CENPP-PE-HR (1110A)

25 August 1995

MEMORANDUM FOR CHIEF CENPP-PE-P ATTN CHARLES MASON

Subject: Newport North Marina Jetty Sediment Evaluation

1. Enclosed is the sediment evaluation for the Newport North Marina Jetty project. The sediment was evaluated for acceptability of in-water disposal at the offshore ocean disposal site. The evaluation was conducted according to guidelines published in the "Green Book" and "Inland Testing Manual". These guidelines help insure compliance with requirements of the Marine Protection Research and Sanctuaries Act (MPRSA) and the Clean Water Act (CWA) that pertain to sediment toxicity.

2. The evaluation shows that the proposed dredge material is clean sand, free of contaminants, low in organic content, and located in a high energy area of the river. These characteristics qualify the material to meet the exclusionary criteria of both MPRSA (40 CFR PART 227.13) and CWA (40 CFR, PART 230.60) regulations. By meeting the criteria, the dredge material is acceptable for both in-water and upland disposal. No unacceptable, adverse ecological impacts due to toxicity are **expected** from such disposal. State 401 water quality certification should be obtainable as well.

3. If you have questions regarding this sediment evaluation please contact Mr. Jim Britton, CENPP-PE-HR, ext. 6471.

STEVEN L. STOCKTON, P.E.

Encl as

STEVEN L. STOCKTON, P.E. Chief, Planning and Engineering Division

Newport North Marina Jetty Sediment Evaluation

Abstract

Sediment along the western end of the Newport North Marina Jetty is free of contaminants such as metals, PAHs, pesticides, PCBs, phenols and TBT. According to guidelines developed to implement the CWA and MPRSA, the sediment is acceptable for both in-water and upland disposal.

Introduction

1. The Neport North Marina Jetty is located on the north side of the Yaquina River between river miles 1.5 and 1.8 just opposite the city of Newport. It was constructed to dissipate the energy of incoming waves and offer some protection to boats and moorings facilities located in Newport. Unfortunately, the jetty is under-protecting the area so that modifications are needed to improve its efficiency. Plans call for dredging around the western end of the jetty in conjunction with construction improvements.

2. The Clean Water Act (CWA) and Marine Protection Research and Sanctuaries Act (MPRSA) require that material proposed for dredging be evaluated for the ecological consequences of disposal. This report presents results of physical and chemical analyses of project sediment and evaluates whether any adverse impacts associated with contaminants are expected. Previous studies of local sediment, knowledge of local contaminant sources, and results of the current study are used in the evaluation.

3. Earlier studies in the area show that the sediment near the project is sandy and contains some shell hash (1-5). The area between the jetty and the city of Newport shoreline is progressively more silty proceeding from the jetty to the shore (1). Chemical contaminants increase in concentration along this gradient. However, contaminants are not at levels that restrict in-water disposal. Accross the river, at South Beach Marina, similar silty and contaminant conditions prevail (7). Upriver, in the area of the turning basin of the Federal Channel, the sediment is sandy and typically free of contaminants. The condition of river sediments, further upstream in the main channel, is the same and reflects the low exposure to sources of contaminants (3, 6).

4. Sources of local contaminants are surface runoff from developed areas, boat works facilities, marinas, fish processing plants, lumber and wood manufacturing facilities, and non point sources in the watershed.

5. Even though earlier studies suggest that the project is in a high energy area with sandy material free of contaminants, sediment samples were taken at three locations and subjected to physical and chemical analyses to confirm these expectations. A box corer, which is a surface grab sampler, was used instead of a coring device to sample the sediment because previous experience had shown this area to be a zone with a rather "hard bottomed", sandy substrate containing plenty of shell hash. This is descriptive of substrates that typically fall into the exclusion criteria of the CWA and MPRSA. Recent

cores obtained by the Corps show that the sandy layer is roughly 4 to 20 feet deep and is underlain by siltstone (see appendix showing logs of cores obtained for the Corps by Geotechnical Resources, Inc). This indicates that the same high energy conditions have prevailed here for some time. Therefore, it is unlikely that deeper layers contain contaminated material so that core smpling was not necessary.

Methods

6. Three sediment samples were taken on 15 March 1995, using a Gray O'Hare box corer (0.095 m³), at the west end of the North Marina Jetty located in Newport, Oregon (Figure 1). One sample was taken off the end of the jetty while the other two were taken on either side of the jetty in about 15 feet of water. Experience from previous sediment studies has shown that these samples are representative of the whole project area. All sampling, handling and storing of samples was conducted according to approved procedures outlined in the "Green Book" developed jointly by the EPA and Corps of Engineers (8).

7. Subsamples of each were sent to the U. S. Army Corps of Engineers Materials Laboratory at Troutdale, Oregon where they were analyzed for grain size distribution, volatile solids content, resuspended density, void ratio, specific gravity, soil classification and particle roundness grading. The first two parameters are pertinent to this sediment evaluation while the latter five are useful to dredging coordinators and contractors and so will not be discussed in this report.

8. Subsamples of the three samples were also analyzed for chemical contaminants by Columbia Analytical Associates (CAS), Kelso, Washington. Subsamples were tested for heavy metals, pesticides, PCBs, tributyltins (TBT), polynuclear aromatic hydrocarbons (PAHs), phenols, total organic carbon (TOC), and acid volatile sulfides (AVS).

9. Data from the contaminants analyses were reviewed by the Materials Laboratory and this office for quality assurance. Overall, the project data were considered acceptable. The quality assurance report along with the quality control evaluation, conducted by CAS, is included in the appendix with the raw data.

Results/Discussion

10. The sediment samples were mostly sandy material. Mean sand content was 96.1 %. Mean silt was 3.3%. One sample contained a trace of clay. The sample on the north side of the jetty was more silty than the others (Figure 1, Table 1). The mean organic content, reflected in percent volatile solids, was 1.0 %.

11. Heavy metals were below established concern levels (Table 2). AVS was low as well. AVS can be important in fine grained sediment with a high metals content. In that situation AVS would offer some protection against the toxic effects of metals. Since the sediment samples are low in metals the low AVS is of no consequence.

12. TOC content is a measure of organics in the sediment. Sources of organic material are dead plant and animal matter, microbes, living things and organic chemical

contaminants. The measured values indicate the sediment is very low in organic carbon. Organic contaminants were not detected except for two PAHs that were detected at very low concentrations (Table 3). The low TOC content, combined with low organic contaminants, is another indication of the clean nature of this material.

13. These physical and chemical results are typical of high energy areas in river systems where exposure to contaminants from local and upstream sources is limited. In high energy areas the sedimentary material is usually sandy and free of contaminants. Typically, contaminants, if present, would be associated with the fine grained fraction. As can be seen from the physical results the sediment is very low in fine grained material.

Conclusions

14. This sediment evaluation was conducted following procedures outlined in the Draft Inland Testing Manual, developed to implement section 404 of the Clean Water Act and the "Green Book", developed to implements section 103 of the Marine Protection Research and Sanctuaries Act (8,9). These procedures describe methods for conducting ecological evaluations of dredge material to determine the potential for toxicity.

15. The methods utilize a Tiered Testing Procedure to evaluate dredged material for acceptability of disposal. Tier I allows the material to be evaluated based on existing information. Tiers II through IV require futher testing of the material. An evaluation only needs to procede through the Tiers to a point where a decision can be rendered. In this sediment evaluation only Tier I was needed to come to a conclusion regarding acceptability of disposal. Existing information shows the material to meet the exclusionary criteria of both the MPRSA and CWA. The lack of contamination in the sediment lends credence to this conclusion. In terms of impacts related to contaminants, the sediment alongside the western end of the Newport North Marina Jetty is acceptable for in-water disposal at freshwater or ocean disposal sites and at upland disposal sites according to requirements of the MPRSA and CWA. Non adverse ecological impacts are expected from such disposal.

