
General-Purpose Multiparadigm Programming Languages:

An Enabling Technology for Constructing Complex Systems

Timothy A. Budd Timothy P. Justice Rajeev K. Pandey

Technical Report 95{60{04

Department of Computer Science

Oregon State University

Corvallis, Oregon 97331{3202

fbudd, justict, rpandeyg@cs.orst.edu

May 1, 1995

Abstract

Multiparadigm programming languages have been envisioned as a vehicle for constructing large and

complex heterogeneous systems, such as a stock market exchange or a telecommunications network.

General-purpose multiparadigm languages, as opposed to hybrid multiparadigm languages, embody sev-

eral prevalent programming paradigms without being motivated by a single problem. One such language

is Leda, which embodies the foundational paradigms of imperative, functional, logic, and object-oriented

programming. We explore aspects of solving complex problems using Leda, in order to illustrate the

bene�ts of using a multiparadigm language in expressing solutions to complex systems. We claim that

general-purpose multiparadigm programming languages like Leda greatly expedite solutions to a variety

of complex problems.

1 Introduction

Complex heterogeneous systems are being constructed with increasing frequency. Software is a vital com-
ponent in all complex systems. Choosing the appropriate programming language is a crucial decision in
software development. Each programming language is associated with a programming paradigm{a problem
view which is in
uenced by the constructs and concepts embodied in the programming language. While
paradigms abound, computer scientists view four paradigms as foundational [BG94, GJ87, Kam94, Set89].
Traditionally, languages re
ect one of these foundational paradigms:

� imperative programming (e.g., FORTRAN, C)

� object-oriented programming (e.g., Smalltalk, Ei�el)

1

� functional programming (e.g., LISP, ML)

� logic programming (e.g., Prolog)

Recently, a panel of experts at a workshop on future directions in programming languages [Kam94]
identi�ed the role of programming languages as that of an enabling technology, the machine tools of the
computer age. Unfortunately, as concluded by this panel, languages have not always lived up to their role:

Our society pays an enormous cost for the widespread use of old-fashioned \machine tools"
for software development { that is, poorly designed and documented, frustratingly limited, un-
friendly, and ine�cient languages and language processors.

One approach to resolving the de�ciencies of single paradigm languages is to combine the best known
problem solving styles into a single language, thus allowing the programmer to choose whichever style
most naturally �ts a given problem. The resulting languages are referred to as multiparadigm programming

languages. Creation of such languages is motivated by the observation that many complex problems contain
subproblems whose solutions lend themselves to di�erent programming paradigms. If a language were to
possess the appropriate paradigms, the problem solution would be expedited by the fact that subproblems
could avail of the paradigm that best expresses a solution.

Multiparadigm programming languages have been an active research area for over a decade. Much
of the research e�ort has been devoted to developing implementation techniques for languages spanning
several paradigms, as well as experimenting with varying the blended paradigms. Recently, attention has
turned to the applicability of these languages to real-world problems. Some problems that have been touted
as suitable for multiparadigm solution include a programming language compiler [Bud91], a stock market
exchange [JGM86], and a telephone network simulation [Zav89].

Several approaches have been pursued in the creation of multiparadigm languages:

� augmented languages

Augmented languages add additional paradigms to an existing language to permit users to utilize a
new programming style without learning a completely new language. The additional paradigm usually
represents a natural progression or evolution of the language, based on experience. For example,
C++[Str91] extends C [KR88] with support for object-oriented programming.

� hybrid languages

Hybrid languages typically extend an existing functional or logic programming language by embedding
other paradigms. The primary motivation for these languages is to provide a wide range of stan-
dard programming and knowledge representation paradigms for solving complex problems in arti�cial
intelligence [MNC+91]. Loops [SBK86] is an example of this type of language.

� general-purpose languages

General-purpose multiparadigm languages seek to �nd the \ideal" blending of several major paradigms
in order to provide a more expressive programming vehicle for general problem solving. Leda [Bud95]
exempli�es this approach.

