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COALESCENT SINGULAR POINTS

OF DIFFERENTIAL SYSTEMS

HAVING QUADRATIC FIGHT HAND SIDES

INTRODUCTION

In the study of ordinary differential equations authors such as

Bendixson (1) and Lefschetz (4) treat the integral curves of the

linear fractional equation

, T x + T v ,
dy= _J 2 _ Q(x, y)
dx J x+ J_y P(x, y)

in great detail. If the point (g, h) is such that either the numerator

or the denominator is nonzero then this point is termed regular.

By the theorem on existence and uniqueness we know that there is

only one solution through a regular point.

Furthermore if (g, h) is such that both numerator and denomi

nator vanish then (g, h) is a critical point. Since (0-1) can be

solved explicitly in terms of elementary functions, then the nature

of its integral curves in the neighborhood of a critical point can be

examined directly. This classifies these points into the following

five groups: node, saddle, focus or spiral, center or vortex, and

degenerate node.

The researches of Poincare (5) and Bendixson extend the dis

cussion to include the equation

? = pT^! (o-2)dx P(x, y)



where now 0(x, y) , P(x, y) are allowed to be non-linear functions

which are analytic in the neighborhood of the critical point. It

should be noted that more than one critical point may arise for this

differential equation.

However, this classical discussion is limited by the condition

that the value of

D = OP/ 9x) OQ/ay) - OP/ By) OQ/9x) (0-3)

is nonzero when evaluated at the critical point under consideration.

With this restriction Bendixson was able to classify all critical

points into the five groups previously noted. Such critical points at

which D is nonzero are then called "simple".

In 19 56 N. A. Gubar (3) presented a paper on the nature of the

critical points of (0-2) when D is zero. Such critical points are

called "compound". He arrived at the following seven groups in the

classification of compound points: node, saddle, focus or spiral,

center or vortex, point with closed nodal region, saddle-node, and

degenerate point.

In this paper we wish to specialize Q(x, y), P(x, y) to the form:

2 20(x, y) = Ax + 2A2xy + Ay - 1 ,

2 2P(x, y) = B x + 2B2xy + B3y -1 .



Hence the critical points are the intersection points of the

two central conies Q(x, y) = 0, P(x, y) = 0. By symmetry there will

be an even number of critical points, 0, 2, or 4. We call the inter

section points coalescent if the two conies have the same tangent

line at the intersection and ordinary otherwise. These points may

be either simple or compound.

We shall give no more than the results of classical theory for

the simple points and Gubar's results for the compound points. But

for our special case we shall show that when critical points are

coalescent the critical point is compound and this compound point

is generally from one particular group. The detailed results are

summarized in the theorem which concludes chapter six.
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CHAPTER ONE 

CLASSIFICATION OF CRITICAL POINTS 

Let us first consider eqtation (0 -1) and suppose D is non- 

zero. We use the notation of Golomb and Shanks (2) to describe the 

nature of the integral curves in the neighborhood of the simple criti- 

cal point which is (0, 0). 

Thus we have the following five conditions: 

(1) if D is positive and if r is positive, where 

= [ (8P/ 8x) + (8Q/ ay)] 2-4 D, then (0, 0) is termed a node; 

(2) if D is negative and is positive then (0, 0) is termed 

a saddle; 

(3) if is zero then (0E 0) is termed a degenerate node; 

(4) if is negative and p. is nonzero, where 

µ = (8 P/ 8x) + (8Q/ 8y), then (0, 0) is termed a spiral or 

focus; 

(5) if r is negative and p. is zero then (0, 0) is a center or 

vortex. 

These conditions completely determine the nature of the integral 

curve in a neighborhood of the critical point (0, 0) for the linear 

case. 

We now consider equation (0 -2) where Q(x, y), P(x, y) are 

, 

5 

1 
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analytic functions in a neighborhood of the critical point having 

terms of at least the second power. Again we suppose ]i is non- 

zero. Then the following theorem, Lefschetz (4), summarizes the 

work of Poincaré and Bendixson. 

Theorem: The nature of the integral curves for equation (0 -2) 

in the neighborhood of a critical point is the same as that of the 

first approximation, except that a center for the first approxima- 

tion may yield either a center or spiral for the equation being con- 

sidered. 

By the term first approximation Lefschetz means the linear 

terms of Q(x, y), P(x, y) when (0, 0) is the critical point under dis- 

cussion. Hence the first approximation is an equation of the form 

(0 -1). 

If D is nonzero, this disposes of the classification of critical 

points for equation (0 -2). 

We are led to the general problem of the nature of the integral 

curves in the neighborhood of a compound critical point, i. e. , a 

critical point when D is zero. For the remainder of this paper 

we refer to the equation 

d A x2 + 2A2xy + A3y2 - 1 x Y 1 
Q(, y) 

d x 
B 2 + 2 B 1 P(x' y) B3y2 - 
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as the ORIGINAL equation. 

