THESIS
on

PROPERTIES OP LITHARGE AND GLXCERINE MORTARS

Submitted to the

OREQON STATE AGRICULTURAL COLLEGE

In partial fulfiliment of the requirements for the degree of

MASTER OF SCIENCE
in

CHEMICAL ENGINEERING
by

Bain L. MaKinnon

$$
\text { May 10, } 1938
$$

APPROVED:

Redacted for Privacy

Professor of Chemical Engineering
In Charge of Major

Ŕedacted for Privacy

Head of Department of Chomical Engineering

Redacted for Privacy

Chalman of the Committee on Graduate Study

ACKNOWLEDGMENE

My interest in this problem was aroused by Professor G. W. Gieeson and his work. In this atudy, made possible by him, his cooperation and suggestions have been of utmost value, and I here wish to exprese my most aincere thanks.

I also winh to thank Professor S. H. Graf: Head of the Department of Mechanios and Materials, for his very kind cooperation in allowing me the full use of the laboratory facilities of that department.

The Stebbing Engineering Co., Watertown, N. J., supplied the quarts sand and quartz flour used. The Oregon Pulp and Paper Co., through the offorts of Mr. E. A. Weber, were kind enough to supply the sulphite $11 q u 0 r$.

TABLE OF CONTENTS

Chapter Page
I Introdaction 5
II The Chemistry of the Compound 9
III Physical Propertios of the Moxtars 16
IV Conclusions 29
v Bibliography 32
VI Appendix 34

Litharge-glyoerine mixtures have long been used for cements, for they form morkable, quick-setting mortar which aets with slight oxpansion into hari, atrong, chemically resistant material. Admixtures or diluente auch as and, portiand coment, fire olay, quarts duat, or oombinations of these are often added. The only other use known by the anthor to which the ilthargeagiyeerine readtion is put is for the purification of giyoerine by foming the lead glyoeroxide, which is separated from the solution by filtration and the glycerine recovered by precipitating the lead.

At prosent, from the quantity stanapoint, the most important use for these mortars is as brick setting mortar for acid resistant linings in ohemical equipment, of which the greatest aingle use is in the inings of sulfite pulp digestors in paper mills. Figure i, page 7, shows the construction of modern digestor.
"The steel shell is protected by an acid resiating brick lining; and all fittinge projecting through the linIng are made of acid resistant bronze or of hard lead. Before the digeator is lined it is exposed to high temperature and pressure several times, and the inside of the shell is thoroughly cleaned by means of wire briahea for the removal of 011 and grease. It ia thon covered with a coat (a), Fig. $1,1-1 / 2$ to 2 inches thick, consisting of

FIGI
coment and crushed quartz (1 part cement, 1/2 part fire clay and $1 / 2$ part quartz), mixed with 4^{*} Be. solution of silicate of soda and water. Against this backing is laid two courses of brick, (b) and (0), in mixture of cement and quartz and silicate of soda. The innor course, (c) must be carefully selected, acid-resisting brick, with a resistant joint stock conaisting of one part litharge, one part coment, and one-half part quarts and glyoerine with small proportion of silicate of soda. ${ }^{1}$.

At least one firm is now using as mortar for the inner coat (0), mixture of one part litharge, one part quarts dust and one part quartz sand and glycerine with a small proportion of sodium silicate.

Other typical uses to whioh the mortar has been pat are packing in valves, cementing tile joints, cementing pins and wall inserts in concreto, to. It is also used as a bonding agent in the plates of lead storage batteries. It is believed that the mortar would be very eatisfactory for casting resistant linings in amall chemical towers by centrifugal meana, for it may be handled quite plastic and sets up quiciely.

Then 15 tharge is mixed with a large exeese of giyoprine, orthorhombie apyotal form, which andye nocomi*

 of water, with 20 grame of gisoerine, boating, and adaticg
 1tate of oryatala forma.