REFERENCES

1. Britton J. U. S. Army Corps of Engineers, Portland District. October 1990. Characterization of Sediments at yaquina Bay & Harbor. Prepared for U. S. Environmental Protection Agency, Region 10.

2. Britton J. U. S. Army Corps of Engineers, Portland District. 17 July 1990. Yaquina Bay Sediment Evaluation April 1990.

3. Turner, R. 1980 and 1986. Findings of Compliance, Dredged Material Disposal Activities, Yaquina Bay and River Federal Navigation Channel. U.S. Army Corp of Engineers, Portland District.

4. U. S. Army Corps of Engineers, Portland District. 1986. Data on file in the Portland District database. No formal sediment evaluation prepared.

5. U. S. Army Corps of Engineers, Portland District. April 1985. Yaquina Bay Interim Ocean Dredged Material Disposal Site Evaluation Study.

6. Britton J. U. S. Army Corps of Engineers, Portland District. April 1994. Yaquina River sediment evaluation.

7. Siipola, M. U. S. Army Corps of Engineers, Portland District. July 1991. Yaquina Bay South Beach Marina Sediment Evaluation June 1991.

8. U. S. Environmental Protection Agency and U. S. Army Corps of Engineers. February 1991. Evaluation of Dredged Material Proposed for Ocean Disposal (Testing Manual).

9. U. S. Environmental Protection Agency and U. S. Army Corps of Engineers. May 1993. Evaluation of Dredged Material proposed for Discharge in Inland and Near Coastal Waters - Testing Manual (Draft) (Inland Testing Manual).

sample	median grain size	sand	silt	clay	volatile solids
	mm		9	6	·
YNMJ-1	0.18	98.6	1.4	0.0	0.8
YNMJ-2	0.16	90.6	7.6	1.8	1.5
YNMJ-3	0.18	99.1	0.9	0.0	0.8
mean	0.17	96.1	3.3	0.6	1.0

Table 1. Results of physical analyses of Newport North Marina Jetty sediment.

sample _	As	Cd	Cr	<u>Cu</u>	Pb (ppm)	Hg	Ni	Zn	AVS	TOC (%)
YNMJ-1,3 YNMJ-2	2 <i>.</i> 8 4.5	0.34 0.15	11.5 20.7	2.20 7.57	1.78 3.58	<0.02 <0.02	7.3 16.0	13.9 29.8	19 110	0.73
mean	3.7	0.25	16.1	4.89	2.68	0.00	11.7	21.9	65	0.90
SL*	57	0.96	180	81	66	0.21	140	160	NA	NA

Table 2. Concentrations of metals, AVS and TOC in sediment near the west end of Newport Marina Je

* EPA, Region 10 screening level for marine waters.

samples	pesticides*	PCBs*	fluoranthene^	phenol^	TBT*
			ppb		
YNMJ-1,3	ND	ND	ND	ND	ND
YNMJ-2	ND	ND	21	33	ND
SL#	6.9-10	130	630	120	30

Table 3. Concentrations of organics in Newport North Marina Jetty sediment.

* Pesticide method reporting limits (MRLs) ranged from 2-30 ppb, PCBs ranged from 1-30 ppb, and the TBT MRL was 3.0 ppb.

[^] Of 18 PAHs only fluoranthene was detected and of 14 phenols only phenol. The detection limits for PAH was 20 ppb and for phenols, 20 or 50 ppb.

EPA Region 10 screening level for marine waters.

DEPARTMENT OF THE ARMY NORTH PACIFIC DIVISION LABORATORY CORPS OF ENGINEERS 1491 N.W. GRAHAM AVENUE TROUTDALE, OREGON 97060-9503

CENPD-ET-PL (1110-1-8100c)

March 28, 1995

MEMORANDUM FOR: Commander, Portland District ATTN:CENPP-PE-HR (Britton)

SUBJECT: W.O. #95-191, Report of Sediment Analysis

Project:		Newport North Marine Jetty						
Location:	Nev	vport, Oregon						
Submitted b	y:	CENPP-PE-HR (Bri	itton)					
Date Sample	ed:		Date Received:	16 March 95				
Method of Test or Specification: EMM1110-2-1906, ASTM				M				
Reference:	a)	DD Form 448, MIPR	R no. E86-95-0068 dated 13 I	March 95				
	b)	NPD Form 303, Trai	nsmittal of Sedimentation Sa	mples, dated				
		16 March 95 outlinin	ng required tests.					

1. Enclosed is report of mechanical analysis for 3 sediment samples submitted from the above project. Included are:

a) Enclosure 1, Summary of Dredge Test Analysis.

b) Enclosures 2 through 4, Report of Particle Size Analysis and Classification Tests, one for each sample submitted.

2. This completes all physical analysis requested to date for this project.

JAMES K. HINE Deputy Director

Enclosures

Copy Furnished: CENPD-ET-P

CENPD-ET-P-L (1110-1-8100c) SUBJECT: W.O. 95-191, Results of Chemical Analysis

4. This completes all work requested for this project.

Enclosures

Fri TIMOTHY J. SEEMAN Director

Copy Furnished:

CENPD-ET-P CEMRD-ED-EC CEMP-RT

NEWPORT NORTH MARINE JETTY Newport, Oregon

Results of Dredge Test Analysis

CENPD Sample No.	Resuspended Density, gm/L	Void Ratio	Volatile Solids,%	Specific Gravity	Soil Classification ASTM D2487	Particle Roundness Grading
YNMJ-1	1833	1.009	0.8	2.673	SP	Subangular-subrounded
YNMJ-2	1676	1.450	1.5	2.656	SP-SM	Subangular-subrounded
YNMJ-3	1871	0.938	0.8	2.689	SP	Subangular-subrounded

CENPD Laboratory number 5176. Samples received 16 March 1995.

* * * CORPS OF ENGINEERS - NORTH PACIFIC DIVISION LABORATORY * * * NEWPORT NORTH MARINE JETTY 95-91

 $\frac{5}{6}$ sind 98.6 silt 1.4 Clay -

* * * CORPS OF ENGINEERS - NORTH PACIFIC DIVISION LABORATORY * * * NEWPORT NORTH MARINE JETTY 95-91

•

		Borin	ng: Sample	: YNMJ-2	Depth:	Lab No.	: 9102	
-	Sieve	ieve Analysis Cumulative Grams Retained	Percent Passing	Sample Time	Weight Temp 1 (C)	ydrometer A :92.20 gr. Hydrometer Reading	nalysis Start Diameter in mm	Time:0000 Percent Finer
-								Filler
1	5 In. 2.5 In. 5/8 In. 5/16 In. No. 5 No. 10 Pan No. 18	$\begin{array}{c} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 406.22 \\ 0.05 \end{array}$	100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9	1 3 10 100 200	20.0 20.0 20.0 20.0 20.0	7.1 5.6 4.1 2.1 1.2	0.0521 0.0303 0.0167 0.0069 0.0049	8.2 6.5 4.9 2.8 1.8
_	No. 35 No. 60 No. 120 No. 230 Pan	0.17 4.40 74.82 83.53 92.20	99.8 95.2 18.9 9.4 0.0		3.2			
	D85:	0.23 D60:	0.18 D50: Cu:	0.17 D3 2.75	0: 0.14 Cc: 1	D15: .09 .60	4 D10:	.066 mm
		Li Fine	quid Limit: es Type Used	NP Pla for Class	sticity	Index: NP on: ML, SIL	r	
		Gravel: (0.08	Sand: 8	8.2*	Fine	S: 11.8%	
-			SP-SM Poor	2487 Cla	SAND wi	tion		
-		Percent fin	ner than 0.02	mm: 5.4	Frost	Classifica	ation: S2	
-	DATE SAM VOLATILE	IPLED: 15 MAR SOIDS: 1.5%	2CH 1995	Commen	ts			
		Sieve sizes		<u>ieve numbe</u>	<u>rs</u>	<u></u>		
	100 90 80 70 1 60 20 10 10							. 001
			D	Lameter in	4m			

