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Pulsed-field gel electrophoresis (PFGE) of the strains representing the 14 races of 

U. hordei, the causal agent of covered smut on barley, revealed extensive polymorphism 

in chromosome length and number. The purpose of this study was to determine by two 

approaches the exact chromosome number for each U. hordei race, and to ascertain 

whether some strains are aneuploid, using two approaches. A telomere-specific repeat 

from Fusarium oxysporum was used as a probe onto Southern blots of restriction digests 

of individual chromosome bands to determine the number of chromosomes contained in 

each band. Nineteen to twenty-three chromosomes were identified in the strains 

representing the 14 races of U hordei. To ascertain the number of chromosomes 

identified by the telomere-specific probe, chromosome-specific libraries were constructed 

and linkage groups were established by using chromosome-specific fragments as probes. 

The homologous chromosomes identified by these probes were typically monosomic with 
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a maximum of 15 percent of variability, but cases of disomy were also observed in some 

strains. 

The second objective of this study was to analyze a filamentous mutant of U 

hordei, designated fill-/, that was isolated following heat-shock treatment. The 

filamentous phenotype is of interest, because it is believed to be involved in 

pathogenicity. U hordei is a dimorphic fungus which has yeast like cells that are non 

pathogenic, while dikaryons produced upon mating are filamentous and pathogenic. 

Molecular characterization of the fill-/ mutant showed that it has suffered a 50 kb 

deletion in a 940 kb chromosome. Genetical and physical analysis placed the fill 

mutation near the terminus of one arm of the 940 kb chromosome. The filamentous 

phenotype reverted to the sporidial wild type in presence of cyclic AMP. Biochemical 

analyses revealed that the intracellular level of cyclic AMP is three-fold lower in the 

mutant phenotype than in the wild type. These results indicate that cyclic AMP is an 

important determinant in fungal morphogenesis. 
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Molecular and Genetic Analyses of Genome Variability in Ustilago hordei  

INTRODUCTION 

The covered smut disease of barley (Hordeum vulgare L.), is caused by the 

basidiomycetous fungus Ustilago hordei (Pers.) Lagerh. (Fisher and Holton, 1957). 

Cultivated barley is infected by three smut species, and U hordei is distinguished from 

semiloose smut (U nuda) and loose smut (U nigra) by its mode of infection, symptom 

expression and spore wall morphology. The characteristic symptom of barley covered 

smut is the presence of a persistent membrane enclosing the smut sorus until the plant is 

mature. This distinguishes it from loose and semiloose smut, which have a 

nonpersistent membrane that breaks while the plant is still green (Mathre, 1982). 

The life cycle of U hordei consists of a saprophytic and a parasitic phase. The 

saprophytic phase begins with the germination of a diploid teliospore and the formation 

of a basidium (promycelium) and four haploid basidiospores (sporidia). The 

basisiospores may be isolated sequentially with a micromanipulator for tetrad analysis 

(Pedersen and Kies ling, 1979). When grown asexually, the basidiospores bud in a 

yeastlike fashion and produce numerous secondary sporidia. These cells are non-

pathogenic and grow on artificial media. To initiate the parasitic phase of the life cycle, 

two basidiospores of opposite mating type must fuse to form a conjugation bridge from 

which a pathogenic dikaryotic mycelium grows (Martinez-Espinoza et al., 1992). 

Infection occurs through the coleoptile of young barley seedlings, after which the 
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mycelium advances through the host tissue and becomes established at the meristem of 

the plant (Kozar, 1969). At flower formation, the fungus permeates the ovary tissue, 

forming a fungal mass, which differentiates into sexual teliospores in place of the seed. 

The teliospores are contained within membranous sacs or sori that are generally 

released at harvest during threshing. The fungus survives between growing seasons as 

teliospores lodged on seed or in the soil, and germination coincides with the 

germination of barley seeds. The disease occurs worldwide, wherever barley is grown, 

but its economic importance has decreased with wider use of seed treatment and the 

availability of moderately resistant varieties (Mathre, 1982). Nevertheless, the disease 

is still present every year and has the potential to cause serious losses if effective 

control measures are not practiced diligently (Thomas, 1984). 

Despite the fact that the host plant is required for completion of the sexual 

cycle, U hordei has been established as a useful tool and model system for genetical 

analyses of host-pathogen interaction. Furthermore, a well characterized race structure, 

based on the gene-for-gene concept defined by Flor (1946), has been identified in this 

fungus and a considerable amount of information is available on the genetics of 

virulence and pathogenicity in U hordei. 

Genetics of host-pathogen interaction 

At least 13 physiologic races have been described in U hordei. The term 

physiologic race was first created by rust investigators to describe pathogenically 

distinct, dikaryotic uredial clones. Kniep (1919) using morphological characteristics, 

was the first to demonstrate physiologic specialization in the smut fungi. Stakman 
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(1922) described four methods to classify physiologic races that were based on 

cultural characteristics, physico-chemical reactions, morphology or pathogenicity. 

Because of economic considerations, pathogenicity became the most important of the 

race differential criteria, and for that reason the concept of physiologic specialization 

is mostly considered as one of pathogenic or host specialization. On the basis of 

pathogenicity on four different barley varieties (differentials), Faris (1924a) was the 

first to identify five physiologic races in U hordei. In 1937, Tapke reported on 

experiments involving 200 collections of covered smut from 26 states and was able to 

distinguish eight races on five differentials. In subsequent work, five additional races 

were identified among 244 collections bringing the total to 13 races (Tapke, 1945). 

Three races: 1, 5 and 6 comprised 86 percent of the total collections with race 6 

occurring in 61 percent of the total 444 collections. However, it is important to 

indicate that a positive correlation has been observed between the distribution of races 

observed and the type of barley grown (Fischer and Holton, 1957). Recently, two 

new races, designated race 0 and race 14, have been identified (Mills and Pederson, 

pers. communication). Race 0 represents the stabilized form of race 8, while race 14, 

the most virulent of all races, has been the object of molecular and genetical analyses 

by Abdennadher et al. (in preparation). 

Genetic analysis of virulence and pathogenicity 

According to Fischer and Holton (1957), Goldschmidt was the first to 

demonstrate the mode of pathogenicity inheritance in the smuts. Using the anther 

smut, U violaceae, he obtained evidence that differences in race pathogenicity were 
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attributable to single genes. In U. hordei, Thomas (1964), and Thomas and Person 

(1965) were the first to study the inheritance of pathogenicity and showed that 

virulence is generally controlled by recessive genes. This conclusion was supported 

by Lade (1968) and Jensen (1971), who performed similar studies on the inheritance 

of pathogenicity in U hordei. In subsequent studies, Sidhu and Person (1972), found 

that virulence on "Hannchen" and "Vantage" was both controlled by the same gene 

pair, while virulence on "Excelsior" was controlled by a different recessive gene pair. 

In addition, they were also the first investigators to show that a gene-for-gene 

relationship existed between barley and U hordei. 

In other studies, Ebba and Person (1975) reported multiple allelisms of 

genes controlling three levels of virulence in U hordei. Using F1 and backcross F1 

data, they described the existence of a series of multiple alleles that, control three 

levels of virulence in races 4, 7, and 11 on "Trebi" barley, with the higher level of 

virulence dominant in each case. Metcalfe (1962), using F1, F2, and F3 data, showed 

that resistance of the cultivar "Jet" to U nigra was governed by a single dominant 

gene. The close association between reactions producing covered and loose smut on 

this cultivar, indicated that the resistance to these seedling infecting pathogens could 

be conditioned by the same host gene. Fullerton and Nielson (1973) published 

similar results and demonstrated that identical avirulence genes could be detected in 

strains of U hordei and U nigra, suggesting that either fungus could serve for both in 

host resistance testing programs. 

It is also important to note that many of the earlier studies on pathogenicity 

inheritance in U hordei, as well as in U nigra, produced numerous varying and 
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inconclusive results. Most of those results, were attributed to heterozygous fungal 

isolates, poor choice of avirulent parental strains, improper methods of analysis, and 

the occurrence of morphological factors such as abnormal infection hyphae which 

prevented infection and thereby biased results. For example, Lade (1968) reported 

increases in virulence of U hordei on the cultivar "Pannier". The data, however, was 

inconclusive and had to be explained as being the result of contamination, mutation, 

variation in the host or pathogen, or undetected virulence genes. 

Jensen (1971) first demonstrated a stepwise increase in virulence in progeny 

obtained by inbreeding race 8, virulent only on the cultivar "Odessa" which has no 

known resistance genes. After three generations of consecutive inbreeding, an isolate 

was obtained that was virulent on all of the barley differentials. To investigate 

whether repetitive inbreeding causes increase in virulence, Pedersen and Kies ling 

(1979) repeated Jensen's experiment and identified an additional isolate with 

increased virulence. Jensen (1971) attributed the shift to virulence to a heterozygous 

parent, while Pedersen and Kies ling (1979) hypothesize that only recessive regulator 

or mutator genes could explain this increase in virulence. 

Jensen (1971) also first described a morphological factor of smut fungi that 

inhibits infection of a susceptible host. Data from selfed tetrads and from 

backcrosses, indicate that the ihi factor, which inhibits the infection of the susceptible 

cultivar "Odessa", is controlled by a single gene pair. Pedersen et al., (1977) claim 

that it is not a recessive gene for avirulence, but rather a gene conditioning a 

morphological character in the fungus which prevents penetration. Microscopic 

examination of the non-pathogenic compatible mating ihi X ihi confirmed this 



6 

conclusion, and showed that dikaryotic infection hyphae were present but reduced in 

both number per area and length of the hyphae when compared to the wild type (IHI) 

(Pederson et al., 1977). 

While all of the previous studies focused uniquely on the presence or 

absence of virulence, Groth et al. (1976) were able to distinguish between different 

degrees of disease expression, reporting that in addition to variation in virulence 

among races in U hordei, variation also exists in the degree of disease severity. The 

term aggressiveness has been chosen to describe variability in severity of disease 

reactions among virulent biotypes of a pathogen in a host (Burnett, 1975). It is 

believed that aggressiveness is a component of parasitic fitness that describes the 

relative ability of a parasitic genotype to persist successfully in a population over time 

(Nelson, 1979). Emara (1972), Emara and Sidhu (1974) and Caten et al. (1984) 

interpreted aggressiveness as being the percentage of smutted heads when a 

susceptible barley cultivar ("Odessa") is inoculated with a virulent isolate of U 

hordei. They established the genetic nature of aggressiveness and found that the 

percentage of smutted plants was poly-genetically controlled. However, detailed 

experiments that analyze the genetic nature of variability in aggressiveness and 

disease severity components within races of U hordei have not been extensively 

performed. Gaudet and Kies ling (1991) studied aggressiveness components such as 

pedoncule compaction, dwarfing, number of tillers infected and extent of sorus 

formation in spikes, leaves, and nodes of barley in compatible and incompatible 

interactions involving the 13 physiological races of U hordei. They showed that 

races 7 and 12 were the most variable for aggressiveness, while races 1 and 8 were the 
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least. Little is known about the number and functions of genes contributing to 

aggressiveness. 

In addition to genetical components, there are several environmental factors 

that are known to affect the type and percentage of infections by U hordei. They 

include soil temperature (Schafer et al., 1962), moisture, acidity and fertility levels 

(Fischer and Holton, 1957), as well as depth of planting (Taylor and Zetner, 1931; 

Tapke, 1940) and spore load on the seed (Faris, 1924b). 

Although classical genetic studies were facilitated by the well-characterized 

race structure in U hordei, analyses of pathogenicity and virulence at the molecular 

and chromosomal level were difficult because of the small size of the fungal 

chromosomes and the lack of appropriate techniques for those studies. It is only 

recently, with the development of a technique called pulsed-field gel electrophoresis 

(PFGE) in 1984, that karyotypic analysis and determination of chromosome number 

and genome size has become possible for U hordei. 

Pulsed-field gel electrophoresis (PFGE) : principle 

Pulsed-field gel electrophoresis (PFGE) is one of the key technological 

advances of the past 15 years that has revolutionized the study of fungal genetics, 

making it possible to resolve DNA fragments and chromosome-size DNA molecules 

ranging to over 12,000 kilobase (kb). In the past, only DNA molecules less than 20 

kb were efficiently fractionated by unidirectional electrophoresis in agarose gels. The 

mechanism of molecular-weight separation in this size range is based on the sieving 

effect of the macromolecules by the agarose matrix (Stellwagen, 1985, 1987) and 



8 

larger DNA molecules cannot not be separated by conventional gel electrophoresis, 

because they exhibit nearly constant electrophoretic mobilities in agarose gels 

(McDonell et al., 1977). However, separation of large DNA molecules can be 

achieved if pulsed electric fields are applied to the gel (Cantor et al., 1988). PFGE is a 

technique in which two different electric fields are generated by alternating the 

voltage between two different sets of electrodes. Each time one configuration is on, a 

pulse is generated, thus the name "pulsed field". The directional switching of the 

electric field causes molecules to change direction in the gel, and separations are 

possible because the time each fragment takes to reorient to move into a new direction 

depends on its size. 

Originally, PFGE stood for pulsed-field gradient gel electrophoresis 

(Schwartz and Cantor, 1984). However, later it was recognized that field gradient or 

inhomogenous fields were not necessary to separate large DNA fragments, and 

presently, PFGE is used to describe pulsed-field gel electrophoresis and other kinds 

of methods involving switching (pulsing) of fields to separate large DNAs. 

Satisfactory separation of DNA larger than 100 kb was first achieved by 

Schwartz and Cantor (1984), who first reported this technique. Using the same 

principle, Carle and Olsen (1985) developed a procedure called orthogonal-field 

alternation gel electrophoresis (OFAGE), which was used to resolve chromosomes of 

the yeast Saccharomyces cerevisiae. However, due to the inhomogenous electric field 

generated by this procedure, DNA molecules migrate along curved paths, and makes 

it very difficult to compare large numbers of samples. Investigators have attempted to 

alter the geometry of the electric field to achieve straight migration of DNA. For 
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example, Carle et al. (1986) have devised a computer-aided switch to invert the 

electric filed in a time gradient mode (FIGE), while Chu et al. (1986) constructed a 

hexagonal array of voltage-clamped electrodes, which was used to generate 

homogenous alternating-fields with a constant reorientation angle of 120°, an 

approach they denoted Contour-Clamped Homogenous Electric Field (CHEF) gel 

electrophoresis. Commercial CHEF devices currently employ a hexagonal electrode 

array, but other types of contour such as circles or squares, can also produce 

alternating homogenous electric fields (Vollrath et al. 1992). 