The following represents Gubar's findings, given without proof. 

However we should first comment that Gubar studies the original 

equation by considering the related system 

dy/dt = Q(x, y) , dx/dt = P(x, y) . 

Also the transformations he considers, and those that we do, are 

transformations linear in x, y , and the parameter t. 

Lemma I: For 

µ = (8P/ax) + (8Q/ay) 

nonzero there exists a non - singular transformation which converts 

the original equation into 

Y + Q2(x, y) 

dx P2(x, y) 
(1 -2) 

Here Q2(x, y) , P2(x, y) are functions whose power series expan- 

sions, in a neighborhood of the critical point, have terms beginning 

with second degree. 

Lemma II: There exists a function (x) which is the solution to 

y + Q2(x, y) = 0 

and which vanishes at x = O. We shall call this the explicit function. 

Furthermore if the function r(x) is defined by 



I' (x) = P2 (x, (x)) 

then in a neighborhood of the critical point F (x) has the form 

r (x) + . . k>2, okt 0. 

Theorem A: For p. nonzero the critical point (0, 0) is a node or 

saddle when Ak> 0 or Ak < 0 respectively and k is odd. If k is 

even, then the critical point is termed a SIMPLER SADDLE -NODE. 

Consider a compound point of the original equation. If per- 

turbing functions wl, w2 can be added to the numerator and denomi- 

nator so that the original compound splits into an equal number of 

simple nodes and simple saddle points, then we have a saddle node, 

or a simpler saddle -node if µ is nonzero. 

Lemma III: For p. zero there exists a non - singular transforma- 

tion which converts the original equation into 

d 
C2 (x, y) 

Y_ 
dx y+ P2(x, Y) 

In this case F (x) = Q2 (x, (x) ) where 1. (x) is the solution to 

y + P2(x,y) = 0. 

Lemma IV: If p. is zero and the function (x, y) is defined by 

(x, y) _ (8P2 lax) + (8Q2/ óy), 

7 

(1 -3) 

= 

) 

. , 

0 
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then in a neighborhood of the critical point the following represen- 

tation holds: 

(x,Cx))= xn+ . n? 1, 
n 

0, 

= , = 
n 

Theorem B: If µ is zero, then the critical point (0, 0) of the 

original equation is dependent upon the exponents k of lemma II 

and n of lemma IV. If k = 2m we have two cases possible: 

a) 4 0, n<m. 
n 

The point is a SADDLE -NODE. 

b) -A -n 4 0, n >m or An = 0 . 

- 

The point is DEGENERATE. 

We further note that if k = 2, then m = 1 and the point is 

always degenerate. 

To define what is meant by a degenerate compound point we 

consider a compound point and two perturbing functions wl , w2 . 

As before we add these functions to the numerator and denominator 

of the original equation. If only simple nodes for the altered equa- 

tion arise from this one compound point, then this compound point 

is termed a degenerate point for the original equation. 

e , 
n 

0 A 0 

n n 

D 



If k = 2m + 1, then four cases are possible: 

a) 
Ak 

> O. 

The point is a SADDLE. 

b) [ak < 0, A 4 0, n > m, but 

X = ( 7S1mL + 4 {m + 1} ok) < 0 

< 0, 0. 

or 

9 

The point is the CENTER or SPIRAL. 

c) 
Ak 

< 0, n < m, n even or 

n = m, X > 0, nodd. 

The point is a NODE. 

d) 'k < 0, n < m, n odd or 

n = m, X > 0, n odd. 

The point is termed POINT WITH CLOSED NODAL REGION. 

Thus theorems A and B divide the families of integral 

curves of the original equation into two broad classes; those where 

µ is nonzero and those where µ is zero. We intend to show that 

for the functions P(x, y), Q(x, y) of the original equation the ex- 

ponent k of lemma II is always even. Therefore only saddle -node 

or degenerate points occur when P(x, y) = 0, Q(x, y) = 0 are cen- 

tral conics. 



where 

CHAPTER TWO 

INTERSECTION POINTS AND CORRESPONDING 
EQUATION FORMS 

We consider the original equation 

dy Q(x, y) 
N1(x, y) - 1 

dx P(x, y) N2(x, 
2 

y) - 1 

N1(x, y) = A1x2 + 2A2xy + A3y2 

N2(x, y) = B 1x2 + 2B2xy + B3y2 . 

10 

We assume N1(x, y) is not a multiple of N2(x, y) since if 

they were multiples then it is apparent that no critical points would 

exist. Note that this exludes the possibility that Ai = B 
i 

for all i. 

In order to apply the results of Gubar+ s paper we need to know three 

items, (i) the intersection points of Q(x, y) = 0 and P(x, y) = 0; 

(2) the form of the original equation after an intersection point is 

translated to the origin; (3) the forms which belong to the group 

where µ is nonzero and which to the group where µ is zero. 