sand 90.6 silt 7.6 clay 1.8

* * * CORPS OF ENGINEERS - NORTH PACIFIC DIVISION LABORATORY * * * NEWPORT NORTH MARINE JETTY 95-91
Boring: Sample: YNMJ-3 Depth: Lab No.: 9103
Sieve Analysis
Grams Percent No hydrometer analysis. Sieve Retained Passing
5 In. 0.00 100.0 2.5 In. 0.00 100.0 1.25 In. 0.00 100.0 5/8 In. 0.00 100.0 5/16 In. 0.00 100.0 No. 5 0.00 100.0 No. 10 0.00 100.0 Pan 893.74 0.0
No.18 0.02 100.0 No.35 0.17 99.8 No.60 4.72 95.2 No. 120 91.96 5.8 No. 230 96.69 0.9 Pan 97.61 0.0 $\overline{\chi} = 0.\overline{\chi}$
D85: 0.23 D60: 0.19 D50: 0.18 D30: 0.15 D15: 0.13 D10: 0.13 mm Cu: 1.47 Cc: 0.93
Liquid Limit: NP Plasticity Index: NP Fines Type Used for Classification: ML, SILT
Gravel: 0.0% Sand: 97.9% Fines: 2.1%
ASTM D 2487 Classification
SP Poorly graded SAND
TM 5-818-2 Frost Classification
Frost Classification: NFS
-DATE SAMPLED: 15 MARCH 1995 -VOLATILE SOIDS: 0.8%
<u>Sieve sizes</u> <u>Sieve numbers</u>
$ \begin{array}{c} 100 \\ 90 \\ 90 \\ 80 \\ 70 \\ 10 \\ 90 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$
Sand 99.1 Silt 0.9 clay -

CENPD-ET-P-L (1110-1-8100c)

MEMORANDUM FOR: Commander, Portland District, ATTN: CENPP-PE-HR (Britton)

SUBJECT: W.O. 95-191, Results of Chemical Analysis

Project: <u>Newport North Marina Jetty Sediment/Project</u>
Intended Use: Site Evaluation
Source of Material: <u>Reference Chain of Custody Records</u>
Submitted By: <u>CENPP-PE-HR (Britton)</u>
Date Sampled: <u>15. Mar 95</u> Date Received: <u>22 Mar 95</u>
Reference: a) DD Form 448 MIPR No. E86-95-0066 dated 13 Mar 95
b) Original report number K9501715 from Columbia Analytical Services,
Inc submitted to your office by the laboratory

1. Enclosed are the original Quality Assurance Report, original report number K9501715 from Columbia Analytical Services (CAS) Inc., and original CENPD-ET-P-L sample cooler receipt form, and original chain of custody record for the samples collected from Newport North Marina Jetty Sediment site.

2. EVALUATION OF THE PROJECT LABORATORY'S' RESULTS: All laboratory method blanks were free of targeted analytes. All holding times, detection limits met method requirements. Chain of custody record and sample cooler receipt form met Corps of Engineers ER 1110-1-263 protocols except the sample cooler temperature was 7.6 °C which is above COE required limits of 4 ± 2 °C. All surrogate, matrix spike (MS), matrix spike duplicate (MSD), laboratory control sample (LCS), laboratory control sample duplicate (LCSD) recoveries and relative percent differences (RPD) results were within EPA, Laboratory Established (LE). Quality Control (QC) limits, with the following exceptions; mercury MS recovery was within CAS LE QC limits of [60-130] but above EPA QC limits of [75-125], since no mercury was detected in any sample the high recovery did not affect the results, cadmium duplicate RPD result was above EPA limit, the cadmium data are considered estimates, lead RPD result was not calculable due to the detection at or near the detection limit, which is not considered significant. Overall the project data are acceptable.

3. If you have any questions or comments regarding the Chemical Quality Assurance Report, please contact Dr. Ajmal M. Ilias at (503) 669-0246.

CENF	D-PE	-GT-L
------	------	-------

HTRW COOLER RECEIPT FORM

rev. 10/94

Vaquinz Bay 75-186
Project. Ver provide the second state of the
Cooler received on 3/16/95 and opened on 3/16/95 by
(signature)
1. Was cooler scanned for presence of radioactivity, and noted if found? YES NO
a. If YES, how many and where: A
b. Were signature and date correct?
3. Were custody papers taped to the lid inside the cooler?
4. Were custody papers properly filled out (ink, signed, dated, etc.)?
5. Did you sign custody papers in the appropriate place?
6. Did you attach shipper's packing slip to this form? \dots YES NO NA
7. What kind of packing material was used? ice bag 5
8. Temperature of cooler
Approved by YDH Date 3/11/95
9 Were all bottles sealed in separate plastic baos?
10 Did all bottles arrive in good condition (unbroken)?
11 Were all bottle labels complete (ID No. dated Anal method etc.) YES (NO. 1
12 Did all bottle labels agree with custody papers?
13 Were correct bottles used for the tests indicated?
14 If present were VOA vials/containers checked for absence of air bubbles/
head space and noted if found?
15. Was sufficient volume of sample sent in each bottle?
16. Were correct preservatives used?
Approved by: 104 Date 3/16/95
If not approved:
a. Name of person contacted Date
b. Corrective action taken; if necessary: <u>Sangles Held until MIPR Received</u>
Additional Comments: 1) H (see attached)
27 1 Si ter cinca an subritid (sauge tor Blace
live be- of malinee, at substituee sompte to create

_

-

_

HTRW COOL	_ER	RECE	IPT	F(DRM
-----------	-----	------	-----	----	-----

Yaquinz Bay TIL 95-186
Project: <u>Newport N. Marina Jetty</u> W.O.# <u>45-191</u>
Cooler received on $3/16/93$ and opened on $3/16/95$ by
(cianatura)
1. Was cooler scanned for presence of radioactivity, and noted if found? YES NO
2. Were custody seals on outside of cooler and intact?
b. Were signature and date correct?
3. Were custody papers taped to the lid inside the cooler?
4. Were custody papers properly filled out (ink, signed, dated, etc.)?
5. Did you sign custody papers in the appropriate place?
6. Did you attach shipper's packing slip to this form?
7. What kind of packing material was used? ice り ネタ ろ
8. Temperature of cooler
Approved by PDH Date 3/11/195
9. Were all bottles sealed in separate plastic bags?
11. Were all bottle labels complete (ID, No, dated, Apal, method, etc.)
12. Did all bottle labels complete (ID. No., dated, Anal. Method, etc.)
13. Were correct bottlos used for the tests indicated?
14. If present, were VOA vials/containers checked for absence of air hubbles/
head space and noted if found?
15. Was sufficient volume of sample sent in each bottle?
16. Were correct preservatives used?
Approved by: 104 Date 3/16/95
If not approved:
a. Name of person contacted Date Date
b. Corrective action taken; if necessary: Janples Held until MIPR Received
Additional Comments: () High Link (see attached)
2) 1 Sinter Owner in Subrited Sample tor 2/2028
New best of maluses.
•

rev. 10/94

.

