
AN ABSTRACT OF THE THESIS OF

Shawn M. Larson for the degree of Doctor of Philosophy in Computer Science pre­

sented on May 4, 1995.

Title: A Linear Equation Model for a Family of Interconnection Networks

Abstract approved.

Dr. Paul Cull

The most important part of parallel computation is communication. Except

in the most embarassingly parallel examples, processors cannot work cooperatively

to solve a problem unless they can communicate. One way to solve the problem of

communication is to use an interconnection network. Processors are located at nodes

of the network, which are joined by communication channels. Desirable aspects of

an interconnection network include low maximum and average routing distances (as

measured in the number of communication channels crossed), a large number of

processors, and low number of communication channels per processor.

A number of published networks are created from the hypercube by rearrang­

ing the hypercube's communication links in a systematic way [23] [28] [30] [33] [50].

These networks maintain the same number of processors, communication links, and

links per processor as the hypercube, but have dramatically smaller maximum and

average routing distances.

This thesis derives one formal mathematical description for this family of

networks. This formal description is used to derive graph-theoretic properties of

existing networks, and to design new networks. The description is also used to

Redacted for Privacy

design generalized routing and other communications algorithms for these networks,

and to show that these networks can embed and simulate other standard networks,

for instance, ring and mesh networks.

A network simulator is used to model the dynamic behavior of this family of

networks under both store-and-forward and wormhole routing strategies for message-

passing. The simulation results are used to study and compare the networks' be­

havior under various message-passing loads, and to determine what properties are

desirable in a network that exists in this model.

©Copyright by Shawn M. Larson

May 4, 1995

All rights reserved

A Linear Equation Model for a Family of Interconnection Networks

by

Shawn M. Larson

A Dissertation

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Completed May 4, 1995

Commencement June 1995

Doctor of Philosophy thesis of Shawn M. Larson presented on May 4, 1995

APPROVED:

Major Professor, representing Computer Science

Head of Department of Department of Computer Science

Dean of Graduate ool

I understand that my thesis will become part of the permanent collection of Oregon

State University libraries. My signature below authorizes release of my thesis to any

reader upon request.

Shawn M. Larson, Author

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

1

ACKNOWLEDGEMENT

I want to thank everyone who helped me with my research, especially my

wife Yu-Hsi, who continually encouraged me to finish, and my major professor, Dr.

Pall Cuul, who was patient enough to put up with my procrastination and many

misspellings.

