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Abstract
Individual quota (IQ) management systems in commercial marine fisheries are

highly diverse, differing in the security, durability and exclusivity of the harvesting

privilege and the transferability of quota units. This diversity in the degree of har-

vest rights may influence the effectiveness of IQ fisheries to meet management

objectives. We conducted a global meta-analysis of 167 stocks managed under IQs

to test whether the strength of harvest rights impacts the conservation status of

stocks in terms of catch, exploitation rate and biomass relative to management tar-

gets. We used non-parametric methods to assess non-linear relationships and linear

regression models to explicitly consider interactions among predictors. Most IQ fish-

eries consistently met fleet-wide quota limits (94% of stocks had recent catches

below or within 10% of quotas), but only 2/3 of IQ fisheries adhered to sustainable

management targets for biomass and exploitation rate (68% of stocks had exploita-

tion rates below or within 10% of targets and 63% of stocks had biomass above or

within 10% of biomass targets). Strikingly, when exclusivity of the harvesting privi-

lege was low, exploitation rates depended on whether IQ implementation was

industry-driven (exploitation below targets) or government-mandated (exploitation

above targets). At high levels of exclusivity, exploitation rates converged to just

below management targets. Transferability of quota units was associated with stock

biomass closer to and slightly above target levels than stocks with non-transferable

quota. However, regional differences had the strongest effect on biomass, suggest-

ing that other management or biological attributes of regional fishery systems have

greater influence on marine populations.
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Introduction

Fishery management systems are extraordinarily

diverse in their design and operation, and variabil-

ity in the strategies and tactics employed for man-

aging fisheries is likely a major determinant of the

biological status of marine populations around the

world (Beddington et al. 2007; Worm et al. 2009).

Most commercial marine fisheries in industrialized

countries are regulated by an annual fleet-wide

catch limit, or total allowable catch (TAC), which

is typically set by applying a target exploitation

rate to the estimated stock size consistent with

management objectives of long-term sustainable

yield. A major distinction of quota systems lies in

whether individuals within the fleet compete for

that TAC in a ‘race to fish’ or whether quota is

allocated to entities: fishermen, vessels, companies

or cooperatives. Individual quota (IQ) manage-

ment systems, in which specific fractions of a total

catch limit are allocated among entities, have been

used in commercial marine fisheries around the

world for decades. They have been promoted by

some (Grafton 1996; Arnason 2005; Bonzon et al.

2013) or criticized (Copes 1986; Bromley 2005,

2009) and cautiously questioned or supported by

others (McCay 1995; Fujita et al. 1998; Squires

et al. 1998) for their perceived effects on economic

efficiency, crew safety and year-round fresh prod-

uct availability. More recently, IQs (commonly

termed ‘catch shares’) have received increased

attention for their perceived ecological benefits for

target species (Branch 2009; Chu 2009), potential

reduction in the frequency of stock collapse (Cos-

tello et al. 2008), potential for making fisheries

more predictable (Essington 2010; Essington et al.

2012) and their potential to better meet manage-

ment targets compared to management systems

employing other means of controlling catches

(Melnychuk et al. 2012). Individual quotas are

generally assumed to foster resource stewardship

among fishermen by aligning individual incentives

with conservation objectives (Hilborn et al. 2005;

Grafton et al. 2006).

The individual allocation of quota is considered

a harvesting privilege or secure access privilege,

and parallels with property rights have often been

drawn (Arnason 2005). Like other aspects of fish-

ery management systems, however, IQ pro-

grammes vary widely in how they were

established and how they currently function

(McCay et al. 1995; Young 1995; Sanchirico et al.

2006; Anderson and Holiday 2007; Bonzon et al.

2013; Grainger and Costello 2014). In particular,

IQ systems may differ in their degree of harvest

rights as represented by the security, durability,

exclusivity and transferability of the access privi-

lege (Arnason 2005; Scott 2008). In turn, the

strength of harvest rights may affect the extent to

which IQs provide incentives that promote more
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sustainable fishing practices. If an individual or

entity holding quota shares cannot be certain of

their share of the future benefits from stock

rebuilding, they may be less likely to support

reduced harvest in the present. Other attributes

besides harvest-right elements may also affect the

performance of IQ systems, including the number

of years under IQs and how they were first imple-

mented. A few programmes have operated for

nearly 40 years while most began more recently.

Some IQ programmes were primarily mandated by

governments, for example several in New Zealand,

Australia, Europe and South Africa, while others

were largely driven by industry, for example many

in Canada and the United States. The degree of

resource stewardship and therefore the impact on

population status are likely affected by these

important details of IQ systems.

The conservation status of marine populations is

often expressed with explicit reference to manage-

ment targets based on objectives of sustainable

production. The TAC is a fleet-wide limit set to

control the level of harvest. Target reference points

for stock exploitation rates (the fraction of the

stock caught) and stock biomass are estimated

through stock assessments and provide a bench-

mark to compare with estimates of current exploi-

tation rates and biomass (Mace 1994). These

target reference points are typically proxies for

maximum sustainable yield (MSY), that is, values

of stock biomass and exploitation rate expected to

produce the greatest long-term catch. Owing to a

variety of environmental, social, economic and

management factors, these targets are rarely met

in all years. Biomass in particular may be sensitive

to ocean productivity changes over time and

among regions (Vert-pre et al. 2013; Szuwalski

et al. 2014), making it difficult to respond with

various management measures in a timely manner

to consistently achieve targets. For some stocks,

the TAC and/or exploitation targets are consis-

tently exceeded and biomass is below targets; other

stocks are exploited at more conservative levels,

and some show greater interannual variability

than others. These variables are considered perfor-

mance indicators of stock status and of how closely

management objectives are satisfied (Worm et al.