Columbia Analytical Services^{ma}

April 21, 1995

Service Request No.: K9501715

Director U. S. Army Corps of Engineers CENPD Materials Laboratory 1491 NW Graham Avenue Troutdale, OR 97060-9503

Re: Newport North Marina Jetty Sediment/Project #95-0191

Dear Director:

Enclosed are the results of the sample(s) submitted to our laboratory on March 22, 1995. For your reference, these analyses have been assigned our service request number K9501715.

The Electronic Data Deliverable (EDD) will follow shortly.

All analyses were performed consistent with our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed.

Please call if you have any questions. My extension is 281.

Respectfully submitted,

Columbia Analytical Services, Inc.

eyet &

Elizabeth Schneider Project Chemist

ES/sam

APR 2 1 1995

Page 1 of _

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
- M	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a
	substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NAN	Not Analyzed
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected at or above the MRL
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
ТРН	Total Petroleum Hydrocarbons
ir	Trace level is the concentration of an analyte that is less than the PQL but greater
	than or equal to the MDL.

•

•

Analytical Report

ient:U.S. Army Corps of EngineersProject:Newport North Marina Jetty Sediment/#95-0191Sample Matrix:Soil

Service Request: K9501715 Date Collected: 3/15/95 Date Received: 3/22/95 Date Extracted: NA Date Analyzed: 3/29/95

Sulfide, Acid Volalite EPA Method Draft Dec '91 Units: mg/Kg (ppm) Dry Weight Basis

Sample Name	Lab Code	MRL	Result
YNMJ-1,3 Composite	K9501715-003	0.5	19
YNMJ-2	K9501715-004	0.5	110
Method Blank	K9501715-MB	0.5	ND

Elaber Litro Approved By:

IAMRL/102594 01715ICP.GJI - AVS 4/14/95

Date: 4/14/95

Analytical Report

nt: U.S. Army Corps of Engineers Project: Newport North Marina Jetty Sediment/#95-0191 Sample Matrix: Soil Service Request: K9501715 Date Collected: 3/15/95 Date Received: 3/22/95 Date Extracted: NA Date Analyzed: 4/7/95

Total Organic Carbon (TOC) ASTM Method D4129-82 Modified Units: Percent (%) Dry Weight Basis

Sample Name	Lab Code	MRL	Result
YNMJ-1,3 Composite	K9501715-003	0.05	0.73
YNMJ-2	K9501715-004	0.05	1.07
Method Blank	K9501715-MB	0.05	ND

Approved By: _

to Sta

Date: 4/14/9_5

1AMRL/102594 017157CP.GJ1 - TOCS 4/14/95

Analytical Report

Client:	U.S. Army Corps of Engineers	Service Request:	K9501715
Project:	Newport North Marina Jetty Sediment/#95-0191	Date Collected:	3/15/95
Sample Matrix:	Soil	Date Received:	3/22/95
		Date Extracted:	3/30/95

Total Metals Units: mg/Kg (ppm) Dry Weight Basis

			YNMJ-1,3	•	
		Sample Name:	Composite	YNMJ-2	Method Blank
		Lab Code:	K9501715-003	K9501715-004	K9501715-MB
		Date Analyzed:	4/4/95	4/4/95	4/4/95
	EPA				
Analyte	Method	MRL			
Arsenic	200.8	0.5	2.8	4.5	ND
Cadmium	200.8	0.02	0.34	0.15	ND
Chromium	200.8	0.2	11.5	20.7	ND
Copper	200.8	0.05	2.20	7.57	ND
Lead	200.8	0.02	1.78	3.58	ND
Mercury	7471	0.02	ND	ND	ND
Nickel	200.8	0.2	7.3	16.0	ND
Zinc	200.8	0.5	13.9	29.8	ND

Solids, Total (%)

160.3 M

76.7

74.5

Μ

.

Modified

Elater Lake

Approved By:

3S30EPA/102094 01715ICP.GJ1 - Sample 4/14/95 Date: <u>4/14/95</u>

Page No.: 00005

Analytical Report

Client:U.S. Army Corps of EngineersProject:Newport North Marina Jetty Sediment/#95-0191Sample Matrix:Soil

Service Request: K9501715 Date Collected: 3/15/95 Date Received: 3/22/95 Date Extracted: 3/29/95

Organochlorine Pesticides and Polychlorinated Biphenyls (PCBs) - Low Level

EPA Methods 3550/8080

Units: mg/Kg (ppm)

Dry Weight Basis

		YNMJ-1,3		
	Sample Name:	Composite	YNMJ-2	Method Blank
	Lab Code:	K9501715-003	K9501715-004	K9501715-MB
	Date Analyzed:	4/7/95	4/7/95	4/7/95
Analyte	MRL			
Alpha-BHC	0.002	ND	ND	ND
Beta-BHC	0.005	ND	ND	ND
Delta-BHC	0.002	ND	<0.006(a)	ND
Heptachlor	0.002	ND	ND	ND
Aldrin	0.002	ND	ND	ND
Heptachlor Epoxide	0.002	ND	ND	ND
Gamma-BHC (Lindane)	0.002	ND	ND	ND
Endosulfan I	0.002	ND	ND	ND
Endrin	0.002	ND ·	ND	ND
Endosulfan II	0.002	ND	ND	ND
4,4'-DDD	0.002	ND	ND	ND
Endrin Aldehyde	0.002	ND	ND	ND
Endosulfan Sulfate	0.002	ND	ND	ND
4,4'-DDT	0.002	ND	ND	ND
4,4'-DDE	0.002	ND	ND	ND
Dieldrin	0.002	ND	ND	ND
Methoxychlor	0.004	ND	ND	ND
Toxaphene	0.03	ND	<0.1(a)	ND
Chlordane	0.01	ND	ND	ND
PCBs: Aroclor 1016	0.01	ND	ND	ND
Aroclor 1221	0.01	ND	<0.03(a)	ND
Aroclor 1232	0.01	ND	<0.03(a)	ND
Aroclor 1242	0.01	ND	ND	ND
Aroclor 1248	0.01	ND	ND	ND
Aroclor 1254	0.01	ND	ND	ND
Aroclor 1260	0.01	ND	ND	ND

а

٠

The MRL is elevated because of matrix interferences.

L

Spalier Approved By:

3S30/111094 K9501715.XLS - 3S30 4/21/95

Date: 4/21/95

Page No.: 00000

Analytical Report

Lient:U.S. Army Corps of EngineersProject:Newport North Marina Jetty Sediment/#95-0191Sample Matrix:Soil

Service Request: K9501715 Date Collected: 3/15/95 Date Received: 3/22/95 Date Extracted: 3/28/95

Butyltins* Units: µg/Kg (ppb) Dry Weight Basis

	Method 1	Analyte: Reporting Limit:	Tributyltin 3	Dibutyltin 3	Butyltin 3
Sample Name	Lab Code	Date Analyzed			
YNMJ-1,3 Composite	K9501715-003	4/7/95	ND	ND	ND
YNMJ-2	K9501715-004	4/7/95	ND	ND	ND
Method Blank	K950328-SB1	4/7/95	ND	ND	ND

Methodology based on C.A.Krone, et al., "A Method for Analysis of Butyltin Species and Measurement of Butyltins in Sediment and English Sole Livers from Puget Sound," National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, November 1988.