We first introduce the quantities S., D. defined by S. = A, +B, 

i = 1, 2, 3, D. = A 
i 

- B., i = 1, 2, 3 . With this notation the sum . . 

i i 

and difference of the equations Q(x, y) = 0, P(x, y) = 0 can be 

written 

. 
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Sx2 +2S2xy +Sy2 =2 (2-1),

D x2 + 2D xy + D y2 =0 (2-2).

In polar coordinates, these equations are

2 2 2 2 2
S p cos 0 + 2S p cos0sin0 + S p sin 0 = 2 (2-la),
12 j

2 2 2 2 2
Dp cos 0 + 2D p cos0sin0 + D p sin 0 = 0 (2-2a).

Solving (2-2a) for the angle 0, we find

0 = Arctan (-2D ± A / 2D ) if D ± 0,

wnere r,^ 2 _ = .a=+ ^(D., -DiD3),

and if D = 0, 0 = (n + 1)W 2.

We substitute these values back into (2-la) and we find for the

values of p ,

P1= t^2/Fi3, p2 =i^2/F23.

Here F^ - ^S^2- {2S3D2 - 2S2D3}{A-D2} -S^D^,

F23 =+V(SiD22-{2S3D2- 2S2D3}{-A-D2} -S^D^ .

Hence, if we let (g, h) be the intersection point, we find these

possibilities:

(g,h) =(± n[2D3/Fi3, ±^2 {A- D2}/F13)

and (2-3)
(g,h) =(+nT2D3/F23 , + ^2{-A-D2}/F23).
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Furthermore, if D3 is zero, we see from the properties of 

symmetry that if D1 is nonzero then equations (2 -la), (2 -2a) 

yield points similar to (2 -3), where only a simultaneous inter- 

change of g and h and of the subscripts 1 and 3 is needed. 

If it happens that D1 is zero and D3 is zero, then equation 

(2 -2a) reduces to 

sin 20 =0 

0 = (n + 1)Tr/ 2, n = 0, 1, 2, 3. 

Therefore (2 -3) reduces to the simple form 

(g, h) _ ( {2 /S1 }, 0) 

and (2 -4) 

(g, h) = (0,± T {2/S3 }) . 

These sets of points (2 -3), (2 -4) are the only points of inter- 

est for this paper. We rule out the rest by noting that the other 

intersection points cannot coalesce. For if D3 is zero and S3 is 

zero then, in view of (2 -1), (2 -2), there are only two finite real 

points of intersection. These are given by 

where 

g=-2D2h/D1, 

h = ± D1/( 2\r{-D212}), 

ij 
= 

A A. 

B. B. 

(2-5) 

i 

, 

i 



Similarly if D1 is zero and S1 is zero we have by (2 -1), 

(2-2) that 

h = -2D2 g/D3 

g = ± D3/( 2NR-D2A23}) . 

13 

(2- 5a) 

Thus item (1) has been found. We recall here that these inter- 

section points are also the critical points for the original equation. 

In the process of finding item (2) we shall also group the re- 

sultant equations and find item (3). Hence suppose at the critical 

point (g, h) we have µ = (DP/ 8x) + (80 /ay) nonzero. We translate 

points (2 -3), (2 -4) to the origin. Let Ti and J. be given by: 

Ti Zig 2Ai 
+1h , 

Ji = - 2Big - 2Bi+ 
1h , 

and suppose the x, y are the new coordinates and N1(x, y), N2(x, y) 

are as previously described. The following types of equations arise: 

d 
T1x + T2y + N1 N1(x, y) 

(A) dx 
Y_ 

J1 x + J 2y + N2(x, y) 
(2 -6) 

and (2 -6) with these modifications; 

1) J1 = J2 = 0 

2) T2= J2 = 0 

(2 -6a) 
3) T1=J1=0 

4) T1= J1 = J2 = O. 

= - 

- 



dy N1( x, y) 
(B) dx Jlx + J2y + N2(x, y) 

and the modified form 

1) J2 = 0 . 

14 

(2 -7) 

Now suppose µ is zero. Then we have equation (2 -6) with 

one form 

1) T2=J2=J1_0 (2 -6b) 

We see that the above forms of the differential equation are 

not generally in the form of (1 -2), (1 -3). Thus we need to know 

that linear transformations exist which will convert them into the 

form of (1-2) and (1 -3). 

Only three transformations are needed, two for the equations 

when µ is nonzero and one for when µ is zero. Let t be the 

parameter of the equation to be transformed and t be the new para- 

meter. 

Then for equations (2 -6), (2 -6a) in the case where µ is 

nonzero we use the transformation of the xy- plane which has the 

matrix 

-L T 

H T 

and the parameter transformation 

1 

2 

t = (T2 + T1/L) t 

(2 -8) 

(2 -8), 

_ 

= 
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where L is the ratio T1 /J1 or T /J2 if either exists and is 1 

otherwise. H is to be 1 if either J1 or J2 is nonzero and H 

is to be zero if both J1 and J2 vanish. 