Transverse-alternating field gel electrophoresis (TAFE) also produces 

straight lanes by suspending the gel vertically in a buffer tank with electrodes 

positioned parallel to the two large faces of the gel (Gardiner et al., 1986). The 

electric field produced is inhomogenous, decreasing in strength from the top to the 

bottom of the gel, producing a focusing effect whereby bands near the bottom are 

sharp and closely spaced. Although this can be useful for certain specialized 

applications, the unique electrode geometry constrains the thickness and overall size 

of the gel, limiting the usefulness of TAFE for preparative applications,. 

More recently, additional PFGE systems have been introduced such as the 

programmable, autonomously controlled electrodes (PACE), in which 24 electrodes 

are independently controlled, allowing faster and better resolution of larger DNA. 

The electrophoresis device (ED), the most affordable of all PFGE systems, was 

proposed by Schwartz et al. (1989) as an inexpensive alternative for the investigators 

willing to assemble their own PFGE apparatus. 
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Chromosome length polymorphism and aneuploidy 

Since the introduction of PFGE by Schwartz and Cantor (1984), rapid 

advances in this technology have allowed the genomic characterization of an 

impressive number of fungi and lower eukaryotes. This technique has especially 

become a valuable tool for investigating the genetic structure of fungi for which 

classical cytological analyses were difficult, due to a lack of a sexual stage, or for 

which comprehensive genetic data were not available (for review on PFGE: Mills and 

McCluskey, 1990; Skinner et al., 1991; Mills et al., 1995). In the context of modern 

molecular biology, PFGE facilitates the use of a cloned gene or a cloned random 

DNA fragment to identify the physical location, in a genome, of a corresponding gene 

or homologous (Orbach et al., 1988; McCluskey and Mills, 1990). The physical 

maps, generated by PFGE, have become an important tool in a variety of fields 

including genetics, plant pathology and clinical pathology. 

The electrophoretic karyotypes, or banding patterns of chromosome-sized 

DNAs separated by PFGE, revealed an extraordinary degree of chromosomal 

polymorphism in chromosome size and/or number, altering our view of fungal 

genomes as typicological entities forever. Magee and Magee (1987) were the first to 

report chromosomal-length-polymorphisms for a pathogenic fungus and showed that 

each of the five isolates of the fungus Candida albicans examined, had a unique 

karyotype. Since then, numerous reports of chromosome-length-polymorphisms have 

been published for many other pathogenic fungi, including U hordei for which the 

electrophoretic karyotypes of strains representing the 14 races were established by 



McCluskey and Mills (1990). They reported extensive chromosome polymorphism 

and showed that each race has a unique karyotype with chromosome number varying 

between 15 and 18. 

In spite of the reported chromosomal polymorphisms, the electrophoretic 

karyotypes generated by PFGE are stably inherited and transmitted and are strain, 

race and species specific. This property is commonly used in clinical pathology 

where PFGE is used to distinguish virulent and avirulent Candida strains (Merz, 

1990). Furthermore, results of comparative PFGE and other electrophoretic 

separation studies have provided the basis for identification of taxon-specific fungal 

genes, examinations of fungal phylogeny, and resolution of taxonomic problems. For 

example, Russell and Mills (1993) were able to show by using CHEF PFGE that 

Tilletia contraversa, which causes common bunt on wheat, and T caries, which 

causes dwarf bunt on wheat (Triticum aestivum), have very similar karyotypic 

profiles. These data in addition to biochemical, physiologic and morphologic studies, 

suggest that these bunt pathogens are not different species but variants of a single 

species. The opposite case was argued for the closely related yeasts Kluyveromyces 

marxinanus var. marxianus and K m. var. lactis (Steensma et al., 1988), where the 

very dissimilar karyotypes were used as supporting evidence that these organisms are 

different species. A similar conclusion was drawn for the highly virulent and weakly 

virulent isolates of Leptosphaeria maculans, causal agent of blackleg on oilseed rape, 

where the dissimilar molecular karyotypes indicate that they are different species 

(Taylor et al., 1991). 
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It has been hypothesized that the variability in chromosome length and 

number is the norm for phytopathogenic fungi and could result from gross genome 

arrangements such as chromosome duplications, translocations deletions or insertions 

of nonessential sequences (Orbach et al., 1988; Mills and McCluskey, 1990). 

Evidence for duplication, deletion and insertion was obtained in Gibberella fujikuri 

(Xu et al., 1995) and Fusarium oxysporum (Boehm et al., 1994), while examples of 

translocations have been reported by Tzeng et al. (1992) in C. heterostrophus. 

Several other models have been proposed attempting to explain the occurrence of 

chromosome-length-polymorphism. Kistler and Miao (1992) suggested a "meiotic 

maintenance" hypothesis in which the extent of chromosomal polymorphism is 

inversely correlated to the frequency of meiosis. Repetitive DNA and tandem repeats 

are known to be involved in meiotic recombination and/or mitotic instability and have 

been proven to be useful for genetic mapping and DNA fingerprinting strains ( Kim et 

al., 1995, Daboussi and Langin, 1994; Goodwin et al., 1992; Kistler et al., 1991; 

McDonald and Martinez, 1991; Milgroom et al., 1992; Rodriguez and Yoder, 1991). 

In some species such as Cladosporium (McHale et al., 1992), Fulvia (McHale et al., 

1989), Fusarium (Daboussi et al., 1992; Julien et al., 1992), Magnaporthe (Dobinson 

et al., 1992), Neurospora (Kinsey and Helber, 1989), Saccharomyces (Boeke, 1989) 

and Schizosaccharomyces (Levin et al., 1990), these repeated DNA sequences have 

been identified as transposable elements, while in other speccies ribosomal RNA 

genes (rDNA) represent tandem repeats that can be present in multiple copies (Russell 

and Rodland, 1986). 
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Other factors that have been proposed to explain polymorphism in 

chromosome number (aneuploidy) are dispensable chromosomes (also known as B 

chromosomes) which often display non-Mendelian patterns of inheritance. Such 

supernumerary chromosomes have been reported in Cochliobolus heterostrophus 

(Tzeng et al., 1992), Colletotrichum gloesporiodes (Masel et al., 1993) and 

Magnaporthe grisea (Valent and Chumely, 1991), but only the pathogen Nectria 

haematococca is known to carry a pathogenicity gene on such a chromosome ( Miao 

et al., 1991). 

Although, aneuploidy and chromosome-length-polymorphism are common 

features of many fungal electrophoretic karyotypes, very little is known about the 

mechanism responsible for these events and their impact on pathogenicity. It is, 

however, hypothesized that the observed genomic plasticity of these fungi contributes 

to the ability of many pathogens to adapt to new and more challenging environments. 

Mating, sexuality and fungal dimorphism 

Many fungi are able to change morphology in response to mating 

interactions or environmental conditions. The ability to switch between two 

phenotypes appears to be prevalent among numerous zoo- and phytopathogenic fungi 

and has been postulated to contribute to pathogenicity and/or virulence (Scherer and 

Magee, 1990) 

The term dimorphism was first used in medical mycology to specify 

phenotypic duality of form in which a fungus exhibits distinct saprophytic and 
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parasitic phases (Ainsworth, 1955). The term was utilized in a manner that implied 

that the saprophytic phase is hyphal whereas the parasitic phase is a yeast (Scherr and 

Weaver, 1953). However, fungal species such as Mucor and Ustilago have 

saprophytic yeast phases and parasitic filamentous phases, and the term dimorphism 

is, currently, used solely to describe alternate growth morphologies. Furthermore, the 

word "dimorphism" evokes the existence of two exclusive states. This is not exactly 

the case, because virtually all dimorphic fungi have more than two different cell types 

(San -Bias and San-Blas, 1983 ). For example, three cell types have been observed in 

the life cycles of the smut fungi: yeast-like haploid cells, dikaryotic cells resulting 

from mating between haploid cells and diploid teliospores formed by sporulation of 

the dikaryon within the plant (Day and Anagnostakis, 1971). 

In U hordei, as well as in many other smut fungi, the switch from the 

sporidial to the filamentous phenotype is primarily induced through mating 

interactions. U hordei possesses a bipolar mating system in which a single mating-

type locus with two alternate forms, MAT-1 and MAT-2 (also known as a and A) 

controls dikaryon formation (Thomas, 1991). Other smut fungi have a tetrapolar 

mating system in which two different, unlinked genetic loci are involved in 

establishing the infectious dikaryon. The tetrapolar mating system of U maydis, the 

causal agent of corn (Zea mays) smut, has been studied in detail, and haploid cell 

fusion in this pathogen is controlled by the mating-type locus a (or MAT), which has 

two alternative forms al and a2. The al and a2 sequences have recently been shown 

to be idiomorphs (Froeliger and Leong, 1991) and sequence analysis suggests that 

they encode pheromones and pheromones receptors (Bolker et al., 1992). The b 
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locus, which appears to control the establishment of the infectious dikaryon, has 25 

different known forms and encodes at least two products, bE and bW. It is believed 

that the interaction of the bE product from one form of the b locus with the bW 

product from another produces a novel regulatory protein that causes dikaryon 

formation (Gillisen et al., 1992). The alignment of the predicted amino-acid 

sequences of several alleles of the bE and bW genes revealed that each contains a 

variable N-terminal domain, a central homeodomain-like motif and a conserved C-

terminal region (Kronstad and Leong, 1990; Schultz et al., 1990; Gillissen et al., 

1992). Recently, a 30-48 amino-acid region has been identified in the variable region 

of the bE gene, which is believed to determine the specificiyt of interaction between 

the bE and bW gene products (Yee and Kronstad, 1993). In addition, hybridization 

studies with the cloned a and b sequences of U maydis revealed that these genes are 

not only present in other tetrapolar Ustilago species, but also in smut fungi with a 

bipolar mating system ( Bakkeren et al. 1992). The mating type gene of U hordei was 

cloned by homology with the b locus of U maydis (Bakkeren and Kronstad, 1994) 

and molecular analyses revealed that smut fungi with a bipolar mating systems, do 

indeed have b genes. Experiments, in which U hordei b alleles were introduced into 

U maydis and vice versa, yielded pathogenic transformants capable of producing the 

filamentous dikaryon, indicating that the sequences between these two smut fungi are 

functionally conserved. It is hypothesized that the b locus has not been genetically 

defined in the smut fungi with a bipolar mating type system, because the b sequences 

are too closely linked to the genetically defined MAT locus, in order to be 

distinguished. 
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The dimorphic switch is also known to be induced by cultural and 

environmental conditions. This type of dimorphic switch has been well studied and 

documented in a variety of fungi. Most studies of fungal morphogenesis have dealt 

with the biochemical changes that occur during the dimorphic switch and various 

factors have been studied such as respiratory activity, carbon and nitrogen 

metabolism, intracellular levels of cyclic nucleotides and polyamine levels. Fungal 

morphology also appears to depend on a complicated set of environmental factors. 

Among these are temperature, pH, nutrients availability, oxidation-reduction 

potential, serum factors, and cell interactions. However, the understanding of the 

phenomena that underline dimorphism is not clear and the identification of genes 

involved in the regulation of morphological transition has been hampered by the lack 

of morphological mutants with a well-defined background. 

Dimorphism and cyclic AMP 

Cyclic AMP (cAMP), a cyclic nucleotide, is thought to play a central role in 

the control of cellular processes. Evidence has been obtained which links cAMP to 

the control of a variety of functions in fungi, including utilization of endogenous and 

exogenous carbon sources, conidiation (Rosenberg and Pall, 1979), changes of 

enzyme activities (Herman et al., 1990; Terenzi et al., 1992), altered colony 

morphology (Robson et al., 1991; Pereyra et al., 1992), restricted growth of mycelia 

(Yarden et al., 1992), appressorium formation (Lee and Dean, 1993), dimorphism, 

and prototropism (Orlowski, 1981). In almost all cases studied, the action of this 

small molecule is confined to the intracellular space, where it functions as a 
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secondary messenger to signals that are received at the cell surface (San Blas and San 

Blas, 1993). However, cAMP can also play a role in intercellular communication 

acting as a primary messenger. This function is well established in the differentiation 

process of the slime mold Dictyostelium discoideum 

The involvement of cAMP in dimorphism has been explored in various 

fungi and several lines of evidence indicate that intracellular levels of cAMP are 

correlated with morphology (Orlowski, 1981). Larsen and Sypherd (1974) as well as 

Paveto et al. (1975) showed that high intracellular levels are associated with yeast-

like cells while low levels are characteristic of hyphal cells. The opposite has been 

observed in Histoplasma capsulatum, the causative agent of human histoplasmosis, 

where the intracellular level of cAMP is about five times higher in the mycelial phase 

than in the yeast phase (Maresca et al., 1977; Medoff et al., 1980). In related studies, 

cAMP levels have been reported to increase during germ tube formation and 

subsequent hyphal development in the pathogenic fungi H capsulatum (Maresca et 

al., 1977; Medoff et al., 1980), C. albicans (Niimi et al. 1980) and Blastomyces 

dermatidis, the causal agent of Gilchrist's disease (blastomycosis) (Paris and 

Garrison, 1983). However, in other studies, an increase in cAMP levels during 

sporangiospore germination followed by a decline to very low levels when germ tubes 

emerge, has been documented in M rouxii and M racemosus (Paznokas and Sypherd, 

1975; Paveto et al. 1975). In similar studies, Orlowski (1980) reported that 

exogenous cAMP levels in M racemosus prevents the germination of 

sporiangiospores, but not the swelling of spores. 
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It has been hypothesized that the fluctuating intracellular levels of cAMP 

levels are due to the activation or inactivation of adenylate cyclase rather than 

phosphodiesterase, and mutations in the adenylate cyclase gene produce a variety of 

phenotypes in fungi. For example, mutations in the CYR1 gene of S. cerevisiae 

causes cells to arrest in the G1 phase of the cell cycle and exogenous cAMP restores 

growth (Casperson et al., 1985; Kataoka et al., 1985; Ishikawa et al., 1988). 