2009; Melnychuk et al. 2012; Ricard et al. 2012).

Previously, we compared commercial marine

fisheries managed under IQs with those managed

only by fleet-wide catch or effort controls to assess

whether IQs improved the ability to meet

management targets (Melnychuk et al. 2012) and

to quantify the changes in population status and

fishery production when IQs are implemented (Es-

sington et al. 2012). We extend this previous work

to consider only IQ fisheries and evaluate which

particular attributes of these systems allow them

to better meet management targets. We present a

meta-analysis of 167 fish and invertebrate stocks

from around the world managed under IQ systems

to test the hypothesis that IQs with stronger har-

vest rights lead to improved conservation status of

fish stocks with respect to management targets.

We aim to identify specific characteristics of IQs

that have relatively strong influence on conserva-

tion-related outcomes for marine populations.

Methods

We quantified the influence of particular attributes

of IQ management systems on the conservation sta-

tus of marine populations. Indicators of conserva-

tion status were based on time-series data drawn

from stock assessments and were treated as (depen-

dent) response variables. Data describing attributes

of IQ systems, including harvest-right elements,

were compiled by interviewing fisheries managers

and scientists familiar with particular stocks and

were treated as (independent) predictor variables.

We applied two analytic approaches to assess

which attributes were most important: random for-

ests and linear mixed-effects models. Random for-

ests are a nonparametric method that provides a

straightforward ranking of the importance of pre-

dictors and allows for nonlinear relationships

between response variables and predictors. Linear

mixed-effects models allow for explicit consideration

of interactions between predictors and provide a

straightforward method for testing hypotheses of

how predictors affect response variables. These

approaches differ from time-series analysis or stan-

dard econometric analysis of ‘panel data’, in that

we only consider average performance and vari-

ability in performance over a recent 5-year window

rather than modelling temporal changes explicitly.

Data

We compiled IQ attribute data for as many stocks

as possible that were managed under IQs and had

data available for at least one indicator of conser-

vation status. We included stocks from Canada,

New Zealand, Australia, Iceland, Argentina, South
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Africa and USA. Consistent with a previous study

(Melnychuk et al. 2012), we used a ‘snapshot’

focal period from 2000 to 2004, representing a

recent 5-year period for which data were available

for most stocks.

Conservation status indicators explicitly

accounted for management targets, involving

ratios of total catch to total quota (catch/TAC),

current exploitation rate to target exploitation rate

(F/Ftarget or U/Utarget) and current biomass to tar-

get biomass (B/Btarget). Time-series estimates of

exploitation rate (F) and biomass (B) were origi-

nally drawn from stock assessments and compiled

in the publicly available RAM Legacy Stock

Assessment Database (Ricard et al. 2012). Any

explicitly stated management targets were

assumed as target reference points. If none were

explicit, biological reference points based on MSY,

also compiled in the RAM Legacy Database, were

considered as targets. If no target reference points

were presented in stock assessments, MSY-based

estimates from a Schaefer (1954) surplus produc-

tion model fit to total catch and biomass time ser-

ies were assumed as targets (Worm et al. 2009;

Melnychuk et al. 2012). Time series of total catch

and TAC were collected, ensuring they represented

the same quantities in terms of fishing areas, sec-

tors, gear types, inclusion or exclusion of discards

and inclusion or exclusion of recreational catches.

Occasionally, some stocks were pooled together for

catch/TAC data, dependent on how data were

reported (Table S1). For each of the three types of

ratios (which were treated in log space), two met-

rics were considered for each stock: the arithmetic

mean and standard deviation around the mean of

the ln-ratios from 2000 to 2004. The semidevia-

tion (Porter 1974), a measure of asymmetric risk

around a target value, was also calculated as a

third metric, but results were consistent with those

observed for the mean and standard deviation so

results for semideviations are reported only in the

Supporting Information.

As predictor variables, we considered four

aspects of harvest rights of IQ systems that have

been hypothesized to affect incentives for resource

stewardship (i–iv; Table 1), as well as two addi-

tional attributes of IQs that may either directly

impact the conservation status of stocks or medi-

ate the effect of harvest-right elements on conser-

vation status (v–vi):

Table 1 Individual quota (IQ) predictor variables (i.e. independent variables) and other covariates accounted for in our

analyses of 172 IQ fisheries worldwide. All predictor variables were determined at the stock level for the 2000–2004

period.

Predictor variable Description Levels Mean and range

Security/durability of IQs Categorical. In practice, are IQs considered a permanent
right that cannot be revoked (‘yes’), or do they carry a
limited duration or an unsecure tenure (‘no’)?

Yes 156, No 16

Transferability of IQs among
holders

Categorical. Can IQs be transferred among quota
holders, either permanently or leased within a season?

Either/or 160,
Neither 12

Transferability of overages or
underages

Categorical. Can catch overages or catch underages
(relative to individual quota) be transferred to the
following year?

Either/or 122,
Neither 50

Exclusivity of IQs Numerical. The proportion of the total catch that is
caught under programmes with individual allocations

0.89; 0.29–1.00

Industry involvement in IQ
implementation

Categorical. Was the IQ programme primarily mandated
by government, or did industry play a large role in
driving its establishment?

Gov. 104, Ind. 68

Years since IQs implemented Numerical. The number of years since IQ programme
was first established (first sector to implement, in cases
of multiple implementations)

10.3; 0–26

Total catch Numerical, natural log. Includes recreational catches and
discards if data are available

7.85, 3.98–14.46

Year of fishery development Numerical. The year in which total landings first reached
25% of the historic maximum annual landings in the
entire time series

1968, 1911–2002

Age at first maturity Numerical. The average age at reproductive maturity 4.7, 1.0–29.3
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(i) Security/durability of the harvesting privilege. In

some IQ systems, quota shares are granted in

perpetuity and the privilege is considered secure

into the future by involved parties (even if not

legally binding). In other systems, the alloca-

tion of individual quota is granted for a limited

time or is considered an unsecure privilege that

may be rescinded. We expect that secure and

durable harvesting privileges will foster incen-

tives for long-term stewardship and thus for

maintaining populations at sustainable levels

(Arnason 2005).