For equation (2 -7) the corresponding transformation has 

matrix 

and 

0 J 

1 J 

1 

2 

t = (J ) 
1 

t 

(2 -9) 

(2 -9). 

If, however, µ is zero the only transformation needed has 

the matrix 

and 

o 1 

1 -T /T 

t (T1)t 

(2 -10) 

(2 -10). 
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CHAPTER THREE 

COALESCENT POINTS 

Since the graphs of the equations 

N1(x, y) _ p N(x, y) = 1 

are symmetric with respect to the origin, so is the set of inter- 

section points. Thus, if when ß = 1 there is a coalescent point, 

then there is a second coalescent point. These two coalescent 

points are also symmetric with respect to the origin. Further, if 

there is coalescence for 3 = 1, then for suitable ß near one, 

there must be four ordinary points of intersection. 

Thus if for all ß near 1 we have two or zero intersection 

points, then the intersection points for 3 = 1 cannot be coalescent. 

This rules out the point sets (2 -5), (2 -5a). 

Furthermore suppose is the polar coordinate angle of one 

of the coalescent points and that of the other coalescent point. 

A necessary and sufficient condition for coalescence is, from the 

symmetry of the intersection set, sin (cI) - 2) = O. 

We find it easiest to divide the conics into three groups: 

1) A. 4 B. , i = 1, 2, 3; 
i i 

2) A. = B for some, but not all, i and none 
1 i 

of these equal coefficients vanish; 

, 

2,1 

<1/2 
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3) A = B =0 for some, but not all, i.
i i

For the first group we have the points (2-3) to consider. Thus

<b = h /r = M (A-D ), cos cb = g It = M (D.)
Yl 1 1 1 2 1 Sl 1 1 3'

sin

sin <|>2= h?/r2 =M (-A-D ), cos <|> =g2/r2 =M^D^,

where M is a nonzero factor,
i

Therefore

sin (d) - cb ) = 2M M ADV
Yl y2 12 3

Since A, is unequal to B , sin (<b - cb ) vanishes if and only if

A is zero, i. e. ,

For the second group we see that if A equals B and A

is unequal to B , then points (2-3) are again used and the result

is the same as above. If, however, A equals B and A is un

equal to B then by interchange of subscripts and of coordinates

g and h we arrive again at the same result, i. e. ,

sin (<b - cb ) = 2M M AD =0.

This implies

D 2 =D D„.
2 1 3

Now suppose A = B , A = B , and A h B . In this case

we have to use points (2-4) which yield
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sin 1 = 0 = cos 42 , 

cos 43, 1= 1= sin,4) 

Thus sin (43,1 - 2) is nonzero. Hence if coalescence of critical 

points is to occur for conics in group 2 we need D22 
= D1D3 . 

Suppose we have an equation belonging to the last group. We 

have already noted that either Al = B1 = 0 or A3 = B3 = 0 implies 

coalescence cannot occur. Therefore we need only to consider 

A2 =B2 =0. 

We have by the use of points (2 -3): 

sin 41 = MlNj-D1D3) , cos 41 = M1(D3), 

sin 42 = M2(- {- D1D3 }), cos 42 = M2(D3), 

where Mi is as before and A3 is unequal to B3. Thus 

sin (41-2) = 2M1M2D3Nj-D1D3) 

and hence is zero if and only if D1 is zero, i. e. , Al equals B1. 

In a similar manner we find that if Al is unequal to B1 

then sin (4 
1 

- 4D, 2) is zero if and only if D 
3 

equals B3. Again this means D22 = D1D3. 

is zero, i. e. , A3 

Thus we have shown the following to be true; 

Lemma: A necessary and sufficient condition for coalescence of 

intersection points of the two concentric conics N1(x, y) = 1, 

N2(x, y) = 1 is that 
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D22 
= D1D3 , 

where D. = - B. , i= 1,2,3. 
1 i 1 

Suppose we now consider a typical critical point (g, h) of the 

original equation. When we translate this point to the origin we 

obtain the following differential equation: 

d 
T1x + T2y + A1x2 + 2A2xy + A3y2 

dx J1x + J2y + B1x2 + 2B2xy + B3y2 

where, as before, 

and 

Ti=(-2Aig - 2Ai+1 h) 

Ji ( -2Big 213i.+1 h ) for i = 1, 2 . 