Disruption in the gene encoding adenylate cyclase in Schizosaccharomyces pombe 

results in a reduced growth rate, compared with wild type cells, and a tendency to 

enter the sexual reproduction pathway in rich medium (Maeda et al., 1990). In N. 

crassa mutants in the cr-1 allele form small compact colonies that lack extensive 

hyphal development and display short aerial hyphae with tight clusters of dense 

conidia. Growth in the presence of cAMP restores colony morphology more like that 

of the wild type. 

Recently, various mutants displaying a constitutively filamentous phenotype 

were described in U maydis (Barret et al., 1993). One of those mutants uacl 

(formerly called reml) is defective in the adenylate cyclase gene and has a non-

pathogenic phenotype. Subsequent work identified other morphological mutants such 

as ubcl, which encodes for the regulatory subunit of cAMP-dependent protein kinase 

and results in attenuated filamentous growth that normally occurs in response to 

mating and exposure to air ( Gold et al., 1994). 

In U. hordei a similar, filamentous mutant fill -/ was identified after heat 

shock treatment (McCluskey et al., 1994). CHEF PFGE analysis revealed that the 

mutant strainfill -/ has suffered a 50 kb deletion in a 940 kb chromosome. In a cross 
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of wild type (sporidial) X mutant (filamentous), the progeny of the six ordered tetrads 

segregated 2:2 for the mutant and wild type phenotypes and the deleted form of the 

940 kb chromosome was consistently associated with the fill mutation. Genetic and 

physical analyses place the Fill locus and the deletion near one arm of the 940 kb 

chromosome. 

General goals of the present study 

Variation in chromosome length and number have been detected by CHEF 

PFGE in the strains representing the 14 races of U hordei (McCluskey and Mills, 

1990). To gain a better understanding of the biological significance of chromosomal 

polymorphism, this study was undertaken to examine karyotypic variation in more 

detail in U hordei by 1) ascertaining the chromosome number for each race and 2) by 

establishing linkage groups among the 14 races. 

The second objective of the present study was to investigate the molecular 

and genetic basis of dimorphism in U hordei. It is anticipated that an understanding 

of the factors and signals leading to the dimorphic switch will provide insight into 

fungal pathogenesis on plants and into the regulation and mechanisms of dimorphic 

growth in fungi. 
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Abstract 

Variation in chromosome number and length has been detected by contour-

clamped homogenous electric field (CHEF) pulsed-field gel electrophoresis (PFGE) in 

strains representing the fourteen races of Ustilago hordei, a fungus causing covered smut 

on barley (Hordeum vulgare). Our objective was to determine the exact chromosome 

number for each race and to ascertain using two approaches whether some strains are 

aneuploid. Chromosome-specific libraries were constructed, and three single-copy probes 

from each library were hybridized onto Southern blots of CHEF gels containing 

chromosomes from strains of the 14 races. The homologous chromosomes identified 

were typically monosomic with length polymorphisms ranging to 100 kilobase (kb), but 

cases of disomy were also observed in some strains. The second method involved a 

telomere-specific repeat from Fusarium oxysporum, which was used as a hybridization 

probe onto Southern blots of restriction digests of individual chromosomes. Using this 

technique, 19 to 23 chromosomes were detected in 14 to 19 chromosome bands 

visualized by CHEF PFGE analysis in the strains representing the 14 races. The 

telomere-specific probe also generated specific restriction fragment length polymorphism 

(RFLP) patterns for each chromosome and allowed comparisons of homologous 

chromosomes. Twelve races of U hordei showed a unique RFLP pattern for each of its 

chromosomes except for strains representing race 10 and 13. These strains have identical 

karyotypes and no RFLP differences. 

Key words: electrophoretic karyotype, phytopathogen, chromosome polymorphism 
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INTRODUCTION  

Fungal phytopathogens adapt rapidly to the introduction of resistant host 

genotypes in the field by producing new virulent races and pathotypes. These adaptations 

may be due to altered or lost genes that condition recognition by the plant's sensor system 

such as avirulence genes, or new virulence might be gained by acquiring host-defense 

suppressing genes, which enable pathogens to infect newly deployed resistant host 

genotypes. At present little is known about the mechanisms which generate genetic 

variation in the genome of fungal pathogens. Some mechanisms which have been 

proposed to mediate pathogen evolution are sexual and parasexual recombination, gene 

mutations, transposons and chromosomal rearrangements, such as duplications, deletions 

and translocations (Mills and McCluskey, 1990; Kistler and Miao, 1992; Masel et al., 

1993). Elucidating the molecular mechanisms that determinine genetic variation in 

pathogenic fungi would allow a better understanding of host-pathogen interactions. 

The fungus Ustilago hordei causes covered smut on barley and is an attractive 

model system for host-pathogen interactions because of its race structure, small genome 

size, short generation time, large progeny and economic significance. It has been the 

subject of investigation regarding its genetic elements which determine pathogenicity and 

compatible/incompatible host-pathogen interactions since 1924 (Faris), but karyotypic 

studies at the molecular level were difficult because of the small size of its chromosomes. 

Recent developments in pulsed-field gel electrophoresis (PFGE) have made it possible to 

separate chromosomal DNAs by size in agarose gels, and in combination with Southern 

Hybridization of various cloned genes. Electrophoretic karyotypes (EK) of organisms 

which were not amenable to molecular genetic analyses (Schwartz and Cantor, 1984; 

Carle and Olson, 1985) Using the contour-clamped homogenous electric field (CHEF) 

technique (Chu et al., 1986), McCluskey and Mills (1990) were able to compare the 
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electrophoretic banding patterns of different strains representing the 14 races of U 
hordei. 

McCluskey and Mills (1990) showed that each race had a unique karyotype and 

that these strains varied considerably in both the numbers and the sizes of bands that 

could be resolved. While karyotypic differences between various strains were apparent, it 

was not obvious what similarities existed and how many chromosomes were present in 

each race. To address this question, McCluskey et al. (1994) attempted to identify 

linkage groups in PFGE-separated chromosomes among the 14 races with random and 

chromosome-specific probes. The hybridization data, however, were limited because not 

enough probes were used. Insufficient information was generated to suggest the 

mechanisms by which the karyotype variation might have arisen. 

To investigate whether gross genome rearrangements, such as duplications, 

deletions, insertions or translocations contribute to karyotypic polymorphism, linkage 

groups were established with chromosome-specific DNA probes of blots containing 

strains representing the 14 races of U hordei. To establish the basic haploid chromosome 

number and to ascertain the number of linkage groups, a telomere-specific repeat from 

Fusarium oxysporum was used as a probe and hybridized onto Southern-blotted 

restriction digests of individual chromosomes. In this paper, a detailed and comparative 

study of the electrophoretic karyotype of the strains representing the 14 races of U hordei 

is reported and mechanisms believed to cause karyotypic variability in fungi are 

discussed. 



33 

Materials and Methods 

Strains and culture conditions. 

The strains representing 14 physiologic races of U hordei and the culture 

conditions have been previously described (McCluskey and Mills, 1990). 

Saccaromyces cerevisiae, Schizosaccharomyces pombe and Hansenula wingei 

chromosomes were used for size markers and were purchased from Bio-Rad (Richmond, 

Ca). 

Plasmids and source of DNA probes. 

Chromosome-specific DNA was cloned into the high-copy cloning vector pUC19 

(Yanich-Perron et al., 1985) and the inserts used as probes are listed in table II. 1. 

Transformation of plasmid DNA into E. coli DH5a and plasmid extraction were done 

following standard procedures (Maniatis et al., 1982) 

Pulsed-field gel electrophoresis. 

DNA samples were prepared by embedding U hordei cells in agarose plugs as 

previously described (McCluskey and Mills, 1990). CHEF PFGE electrophoresis was 

performed with the CHEF-DR II apparatus (Bio-Rad) and chromosomal bands in the 100 

to 1,500 kilobase (kb) range were separated as reported by McCluskey and Mills (1990). 

The resolution of bands in the 1,500-3,500 kb range was achieved by running a 1% 

agarose ( Sigma type II, medium EEO) gel at 100 C in 0.5X TBE (Maniatis et al. 1982) 

for 96 h at 75 V with a pulse time of 3600 s, followed by a ramped switching interval of 

480 to 900 s for an additional 72 h. 
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Table II.1. Strains and plasmids 

Strain or plasmid Relevant characteristics Source or reference 

Escherichia coli DH5a F080d1acZAM15A(/acZYA-argF) Focus 8(2):9 (1986)a 

pUC19 Apr cloning and sequencing vector Yanich-Perron et al. 

1985 

pBH100 1.5 kb U hordei BamHI fragment from Bakkeren and 

mating type gene bE. Kronstad, 1993 

pNLA17 [TTAGGG]18 telomere repeat from Powell and Kistler 

Fusarium oxysporum cloned into pUC119 1990 

pOSU220-1 0.4 kb U hordei BamHI fragment in pUC18 This study 

pOSU220-2 1.2 kb U hordei BamHI fragment in pUC18 This study 

pOSU220-3 2.4 kb U hordei BamHI fragment in pUC18 This study 

pOSU460-1 0.9 kb U hordei BamHI fragment in pUC18 This study 

pOSU460-2 3.1 kb U hordei BamHI fragment in pUC18 This study 

pOSU460-3 0.3 kb U hordei BamHI fragment in pUC18 This study 

pOSU570-1 0.6 kb U hordei BamHI fragment in pUC18 This study 

pOSU570-2 0.8 kb U hordei BamHI fragment in pUC18 This study 

pOSU570-3 0.4 kb U. hordei BamHI fragment in pUC18 This study 

pOSU650-1 2.1 kb U hordei BamHI fragment in pUC18 This study 

pOSU650-2 1.0 kb U hordei BamHI fragment in pUC18 This study 

pOSU650-3 0.8 kb U hordei BamHI fragment in pUC18 This study 

pOSU700-1 0.6 kb U hordei BamHI fragment in pUC18 This study 

pOSU700-2 1.0 kb U hordei BamHI fragment in pUC18 This study 

pOSU700-3 3.2 kb U hordei BamHI fragment in pUC18 This study 
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Table 11.1 (continued) 

pOSU700-4  

pOSU700-5  

pOSU700-6  

pOSU760-1  

pOSU760-2  

pOSU760-3  

pOSU760-4  

pOSU760-5  

pOSU760-6  

pOSU760-7  

pOSU760-8  

pOSU760-9  

pOSU940-1  

pOSU940-2  

pOSU940-3  

pOSU940-4  

pOSU940-5  

pOSU940-6  

pOSU960-1  

pOSU960-2  

pOSU960-3  

pOSU960-4  

pOSU960-5  

pOSU960-6  

2.1 kb U hordei BamHI fragment in pUC18 

0.4 kb U hordei BamHI fragment in pUC18 

0.7 kb U. hordei BamHI fragment in pUC18 

1.9 kb U hordei BamHI fragment in pUC18 

1.5 kb U hordei BamHI fragment in pUC18 

0.5 kb U hordei BamHI fragment in pUC18 

0.5 kb U hordei BamHI fragment in pUC18 

1.5 kb U. hordei BamHI fragment in pUC18 

1.8 kb U hordei BamHI fragment in pUC18 

4.1 kb U hordei BamHI fragment in pUC18 

3.7 kb U hordei BamHI fragment in pUC18 

0.5 kb U hordei BamHI fragment in pUC18 

1.0 kb U hordei BamHI fragment in pUC18 

1.9 kb U hordei BamHI fragment in pUC18 

3.0 kb U hordei BamHI fragment in pUC 18 

3.3 kb U hordei BamHI fragment in pUC18 

0.9 kb U hordei BamHI fragment in pUC18 

2.3 kb U hordei BamHI fragment in pUC18 

2.7 kb U hordei BamHI fragment in pUC18 

1.8 kb U hordei BamHI fragment in pUC18 

1.7 kb U hordei BamHI fragment in pUC18 

1.3 kb U hordei BamHI fragment in pUC18 

4.2 kb U hordei BamHI fragment in pUC18 

6.1 kb U hordei BamHI fragment in pUC18 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

This study 
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Table II.1 (continued) 

pOSU960-7 0.7 kb U hordei BamHI fragment in pUC18 This study 

pOSU960-8 0.5 kb U hordei BamHI fragment in pUC18 This study 

pOSU960-9 3.3 kb U hordei BamHI fragment in pUC18 This study 

pOSU1100-1 0.3 kb U hordei BamHI fragment in pUC18 This study 

pOSU1100-2 2.2 kb U hordei BamHI fragment in pUC18 This study 

pOSU1100-3 0.7 kb U. hordei BamHI fragment in pUC18 This study 

pOSU1190-1 0.5 kb U hordei BamHI fragment in pUC18 This study 

pOSU1190-2 3.2 kb U hordei BamHI fragment in pUC18 This study 

pOSU1190-3 4.5 kb U hordei BamHI fragment in pUC18 This study 

pOSU1290-1 0.8 kb U hordei BamHI fragment in pUC18 This study 

pOSU1290-2 1.1 kb U hordei BamHI fragment in pUC18 This study 

pOSU1290-3 0.4 kb U hordei BamHI fragment in pUC18 This study 

pOSU2200-1 1.5 kb U hordei BamHI fragment in pUC18 This study 

pOSU2200-2 3.0 kb U hordei BamHI fragment in pUC18 This study 

pOSU2200-3 0.5 kb U hordei BamHI fragment in pUC18 This study 

pOSU2500-1 2.3 kb U hordei BamHI fragment in pUC18 This study 

pOSU2500-2 1.0 kb U. hordei BamHI fragment in pUC18 This study 

pOSU2500-3 3.0 kb U hordei BamHI fragment in pUC18 This study 

pOSU2830-1 4.1 kb U hordei BamHI fragment in pUC18 This study 

pOSU2830-2 2.3 kb U hordei BamHI fragment in pUC18 This study 

pOSU2830-3 0.2 kb U hordei BamHI fragment in pUC18 This study 

'Published by Bethesda Research Labs., Gaithersburg, MD 

Apr: ampicillin resistance 
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Ba131 digest 

Ba131 nuclease (New England Biolabs, Beverly, MA) digests were performed in 

200mM Tris pH 8.0, 120 mM CaC12, 120 mM MgC12 and 6M NaCl. Twenty units of 

enzymes were added to 10 [ig DNA in a 200 ill starting volume. Aliquots were 

withdrawn at 5-min intervals. Ba131 was inhibited with 20mM EGTA, followed by heat 

inactivation at 70° C for 10 min. The time points were digested with BamHI (Gibco BRL, 

Gaithersburg, MD) after the buffer had been adjusted according to the manufacturer's 

directions. 

