the rate of C/b. Now all leaf nodes have

complete data.

3. A parent receives data from b − 1 of its children. Each child forwards a

different partition and hence the parent receives all the b partitions (since it

already has the partition sent down its group). All the ancestor nodes also

receive the complete data from the leaf nodes with each leaf node forwarding

a different partition.

Theorem 4: For a balanced mesh, the following properties hold.

(a): Throughput efficiency of this scheme E = 1.

(b): The out-degree for each node is at most b.

(c): The maximum node delay D is logb((b− 1)N + b)+ 1 where N is the number

of destination nodes.

The properties can be proved as shown in APPENDIX A

19

3.4. Cascaded Balanced Mesh

The balanced mesh provides a topology that results in optimal data dis-

semination. But for building a balanced mesh, the number of nodes must be of

the form (bi−1)/(b−1) where i, b ∈ 2, 3, This puts a restriction on the number

of nodes that are needed to build an optimal topology. To overcome this problem,

we introduce the concept of Cascaded Balanced Mesh which allows us to create

an optimal topology with any arbitrary number of nodes. The idea of a Cascaded

Balanced Mesh is to cascade a series of balanced meshes to accommodate any

number of nodes.

As seen in Section 3.3, the rightmost leaf node in each group does not

forward data to its ancestors. Hence each rightmost node in the b groups has C/b

bps unused bandwidth. Thus there is a total unused bandwidth of C bps. Using

this unused bandwidth, a new balanced mesh can be created. The root of the new

mesh can be connected to the b rightmost leaf nodes of the previous mesh. Thus

the cascaded mesh root receives data at the rate of C bps. The root can then

disseminate data to all destinations below it, using the algorithm for a balanced

mesh. Figure 3.4 shows an example of cascaded 2-balanced mesh consisting of

23 nodes. The rightmost nodes in each group, node 10 and node 14, of the first

balanced mesh forward data to 15. Then a balanced mesh is constructed using 15

as the root. This mesh has nodes 19 and 21 with unused capacity. These nodes

forward data to node 22 which is a balanced mesh with a single node.

The general algorithm for construction of a cascaded b-balanced mesh con-

sisting of N destination nodes is as follows.

1. Construct a b-balanced mesh with the depth i = blog((b − 1)N + b)c − 1.

This step constructs the deepest b-balanced mesh without exceeding the

20

FIGURE 3.4. A cascaded 2-balanced mesh.

number of nodes. If there exists a previous b-balanced mesh, connect the b

rightmost leaf nodes with extra bandwidth to the root of a newly created

balanced mesh.

2. Set N = N − (bi+1 − 1)/(b− 1). This is the number of remaining nodes.

3. If N = 0, stop. Otherwise, go back to step 1.

The pseudocode for construction of the cascaded balanced mesh for N nodes is

presented in APPENDIX B. Since the construction of the cascaded balanced mesh

is based on that of a balanced mesh, the properties of the cascaded balanced mesh

are similar.

Theorem 5: For a cascaded balanced mesh, the following properties hold.

(a): Throughput efficiency E = 1.

(b): The delay is O((logbN)2).

(c): The out-degree for each node is at most b.

21

The properties are proved in APPENDIX A

3.5. b-Unbalanced Mesh

There are two drawbacks with the cascaded balanced mesh. First, the

delay is rather large, i.e. order of (logb N)2. Second, if nodes enter and leave

incrementally, a large portion of mesh may have to be rebuilt. In this section,

we introduce a new construction that reduces the delay and enables nodes to join

and leave incrementally with minimum effect on the mesh.

Similar to Section 3.4, the new algorithm uses the cascaded balanced mesh

to accommodate the new nodes. For convenience, we denote the mesh contain-

ing the source node as primary mesh and other meshes connected to the primary

mesh as secondary meshes. The idea of achieving low delay is to keep only a small

number of secondary meshes by limiting the total number of nodes in the sec-

ondary meshes to a just b2 − 1. This node limitation allows quick reconstruction

of the secondary meshes to accommodate nodes entering and leaving the topol-

ogy. When the number of nodes in the secondary meshes equals to b2, they are

destroyed and their nodes are then attached to the primary mesh at appropriate

places to achieve high throughput efficiency and low delay. The secondary meshes

is destroyed only when the number of nodes reaches b2 because this is the smallest

number of nodes that can be attached at right places in the primary mesh to

maintain the throughput efficiency of 1.

22

(a) (b)

FIGURE 3.5. (a) The mesh immediately before the destruction of the small mesh;

(b) immediately after the destruction of the small mesh.

3.5.1. Procedure to join a b-Unbalanced Mesh

Assume that we already have in place a balanced primary mesh. When a

new node comes in to join the network, it acts as the root node of the secondary

mesh. Now, when another node joins in, it is added to the secondary mesh using

the algorithm for constructing the cascaded balanced mesh as described in Section

3.4. This process repeats as long as the number of nodes in the secondary meshes is

lesser than b2. Once the node count reaches b2, we destroy the secondary mesh(es)

and join the nodes to the primary mesh as described below.

Let there be j levels in the primary mesh before the secondary mesh is

attached. There are 2 ways to attach the broken secondary mesh to the primary

mesh.

23

1. If all leaf nodes of the primary mesh are at the same level, then attach the

first b nodes to the leftmost node in the first group. The second b nodes will

be attached to the leftmost node in the second group and so on.

2. If the leaf nodes of the primary mesh are at different levels (due to attach-

ment of secondary mesh nodes earlier), then attach the first b nodes to the

leftmost leaf node at a lesser depth, in the first group. Attach the other set

of b nodes to similar positions in the remaining b− 1 groups.

When b new nodes attach to a node P in the primary mesh, node P dis-

connects b−1 connections to other nodes in other b−1 groups and one connection

that is used to forward data from another group to its ancestor. With the avail-

ability of b connections, node P can forward data from its parents to the b new

nodes. The b new nodes are then connected to other nodes in other groups in a

similar manner as described in the balanced mesh. Since the ancestor of node P

no longer receives the data from the other branch, the rightmost node of the new

b children of P will forward the data to P ’s ancestor. Now if more nodes join in,

a secondary mesh is constructed again. After bj+1 new nodes joins, where j is the

depth in the primary mesh, the primary mesh is balanced and its depth increases

by 1. Figure 3.5 illustrates the incremental construction of a 2-unbalanced mesh.

Initially, the primary mesh consists of 15 nodes. Figure 3.5(a) shows the resulted

topology after 3 new nodes join. When the fourth node joins, the secondary mesh

is destroyed and its nodes are attached to the nodes in the primary mesh. Nodes

15 and 16 are attached to node 7, nodes 17 and 18 to node 11. Nodes 7 and

11 are disconnected from each other. They also no longer forward data to their

ancestors. Instead, they use these two extra connections to forward data to the

new nodes. Nodes 15 and 16 then exchange the data with nodes 17 and 18 as

24

before. Node 15 also forwards data from another group to its parent (node 7) and

node 16 forwards data from another group to its grandparent (node 3). Similar

connections are made in the right subtree. Thus all the nodes receive complete

data. The pseudocode for construction of the b-unbalanced mesh for incoming

node i is presented in APPENDIX B.

3.5.2. Procedure to leave a b-Unbalanced Mesh

If the departing node belongs to the primary mesh, perform one of following

steps

1. If there exists a secondary mesh, pick a node from the secondary mesh to

replace the departed node. This step maintains the same structure for the

primary mesh. Next, rebuild the secondary mesh(es).

2. If there is no secondary mesh and the departed node is not of the largest

depth, pick a leaf node in the primary mesh with the largest depth to replace

the departed node. Next, construct a secondary mesh consisting of b2 − 1

nodes. These b2 − 1 nodes are the siblings of the chosen replacement node,

the nodes in other groups that connect directly to the chosen node, and

their siblings. If the departed node is of the largest depth, node swapping is

not necessary and a secondary mesh consisting b2− 1 nodes associated with

the departed node is constructed.

3. If the departing node belongs to a secondary mesh, rebuild the secondary

mesh. It can be proven that in the P2P mesh, the number of nodes affected

by a node removal or insertion is at most O(b2) and the delay is of O(logb).

25

Thus, this topology is scalable as the management overhead for node joining

and leaving does not depend on the number of nodes but on the branching

factor b.

The pseudocode for tree reconstruction for a b-unbalanced mesh when node i

leaves is presented in APPENDIX B.

Theorem 6: For a b-Unbalanced mesh with N destination nodes, the

following properties hold.

(a): Throughput efficiency E = 1.

(b): The delay D is at most blogb(N + 1)c+ 3b− 4.

(c): Node insertion and deletion for this algorithm can affect at most b2 + 2b

nodes.

(d): The out-degree for each node is at most b.

These properties are proved in APPENDIX A.

26

4. SYSTEM ARCHITECTURE

The architecture presented in this chapter is similar to the one presented

in [28].

Although the proposed b-unbalanced mesh can be built in a completely

distributed way, we believe a hybrid P2P architecture offers many more benefits.

A hybrid P2P architecture enables scalable data dissemination among nodes and

at the same time provides other benefits such as security, flexibility due to the

centralized management, etc. We now briefly discuss our hybrid architecture.

4.1. System Overview

Our system follows an Object Oriented approach and the design is based

on the responsibilities of entities.

4.1.1. Node Classification

Depending upon the responsibility that a node is going to take on in the

proposed hybrid P2P network, a node is classified as either a SuperNode or a

Peer.

1. SuperNode: A SuperNode is the controller of the system. It is a

special node which handles all requests from other nodes for joining or leaving

a session. It is the node in charge of providing all control information (neighbor

list, session list, etc) to the peers. Its task is to maintain an accurate global

view of the topology of a session. A SuperNode can handle multiple sessions,

i.e. keep track of multiple topologies. Each session in progress is assigned a

separate Session Manager which handles all requests for that session. The Session

27

Manager contains a Mesh Manager (Algorithm Component (AC)) which runs the

algorithm to maintain the topology. When a node joins or leaves a session, the

AC is invoked and it produces a list of affected nodes. (nodes which have to make

changes to their connections due to the join or leave). The SuperNode uses this

list returned by the AC to send out messages to affected nodes instructing them

to take appropriate action.

2. Peer: A Peer is a node that is participating in a session hosted by

the SuperNode. A peer is part of the topology for that session. The peer gets

information about its neighbors from the SuperNode when it joins a session. Also,

when a new node is added to the network, the peer’s neighbors may get updated.

In this case, the peer is informed about the new neighbors by the SuperNode

through standard messages (The different messages will be discusses in Chapter

5).

In addition to these main roles, a node can be an entity which wants to

get information about all the ongoing sessions on a SuperNodes. It is not a part

of any session and hence not part of the P2P network, until it decides to join or

host a session, after which it becomes a peer.

4.1.2. Component Interaction

The Figure 4.1 shows the various components of the system and their

interaction during a join session request from the peer.

The main components of the system are: 1) SuperNode and 2) Peer.

Within the SuperNode, there are multiple session managers responsible for each

individual session. Each session has an AC associated with it. The figure also

shows a session in progress and its logical image in the algorithm component. Let

28

FIGURE 4.1. Component Interaction during a join request

us briefly go through how these components interact when a new node wants to

join the session.

Since the SuperNode is the controlling authority of the system, the peer

contacts the SuperNode when it wants to join the session. The details regard-

ing all SuperNodes that are managing sessions is available in a published list of

SuperNodes. The peer gets the SuperNode details this published list. Once the

SuperNode receives a join request, it will determine which session the peer wants

to join and invoke the corresponding session manager. The session manager will

in turn call the AC which will add the node to the logical view of the mesh that

it maintains. The SuperNode will then send updates to all the affected nodes and

also provide the new peer with a set of neighbors.

4.2. Features of the System:

The features of the system are as listed below.

29

1. Support for multiple sessions: As part of the current design, the SuperNode

can support multiple sessions. This is achieved by having a separate Session

Manager in charge of each ongoing session. However there is an upper bound

on the number of sessions that a SuperNode can support. Even the peer is

capable of participating in multiple sessions.