Most existing multiparadigm programming languages are not general-purpose, but belong to the augmented
or hybrid variety, and are a result of the lack of very speci�c language features with respect to a speci�c
problem. Rather than attack the problem with an inelegant solution, the language is extended in one of a

2

variety of ways. Here there is a close a�nity between hybrid multiparadigm programming languages and a
particular problem, since the language is essentially designed with the speci�c application in mind. While
these languages have de�nite advantages in the context of a speci�c problem, they may not easily generalize
to solving di�erent problems. Combining the foundational paradigms to create languages like Leda has been
identi�ed as the next step in general-purpose language evolution [Ghe93]:

All the major programming language styles - procedural, functional and logical - have application
domains where they are particularly e�ective. This suggests that general-purpose programming
languages must embrace a number of these di�erent approaches. Consequently, it seems likely
that the future of the major general-purpose programming languages will be as multi-paradigm
languages.

General-purpose multiparadigm language research at Oregon State University has yielded the language
G [Pla91], as well as Leda, our current language of interest. Leda combines all four foundational paradigms
enumerated above. Retaining conciseness while combining the four paradigms was a design goal of Leda.
While Leda adds two more paradigms than C++, the resultant language is actually smaller than C++1. By
emphasizing the essential features{the exemplars{of the constituent paradigms, Leda facilitates blendings
at various levels of granularity, from individual statements to complete modules. Figure 1 illustrates our
view of general-purpose multiparadigm languages. This view permits the programmer to apply any of �fteen
possible paradigm blendings to a single problem. The �gure further illustrates Leda'a articulation of this
view.

Leda is the product of six years of research in paradigm blending and language implementation. Leda has
evolved through several implementations, is the subject of a textbook [Bud95], and has been taught inter-
nationally. Current research is focused on the development of a programming environment and production
quality compiler, as well as studies of large application development in Leda.

2 A Multiparadigm Approach to Problem Solving

Various applications have been identi�ed as being well-suited to a particular foundational paradigm. Figure 2
illustrates some of these applications. As problems grow in complexity, a number of the prototypical appli-
cations identi�ed in the �gure become interrelated subproblems of the much larger problem. This section
examines three such problems.

2.1 A Telephone Network Simulation

Zave [Zav89] describes a multiparadigm approach to the construction of a telephone network simulator. The
network consists of clusters of switches connecting local clusters of telephones via a collection of trunks.
The switches all access a global database to translate numbers, and send billing data to a centralized billing
repository.

Three speci�c computational requirements are identi�ed in the problem description: simulation, numer-
ical computing, and database processing. Figure 2 shows the corresponding paradigms best suited for this
application to be object-oriented, imperative, and logic. Zave's implementation employs several independent
programming languages in a compositional manner.

1For example, Leda has 54% fewer keywords and 67% fewer operators than C++.

3

curry := function(f : binary, n : integer)->unary;
 begin
 return function(m : integer)->integer;
 begin
 return f(n, m);
 end;
 end;

increment := curry(integer.plus, 1);
decrement := curry(integer.minus, 1);

function parent(byRef X, Y : string)->relation;
begin
 return father(X, Y) | mother(X, Y);
end;

function son(byRef X, Y : string)->relation;
begin
 return parent(Y, X) & male(X);
end;

class Circle of Shape;
var
 radius : real;

 function area()->real;
 begin
 return 3.14159 *
 radius * radius;
 end;

 function perimeter()->real;
 begin
 return 2.0 * 3.14159 * radius;
 end;
end;

O
bject-oriented

Functional

function gcd(u, v : integer)->integer;
var
 t : integer;
begin
 while u <> 0 do begin
 if u < v then
 begin
 t := u;
 u := v;
 v := t;
 end;
 u := u - v;
 end;
 return v;
end;

Im
pe

ra
tiv

e

Logic

Im
pe

ra
ti

ve

Functional

O
bject-oriented

Logic

Figure 1: The general-purpose multiparadigm language Leda.

4

Simulation

Graphical
user interfaces

Symbolic
computation

Relational
databases

Natural language
understanding

Expert systems

Computer-aided
design

Systems
programming

Numerical
applications

Im
pe

ra
ti

ve

Functional

O
bject-oriented

Logic

Figure 2: Strengths of foundational paradigms.