Isolation of chromosome-specific probes and Southern hybridizations. 

Chromosome-specific DNA for chromosome-specific libraries and for telomere 

analysis was isolated from CHEF PFGE gels as described by Mills et al. (1995). 

Agarose gels to be blotted were denatured in a 0.4 N NaOH solution for 15 min and the 

DNA was transferred onto Zeta-ProbeR GT nylon membrane (Bio-Rad) by capillary 

action (Southern, 1975). 

DNA was radiolabelled with 32P by means of a random priming kit (Pharmacia 

Biotech, Piscataway, NJ). Hybridizations and washes were done in a Robbins Scientific 

Hybridization Oven (Robbins Scientific Corporation, Sunnyvale, Ca). Blots were 

hybridized for 10 min in 7% SDS , 250 mM Na2P0, pH 7.2 prior to adding the probe, and 

then hybridized for 8 h. High-stringency conditions were used with final washes at 65° C 

with 5% SDS, 20mM Na2PO4 for one hour, followed by a second wash with 1% SDS, 

Na2PO4 for another hour. Membranes were exposed to Kodak X-Omat AR film for 4-48 h 

at -70° C. 
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Results 

Electrophoretic karyotypes of U hordei 

McCluskey and Mills (1990) established the electrophoretic karyotypes of the 

strains representing the 14 races of U hordei. We attempted to optimize the separation of 

chromosome bands larger than 2,000 kb by changing the pulsed-field gel electrophoresis 

conditions (Fig. II.1). The new parameters are described in the Materials and Methods 

and the size estimations of the chromosome bands are given in Table. II.2. The size of 

each band was calculated with the computer program Cricket Graph (Cricket Graphics, 

Inc., Philadelphia, PA). S. cerevisiae, S. pombe and H wingei chromosomes were used 

as size standards. 

Although the same parameters for the separation of chromosome bands smaller 

than 2,000 kb were used, the number of chromosome-sized bands resolved by PFGE 

slightly differed from those reported by McCluskey and Mills (1990). For example, 

McCluskey and Mills (1990) report 18 chromosome bands for race 12, while our PFGE 

gels show only 14 chromosome bands. The contrasting results from these two 

investigations most probably reflect the difference in interpretation of data. In some 

instances for example, chromosome bands that are broad and wide can either be 

interpreted as one big chromosome band or as a multiple of smaller chromosome bands 

migrating close by. One objective of this study was to determine the chromosome 

number contained in each chromosome band using a telomere-specific probe. To 

facilitate these studies and to avoid confusion, each clearly resolved chromosome band by 

CHEF PFGE was counted as one, regardless its width or broadness. 

Establishment of the basic haploid chromosome number in U hordei. 

The number of chromosomes contained within a band separated by CHEF PFGE 

was determined by hybridization of a telomere-specific repeat from F. oxysporum onto a 
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Strains representing races: 

1.3 2.1 3.1 4.1 5.1 H. wingei 

FigureII.1. CHEF PFGE resolution of large chromosome-sized DNA molecules of 
Ustilago hordei strains representing races 1-5. H. wingei, S. cerevisae and S. 
pombe (not shown) chromosomes were used as standards. Conditions of 
electrophoresis: 1% agarose gel at 10° C in 0.5X TBE for 96 h at 75 V with a 
pulse time of 3600 s, followed by a ramped switching interval of 480 to 900 s 
for an additional 72 h. 
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Table 112. Estimates (kb) of large chromosome-sized DNAs from the strains representing 
the 14 races of Ustilago hordei as determined by CHEF PFGE analysis 

Strains 1.3 2.1 3.1 4.1 5.1 6.1 7.1 8.1 9.1 10.1 11.1 12.1 13.1 14.1 

2830'1 2830, 2830, 2830, 2830, 2830, 2830, 2830, 2830, 2830, 2830, 2830, 2830, 2830, 

2500, 2500, 2500, 2500, 2500, 2500, 2500, 2500, 2500, 2500, 2500, 2500, 2500, 2500, 

2200, 2200, 2250, 2200, 2200, 2200, 2200, 2200, 2200, 2200, 2200, 2200, 2200, 2200, 

1290, 1290, 2100, 13101 1290, 1600, 2100, 1900, 2110, 19001 1900, 1900, 1900, 1900, 

11902 11903 1260, 1230, 12002 1300, 1290, 1260, 1260, 1260, 1280, 1260, 1260, 1260, 

11001 1100, 1210, 1190, 1040, 12102 12302 1150, 11802 1210, 11803 11502 1210, 11702 

1050, 9603 1200, 11401 10003 1160, 1140, 1090, 11001 1150, 1130, 1075, 1150, 11001 

910, 9402 1150, 1060, 950, 1060, 9753 1040, 9803 1100, 1075, 10202 1100, 10402 

9002 7603 1025, 1040, 910, 9902 9002 9802 8502 10501 9702 8903 1050, 9203 

840, 7002 975, 9402 8002 9603 8502 9203 780, 940, 920, 7602 940, 830, 

7702 650, 9402 860, 7002 875, 8002 8502 7201 8903 830, 7203 8903 7602 

7002 570, 890, 7903 650, 8103 7102 7202 6202 7352 7703 6402 7352 7202 

570, 460, 840, 7202 585, 700, 6502 6502 470, 7103 7002 490, 7103 630, 

430, 220, 7203 650, 500, 610, 510, 590, 200, 640, 630, 190, 640, 590, 

170, 6202 585, 245, 510, 245, 450, 590, 580, 590, 460, 

450, 460, 245, 220, 450, 460, 450, 190, 

220, 210, 170, 200, 1701 

b 15 14 17 17 15 16 15 16 14 17 17 14 17 16 

19 21 2I 21 20 23 23 22 21 22 23 22 22 22 

E° 20.11 22.64 25.44 24.80 22.10 26.79 26.02 24.37 23.84 24.26 26.85 24.42 24.26 24.63 

number in subscript represent the number of chromosomes identified in each 
chromosome band by the telomere-specific probe 
'bands sizes are expressed in kilobase pairs (kb) 
bestimated number of chromosome band resolved by CHEF PFGE in each strain 
`number of chromosomes detected by the telomere-specific repeat in each chromosome 

band 
destimated genome size (in MB) for each strain 
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Southern blot of restriction digests of individual bands. Telomeric sequences are known 

to exist at the termini of each chromosome and two telomere restriction fragments from 

each chromosome were expected to hybridize to the probe. A multiple of two restriction 

fragments hybridized with the probe when two or more chromosomes were present in a 

band (Fig. 11.2). The number of chromosomes contained within a band was therefore 

estimated to equal half the number of restriction fragments detected. 

The telomere-specific probe detected between 19 to 23 chromosomes in the 

strains representing the 14 races of U hordei (Table 11.3). The majority of the 

chromosome bands contained single chromosomes, but cases of bands containing two to 

three chromosomes also were observed. The total genome size of U hordei was 

estimated on the basis of the sizes of the chromosomal bands and the number of 

chromosomes detected by the telomere-specific probe. Strain 1.3 was found to have the 

smallest DNA content with 20.11 megabases (mb) and 19 chromosomes, whereas strain 

6.1 had the highest DNA content with 26.79 mb and 23 chromosomes. 

The telomere-specific probe also generated specific restriction-fragment length 

polymorphism (RFLP) patterns for each chromosome and allowed comparison of 

homologous chromosome. Twelve of the 14 races of U hordei showed a unique RFLP 

pattern for each of its chromosomes. Strains representing races 10 and 13 had identical 

karyotypes and no RFLP differences (data not shown). 

Because additional telomeric repeats near the centromere have been identified in 

tomato (Ganal et al., 1991) and maize (Burr et al., 1992), it was important to verify if 

such additional sequences exist in the U hordei genome. Their presence would lead to 

an overestimation of the chromosome number. Total genomic DNA was digested with 

the exonuclease Ba131, which degrades both 3' and 5' termini of double stranded DNA. 

Subsequent complete digestion by BamHl produced fragments for Southern analysis with 

the telomeric repeat. After one minute of Ba131 treatment, no telomeric repeat was 
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Lanes: 1 2 3 4 5 6 7 8 

Figure 11.2. Southern hybridization of a telomere-specific probe to determine the 
chromosome number in individual chromosome bands of Ustilago hordei. 
U hordei chromosomes resolved by CHEF PFGE were excised, digested 
with BamHI, Southern-blotted and probed with a telomere-specific repeat 
(TTAGGG)18 from Fusarium oxysporum. 
Lanes 1-8 contain chromosome bands IV-XI from a strain representing race 
2.1. Most bands contain more than one chromosome. Note that 

contaminating chromosomal DNA is present in several lanes. 
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Table 11.3. Chromosome number and genome size of the strains representing the 14 races 
of Ustilago hordei 

U hordei Number of chromosome Chromosome number Estimated genome 
strain bands resolved by PFGE detected by the size ( in MB) a 

telomere probe 

1.3 15 19 20.11 

2.1 14 21 22.64 

3.1 17 21 25.44 

4.1 17 21 24.80 

5.1 15 20 22.10 

6.1 16 23 26.79 

7.1 15 23 26.02 

8.1 16 23 24.37 

9.1 14 21 23.84 

10.1 17 23 24.26 

11.1 17 21 25.73 

12.1 14 22 24.42 

13.1 17 23 24.26 

14.1 16 22 24.63 

Average 16.07 21.64 24.32 

agenome size was estimated based on the number of chromosomes detected by the 
telomere-specific probe and the size of each chromosome band 
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detected, whereas a fragment that hybridized with a random probe showed no alteration 

(Fig. 11.3). These results indicate that the fragments identified by the telomere-specific 

probe are not present within any BamHI fragments, but are solely present at the termini of 

U. hordei chromosomes. 

Assignment of chromosome-specific probes to resolved chromosomes 

The karyotypes of the strains representing the 14 races of U hordei described by 

McCluskey and Mills (1990) showed polymorphism in chromosome length and number. 

To correlate ethidium bromide stained bands with homologous pairs and to compare the 

genomic organization of the 14 U hordei strains, pulsed-field gels were probed with 

cloned DNA sequences in order to allocate them to chromosomal bands. Three 

chromosome-specific, non homologous DNA clones were hybridized to CHEF blots. 

The chromosome bands of strain 2.1 chromosome bands were used as source for 

chromosome specific libraries, because it was believed to be the most representative 

strain with the haploid complement of chromosomes for U hordei (McCluskey and 

Mills, 1990). The chromosome-specific libraries yielded single-copy fragments and a 

moderate amount of repetitive DNA. The frequency, however, of repetitive DNA 

fragments increased dramatically when the chromosome-specific library of the smallest 

chromosome was screened, and no single-copy fragment was recovered from this library. 

Typical results of the probing data are shown in Fig.I1.4 and a summary of all 

hybridization data and the chromosome assignments are shown in Fig.II.5. The 

hybridization profiles revealed that homologous chromosomes, identified by the 

chromosome-specific probes, were typically monosomic and similar or identical in size. 

Indeed, with the exception of the rDNA probe which depicted 38 percent variability in 14 

strains (McCluskey and Mills,1990) the maximum chromosome length polymorphism 

observed in the 14 strains of U hordei, did not exceed 100 kb, and represent less then 15 

percent variability. However, for several probes, such as pOSU570-3 and pBH100, a 
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Strains representing races: 

1.3	 2.1 3.1 4 .1 5.1 6 .1 7.1 8.1 9.1 10.1 11.1 12.1 13.1 14.1 

at A* let* 

Figure 11.4 A Southern blot of CHEF PFGE-fractionated DNA molecules of 
Ustilago hordei probed with a 0.4 kb BamHI fragment (pOSU700-5). 
Lanes 1 through 14 contain the chromosomal DNA from the strains 
representing the 14 races of U hordei 
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Figure 11.5. Assignment of DNA fragments and heterologous genes to linkage  
groups of Ustilago hordei.  

Strains representing races: 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 
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plasmid containing the mating type gene from U maydis, no polymorphism was observed 

and the probes hybridized to the third largest chromosome in all races, respectively. 

Southern analysis of CHEF blots also revealed that chromosomes of identical size are not 

necessary homologs. For example, pOSU960-2 identified a 1,100 sized chromosome 

band in racesl, 2, 8 and 14. In race 9, however, the same probe hybridized to a 1,180 kb 

chromosome band, although a 1,100 kb band was present in that same strain which does 

not hybridize with pOSU960-2. These results show that chromosome length 

polymorphism can change the relative position of some putative chromosomes in the 

CHEF gel with respect to other non homologous chromosomes of similar size. It is, 

however, important to note that the relative position of a chromosome compared to its 

homolog in another race, did not shift more than two positions above or below that 

homolog. 

Cases of putative disomy were also observed. Probes pOSU760-6, pOSU760-7 

pOSU790-8 hybridized to two chromosomes simultaneously in strains representing races 

4 and 5, while in the remaining strains they hybridized to a single chromosome band. 

These findings suggest that disomy may be one of the mechanism generating 

polymorphism in chromosome number. 