2. Handling node failure (Heartbeats): The peer implements this feature

wherein each peer monitors its incoming links to detect if any of its sources

have failed. The peer gets the list of sources from the SuperNode and it has

a thread dedicated to check these input links. If the peer detects a failed

peer (indicated by absence of ping data for some stipulated value of time)

then it informs the SuperNode about it and the SuperNode removes the

failed peer from the mesh.

3. Mesh Optimization: In Chapter 2 we assumed that the upload capacity

of all nodes is similar. However, this does not hold true in the real world

scenario where nodes with different capacities may want to part of the same

session. In this case, the SuperNode optimizes the mesh by placing all

the high capacity peers close to the root of the mesh followed by the lower

capacity peers. Currently this is done statically (based on capacity provided

by the peers at join time) but it can be done dynamically (based on network

conditions) as explained in Chapter 10.

4.3. Advantages of the System

There are a number of advantages of having a hybrid P2P system design,

namely

30

1. Load Distribution: The design separates the work of topology management

and data dissemination. The responsibility of the peer is now limited to

forwarding data as instructed by the SuperNode. Thus the peer becomes

very simple. The complexity of running the algorithm and any issues related

to optimizing the performance of session are handled by the SuperNode.

2. Easy Control Information access: The SuperNode acts as the centralized

point of access for all Control Information (list of sessions, neighbors when

a node joins, etc). In pure P2P networks, in order to find session information,

the peer has to flood the system with the request for a file and then each

individual peer checks if it has that file available. By having a SuperNode, a

peer contacts this SuperNode and gets information about all the files being

streamed. Also the procedures for node join and leave is far more simplified

by having a controlling entity like the SuperNode.

3. Security: Centralized control over nodes joining the system prevents ma-

licious users from entering the network. The SuperNode can authenticate

the nodes participating in a session. As an example, consider a confidential

live meeting being streamed over the corporate network where only nodes

with certain IP addresses are allowed to receive the video. In this case, the

SuperNode handling this session can authenticate whether the node wanting

to join the session has a valid IP address. In addition to this, the SuperN-

ode has control over the types of files allowed to be streamed. Also only the

SuperNode knows the algorithm being used to construct the mesh rather

than having to divulge this information to any peer joining the session.

4. Flexibility: Hybrid architecture offers high flexibility in terms of manage-

ment and upgradability. Suppose, we wish to upgrade the algorithm or

31

change the network topology or add more security/controlling features, we

just need to make changes in the SuperNode. The rest of the system can

remain the same. This is because (a) the SuperNode sends to the peers the

standard messages and (b) the peers simply follows the instructions con-

tained in the standard messages. In addition, the system has the advantage

that any change need not be known to the peers because all the control is

with the SuperNode. Thus the whole system is easy to manage and upgrade.

4.4. Drawbacks of the System

1. Single Point of failure: The SuperNode may seem to be the single point

of failure for the system. Because all control decisions go through the Su-

perNode, if it fails then the whole system comes to a standstill. However,

by ensuring that we have multiple SuperNodes and session information is

smartly replicated, we can overcome this bottleneck.

2. Time overhead of contacting SuperNode: In pure P2P networks, the peers

have greater control over whom to connect to or not and how to optimize

their individual throughput. Also any changes to adjust to network condi-

tions like congestion, link failure etc can be done by the peers themselves.

In case of a hybrid architecture, since all decision making is done by the

SuperNode, the peers will have to contact the SuperNode and wait for the

SuperNode to make the changes. This introduces an additional overhead

everytime a control decision has to be made.

32

5. SYSTEMWIDE COMPONENTS

There are components of the system that serve as helpers to the two main

roles in the system, namely SuperNode and Peer. They are used by both Su-

perNode and Peer to fulfill their responsibilities. In this chapter we go through

these components and study them in some detail. We stress on the utility of these

components from the SuperNode’s point of view but also keep in perspective their

overall utility.

5.1. Wrapper Subsystem

The Wrapper Subsystem provides easy to use interfaces to network calls.

These are wrappers written over the basic socket library routines to hide their

complexity and provide a simple and uniform interface. The basic class in this

system is of Socket, which represents an end point of communication. From this

class we branch out two hierarchies, namely TCPSocket (which uses TCP pro-

tocol at transport layer) and UDPSocket (which uses UDP protocol at transport

layer) . The TCPSockets are used for transfer of control information while the

UDPSockets are used for transfer of data. Since the SuperNode is the controller of

the system and mainly issues instructions (control information) to peers, it always

uses TCPSockets. The peer, receives control information and also transfers data

and hence makes use of both TCPSocket and UDPSocket. We will look into the

details of TCPSocket in remaining part of this section.

1. TCPSocket: The TCPSocket class is derived from the Socket class. It inher-

its the primitive SOCKET descriptor (provided by the Operating System)

33

from the Socket class. It implements the send and receive functions of the

Socket class.

2. TCPClientSocket: The TCPClientSocket class is derived from the TCP-

Socket class. In addition to being a TCPSocket, the ClientSocket provides

the ability to connect to another socket. In case of a client socket, the port

at which it is bound is chosen by the system at the time it is created. The

SuperNode creates client sockets when it has to send control information to

peers.

3. TCPServerSocket: The TCPServerSocket class is also derived from the

TCPSocket class. The server socket listens to a port to accept incoming

connections. At the SuperNode, the serversocket listens to the port that

is advertised to all peers. All peers connect to this port to get the re-

quired service (hosting session, joining session, leaving session, etc). Being

a serversocket, the TCPServerSocket has the ability to listen to a port and

accept incoming connections. When a new connection is accepted by the

TCPServerSocket, it spawns a new TCPClientSocket for further communi-

cation over that connection.

In addition to the classes mentioned above, there is the MonitorSocket class. Mon-

itorSocket class provides the set of functions which allow objects of Socket class to

be monitored and also help detect the presence of data in any one of these sockets.

This class is used by the SuperNode to monitor the TCPServerSocket it creates

and also monitor the client sockets that are spawned in response to requests from

peers.

34

5.2. Message Subsystem

The Message subsystem consists of the messages which are used by the

SuperNode and the peer to communicate with each other. Hence the knowledge

of this component to both, the SuperNode and peer, is vital. Both the peer and

the SuperNode expect messages in a format that has been agreed upon and use

functions that are part of this subsystem to construct and parse these messages.

The figure 5.1 shows the class hierarchy for the message subsystem. The

Message class is the base class for all the other message classes. The Message

class specifies the receiver (nodeId) and the type of message (msgType). The type

of a message could be one of ackMessage, nodeFailMessage, etc. The main idea

behind having a separate hierarchy for messages is to isolate message creation and

parsing from the SuperNode and peer. Each of these message objects knows how

to create and parse itself. So the SuperNode or the peer need not know the actual

format of any of the messages. Also any changes in the future to message formats

will only entail changes in this subsystem. The SuperNode (or peer) identifies the

type of the message (using the msgType field of the Message object) and invokes

the parse function of that particular message object. We will briefly go through

the different messages that are used by the system specifying details about their

formats and the information they contain.

1. ACKMessage: This is a general acknowledgement (ACK) message sent by

the SuperNode. It contains the MessageID and sessionID. An ACK is used

in the following scenarios.

(a) An ACK is sent in response to a host session request from the peer. In

this case, an ACK indicates successful hosting of the session and the

sesionID provides the id of the newly hosted session.

35

FIGURE 5.1. Class Diagram for Message Subsystem

36

(b) When a change is made to the mesh, certain nodes will have to update

their connections. An ACK is also sent to tell the updated peers to

finalize their new links. This mechanism will be further explained in

the next chapter.

This class is used by the SuperNode to also make NACK messages. A

NACK message is sent, when the SuperNode cannot process the request

from a peer. A NACK is sent when a node requests the SuperNode to host

a session but the SuperNode cannot handle anymore sessions or when a peer

wants to join a session that is not hosted by the SuperNode. In addition to

the MessageID and sessionID, the NACK message also contains an error

code which indicates the cause of the NACK.

2. connMessage: The connMessage is a connection message. It is generated

by the Mesh Manager and placed in the Message Buffer (refer point 8).

The connMessage indicates the id of the node to connect to, along with

the packet sequence number of data packets to forward to that node. The

objects of this class are used to create the updateMessage (refer point 5).

3. disConnMessage: The disConnMessage is a message instructing a peer to

disconnect from another peer. It is also placed in the Message Buffer by the

Mesh Manager. The disConnMessage contains the id of the peer with which

connection is to be ended. The disConnMessage is also used to create the

updateMessage.

4. inputLinkMessage: The peers not only keep track of peers that they are

supposed to send data to but also keep note of peers from whom they are

supposed to receive data. The inputLinkMessage for a peer, contains a list

37

of sources for that peer. This list is in terms of peer ids. The peer expects

ping data from its sources and if it does not receive a ping for a set interval

of time, it sends a nodeFailMessage (refer point 7). The sources to a peer

are also sent as part of the updateMessage.

5. updateMessage: This message is sent by the SuperNode to the peers to in-

form them of any changes in their connections. When a peer joins a session,

it expects an updateMessage from the SuperNode to indicate successful join.

Also if a change to the mesh (due to node join, peer leave, etc) has resulted

in a new or modified neighbor list for a peer, then it receives an updateMes-

sage. The updateMessage gives information about the connections to be

made or broken and also has information about new sources for a peer. The

format for the updateMessage is as shown in the table below:

Message Details

Message ID identifies it as update message

SessionID indicates the session to which the message refers

C IP:ctrl port:data port tagID indicates a new connection to be made to that IP

D IP:ctrl port instructs peer to disconnect from another peer

I a IP:ctrl port indicates a new input source to be added

I r IP:ctrl port indicates input source to be removed from its source list

C IP:ctrl port:data port tagID connection to be made to another peer

Let us study the updateMessage in some detail. In the message, the term

ctrl port refers to the control port of a peer. The peer receives control in-

formation like neighbors list, update list, ping data from sources, etc at this

port. data port, is the port used only for data forwarding. The connection

38

part of the message specifies both the data and control port of the peer with

whom connection is to be established. This is because the peers exchange

both control information and data with their neighbors. The tagID field, in

the connection part indicates which packet to forward to the connection. In

the rest of the message, a peer is specified using its IP and ctrl port. The

IP and control port provide a unique identifier to the peer. The ordering of

instructions within the updateMessage is the same as that generated by the

MeshManger so that the final result is a consistent topology. To construct

the updateMessage, the connMessage, disConnMessage and inputLinksMes-

sage objects are used. Recall that these objects have the information in

terms of node ids. The Session Manager is responsible to convert these ids

to network addresses and ports. We will study how this is done in the next

chapter.

6. leaveMessage: The leaveMessage is sent by the peer when it intends to leave

the session. It contains the sessionId of the session it wants to leave and the

control port of the peer. This port is then used by the SuperNode to send

the leaveSessionACK.

7. nodeFailMessage: The nodeFailMessage is used by a peer to intimate the

SuperNode about a failed peer. The peer constantly monitors its sources

to see if they are alive. If the peer fails to receive ping data from a source

for a stipulated interval of time, then it reports the source as failed. The

nodeFailMessage contains the IP address and the control port of the failed

peer. This serves as the unique identifier which helps the SuperNode remove

the failed peer from the session.

39

8. Message Buffer: The Message Buffer is a collection of Message objects. It is

populated by the Mesh Manager when it is updating the mesh in response

to a join or leave request. When there is a node addition or deletion, the

Mesh Manager generates a set of connMessages, disConnMessages and in-

putLinkMessages. These messages are stored in the Message Buffer. The

Session Manager then, parses the Message Buffer and creates an updateMes-

sage for each affected peer. The optimizeBuffer function of the Message

Buffer sorts the buffer by nodeID. The optimized Message Buffer is used

by the Session Manager to send out messages to affected peers in a more

efficient manner. The advantages of buffer optimization are discussed in the

next chapter.