Fevilie ${ }^{5}$. has invertignted the seactien, and by mixe
 3if and $2: 1$ reapeotively, and moveuring the Fite in terspo exature he obtained the gremtent wiat at the proportione of 3in. Aleo by oarefully drying tho litharge and glyeare Ine in an ovan at 100°. and mixing then in molas preporm bion of 3 litharge to giyourine op piohor in litharge. toe mach watev wat given off to maticty vorwin't formala. and the mount mow noariy corrosponded to one and onow halt moleculen of water pomowed hrem onch glyoerlno moleoule. These romulta wer ohecked by the euther by wixing on watoh giana mowtar of lithaxge and glyoerino (beth arted at 210° C.t with 11 thamg in goy moese of the 3 is molar mitios and drying in an oven at $110^{\circ} 0$. 42 m mis. turen wore zado in weighing bottio with the giyoerino in great orrost and the witw driven off wat maogt one mol per mol of 11 tharge peresent.

Thus, it is quite definite that two asits may be formed in the litharge-glycerine reaction, depending mainIy on the proportions of litharge and glycerine, as follows:

1. Reaction when glycorine is in excess of the $1: 1$ ratio of iltharge to glycerine:

H			H		
HCOH	+ PbO	$=$	$\mathrm{HCO}_{\mathrm{Pb}}$		
HCOH			$\mathrm{HCO}^{\mathrm{Fb}}$		H08
FOOH			HCOH		
H			H		

2. Reaction when glycerine is in less than $3: 8$ ratio of litharge to glycerine:

H		H	
HCOH		$\mathrm{HOO}_{\mathrm{Pb}}$	
HCOR		$\mathrm{HCO}^{\mathrm{Pb}}$	
HCOH		HCO	
H	$+3 \mathrm{PbO}$		3H03
H		H $/$	
HCOH		HCO	
HCOH		$\mathrm{HCO}_{\mathrm{Pb}}$	
HCOH		$\mathrm{HCO}^{\mathrm{Pb}}$	
H		H	

The salt formed in the ameand reaction ($\left.\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2} \mathrm{~Pb}_{3}$) has aleo boen prepared by reaeting basic lead acetate with giycerine to which hee been added a solution of lead oxide in potassium hydroxide. 4.

It is evident that at ratios betwoon $1: 1$ and $3: 8$, IItharge to glycerine, both reactions vill probably take place.

Neville 5 considers the process of retting to involve two stages: (1) preliminary adsorption of the ilquid
phase by the solid; followed by (2) chemical reaction between the adsorbed liquid and the solid. Plaster of Paris acts in a similar manner. That the process is two stage may be show by the time-temperature curves of setting. See Fig. 2, page 13. At first practically no heat is evolved: this is the adsorption period. Then heat is rapidIy ovolved and the temperature rises abmuptiy; this is the chemical reaction period. Nevilie aleo studied the volume ohanges during setting, and found them to consist of a ontraction during the adsorption stage, followed by a siight expansion during the chemical reaction stage.

Hydroxyl ions are apparently neceseary for the reaction to go, for the dried material sets considerably slower than the undried. Small amounts of alkali or alkaline hydrolizing salts accelerate setting; larger amounts prom hibit sotting. Acids provent setting. Stirring acoierates setting: probably by causing more oven and thorough adsorption.

Table I, from Neville's work, shows some of the ofm feots of stirring, acids and alkalies on the setting of equimolar litharge and giycerine.

FIG. 2

FIG. 3

FIG. 4

TABLE I

Deseription of Materials

	one min.	three min
1. Litharge and glycerine	4 hrs .	66 min .
2. Both dried at $106^{\circ} \mathrm{C}$.	1 day	3 hrs*
3. 10% water added to glyoerine	30 min .	20 min.
4. 10% dil HCL to glycerine	-- does	set --
5. 10% water added to litharge	20 min 。	13 min 。
6. 10% dil. KOH to glycerin	13 min .	