(ii) Transferability of shares among quota holders. In

some systems, quota shares can be sold (per-

manently) or leased (within a season), while in

other systems transfers among holders are not

permitted. In non-transferable systems for mul-

tispecies fisheries, individuals may reach their

quota limit for one species, limiting their ability

to fulfil individual quotas for other species

(Squires et al. 1998; Sanchirico et al. 2006).

Similarly, vessel or gear problems may leave

an individual’s quota unfished (Turris 2010).

Further, if individuals do exceed their quota,

they are not able to lease quota from others to

cover that excess. We therefore expect non-

transferable systems to be less consistent in

meeting management objectives (i.e. have

greater variability), and also on average to

catch less than systems with ITQs.

(iii) Transferability of quota overages or underages to

the following year. In some systems, if an indi-

vidual exceeds their quota limit, the excess is

subtracted from their next year’s quota (there

may also be fines associated with overages).

Or, if an individual does not fulfil their quota,

a proportion of the unfulfilled quota is added

to their next year’s limit. Similar to (ii) above,

these abilities can improve catch-to-quota bal-

ancing. We expect greater variability and a

greater risk of exceeding management targets

into undesirable states when overages or und-

erages cannot be transferred.

(iv) Exclusivity of the IQ programme. In some sys-

tems, the entire catch is under IQ manage-

ment, but in others some portion of the catch

is taken by competitive sectors or by recrea-

tional fisheries that are not under individual

quota allocations. In non-exclusive systems,

fishermen with IQs may be concerned about

other sectors not having the same incentives

for long-term stewardship (Grafton et al.

2006). Similar to (i), we expect that greater

levels of exclusivity will result in populations

being maintained at sustainable levels with

lower risk of over-exploitation.

(v) Industry involvement in establishing the IQ system.

In some systems, industry played an important

role in planning and implementing the pro-

gramme, whereas in other systems it was pri-

marily mandated by government, occasionally

counter to the industry’s wishes at the time. The

history of the programme’s implementation may

affect compliance to management targets, in line

with arguments about the benefits of stake-

holder engagement into operational aspects of

the fishery (Kaplan and McCay 2004). We

expect that for IQ systems in which industry

was heavily involved, the system may provide a

better match to the social, economic and ecolog-

ical components of the fishery system and

thereby lead to catch and exploitation rates that

are closer to management targets and at lower

risk of exceeding these targets.

(vi) Number of years since IQs were first implemented

(before 2000). Some IQ systems in South

Africa, Europe and Atlantic Canada were estab-

lished in the mid-1970s, while others were

adopted more recently. A greater duration of IQ

management provides more time to adhere to

management targets; catches and exploitation

rates are expected to adjust rapidly, but it may

take several years or decades for biomass to

reach management targets if the population

was overfished at the time of IQ implementa-

tion, especially for long-lived species.

In addition to these IQ attributes, we accounted

for three control factors in all analyses that may

also affect conservation status (Table 1). The ln

(total catch) was considered, as small fisheries

may be more susceptible to fluctuations around

management targets than larger fisheries (Melny-

chuk et al. 2012). Larger fisheries are also typi-

cally more valuable. The year of fishery

development was determined for each stock,

defined as the first year in which total landings

reached 25% of the maximum historic landings in

the full time series (Sethi et al. 2010). The average

age at first maturity represents an important life

history trait affecting a stock’s potential to rebuild.

Values for each species were obtained from Fish-

Base (Froese and Pauly 2010), SeaLifeBase (Palo-

mares and Pauly 2010) or stock assessments. In

some analyses, we also accounted for the region
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and/or the taxonomic/habitat association of each

stock (Table 2).

Several filters were applied to the data set prior

to analyses. We focused on targeted stocks and

excluded stocks in multispecies fisheries that were

under IQ management but mainly caught as

unwanted by-catch. We did not include stocks for

which IQs were first implemented during or after

the 2000–2004 snapshot period. If data for a

response variable were not available for all five

years, or if reliable reference points could not be

obtained, the response variable was excluded.

Finally, for catch/TAC and F/Ftarget analyses, we

excluded stocks that were under a moratorium

during 2000–2004 because they were not tar-

geted. We still included these stocks for analyses of

B/Btarget, consistent with Melnychuk et al. (2012),

because biomass in 2000–2004 partly reflects a

management legacy prior to 2000 during which

IQ attributes may have influenced the stock. After

applying these filters, our data set of stocks man-

aged under IQs consisted of 142 for catch/TAC

variables, 76 for F/Ftarget and 86 for B/Btarget
(Table 2; stocks are listed in Table S1).