Discussion 

A telomere-specific probe from F. oxysporum was used to determine the haploid 

chromosome number for the strains representing the 14 races in U hordei. In each strain 

two, or a multiple of two, telomere fragments were detected for each chromosome band, 

confirming the hypothesis (Carle and Olsen, 1985; Morales et al. 1999; McCluskey and 

Mills, 1990) that chromosome bands separated by PFGE contain intact chromosomes. 
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Occasionally, chromosome bands of nearly identical size are impossible to excise 

without contamination from adjacent chromosome bands (Fig. 11.2). Frequently, faint 

bands of telomere-containing restriction fragments were detected from adjacent 

chromosomes (Fig. 11.2). Well resolved chromosome bands were required for application 

of this technique and care must be exercised when chromosome bands are extracted from 

PFGE gels, especially when other chromosome bands migrate nearby. To confirm 

chromosome numbers for each band, this probing procedure was repeated with at least 

three different restriction enzymes (eg. BamHI, Bg111, EcoRI). The number of fragments 

detected by the telomere-specific probe was identical regardless of the enzyme used to 

fractionate the chromosome-specific DNA, except when fragments co-migrate in the gel. 

The telomere-specific repeat also allowed the detection of previously unidentified 

chromosomes in U. hordei. For example, strain 2.1 was thought to have the smallest 

chromosome number with 15 bands resolved by CHEF PFGE, whereas strains 10.1 and 

11.1 were believed to have the largest chromosome number with 19 chromosomal bands 

resolved for each strain (McCluskey and Mills, 1990). However, using the telomere-

specific repeat as a probe, 6 additional chromosomes were detected in strain 2.1, while 6 

and 4 additional chromosomes were identified in races 10 and 11, bringing the 

chromosome number up to 21 and 23, respectively. This phenomenon was observed for 

all of the 14 strains. The number of chromosomes detected with the telomere-specific 

probe was six more than the number of bands per strain. Race 1 is currently considered 

to have the least number of chromosomes, while races 5, 6, 10 and 13 are considered to 

have the largest chromosome number. These results indicate that CHEF PFGE analysis 

alone cannot provide an accurate number of the haploid chromosome number and that 

additional analyses (e.g. probing with the telomere-specific probe) are needed to get a 

more accurate estimate of the actual chromosome number and genome size in U. hordei. 

This estimate is, however, constrained by the fact that not all the chromosomes are 

detected by the telomere-specific probe and should be treated as a minimum value 
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because additional chromosomes may be present in the U hordei genome. When more 

than one chromosome is contained in a chromosome band, the telomere-specific probe 

can only distinguish chromosomes with different-sized restriction fragments in size. 

Disomic chromosomes with identical telomere termini, or nonhomologous chromosomes 

with similar-sized telomere restriction-fragments will be recognized as only one, single 

chromosome. Therefore, the chromosome number, we detected by the telomere-specific 

repeat probably only represents a minimum value of the actual haploid chromosome 

number in U hordei. 

It has been reported that shortening or lengthening of telomeres occurs during 

development and aging in higher organisms (Cooke and Smith, 1986; Kipp ling and 

Cooke, 1990; Harley et al., 1990). In fungi, however, very little is known about telomere 

length variation during their life cycles. To investigate whether telomere length varies 

with age in U hordei, telomere RFLP patterns were compared from one day and three-

day old cultures. The telomere RFLP patterns obtained were identical for both ages (data 

not shown). These results support previous studies by D'Mello and Jazwinski (1991) 

who showed that in the yeast, S. cerevisae, no change in the length of the telomeres was 

observed in cells that had completed up to 83 percent of the mean life span. 

Variation in chromosome numbers and size has been reported for isolates of plant 

pathogenic fungi such as Gibberella fujikuroi (Xu et al., 1995), Fusarium oxysporum 

Esp. cubense (Boehm et al. 1994), Tilletia caries and T controversa (Russell and Mills, 

1993, 1994). In the rice blast fungus, Magnaporthe grisea electrophoretic karyotypes 

were reported to change after prolonged serial transfer in culture, without affecting the 

isolate's pathotype (Talbot et al., 1993). This was not observed for U hordei strains and 

karyotypic variability only has been reported for strains representing the 14 races 

(McCluskey and Mills, 1990). In many fungi, electrophoretic karyotype variation has 

shown to be linked to gross chromosomal rearrangements such as deletions (Masel et al. 

1993, Agnan and Mills, 1994), translocations (Tzeng et al. 1993; Trash-Bingham and 
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Gorman 1992), aneuploidy (Bakalinsky and Snow, 1990) and B chromosomes (Miao et 

al., 1991; Kistler and Benny, 1992). The significance of this variation in relation to 

pathogenic specialization is unclear but gross chromosomal changes is believed to be a 

possible mechanism in the adaptation of a fungal pathogen to its host in the field (Masel 

et al., 1993). 

Our goal in undertaking this study was to determine the extent of the karyotypic 

variability and the mechanisms leading to the polymorphism in chromosome length and 

number in the strains representing the 14 races of U hordei. Three random, 

chromosome-specific probes were used to detect homologous chromosomes and Southern 

blot analyses revealed that the homologs identified were typically monosomic with 

chromosome length polymorphism varying between 9 to 15 percent. These findings 

confirm other analyses of fungal chromosome-length polymorphism in which the 

variation in length never exceeded 15 percent. (McDonald and Martinez, 1990; Russell 

and Mills, 1993). It could be argued that three probes cannot represent an entire 

chromosome, and that the DNA molecules identified by these probes represent 

translocated or transposed segments on non-homologous chromosomes rather than 

homologous chromosomes. 

Although it is not known where the chromosome-specific probes map on a given 

chromosome, three nonhomologous probes were used to ensure that more than one region 

of a chromosome would be detected by these probes. Moreover, all translocations 

identified and reported in fungi involve at least 500 kb DNA segments (Talbot et al., 

1990 Tzeng et al., 1992; Trash-Bingham and Gorman, 1992), whereas the variability of 

the linkage groups in U. hordei did not exceed 100 kb and was consistent for all 

chromosomes analyzed. Although the probes cannot unequivocally exclude deletion of 

translocated chromosomes, any translocation that might be present involved 

chromosomes of nearly identical size in all strains. 



52 

For the majority of the chromosome bands studied, the number of chromosomes 

detected by the telomere-specific probe corroborated the number of linkage groups 

identified by the chromosome-specific probes. In some instances, however, the number 

of expected linkage groups based on the telomere-specific probe was not confirmed by 

the chromosome-specific probes. For example, in chromosome band 970 in race 2, three 

chromosomes were detected using the telomere-specific probe. However, when 

chromosome-specific DNA was used to probe the chromosomes, only two linkage groups 

were detected in that band, even though a total of 13 different probes from the 970 kb 

chromosome-specific library was used in this study. These results suggest at least two 

interpretations. It is possible that too few probes were used to distinguish multiple 

chromosomes contained within one chromosome band. Even though, 13 chromosome-

specific probes were used, it is not obvious to which chromosome these probes 

hybridized in the chromosome cluster. If the probes fortuitously hybridized only to two 

of the three chromosomes, additional probes would be required to elucidate the nature of 

the third chromosome. If, however, the 970 kb chromosome bands contains three 

chromosomes of which two are disomic, only two linkage groups would be detected, 

regardless of the number of probes used. Evidence for disomy was obtained in races 4 

and 5 and may indeed represent a mechanism for generating polymorphism in 

chromosome number (aneuploidy). Dispensable or B chromosomes were not detected in 

U hordei, but not all chromosomes have been accounted for when the chromosome-

specific probes were used (Fig. 11.5). Putative B chromosomes may also be present in 

some chromosome clusters. 

This investigation was the first extensive attempt to establish complete linkage 

groups of the genomes of the strains representing the 14 races of U hordei. Although, 

PFGE represents an important tool for resoling entire chromosomes, additional analyses 

are needed to obtain a better understanding of the fungal genome structure. With the 

telomeric-specific repeat, a better estimate of the haploid chromosome number was 
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obtained in U. hordei. Establishment of specific linkage groups in each strain allowed a 

better understanding of the extent of chromosome length polymorphism and aneuploidy. 

However, the mechanism responsible for generating chromosome-length polymorphism 

remains obscure and will require fine-structural physical mapping of chromosomes. 

Electrophoretic karyotypes, coupled with Southern analyses with telomere-specific and 

random probes present an attractive approach for studying fungal genomes, especially for 

fungal pathogens with limited numbers of chromosomes. 
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Abstract 

Ustilago hordei is the causal agent of covered smut on barley (Hordeum vulgare). 

This dimorphic fungus produces haploid cells that are yeast-like and nonpathogenic, 

while dikaryons produced upon mating of compatible strains are filamentous and 

pathogenic. A filamentous, haploid strain was isolated following heat shock treatment, 

and the mutation conferring this phenotype was designated fill. Pulsed field gel 

electrophoresis (PFGE) and restriction analyses revealed that the mutant strainfin-/ has 

a 50 kilobase (kb) deletion in a chromosome that was 940 kb in size. The present work 

examines the biochemical and genetical properties of the fill mutation. The mutant 

filamentous phenotype can be reversed to sporidial cell characteristic of wild type strains 

by addition of cyclic AMP to the growth medium. The same effect was observed with 

stimulators of adenylate cyclase, various analogs of cyclic AMP and inhibitors of cAMP 

phosphodiesterase. Furthermore, the levels of intracellular cyclic AMP were three-fold 

lower in mutant strains than in sporidia. These results suggest that cyclic AMP plays an 

important role in the regulation of dimorphic growth in U hordei, and molecular 

characterization of the fill mutation should contribute to a better understanding of the 

intracellular mechanisms and signal transduction pathways that control filamentous 

morphology and pathogenicity in U hordei. 

Key words: fungal dimorphism, signal transduction 
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Introdution 

While numerous fungi exhibit yeast-like or mycelial morphologies, some fungi 

have the ability to grow in either form, in response to mating interactions or 

environmental conditions. Dimorphism, or the capacity to switch between two 

phenotypes, appears to be prevalent among numerous zoo-and phytopathogenic fungi and 

has been postulated to contribute to pathogenicity and/or virulence (Scherer and Magee, 

1990). For example, it is known that the most severe mycososes in man are caused by 

dimorphic fungi, although it is not clear to what extent dimorphism contributes to 

pathogenicity (Cihlar, 1985). In many dimorphic fungi, such as the human pathogens 

Mucor racemosus, Histoplasma capsulatum and Candida albicans, the dimorphic switch 

is induced by cultural conditions (Herrera, 1985; Maresca et al.,1977; So 11, 1985). The 

morphology that persists depends on a complicated set of environmental factors. Among 

these are temperature, pH, available nutrients, oxidation-reduction potential, serum 

factors and cell interactions (San Blas and San Blas, 1983). 

In the basidiomycete Ustilago hordei Pers. (Lagerh.), the causal agent of the 

covered smut disease of barley (Hordeum vulgare L.), the switch from sporidial to 

filamentous phenotype is primarily induced through mating interactions. U. hordei is a 

heterothallic biotroph with a life cycle consisting of a saprophytic and a parasitic phase. 

The saprophytic phase is characterized by haploid, secondary sporidia derived from 

basidiospores, that are nonpathogenic, while the parasitic phase is characterized by 

dikaryotic infection hyphae produced upon mating of compatible haploid strains (Fischer 

and Holton, 1957). Dikaryon formation and the dimorphic switch are believed to be 
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controlled by the mating type genes (Kronstad et al., 1992). Little, however, is known 

about the signals regulating the dimorphic switch in fungi and a detailed understanding of 

the intracellular mechanism regulating filamentous morphology has been hampered by 

the lack of mutants in a defined genetically background (Szaniszlo, 1985) 

Recently, a constitutively filamentous mutant strain designated fill-/ of U 

hordei has been isolated following heat shock treatment (McCluskey et al., 1994; Agnan 

and Mills, 1994). Pulsed field gel electrophoresis (PFGE) analysis of the fill -1 mutant 

strain revealed a karyotype which contained an 890 kb chromosome derived from a 940 

kb chromosome by a 50 kb deletion. In a cross of wild type (sporidial) X mutant 

(filamentous), the progeny of six ordered tetrads segregated 2:2 for the mutant and wild 

type phenotypes and the deleted form of the 940 kb chromosome was consistently 

associated with the fill mutation. 

The present study investigates the genetical and biochemical properties of the fill 

mutation. It has been demonstrated that the intracellular levels of cyclic 3',5' adenosine 

monophosphate (cyclic AMP) are crucial in influencing cell morphology in many fungi 

(Cihlar, 1985). Cells expressing the mutant phenotype can be readily reverted to wild 

type sporidial cells in the presence of cyclic AMP. The intracellular pools of cyclic AMP 

in the wild type and fill -1 mutant strains were measured and changes in intracellular 

cAMP levels were correlated with changes in morphology. Results corroborate results of 

previous studies (Medoff et al.,1981; Orlowski and Ross, 1981) which demonstrated that 

shifts in intracellular levels of cyclic AMP may be important determinant of the 

morphological phase of a pathogen, and therefore of its disease producing potential. 

Molecular characterization of the fill mutation should provide a better understanding of 
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the intracellular mechanisms and signal transduction pathways that control filamentous 

morphology and pathogenicity in U hordei. 

Materials and Methods 

Fungal and bacterial strains and culture conditions. 

The U hordei strains, bacterial strains and plasmids used in this study are listed in 

Table III.1. Growth conditions for U hordei have been previously described (McCluskey 

and Mills, 1990). Cyclic AMP analogs, inhibitors and stimulators (Sigma, St. Louis, Mo) 

were added to solid and liquid potato dextrose medium (PDA, PDB, Difco) at various 

concentrations. 

Cyclic AMP measurements 

U hordei cells in the logarithmic phase of growth (1 day old cultures) were 

collected by centrifugation , washed briefly in water and suspended in 0.1N HCL. After 

1 h at room temperature the cell suspensions were centrifuged at 20,000 x g at 4°C. The 

supernatants were assayed for cyclic AMP using a protein binding assay kit manufactured 

by Amersham Corp. (Arlington Heights, IL, USA). 