ii

TABLE OF CONTENTS

1 INTRODUCTION AND MOTIVATION 1

1.1 INTRODUCTION 1

1.2 MOTIVATION 5

1.3 PREVIOUS WORK ON RESOURCE PRESERVING VARIANTS 6

1.4 SIGNIFICANCE OF RESEARCH 12

1.4.1 The Need for a Formal Description 13

1.4.2 The Need for Comparative Evaluation 14

1.5 OVERVIEW 15

2 DEFINITION OF LINEAR EQUATION NETWORKS 17

2.1 NETWORK DEFINITIONS 17

2.1.1 Double Matrix Networks 18

2.1.2 Linear Equation Networks 20

2.1.3 Neighbor Description of LE Networks 22

2.1.4 Definitions 24

2.2 NETWORKS IN THE LE NETWORK MODEL 26

2.2.1 Existing LE Networks 27

2.2.2 New LE Networks 33

2.3 NETWORKS THAT ARE NOT LE NETWORKS 35

2.4 SUMMARY 39

3 NETWORK PROPERTIES 40

3.1 CHANNEL PROPERTIES OF LE NETWORKS 40

iii

3.2 CONNECTEDNESS OF LE NETWORKS 50

3.2.1 Path Existence 53

3.2.2 Network Connectedness 60

3.3 PROPERTIES OF LTLE NETWORKS 61

3.3.1 Channel Properties 61

3.3.2 Connectedness 62

3.4 SUMMARY 65

4 NETWORK ISOMORPHISM 67

4.1 ISOMORPHISM OF LE NETWORKS 67

4.1.1 Basic Network Isomorphisms 70

4.1.2 The Complexity of Network Isomorphism 77

4.2 ISOMORPHISM OF LTLE NETWORKS 81

4.3 MINIMUM-WEIGHT ISOMORPHISMS FOR LTLE NETWORKS 87

4.4 SUMMARY 90

5 ROUTING ALGORITHMS FOR DM NETWORKS 91

5.1 DEFINITION OF MINIMAL EXPANSIONS 91

5.2 USING MINIMUM EXPANSIONS TO ROUTE ON DM NETWORKS 93

5.3 INTRACTABILITY OF THE MINIMAL EXPANSION PROBLEM . 94

5.4 A MINIMAL EXPANSION ALGORITHM FOR LTDM NETWORKS 95

5.5 A LTDM NETWORK ROUTING ALGORITHM 103

5.6 NONREDUNDANT MINIMAL EXPANSIONS 106

5.7 SUMMARY 114

iv

6 ROUTING ALGORITHMS FOR LE NETWORKS	 115

6.1	 THE COMPLEXITY OF ROUTING IN LE NETWORKS 116

6.2	 LEGAL EXPANSIONS 125

6.3	 A MINIMUM LEGAL EXPANSION ALGORITHM FOR LTLE NET­
WORKS 132

6.4	 A MINIMAL LTLE NETWORK ROUTING ALGORITHM 138

6.5	 NONREDUNDANT MINIMAL LEGAL EXPANSIONS 143

6.6	 DETERMINISTIC MINIMAL LEGAL EXPANSIONS 148

6.7	 SUMMARY 149

7 NON-MINIMAL AND WORMHOLE ROUTING ALGORITHMS FOR LE

NETWORKS 150

7.1 NON-MINIMAL ROUTING ALGORITHMS FOR LE NETWORKS 150

7.1.1 The Left-Right Bit Correction Algorithm	 151

7.1.2 The Three Bit Lookahead Algorithm	 156

7.1.3 Extending the Three Bit Lookahead Algorithm	 168

7.2 WORMHOLE ROUTING ALGORITHMS FOR LE NETWORKS ...170

7.2.1 An Introduction to Wormhole Routing	 171

7.2.2 Virtual Channels	 176

7.2.3 Minimal Wormhole Routing Algorithms	 182

7.3 SUMMARY	 185

8 EMBEDDINGS AND EMULATIONS FOR LE NETWORKS	 187

8.1 PREVIOUS RESULTS	 187

8.2 EMBEDDINGS	 188

8.2.1 Hamiltonian Circuits and Ring Networks	 190

V

8.2.2 Binomial Trees 192

8.2.3 Binary Trees 194

8.2.4 Meshes 200

8.3 LE NETWORK EMULATIONS 201

8.3.1 Emulating LE Networks on Hypercubes 202

8.3.2 Emulating Hypercubes on LE Networks 205

8.3.3 Emulating Other Networks on LTLE Networks 213

8.4 SUMMARY 215

9 ALGORITHMS FOR LE NETWORKS 216

9.1 BROADCASTING ALGORITHMS 216

9.2 GENERAL ALGORITHMS 225

9.3 RECONFIGURABLE NETWORKS 228

9.4 SUMMARY 232

10 STATIC PERFORMANCE MEASURES FOR LE NETWORKS 234

10.1 STATIC MEASURES FOR LE NETWORKS 235

10.1.1 Lower Bounds on Minimal Diameter 236

10.1.2 Upper Bounds on Minimal Diameter 238

10.1.3 Lower Bounds on Maximal Diameter 241

10.1.4 Upper Bounds on Maximal Diameter 244

10.2 STATIC MEASURES FOR LTLE NETWORKS 247

10.2.1 Bounds on Minimal Diameter 247

10.2.2 Bounds on Maximal Diameter 252

10.2.3 Bounds on Expected Distance 252

10.2.4 Bisection Width 255

vi

10.3 CONCLUSIONS 256

11 DYNAMIC PERFORMANCE OF LE NETWORKS 258

11.1 DYNAMIC PERFORMANCE MEASURES 258

11.2 THE SIMULATION 260