Random forest analysis

Random forests (Breiman 2001a) are an ensemble

of regression trees, a nonparametric recursive

data-splitting method used to identify predictors

with relatively strong influence on a numerical

response variable. At a given node of a regression

tree, values of the response variable and one pre-

dictor are split into two groups based on which-

ever predictor’s split minimizes the response

variable’s sum of squared deviations. The proce-

dure is repeated such that within a single tree,

multiple predictors may split the response variable

data set and thus have influence on the response

variable. Although single regression trees are

unstable in terms of the order of variable impor-

tance among predictors, random forests involve

bootstrapping the data set (each component tree is

constructed from one resampled data set) and only

allowing a random subset of predictors to be

included at any given node of a component tree,

with the result being a more robust measure of

variable importance across the aggregated set of

trees (Breiman 2001b). Random forests have been

used increasingly in ecology and fisheries research

(Cutler et al. 2007; Gutierrez et al. 2011; Sethi

et al. 2012; Melnychuk et al. 2013). They allow

for nonlinear relationships between a predictor

and response variable, make no parametric

assumptions about the response variable, can han-

dle missing values of predictors and are less sus-

ceptible to over-fitting compared with parametric

methods such as generalized linear models because

the number of predictors available for selection at

any given node of a tree is limited to a specified

number. Interactions between predictors are

accounted for implicitly through the splitting pro-

cedure, but the ability to quantify or visualize

interactions is limited.

For each of the six response variables, we con-

ducted a random forest analysis using the ‘ran-

domForest’ package (version 4.6–7; Liaw and

Wiener 2002) in R (version 3.0.2; R Development

Core Team 2014). The model for each analysis

included all predictors listed in Table 1. Stocks

were weighed equally. Forests of 10 000 trees

were used, which were more than adequate for

among-tree variance to stabilize. The cross-valida-

tion prediction accuracy represented by the mean

Table 2 Number of IQ stocks included in analyses of

catch/TAC, exploitation rate-to-target exploitation rate

(F/Ftarget) and biomass-to-target biomass (B/Btarget) ratio

variables. For each type of ratio, interannual means and

standard deviations were calculated and used as response

variables (i.e. dependent variables). Numbers are

separated by region and by taxonomic/habitat

association categories. Stock names are listed in Table S1

of the Supporting Information, and all values of response

variables are given in a supplementary data file.

Category Catch/TAC F/Ftarget B/Btarget

Region
USA – west coast/Alaska 4 4 4
Canada – west coast 30 14 16
Canada – east coast 25 5 7
USA – north-east/
mid-Atlantic coast

2 3 3

Europe 5 5 5
South Africa 5 4 5
South America 0 2 2
Australia 19 7 12
New Zealand 52 32 32

Taxonomic/habitat association
Demersal fish 33 15 17
Bathydemersal fish 15 16 18
Benthopelagic fish 41 23 27
Pelagic fish 14 8 10
Invertebrates 39 14 14

Total 142 76 86
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square error of model fit is sensitive to mtry, a

tuning parameter that limits the number of predic-

tors allowed for selection at any one node of a

component regression tree. Larger values of mtry

are often less susceptible to over-fitting large mod-

els and allow for higher-order interactions between

predictors, while smaller values of mtry often have

greater cross-validation prediction accuracy. The

mean square error of model fit was plotted over a

range of mtry values and suggested acceptable lev-

els for mtry between 2 and 5. We used mtry = 5

because this permitted a higher order of possible

interactions between predictors.

We show the influence of IQ attributes and

other covariates on response variables using par-

tial dependence plots. These plots show the nonlin-

ear effect of a numerical predictor on a response

variable after accounting for the average effects of

other predictors in the model. We show overall

relationships for each response variable, and in

the Supporting Information, we further separate

these relationships by geographical region. We

express the effects of categorical predictors on

response variables as the difference between mar-

ginal predictions of the response variable for each

level of a categorical predictor. For each of the six

random forest analyses, we show a measure of rel-

ative importance of predictors. The importance

score is determined with cross-validation and

reflects the loss of prediction accuracy associated

with removing each predictor in turn (Liaw and

Wiener 2002).

Linear mixed-effects model analysis

Mixed-effects models were used for three purposes:

(i) to confirm results from the random forest

analysis under the assumptions of linear relation-

ships between response and predictor variables; (ii)

to explicitly consider interactions between IQ pre-

dictors in their joint influence on response vari-

ables; and (iii) to compare candidate models

containing different predictors in an information-

theoretic framework. Response variables involved

logarithms of ratios, and Gaussian models with an

identity link were applied to these using the ‘lme4’

package (1.0–6; Bates et al. 2014) in R (version

2.15.2; R Development Core Team 2014). All

models considered included taxonomic/habitat

association as a random effect (Tables 2 and S1)

and three control factors as fixed effects: ln(total

catch), year of fishery development and age at first

maturity (Table 1). First, to parallel the random

forest analysis, a model including all six IQ attri-

butes as main effects was applied to each of the

six response variables to evaluate effect sizes of

predictors on response variables. Second, multiple

candidate models were applied to each response

variable to evaluate the strength of interactions

involving harvest-right elements and to evaluate

regional influences in explaining variation in the

response variables.

Candidate models were selected following a sys-

tematic approach to ensure that models repre-

sented a variety of hypotheses about which

predictors – including interactions involving har-

vest-right elements – were influential. All models

included the three control factors and the random

effect, and the first model contained no other

terms, that is, a null model. Models 2–7 each con-

tained one of the six IQ attributes as well

(Table 1). Model 9 included all of these attributes

(hence, it is the model described in the previous

paragraph). Model 8 included a categorical

‘region’ factor but no IQ attributes, and model 10

included ‘region’ and all six IQ attributes. Compar-

ing these 10 models allowed us to identify

whether regional factors, harvest-right elements or

other IQ attributes (or all of these) best described

the variation in response variables when consider-

ing only main effects. Eight additional models con-

sidered interactions between IQ attributes on top

of the base terms. Interactions were explicitly con-

sidered because we hypothesized that influences of

harvest-right elements on the biological response

variables were likely to be mediated by: (i) the

extent to which the fishing industry was involved

in establishing the IQ system, because harvest

rights may have little influence if industry was less

involved; and (ii) the time elapsed since IQs were

implemented, because influences may intensify

over time, especially for biomass. These two IQ co-

variates, (i) industry involvement and (ii) years

since IQ establishment, were each paired in turn

with the four harvest-right elements of IQs to

allow for eight two-way interactions. For each of

the 18 total candidate models applied to the six

response variables, we calculated Akaike’s Infor-

mation Criterion corrected for small sample size,

AICc. Using the AICc, we derived Akaike model

weights ranging from 0 to 1 (which sum to one

across the 18 models), which represent the rela-

tive strengths of evidence for a particular model

given the set of models.
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Model assumptions and diagnostics

Several model checks and diagnostics were con-

ducted to ensure that model assumptions were

met and analyses were properly tuned to the data.