DNA manipulations and microscopy. 

Procedures for DNA isolation, restriction mapping and cloning were described 

previously (Mills et al. 1995). Fluorescence microscopy was carried out with a Zeiss 
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Table III.1. Strains and plasmids 

Strain or plasmid Relevant characteristics Source or reference 

Escherichia coli 

DH5a F080d/acZAM15 A (/acZYA-argF) Bethesda Research Labs. 

U169deoRrecAlendAlhsdR17(rK-, Gathersburg, MD 

)supE44X -thi- 1gyrA96relAl 

Ustilago hordei 

10.1a 21 chromosome bands, Mat-1 McCluskey and Mills, 1990 

10.1a-1 (fi//-/) filamentous morphology mutant McCluskey et al., 1994 

derived from 10.1a 

Plasmids 

pUC19 Apr cloning and sequencing vector Yanich-Perron et al. 

1985 

pBH100	 1.5 kb U hordei BamHI fragment from Bakkeren and 

mating type gene bE. Kronstad, 1993 

pNLA17	 [TTAGGG]18 telomere repeat from Powell and Kistler 

Fusarium oxysporum cloned into pUC119 1990 

Apr , ampicillin resistance 
Mat-1 and Mat-2 are alternate genes (idiomorphs) at the A mating type locus 
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standard microscope using epifluorescent illumination. Cells were stained as described 

by McCluskey et al. (1994). 

Results 

Cell morphology of the wild type and the mutant strains 

On solid and liquid medium, mutant strainfill -1, as well as progeny carrying fill, 

exhibited a striking filamentous phenotype (Fig.III.1). To investigate this phenomenon 

more closely, the cellular morphologies of the mutant strains were compared to its 

parental sporidial strains. Fluorescence microscopy demonstrated that the fill mutation 

produces star-like branching pattern, eliminating the budding pattern of growth seen for 

sporidial haploid strains of U hordei. Similar results have recently been reported by 

Kronstad et al., (1993) for several filamentous mutants of the corn smut U maydis. 

Reversion of the filamentous phenotype to the sporidial wild type by cyclic AMP and 

other drugs 

Cyclic AMP is known to play an important role in the morphogenesis of many 

zoo- and phytopathogenic fungi (Kronstad et al., 1992; Gold et al., 1994, Orlowski and 

Ross, 1981). When added to the growth medium, cAMP reversed the filamentous 

phenotype of the mutant fill -1 to the sporidial wild type (Fig. 111.2). To ascertain which 

enzymes in the formation of cyclic AMP were affected, various drugs known to influence 

the intracellular levels of cyclic AMP were tested and their effect on the reversion of the 

mutant filamentous phenotype was measured. The results, summarized in Table 111.2, 

show that the cyclic AMP analog 8-bromo cAMP was most effective for restoring the 

sporidial phenotype, followed by N6 monobutyryl and cyclic AMP. N6, 02'-dibutyryl 

cAMP was not effective, nor were cyclic GMP, AMP and ATP. 
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Table 111.2. Effect of various cAMP related drugs on thefi/1 mutant phenotype 

Treatment Results' Concentration2 

cyclic AMP analogs 
cAMP + 1.0 mg/ml 
ATP 3 

Adenosine 
cGMP 1 

GTP 3 

N6,02'-Dibutyryl cAMP 3 

8-Bromo cAMP + 0.8 mg/ml 
N6-Monobutyryl cAMP + 0.9 mg/ml 

stimulators of adenylate cyclase 
Ca 2+ 3 

NaF lethal3 

2-deoxyadenosine 3 

3-deoxyadenosine (cordycepin) + 1.2 mg/ml 
forskolin + 1.5 mg/ml 

Calcium antagonist 
LiCI lethal3 

Inhibitor of phosphodiesterase 
3-isobuty1-1 -methylxanthine (IBMX) + 1.5 mg/ml 

'minimum concentration for reversion of filamentous phenotype 
2+:reversion to sporidial wild type phenotype; 
--: no effect 
3concentration of drugs: 2mg/m1 
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As with other systems, cyclic AMP levels in U hordei appear to be regulated by the 

enzymes adenylate cyclase and phosphodiesterase, responsible for the synthesis and 

degradation of cyclic AMP, respectively. We next examined whether intracellular levels 

of cAMP could be raised in the filamentous mutant by either stimulating adenylate 

cyclase or blocking the degradation of cAMP by inhibiting phosphodiessterase. Cells 

were grown in the presence of 3-isobutyry1-1 methylxanthine (IBMX) an inhibitor of 

phosphodiesterase, and cordycepin, forskolin, 2-deoxyadenosine and NaF, known 

stimulators of adenylate cyclase in other eukaryotes. The drugs IBMX, forskolin and 

cordycepin restored the sporidial wild type while, NaF and 2-deoxyadenosine had no 

effect on the filamentous phenotype (Table 111.2). 

Intracellular levels of cAMP 

The endogenous cyclic AMP concentration in wild type and mutant cells was 

measured in three independent experiments. Although the absolute levels of cyclic AMP 

detected varied due to differences in experimental conditions, all three experiments 

showed that high intracellular levels of cyclic AMP are associated with yeast-like cells 

and low levels are characteristic of hyphal cells (Fig. III.3).The level of intracellular 

cyclic AMP was found to be approximately three-times higher in the sporidial phase than 

in the mycelial phase. 

Mapping of the fill locus 

Genetical analyses of the cross fill-/ X Fill-1 indicated that the deletion was 

distantly linked to the centromere (McCluskey et al., 1993). Restriction digests with 

BamHI and BglII followed by Southern analysis with a telomere-specific repeat 

confirmed that the fill mutation is located near the terminus of one arm of the 940 kb 

chromosome On the basis of these restriction data, a model of the genesis of the fill 

mutation has been proposed (Fig. 111.4). 
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Figure 111.3. Intracellular levels of cyclic AMP in the wildtype and mutant cells 
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Fig.II1.4. Restriction map and proposed model of thefill mutation 
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Discussion 

Cyclic AMP has been established as one of the most important 

biochemical mediators of dimorphism in fungi. Since its discovery 30 years ago, this 

cyclic nucleotide has been linked to a variety of functions such as morphogenesis, cell 

division, enzyme production, infection structure formation and cell differentiation. 

Smith et al. (1990) report that the levels of cyclic AMP fluctuates during the cell 

division cycle of the budding yeast Saccharomyces cerevisiae, and that the 

intracellular concentration of cyclic AMP is at its highest during the division cycle 

and at its lowest immediately prior to and just after cell separation. In the slime mold, 

Dicyostelium discoideum, cyclic AMP affects the differentiation pathways of prespore 

and prestalk cells (Yamada and Okamoto, 1992), while in the white-rot basidiomycete 

Phanerochaete crysosporium, cyclic AMP is involved in the regulation of the lignin-

degrading enzyme system (Boominathan and Reddy, 1992). In the rice blast fungus, 

Magnaporthe grisea, cyclic AMP regulates infection structure formation by inducing 

the formation of appresesoria. 

In U. hordei, cyclic AMP is involved in the signal transduction pathway 

regulating the filamentous phenotype and the dimorphic switch. Higher levels of 

cyclic AMP have been linked to the yeast-like phase, while low levels of cyclic AMP 

are characteristic of hyphal growth. Similar results were obtained by Larsen and 

Sypherd (1974) and Paveto et a/.(1975) who reported that cyclic AMP concentrations 

are four fold higher in yeast cells than in hyphal cells in M racemosus and M rouxii. 

In H. capsulatum, however, the opposite has been observed, and the cyclic AMP 
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levels are five-fold higher in the mycelial phase than in the yeast phase (Medoff et al., 

1980). The mechanism, however, by which cyclic AMP regulates the switch from the 

filamentous morphology to the sporidial wild type remains unclear. In M rouxii, the 

lower intracellular level of cyclic AMP has been attributed to an increase in the 

activity of the phosphodiesterase enzyme. Orlowski (1980), however, investigated 

cyclic AMP metabolism during hyphal development from sporangiospores of M 

genevensis and M mucedo, and observed that intracellular cyclic AMP levels 

increased during the stages of spore germination, and followed by a sharp drop prior 

to the appearance of germ tubes. In M genevensis and M mucedo, changes in 

adenylate cyclase level, rather than phosphodiesterase, were believed to regulate 

endogenous cyclic AMP levels. The contrasting results from these two investigations 

are perplexing and most probably reflect the difference in experimental conditions 

and the difficulty of interpretation of data (Cihlar, 1985). 

In regard to U hordei, the data presented suggest that the fill mutation 

does not affect the enzymes responsible for the regulation of cyclic AMP. 

Stimulators of adenylate cyclase (forskolin, cordycepin, 2-deoxyadenosine) restored 

the sporidial wild type phenotype, indicating that the adenylate cyclase enzyme is 

functional. This result is suggestive that theft/ mutation probably affects gene 

located upstream of the adenylate cyclase enzyme in the signal transduction pathway. 

In most signal transduction pathways studied, a surface receptor transmits the 

environmental signal via a G protein, which in turn activates a protein 

phosphorylation cascade ( Janssens and Van Haastert, 1987) (Figure 111.5). Our data 

indicate that the fill mutation probably affects a gene encoding a G protein, a cell 
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surface receptor, or a ligand. Cloned genes, that are known to affect cell morphology 

have been reported to show homology to genes encoding a protein kinase or adenylate 

cyclase (Kronstad et al. 1993; Gold et al, 1994). Our data indicate that the fill 

mutation does not affect these genes. The cloning of the Fill mutation should 

provide new insights into the role of cyclic AMP in the signal transduction pathway 

in U hordei. 

Molecular and genetical analyses allowed the mapping of the fill locus. 

Southern analyses with the telomere-specific probe revealed that two of four terminal 

restriction sites of BamHI and Bg111 show different sizes in the deleted form of the 

940 kb chromosome. Our model (Fig. 111.4) is consistent with two sites at one end of 

the 940 chromosome being unaffected and those at the other end being changed. The 

original BamHI and Bg111 restriction sites are assumed to be lost by deletion, and the 

new BglII and Barn HI sites proximal to the deletion, have been brought closer to the 

terminus of one of the arm of the 940 chromosome. The result is an 890 kb 

chromosome with new restriction sites at one terminus. 

Overall biochemical and genetical analyses indicate an important role for 

cyclic AMP during fungal dimorphic switching. In U. hordei, sporidial cells are 

found only in soil and never in infected plant tissue (Kozar, 1969). These findings 

imply that each growth phase is an adaptation to two critically different 

environments.. The morphological phase that persists may conceivably be simply 

determined by cell interactions. The relative ease with which the phase transitions 

can be reversibly accomplished in culture implies that the regulatory mechanisms of 
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morphogenesis can be studied and should provide insight into the relationship 

between cyclic AMP and pathogenicity. 
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Chapter IV. 

FUTURE RESEARCH PERSPECTIVES  

Recent developments in pulsed-field gel electrophoresis (PFGE) have resulted in 

studies of the chromosomal organization of an impressive number of fungi, for which 

classical, and cytological analyses were difficult, either because of the small size of their 

chromosomes or because of a lack of a sexual stage. An example of such a fungus is U 

hordei which has chromosomes that are too small to be studied by light microscopy. 

Although, four chromosomes were detected in U hordei strains in 1942 by Kharbush, 

genetic evidence indicated a higher chromosome number in this fungus. It was as recent 

as 1990 that electrophoretic karyotypes of the strains representing the 14 races were 

established for U hordei by McCluskey and Mills (1990) and an extensive amount of 

polymorphism in chromosome length and number was observed.. 

One goal of this study was to establish the basic haploid chromosome number in 

U hordei and to investigate the extent of chromosome polymorphism in length and in 

number among the strains representing the 14 races. A telomere-specific probe from F. 

oxysporum was used to determine the chromosome number contained in each 

chromosome band. Telomeres have DNA sequences that are highly conserved among 

many eukaryotes and are organized in tandem repeats at the end of each chromosome 

(Burr and Burr, 1992). The telomere-specific probe not only allowed the identification of 

previously undetected chromosomes in U hordei, but also generated specific telomere 
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restriction fragment length polymorphism (RFLP) markers for each chromosome of each 

strain studied. Each chromosome and each strain analyzed with the exception of races 10 

and 13, showed unique telomere RFLP patterns, indicating that the telomere-specific 

probe represents a powerful tool for the identification, delineation and study of many 

eukaryotic organisms. Furthermore, the telomere- RFLP patterns obtained with the 

telomere-specific probe were stable after one generation of inbreeding (unpublished data). 

It would, however, be of interest to study the segregation patterns of the telomere RFLP 

fragments of progeny from a cross involving strains representing two different races over 

several generations. We hypothesize that any chromosome in the progeny will display 

telomere RFLP patterns from one or the other parents when no recombination has 

occurred, but will contain terminal fragments from homologs of both parents in 

recombinant chromosomes. 

To ascertain the chromosome number with the telomere-specific probe, linkage 

groups were first established using chromosome-specific DNA as probes onto Southern 

blots containing chromosomes of the 14 races of U hordei. Ideally, every chromosome 

should have been tagged by a chromosome-specific probe. Unfortunately, U hordei has 

a very complicated karyotype with a large number of chromosomes, many of which 

cosegregate in chromosome clusters. However, we were not able to account for all the 

chromosomes detected by the telomere-specific probe, because of the large number of 

chromosomes present in the strains representing the 14 races of U hordei. Nevertheless, 

for fungi with relatively few chromosomes (e.g. 10 or fewer), such as Neurospora crassa, 

Aspergillus nidulans and Candida albicans, the telomere-specific probe combined with 
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the establishment of linkage groups, would represent an excellent approach for analyzing 

fungal karyotypes. 

Disomic chromosomes were detected with the chromosome-specific probes. 

Trans locations, insertions and B chromosomes have been reported to contribute to 

chromosome polymorphism, although none of these events was observed in U hordei. 