2.2 A Stock Market Application

A stock trading application is considered by Jenkins, Glasgow, and McCrosky [JGM86] as a potential appli-
cation for a general-purpose multiparadigm language:

As an example, consider the problem of building a system that supports manipulation of data on
the trading of stocks on the Tokyo stock exchange. It would require access to a large database
component to hold the raw data associated with trading...The system would require strong nu-
merical capabilities to do data aggregation and statistical analysis. In addition, an inferencing
capability applied to knowledge bases of various kinds would be needed to support intelligent
interfaces for the many players involved...

From this description we can identify paradigm strengths that will need to be present in the solution
language. The logic paradigm will need to be present to provide the database component. Numerical pro-
cessing requirements suggest need for the imperative paradigm, while inferencing requires the logic paradigm.
For any such application, graphical user interfaces will also be necessary, which are easily expressed in an
object-oriented style. The interfaces may also require a degree of symbolic computation, motivating the
presence of the functional paradigm as well.

2.3 A Language Compiler

We have recently constructed a compiler for the C programming language using Leda [JPB94]. The source
language grammar is expressed as a set of rules, via the logic paradigm. These rules are encapsulated
within an object-oriented framework that provides the services of scanning and parsing a program, as well

5

Graphical
user interface

Database of
raw data

Inferencing

Data
aggregation

Statistical
analysis

Im
pe

ra
ti

ve

O
bject-oriented

Logic

Functional

Symbolic
computing

Parser
Symbol

table Scanner

Optimizer
Intermediate

representation

Im
pe

ra
ti

ve

Functional

O
bject-oriented

Logic

Stock Market Application:
High-Level Blending

Language Compiler:
Medium-Level Blending

Figure 3: Examples of paradigm blending in Leda.

as populating a symbol table with relevant information. The intermediate representation consists of tuple
objects, with functional optimizations performed on this representation. Direction of these activities is
performed at an imperative level.

2.4 Evaluation

Zave's solution to the telephone network simulator utilizes several independent languages. In the absence
of a general-purpose multiparadigm language, this approach would likely be the method of choice. A key
bene�t of Leda is that the programmer can utilize any of the foundational paradigms within a single linguistic
framework. This reduces the syntactic overhead incurred when working on di�erent parts of the system. Also
reduced is the number of tools necessary for constructing the system. Furthermore, as the application evolves
and features are added, existing functionality is likely to migrate from one paradigm to another. Performing
this migration using independent languages can be di�cult and sometimes infeasible. This results in the
existing implementation having a strong in
uence on the choice of paradigms used for system enhancements.
Leda eliminates the syntax shift that accompanies a language shift. As a result, implementing enhancements
is motivated more by suitability of paradigm to the enhancement than by the existing implementation.

The partitioning of the stock trading application proposed by Jenkins, Glasgow, and McCrosky represents
a high level blending of paradigms. The partitioning is illustrated in Figure 3. This approach exploits
paradigm blending between modules. Each module is implemented in a single paradigm. Paradigm blending
is achieved by combining the modules into the �nal application. Leda supports this type of blending.

6

The compiler application exhibits medium level paradigm blending. As illustrated in Figure 3, the major
components of the compiler are implemented as blendings of several paradigms. The resultant application
is comprised of a group of interacting computing agents in the form of objects, functions, and relations, as
opposed to the traditional rigid sequence of phases.

While we have not presented examples of low level paradigm blending, many algorithms are amenable to
multiparadigm solution. In addition to high and medium level paradigm blending, Leda supports low level
blending, down to the individual statement. An examination of using Leda to implement many fundamental
data structures and algorithms can be found in [Bud95].

3 Conclusion

Not only do multiparadigm programming languages a�ord the programmer access to a variety of problem
solving approaches, there are also the synergistic bene�ts to be derived from the presence of the di�erent
paradigms. Multiparadigm programming languages allow for the simultaneous existence of multiple views
of the same problem space: some aspect of a problem may be crucial from one paradigm's viewpoint, while
being negligible in another. This attribute allows programmers to construct solutions that emphasize the
crucial aspects of the problem at the appropriate phase of the solution.