Prior to mixed-effects model and random forest

analyses, generalized variance inflation factors

(GVIFs) were calculated to check for collinearity

among predictor variables (Zuur et al. 2009). We

had originally considered ‘region’ as an additional

predictor, but this was highly confounded with

other predictors on the basis of high GVIF scores

so it was dropped from most analyses (it was kept

in mixed-effects model 10). Under the full model of

nine main effects (three base factors and six IQ

attributes, used in both mixed-effects model and

random forest analyses), all variance inflation fac-

tors were <3, suggesting negligible multicollineari-

ty (Zuur et al. 2009).

For random forest analyses, we conducted a sen-

sitivity test, which incorporated a regional factor

explicitly (with five levels) to allow for the possibil-

ity that response variables were influenced more

strongly by region than by the six IQ predictors

(see Supporting Information). There was little

observable difference in partial dependence plots

compared to the key run; even without the explicit

region term, there was sufficient variation among

regions in other predictors to explain regional dif-

ferences in response variables.

For mixed-effects model analyses, we calculated

pairwise correlations between fixed predictors,

which were all <0.4, suggesting limited concern

for independence among predictors. We conducted

graphical checks for assumptions of equal variance

of response variables among groups of categorical

predictors or throughout the range of numerical

predictors. No notable deviations were observed.

All 18 candidate models converged to each of the

six response variables.

Results

The median catch/TAC ratio across 142 stocks

was 0.91 (i.e. median of the back-transformed 5-

year mean of ln-ratios for each stock), and 86% of

stocks had recent (2000–2004) average catches

below their fleet-wide quota limits. If we allow a

10% exceedance of quota limits (i.e. a threshold of

1.1 9 catch/TAC), 94% of stocks had recent

catches below or within 10% of TACs, on average.

Median F/Ftarget across 76 stocks was 0.74, and

64% of stocks had recent exploitation rates below

their target exploitation rates, on average (or 68%

of stocks were <1.1 9 F/Ftarget). Median B/Btarget
across 86 stocks (including those under moratoria)

was 1.16, and 59% of stocks had recent biomass

above their target biomass, on average (or 63% of

stocks were >0.9 9 B/Btarget). Effects of IQ attri-

butes were observed for most of the catch/TAC,

exploitation rate and biomass metrics considered.

Random forest analysis

Harvest-right elements and other IQ attributes had

different effects on the six response variables, as

evidenced by random forests that provide a rank-

ing of predictor variable importance and allow us

to visualize nonlinear relationships. Controlling for

other variables, the ratio of total catch to TAC

increased with increasing exclusivity between 30

and 50% exclusivity (i.e. 30–50% of the total

catch was allocated under an IQ system), but had

no effect at higher percentage exclusivity (Fig. 1).

Exploitation rates also gradually increased with

exclusivity, towards management targets. The in-

terannual variability of catch/TAC and exploita-

tion rate were both greatest when exclusivity was

low (Fig. 1). Among the nine predictors, exclusiv-

ity was the most important in explaining variation

in mean catch/TAC and in the interannual stan-

dard deviations of exploitation rate and biomass,

as evidenced by relative importance scores. No

effect of security and durability was observed on

any of the six response variables (Fig. 2), although

there were few fisheries whose IQs were considered

to be insecure or of limited duration. Fisheries

whose IQs were transferable among quota holders

had lower mean B/Btarget (Fig. 2), closer to man-

agement targets as revealed by inspection of cate-

gory means. Counter to our expectations, the

ability to transfer quota overages or underages to

the following year did not affect any of the catch/

TAC or F/Ftarget variables, but did exert a stronger

effect for biomass. Individual quota systems in

which quota overages or underages could be

transferred to the following year were associated

with mean B/Btarget above management targets. In

contrast, systems in which neither overages nor

underages were transferable to the following year

had lower B/Btarget (Fig. 2), below biomass targets.

When industry was heavily involved in establish-

ing the IQ system, mean exploitation rates were

lower (Fig. 2), further from management targets,
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compared to cases where IQs were primarily gov-

ernment-mandated. Means and standard devia-

tions of catch/TAC and B/Btarget were relatively

insensitive to the number of years since establish-

ment of the IQ programme, but counter to our

expectations, exploitation rates were considerably

below target levels for fisheries in which IQs were

established more than 15 years ago (Fig. 1).

Surprisingly, response variables were generally

more sensitive to control factors than to IQ attri-

butes. Fisheries that developed after the mid-

1970s had greater mean B/Btarget and also greater

interannual variability in biomass compared with

fisheries that developed earlier (Fig. 1). A strong

marginal effect of total catch on biomass was

observed. Fisheries with low annual catches of

<250 t were associated with mean B/Btarget that

was considerably less and below target levels com-

pared with larger fisheries (Fig. 1), although this

is partly attributed to depleted stocks under mora-

toria generally having low total catches. Catch/

TAC increased on average, was closer to manage-

ment targets and was less variable as total catch

increased. Fisheries for species that matured at

ages 1–3 were associated with higher biomass and

lower catch/TAC and exploitation rates, all further

from management targets, compared with fisheries

for species that matured later (Fig. 1). As might be

expected, the interannual variability in catch/TAC

was higher for early-maturing species.