40

6. SUPERNODE DESIGN

The SuperNode is the controller of the system. It is a complex component

which makes use of the functionality of the other classes to do its job. In this

chapter we provide the details of the SuperNode design and discuss the different

classes that compose the SuperNode.

6.1. Mesh Manager

The Mesh Manager is also called the Algorithm Component since its sole

responsibility is to run the algorithm. It has no networking functions and is

oblivious to any network level details like IP, ports, etc. Each Supernode session

has its own Mesh Manager. The Mesh Manager retains the logical view of the

session topology. The Mesh Manager itself is composed of different classes that

work together to run the algorithm. Figure 6.1 shows the class diagram for the

Mesh Manager.

The classes that make up the Mesh Manager are as follows:

1. Node: This class represents a single node in the network. It keeps track

of its parent, children, links and references. References refer to the sources

from which a node receives data. Links keep track of the cross links as well

as the links back to the parent. This class also provides methods to update

the children, parent, links or references of a node.

2. BMesh: The secondary mesh (cascaded mesh) can contain multiple height-1

balanced meshes. A BMesh represents a height-1 balanced mesh. A BMesh

contains at most b+1 nodes at a time. The BMesh can be either in a linear

state (when there are b or less nodes) or in the span state (when there are

41

FIGURE 6.1. Class Diagram for Mesh Manager

42

(a) (b)

FIGURE 6.2. (a) BMesh linear state for b = 4 (b) BMesh span state for b = 4

b + 1 nodes). Figure 6.2 shows the linear and span state of a BMesh for

b = 4. A secondary mesh can have at most b − 1 such height-1 balanced

meshes. This class provides methods to add and remove nodes to the given

BMesh while maintaining the desired topology (linear or span).

3. Secondary Mesh: A Secondary Mesh is composed of multiple objects of

the BMesh class. The Secondary Mesh class provides methods to insert or

remove nodes from the secondary mesh. Node insertion or removal mainly

involves identifying the BMesh to which the node belongs (or will belong)

and then perform an insert or remove on that BMesh.

4. Primary Mesh: The Primary Mesh is responsible for maintaining the bal-

anced mesh. Every time the secondary mesh breaks, the resulting b2 nodes

are attached to the primary mesh. The class provides methods to system-

atically arrange these b2 nodes. This class also provides methods to remove

a node from the balanced mesh. This may require swapping with another

node in the secondary mesh.

43

5. Mesh Manager: The Mesh Manager class represents the entire algorithm

component to the external world. It is composed of the Primary Mesh and

Secondary Mesh. It provides methods to add and remove nodes from the

mesh. This class also provides methods to optimize the mesh to improve

system throughput. We will discuss the mesh optimization in the next

chapter.

6.2. Supernode Session

Each session hosted by the SuperNode is handled by a separate Supernode

session. It is also called the Session Manager since it completely manages one

session and handles all the requests pertaining to that session. As shown in

Figure 6.4, the Supernode session is inherited from the Session class. It inherits

the attributes that provide details of a session. This base class is shared by both

the peer and SuperNode to maintain session information like sessionId, filename,

session protocol, etc. These details are returned to the peers seeking information

about sessions handled by a SuperNode. In addition to this, a Supernode session

is made up of the following components:

1. Mesh Manager: Every Supernode session has one instance of the Mesh Man-

ager running. The Mesh Manager structure is as described in the previous

section. It is responsible for maintaining the logical view of the topology.

In order to add a node, the Supernode session calls the addNode function of

the Mesh Manager which takes in the id and capacity (whether it is DialUp,

T1, DSL, etc) of the node as parameters. The capacity of a node is used

while performing optimization of the mesh. Similarly, to remove a node, the

Supernode session calls the removeNode function of the Mesh Manager with

44

FIGURE 6.3. Communication between Session Manager and Mesh Manager

the id of the node to be removed.

Communication between Supernode session and Mesh Manager:

When the Mesh Manager gets a request from the session manager, it per-

forms the desired operation (like addNode, removeNode or swapNode). The

procedures to add, remove or swap nodes involves changing the mesh. When

the mesh is changed by the Mesh Manager, messages for peers are generated.

The Mesh Manager stores these messages in the Message Buffer. These mes-

sages are in the form of Message class objects. Specifically, the different mes-

sages put into the Message Buffer are ConnMessage, DisConnMessage and

InputLinkMessage. Next, the control returns back to the Session Manager.

Now, the Session Manager accesses this Message Buffer to send updates.

45

Before sending updates, the Session Manager optimizes the Message Buffer.

Optimization involves iterating through the Message Buffer and grouping

messages intended for the same peer. The final stage in Figure 6.3 shows

the optimized Message Buffer. The destination for a particular message is

stored in the nodeID field of the Message object. The optimization is a cus-

tomized sort on the Message Buffer based on nodeID . The Mesh Manager

is designed in such a way that the order in which messages are put into the

buffer is important and needs to be preserved. Hence ordering of messages

for a peer should be preserved after sorting. So, a stable sort is required.

The last 2 stages in Figure 6.3 show how the Message Buffer is optimized.

Note that order of messages for each node is preserved from stage 2 to stage

3 of Figure 6.3. This optimization is important because it allows the session

manager to open a socket and send all messages for a peer at once rather

than opening sockets everytime there is a message for that peer. The opti-

mization is an important gain as control messages are sent using TCP and

opening and closing TCP sockets is expensive as it involves the TCP three

way handshake for establishment of connection. Once the Message Buffer is

arranged in the manner described above, the session manager starts sending

update messages to destination nodes. Following this, the buffer is flushed

for use by the Mesh Manger for the next request. Figure 6.3 shows the

structure of the Message Buffer as populated by the Mesh Manager. The

Message Buffer shown can be considered to be a stack of Message objects.

As seen there is no fixed ordering of messages at this stage. This buffer is

returned to the Session Manager. Finally, the Session Manager combines

messages intended for the same peer, while maintaining the relative order

of messages, before sending out updates.

46

2. IPMappings: A node’s complete information is specified in terms of its IP

address, control port and data port. This information is stored in a struc-

ture, node info. When a new node joins the session, it gets assigned a node

id. The Mesh Manager uses the node ids to perform all operations. Thus, a

mapping of ids to node info is required. IPMappings stores the mapping of

the ids to node info. Each session object maintains a map of all the peers in

the session that it is handling. It is a crucial component as it performs the

translation of ids to actual network destinations. As soon as a join request

is accepted by the session manager, an entry is created in the mapping. The

objects of Message class present in the Message Buffer, contain all infor-

mation in terms of node ids. The session manager extracts node ids from

these objects, looks up the mapping and determines the corresponding IP

addresses and port numbers. Next it sends the message to the destination

with all ids converted to IP addresses and port numbers.

3. Update and Finalize Vectors: These are two lists maintained by the Supern-

ode session. When a particular peer is sent an update message, it is added to

the Update list. For each peer, which has been updated, the Session Manager

expects a confirmation back from the peer indicating that all the changes

were made successfully. When a confirmation is received from the peer by

the session manager, it removes the peer from the update list. Next, it adds

the peer to the Finalize list. The Finalize list consists of all the peers from

whom confirmation has been received. When the session manager receives

confirmation from all the peers, (indicated by an empty update list) it sends

each of the peers in the Finalize list, the finalize message. Only after receiv-

ing the finalize message, the peers start making use of the newly established

47

connections. By using their old connections till the Finalize message is re-

ceived, the peers ensure that existing participants still continue to receive

data while changes are being made. This helps to maintain the content flow

even when new nodes join or peers leave the session

4. Recycled ID queue: When a node joins the system, it is assigned an id. This

id stays as long as it is part of the system and uniquely identifies the node.

When a peer leaves the session, its id is put in the availableIds queue. When

a new node joins, this queue is checked to see if any of the ids can be reused.

If there are no usable ids in the queue then a new id is generated and the

node is assigned that id. This prevents the ids from increasing sequentially

when there are nodes joining and peers leaving a session continuously.

6.3. SuperNode Design

All of the above classes help form the components of the SuperNode class.

The SuperNode is initialized by specifying the port at which the SuperN-

ode listens for requests. It is to this port that all the peers connect to.

The port at which the SuperNode listens is provided in the published list

of SuperNodes which is made publicly available. The SuperNode consists of

a set of Supernode Session objects that are responsible for managing each

individual session. The Supernode Session design was described in the pre-

vious section. In order to handle multiple requests, the SuperNode class

uses multithreading. One thread constantly monitors the listening socket

for any incoming connections, while the main thread waits for user input

to stop the SuperNode. In addition to this there may be threads spawned

to handle requests from peers. These threads exit once they finish handling

48

the request. Hence, there are 2 threads which are constantly running at the

SuperNode. More details about the multithreading aspect is provided later

in this chapter. When a request to stop the SuperNode is received, the main

thread first cleans up all the data structures it has created and then waits

for the monitoring thread to exit before it returns a successful close to the

user.

The Figure 6.4 shows the class diagram of the SuperNode. The SuperN-

ode accomplishes its functionality through a list of Supernode session ob-

jects, each of which handles a session. The handleJoinRequest, handle-

LeaveRequest and handleNodeFail functions are executed as separate threads

which give rise to certain synchronization issues. These issues will be dis-

cussed later in this section. Let us go through the components of the Su-

perNode.

(a) SuperNode Session: As mentioned above, the SuperNode consists of

a list of SuperNode session objects, each of which manages a session.

All the details regarding a session are present within this object. The

SuperNode, when it receives a request, identifies the Supernode session

responsible for that session and delegates responsibility to it. A session

is identified by an unique sessionId. Each Supernode session object

knows the id of the session which it handles. The SuperNode acts

as an interface to the peers which connect to it. However the work

involved in processing a request is done by the Supernode session.

(b) Multithreaded functions in SuperNode: Multithreading is an important

aspect of the SuperNode which helps the SuperNode function effectively

and allows some degree of parallelism. The functions that handle join-

49

FIGURE 6.4. Class Diagram for SuperNode

50

ing of a node, leaving of a peer or peer failure are executed as separate

threads. This helps the monitoring thread to keep listening for more

incoming requests. The functions that handle hosting sessions, accept

confirmation responses from peers or handle requests to get list of ses-

sion hosted by the SuperNode, are handled in the monitoring thread

as they are relatively smaller in terms of execution time and hence the

overhead of spawning a new thread for these purposes can be saved.

Besides, requests to list sessions or confirmation of new links from peers

in response to update messages, can be frequent and hence the frequent

spawning of threads is also avoided.

Synchronization issues and their solutions:

Because the SuperNode is multithreaded, race conditions and simulta-

neous access to common data must be prevented. We briefly go through

two major synchronization issues at the SuperNode and see how they

are resolved.

i. Prevention of simultaneous data access:

Problem Description: There is a single mesh in the Session Man-

ager for a session. The mesh is updated in response to both join

and leave requests. Join and leave requests are handled in sepa-

rate threads. If the SuperNode receives a join request and a leave

request for the same session simultaneously, then 2 threads are

spawned to handle these requests. If both the threads execute

simultaneously, then the mesh would be updated by 2 threads si-

multaneously. As a result the mesh may be in an inconsistent

state. To avoid this, the SuperNode has to ensure that only one

of these requests is handled immediately and the other request is

51

kept waiting.

Solution: Simultaneous access to common data (mesh) is avoided

by using a mutex. SuperNode assigns a mutex to each ongoing

session. When the SuperNode receives a request which is executed

in a separate thread, it firsts waits on the mutex assigned to the

session that the request refers to. Once the mutex is released, the

waiting thread enters the critical section (where the mesh is up-

dated). Next, the thread changes the mesh and update messages

are sent out to affected peers. The peers then send back confir-

mation and when confirmation is got from all peers, the Finalize

messages are sent out. Once all the Finalize messages in response

to a change are sent, the thread releases the mutex. Thus, the Su-

perNode does not release the mutex as soon as it is done changing

the mesh. It actually waits till it gets confirmation all the peers

affected by the change before it releases the mutex.

ii. Handling Race Condition in the Session Manager:

Problem Description: Recall from Section 6.2, the Session Manager

maintains the Update and Finalize lists. The Update list contains

ids of all updated peers. When we get a confirmation from a peer,

the Session Manager moves the peer from Update list to Finalize

list. When the update list is empty, the Session Manager assumes

all affected peers have sent confirmations and it sends Finalize to

affected nodes. Consider the multithreaded scenario stated below.