Stirrod-one min. threemin. $4 \mathrm{hrs} . \quad 66 \mathrm{~min}$.

1 day 3 hrs. 20 min. -- does not set -$20 \mathrm{~min} . \quad 13 \mathrm{~min}$. 13 min.

There are two kinds of litharge, yellow orthorhombic and red tetragonal. The international critical tables give some of thein properties as follows: ${ }^{6 .}$

Fommila	Name	Molstt.	Crystal	Density	M. P.
Pbo	1itharge	223.20	tetragonal	9.53	888
Pbo	masticotite	223.20	orthorhombic	8.0	

Commercial litharge is usually buff colored, though for some thing the red form is often used. The red tetragonal form is produced by erystallization from the molten stage. If it is heated at a dull red heat it changea to the canary yellow powder. The buff iltharge is conaldered by Neville to be amorphous, but the buff litharge the author used, appears to be a mixture of the red and yollow crystalline forms, At least both forms are present, az may be seen J_{*} streaking it across a paper with a spatula to broak up the red and yellow agglomeratea. The partiolea
vere all so fine that an estimation of the composition could not be made by microscopical examination. The Jellow litharge used by Reynolds and the author was "Baker's C.P. Yellow Litharge." In appearance it was "buff," though mach yellower than ordinary comeraial iltharge, and is believed to be mixture of jellow and red crystalline forme, though the red present probably did not exceod five per cent as estimated by streaking with a spatula. The red litharge used was "Baker's C.P. Red Litharge," and was ostimated to contain less than five per cent yollow. The relationship between time of setting and temperature pise for different mixtures of red and yellow litharge was investigated by Regnolda, 7 and the resulta of his movis are shown graphically by Fig. 2, 3, and 4; page 13. It will be seen that the time of setting increase directiy as the proportion of red to yellow is increased.

PHYSICAL PROPERTTRS OF THE MORTARS

REVIEW OF PAST INVESTIGATIONS.

Litharge-glycerine mortars are more plastic or "fat" than most other mortars and are therefore harder to mould bubble free. The consiatency is changed considerably by a small change in the glycerine content.
alesson's work ${ }^{3}$ on factora affecting field and etrength is all that is available in the 1iterature. The practical range of plasticity for mortar use is indicated in his curve, which shows the effoct of the glycerine content upon the yield in 1:1:1 mixes of 11tharge, oment and sand; Fig. 5, page 18.

The results of his volume studies on litharge mortars are shown by his curves given in Pig. 6. He considere these curved to be of aufficient accuraoy for quantity otimations and cost calculations.

The relation betweon the composition of the glyoerine solution (per cont glycerine) and the strength of the resulting mortar is show in Fig. 7. It will be seen that both the tensile and compressive strengths incresse with an increase in the glycerine-litharge ratio.

The relation between the richness of mix and the strengths are shown in Fig. 8. The leaner mixes are strongor than the very rioh ones-oven stronger than the straight Iithargealyoerine mortar of the same consiatency.

FIG. 5

FIG. 7

FIG. 6

FIG. 8

Qlesson believes this increase in strength of the leaner mixtures may be due to lack of "seed" in the richer mixes, and hence much of the litharge may act as centers of crystal growth, and as such are not contacted by the glycerine and therefore do not act as bonding aubjtance. The author belleves this to be somewhat true, but alao is convinced that the strength of the mortar is dependent upon which 1itharge-glyoerine compound is formed, $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3} \mathrm{~Pb}$ or $\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2} \mathrm{~Pb}_{5}$. This viev is further mbatantiated by the fact that if the glycerine-iftharge ratio is increased, either by diluting the mostar with solid admixtures requiring more glycerine to wet them, or by naing more concentrated giycerine-water solutions for mixing, the strength is increased. Honce it appears that the atrongest orystal. and probably the most desirable for mortar use, is fommed when iltharge and giycerine react in oquimolar proportiona.