(2 -6) 

To this equation we apply the appropriate transformation 

which was previously found; it is changed into either (1-2) which 

is explicitly 

y + K1x2 + K2xy + K3y2 

dx R1x2 + R2xy + R3y2 

or (1 -3) which is explicitly 

d 
R1x2 + R2xy + R3y2 

Y 
dx 

y + K1x2 + K2xy + K3y2 

(3 -1) 

(3 -2) 

For us the R. , K. are expressible in terms of T. , J. and 
1 1 1 1 

they will be dealt with later. Recall here that what we are heading 

= 
1+1 

Y 

- 

AY _ 



20 

for is the evaluation of the smallest exponent in the equation 

Rlx2 + R2x (x) + R3 2(x) = 0 , 

where 4'(x) is the explicit function for 

2 
y +K1x +K2xy +K3y 2 =0, 

cf.lemma II, chapter one. 

Thus for K3 nonzero we can apply the quadratic formula to 

the last equation and obtain for the explicit function: 

-(K2x + 1) ± 'f(K2x + 1) 2 - 4K3K1x2 

2 K3 

We expand the radical in a Maclaurin series and obtain: 

(x) = -Klx2 + K1K2 x3 - {2K1K22 + 2K1 K3} 
2 

x4 + . . . (3-3) 

If K3 is zero we find the explicit function to be: 

3 
Ox) = - Klx2 + K1K2x - K1K2x + . . 

by use of the binomial expansion. 

(3 -3a) 

We note, that if K1 is zero then 4'(x) is identically zero, 

and that if x is zero then 4'(x) is again zero. Hence this explicit 

function has the desired properties. 

Furthermore, with 4'(x) now determined, we may compute 

the function F (x) (as in lemmas II and III) to be 

1 

1 

(x) - 

1 



T (x) =R x2 + R x {-K x2 +K K x + . . . }
JL <— 1 XL-

+R3 {-KiX2+ KiK2x3 +. . . }2 .

21

(3-4)

Hence if \i is nonzero we only need to examine the numbers

K . R , R . However when |jl is zero we need the representation
J. J. £

of the function \ (x). Upon considering lemma IV we find it to be

Y [x, t(x)] ={2Ki +R2} x+ {K2+ 2R3) $(x) (3-5)

If |x is zero we need to know the value of R in addition to

K , K , R . But we shall always examine R first, since, from
J. £* Ct 1

Theorem B, if R is nonzero the critical point is always degener

ate.
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CHAPTER FOUR

INTEGRAL CURVES FOR ji NONZERO

In this chapter we consider the class of integral curves in

the case

[L = (8P/8x) + (8Q/8y)

is nonzero. We apply transformation (2-8) to equations of form

(2-6), (2-6a) to reduce to form (3-1). We find

1) R is a multiple of R where

R1 =T22(Ai-LBi)+TiT2(2LBz-2A2)

+Ti2(A3-LB3):
2) K is a multiple of K where

— 3 3 2
K=T A+TB+TT(B-2A)

1 2 1 11 2 11 2

+Ti2T2(A3-2B2);
3) P is a multiple of R where

R~ = T L(B + LB ) - T (A + LA )
2 2 1 2 2X 1 2

+ TX(A2 + LA3) - TjL (B2 + LB3).

In chapter three we have divided the conies into three groups;

we first consider group 3), A. = B = 0 for some, but not all, i;
l i

then group 2), A. = B. for some i and none of these equal coeffi

cients vanish; and finally group 1), A. h B. for all i.
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We suppose A2 = B2 = 0. Then we know, from the conditions 

for coalescence, that either D1 is zero or D3 is zero. Assume 

D1 is zero. Then the critical points (2 -3) become 

(g, h) _ ( ± r\f-2 D3/F13 , 0 ) . 

Therefore T = 0 and 

Henc e 

L = T /J 
1 1 

= (A1h)/(B1h) = 1. 

R1=T12(A3-B3)4 0. 

Now we assume D3 is zero. Then the critical points are 

found to be 

Thus 

Again we have 

(g, h) = (0, ± \r2 D1/F31) . 

T = 0 and 
1 

L = T2/ J2 = (A3h )/(B3 h) 

1=1 = T22 (Al - B1) 4 0. 

= 1. 

If we now suppose that A2 = B2 4 0 then the only alteration 

needed in the above work would be : (a) for D1 being zero then 

T2 is no longer zero but all else holds; (b) for D1 nonzero then 

T1 is nonzero but everything else is valid. 

2 
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Thus we can state that for groups 3) and 2) , i. e. , Ai = Bi 

for some but not all i, if coalescence occurs and µ= (aP /â *+(7Q /ay) 

is nonzero then the exponent k of Theorem A is even. 

Suppose we are now concerned with an equation in group 1), 

A. 4 B. for all i. Then the critical points (2 -3) become 

(g, h) = (+ Nr2 D3/F13 , ± Nr2 (-D2)/F13) . 

We first note that when A2 B2 then T2 = J2 and they are 

dependent upon the value of 
d23 

= A2B3 - B2A3. For if we consider 

the representation of T2 and J2 we find: 

and 

T2 = -2 (A2g+ A3h.) 