The Session Manager in one thread, say thread 1, goes through

the Message Buffer and sends updates to the affected peers. These

peers are put into the Update list. The affected peers test their

52

new connections and send confirmation to the SuperNode. The

SuperNode, in another thread, say thread 2, is listening for confir-

mation from peers. Once the confirmation from a peer is received,

the peer is moved from the Update list to the Finalize list. So there

may be a case where, confirmation from all peers which have been

updated is received and the Update list becomes empty. Hence

the SuperNode sends the Finalize message to peers who have sent

confirmation. However, thread 1 still continues to send updates

to other affected peers. Hence, few of the peers (to which Finalize

was sent) have made new connections and the others (who received

updates after Finalize was sent) have not. So the mesh is in an

inconsistent state.

Solution: To overcome this problem, when thread 2 detects an

empty update list, it should know if updates to all affected peers

have been sent. Only if updates to all affected peers have been sent,

thread 2 should send Finalize to all the peers. This is achieved us-

ing a flag. This flag is initially reset. The flag is set by thread 1,

when updates to all peers have been sent. Thread 2 will monitor

this flag and only when it finds that the flag is set and the Update

list is empty, it will send the Finalize message.

Note that both the issues discussed above are applicable only

within a session. There are no synchronization issues across ses-

sions since each session is managed by a different Session Manager.

53

6.4. Object Oriented Principles used in design

The project lent itself to be designed using the object oriented paradigm.

The following features were the driving force behind using an Object Ori-

ented Approach in the design for this system.

(a) Project Size: The project was a complex undertaking and had multiple

people working on it. Object Oriented Design seemed to be best suited

for a project of this size.

(b) Multiple Components: The overall design for the system could be bro-

ken down into design of different identifiable components. These com-

ponents would interact with each other and collectively perform the

task at hand.

(c) Object Oriented features: Features like polymorphism, code reusability,

encapsulation, etc are extremely useful in developing such a complex

system.

Many Object Oriented features were used in the design of the SuperNode.

A few of them are listed below.

(a) Object: An Object/Instance is an individual representative of a class.

Instances of all the classes that are part of the system are created to

perform required functions.

(b) Class: A class is a collection of objects of similar type. Once a class

is defined, any number of objects can be created which belong to that

class. Examples of classes in the system are SuperNode, Supernodeses-

sion, BMesh, etc.

54

(c) Behavior and State: The behavior of a component is the set of actions

that a component can perform. A SuperNode can handle join request,

host request, leave request etc. Its state would be described by the list

of Supernode Session objects, queue of connections, etc.

(d) Encapsulation: Storing data and functions in a single unit (class) is

encapsulation. This helps to club together the data and all the methods

that operate on that data.

(e) Constructors: It is a procedure that is invoked implicitly during the

creation of a new object value and guarantees that the newly created

object is properly initialized. Every class of the system has a construc-

tor associated with it.

(f) Destructors: Like a constructor, a destructor is a method invoked im-

plicitly when an object goes out of scope or is destroyed. Therefore,

just before the object is reclaimed, all resources held by the object need

to be released. Every class of the system has a destructor associated

with it.

(g) Inheritance: It can be defined as the process whereby one class/object

acquires (gets, receives) characteristics from one or more other

classes/objects. The class from which the properties are inherited is

called the parent class and the class that inherits the properties is called

the child class. The child class obtains all the variables and methods

from the parent class and being a more specialized form of the par-

ent class, it adds additional functionalities. In the SuperNode design,

inheritance is used for a particular purpose as explained below.

55

i. Subclassing for Specialization: The inheritance relationship be-

tween Message class and all classes derived from it exhibits this

form of inheritance. Classes like ackMessage, connMessage, etc are

specialized from the Message class. The child classes do not provide

any additional functionality but modify behavior like makeMsg,

parse to behave according to the message they represent.

ii. Subclassing for Extension: The inheritance relationship between

Session and SupernodeSession classes exhibits this form of inheri-

tance. In this case the SupernodeSession simply adds new methods

to the Session class and provides it with new abilities. The Supern-

odeSession class has the ability to maintain the logical view of an

entire session and also add or remove nodes from the session.

(h) Polymorphism: The term polymorphism means many forms (poly =

many, morphos = form). Polymorphism in programming languages

means that there is one name (function or method or variable or class

name) and their meanings can be defined in a number of different ways.

Polymorphism is exhibited in the following ways at the SuperNode.

i. Overriding (inclusion polymorphism): In case of Message sub-

system, classes which inherit from the Message class, have the

makeMsg and parse functions which are inherited from the base

class. These classes override the definition provided in the parent

class.

ii. Polymorphic variable: The Message Buffer is a collection of Mes-

sage class objects. However this collection never holds Message

56

class objects. It can hold objects of any class derived from Mes-

sage. Hence the Message Buffer is a polymorphic variable.

iii. Overloading: If we consider the different classes inherited from

Message, they exhibit Overloading based on scope as there are func-

tions with the same signature that are present in all these classes

but they are at different scopes. Hence the same function name

takes multiple forms depending on scope.

(i) Composition: The SuperNode has instances of the Supernode session

and an instance of Message Buffer as a data field. Similarly there

is composition even inside the Supernode session and also different

components of the Mesh Manager. These objects help each other and

collectively perform the required functions.

(j) Containers: Vector is an array of objects whose size can be dynamically

changed. Vectors are used extensively in this system. For example they

are used to store the update and Finalize lists for a SuperNode session.

(k) STL entities such as map and Vector have been employed extensively

in this system.

(l) Design Patterns: A pattern is an attempt to document a proven solu-

tion to a problem so that future problems can be more easily handled

in a similar fashion.

i. Iterator: The Iterator is the pattern that is visible in the imple-

mentation of the system. It is used in order to provide access to

the elements in a collection (vectors) without exposing the internal

organization of the container.

57

ii. Singleton: The SuperNode class is a singleton as there can be only

one instance of the SuperNode running for a given execution.

iii. Proxy: The Message class hierarchy hides the protocol details from

the rest of the system. The Peer and SuperNode communicate with

each other using this Message subsystem but both these classes are

unaware of the exact message formats..

58

7. SUPERNODE WORKING

The SuperNode is the part of the system that is constantly working. It

monitors the listening port for any incoming requests from peers and handles

these requests. In this chapter, we study how the SuperNode responds to

various requests it receives from peers and also see how mesh optimization

is done by the SuperNode.

7.1. Handling list session requests:

This is a request from a node, for the list of sessions handled by the Su-

perNode. For each session that the SuperNode handles, the SuperNode

gives session details like what file is being streamed, what is the protocol,

etc. When the SuperNode gets such a list session message, it is handled by

the monitoring thread itself. The list session response is generated by fetch-

ing the session details for each active Supernode session. The SuperNode

then sends the response back to the requesting node.

7.2. Handling host session request:

When a peer has a file that it wants to stream, it will send a host session

request to the SuperNode. The request contains details like the file name,

file size, protocol used for streaming, etc. The SuperNode notes these de-

tails and provides it when any other node requests session details. When

the SuperNode receives a request to host a session, it will determines how

many sessions it is currently handling and checks if it can accommodate

59

FIGURE 7.1. Sequence of events for successful session hosting

another session. If it can accommodate another session, it will create a new

Supernode session object. This Supernode session will be responsible for

the newly hosted session. It will then send an Host Session ACK along with

the id of the hosted session, to the peer. If the SuperNode cannot host

another session, then it will send a NACK to the peer indicating the server

is full. The Figure 7.1 shows the sequence of events that take place at the

SuperNode in case of a successful session hosting.

7.3. Handling join session request:

When a node intends to join a session, it sends the join message to the

SuperNode. This message contains the id of the session the node wants to

join, the node’s control port and data port, and its upload capacity (which

will be used for optimization). When the SuperNode receives the request,

60

FIGURE 7.2. Sequence of events at the SuperNode for a join request

it looks up the Session Manager for the session the node intends to join and

invokes the addNode function on that session. In the addNode function, an

id is generated for the node. As described in Chapter 6, the ids may be

recycled or sequentially generated. Once an id is generated for the node, an

entry is made into the mappings table. This entry maps the node’s id to

node details (IP, control port, data port). The mapping is important as the

Session Manager is the only place where these ids can be translated into IPs

and port numbers. After the mapping entry is made, the Supernode Session

calls the addNode function of the Mesh Manager which runs the algorithm

and adds the new node to the mesh. The resulting set of messages are stored

in the Message Buffer. Now, the Supernode Session goes through the buffer

and sends update messages to affected peers. The new node receives a set

61

of peers as its neighbors and sends its confirmation to the SuperNode. After

the Supernode session has received confirmation from all the affected peers,

it sends the Finalize message. Hereafter, the new node is part of the ongoing

session. The Figure 7.2 shows the sequence of events that take place at the

SuperNode in case of a join request.

7.4. Handling peer leave requests or peer fail messages:

For both peer leave and peer fail, the peer must be removed from the mesh.

Hence the handling of leave requests or fail messages is similar. When a peer

intends to leave a session, it will send a leave message to the SuperNode.

In case of a failed peer, a message is sent by one the neighbors of the peer

which is expecting data from it. For peer fail, the reporting peer also sends

out the IP of the failed peer. Once the leave or fail message is received, the

SuperNode will invoke the appropriate session object and call removeNode

on that object. The session object in turn calls the removeNode of the

Mesh Manager. The Mesh Manger runs the algorithm and populates the

Message Buffer and the Supernode session sends out the updates. Once all

the affected peers confirm their changes, the Supernode session removes the

peer from the mapping and also returns its id to the queue of available ids.

In case of a leave request, the session manager also sends out an ACK to

the leaving peer. Only after receiving this ACK, the peer actually leaves

the system. Till then it is part of the system and helps maintain continuous

flow of data. The Figure 7.3 shows the sequence of events that take place

at the SuperNode in case of a leave request from the peer.

62

FIGURE 7.3. Sequence of events at the SuperNode for a leave request

7.5. Mesh Optimization

Without optimization, the Mesh Manager assumes that the upload capac-

ity of all the peers in the system is similar and hence the positions of the peers in

the mesh are not important. However when the upload capacity of peers varies

then it becomes imperative to come up with a scheme which ensures maximum

throughput possible for the given set of peers. Clearly if the low upload capacity

peers are closer to the root of the mesh, they are bound to affect more peers than

if they were placed at the leaf level. The leaf peer affects, the peer to which it has

cross links, the parent of the cross link (if the cross linked peer has a back link)

and its own parent to whom it forwards data. The idea behind mesh optimization

is to keep all the low capacity peers at the greatest depth possible.

63

(a) (b)

FIGURE 7.4. (a) 15 peer topology for b = 4 without optimization (b) 15 peer

topology for b = 4 with optimization

64

The capacity of a peer is determined at join time. Recall that the peer

sends a join session message which contains the peers capacity. This can be one

of T1, DSL or DialUP in decreasing order of upload capacity. The capacity of

every node is compared with its parent’s capacity (except the secondary root, for

which the capacity of its reference is considered) and if the parent is not a T1

peer, the parent is added to a queue, swapCandidates. In the optimized version

of the Mesh Manager, when a peer joins, it is first added to the mesh. Next, the

Mesh Manager goes through the swapCandidates queue to determine if there is

any lower capacity peer in the queue. If such a peer exists, then the incoming

peer is swapped with the low capacity peer. Since the data structure used is a

queue, swap candidates are identified in level order fashion which ensures that if

there is any low capacity peer higher up in the mesh then it is swapped. Also, if

the peer (say A) which replaces the low capacity peer (say B) is not a T1 peer (in

case a DSL has replaced a DialUP) then peer A takes the place of peer B in the

swapCandidate queue. This ensures that if a better capacity peer (say T1) joins

in later, then peer A gets swapped. The Figure 7.4 shows the effect of swapping.