11.2.1 Simulation Messages 262

11.2.2 Simulation Channels 264

11.2.3 Message Generation 264

11.3 SIMULATION RESULTS 267

11.3.1 Store and Forward Routing Strategy 267

11.3.2 Wormhole Routing Strategy 279

11.3.3 Conclusions 288

12 CONCLUSION 290

12.1 RESEARCH ACCOMPLISHED 290

12.2 OPEN PROBLEMS 292

12.3 FUTURE WORK 293

12.4 EVALUATION 295

12.5 REFERENCES 298

vii

LIST OF FIGURES

Figure Page

1.1 The three-dimensional hypercube Q3.	 2

1.2 The Twisted 3-Cube TQ3.	 3

1.3 The channel utilization of the 3-Cube	 4

1.4 The channel utilization of the Twisted 3-Cube.	 4

2.1 A (2,2)-MCube that is not a LE network.	 39

3.1 Algorithm ReflexiveChannel.	 44

3.2 Algorithm Redundant Channel	 45

3.3	 Algorithm Reciprocal Channel . 47

3.4	 A disconnected 3-cube 51

3.5	 A weakly connected 3 -cube. 51

3.6	 A disconnected 3-cube using restricted reciprocal channels. For in­
stance there is no path from 000 to 111. 52

3.7	 The construction of a LE network from an instance of 3SAT. 59

4.1	 Algorithm GaussianReduceNetwork. 75

4.2	 Two directed hypercubes 79

4.3	 Algorithm MinimumWeightlsomorphism 88

5.1	 Algorithm Expansion Tree. 97

5.2	 An expansion search tree between addresses X = (11011) and Y =

(10110) on a 5-dimensional Folded Hypercube. The minimal path is

shown in bold. 98

5.3	 Algorithm DoubleMatrixRoute. 104

5.4	 Algorithm NonredundantExpansionTree . 112

viii

5.5 A nonredundant expansion search tree between addresses X =

(11011) and Y = (10110) on a 5-dimensional Folded Hypercube. We

include the vertices of the redundant expansion for comparison. 113

6.1	 Algorithm ConstructTransformPath. 120

6.2	 The transformation of an instance of DV to DV-DAG. 124

6.3	 Algorithm ConstructRoutePath 128

6.4	 Algorithm LegalExpansionTree 134

6.5	 Algorithm LegalExpansionTree (continued). 135

ti

6.6 A legal expansion search tree between addresses)? = (1000000) and

Y = (1101010) on a 7-dimensional 1-MObius Cube. 136

6.7	 Algorithm LinearEquationRoute 139

6.8	 Algorithm NonredundantLegalExpansionTree 146

6.9 A nonredundant legal expansion search tree between addresses)? =

(1000000) and Y = (1101010) on a 7-dimensional MObius Cube. The

minimal path is shown in boldface. 147

7.1	 Algorithm LeftRightBitCorrectRoute. 151

7.2	 Algorithm ThreeBitLookaheadRoute 159

7.3 A cycle of dependency in the Twisted 3 -Cube.	 174

7.4	 Algorithm WormHoleThreeBitLookaheadRoute. 179

7.5	 Algorithm NaiveWormholeMinimalRoute. 184

8.1	 A Hamiltonian circuit on the 4-dimensional 0-Mains cube. 190

8.2	 The binomial tree of order 4. 193

8.3 A Twisted 3-Cube with an embedded 7 node binary tree. The tree is

indicated by the solid lines, and the root is circled. 197

8.4	 The inductive step of Chedid and Chedid's proof to embed a binary

tree. 197

8.5	 Construction of a single-rooted Tri tree from two double-rooted Tn_1

trees on a LE network 199

8.6	 Algorithm HypercubeEmulate 206

ix

8.7 Algorithm LimitedHypercubeEmulate 210

9.1 Algorithm SingleChannelBroadcast 218

9.2 Algorithm MultipleChannelBroadcast 220

9.3 Broadcasting in two steps on a Twisted 3-Cube. 221

9.4 Algorithm ThreeBitBroadcast 223

9.5 Algorithm ThreeBitBroadcast (continued). 224

9.6 A reconfigurable switch 229

10.1 A five-dimensional network with an 0(n2) diameter 242

10.2 A four-dimensional network with a diameter of 12. 244

11.1 The model of a network node used in the simulation. 260

11.2 Message latencies for Algorithm LeftRightBitCorrectRoute, using the