= -2 (± Nr2/F13) (A2D3 - D2A3) 

+2 (± Nr2/F13) 
(A23) 

J2 = -2 (± ^[2 /F13) (B2D3 - D2B3) 

+ 2 (± f2 /F13) (d23) . 

But we also have T1J2 = J1 T2 since D = T1J2 - J1T2 = O. 

Thus Tl = Jl when A2 4 B2 . 

At this point we divide the work into two cases according to 

whether 
6.23 

is nonzero or zero. 

If A23 is nonzero we have 

L = T1 /J1 = T2 /J2 = 1. 

= 

6 

= 
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Hence 

R1 = T22D1 - 2T1 T2D2 + TI 2D3 

= Dl (T2 - D2T1/D1) 2 

upon completing the square. Inserting the values of Tl, T2, we 

have, upon arrangement, 

R1 = 8D1(A2{D3D1+D22} - A3D2D1 -A1D2D3)2/FI32 

- 8D (A {D D -D22) -ADD -A D D + 2A D 
2) 2/F 2 

1 2 3 1 2 3 2 1 1 2 3 2 2 13 ' 

We substitute the values for the D, to get 

1 
= 8D1D22(2{A22-A1A3}+A3B1+A1B3 - 2A2B2)2/F132 . 

However since D22 = D1D3 we have 

2A2B2 - A3B1 - A1B3 = (A22 - A1A3) + (B22-BIB3). (4-1) 

Insert this in R1 ; this yields 

R1 = 8D1D22( {A22- A1A3} - {B22-B1B3})2/F132 

At this stage we have determined the following: when A. B. 

for all i and 023 is nonzero, R1 is zero if and only if 

2 2 
A2 - AlA3 = B2 - B1B3 . 

Rl 

1 
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Note that when A is nonzero, so is T .

But we next show that if A is nonzero then

A22-AlVB22-BlV
Consequently we shall conclude that when A. ^ B. for all i and

T is nonzero, then R is nonzero.

Now if we consider the values of T and J we find

Ti =-Z(±^Z/Fi3)(D3Ai-D2A2)

=-2(±^/Fi3)(A2B2-AiB3-{A22-AiA3})

and

Jj =-2(i NT2/F13) (B2A2 - BiA3 - {B22 - BlB3}).

Since T = J we haves
1 1

(A22-A1A3)-(B22-B1B3)=A3B1.A1B3

= A31-

Thus our problem is reduced to showing that A _ nonzero

implies A is nonzero. We assume A _ is nonzero but A- is

zero and show a contradiction.

Since A is zero, equation (4-1) implies that

h2 - A!A3 • A2B2 " A1B3 '

or

AD - A D0 = 0.
2 2 13
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Multiplying by Dl and setting D1D3 = D22 we have, 

A DD 
1 

-AD 
2 
2= 0. 

Hence 
D2Á21 

is zero. Since D2 is nonzero, then 
A21 

is zero. 

Obviously if this is so then o is zero because 031 is zero. 

This contradicts our assumption. Thus if 
A23 

is nonzero then R1 

is nonzero also. This completes the discussion in case 023 is 

nonzero. 

We now suppose 
A23 

is zero. Then T2 and J2 are zero. 

We first assume that T1 is nonzero. From 
A23 

have 

A2/B2 = A3/B3 . 

Then because L = T1 /J1 we find 

1 
= 

T12 
(A3 - B3T1/J1) 

= T12B3 (A3/B3 -T/ J1) . 

Therefore R1 is zero if 

A3/B3 = T1/ J1 = A2/B2 . 

But then we have 

being zero we 

R2 = T1(A2 + A3T1/J1) - (T 
1 
2/ J1)(B2+ B3T1/J 

1 
) 

= (T 
1 

2/ J1)(A2{B2/A2}+A3) - (T12/ J1)(B2+ B3{A3/B3}) 

= 0 . 

2 2 1 

R1 



Since R1 and R are zero and P2(x, y) is nonzero, we 

conclude that R3 is nonzero. 
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Also we see that our explicit function 

.1(x) is not identically zero because 

= T13B3 A 0 as B3 4 0. 

We note that if B3 were zero then 

R1 = A J 
3 1 

4 0 . 

Thus whether B3 vanishes or not we find the exponent k 

even under the assumption that T1 is nonzero. 

to be 

We now assume T1 is zero and still assume 
A23 

is zero. 

Then we use the appropriate transformation on (2 -7), i. e. , the 

equation where T1 = T2 = 0. We find the altered equation to be 

y + x2B3/ J1 + 2xy B2/ J1 + y2 B 1/ J1 

x2A3/J1 3/J1 + 2xy A2/ J1 + y2A1/ J1 

y + x2K1 + 2xy K2 + y2K3 

x2R + 2xy R2 + y2 R3 

Thus we have new descriptions for R1, R2, K1 obtained by iden- 

tifying coefficients in the two forms above. 