The offect of age on atrength was also investigated by alseson, and he found that, over a period of twentyeight days, the tensilo strongth incressed to a maximam in about soven days and then fell off slightly, whereas the compressive strangth increased for about the same period and then remalned constant.

AUTHOR'S INVESTIOATIONS

The corrosion resistance of the mortars to hot sulfite 11 quor was investigated by the author by maiking A. S.
T. ${ }^{\text {f. }}$ standard tension briquettes, sealing them in aulfite liquor in ordinary glaes fruit jars, and heating thom with direct steam in the antoclave chown in figure 15. Each weok the sulfite liquor was replaced with fresh. It was also found necessary to replace the jars each week, for af. ter about five days use, they began to develop iittle cracks which quickly spread, completely breaking the jar in the next day or so. Almost no jars broke in less than five days. To obtain comparative results the briquettes were dried three daya in air before being tested. The tests were made with the Tinus Olsen testing machine shown in Fig. 16. The litharge used was redder then that used by Gleeson and the mortar set slow, so all were allowed to oure a month in air before the sulfite ilquor treatment was begun.

The results of the experiment are shown graphically by Fig. 9, 10 and 11, page 21.

Fig. 9 shows the effect of the treatment upon 1:2:1; 1:2:2 and 1:3:3 mixtures of 1itharge, cement and and made to the same consistency. The lettered points in each Fig. (Indicated by circles) are the average strengths of specimens wh ch did not receive treatment, but were stored in air for the tine indicated after the treatment of the other speoimena was begun. It will be noted that the strongthe increased with treataent. This was not expected in any case but was most probably due to the coment content whieh hydrolized on exposure to the liquor, for the glyeerine

FIG. 9

used in mixing the batohes was of C.P. quality and containod very 1ittle water. The specimens of the 1:1:1 mix appeared in good condition even at the ond of the treatment, but the briquettes of the leaner mixea scaled off badly on the aurface. The extent of this sealing may be seon from the photographa taken after four days treatment, Fig. 13 and 14, page 23. The effective croas aeotional arean of the speciemns were redueed about twenty per cent.

Fig. 10 shows the relative effect of the treatment upon 1:1:1 mixes of litharge, oement and and, and 1itharge, quartz dust and quartz sand. It appears that miztures oontaining coment withstand sulfite liquor and neat better than thome containing quartz dust and no cement, but that the quartz dust mixtures reasin stronger when only oxposed to air. This may be due to the greater finenesa of the cement particlea than the quartz flour, roaulting in a closor, more impervious mortar, and also to the setting of the cement.

Fig. 11 show the effect of the treatant on mortars containing sodium ilicate and sodium hydroxide. It will be noticed that these compounds have greatiy incressed the strength of the mortare. The dip in the ourve 1 is undxplained; it appeare to be too large for experimental orror. The specimens appeared in good condition after the treatmont, as may be seen from the photegraphs, P1g. 12.

FIG. 12

FIG. 13

FIG. 14

FIG. 15

FIG. 16

If the experiment were being ro-man a cheok vould be made using water instead of alfite liquor to determine the effect of heat and wator alone on the strengths, and also a dry mun would be made to test the effect of heat only. From an examination of the briquettes and consideration of the atrength data obtainod it appears that the corrosion ffect is almost entirely on the surface and that where the mortar is subjeated to abrasion, even though mild, the corrosive action would be much more important than where there if littie or no abrasion.

The thermal coeffioient of expansion is a very important property of auch mortar, in that it mould be as nearIy as poaible the same as the bricks used in order to avoid being cracked away when the wall is hoated. Therefore the coerficient of expansion was determined for $1: 1: 1$ mixtures of litharge, cement and quartz sand, and litharge, quartz duat and quarts sand. It was also detempined for a noat mortar of litharge and giycerine in $3: 2$ molar ratio. To do this apecimena were made $10^{\prime \prime} \times 1 / 2^{n} \times 1 / 2^{\prime \prime}$ in moulds shown in Fig. 27, page 26. A themocouple was cast In the center of each apeaimen. The coefficient of oxpanaion was obtained by heating the speeimen by radiation from an electric heating element within wooden box and moanixing the oxpansion, as mitiplied by lever, with an ordinary screw micrometer. The oonstruction of the apparatua is clearly show by its photograph, Fig. 18. The tomperature