In this case, the first four peers which were added to the mesh were low capacity

followed by all high capacity peers. In Figure 7.4(a) all the low capacity peers

remain closer to the root and hence all the peers below them are affected. In

Figure 7.4(b) due to optimization, all the low capacity peers are swapped down

to the greatest depth and hence affect lesser peers.

65

8. PERFORMANCE EVALUATION

8.1. Small Scale Experiments

The P2P system developed was deployed on PlanetLab [25] machines. An

extensive set of experiments were run, the results of which are depicted and dis-

cussed below.

8.1.1. System Throughput Evaluation

The following experiment was carried out to compare the throughput of

our system against Vanilla Multicast. As we saw in section 1.2.3, in case of Vanilla

Multicast, the onus of forwarding data was completely on the internal peers and

the leaf peers had a lot of unused bandwidth. The experiments were run on the

same set of peers for both Vanilla Multicast and our system. Also to get an accu-

rate and unbiased result, we kept the logical position (position in the topology)

of machines the same. To simulate the DSL upload bandwidth bottleneck, the

sending rate of the source was limited to 30kBps

The result of the experiment is shown in Figure 8.1. As seen, the proposed

system outperforms Vanilla multicast in each experiment. Further as the value of

branching factor increases, the performance gain of the proposed system increases.

In theory the proposed system outperforms Vanilla multicast by a factor of b. This

is because as the value of b increases there are more leaf peers than internal peers

in a tree. In case of Vanilla multicast, only the internal peers upload data and

hence the total upload capacity of the system decreases. This can be seen in

Figure 8.1(b). The proposed system utilizes the leaf node bandwidth. Even when

66

2 3 4
0

5

10

15

20

25

30

35

Branching Factor

A
ve

ra
ge

 D
ow

ns
pe

ed
s

in
 K

B
/s

Vanilla Multicast
Hybrid P2P Mesh

2 3 4
0

5

10

15

20

25

30

35

Branching Factor

A
ve

ra
ge

 U
ps

pe
ed

s
in

 K
B

/s

Vanilla Multicast
Hybrid P2P Mesh

(a) (b)

2 3 4
5

10

15

20

25

30

35

40

45

Branching Factor

F
ile

 T
ra

ns
fe

r
T

im
es

Vanilla Multicast
Hybrid P2P Mesh

(c)

FIGURE 8.1. (a) Average Down Speeds for a 15-Peer Topology (b) Average Up Speeds

for a 15-Peer Topology (c) Comparison of file transfer time for a 15-Peer topology

67

there is an increase in branching factor b, the topology is such that each node

still has b incoming connections each of which delivers content at the rate of C/b

and hence system performance does not degrade with increase in b. As seen from

Figure 8.1, the upspeed and downspeed for the proposed system is almost the

same for any value of branching factor. This is in accordance to the notion that

for the proposed system throughput efficiency is 1. The Figure 8.1(c) compares

the average file transfer time for Vanilla multicast and the proposed mesh. For

this experiment, a file of size 315 kB was sent by the source. The transfer time

for Vanilla multicast increases with increase in b. This is because with increase in

b the average upload speed decreases in Vanilla multicast. But, for the proposed

mesh, the transfer time remains constant for different values of b which is a result

of constant upload speeds for different values of b.

8.1.2. Packet Delay Evaluation

These set of experiments were aimed to measure the time taken for a peer

to receive the first set of data from all the groups. We know from Section 3.3 that

the source partitions the data and transmits different partitions through different

branches. A peer is said to have received complete data only after it receives data

from all the groups. The data from various groups follow different paths along

the topology and are also routed individually across the network by the routers.

Hence there is no particular order in which packets can be expected.

Figure 8.2 shows the result of the packet delay experiment. As expected the

delay decreases with increase in branching factor. This is because with increase

in b the depth of the mesh decreases and hence there are lesser number of hops

to get from the source to the destination. Note that as b increases there are more

68

2 3 4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Branching Factor

P
a
c
k
e
t
D

e
la

y
 i
n
 s

e
c
.

FIGURE 8.2. Average Packet Delay for a 21-Peer topology

number of cascaded meshes in the secondary mesh and hence the delay for these

peers might increase. But in most practical cases, the number of peers in the

primary tree is greater than that in the secondary tree. For b = 3, the number

of peers in the primary mesh is 13 while there are only 8 peers in the secondary

mesh. Hence the average delay decreases.

8.1.3. Peer Join Evaluation

In the next set of experiments, we compare the join times and the mesh

management overhead for different topologies with out-degree set to b = 2, b = 3

and b = 4. Before evaluating the results we would like to define certain logical

points in the algorithm. These logical points refer to the state of the mesh when

the node joins in and hence determines the join time. They are as follows:

1. Node is chained: In this case, the incoming node is connected to only the

last peer in the mesh which forwards it data from all the groups.

69

2. Chain is broken to form span: This occurs for nodes which become part of

the secondary mesh. In this case, the secondary mesh has a set of peers

chained. This incoming node makes the node count b + 1 which results in

the change from chain to span topology. Figure 6.2 shows the chain and

span topology in the secondary mesh.

3. Node becomes secondary root: In this case, there is a balanced pri-

mary/secondary mesh and the node coming in becomes the root of the new

secondary mesh.

4. Secondary Mesh breaks: This is the point in the algorithm where the in-

coming node results in b2 nodes in the secondary mesh. As a result the

secondary mesh breaks and is reattached to the primary mesh.

The Figure 8.3(a) shows the join time for peers at different logical points in

the algorithm. We observe that, as the value of b increases, the average join time

at different logical points 2, 3 and 4 increases. For point 1, the peer is chained to

the previous peer and hence the join time does not depend upon b but depends

upon the proximity of the 2 peers to each other and to the SuperNode. At points

2, 3 and 4 the number of peers affected and hence the join time, depends upon

b. As b increases, the number of peers affected increases and hence join time

increases. If we study the graphs for b = 2, 3 and 4 indiviually, it is observed

that all 3 topologies follow a similar pattern. The peer being chained requires the

least time. When the chain is broken and when a peer becomes a secondary root,

totally b+1 peers are affected. But in the former case, an existing chain is broken

to form a span, while in the latter case, b peers directly connect to the new peer.

Hence the join time for the former is more than that for the latter. Finally at

70

1 2 3 4
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Logical Points in the algorithm

A
ve

ra
ge

 jo
in

 ti
m

e
in

 s
ec

Legend for X axis:

1 −−− Node is chained to previous node
2 −−− Chain broken to form a span
3 −−− Node becomes secondary root
4 −−− Secondary Mesh Breaks (b2 nodes)

b = 2

b = 3

b = 4

1 2 3 4
0

2

4

6

8

10

12

Logical Points in the algorithmN
um

be
r

of
 n

od
es

 a
tta

ch
ed

 a
t t

ho
se

 p
oi

nt
s

b = 2
b = 3
b = 4

Legend for X axis:
1−− Node is chained to previous node
2−− Chain broken to form a span
3−− Node becomes secondary root
4−− Secondary mesh breaks

(a) (b)

0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Node

A
ve

ra
ge

 c
um

ul
at

iv
e

jo
in

 ti
m

e
in

 s
ec

b = 2

b = 3

b = 4

(c)

FIGURE 8.3. (a) Average join times at different points in the algorithm for 21-Peer

topology (b) Number of peers joining at different logical positions for 21-Peer topology

(c) Cumulative average join time for 21-Peer topology

71

point 4, the secondary mesh breaks and hence the number of peers affected is of

O(b2) and as b increases, the join time at this point increases sharply.

Figure 8.3(c) shows the cumulative average join times for different values

of b. As expected, initially the graph changes rapidly with each incoming peer,

before becoming stable. It can be seen from the graphs that the average join times

for all values of b is approximately the same. The average join time is determined

by the number of peers joining in and their logical positions in the algorithm.

Figure 8.3(b) shows the number of peers that join at each logical position. When

a peer joins and is chained, the join time is very small. Whereas, when the mesh

is broken, the join time is comparatively large. As seen in Figure 8.3(a), when

the mesh breaks, the join time at point 4 for b = 4 is much larger than for b = 2.

However for b = 2, the mesh breaks for every 4 peers while for b = 4, the mesh

breaks only every 16 peers and hence the average join times for different values

of b is similar. It can be seen from Figure 8.3(b) that most of the peers for b = 4

are chained which really contributes towards decreasing the average join time. In

fact as shown in Figure 8.3(c), the average join time till peer 19 is lesser for b = 4

than for b = 3 or b = 2. But at peer 20, the secondary mesh in b = 4 breaks and

hence there is a spike in the average join time and the average join times for all

bs are similar. Similarly in Figure 8.3(c), for the graphs of b = 2 and b = 3, there

are spikes corresponding to breaking of the secondary mesh (peers 6, 10 and 18

for b = 2 and peer 12 for b = 3).

Data flow at SuperNode for Join requests:

The Figure 8.4 shows data flow at the SuperNode in response to join re-

quests it receives. This can be considered as the Mesh Management Overhead.

As expected, the data flow increases with b. This is because as b increases, the

72

2 3 4
0

2

4

6

8

10

12

14

Branching Factor b

D
at

a
flo

w
 in

 k
B

Total data flow

Maximum data flow for single join request

Minimum data flow for single join request

FIGURE 8.4. Data flow at SuperNode for join requests for 21-Peer topology

number of affected peers, to whom messages are sent also increases. The minimum

data flow occurs when a peer is chained. Since the number of affected peers in

this case is constant for all bs, the minimum data flow is similar for all values of b.

The maximum data flow in each case occurs when the mesh is broken and hence

as b increases, the maximum data flow increases rapidly (O(b2)). As the value of

b increases, it can be seen that the contribution of the maximum data flow to the

total data flow increases as well. Since this experiment was run for 21 peers, for

b = 2, the mesh was broken multiple times while for b = 3 and b = 4, the mesh

was broken only once. Hence, the maximum data flow contributes significantly

to the total data flow for b = 3 and b = 4. However, when there are more peers

involved, the total data flow keeps increasing while the maximum data flow for a

single join remains constant. Thus, the system scales up well in presence of more

peers.

73

8.1.4. Peer Leave Evaluation

This set of experiments try to evaluate the time taken by a peer to leave

a session and the overhead of the leave at the SuperNode in terms of messages

generated. The experiment was run for a 21 peer topology and for branching

factors b = 2, 3, 4. There are various scenarios in which a peer can leave and each

scenario is handled separately. In order to make sure that all the scenarios were

assessed before calculating an average leave time, we ran the experiment for the

following cases:

1. Secondary Mesh is not present and Primary Mesh is balanced

(a) A leaf peer leaves.

(b) A peer high in the hierarchy leaves.

(c) A random peer leaves

2. Secondary Meshes are present

(a) A peer high in the primary mesh leaves.

(b) A leaf peer of the secondary mesh leaves.

(c) A chained peer in the secondary mesh leaves.

(d) The root of the non-empty secondary mesh leaves.

(e) The root of the empty secondary mesh leaves.

The Figure 8.5 shows the result of the experiment.

Clearly as the value of branching factor increases, the leave times also

increase. The main contribution to the leave time is mesh reconstruction after

the leave which involves sending messages to all the affected peers. As discussed

74

2 3 4
0

0.5

1

1.5

2

2.5

Branching Factor

A
ve

ra
ge

 L
ea

ve
 T

im
es

 in
 s

ec
s.

2 3 4
0

1

2

3

4

5

6

7

8

9

Branching Factor b

D
at

a
flo

w
 in

 k
B

Minimum data flow for single leave

Maximum data flow for single leave

Average data flow

(a) (b)

FIGURE 8.5. (a) Average leave times for a 21-Peer topology (b) Data flow at SuperN-

ode for leave requests for a 21-Peer topology

in Section 3.5.2, we know that the number of affected peers for a leave is at most

b2 + 2b. This number increases rapidly with the increase in b.