However, recently a filamentous mutant of U hordei, designated fill, was determined to 

have a 50 kb deletion following heat-shock treatment. These findings suggest that 

deletions of that magnitude may be tolerated and suggest a mechanism by which 

chromosome-length polymorphism is generated in U hordei. The filamentous phenotype 

is of interest because U hordei is a dimorphic fungus that must switch morphology to 

form the filamentous infection hyphae in order to be pathogenic on barley plants (Fischer 

and Holton, 1985). The filamentous phenotype can be reverted to the sporidial wild type 

phenotype in the presence of cyclic AMP, supporting previous studies that cyclic AMP is 

an important morphogenetic determinant in many dimorphic fungi (Medoff et al. 1981). 

In U. hordei, high intracellular levels of cyclic AMP were associated with the yeast-like 

phase, whereas lower intracellular levels were characteristic of the filamentous phase. 

These results suggest that in order for mating to occur, endogenous cyclic AMP levels of 

the two compatible basidiospores, have to be down regulated to allow formation of the 

filamentous infectious hyphae. We investigated whether the mating reactions could be 

inhibited by cyclic AMP. Preliminary studies indicated that cyclic AMP had no effect on 

the formation of infection hyphae during mating. However, more detailed studies with the 

more lipophilic drug 8 bromo cAMP, have to be performed for more reliable results. 

Moreover, it would be of interest to measure the intracellular level of cyclic AMP in the 
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infection hyphae. Based on our studies, we would anticipate a low level of intracellular 

cyclic AMP in the infection hyphae. 

In related studies, we examined whether the ability to cause disease on barley 

plants was affected by the fill mutation. Crosses of sexually compatible fill -1 mutants 

were made, and eight barley differentials were inoculated. No disease-symptoms were 

observed for the mutant cross, whereas disease symptoms developed on all differentials 

except "Excelsior" when inoculated with the wild type. Race 10, from which the fill -1 

mutant was obtained, is incompatible on "Excelsior." In U. maydis, a similar mutant was 

described that is filamentous and nonpathogenic (Kronstad et al.; 1993). The mutant is 

defective in the uacl gene, which encodes the adenylate cyclase enzyme. It was able to 

infect corn plants, but did not generate any disease symptoms on corn. Therefore, 

additional studies are needed to investigate whether the non pathogenicity of the fill -1 

mutant is due to inability to mate or inability to infect susceptible cultivars. 

A number of investigators have used the technique of differential display to study 

genes that are expressed during the infection stage. This technique would also be of 

interest in continued studies. The wild type strain 10.1a and mutant strain fill-/ are 

isogenic except for the fill mutation. Cloning the genes expressed during the filamentous 

stage may provide new insight into the intracellular mechanism of pathogenicity genes. 

Also in progress is the cloning of the Fill locus. The Amplified Fragment Length 

Polymorphism (AFLP) technique was used to identify DNA fragments that are present in 

the wild type strain but absent from the mutant. Several fragments have been identified 

and isolated , and they are presently being screened for homology with the region that 

was deleted from the 940 kb chromosome. 
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Abstract 

Southern blot hybridization analysis was used to identify and quantify 

chromosome-length polymorphisms for 10 linkage groups of 14 races of Ustilago hordei. 

The bands identified by the probes were shown to vary as much -as hundreds of 

kilobasepairs, but the magnitude of the variability was typically 5 to 15 % of the average 

size of all bands to which a particular probe hybridized. A filamentous morphology 

mutant, recovered following heat shock treatment of a strain with the greatest number of 

chromosome bands, was shown to have suffered a 50 kb deletion in a 940 kb 

chromosome. The mutation to filamentous morphology, designated fill -1 and the 

deletion, were shown to invariably cosegregate 2:2 with the wild type (sporidial) 

morphology in an ordered tetrad. Genetic and physical analyses place the Fill locus and 

the deletion near the terminus of one arm of the 940 kb chromosome. These results 

suggest that deletions of this type may be one of the causes of chromosome-length 

polymorphisms observed in field isolates of U hordei. 

Key Words: PFGE, Electrophoretic karyotypes, deletion 
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Introduction 

Fungal genetics has been revolutionized by the development of pulsed-field gel 

electrophoresis (PFGE) technology and its application to questions of genome size, 

organization and stability (for recent reviews, see Mills and McCluskey; -1990; Skinner et 

al,. 1991; Mills et al., 1993). A large amount of karyotypic variability has been detected 

among strains of phytopathogenic fungi, as predicted by Tolmsoff (1983). In general, 

however, the variability is described only as the number of chromosomes and their sizes. 

For some fungi, a few of which are phytopathogens, there has been a better description of 

the identity of the individual bands. Physical and genetic maps are correlated for 

Neurospora crassa (Orbach et al,. 1988), Saccharomyces cerevisiae (Carle and Olson, 

1985), Cochliobolus heterostrophus (Tzeng et al, 1992), Magnaporthe grisea (Talbot et 

al,. 1993), and for some linkage groups of Leptosphaeria maculans (Morales et al,. 

1993), and this approach is being increasingly pursued. For fungi whose genetics have 

not been extensively described, as is the case for Ustilago hordei, which causes covered 

smut on barley (Hordeum vulgare L.), and fungi for which sexual crosses are either 

difficult or impossible to perform, this approach is precluded and the chromosomes 

resolved by PFGE typically remain anonymous. 

The karyotypes of representative strains of the 14 races of U hordei have been 

shown to be variable with respect to the number of chromosome bands and lengths of 

putative homologous chromosomes (McCluskey and Mills, 1990). However, the amount 

of variability among homologous chromosomes could not be determined merely by visual 
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inspection of electrophoretic karyotypes because some nonhomologous chromosomes 

appear similar in size and are not resolved. Additional karyotype variability may arise if 

some strains are aneuploid or harbor B chromosomes (Miao et al., 1991). 

To examine some plausible causes for the apparent genome plasticity among 

strains representing the 14 races of U hordei, blots of whole chromosomes were probed 

with anonymous DNA fragments and conserved genes to potentially identify 

chromosome-length polymorphisms, multiple copies of chromosomes and B 

chromosomes. To determine whether any chromosomes are dispensable, the heat shock 

approach described by Hilton et al. (1985) for Candida albicans was adapted to a U. 

hordei strain with the greatest number of chromosome bands. None of the chromosomes 

was shown to be dispensable, but a filamentous mutant recovered from the heat shock 

was shown to have a 50 kilobase (kb) deletion in one of its chromosomes. The deletion 

mutation and its associated filamentous phenotype, designated fill-/, cosegregated in 6 

ordered tetrads. 

Materials and methods 

Strains and culture conditions. The strains representing the 14 physiologic races of U. 

hordei have been previously described (McCluskey and Mills, 1990). S. cerevisiae 

chromosomes were obtained from Bio-Rad (Hercules, CA), and used as size markers. 

Bacterial strains and plasmids used for DNA manipulations are described in Table 1. 
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Contour-clamped homogenous field pulsed-field gel electrophoresis (CHEF PFGE). 

Electrophoresis was conducted in a Bio-Rad CHEF Dr-II electrophoresis system 

(Richmond, Ca). Samples for PFGE were prepared and electrophoresed as described by 

McCluskey et al. (1990) . 

Sources of DNA probes. Probes were made from chromosome-specific libraries or total 

genomic DNA. Chromosome specific DNA was extracted from preparative low gelling 

temperature agarose (FMC, Rockland, ME) CHEF gels using the freeze-thaw method. 

Bands were excised under UV illumination, taking care to minimize UV exposure, and 

transferred to 15 ml polypropylene tubes. The agarose was melted at 68°C for 10 to 20 

min in 5 ml of buffered solution (25 mM Tris pH 7.5, 1 mM EDTA, 1 M NaC1), gently 

mixed, and then frozen at -20°C for 1 to 16 h. The samples were incubated for 30 to 60 

min at 37°C, mixed gently and the freezing and warming cycle was repeated once. After 

centrifuging at 10,000 X g for 30 mM at 5°C, the supernatants were transferred to clean 

tubes, mixed with equal volumes of isopropyl alcohol, and incubated at -20°C to 

precipitate the DNA. The DNA was collected by centrifugation for 30 min at 10,000 X g, 

and the pellets were suspended in 400 ml of 10 mM Tris HC1, pH 7.5, 1 mM EDTA (TE). 

This solution was transferred to a 1.5 ml microfuge tube, extracted twice with TE-

saturated phenol followed by chloroform extraction, and then precipitated with ethanol. 

This DNA was digested with BamHI or EcoRI and ligated to alkaline phosphatase-treated 

pUC19 or pCM54 using standard cloning techniques, and the entire ligation reaction 
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mixture was used to transform competent Escherichia coli DH5a cells (Sambrook et al,. 

1989). Plasmid DNA was prepared by an alkaline lysis procedure (Birnboim and Do ly, 

1979), and radiolabelled DNA was prepared using the random priming technique of 

Feinberg and Vogelstein (1983). Total genomic DNA was isolated from strain 8. la 

(Table 1) using the method of Specht et al. (1982). The DNA was digested to completion 

with EcoRI and cloned into pUC18 as previously described. 

Chromosome number. To ascertain the number of chromosomes present in an 

individual band, an agarose slice containing the band of interest was excised from a 

CHEF gel, and the DNA was extracted by the freeze-thaw method and digested with 

BamHI restriction enzyme (Gibco-BRL, Grand Island, NY) following the manufacturer's 

instructions. The BamHI fragments were separated by electrophoresis and 

Southern-blotted (Southern 1975) to nylon membranes using standard techniques 

(Sambrook et al. 1989). A radiolabelled DNA probe was prepared from a gel-purified 

telomere sequence from Fusarium oxysporum (Table 1: Powell and Kistler, 1990) using 

the random priming technique (Feinberg and Vogelstein, 1983). The number of 

chromosomes in any band was determined to be equal to one-half the number of 

restriction fragments that hybridized to the telomere probe. 

DNA hybridizations. The DNA in CHEF gels was denatured in 0.4 N NaOH and 

transferred in that solution to Genetran nylon membranes (Plasco, Woburn, MA) 
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(Sambrook et al., 1989). Hybridization reactions were carried out as described by 

McCluskey and Mills (1990). 

Heat shock treatment of U. hordei. A 3 ml aliquot of strain 10.1 a which had been 

cultured in Potato Dextrose Broth (PDB, Difco Laboratories, Detroit, MI) to mid log 

phase (ca. 106 cells per ml) was transferred to a 5 ml polypropylene tube and incubated at 

52°C for 2 to 10 min. Heat shock was terminated by transferring 100 ml of the 

heat-treated sample to 900 ml PDB at room temperature, and dilutions were spread onto 

Potato Dextrose Agar (PDA) medium and incubated at room temperature for 2 to 5 days 

until colonies were visible. An aliquot of the starting material was diluted and plated onto 

PDA to determine the concentration of the starting culture, and this value was compared 

to the average of several platings of the heat-treated sample to determine the percentage 

of surviving cells. 

Microscopy. Fluorescence microscopy was carried out with a Zeiss standard microscope 

using epifluorescent illumination. Cells were either stained for 5 min at room temperature 

with ethidium bromide (1 mg/ml) and immediately visualized, or stained for 1 h at room 

temperature in 0.0025% calcofluor (Sigma, St Louis, MO) and 20 µg /ml Hoechst 33258 

(Sigma) in TE. 
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Results 

Identification of homologous chromosomes 

The electrophoretic karyotypes of the strains representing the 14 physiologic races 

of U hordei are presented in Figure 1A. The varying numbers of bands and clusters of 

chromosomes precluded using the karyotypes alone to identify homologous 

chromosomes in these strains. However, by using Southern blot analysis with a variety of 

DNA probes (Table 1), 10 putative homologous chromosomes have been identified 

among the 14 strains studied (Table 2). The hybridization profiles revealed that for some 

putative chromosomes, length polymorphisms were sufficient to change their relative 

position in the CHEF gel with respect to other nonhomologous chromosomes of similar 

size. Moreover, the chromosomes at the top and bottom of a cluster could be 

distinguished by hybridization with different probes. Thus, Southern analysis of CHEF 

blots frequently revealed that chromosomes of identical size may not necessary be 

homologous. 

A typical example of the heterogeneity observed for 8 of the 10 chromosomes is 

seen in the Southern analysis presented in Figure 1B. The amount of variability among 

these 8 chromosomes was typically 9 to 15% of the average band size for each probe 

(Table 2). Probes pOSU4088, pOSU4182, pOSU4062, pOSU4611 pOSU4172 and 

pOSU4012 identified maximum chromosome-length polymorphisms of at least 100 kb. 

Moreover, probes pOSU4088 and pOSU4062 clearly distinguished different 

chromosomes at the top and bottom of a 975 kb unresolved cluster of chromosomes in the 

karyotype of strain 7.1 (Table 2). Probe pOSU4843 displayed an interesting hybridization 
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pattern. It hybridized only with a 650 kb chromosome band in strain 8. la, but not with a 

650 kb chromosome that was present in the karyotypes of strains 1.3, 2.1a, 3.1, 4.1 and 

5.1. Moreover, this probe hybridized with the fourth smallest chromosome in 3 strains, 

the fifth smallest in 10 strains and the sixth smallest in one strain. The actin gene probe 

(pSF8) from Aspergillus nidulans (Fidel et al,. 1988) hybridized to the third smallest 

chromosome in all strains, which ranged in size from 570 to 650 kb (Table 2). 

Two probes identified putative chromosomes that showed either no length-

polymorphisms or substantially greater variability than observed for other chromosomes. 

The probe made from pOSU4811 hybridized to the 3,150 kb band in all 14 strains. This 

apparent lack of variability may result from the inability to resolve chromosomes with 

length polymorphisms in this size range. Conversely, the rDNA probe, pOSU1011, 

detected the greatest amount of chromosome variability with a range of 86% of the 

average for this chromosome (Table 2). 