Because 
X23 

is still zero, we have the three possibilities: 

1) B2 = B3 = 0, 2) AZ = A3 = 0, 3) A2B3 - A3B2 = 0, 

A. 0, B. 0. 
i i 

K 
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Suppose we have the first possibility. Then, as we are in 

the case Ai not equal to B., A2 is nonzero and A3 is nonzero. 

Therefore 

Rl = A3/ A3/Jl 4 0 . 

Suppose now that we consider the second possibility. Then 

B2 is nonzero and B3 is nonzero. Hence we immediately obtain: 

Rl and R2 are zero and R3 is nonzero. Also 

K1 = B J1 
3/ 4 O. 

For the last case we suppose A3 nonzero and B2A3 = A2B3. 

Then we again have 

R1 =A3/Jl A3/Jl 4 O. 

Therefore we find that if T1 = T2 = J2 = 0 the exponent k 

is again even. 

In summary, we have so far shown that if µ is nonzero, the 

exponent k of Theorem A is even. Hence when µ is not zero, 

the critical point is a simpler saddle -node. 

1 
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CHAPTER FIVE 

INTEGRAL CURVES FOR µ ZERO 

We again consider the original equation after a translation 

which sends a coalescent critical point to the origin. However we 

now have the condition that 

= (aP/ax) + (8Q/8y) = 0 . 

We use transformation (2-10) to convert it into an equation of 

form (1 -3). 

We find that under this transformation the values of R1, R2, 

R3, K and KZ are as follows: 

R1 = ( [ 
T22{B1T1+ T2A1}/T14] - [ 2T2{B2T1+A2T2}/T13] 

+ [ {B3T1 + T2A3}/T12] 

R2 = 2[ {B2T1+A2T2 }/T12] _ 2 [ T2{B1T1 + T2A1}/T13] ; 

R3 = (B1T1 + T2A1)/T12 

K1 = ({A1T22/T12} - 2A2{T2/T1} + A3)/T1 ; 

K2 = ({ -2A1T2/T1} + 2A2)/T1 . 

Again we divide the conics into three groups, 1) A. 4 B. for 

all i ; 2) A. = B. for some i and none of these coefficients 

µ 

+ 
2 1 1 2 1 2 Z 

i 
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vanish; and 3) A. = B. = 0 for some, but not all, i . 

We first suppose that A2 = B2 = 0, i. e. , D2 is zero. Then 

we have, cf. chapter four, either Dl is zero or D3 is zero. 

Assume D1 is zero. As in the case where µ was nonzero, and 

from the dependence of T on 023 , we have T2 is zero. But 

µ being zero implies that 12 = J1 = O. However we have the repre- 

sentation of J1 
1 

as (- 2B1g). As we know that the g coordinate is 

nonzero we find that 

B 
1 

= 0 = Al since D1 is zero. 

But we have already seen that A2 = B2 = Al = B1 = 0 does not 

yield a coalescent point. 

Now we assume D1 is nonzero. The g coordinate of the 

critical point is zero and this yields the fact that J1 is zero. This 

and the vanishing of N. implies that T2 is zero. But T2 equal 

zero implies that A3 = B3 = 0 = A2 = B2 and again coalescence 

cannot occur. 

Thus we have shown that if A2 = B2 = 0 and µ = 0 then 

coalescence does not occur. 

We now suppose that A2 = B2 4 0, i. e. , we suppose we have 

an equation in group 2. If we assume that D1 is zero this will 

yield the same critical points as above. Since the h coordinate is 

now zero and since Al equals B1 we find that T1 equals J1. 
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But p. = T2 +J1 =0 implies T1 = J1 = - T2, 

Substituting these facts into our formula for R1 we find 

R1 = (-D3/T1) A O. 

On the other hand if we assume that D1 is nonzero then our 

critical point has the g coordinate zero. Then, because µ is 

zero, we find that 

Thus 

1 
= -2B 2h = -T2 = 2A3h . 

-B2 = A3 and hence AZ = B 
2 

= -A3 = -B3 

Therefore we see that T1 = -2A2h = -T2. 

Again, substitution into our formula for R1 reveals 

R1 = (-D1/T1) A o. 

Therefore we see, in light of Theorem B, that if Di = 0 for 

some i and if coalescence of critical points occurs under the con- 

dition p. = 0, then the critical point (g, h) formed by this coales- 

cence is a degenerate point, i. e. , the exponent k of Theorem B 

is even. 

Suppose we now are in the last group where Ai is not equal to 

Bi for all i. In chapter four we found that T2 = J2, T1 = J1 

when A2 does not equal B2. Hence if we use the condition 

zero we have the equality 

T2 = J2 = -T1 = -J1 O. 

is 

. 

P. 

1 
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Therefore upon substitution and rearrangement we see that 

R1 = (T2D1 + 2T D 
2 

+ T2D3)/TI2 

= -({D22/D3} + 2D2 + D3)/T1 

= -(D2 + D3)2/T1D3 . 