Approved By: ______ 3ADA/101194 01715SVM.KYI - Butytin 4/10/95

Date: 4/10/45

UOUC C

Analytical Report

Client:U.S. Army Corps of EngineersProject:Newport North Marina Jetty Sediment/#95-0191Sample Matrix:Soil

Service Request: K9501715 Date Collected: 3/15/95 Date Received: 3/2295 Date Extracted: 3/27/95

Phthalate Esters and Polynuclear Aromatic Hydrocarbons EPA Method 3550 in combination with GC/MS SIM Method Units: µg/Kg (ppb) Dry Weight Basis

		YNMJ-1,3		
	Sample Name:	Composite	YNMJ-2	Method Blank
	Lab Code:	K9501715-003	K9501715-004	K950327-SB1
	Date Analyzed:	3/30/95	3/30/95	3/30/95
Analyte	MRL			
Naphthalene	20	ND	ND	ND
2-Methylnaphthalene	20	ND	ND	ND
Acenaphthylene	20	ND	ND	ND
Dibenzofuran	20	ND	ND	ND
Acenaphthene	20	ND	ND	ND
Fluorene	20	ND	ND	ND
Phenanthrene	20	ND	ND	ND
Anthracene	20	ND	ND	ND
Fluoranthene	20	ND	21	ND
.^yrene	20	ND	ND	ND
Benz(a)anthracene	20	ND	ND	ND
Chrysene	20	ND	ND	ND
Benzo(b)fluoranthene	20	ND	ND	ND
Benzo(k)fluoranthene	20	ND	ND	ND
Benzo(a)pyrene	20	ND	ND	ND
Indeno(1,2,3-cd)pyrene	20	ND	ND	ND
Dibenz(a,h)anthracene	20	ND	ND	ND
Benzo(g,h,i)perylene	20	ND	ND	ND

Date: <u>4/14/95</u>

Analytical Report

Client:U.S. Army Corps of EngineersProject:Newport North Marina Jetty Sediment/#95-0191Sample Matrix:Soil

 Service Request:
 K9501715

 Date Collected:
 3/15/95

 Date Received:
 3/2295

 Date Extracted:
 3/27/95

Phenols EPA Method 3550 in combination with GC/MS SIM Method Units: µg/Kg (ppb) Dry Weight Basis

	YNMJ-1,3		
Sample Name: Lab Code:	Composite K9501715-003	YNMJ-2 K9501715-004	Method Blank K950327-SB1
Date Analyzed:	4/3/95	4/3/95	4/3/95
MRL			
20	ND	33	ND
20	ND	ND	ND
20	ND	ND	ND
20	ND	ND	ND
20	ND	ND	ND
20	ND	ND	ND
20	ND	ND	ND
20	ND	ND	ND
20	ND	ND	ND
20	ND	ND	ND
50	ND	ND	ND
50	ND	ND	ND
50	ND	ND	ND
50	ND	ND	ND
	Sample Name: Lab Code: Date Analyzed: MRL 20 20 20 20 20 20 20 20 20 20 20 20 20	YNMJ-1,3 Sample Name: Composite Lab Code: K9501715-003 Date Analyzed: 4/3/95 MRL 20 ND 50 ND 50 ND 50 ND 50 ND	YNMJ-1,3 Sample Name: Composite YNMJ-2 Lab Code: K9501715-003 K9501715-004 Date Analyzed: 4/3/95 4/3/95 MRL 20 ND 33 20 ND ND 50

Quantified as 4-methylphenol.

Ĺ

Approved By: 3522/120594 01715SVM.NH1 - Phenois 4/6/95

*

Date: 4/6/95

APPENDIX A

•

LABORATORY QC RESULTS

QA/QC Report

Client:	U.S. Army Corps of Engineers
Project:	Newport North Marina Jetty Sediment/#95-0191
Sample Matrix:	Soil

Service Request: K9501715 Date Collected: 3/15/95 Date Received: 3/22/95 Date Extracted: NA Date Analyzed: 3/29/95

Duplicate Summary Sulfide, Acid Volalite EPA Method Draft Dec '91 Units: mg/Kg (ppm) Dry Weight Basis

`			•	Duplicate	Relative	
Sample Name	Lab Code	MRL	Sample Result	Sample Result	Average	Percent Difference
Batch QC	K9501663-001	0.5	75	65	70	14

Approved By: DUP1A/102194 01715ICP.GJ1 - DUP (2) 4/14/95

the Sole

Date: 4/14/95

QA/QC Report

Client:	U.S. Army Corps of Engineers	Service Request:	K9501715
Project:	Newport North Marina Jetty Sediment/#95-0191	Date Collected:	3/15/95
Sample Matrix:	Soil	Date Received:	3/22/95
		Date Extracted:	NA
		Date Analyzed:	3/29/95

Matrix Spike Summary Sulfide, Acid Volalite EPA Method Draft Dec '91 Units: mg/Kg (ppm) Dry Weight Basis

Sample Name	Lab Code	MRL	Spike Level	Sample Result	Spiked Sample Result	Percent Recovery	Percent Recovery Acceptance Limits
Batch QC	K9501663-001	0.5	2700	75	3400	123	75-125

Approved By:

MS1A/102194 01715ICP.GJ1 - MS 4/14/95 Eljota Loke

Date: 4/14/95

Page No .: 00012

CAS

QA/QC Report

Client:U.S. Army Corps of EngineersProject:Newport North Marina Jetty Sediment/#95-0191Sample Matrix:Soil

Service Request: K9501715 Date Collected: 3/15/95 Date Received: 3/22/95 Date Extracted: NA Date Analyzed: 4/7/95

Duplicate Summary Total Organic Carbon (TOC) ASTM Method D4129-82 Modified Units: Percent (%) Dry Weight Basis

			Duplicate			Relative	
Sample Name	Lab Code	MRL	Sample Result	Sample Result	Averag e	Percent Difference	
YNMJ-1,3 Composite	K9501715-003	0.05	0.73	0.73	0.73	< 1	

aher Solo Approved By:

DUP1A/102194 K9501715.XLS - TOCDS 4/14/95

Date: <u>4/14/</u>45

QA/QC Report

Client:	U.S. Army Corps of Engineers
Project:	Newport North Marina Jetty Sediment/#95-0191
Sample Matrix:	Soil

Service Request:K9501715Date Collected:3/15/95Date Received:3/22/95Date Extracted:3/30/95Date Analyzed:4/4/95

Duplicate Summary Total Metals Units: mg/Kg (ppm) Dry Weight Basis

Sample Name:	YNMJ-2
Lab Code:	K9501715-004

				Relative		
	EPA		Sample	Sample		Percent
Analyte	Method	MRL	Result	Result	Average	Difference
Arsenic	200.8	0.5	4.5	4.5	4.5	<1
Cadmium	200.8	0.02	0.15	0.20	0.18	28
Chromium	200.8	0.2	20.7	19.9	20.3	4
Copper	200.8	0.05	7.57	7.29	7.43	4
Lead	200.8	0.02	3.58	3.38	3.48	6
Mercury	7471	0.02	ND	0.03	NC	NC
Nickel	200.8	0.2	1 6 .0	15.3	15.6	4
Zinc	200.8	0.5	29.8	30.0	29.9	1

Approved By: _____

Elato St.