Data flow at SuperNode in response to leave request:

Figure 8.5(b) shows the overhead at the SuperNode when a peer leaves the mesh.

Similar to the join overhead, the average data flow increases with increase in b.

Again the minimum overhead is incurred when a chained peer leaves. In this

case, the only peer affected is its parent and hence the data flow is constant for

different values of b. The maximum data flow occurs when an internal (non leaf)

peer leaves a perfectly balanced mesh. In that case, first a leaf peer is swapped

with the internal peer and then out of the remaining b2 − 1 peers, a secondary

mesh is formed. This process involves first sending out a set of messages to swap

in a new peer in place of the leaving peer, then disconnection messages to break

off the lowermost level from the primary mesh and lastly a set of connect messages

75

to construct the secondary mesh. As b increases, the number of nodes required

to form a secondary mesh increases and hence the data flow increases. On an

average, when a peer leaves the number of peers affected increases with b and

hence the average data flow in response to leave requests increases with b.

8.1.5. System Throughput Evaluation of an Optimized Mesh

The next set of experiments evaluate the performance of the optimized

mesh against the non optimized mesh. The non optimized mesh is worst hit when

the initial peers which join the session are low capacity peers. Hence to achieve

maximum performance gain due to optimization, in the experiment carried out,

the first 3 peers that were added to the mesh were ones with low capacity. These

were set as DialUp which were followed by T1 peers which had higher capacities.

We again carried out the experiment for b = 2, 3, 4. The experiment for system

throughput was run on the local network with the sending rates throttled for peers

marked as DialUp.

Figure 8.6 shows the result of the experiment. As expected the optimized

mesh results in greater throughput. This is because when optimization is enabled,

the Mesh Manager swaps the low capacity peers to the bottom while the high

capacity peers move up the mesh. If there is no optimization then there is no

swapping of peers and hence the first three low capacity peers stay close to the

root of the mesh and affect all subsequent incoming peers. When the low capacity

peers are at a greater depth (optimized mesh) they are bound to affect lesser peers

than they would if they were at the top of the hierarchy (non optimized mesh).

Figure 7.4 depicts meshes with optimization and without optimization.

76

2 3 4
0

5

10

15

20

25

30

35

Branching Factor

A
ve

ra
ge

 D
ow

ns
pe

ed
s

in
 K

B
/s

Non−optimized Mesh
Optimized Mesh

2 3 4
0

5

10

15

20

25

30

35

Branching Factor

A
ve

ra
ge

 U
ps

pe
ed

s
in

 K
B

/s

Non−optimized Mesh
Optimized Mesh

(a) (b)

FIGURE 8.6. (a) Average Down Speeds for a 15-Peer Topology (b) Average Up Speeds

for a 15-Peer Topology

Overheads involved in mesh optimization: When a peer joins into

a mesh in which optimization is enabled, the SuperNode will determine the peers

capacity and see if there is a lower capacity peer higher up in the mesh. If such

a peer exists, the SuperNode will swap the new peer with the low capacity peer.

As a result, the data flow during join in an optimized mesh is more than that for

a non-optimized mesh in which no swapping occurs. Along with increase in data

flow, there is also increase in the join time of peers.

The figure 8.7(a) shows the comparison of data flow for join for non opti-

mized and optimized meshes for different values of b. It is evident that the data

flow for optimized mesh is greater than that for non optimized mesh. Recall that

the first three peers added to the mesh were of low capacity and the rest T1.

Hence with each subsequent T1 peer addition, there will be a swap with a low

capacity peer closer to the root. In the final state, the low capacity peers are at

77

2 3 4
0

2

4

6

8

10

12

14

16

Branching factor b

D
at

a
flo

w
 in

 k
B

 Non optimized mesh

Optimized mesh

2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Branching Factor b

Jo
in

 ti
m

e
in

 s
ec

Non optimized mesh
Optimized mesh

(a) (b)

FIGURE 8.7. (a) Total data flow for join for 15-Peer topology (b) Average join time

for 15-Peer Topology

the bottom of the mesh. Since the swap is performed for almost every peer added,

the data flow overhead is significant. Also for b = 4, for a 15-peer topology, a lot

of peers get chained and hence the non optimized data flow is very small. But

when optimization is enabled, these peers which were originally chained now get

swapped with other peers higher up generating more messages. Hence the over-

head is maximum for b = 4. The overhead is lesser for b = 2 where the mesh gets

broken often and hence a lot of data is generated even for the non optimized mesh.

In this case, swapping overhead in terms of messages generated is insignificant.

Figure 8.7(b) shows the comparison of average join times for non optimized and

optimized meshes for different values of b. The results are similar to that for data

flow. For b = 2, the join time in case of the optimized mesh is similar to that

for the non optimized mesh. But for b = 4, since most of the chained peers get

swapped, the join time increases significantly.

78

20 22 24 26 28 30 32 34
0

1

2

3

4

5

6

7

8

9

Bitrate in KB/s

Lo
ss

 r
at

e
%

With FEC
Without FEC

FIGURE 8.8. Packet Loss Evaluation

8.1.6. Packet Loss Evaluation

Low loss rate is desirable for media dissemination to ensure quality of

service. With peer-to-peer architecture, the data transmission rate is more un-

predictable since peers participate in data forwarding. An unreliable peer will

affect data transmission of its immediate peers. We conduct an experiment on

PlanetLab to measure the packet loss rate of the system. The experiment consists

of 7 peers, branching factor b = 2, and packet size = 500 bytes. In addition,

we implemented forward error correction (FEC) with 30 % redundancy. Figure

8.8 shows the effect of increase in sending bit rate, on loss rate. As seen, as the

sending rate increases, the loss rate increases. For each bit rate, we ran two dif-

ferent sessions. A session’s loss rate will be the average of the loss rates of all

of the receiving peers inside the mesh. The loss rate plotted in Figure 8.8 is the

average of these two sessions. Loss rate occasionally decreases due to improved

traffic conditions on PlanetLab. However, the overall loss rate tends to increase

as bit rate increases. As seen, FEC does help reduce loss rate. For example, at a

79

sending rate of 33 Kbytes/sec, loss rate with FEC is about 2.0% while loss rate

without FEC is about 7.8%.”

8.2. Large Scale Simulation

8.2.1. Throughput Efficiency

In this simulation we use 3000 nodes with capacities uniformly generated

between C(1+v) and C(1−v) where C is the mean capacity. Figure 8.9(a) shows

the throughput efficiency for our structured mesh vs. maximum variation on

capacity v. As seen, the efficiency reduces as the capacity variation increases since

an internal node may have small capacity which creates a bandwidth bottleneck

for all its children. However, even when v = 0.25, the throughput efficiency is still

0.8%. Similar results are obtained when node capacity is normally distributed.

Figure 8.9(b) shows the throughput efficiency vs. the out-degree for three

different schemes: traditional multicast tree, unoptimized structured mesh, and

optimized structured mesh. For optimized structured mesh, nodes with lower ca-

pacities are moved to the leaves to reduce bottleneck for other nodes. As seen,

throughput efficiency is 98% for optimized structured mesh and 92% for unop-

timized one. For the multicast tree, the throughput efficiency is small and de-

creases as the out-degree increases since the number of inactive nodes (leaf nodes)

increases in this topology.

8.2.2. Robustness Evaluation

We now present the simulation results for our proposed structured mesh

which looks into the robustness of the system. The following simulations aims

80

Efficiency vs Variation

0

0.2

0.4

0.6

0.8

1

1.2

0 0.05 0.1 0.15 0.2 0.25 0.3

Max Variation

E
ff

ic
ie

n
c
y

Series1

Efficiency vs Outdegree

0

0.2

0.4

0.6

0.8

1

1.2

2 3 4 5 6

Outdegree

E
ff

ic
ie

n
c
y

optimized structured forest

unoptimized structured forest

multicast tree

(a) (b)

FIGURE 8.9. (a) Efficiency vs. variation; (b) Efficiency vs. out-degree for different

data dissemination schemes.

to quantify the affect of node failure on the proposed topology. All simulation

was done using NS [9]. In this simulation, we used BRITE [10] to generate an

Albert-Barabasi topology consisting of 1500 routers. Next, we randomly generated

an additional 1000 overlay nodes and connected them to the existing 1500 routers.

There are two important factors that determine how the failure of a node affects

others in the topology. The first is whether the node in contention is a leaf node

or an internal node and the second is the branching factor b. If the node is an

internal node, then when it fails, the number of affected nodes are more than that

in the case of a leaf node. This is because all the nodes below that internal node

and the nodes in the other groups that receive data due to cross links also fail.

The branching factor determines how many nodes a particular node is connected

to and hence, provides data to. Hence, larger the branching factor, more the

number of nodes affected for a given failed node.

Figure 8.10(a) shows the percentage of affected nodes as a function of failed

nodes for different branching factors. It is important to emphasize that these

failures are only temporary as the network can reconstruct itself as described in

81

Section 3.5.2. As expected, the percentage of affected nodes increases with the

percentage of failed nodes. For b = 2, the number of internal nodes is large (500

nodes) and hence the number of affected nodes is largest. It is interesting to note

that for b = 3, the number of non leaf nodes is 336 and for b = 4, it is only 254.

Between b = 3 and b = 4, the difference in the number of internal nodes is not

large, but because of the branching factor, the affected nodes for b = 4 is higher

than b = 3.

1 1.5 2 2.5 3 3.5 4
10

15

20

25

30

35

40

45

50

55

60

% of nodes failed

%
 o

f n
od

es
 a

ffe
ct

ed

Failure model for different values of b

b = 2
b = 3
b = 4

1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

% of nodes failed

%
 o

f n
od

es
 a

ffe
ct

ed

Failure model for different allowable failures

1 failure allowed
2 failures allowed
3 failures allowed

(a) (b)

FIGURE 8.10. (a) Percentage of affected nodes as a function of percentage of failed

nodes for different values of branching factor b; (b) Percentage of affected nodes as a

function of percentage of failed nodes for different allowable failures with b = 4.

Let us suppose FEC or Multiple Description Coding technique is used to

disseminate the data [11] [12]. In this case, a node need not receive complete

data. Thus, a node is considered a failed node if it fails to receive more than a

certain number of partitions K. Figure 8.10(b) shows the percentage of affected

nodes as a function of percentage of failed nodes for different K with b = 4. As

82

expected, the number of affected nodes decreases as more packet loss is allowed.

The reduction in percentage of affected nodes is significant. This is because the

data received at a node is coming from different parts of the topology and so it

will require a large number of nodes to fail to completely deprive a node of any

data.

83

9. RELATED WORK

In this section, we look at similar work on data dissemination on the In-

ternet.

Similar work is done by [15] in developing Bullet, a high bandwidth data

dissemination system. They make use of an overlay mesh at the application layer.

In case of Bullet, the source splits the data into disjoint parts and sends them to the

peers. It is then upto the peers to find out what part of data they are missing and

which peers have them. A peer then establishes multiple connections to other peers

having data disjoint from them and hence gets complete information. This work

makes use of data reconciliation techniques like minwise sketches described in [13]

to locate disjoint data. Byers et.al. [13] suggests a number of useful ways to locate

content in an overlay network. They provide techniques of data reconciliation at

different levels. They go into details of coarse grained reconciliation, speculative

reconciliation and fine grained reconciliation any of which can used depending

on the disjointness of data between two content seeking entities. They address

the issues of heterogenous connections and asynchrony by advocating the use of

encoded data.

In both the cases cited above, the stress is more on locating content among

the peers once it has been disseminated by the source. None of these works focus

on algorithmically creating a topology that will obviate the need for such dynamic

information exchange. Our work tries to construct a good topology in which nodes

connect to each other in a deterministic manner as instructed by a controlling

authority. Hence there is no need for data reconciliation.