There were regional differences in the response

variables, especially for biomass. New Zealand

stocks were typically close to biomass, exploitation

rate and catch/TAC targets (Figures S1–S3 in Sup-

porting Information). Stocks from the east and

west coasts of Canada had low exploitation rates

relative to targets (Figure S2). For west coast

stocks, this is the result of several stocks in a mul-

tispecies groundfish fishery not being primary tar-

gets (low F) and therefore having high biomass

relative to target biomass (Figure S3). For east

coast stocks, the data set for biomass indicators

included stocks under moratoria (of which there

are several in eastern Canada), so biomass relative

to target biomass was on average low compared

with other regions (Figure S3). Australian stocks

had low catches relative to TACs, but exploitation

rates and biomass were close to target levels com-

pared with other regions, simply reflecting a differ-

ent subset of stocks (there were more stocks with

available catch/TAC data than with available

F/Ftarget or B/Btarget estimates, and the ones with

only catch/TAC data tended to be less valuable so

less heavily exploited). Differences in observed bio-

mass ratios among regions could also reflect differ-

ent productivity regimes during the focal period
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Figure 1 Partial dependence of catch to quota, exploitation rate to target exploitation rate and biomass to target

biomass on five numerical predictors of IQ fisheries. Means and standard deviations of the log-ratios of three variables

(catch/TAC, F/Ftarget and B/Btarget) were calculated for each stock. These six response variables were analysed

independently using random forests (10 000 trees, five predictors randomly sampled at each split). Line thickness is

proportional to the relative importance score of the predictor for that response variable. Horizontal dotted lines at 0

represent general management objectives. Right-hand axis shows mean values on linear scale.
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(Vert-pre et al. 2013) or differences in enforce-

ment. In contrast to mean responses, there were

fewer differences between regions in the interan-

nual variability of catch/TAC, F/Ftarget or B/Btarget.

Mixed-effects model analysis

To check for consistency with the random forest

analysis, we first considered the linear model with

the same fixed effects that were included in the

random forest analysis (model 9). This model with

nine predictors explained between 24 and 58% of

the variation for mean responses and 25–39% of

the variation for interannual variability. Transfer-

ability of IQs among quota holders, that is, ITQs,

was associated with mean B/Btarget values that

were lower (Fig. 3) and closer to target levels

(based on visual inspections of category means)

compared with programmes with non-transferable

quota. However, assuming model 10 that also

includes region as a factor (discussed later), the

transferability effect disappeared, so this response

is confounded with region. The majority of stocks

in our data set had ITQs; only a few stocks from

the west coast of Canada, Argentina and the east

coast of the United States had quota that could

not be transferred. There was an unexpected effect

of transferability of overages or underages from

one year to the next on biomass. Mean biomass

was higher (Fig. 3), above targets, when overages

and/or underages were transferable, consistent

with random forest results. This is not simply due

to regional confounding, as model 10 also includ-

ing region still yielded a significant effect for trans-

ferability of overages or underages. Involvement

of industry in establishing IQ programmes was

Catch shares secure
into future?

Transferability among
quota holders?

Transferability of
overages or underages?

Was industry involved
in implementation?

Means SDs

Effect size

ln (catch:TAC)
ln (F : Ftarget)
ln (B : Btarget)

–2 –1 0 1 2 –0.3 0.0 0.3

Figure 2 Effects of four categorical predictors of IQ fisheries on catch to quota, exploitation rate to target exploitation

rate and biomass to target biomass. Means and standard deviations of the log-ratios of three variables (catch/TAC, F/

Ftarget and B/Btarget) were calculated for each stock. These six response variables were analysed independently using

random forests. Effect sizes represent differences between predicted values of response variables for ‘yes’ and ‘no’ levels

of the predictor (predicted values of ‘yes’ group minus predicted values of ‘no’ group). Coloured symbols show marginal

effects of predictors on response variables (i.e. after accounting for other factors), with line thickness proportional to the

predictor’s relative importance score for that response variable. Overlaid boxplots summarize the distribution of 1000

calculated differences between randomly paired predicted values of response variables for ‘yes’ and ‘no’ levels of the

predictor (i.e. they do not explicitly account for other factors).
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associated with lower mean F/Ftarget compared

with IQ programmes that were government-man-

dated (Fig. 3), consistent with random forest

results. Note that assessment outputs were treated

as data without error in our analyses, so 95%

confidence intervals around the point estimates of

F/Ftarget and B/Btarget variables would be wider

than shown if assessment uncertainties were prop-

agated through our analyses.

In comparisons of 18 candidate models, stan-

dardized model weights indicate that mean and

standard deviation of catch/TAC tended to be best

explained by a single model, while for standard

deviations of F/Ftarget and B/Btarget, no single model

was strongly supported (Fig. 4). Tables S1–S3 give

full model comparison results for each response

variable. Means of catch/TAC and F/Ftarget as well

as the standard deviation of catch/TAC strongly

favoured model 14, which allowed for an interac-

tion between exclusivity and industry involvement.

Mean B/Btarget was best described simply by a

regional effect (model 8, Fig. 4), with west coast

Canada and New Zealand having high B/Btarget
and Europe having low B/Btarget, consistent with

random forest results. Interannual variability of

exploitation rates and biomass gave similar support

to several models including the null model and

models with a single IQ attribute, but little support

to the inclusion of interactions (Fig. 4). No notable

interactions were detected between the number of

years since IQs were established and any of the

harvest-right elements of IQs in their combined

effect on any of the catch/TAC, F/Ftarget or B/Btarget
metrics (models 15–18, Fig. 4). Note that model 9,

the model behind Fig. 3 used to compare with ran-

dom forest results, had essentially no support for

any of the six response variables, suggesting that

interactions between IQ attributes and/or regional

factors are important in explaining the variation in

the data for these indicators.