017151CP.GJ1 - DUP 4/14/95

Date: 4/14/95

00011

QA/QC Report

Client:U.S. Army Corps of EngineersProject:Newport North Marina Jetty Sediment/#95-0191Sample Matrix:Soil

 Service Request:
 K9501715

 Date Collected:
 3/15/95

 Date Received:
 3/22/95

 Date Extracted:
 3/30/95

 Date Analyzed:
 4/4/95

Matrix Spike Summary Total Metals Units: mg/Kg (ppm) Dry Weight Basis

Sample Name: Lab Code: Analyte	YNMJ-2 K9501715-004	MRL	Spike Level	Sample Result	Spiked Sample Result	Percent Recovery	CAS Percent Recovery Acceptance Limits
Arsenic		0.5	27	4.5	28.1	87	60-130
Cadmium		0.02	6.7	0.15	6.24	91	60-130
Chromium		0.2	27	20.7	46.5	96	60-130
Copper		0.05	34	7.57	38.3	90	60-130
Lead		0.02	67	3.58	73.8	105	60-130
Mercury		0.02	0.07	ND	0.09	130	60-130
Nickel		0.2	67	16 .0	79.9	95	60-130
Zinc		0.5	67	29.8	87.9	87	60-130

Elatures the Approved By:

MS15/102194 017151CP.GJ1 - Spike 4/14/95

Date: _______

00015

QA/QC Report

Client:U.S. Army Corps of EngineersProject:Newport North Marina Jetty Sediment/#95-0191Sample Matrix:Soil

Service Request: K9501715 -Date Collected: 3/15/95 Date Received: 3/22/95 Date Extracted: 3/29/95 Date Analyzed: 4/7/95

Surrogate Recovery Summary Organochlorine Pesticides and Polychlorinated Biphenyls (PCBs) - Low Level EPA Methods 3550/8080

		Percent Recovery	Percent Recovery
Sample Name	Lab Code	Tetrachloro-m-xylene	Decachlorobiphenyl
YNMJ-1,3 Composite	K9501715-003	60	66
YNMJ-2	K9501715-004	75	58
Batch QC	K9501682-003	46	47
Batch QC	K9501682-003MS	56	52
Batch QC	K9501682-003DMS	41	5 0
Lab Control Sample	K950329-LCS	55	74
Method Blank	K950329-MB	62	72

CAS Acceptance Limits:

31-146

Approved By:

SUR2/111594 01715SVG.TF1 - SUR2 4/12/95 Nam

_Date: 4/12/95

26-124

QA/QC Report

Client:	U.S. Army Corps of Engineers
Project:	Newport North Marina Jetty Sediment/#95-0191
Sample Matrix:	Soil

Service Request: K9501715 Date Collected: 3/15/95 Date Received: 3/22/95 Date Extracted: 3/29/95 Date Analyzed: 4/7/95

Matrix Spike/Duplicate Matrix Spike Summary Organochlorine Pesticides and Polychlorinated Biphenyls (PCBs) - Low Level EPA Methods 3550/8080 Units: mg/Kg (ppm) Dry Weight Basis

Sample Name: Lab Code:

Batch QC K9501682-003

						Percent Recovery			
	Spike	e Level	Sample	Spike	Result			CAS Acceptance	Relative Percent
Analyte	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference
Heptachlor	0.024	0.024	ND	0.012	0.015	50	63	27-130	22
Aldrin	0.024	0.024	ND	0.019	0.019	79	79	28-127	<1
Gamma-BHC (Lindane)	0.024	0.024	ND	0.012	0.017	50	71	28-127	34
Endrin	0.024	0.024	ND	0.014	0 .01 8	58	75	27-153	25
4,4'-DDT	0.024	0.024	ND	0.015	0.01 8	63	75	27-151	18
Dieldrin	0.024	0.024	ND	0.012	0.014	50	58	29-142	15

Approved By: _

DMS15/060194 01715SVG.TF1 - DMS1S 4/12/95 Yan

Date: <u>4/12/45</u>

QA/QC Report

Client:	U.S. Army Corps of Engineers	Service Request: K9501715
Project:	Newport North Marina Jetty Sediment/#95-0191	Date Collected: NA
LCS Matrix:	Soil	Date Received: NA

Date Extracted: 3/29/95 Date Analyzed: 4/7/95

Laboratory Control Sample Summary Organochlorine Pesticides and Polychlorinated Biphenyls (PCBs) - Low Level EPA Methods 3550/8080 Units: mg/Kg (ppm)

Analyte	True Value	Result	Percent Recovery	CAS Percent Recovery Acceptance Limits
Heptachlor	0.017	0.012	71	33-130
Aldrin	0.017	0.012	71	31-126
Gamma-BHC (Lindane)	0.017	0.013	76	35-126
Endrin	0.017	0.014	82	45-133
4,4'-DDT	0.017	0.014	82	39-143
Dieldrin	0.017	0.012	71	42-135

Approved By:

LCS/060194 01715SVG.TF1 - LCS 4/12/95 Van

Date: 4/12/91

QA/QC Report

Client:U.S. Army Corps of EngineersProject:Newport North Marina Jetty Sediment/#95-0191Sample Matrix:Soil

Service Request: K9501715 Date Collected: 3/15/95 Date Received: 3/22/95 Date Extracted: 3/28/95 Date Analyzed: 4/7/95

Surrogate Recovery Summary Butyltins*

Sample Name	Lab Code	Percent Recovery Tripropyltin
YNMJ-1,3 Composite	K9501715-003	85
YNMJ-2	K9501715-004	57
YNMJ-2	K9501715-004MS	63
YNMJ-2	K9501715-004DMS	72
Lab Control Sample	K950328-SL1	61
Method Blank	K950328-SB1	48

CAS Acceptance Limits:

Methodology based on C.A.Krone, et al., "A Method for Analysis of Butyltin Species and Measurement of Butyltins in Sediment and English Sole Livers from Puget Sound," National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, November 1988.

Approved By:

4/10/45 Date:

SUROTS/060194 01713SVM.KY1 - BuSn Sur 4/10/95

QA/QC Report

Client:	U.S. Army Corps of Engineers
Project:	Newport North Marina Jetty Sediment/#95-0191
Sample Matrix:	Soil

 Service Request:
 K9501715

 Date Collected:
 3/15/95

 Date Received:
 3/22/95

 Date Extracted:
 3/28/95

 Date Analyzed:
 4/7/95

Matrix Spike/Duplicate Matrix Spike Summary Butyltins* Units: µg/Kg (ppb) Dry Weight Basis

Sample Name: YNMJ-2 Lab Code: K9501715-004

						Perc	ent l	Recovery CAS	Relative	
	Spike	Level	Sample	Spike	Result			Acceptance	Percent	
Analyte	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	
Tributyltin	24	24	ND	19	20	79	83	-	5	

Methodology based on C.A.Krone, et al., "A Method for Analysis of Butyltin Species and Measurement of Butyltins in Sediment and English Sole Livers from Puget Sound," National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, November 1988.

Approved By: _____ DMS1SOT5/060194 017155VM.KY1 - BuSn DMS 4/1095

Date: 4/10/95

Page No.:

00020

QA/QC Report

Client:	U.S. Army Corps of Engineers
Project:	Newport North Marina Jetty Sediment/#95-0191
LCS Matrix:	Soil

Service Request: K9501715 Date Collected: NA Date Received: NA Date Extracted: 3/28/95 Date Analyzed: 4/7/95

Laboratory Control Sample Summary Butyltins* Units: µg/Kg (ppb)

	True		Demonst	CAS Percent Recovery
	Irue	<u> </u>	Percent	Acceptance
Analyte	Value	Result	Recovery	Limits
Tributyltin	18	14	78	

Methodology based on C.A.Krone, et al., "A Method for Analysis of Butyltin Species and Measurement of Butyltins in Sediment and English Sole Livers from Puget Sound," National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, November 1988.