Authors in [11] use multiple overlay multicast trees to achieve the objective

of video streaming. In this case they transmit multiple descriptions of the video

84

along different multicast trees and these multicast trees co-operate to ensure peers

get as many descriptions as possible. The more descriptions a peer gets, the better

the playback quality of the video. The technique of multiple multicast trees to

disseminate data is also used by SplitStream [16]. However in SplitStream, care

is taken that a peer is an internal node in only one of the multicast trees and

is a leaf in the rest. This ensures that the system is reliable and the peers are

deprived of only one description (the description sent out on the tree in which it

is an internal node) if another peer fails.

In most of the above mentioned schemes, there is no algorithm involved in

mesh construction. In case of Bullet the onus is on the peer to locate content it

wants while SplitStream makes use of Scribe [17] and Pastry [18] infrastructure for

tree construction. This thesis focusses on a deterministic algorithm that specifies

the manner in which nodes are to be attached for optimal data dissemination.

The most similar work to that presented in this thesis has been carried

out by MutualCast [3]. Similar to our approach, MutualCast looks to utilize the

upload bandwidth of all the nodes. MutualCast uses the bandwidth of nodes that

request the content and in addition also uses certain non content requesting nodes

to forward data. MutualCast constructs a number of height-1 (where the source

is directly connected to all the content requesting nodes) or height-2 (where the

source connects to an intermediate content requesting or non content requesting

node) trees that aid the process of content dissemination. The intermediate nodes

in the height-2 trees have an out degree of O(N1) where N1 is the number of

content requesting nodes. Hence the number of nodes affected for a join or leave

will be of O(N) where N is the total number of nodes. In this scheme the number

of outbound connections for the source is of O(N). In case of MutualCast, the

onus is on the source to decide whether to forward a data partition directly to the

85

destinations or to send it down a height-2 tree and if it opts for the latter, it will

have to decide which tree to send the data partition to.

Similar work include [19] which proposes a protocol for cooperative bulk

data transfer. Other similar work try to reduce the burden on the server by

utilizing the upload bandwidth of the peers. These schemes become inherently

more scalable, as more the number of peers, more the upload capacity of the

system. For example, authors in [20] make use of P2P overlay networks formed

by the clients themselves to alleviate the traffic burden on the content servers.

The capacity modeling of P2P file sharing systems have also been studied by [21]

[22].

Real world applications similar to ours include P2P networks like Gnutella

[6], KaZaA [7], Swarmcast [23], and BitTorrents [24]. These systems also utilize

peer capacities to distribute content to multiple receivers in a cooperative envi-

ronment. In case of BitTorrents, a client can start uploading a file which it has

not completely received. In this case, the peer is simultaneously receiving data

and uploading data belonging to the same file transfer session.

86

10. FUTURE WORK

The system in place is an experimental system and is by no means complete

to be deployed and used as a regular application. Since the system was mainly

created as a proof of concept, there are a few features which can be implemented

to take this system to the next level of usability. As mentioned in Section 4.2,

the system already has in place features like Heartbeats and Mesh Optimization.

In addition to these, the following features could also be incorporated into the

system.

1. Distributed SuperNodes: In the current system, there is a single SuperNode

which is responsible for handling all details regarding a single session. Hence

this SuperNode acts as a single point of failure. The failure of the SuperNode

leaves the session in a dangled state. No nodes can join the session and also

the source cannot close the session as the SuperNode handling the session is

unavailable. This drawback can be removed by having multiple SuperNodes

hold information regarding the same session. Also, all peers part of the

session could be given a list of SuperNodes in charge of the session. Then,

the SuperNode is no longer a centralized point of failure.

2. Dynamic Mesh Optimization: Presently, mesh optimization is based on

static information about capacity provided by the peers at join time. The

network conditions like congestion, link failure, etc may change during the

course of the session and hence data flow from high capacity peers may be

low. In the present system there is no mechanism to deal with such a sit-

uation. There are two ways in which this problem can be overcome. First,

each peer reports its current sending rate periodically to the SuperNode

and the SuperNode monitors these rates and makes a decision on swapping.

87

Another solution will be for a peer to monitor data rates through each of

its incoming link and when this rate falls below a threshold it could inform

the SuperNode to swap the corrupt peer. The latter solution reduces the

burden on the SuperNode by shifting the job of monitoring data speeds to

the peers.

3. Action on Link Confirmation: Currently, when links for a peer are updated,

the peer sends back a message confirming the new links. The SuperNode

then asks all the affected peers to finalize their connection. But if the peer

fails to send back a links confirm message then there is no action taken and

the SuperNode waits indefinitely. The SuperNode has to receive links con-

firm from all the affected peers. The links confirm feature was incorporated

in the system so that the situation wherein a new link to a peer fails can be

handled. The easiest way to handle this situation is to keep a copy of the

old topology and then send updates. Only when links are confirmed by all

affected peers should the SuperNode change the mesh topology to the new

one. If some peer fails to update its link, then the SuperNode could go back

to the old topology. This mechanism works well if the mesh was changed

in response to a join request. In this case, the SuperNode does not accept

the new node. But in case of a leave request or peer failure, this should be

handled in another manner.

4. Support for multiple protocols: Currently, the data is transferred using UDP

as the transport layer protocol. This is keeping in mind the nature of data

that is required to be disseminated by the system. However the system can

be extended to support the TCP protocol in which case hard data like text

can be disseminated without loss, to multiple recipients.

88

11. CONCLUSION

The thesis presents a P2P system designed for optimal synchronous real

time and non-real time data dissemination from a single source to multiple re-

ceivers in a source constrained environment. A source constrained environment

refers to one in which nodes have much higher download speeds than upload

speeds.

The thesis defines the notion of Throughput Efficiency to measure the effectiveness

of any data dissemination system in a source constraint network and suggests a

topology that tries to achieve maximum throughput efficiency while keeping the

delay and out-degree down to acceptable levels. Also, the thesis provides a sample

implementation of the system in order to measure the effectiveness of the topology.

This thesis looks at various issues involved in node and topology management in

designing a real world P2P system using the suggested topology. Finally a set of

experiments, including real world deployment of the system provided encouraging

results. The proposed system outperformed traditional overlay multicast tree and

achieved near optimal throughput. Simulation results were presented to verify

among others the robustness of the system in case of node failures. Thus, overall

the thesis provides a basic implementation of node management in a P2P system

and presents the set of experiment results.

89

BIBLIOGRAPHY

[1] P.A. Chou, A.E. Mohr, A. Wang, and S. Mehrota, “Error control for receiver-
driven layered multicast of audio and video,” IEEE Transactions on Multi-
media, vol. 3, pp. 108–22, March 2001.

[2] W. Tan and A. Zakhor, “Error control for video multicast using hierarchical
fec,” in Proceedings of 6th International Conference on Image Processing,
October 1999, vol. 1, pp. 401–405.

[3] P. A. C. Jin Li and C. Zang, “Mutualcast: An efficient mechanism for one-
to-many content distribution,” ACM Sigcomm Asia Workshop, April 2005.

[4] S. Deering et al., “The pim architecture for wide-area multicast routing,”
IEEE/ACM Transactions on Networking, vol. 4, pp. 153–162, April 1996.

[5] S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, and S. Khuller,
“Construction of an efficient overlay multicast infrastructure for real-time
applications,” in IEEE INFOCOM, 2003.

[6] http://www.gnutella.com.

[7] http://www.kazaa.com.

[8] J. Hartigan, Clustering algorithms, John Wiley and Sons, Inc, 1975.

[9] Information Sciences Institute, http://www.isi.edu/nsnam/ns, Network sim-
ulator.

[10] Internet topology generator, http://www.cs.bu.edu/brite.

[11] V.N. Padmanabhan, H.J. Wang, P.A. Chou, and K. Sripanidkulchai, “Dis-
tributed streaming media content using cooperative networking,” in ACM
NOSSDAV, Miami, FL, May 2002.

[12] T. Nguyen and A. Zakhor, “Multiple sender distributed video streaming,”
IEEETransactions on Multimedia and Networking, vol. 6, no. 2, pp. 315–326,
April 2004.

[13] J. Byers, J. Considine, M. Mitzenmacher, and S. Rost, “Informed content de-
livery across adaptive overlay networks,” IEEE/ACM Transactions on Net-
working, vol. 12, no. 5, October 2004.

[14] Y. Minsky, A. Trachtenberg, and R. Zippel, “Set reconciliation with nearly
optimal communication complexity,” in IEEE International Symposium on
Information Theory, 2001.

90

[15] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High band-
width data dissemination using an overlay mesh,” in SOSP, October 2003.

[16] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and A. Singh,
“Splitstream: High-bandwidth multicast in a cooperative environment,” in
SOSP, October 2003.

[17] A. Rowstron, A-M. Kermarrec, M. Castro, and P. Druschel, “Scribe: The
design of a large-scale event notification infrastructure,” in NGC, November
2001.

[18] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems,” in IFIP/ACM International
Conference on Distributed Systems Platforms, November 2001.

[19] R. Sherwood, R. Braud, and B. Bhattacharjee, “Slurpie: A cooperative bulk
data transfer protocol,” in IEEE INFOCOM, 2004.

[20] A. Savrou, D. Rubenstein, and S. Sahu, “A lightweight, robust p2p system
to handle flash crowds,” in IEEE ICNP, November 2002.

[21] X. Yang and G. de Veciana, “Service capacity of peer to peer networks,” in
IEEE INFOCOM, 2004.

[22] Z. He, D. Figueiredo, S. Jaiswal, J. Kurose, and D. Towsley, “Modeling peer-
to-peer file sharing systems,” in IEEE INFOCOM, April 2003.

[23] http://www.opencola.org/projects/swarmcast.

[24] http://www.bittorrents.com.

[25] PlanetLab, http://www.planet-lab.org.

[26] Masters Thesis of Rohit Kamath, EECS Department, Oregon State University

[27] Thinh Nguyen, Krishnan Kolazhi, Rohit Kamath, Phuoc Do “Efficient Con-
tent Distribution in Source Constriant Networks” in IEEE Transactions in
Mutimedia.

[28] Thinh Nguyen, Krishnan Kolazhi, Rohit Kamath “Efficient Video Dissemi-
nation In Structured Hybrid P2P Networks” in ICME 2006.

91

92

APPENDICES

93

APPENDIX A. First Appendix

Proofs: The proofs presented in this section can also be found in [27].

Theorem 1: Throughput efficiency E ≤ 1 for any topology and data dis-

semination algorithm.

Proof: Throughput efficiency is defined as

E
∆
=

∑i=N
i=0 Si

min(
∑i=N

i=0 Ci, NC0)
(A.1)

where 0 denotes the source node, i = 1...N denote N destination nodes, Si and

Ci are the useful sending rate and the sending capacity of node i, respectively.

Case 1: Assume min(
∑i=N

i=0 Ci, NC0) =
∑i=N

i=0 Ci, then since Ci ≥ Si, we

have E =
Pi=N

i=0 SiPi=N
i=0 Ci

≤ 1.

Case 2: Assume min(
∑i=N

i=0 Ci, NC0) = NC0, then E =
Pi=N

i=0 Si

NC0
. Now, we

observe the following. A destination node cannot receive the information at a

rate faster than the information rate being injected into the network. Since the

source node injects the maximum data rate of C0 into the topology, maximum

total receiving rate of useful data for all N destination nodes is NC0 bps. The

total sending rate E =
∑i=N

i=0 Si and the total receiving rate must equal to each

other. Therefore the total sending rate is less than or equal to the maximum total

receiving rate of all the nodes NC0. Hence, E =
Pi=N

i=0 Si

NC0
≤ 1.

Theorem 2: For a fully connected topology, the following properties hold.

(a): Throughput efficiency of this scheme E = 1.

(b): The maximum node delay D is constant.

(c): Node insertion and deletion for this algorithm can affect at most N nodes

94

where N is the number of destination nodes.

(d): The out-degree of each node is at most N − 1 where N is the number of

destination nodes.

Proof :

(a): Each destination node receives C/N bps and broadcasts its data to

other N−1 destination nodes at the rate of C/N each. Hence, a destination node

sends packets at a total rate of (N − 1)(C/N) bps. Total sending rate from N

destination nodes and one source node equals to (N − 1)C + C = NC bps. In

this scenario, min(
∑i=N

i=0 Ci, NC0) = NC, hence E = 1.