FIG. 17

FIG. 18

rise was measured by means of a potentiometer and the thermocouples in the specimon. The experimental error was probably within five per cent. Greater accuracy was not sought because of the variation in quartz ands. See the appendix for experimental data obtalned and method of caleulation. The values obtained are as follows:

THERMAL COEFFICIENP OF EXPANSION

$$
20-100^{\circ} 0 .
$$

Litharge, quartz sand, quartz dust $1: 1: 1 \quad 22.0 \times 10^{-6}$ Litharge, quarte sand, cement $1: 1: 1 \quad 18.8 \times 10^{-6}$ Litharge, glycerine 3:2 mola 27.9×10^{-6}

Table 2 gives the coeffioient of expansion for several types of brick.

TABLE II
Therral Expansion of Brick ${ }^{6}$

$$
25-100^{\circ} \mathrm{c}
$$

Alumina $2-8.0$
Alundun 7.1 - 8.5
Bauxite 4.
Carborundum 6.58
Pire clay brick. $5.00-110$
Magnisite briok $10.5-12.5$
Silica brick 25.0 - 32. 0

$$
\# \times 10^{-6}
$$

Since it was thought that the ooefficient of expanaion might vary with the proportion of red and yellow 1itharge used in mortar this was triod using i:1:1 mixtures of iltharge, quartz dust and quarts sand, and varying the proportions of red to yellow litharge. The giyoerine contont was held constant. No noticeable variation was obtained.

CONCLUSIONS

Two difforent chemical compounds may be formed dependIng on the litharge-glycerine ratio. The compound $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3} \mathrm{~Pb}$ 1. formed when the glycerinemiltharge ratio is $1: 1$ or mores whereas the compound $\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2} \mathrm{~Pb}_{3}$ is formed when the giycer. ine-litharge ratio is 2:8 or less. In between both will be formed. It appears that the erystal $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3} \mathrm{~Pb}$ is the most desirable from the mortar strength standpoint. This iith arge-giycerine ratio in mortars, comparable to the water-cement ratio in conorete, desmres more study.

II

Thorough mixing or stirring would probably reanlt in a much stronger mortar. This should be investigated, the strongth of plaster of paris is inereased by stirring.

III
Heat and moisture accelerate setting and produce a stronger mortax. The effect of heat alone and moisture alone should be studied, eppecially of the mortaps conteining cement.

IV
Cement gives atronger mixture if exposed to heat and moisture than does quartz dust as an admixture. This 1s most probably due to the aetting of the oement.

V

Basic accelerators increase tho strength of the final set mortar, expecially on exponure to aulfite liquor. These
should be investigated to find the optimum concontrations, also whether they increase the final strengtha of quarte dust mortars as much as coment mortar

VI
Leaner mixtures than of the 1:1:1 ratio would probably be satisfactory for backing where abrasion is not prese ont. All exposed mortar, though, should be as rich as $1: 1: 1$, for the weaker mortars acale off, and hence, though etrong, will not stand abrasion. This applien to ada resistant 1inings.

VII
Samples of the mortar tended to reach maximum atrength on ageing and then to doerease. In sone cases this decrease was very considerable. Just why this happens or what might be done to remedy it is not known. It certainly warrants an investigation.

VIII
Quartz duet givea better coefficient of expansion than cement as an admixture in the mortar for use in setting silice brick, whioh is the usual brick used in acid resistant linings.

1. Johnsen, Bjaine

The Manufacture of PuIp and Paper, Vol. III (1927) MeGraw-EII1 Bool Co., N. Y.
2. Merwin, H. E.