Approved By: ____

LCSOTS/060194 01715SVM.KY1 - BuSn LCS 4/10/95

4/0-195 Date:

Page No.:

00021

QA/QC Report

Client:	U.S. Army Corps of Engineers
Project:	Newport North Marina Jetty Sediment/#95-0191
Sample Matrix:	Soil

 Service Request:
 K9501715

 Date Collected:
 3/15/95

 Date Received:
 3/21/95

 Date Extracted:
 3/27/95

 Date Analyzed:
 3/30-4/3/95

Surrogate Recovery Summary Phthalate Esters and Polynuclear Aromatic Hydrocarbons and Phenols EPA Method 3550 in combination with GC/MS SIM Method

_

	C L L	N C C	0 v e i	гу
FLR	CRY	2FP	PHL	TBP
33	26	2 0	23	30
8 6	70	52	62	84
86	70	53	6 5	84
85	66	52	63	99
89	71	56	69	110
91	72	49	63	67
79	67	46	60	41
	FLR 33 86 86 85 89 91 79	FLR CRY 33 26 86 70 86 70 85 66 89 71 91 72 79 67	FLR CRY 2FP 33 26 20 86 70 52 86 70 53 85 66 52 89 71 56 91 72 49 79 67 46	FLR CRY 2FP PHL 33 26 20 23 86 70 52 62 86 70 53 65 85 66 52 63 89 71 56 69 91 72 49 63 79 67 46 60

CAS Acceptance Limits:

ļ

17-100 15-135 10-138 13-114 D-161 D-134

NAP	Naphthalene-d8
FLR	Fluorene-d10
CRY	Chrysene-d12
2FP	2-Fluorophenol
PHL	Phenol-d6
TBP	2,4,6-Tribromophenol

Approved By: _____ SUR6/120594 01715SVM.NH1 - SUR 4/6/95

Date: 4/6/95

QA/QC Report

Client:	U.S. Army Corps of Engineers	Servi
Project:	Newport North Marina Jetty Sediment/#95-0191	Dat
Sample Matrix:	Soil	Dat
		-

Service Request: K9501715 Date Collected: NA Date Received: NA Date Extracted: 3/27/95 Date Analyzed: 3/30-4/3/95

Matrix Spike/Duplicate Matrix Spike Summary Phthalate Esters and Polynuclear Aromatic Hydrocarbons and Phenols EPA Method 3550 in combination with GC/MS SIM Method Units: µg/Kg (ppb) Dry Weight Basis

Sample Name: 1 Lab Code: 1

Batch QC K9501663-002

						Perc	ent R	ecovery	
	Spike	. Level	Sample	Spike	Result			CAS Acceptance	Relative Percent
Analyte	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference
Acenaphthene	430	430	ND	240	240	56	56	16-132	-
Рутепе	430	430	1 9 0	390	380	47	44	6-159	3
Benzo(a)pyrene	430	430	9 0	290	290	47	47	D-159	-
Pentachlorophenol	430	430	ND	330	330	77	77	10-120	-

D

Detected; result must be greater than zero.

Date: 4/6/97

Page No.: 00023

DMS15/120594 01715SVM.NH1 - DMS 4/6/95

Approved By:

QA/QC Report

Client:	U.S. Army Corps of Engineers
Project:	Newport North Marina Jetty Sediment/#95-0191
LCS Matrix:	Soil

Service Request: K9501715 Date Collected: NA Date Received: NA Date Extracted: 3/27/95 Date Analyzed: 3/30-4/3/95

C+ C

Laboratory Control Sample Summary Phthalate Esters and Polynuclear Aromatic Hydrocarbons and Phenols EPA Method 3550 in combination with GC/MS SIM Method Units: µg/Kg (ppb)

				CAS
				Percent
				Recovery
	True		Percent	Acceptance
Analyte	Value	Result	Recovery	Limits
Acenaphthene	500	290	58	39-121
Рутепе	500	330	66	32-136
Benzo(a)pyrene	500	300	60	D-159
Pentachlorophenol	500	350	70	10-120

Detected; result must be greater than zero.

Ļ

Approved By: LCS/120594 01715SVM.NH1 - LCS 4/6/95

Date: 4/6/45

Page No.:

00024

APPENDIX B

CHAIN OF CUSTODY INFORMATION

BBNPT2	2PC)FO	000	00																	
					CH	AIN	OFC	UST		' RE(CORI) ////		·	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
PROVISIUPORT Harthan North	Matin	à Je	thy	46 NS					d'	Zin) E/		' /	/			/			PR	ESERVATION
SAMPLERS: [Signatural, Jin Britton			r	CONTAIN						X	V	X	. /	/						μO	SPECIFY CHEMICALS
SAMPLE NUMBER	DATE	TIME	COMP.	GRAU NO.		2	e f	Y	¥.	Ŧŕ	Y	Y	/	/		52M	REM (PLE		NON .	2	FINAL PH
YNMJ-1	3-15-95				\mathbf{A}	\mathbf{N}	\mathbb{N}	\mathbf{N}	\bigvee	X	Х				3_0	am	nas.	ite		X	
$\gamma M J = 3$	3-15-95		┼╌┼		+		\mathbb{R}	段	\mathbb{R}	\mathbb{R}					>					ΤX	
<u>YM 015</u>															·						· · · · · · · · · · · · · · · · · · ·
										 -											
	· ·																				
		<u> </u>	┦╼┦								·							<u></u>	<u> </u>		
							 														1
	<u> </u>	<u> </u>																			· · · · · ·
			+					<u> </u>	$\frac{1}{1}$	1											
Relinguished by: (Signature)		Date / Tim	- <u> </u> - • R		by: (S	 iignats	 11 • }	<u> </u>	 R+I	L lingui	1 17+d t	<u>ا</u>	L			n	A1 0 /	Tim •	Shipped	 via:	1
Jim Britlen	3-16-	-95 9:1	15	Pa.	l.	À.	af	Jacon								-					
Relinquished by: [Signature]		Date / Tim 43 150	и в 20	rcaived	hy: {	ignati	179) (1	フ	Re (Si	ceived gnatu	l lor 1 r=)	1001	atory	bγ:		D	41 ¶ /	Tim•	Shipping	Tick	nt No.
Relinquished hy: [Signature)	0)	Date / Tim		*c*ived	by: [Signati		,	R. ≶	maeki a f	1 m. 75,	eta Cd	ls: ',C	r,	cu	Ho) 1	Pb,	Nì,	Zn	

Army Corps of Engineers Cooler Receipt Form

Project: NEWPORT	NORTH MARINA STATA	SEDIMENT
Cooler received on $3/2>$	and opened on 3/22 by	LB

1.	Were custody seals on outside of cooler?	YES NO
	Were signature and date correct?	YES NO
2.	Were custody papers taped to lid inside cooler?	YES NO
3.	Were custody papers properly filled out (ink, signed, etc.)?	YES NO
4.	Did you sign custody papers in the appropriate place?	YES NO
5	Did you attach shipper's packing slip to this form?	YES NO
6.	What kind of packing material was used?	
7.	Was sufficient ice used (if appropriate)?	YES NO
8.	Were all bottles sealed in separate plastic bags	YES NO
9.	Did all bottles arrive in good condition (unbroken)?	YES NO
10.	Were all bottle labels complete (No., date, signed, analysis, pres., etc)?	YES NO
11.	Did ail bottle labels and tags agree with custody papers?	YES NO
12.	Were correct bottles used for the tests indicated?	YES NO
13.	Were VOA vials checked for absence of air bubbles. and noted if so?	YES NO
14.	Was sufficient amount of sample sent in each bottle?	YES NO
15.	Temperature of cooler(s) upon receipt: 7.6°C	
	Identification number of thermometer: # 20	·
	Is the temperature within $4 \pm 2^{\circ}$ C?: Yes \Box Yes \Box Yes \Box Yes \Box No \Box No \Box	Yes 🖸 🦞 Yes 🗆 No 🗆 No 🗔
Expiai	n any discrepancies	

- - -

APPENDIX C

.