(b): Each destination node is connected to the source and N - 1 other

destination nodes. The maximum number of hops for every data packet to get to

a destination node would be 2. Thus, the maximum node delay is constant and

makes the scheme optimal in terms of delay.

(c): Whenever a new node joins, it needs to connect to the source and the

remaining N − 1 nodes. This operation will affect N − 1+1 = N nodes including

the new node itself. Similarly, a leaving node also affects N nodes. The property

of the scheme is not optimal in terms of node addition or deletion.

(d) Each node receives data from the source and forwards it to N − 1 des-

tination nodes that it is connected to. Thus, this scheme is not optimal in terms

out-degrees of destination nodes. Note that for the source, the out-degree is N as

it is connected to all the destination nodes.

95

Theorem 3: For a fully chain topology, the following properties hold.

(a): Throughput efficiency of this scheme E = 1.

(b): The maximum node delay D is O(N) where N is the number of destination

nodes.

(c): Node insertion and deletion for this algorithm affects constant number of

nodes.

(d): The out-degree of each node is constant.

Proof :

(a): Each destination node, except the last node in the chain, receives

C bps and broadcasts its data to one other destination node at the rate of C.

Total sending rate from N − 1 destination nodes and one source node equals to

(N − 1)C + C = NC bps. Again min(
∑i=N

i=0 Ci, NC0) = NC. Clearly, in this

scenario,

E = 1 (A.2)

(b): Since all the nodes are chained, the maximum number of hops required

for a data packet to reach node N from the source would be N−1+1 = N . Thus,

this scheme performs poorly in terms of node delay.

(c): This scheme involves chaining of nodes. When a new node joins in,

it is chained to the last node in the topology and therefore affects only one node.

When a node leaves, if it is the last node in the chain, the only node affected is

the node that the departing node is chained to i.e. node N − 1. However, for all

96

other cases, there will be exactly two nodes affected viz. the node the departing

node is chained to and the node that is chained to the departing node. Thus,

even when a node leaves, the number of nodes affected is still constant. Hence,

this scheme is optimal in terms of node addition and deletion.

(d) Each destination node sends out data to exactly one other destination

node and therefore, the out-degree of each node is 1. Note that the out-degree

of the last node in the chain is zero as there are no more nodes in the chain to

broadcast data.

Theorem 4: For a balanced mesh, the following properties can be proved.

(a): Throughput efficiency of this scheme E = 1.

(b): The out-degree for each node is at most b.

(c): The maximum node delay D is logb((b− 1)N + b)+ 1 where N is the number

of destination nodes.

Proof :

(a): As shown in the construction algorithm, within a group, there is

exactly one rightmost leaf node which does not forward its data to any of its

ancestors. This rightmost leaf node, however, forwards its data to b − 1 leaf

nodes at the rate of C/b bps. The rest of the “fully active” nodes within each

group forward data at the rate of C bps. Since there are b groups in a b-balanced

mesh, the total sending rate of the entire mesh equals to sum of the sending rates

of the source node, N − b “fully active” nodes and b rightmost leaf nodes, i.e.
∑i=N

i=0 Si = C + (N − b)C + b(b− 1)C/b = NC bps. The denominator of E equals

97

to min((N + 1)C,NC) = NC. Hence, the throughput efficiency is NC/NC = 1.

(b) : By construction, each internal node has exactly b out-connections to

b children. With the exception of the rightmost leaf nodes from each group, each

leaf node has b− 1 out-connections to other leaf nodes, and one out-connection to

its ancestor (e.g. parent, grandparent, ...). Thus all nodes have out-degree of b,

except the b rightmost leaf nodes from each group which have out-degree of b− 1.

(c) : Using geometric sum, the total number of destination nodes N and

the source node is N + 1 = (b(i+1) − 1)/(b − 1) where i is the number of levels

in the mesh. Hence, hence there are i = log((b − 1)N + b) − 1 hops from the

source node to a leaf node. Next, by construction, there is exactly one hop from

a leaf node to another leaf node in a different group. There is also one hop from

the leaf node to an internal node. Therefore, the maximum delay for any node is

log((b− 1)N + b) + 1.

Theorem 5: For a cascaded balanced mesh, the following properties can

be proved.

(a): Throughput efficiency E = 1.

(b): The delay is O((logbN)2).

(c): The out-degree for each node is at most b.

Proof:

(a): This holds true since each cascaded mesh is a b-balanced mesh where

the root receives data at a rate of C bps. We proved this property for balanced

98

meshes earlier.

(b) : Our proof relies on the observation that the maximum number of b-

balanced meshes of depth i needed to accommodate the remaining nodes at level

i is no greater than some constant c. As the algorithm progresses, the new mesh

is either equal or smaller than the mesh in the previous iterations, i.e., the depth

of the mesh decreases monotonically. Hence, the algorithm terminates after at

most some constant c times the depth of first mesh. The constant c indicates the

maximum number of meshes of depth i in the cascaded b-balanced mesh. Since

there are O(i) such meshes and each mesh has depth of O(i), the total delay is

therefore O(i2), or equivalently O((logbN)2). Now, we prove this property pre-

cisely. At each iteration of the algorithm, we construct the deepest b-balanced

mesh without exceeding the number of nodes. Therefore, the remaining number

of nodes after constructing a b-balanced mesh of maximum depth i cannot be

greater than bi+1. Otherwise, we can construct a b-balanced mesh of depth i + 1

which contradicts the maximum possible i. Next, since the number of nodes in a

b-balanced mesh of depth i is (bi+1 − 1)/(b− 1), the maximum number of meshes

of depth i that can cover the remaining nodes without exceeding the number of

possible nodes is therefore bi+1(b− 1)/(bi+1− 1) ≤ b. Therefore, we can construct

at most b meshes of depth i before moving to the meshes of depth j < i. Hence,

after the algorithm terminates, we have at most bi meshes with i being the depth

of the first mesh. Since each mesh has depth of O(i), the total delay is therefore

O(i2), or equivalently O((logbN)2).

(c) : This property is true by construction from the balanced mesh

99

Theorem 6: For a b-Unbalanced mesh with N destination nodes, the fol-

lowing properties can be proved.

(a): Throughput efficiency E = 1.

(b): The delay D is at most blogb(N + 1)c+ 3b− 4.

(c): Node insertion and deletion for this algorithm can affect at most b2 + 2b

nodes.

(d): The out-degree for each node is at most b.

Proof :

(a) : For a b-Unbalanced mesh, when there exists a secondary mesh, it is

constructed according to the algorithm for cascaded balanced mesh. We already

know that for cascaded balanced mesh E = 1. When the secondary mesh is bro-

ken, it is reattached to the primary mesh and the primary mesh is reorganized.

After all the changes are made, there still remain only b nodes each having C/b

unused bandwidth. All the remaining nodes transmit data at C bps. Thus the

total unused bandwidth in the system is C. Hence the efficiency in this case too

is 1 similar to that in a balanced mesh .

(b) : The delay of the root node in the first secondary mesh is blogb(N +

1)c + 1. This is because the root node of the first secondary mesh receives b

different partitions from each of b the rightmost leaf nodes in the primary mesh.

These partitions take blogb(N + 1)c hops to arrive at the rightmost leaf nodes

from the source node, and one more hop to the secondary mesh’s root node. Now,

the secondary meshes consists of many balanced meshes cascaded together as de-

scribed in Section 3.4. Each of these balanced mesh has at most one level since

a balanced mesh with two levels would result in the number of nodes equals to

100

(b3 − 1)/(b− 1) > b2 − 1, which is not possible by design. The largest delay then

occurs when the number of nodes in the secondary meshes is b2 − 2 since in that

case, the secondary meshes must consist of b−2 balanced meshes, each mesh with

b+1 nodes, followed by a chain of b nodes. Since there are two hops from the root

of one balanced mesh to the other and b− 1 hops connecting the chain of b nodes,

the largest delay equals to 2(b− 2) + b− 1 = 3b− 5 hops. We sum this delay and

the delay to the root of the first secondary mesh. We note that if the out-degree

oi of each balanced mesh in the secondary meshes is changed adaptively (oi can

be less than b to satisfy the constraint on out-degree), the overall delay for the

small mesh can be smaller than 3b − 5 hops and the throughput efficiency still

equals to 1.

(c) : The most number of nodes are affected when there is a construction

or destruction of secondary meshes. In this case, at most b2 nodes belonging to the

secondary meshes are affected. In addition, there are b nodes that these b2 nodes

are attached or detached during the construction or destruction of the secondary

meshes. Furthermore, there are also b ancestors, one from each branch that need

to receive data from the new b nodes (e.g. node 3 in Figure 3.5(b)).

(d) : By construction, each internal node has exactly b out-connections to

b children. With the exception of the rightmost leaf nodes from each group, each

leaf node has b− 1 out-connections to other leaf nodes and one out-connection to

its ancestor (e.g. parent, grandparent, ...). Thus, all nodes have out-degree of b,

except the b rightmost leaf nodes from each group which have out-degree of b− 1.

In case of the chained nodes, they have only one outgoing connection and for the

secondary root with no children, it has no outgoing connections.

101

APPENDIX B. Second Appendix

Algorithm APPENDIX B.1: BalancedMesh(N)

Construct balanced tree with source as the root and each internal node

with out degree of b.

comment: Consider the leftmost group as group 0 and the rightmost as group b - 1.

comment: Assume there are depth levels in the tree.

for i←0 to b - 2

do





for each Leaf node j in group i

do





for m←1 to (b - 1) - i

do





k ← j + bdepth−1m

Connect node j with node k.

Connect node k with node j.

for i←0 to b - 1

do





Connect leftmost b - 1 leaf nodes of group i back to its parent.

Connect the rightmost leaf node of each branch to its lowest

ancestor without b incoming connections.

102

Algorithm APPENDIX B.2: CascadedMesh(N)

while N <> 0

do





Construct a b balanced mesh of depth

i ← blog((b− 1)N + b)c − 1.

comment: The above statement will create the deepest b balanced mesh.

comment: Number of nodes in the mesh should not exceed the N.

if exists previous b balanced mesh

then Connect b rightmost nodes with extra bandwidth to the root of

newly created balanced mesh.

N ← N − (bi+1 − 1)/(b− 1).

103

Algorithm APPENDIX B.3: unBalancedMesh(i)

if sec mesh node count == 0

then





Set it as root of the secondary mesh.

sec mesh node count ← sec mesh node count + 1.

return (0)

if sec mesh node count < b2 − 1

then





Add the node using b cascaded balanced mesh algortihm.

sec mesh node count ← sec mesh node count + 1.

return (0)

comment: Do following if added node i causes b2 nodes in secondary mesh.

comment: In this case the secondary mesh is destroyed.

comment: Let the leftmost group be 0 and the rightmost be b - 1.

for i←0 to b - 1

do





if All leaf nodes of primary mesh are at same level

then

{
Connect b nodes of secondary mesh to leftmost node P in group i.

else





Connect b nodes of the secondary mesh to leftmost leaf node P

of lesser depth in group i

Disconnect Ps connection to b - 1 nodes of other b - 1 groups.

Disconnect Ps connection back to its parent.

for each Group of newly attached b nodes

do





Establish their cross links with other groups as described for balanced mesh.

Connect all nodes but the rightmost node to their parent P.

Connect rightmost node to lowest ancestor without b incoming connections.

sec mesh node count ← sec mesh node count + 1.

return (0)

104

Algorithm APPENDIX B.4: leaveNode(i)

if node is in primary mesh

then





if secondary mesh exists

then





Swap leaving node with node in secondary mesh.

Reconstruct the secondary mesh.

else if node is internal node

then





Swap the node with a leaf node in the primary tree.

Construct a secondary mesh with b2 − 1 nodes.

else





comment: No need of swapping if node is not internal node.

Construct a secondary mesh with b2 − 1 nodes.

else

comment: Node is secondary mesh.
{

Reconstruct the secondary mesh with one lesser node.