The interaction model that was strongly

supported by the data for three performance
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Overage or underage transfer
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Figure 3 Estimated coefficients for effects of IQ and fishery predictors on catch to quota, exploitation rate to target

exploitation rate and biomass to target biomass variables. Means and standard deviations of the log-ratios of three

variables (catch/TAC, F/Ftarget and B/Btarget) were calculated for each stock. These six response variables were analysed

independently using linear mixed-effects models, treating taxonomic/habitat association as a random effect. Error bars

show 95% CI around restricted maximum likelihood estimates of coefficients. The first four predictors are categorical,

expressing the ‘yes’ group compared to the ‘no’ reference group.
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indicators (model 14) reveals a noteworthy joint

effect between exclusivity and industry involve-

ment. Mean exploitation rates were higher, greater

than management targets, when the harvesting

right had low exclusivity and when the establish-

ment of the IQ system was primarily government-

mandated (Fig. 5). Mean exploitation rates were

less than target levels when IQs had low exclusivity

but more industry involvement in their establish-

ment. At high levels of exclusivity, mean exploita-

tion rates converged to just below target levels on

average, irrespective of whether industry played a

large role in establishing IQs. Despite having statis-

tical support as the AICc-best model (Fig. 4), the

interactions for mean catch/TAC and for standard

deviation of catch/TAC were weaker (Fig. 5).

Discussion

A wide range of fishery management strategies

and tactics are likely to impact the conservation

status of marine populations. Management sys-

tems can be largely separated by whether they use

input or output control approaches; within output

controls such as TAC regulation systems, there is

a further major distinction between individual

allocation and competitive fisheries (Bromley

2009; Melnychuk et al. 2012). There is tremen-

dous variability in management system character-

istics at each of these levels, including those of IQ

programmes. Despite including only a limited

number of IQ attributes in our analyses, we found

that our predictor variables could explain a
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Figure 4 Comparison of candidate models for effects of IQ and fishery predictors on catch to quota, exploitation rate to

target exploitation rate and biomass to target biomass variables. Two metrics (mean and standard deviation) of the log-

ratios of catch/TAC, F/Ftarget and B/Btarget were calculated for each stock. For each of the six response variables (rows at

bottom), the AICc-preferred model is represented by the largest symbol; the area of symbols is proportional to the

Akaike relative weight for the model, standardized to the AICc-preferred model. Base terms include ln(total catch), year

of fishery development and age at first maturity as fixed effects as well as taxonomic/habitat association as a random

effect. Models 1–10 involve only main effects, and models 11–18 also involve interactions.
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reasonably high portion of the total variability in

conservation-related performance indicators. This

work follows up on previous work that compared

IQ fisheries with non-IQ fisheries (Essington 2010;

Essington et al. 2012; Melnychuk et al. 2012) by

quantifying which particular harvest-right ele-

ments and related attributes of IQs contribute to

better meeting management targets.

Harvesting rights

It is believed (Arnason 2005) that IQs provide the

greatest incentives for resource stewardship when

they have strong access rights; prescriptions are

widespread that the harvesting privilege should be

secure, durable, exclusive and transferable (e.g.

Scott 2008; Bonzon et al. 2013). Nearly 50 of the

167 stocks in our analyses (most from New Zea-

land, Australia and Atlantic Canada) met all of

these criteria, but these stocks did not necessarily

have the best overall conservation status. Likewise,

many fisheries with incomplete harvesting rights

consistently met their targets, so other factors also

influence the ability to achieve management objec-

tives. Overall, exclusivity was important not in iso-

lation, but when it was mediated by involvement

of the fishing industry in the establishment of the

IQ system. When exclusivity was low, distinctions

related to industry involvement were apparent,

but at high exclusivity, these differences disap-

peared, suggesting that exclusive access to the

resource may compensate for other factors to bet-

ter meet management targets.

Transferability of quota

Transferability of a harvest right can be enacted

among individuals or into the future. Transferabil-

ity of quota among holders allows for more precise

catch-to-quota matching because holders over

their individual limits can lease quota from those

with unused quota (Sanchirico et al. 2006; Branch

and Hilborn 2008; Turris 2010). When quota is

not transferable, fishermen must try to exactly

match their own quota allotment and face eco-

nomic losses for catching less or face penalties for

catching more than this amount. What we

observed, however, was not an effect of transfer-

ability on catch/TAC ratios, but instead an effect

on mean biomass of the stock: still above target

levels, but closer to targets. This in part reflects

regional confounding and a historical legacy of

overfishing, since stocks under moratoria were

included in the analysis of biomass metrics and

pulled down the mean response across stocks. Sev-

eral stocks from Atlantic Canada, in particular,

have been under moratoria since the 1990s

Figure 5 Effects of IQ exclusivity and level of industry

involvement on mean catch/TAC, mean F/Ftarget and

standard deviation of catch/TAC. Symbols show raw

data, separated into groups of IQ implementation

primarily government-mandated (9) and IQ

implementation jointly or mostly driven by industry (◊).
Dashed lines show 95% confidence bands around

predicted fits from a model allowing an interaction

between IQ exclusivity and level of industry involvement

(model 14). Horizontal dotted lines at 0 represent general

management objectives. Right-hand axis shows mean

values on linear scale.
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despite being under ITQs. Similar to transferability

among quota holders, the ability to transfer either

a deficit or a surplus of individual quota from one

year to the next is expected to aid in fishing effi-

ciently by avoiding the necessity of exact catch-to-

quota matching (Sanchirico et al. 2006). Counter

to expectations, we observed effects of overage or

underage transferability on increased biomass to

above target levels, but little to no effect on catch/

TAC or exploitation rate metrics. Unlike the case

for transferability among quota holders, however,

there was no regional confounding in this effect

for biomass. If this variable is separated into trans-

ferability of overages and transferability of under-

ages, most of the effect is attributed to the

transferability of underages (post hoc results not

shown). Causality may also be reversed in this

case; permission to transfer underages may be

more likely when biomass is above target levels,

but if biomass is low, managers may be more cau-

tious about allowing too high a quota in any one

year because of transfers from the previous year.