RAW DATA

UOC28

Analysis Lot MET9500601

Sample Number(s):	AS	LISTED

2

nalysis For: TOTAL SOLIDS

2

Service Request Number: K95-01682, 01715 Method Number: EPA METHOD 160.3 MODIFIED

Pan ID	Lab Code	Wet Weight (g)	Tare (g)	Tare + Dry Wt. (g)	Dry Weight (g)	% Total Solids
Ko1682-1	K01682-1	16.91	1.00	8,22	7.22	42.7
- 12	- 10-10	15.38	0.95	7.62	6.63	43.1
-2	-2	14.27	0.99	10,54	9,55	66.9
6-3	- 3	(8.93	0.99	9.11	8.12	42.9
CO 1715-3	KU1715-3	7.30	. 1,00	6,60	5,60	76.7
- 4	- 4	10.80	1.00	9,05	8.05	74.5
b - 4a	- 4 ap	10.48	0.99	8.81	7.82	74.6
					•	
-					••	· · — —
				X	3/30/95	
						•
•						
AD Temp						2
en remp:		IIM	le in:	Ur		
omments:						
			`.			
		<u> </u>				
alyst	del -			Date Analyze	d: 3/30/55-	•
Roviewed B	Y:		\sim	Date Review	ed: 4/4/95	/
		<u></u>	;; ; ;;	Filename:	Mise, Beh Disk/TSO	LIDS.BCH/03-18-5
					00	しない

00030

HP5972

GEOTECHNICAL RESOURCES, INC.
Engineers, Geologists, and Environmental Scientists
9725 SW Beaverton-Hillsdale Hwy., Suite 140
verton, OR 97005-3364
3) 641-3478 FAX (503) 644-8034

L	Ε	Τ	T	E	R) F	<u> </u>	R	A	N	S	M	L	I	T	T	A	L	
---	---	---	---	---	---	--	-----	----------	---	---	---	---	---	---	---	---	---	---	---	--

Date: June 6, 1995

Job No: 1864

Re: COE NEWPORT BAY

To: Rich Hannan U.S. Army Corps of Engineers Portland District 333 SW First Avenue, 9th Floor Portland, OR 97204

Copies	Dated	Contents
1	6/3/95	BORINGS DH-A, DH-B, DH-C, AND DH-D
1	-	SITE MAP
1		JAR SAMPLES
	1	

THESE ARE TRANSMITTED as checked below:

[x] For your use	[] As requested	[] For approval	[] For review and comment
REMARKS:			
	· · · · · · · · · · · · · · · · · · ·		
		BY:	Michael W. Reed, P.E./md
SENT VIA: [] Regular N	Mail [x] Courier	[] Overnight/	UPS [] Hold for Pick Up

GRI	GEOT Engined 9725 S Beavert (503) 6	ECHN ers/Gea W Bea on, OI 41-347	ICAL RESOURCES, INC. plogists/Environmental Scientists verton-Hillsdale Hwy, Suite 140 \$ 97005 8 (FAX) 644-8034	Page of Date 6/3/	์ 195	GRI Rep. Job No. Boring No. DH-A
Location			· ·	Project	LOE	HEWPORT
Drill Method	MU	0 /	ROTARY	Driller C		TECH EXPLORATIONS
Depth I	Sample No./SPT	Rec. (in.)	Description	L		Remarks
	5-1 2-1-1 H=2	11	LOOSE, DARE GRAY FINE - GRAINED, TRA SCATTERED SHELL F	SILTY SAN CE ORGANI ENGMENTS		* W.D. = 2:2 ft (6:45 A W.L. = +3.5 ft (6:45 A MUDLINE ELEN = -18.5 ft
	- <u></u> 5-2 8-28-40	5	SOFT (EH-1) GRAY CLAYSTONE	SILTSTONE		- STIFFER @ + ft + BASED ON PRILLING NBOVE (80°)
	H= 68					$520 \text{ W} (z\infty^{\circ})$
10 11	5-3 20-50-50/,	13				
	H= 100/5+		11.3 ff (61	13/95)	E	
						* w.D. = WATER DEPTH
						W.L. = WATER Level
20						
	-					
25						
						-
				,		
ТТТ	,					

.

GEOTEC Engineers/ 9725 SW E Beaverton, (503) 641-	HNICAL RESOURCES, INC. Geologists/Environmental Scientists Beaverton-Hillsdale Hwy, Suite 140 , OR 97005 3478 (FAX) 644-8034	Page of	GRI Rep. PFF Job No. 1864
		Date 6/3/95	Boring No. DH-B
Location		Project COE A	LEWPORT
Drill Method MUO	ROTARY	Driller GTEO-TE	ett
Depth E No./SPT (ir	n.) Description		Remarks
5 5-1 6	MEDIUM DENSE TROCE SILT SU	GING	W.D. = 5.0 ft $ W.L. = 3.0 ft $ $ MUDLINE ELEV = +2.0 ft$
10			
5-3 9-10-17 N=27	SHELL FRAGME	ATS BELOW	
20 	11 DEHGE BELOO SCATTERED GHE TRACE to SO	W 20 ft	$\omega_{.L.} = + 5 \text{ ft } 2:30 \text{ pm}$
25 6-15·20 I' 4/= 35	2" 26.5 ft (6/	3/95)	-

GRI	GEOTEC Engineers. 9725 SW 1 Beaverton (503) 641-	HNI /Geo Beav , OF -347	ICAL RESOURCES, INC. plogists/Environmental Scientists verton-Hillsdale Hwy, Suite 140 97005 8 (FAX) 644-8034	Page Date	/ ^{of} /	5	GRI Rep. Job No. Boring No.	D IB P	KF 64 H-C
Location				Project	COE	H	ENPORT	•	
Drill Method	MUD \$	201	ARY	Driller	C#60.7	TECH			
Depth E	Sample R No./SPT (i	.ec. n.)	Description				Remai	·ks	
Depth 1	No./SPT (i 5-1 2-1-1 4=2 39-50/311 5-3 50-50/211		Description NOSE, GRAY BAND; TO GILTY, FINE-GRE CONTAINS SCATTERED C SHELL AND GLASS FR SHELL AND GLASS FR SHE SOFT TO MEDVUM GO GRAT SILTSTONE DISCEPHIBLE ALONG B PLAMES PRIENTED AN HOTCHEDNTAL 10.9 ft (6/3/	Some PAINER IN SI ET (RI PAR EDDING EARLY 95)	512T D +TS, +TS, +-1) -TING - - - - - - - - - - - - -	$\omega = \omega =$	Remar 0. = 18 1. = +0. 1/21NE E N 70W (N 70W (N 25W 0.L. = 0	ki ft 290° (335) ft	9:15 AM = -/7.5 F
									-

	GEOTECHNI Engineers/Geo 9725 SW Beav Beaverton, OR (503) 641-3478	CAL RESOURCES, INC. logists/Environmental Scientists erton-Hillsdale Hwy, Suite 140 97005 3 (FAX) 644-8034	Page Date	° ⁽ 6 3/95	GRI Rep. DKF Job No. 1864 Boring No. DH - D	·
ation			Project	COE	NEWPORT	
ill Method	140 Ros	TARY	Driller	GEO-TEC	H EXPLORATIONS	·
)epth L No.	mple Rec. /SPT (in.)	Description			Remarks	
2-1	-1 4"	1005E, DARK GRAY TRACE to TSOME FINE-GRAINED	SAND SILT,		W, D = 2.0 ff W, L = +1.0 ff 1140LINE ELEN = -1.0	iiis am ft
5	2 0-0 4R				Sampler SAL 1.5 ft UNDER STATIC WT. OF 140 15 Hammer 15 ft of N-ROR	k
10	-3 -10 Z"	TRACE GILT, B	, GRAJ ELOO I		CASING SANK ABOUT 1.5 A PCSO	
15	-4 12" 7-9 12" =16		·		(2:3)	opr
20	5 11 30.50/13 6 5/2	SOFT (RH-1) GRAY SILTSTONE/CLAYST	ione			
25	7a "	22.8 ft (6/3	<i>1</i> 95)			
						. 1