The Setting of Iitharge-alycerine Coments, J. Ind. and Eng. Chome, 9, 390, (1917)
3. Qleeson, George W.

Litharge and Glycerine Mortars, Paper Trade Journal, Dot. 13, 1932.
4. Jawrie, James W.

Glycerol and the 01ycol: (1928)
The Chomical Catalogue Co.. F. Y.
5. Noville, Harry A.

Adsorption and Reaction II
The Setting of Lithargemalyeerine cement, J. Physical Chem., 30, 1181, (1926)
6. International Critical Tablea,

Published for the National Research Counoil, MeGraw-Hill Book Co.. N. Y.
7. Reynolds, Charies,

Undergraduate Project Report No. 3, 1933, Chemical Engineering Dep't., O.S.C.

APPENDIX

This eppendix contains the data obe tained by the author, and the alculatod results of his studies on:

1. The chemical peaction
2. The corrosion resistance to sulifte 11quor.
3. The coefficiont of thermal expanaion.
Gleason' analysis ${ }^{3 .}$ of the crystala fomed by 1itharge and giycerine in an excess of glycerine, is also included.
water Liberated.

	1	2	3	4
watch gless or bottle	3.9705	5.8390	14.3985	14.3990
Glass and glycerine	6,1440	7.7890	26.3670	32.4160
Qlycerino	2.1736	1.9800	13.9685	18.0170
Litharge	9.50	8. 52	10.00	10.00
mols lithavge/mols glycerine $1.80 \quad 1.80$				
Total weight	15.6430	16.3065	23.9695	28.0255
Dry weight	15.0890	15.8700	23,2130	27.2745
Water driven off	0.5540	0.4365	0.7565	00.7410
Mols water/mol glyo.	1.30	2.35		
Mols water/mol litharge			0.94	0.92
Theoretical mol ratioa	1.50	1. 50	1.00	1.00

ANALYSTS OF CRYSTALS

Exoess Glycorine

By Gleeson ${ }^{3}$

1	2
Pb - - m - . . . - - 69.40	69.36
c - m . . . - - - - 11.82	11.96
H	1.63
0 (by difference) . . . - 17.39	17.05
100.00	100.00

MATERIAL DENSTITES

(Dry loose volumes.)

Specirio Gyavity Density 1b./ou. ft.

COMPOSITION OF TENSION BRIQUETYESS

(Materials indiarted by dry loose volumes: glycerine in 1b. per ib. iftharge.)

Iitharge Cement Sand alTcorine Mols plycerine 113
$0.440 \quad 1.07$
B

C
D
F

G

H
H 1
1
1
1
1
1
1
2
2
0.683

1. 66
2.08
0.855
0.410
1.00
0.427°
1.04
0.410^{4}
1.00

1 Quarts flour used in place of cement.

- Quartz sand used.
- 1% sodium silicate used as accopenator (glyoerine basis)
- 0.1\% sodium hydroxide used as aocelerator (glycerine bosis.)

TENSILE STRENGTH OF TENSION BRIGUETTES

(Underlined values are averages as used in the ourves.) ${ }^{2}$ After 35 days in alr after treatment was started all specimeng were oured in air 30 daye before treatment.) TIME OF EXPOSURE TO SULFITS LIQUOR

Data.
Samples No. 1 to 6 are litharge, quartz dust and quarts and (1:1:1) with the per cont red and Jellow litharge varied as indieated. Glycerine-litharge molar ratio, l:1.

Sample No. 7; cement used instead of quartz dust. Litharge 100\% yellow.

Sample No. 8; neat mortar of litharge and glyeerine in 3:2 molar ratio.

Sample No, s is bar of steel used as check bar.