The ideal solutions to complex systems will likely display a migration toward a fuller blending of program-
ming styles. General purpose multiparadigm languages like Leda allow for such a migration to occur. By
making all of the foundational paradigms available in a coherent and synergistic fashion, Leda presents the
opportunity to expedite solutions to a variety of complex problems. It should be noted that Leda has already
been used as a pedagogic vehicle in graduate-level courses worldwide, has freely available implementations,
and is the topic of a recently published textbook.

Sha's [Sha94] recent identi�cation of software \grand challenges" for industrial computing includes trans-
portation systems, manufacturing systems, sensor systems, communications, and medical computing. Con-
structing these complex systems is a di�cult and labor-intensive undertaking, whether or not a multi-
paradigm solution is being attempted. The mere presence of a variety of paradigms does not necessarily
expedite a solution. However multiparadigm programming languages attack an essential aspect of complex
systems that Brooks [Bro87] identi�es: the drastic di�erences among the various system components is in-
herent in the problem, and is not an artifact of our current problem solving approaches. Access to drastically
di�erent paradigms working in concert via multiparadigm programming languages may be the best complex
system solution strategy available today.

References

[BG94] Henri E. Bal and Dick Grune. Programming Language Essentials. Addison-Wesley Publishing
Company, Wokingham, England, 1994.

[Bro87] Frederick P. Brooks, Jr. No Silver Bullet: Essence and Accidents of Software Engineering. IEEE
Computer, 20(4):10{19, 1987.

[Bud91] Timothy A. Budd. Blending Imperative and Relational Programming. IEEE Software, 8(1):58{
65, 1991.

7

[Bud95] Timothy Budd. Multiparadigm Programming in Leda. Addison-Wesley Publishing Company,
Reading, Massachusetts, 1995.

[Ghe93] Carlo Ghezzi. Modern non-conventional programming language concepts. In John A. McDermid,
editor, Software Engineer's Reference Book, pages 44/1{44/16. CRC Press, Inc., Boca Raton,
Florida, 1993.

[GJ87] Carlo Ghezzi and Mehdi Jazayeri. Programming Language Concepts. John Wiley & Sons, New
York, second edition, 1987.

[JGM86] Michael A. Jenkins, Janice I. Glasgow, and Carl D. McCrosky. Programming Styles in Nial.
IEEE Software, 3(1):46{55, January 1986.

[JPB94] Timothy P. Justice, Rajeev K. Pandey, and Timothy A. Budd. A Multiparadigm Approach to
Compiler Construction. SIGPLAN Notices, 29(9):29{37, September 1994.

[Kam94] Samuel Kamin et al. Report of a Workshop on Future Directions in Programming Languages
and Compilers. (available from Kamin's WWW page, URL http://www.cs.uiuc.edu), May 1994.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice Hall,
Englewood Cli�s, New Jersey, second edition, 1988.

[MNC+91] G�erald Masini, Amedeo Napoli, Dominique Colnet, Daniel L�eonard, and Karl Tombre. Object-
Oriented Languages, volume 34 of A.P.I.C. Series. Academic Press Inc., San Diego, California,
United States edition, 1991.

[Pla91] John Placer. The Multiparadigm Language G. Computer Language, 16(3/4):235{258, 1991.

[SBK86] Mark J. Ste�k, Daniel G. Bobrow, and Kenneth M. Kahn. Integrating Access-Oriented Pro-
gramming into a Multiparadigm Environment. IEEE Software, 3(1):10{18, January 1986.

[Set89] Ravi Sethi. Programming Languages: Concepts and Constructs. Addison-Wesley Publishing
Company, Reading, Massachusetts, 1989.

[Sha94] Lui Sha. Industrial Computing: A Grand Challenge. IEEE Computer, 27(1):12{13, 1994.

[Str91] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Publishing Company,
Reading, Massachusetts, second edition, 1991.

[Zav89] Pamela Zave. A Compositional Approach to Multiparadigm Programming. IEEE Software,
6(5):6{9, September 1989.

8