Heat shock treatment and characterization of mutant strain 10. la-1 

Heat shock at 52°C produced approximately 99.9% lethality after 7 minutes for 

strain 10. la. Strain 10.1 a typically produces mucoid, convex colonies comprised of 

sporidia, while several of the colonies that arose following heat-shock had altered 

morphologies. One strain, 10.1 a-1, has a dry, mycelial colony with an overall appearance 

of being crusty and the cells, in contrast to the wild type are filamentous rather than 

sporidial (Fig. 2). Mutations conferring this phenotype have been designated ft/, and the 

mutation in 10.1 a-1 has been designated fill -1. Strain 10.1a-1 (fill-1) exhibits slower 
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growth, both in liquid and on agar-solidified medium, than the wild type progenitor strain 

(Fig. 2B). 

Of 25 various colony morphology mutants, mutant strain 10.1 a-1 (fill-/) was 

determined to have a chromosome band of 940 kb missing from its karyotype (Fig. 3A). 

Both the colony morphology and the altered karyotype were stable through repeated sub-

culturing. The higher molecular weight bands not resolved in the gel shown in Figure 3 

were resolved by longer-term electrophoresis, and determined to be unchanged in 10.1 a-

1 (fill-1) (data not shown). 

Southern-blot analyses with DNA probes made from restriction fragments from 

the 940 kb chromosome of strain 10.1 a, and a telomere probe from F. oxysporum (Powell 

and Kistler, 1990), have revealed the fate of the missing 940 kb chromosome in the 

mutant. Hybridization probes made from the inserts in pOSU4126, pOSU4132 and 

pOSU4135, which were determined by Southern hybridization to be nonhomologous 

(data not shown), hybridized only to the 940 kb chromosome in strain 10.1 a, and 

specifically to the 890 kb chromosome cluster in the mutant strain 10.1a-1 (ill1 4) (Fig. 

3B). These results suggested that approximately 50 kb of DNA was deleted from the 940 

kb chromosome in the genesis of an 890 kb chromosome. To corroborate these results, a 

telomere-specific DNA probe was hybridized with BamHI restriction fragments from the 

940 kb chromosome from 10.1 a, and the 890 kb cluster of chromosomes from 10.1a in 

10.1 a-1 (fill-1). Two BamHI fragments from the 940 kb chromosome hybridized with 

this probe indicating that this band contains a single chromosome with BamHI sites 1.3 

and 7.8 kb from its termini. Six fragments from the 890 kb cluster of strain 10.1 a 

hybridized with this probe, indicating that this cluster from the wild type contains 3 
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chromosomes (Fig. 4). However, the probe hybridized to 8 BamHI fragments from the 

890 kb cluster of the mutant 10.1 a-1 (fill-/), six of which were identical to those found in 

the 890 kb cluster of the wild type progenitor strain. Two additional fragments of 1.3 kb 

and 8.1 kb hybridized with the probe, indicating that one end of the deletion chromosome 

was unaffected, whereas the other end had a new BamHI site (Fig. 4). To verify that the 

new BamHI did not result froma translocation event, individual chromosome bands from 

the mutant and wild type strains were excised, digested with BamHI, and Southern 

analysis was performed with the telomere probe. The terminal BamHI fragments of all of 

the chromosomes bands were unchanged except for one terminal fragment of the deletion 

chromosome (data not shown). 

Genetic analysis of the fill -1 mutation 

The mutant strain 10.1a-1 (1111-1) was crossed with a sexually compatible strain 

isolated from the teliospore collection that gave rise to 10.1 a, and the dikaryon was 

inoculated onto the universally susceptible barley cultivars, Odessa and Junior, using the 

technique of Gaudet and Kiesling (1991). In 6 ordered tetrads analyzed from this cross, 

the filamentous and sporidial morphologies segregated 2:2. Moreover, first and second 

division segregation patterns occurred with equal frequencies, indicating that fill -I is 

distantly linked to the centromere, a result that corroborates the data obtained by 

hybridization with the telomere-specific probe. The karyotypes of progeny from the 6 

tetrads revealed that the 940 kb chromosome always cosegregated with the wild type 

sporidial cell morphology and that all of the mutant progeny lacked a 940 kb 

chromosome (Fig. 5A). In Southern analyses of CHEF blots, one of which is presented in 
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Figure 5B, all of the mutant progeny in the 6 tetrads have an 890 kb chromosome that 

hybridizes with a probe that is specific for the 940 kb chromosome in the parental strain. 

Discusssion 

The hybridization of a particular DNA probe to chromosomal bands of different 

sizes among these 14 presumed unrelated strains of U hordei can be interpreted in 

several ways. In this study and in numerous others (Carle and Olson, 1985; Morales et 

al., 1993; Russell and Mills, 1993) the bands are interpreted to be chromosomes, and the 

length polymorphisms are presumed to be a manifestation of subtle differences among 

homologs because of deletions, duplications, translocations and possibly variation in the 

sizes of the telomeres. While all of these phenomena could have contributed to the 

chromosome-length polymorphisms apparent in these strains of U hordei, some appear 

more plausible than others. 

In the present study, some putative homologs were shown to differ by more 

than 100 kb in size. These length polymorphisms changed the relative ranking of some 

chromosomes with the respect to others of similar size. For example, the Southern 

analyses with pOSU4843 (Table 2) indicate that the fourth smallest chromosome in some 

strains is homologous with the fifth or sixth smallest chromosomes in other strains. The 

relative size of this chromosome in the karyotype of different strains was unchanged 

under constant conditions of electrophoresis, and therefore the variability could not be 

attributed to anomalous migration in the CHEF gel. These results indicate that its rank, or 
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the assignment of a number for this chromosome which is based on size, will vary 

depending upon the karyotype of the field isolate being investigated. 

It appears very unlikely that chromosome-length polymorphisms in excess of 100 kb 

could be attributed to changes in the number of telomere repeats. In this study and in 

others (Mills et al, 1994; Agnan, Abdennadher and Mills, unpublished data), terminal 

chromosomal BamHI fragments as small as 1.3 kb have not been observed to vary in size. 

It is also unlikely that chromosome-length polymorphisms of 9 to 15 % observed for 8 of 

the 10 putative chromosomes examined resulted from translocated segments from other 

chromosomes, or fragmented chromosomes arising from cleavage or breakage at specific 

sites during sample preparation. Translocations or the occurrence of fragile sites would be 

expected to segregate in progeny, leading to populations with chromosomes that differ 

greatly in size. Preliminary evidence supporting the supposition that the bands represent 

intact chromosomes rather than fragments was recently reported by Mills et al. (1994). 

The putative chromosome bands excised from a race 2 strain of U hordei were shown to 

have 2, or multiples of 2, terminal BamHI fragments 

The chromosome containing the rDNA repeat varied by 86% of its average 

length (Table 2), but it is unlikely that this variation resulted from reciprocal or non-

reciprocal translocation. Unless all copies of the rDNA repeat were translocated, the 

rDNA probe would have hybridized to 2 chromosome bands. In the closely related bunt 

fungi, Tilletia caries and T. controversa, and their hybrid progeny, a rDNA probe 

hybridized with 1 to 3 chromosomes that differed in length by approximately 40% 

(Russell and Mills 1993). However, in none of the 14 strains of U. hordei were 2 bands 

observed to hybridize with the rDNA probe (Table 2, and data not shown). It appears 
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therefore, that duplications or deletions of the rDNA repeat, or combinations of these 

events contributed to the larger amount of variation observed for this chromosome. 

The smaller amount of variability (9-15%) in the lengths of 8 of the 10 

chromosomes is most likely the result of changes in the copy number of moderately 

repeated DNA, or the accumulation of small deletions or duplications which do not affect 

viability. The recovery of strain 10.1 a-1 (fill-1) following heat shock treatment supports 

the hypothesis that deletions alone may account for the magnitude of karyotypic 

variability observed in this study. A deletion of approximately 5 % of the 940 kb 

chromosome was not lethal, but was shown to always cosegregate with the fill] mutation. 

That first and second division segregation patterns for the fill -1 mutation and the deletion 

chromosome occur with equal frequency, and a terminal BamHI restriction site 7.8 kb 

from I end of the mutant chromosome is lost, strongly suggest that the deletion will map 

near the terminus. 

The fill-/ mutation of U hordei is constitutive for filamentous growth and 

resembles other mutations that affect cell morphology in fungi (Harold, 1990). Strains 

carrying fill-/ superficially resemble a recently described mutant of U maydis designated 

rem1-1, (repressor of mycelial phenotype, Barrett et al., 1993). Both mutations block 

budding growth, although functions have not been described for either of these putative 

genes. In both species, crosses of mutant with wild type strains produce dikaryons that are 

infectious on their respective hosts. However, unlike U. hordei which showed 2:2 

segregation for the mutant and wildtype phenotypes in 6 ordered tetrads analyzed, the 

segregation of the phenotype resulting from the rem] -1 mutation in random sporidia of U. 

maydis varied from 1 to 47 % between experiments, possibly because of a reduced 
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growth rate for mutant cells. Mutant fill -1 cells are competent to mate with sexually 

compatible wild type strains, and the infectious dikaryon will ultimately produce 

teliospores that germinate to produce 4 primary sporidia. This result implies that thefi//-1 

mutation is either recessive, or that the mechanism of primary sporidia (basidiospores) 

production is different from the mechanism of budding by secondary sporidia. The 

cloning and molecular characterization of the Fill locus are in progress. 
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Figure. 3. Southern blot analysis revealing the fate of the 940 kb chromosome in strains 
having the fill -/ mutation. A) Electrophoretic karyotype of strains 10. la and 10. la-1 
(fill-I). B) Southern blot of the gel shown in panel A probed with a 940 kb 
chromosome-specific insert from pOSU4126. 
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Table 1. Strains and plasmids 

Strains Relevant Characteristics' 

Ustilago hordei 

8. la 19 chromosome bands, Mat- 1 

10. la 21 chromosome bands, Mat-1 

mating type 

10. la-1(fil I-I) Filamentous colony morphology 

mutant derived from 10.1 a 

following heatshock treatment 

10.2 Randomly isolated monosporidial 

strain, race 10 collection, 

Mat-2 mating type 

Escherichia coli 

F080d/acZAM15 A (IacZYA -argF) 

U169deoRrecAlendAlhsdR17(r}(-, 

)supD44X.-thi-1gyrA96relA1 

Plasmids 

pCM54 Cloning vector. LIARS. Apt Hyg` 

pUC18, pUC19 Sequencing and cloning vectors; 

Apr 

pOSU4012 1.2 kb EcoRI fragment from 

Reference/Source 

McCluskey & Mills, 1990 

McCluskey & Mills, 1990 

This study 

This study 

Bethesda Research Labs. 

Gathersburg, MI) 

Tsukuda et al,. 1989 

Yanisch-Perron et al,. 1985 

McCluskey & Mills,1990 
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Table 1. (continued) 

genomic DNA of strain 8.1a 

in pUC 18; Apr 

pOSU4843 1.5 kb BamHI fragment from This study 

the 650 kb chromosome of 

strain 8. la in pCM54,Apr Hyg' 

pOSU4062 4.4 kb EcoRI fragment from This study 

the 850 kb chromosme of 

strain 8.1a in pUC19 Apr 

pOSU4088 5 kb EcoRI fragment from This study 

the 980 kb chromosome of 

strain 8.1a in pUC19 Apr 

pOSU4126 2.0 kb BamHI fragment from the This study 

940 kb chromosome of 

strain 10.1 in pCM54; Apr Hygr 

pOSU4132 3.6 kb BamHI fragment from the This study 

940 kb chromosome of strain 

10.1 in pCM54; Apr Hygr 

pOSU4135 4.0 kb BamHI fragment from the This study 

940 kb chromosome of strain 

10.1 in pCM54; Apr Hygt 

pOSU4172 1.0 kb EcoRI fragment from the This study 

200 kb chromosome of strain 
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Table 1.(continued) 

'Symbols: Mat-land Mat-2 are alternate alleles at the A mating type locus; UARS,  

Usti lago maydis autonomous replicating sequence; Apr, ampicillin resistance; Flygr,  

hygromycin B resistance.  

1ipNLA17 was constructed by subcloning the [TTAGGG]18 repeat on an Ma III fragment  

from pFOLTAR4 described in Powell and Kistler (1990).  



Table 2. Assignment of anonymous DNA fragments and heterologous genes to chromosomes of UstilagQ hordei. 

Strainsa Calculated Variability 

Avg SD SD Range
Probe 1,3 2.1a 3.1 4.1 5.1 6.2a 7.1a 8.1a 9.1 10.1a 11.2a 12.1 13.1 14.1a Size (Kb) (%) (%) 

pOSU4811 3150b 3150 3150 3150 3150 3150 3150 3150 3150 3150 3150 3150 3150 3150 3150 0 0 0 

pOSU1011 1190 2850 2400 2700 3150 1300 2450 2200 2450 2200 NDe 2200 2200 2200 2268 540 23 86.4 

pOSU4012 1290 1290 1260 1310 1290 1210 1230 1200 1260 1260 1280 1260 1260 1260 1261 31 2.4 8.75 

pOSU4088 1110 960 1025 1060 1040 1060 975 1040 980 1100 ND 1075 1100 1040 1043 48 4.6 14.6 

pOSU4182 1050 960 975 1060 1000 990 975 980 980 1050 ND 1075 1060 1040 1015 41 4.0 11.2 

pOS04062 910 960 940 1025 1000 990 975 920 925 890 890 890 890 920 937 45 4.8 14.4 

pOSU4611 840 940 840 940 840 875 850 850 850 850 830 960 850 830 867 44 5.0 12.7 

pOSU4843 700 700 720 710 700 700 710 650 720 710 700 760 710 720 707 22 3.1 15.4 

pOS U4172 960 960 940 1060 1040 990 975 980 980 1050 920 1075 1060 1040 1002 50 4.9 15.5 

pSF8 570 570 620 585 585 610 650 590 620 590 580 640 590 590 599 24 4.0 13,1 

'Strains representing the 14 races of 1j. hordei (McCluskey & Mills 1990). 

bChromosome band sizes, in kilobase pairs (kb) identified by the probe. 

CND = Not determined. 