(See 0.015 0.035 0.020 0.810 0.080 $0.010 \quad 0.020 \quad 0.020 \quad 0.010$ note) $\begin{array}{lllllllll}0.442 & 0.414 & 0.434 & 0.462 & 0.453 & 0.423 & 0.478 & 0.487 & 0.402\end{array}$ $0.0500 \quad 0.446 \quad 0.419 \quad 0.436 \quad 0.4660 .455 \quad 0.427 \quad 0.4840 .490 \quad 0.404$ $\begin{array}{llllllllll}0.1000 & 0.451 & 0.424 & 0.440 & 0.471 & 0.462 & 0.432 & 0.487 & 0.500 & 0.406\end{array}$ $\begin{array}{llllllllllll}0.1500 & 0.456 & 0.429 & 0.448 & 0.477 & 0.467 & 0.437 & 0.422 & 0.505 & 0.408\end{array}$ $0.2000 \quad 0.4610 .434 \quad 0.4530 .4820 .4730 .4430 .4960 .5120 .411$ $\begin{array}{llllllllllll}0.2500 & 0.466 & 0.439 & 0.459 & 0.487 & 0.478 & 0.448 & 0.501 & 0.519 & 0.414\end{array}$ $0.3000 \quad 0.4710 .445 \quad 0.4640 .4920 .4820 .4540 .5050 .5250 .416$ $\begin{array}{llllllllllll}0.3500 & 0.477 & 0.449 & 0.469 & 0.496 & 0.487 & 0.459 & 0.510 & 0.533 & 0.418\end{array}$ $\begin{array}{lllllllllll}0.4000 & 0.481 & 0.452 & 0.471 & 0.500 & 0.491 & 0.463 & 0.512 & 0.537 & 0.420\end{array}$ 0.35000 .4760 .4470 .4670 .4950 .4850 .4590 .5100 .5310 .418 $\begin{array}{llllllllllllll}0.3000 & 0.471 & 0.444 & 0.463 & 0.491 & 0.481 & 0.454 & 0.504 & 0.524 & 0.426\end{array}$
$0.2500 \quad 0.466 \quad 0.438 \quad 0.458 \quad 0.486 \quad 0.476 \quad 0.449 \quad 0.500 \quad 0.517 \quad 0.413$
$0.2000 \quad 0.4610 .4380 .4530 .4830 .469 \quad 0.4430 .496 \quad 0.5100 .411$
$\begin{array}{llllllllllllllll}0.1500 & 0.457 & 0.428 & 0.449 & 0.477 & 0.466 & 0.439 & 0.491 & 0.503 & 0.409\end{array}$
$\begin{array}{lllllllllll}0.1000 & 0.452 & 0.424 & 0.445 & 0.473 & 0.460 & 0.435 & 0.487 & 0.497 & 0.406\end{array}$

Note: The first and second lines of data are the initial E.M.F. and micrometer readings roapectively.

The coefficients of expansion were calculated by first plotting the values of expansion as measured vs. the thermocouple potential, and drawing the best straight line through them (See curve aheet, page 40), then calculating the mean coefficient from the slope of the gurvey as indicated in each case below.

Length of specimen - - - - . - - - - 10 inches
Multiplication of expansion by lever - $2.40 \times$
Thermocouple calibration $\cdots-\cdots-0^{-} 0.01$ volt $=200^{\circ}$ Coefficient of expanaions.

No. 1 - 6
Litharge, quartz dust, quarts sand 1:1:1
Glycerine-1itharge ratio $1: 1$ (mola)
$(0.041)(10 \times 2.40 \times 0.400 \times 0.200)=22.0 \times 10^{-6}$
Mo. 7
Litharge, cemont, quartz sand 1:1:1
Olycerine-11tharge ratio 1:1 (mols)
$(0.036) /(10 \times 2.40 \times 0.400 \times 0.300)=18.8 \times 10^{-6}$
No. 8
Litharge and giycerine 3:2 (mols)
$(0.052) /(10 \times 2.40 \times 0.400 \times 0.200)=27.9 \times 10^{-6}$
No. s
Steel bar

$$
(0.019) /(10 \times 2.40 \times 0.400 \times 0.200)=103 \times 10^{-6}
$$