The association between high biomass relative to

target levels and the ability to transfer quota und-

erages is an avenue for further exploration.

Industry involvement

The involvement of the fishing industry in estab-

lishing IQs has rarely been considered in assess-

ments of IQ programmes, but turned out to have

an important influence on exploitation rates rela-

tive to targets. It seems reasonable that incentives

to foster stewardship of the resource, which arise

from the allocation of individual quotas, are likely

to be stronger if industry played a large role in

implementing the programme, rather than it being

forced upon them by government. In some cases,

industry associations are proactive in conducting

or funding surveys and assessments, or participat-

ing in the management process (Hilborn et al.

2005; Grafton et al. 2006); in these cases, stock

assessments, reference points and harvest control

rules (upon which TACs are established) may be

more widely accepted by industry. Industry associ-

ations may also be cautious about exploiting a

stock for which they have a long-term harvesting

right, and may argue to maintain lower exploita-

tion rates than those based on MSY estimates (Pe-

arse and Walters 1992). Fishers may even lobby

for reduced TACs to maintain high prices (Branch

2009). Both of these possibilities would lead to

reduced F/Ftarget levels, but not necessarily to

reduced catch/TAC ratios if the TACs are also low-

ered, as we observed.

Data analysis considerations

Fishery management systems are highly complex

and also vary in other ways besides the factors

we were able to consider in our analysis. IQ pro-

grammes typically have high levels of monitoring

and enforcement, which likely also contribute to

the degree of adherence to management targets

(Squires et al. 1998; Parslow 2010). Other aspects

of management systems such as spatial and sea-

sonal closures, discard and by-catch limits, gear

restrictions and reporting requirements also likely

influence the performance indicators we consid-

ered (Squires et al. 1998; Sutinen 1999; Bedding-

ton et al. 2007; Worm et al. 2009). Similarly,

aspects of fishing fleets such as gear type and

duration of active season length may also affect

these performance measures. Further, the IQ attri-

butes we did consider as predictors were some-

what simplistic: four of these attributes were

categorical, with simple yes/no levels. In reality, a

wide range of values between these extremes with

a diverse array of qualifications and caveats

would more realistically capture the complexities

of management systems. We were faced with

comparing IQ programmes and management sys-

tems across diverse regions and taxonomic

groups, so to maintain consistency, we reduced

these complexities to simple categories. Given the

sample sizes of 76–142 IQ fisheries in each analy-

sis, we could not evaluate influences of all possi-

ble management predictors, so we focused on a

few key elements of harvest rights hypothesized to

affect the conservation-related indicator variables

of catch to TAC, exploitation rate and biomass.

This carries a risk of failing to identify important

explanatory factors affecting the response vari-

ables, but focuses on possible effects arising from

harvest-right elements. There is also not always a

clear separation between independent (predictor)

and dependent (response) variables, as the conser-

vation status at some point in time may in turn

affect some of the predictor variables such as total

catch. This is a common feature in analyses of

natural resource systems, but could affect the

accuracy and precision of parameter estimates, so

results should be interpreted in light of this

caveat.
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Conclusion

The effectiveness of fishery management systems

in achieving objectives depends on a myriad of fac-

tors that may interact and may aid in meeting

some objectives more easily than others. We

focused on conservation-related objectives in this

study, but there are also economic and social

objectives in fisheries that may be influenced dif-

ferently by the predictors that we considered, or

most strongly influenced by a different set of man-

agement or fleet attributes altogether. In one

recent study, Grainger and Costello (2014) found

that New Zealand ITQ fisheries with greater secu-

rity of harvest rights had lower dividend price

ratios (ratio or quota lease price to sales price) and

higher asset values than ITQ fisheries in Canada

and the United States. Individual quotas are not a

panacea for fisheries management (Fujita et al.

1998; Smith et al. 2009), but they have been

observed to generate better adherence to TAC and

exploitation rate targets than other frameworks to

control catch (Melnychuk et al. 2012). Despite

only looking at IQ fisheries in this study, we were

surprised to find that 32% of stocks were being

fished at exploitation rates >1.1 9 Ftarget during

the 2000–2004 period. Retrospective stock assess-

ment errors may contribute to these cases of not

meeting targets in any given year, but simply hav-

ing IQ systems in place is clearly not sufficient to

meet targets in many systems; the specific details

of these systems including harvest rights matter

(Scott 2008; Bonzon et al. 2013). Notably, it

appears that stocks under IQ programmes estab-

lished by government without a strong role of

industry were at greater risk of recently undergo-

ing overfishing, but that high levels of exclusivity

to the resource access compensated for this by

lowering exploitation rates towards targets. Coun-

ter to our expectations, it is also evident from the

lack of any support for interactions between the

four harvest-right elements and the number of

years since IQ establishment that effects of these

harvest rights do not strengthen over time. This

suggests that any effects of harvest rights on popu-

lation conservation status that may occur are just

as likely to be observed soon after establishment

as they are several years or decades later. At a

time when IQ programmes are being widely imple-

mented in fishery management systems around

the world with varying degrees of harvest rights,

these findings should be considered to improve the

chances of meeting management objectives under

these programmes.
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