Hence we have RI is zero if and only if D2 = -D3. But since 

D22 = DID3 this implies D2 = -D3 = -D1 if R1 is to be zero. 

We suppose R1 is nonzero; hence D2 + D3 is nonzero. 

Then we conclude that the exponent k equals two and therefore 

the critical point is a degenerate point. 

If, however, we suppose D2 = -D3 = -D1 then R1 
1 

is zero. 

But when we substitute into our formula for R2 we get 

R2 = 2(T2D1 + T2D2)/TI2 = 0 . 

Thus we deduce, since P2(x, y) is nonzero, that R3 is nonzero. 

Since we are in the case where µ = 0 we need to examine the value 

of K . 

I 
We find that 

K1 = (Al + 2A2 + A 
3 
)/T 

1 
. 

Let us consider the consequence of T1 being nonzero. Since 
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T1 =-2(1 ^2/Fi3) (AlD3 - AzD2)

= -2(1 ^2/F13) (D3{Ai +A2})

h 0

we see that (A + A ) is nonzero.

Likewise since

Tl + T2 = -2<±^F13> <D3^A1 +A2> + D2{A2 +A3»

is zero we see that

Al • A3 '

Hence

Ai + 2Az+ A3 = 2(Ai + A2)

is nonzero and so K is nonzero also.
1

Then we have the functions r (x) and \ (x) represented by

the expansion (3-4) and (3-5)

2 4
T(x) = RK x + . . .

4
= A x + . . . and

\ (x,*(x)) =x(2K1) +. .

= A x + . . .

Thus we have k = 4, n = 1, A nonzero and by Theorem B
n

these are the conditions for a saddle-node.
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So we see that if coalescence of critical points occurs and u

is zero then except for one case a degenerate point arises. In the

exceptional case, where D = -D = -D , we have a saddle-node

at the critical point.
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CHAPTER SIX 

SUMMARY OF RESULTS 

Before we summarize it would be advisable to show that a 

coalescent point is indeed a compound point. To do this we con- 

sider our original equation 

Alx2 + 2A2xy + A3y2 - 1 Q(x, y) 
ax 

B x 2+ 
1 

2B 2xy + - 1 P( x' y) 

Then since D = (8P /8x)(8Q /8y) - (8Q/ax)(aP/ay) we have upon 

D 

substitution and rearrangement 

= (2B Ix + 2B2y ) ( 2A 2x + 2A3y) 

- (2Alx + 2A y) (2B2x + 2B3y) 

= 4{x2(A2B1 B2A1) + xy(A3B1 - B3A1)+y2(A3B2-B3A2)) 

where (x, y) is the critical point. 

Now in the study of our conics we found that for coalescence 

we needed D22 
= D1D3. Also for simplicity we divided the conics 

into the three groups, 1) A = B = 0, 2) A2 = B 4 0, 3) A2 4 B2. 

We first suppose A2 = B2 = O. Then we see that 

D = 4xy (A3B1 - B3A1) . 

_ 

- 
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But the critical point (x, y) is of the form (x, 0) if D1 is zero or 

of the form (0, y) if D1 is nonzero. In either case the value of 

D is zero and hence the coalescent critical point is compound. 

We now suppose we have an equation corresponding to the 

second group, in which A2 = B2 4 O. Again the critical point has 

the form (x, 0) or (0, y). If we use (x, 0) then we have D1 = 0, 

i. e. , Al = B1 . But the value of D is 

Likewise D 
1 

D = 4x2 (A2B1 - B2A1) 

= 0 since Al = B1, = B2 . 

is nonzero if (0, y) is used and then D3 

coalescence and hence 

Hence 

D = 4y 2 (A3B2 - B3A2) =0. 

So finally suppose A2 does not equal B2. Then 

(x, y) = (+ D3 \[2/F13 , + D2N2 /F13) . 

is zero at 

D = 8{D3221-D3D2,631+D2232}/F132 

=-8D3 

D1 

A1 

B1 

D2 

A2 

B2 

D3 

A3 I 

B3 

2 /F13 

A2 
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Since the first row is the difference of the second and third rows, 

D = O. Thus coalescence of critical points does indeed yield a 

compound point. 

We summarize: 

Theorem: Given a differential equation 

in which 

Set 

dy Q(x, y) 
dx P(x, y) 

Q(x, y) = A1x2 + 2A2xy + A3y2 - 1 

P(x, Y) = Blx2 + 2B2xy + B3y2 - 1 . 

Di = Ai - B, i = 1, 2, 3 . 

i 

There is coalescence of simple critical points into compound criti- 

cal points if and only if 

2 
D2 = D1D3 . 

If D1 4 D2 and if at the critical point in question we have 

then the compound critical point is degenerate. In all other cases 

the compound critical point is a saddle -node. 

, 

i - i 

aP 
Q 

+ ay 
0 , 
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