store-and-forward routing strategy. 268

11.3 Message latencies for Algorithm NonRedundantMinimalRoute, using

the store-and-forward routing strategy. 269

11.4 Message latencies for Algorithm ThreeBitLookaheadRoute, using the

store-and-forward routing strategy. 270

11.5 Channel utilization rates for the Hypercube, using Algorithm Left-

RightBitCorrectRoute and the store-and-forward routing strategy. . . 272

11.6 Channel utilization rates for the Twisted Cube, using Algorithm

NonRedundantMinimalRoute and the store-and-forward routing

strategy. 273

11.7 Channel utilization rates for the Twisted Cube, using Algorithm

ThreeBitLookaheadRoute and the store-and-forward routing strategy. 273

11.8 Channel utilization rates for the Generalized Twisted Cube, using

Algorithm NonRedundantMinimalRoute and the store-and-forward

routing strategy 275

11.9 Channel utilization rates for the Generalized Twisted Cube, using Al­
gorithm ThreeBitLookaheadRoute and the store-and-forward routing

strategy. 275

11.10Channel utilization rates for the Bent Cube, using Algorithm NonRe­
dundantMinimalRoute and the store-and-forward routing strategy. . . 276

11.11Channel utilization rates for the Bent Cube, using Algorithm Three-

BitLookaheadRoute and the store-and-forward routing strategy 277

11.12Channel utilization rates for the 1-MObius Cube, using Algo­
rithm NonRedundantMinimalRoute and the store-and-forward rout­
ing strategy. 277

11.13Channel utilization rates for the 1-Mobius Cube, using Algorithm

ThreeBitLookaheadRoute and the store-and-forward routing strategy. 278

11.14Message latencies for Algorithm NonRedundantMinimalRoute, using

the wormhole routing strategy 280

11.15Message latencies for Algorithm ThreeBitLookaheadRoute, using the

wormhole routing strategy 281

11.16Message latencies for Algorithm LeftRightBitCorrectRoute, using the

wormhole routing strategy 281

11.17Channel utilization rates for the Hypercube, using Algorithm Left-

RightBitCorrectRoute and the wormhole routing strategy. 283

11.18Channel utilization rates for the Twisted Cube, using Algorithm

NonRedundantMinimalRoute and the wormhole routing strategy. . . . 283

11.19Channel utilization rates for the Twisted Cube, using Algorithm

ThreeBitLookaheadRoute and the wormhole routing strategy 284

11.20Channel utilization rates for the Generalized Twisted Cube, using
Algorithm NonRedundantMinimalRoute and the wormhole routing
strategy. 284

11.21Channel utilization rates for the Generalized Twisted Cube, using Al­
gorithm ThreeBitLookaheadRoute and the wormhole routing strategy. 285

11.22Channel utilization rates for the Bent Cube, using Algorithm NonRe­
dundantMinimalRoute and the wormhole routing strategy. 286

11.23Channel utilization rates for the Bent Cube, using Algorithm Three-

BitLookaheadRoute and the wormhole routing strategy. 286

11.24Channel utilization rates for the 1-MObius Cube, using Algorithm

NonRedundantMinimalRoute and the wormhole routing strategy. . . . 287

xi

11.25Channel utilization rates for the 1-Mobius Cube, using Algorithm
ThreeBitLookaheadRoute and the wormhole routing strategy 287

xii

LIST OF TABLES

Table Page

1.1	 Diameter, expected distance, number of twists and routing algorithm

run time of hypercube variants. 8

7.2	 A routing table for the Twisted 3 -Cube. 156

7.3	 Expected Distances of the 3-bit lookahead algorithm. 165

7.4	 Minimal Channel Utilization of the 3-bit lookahead algorithm. 169

7.5	 A wormhole routing table for the Twisted 3 -Cube. 177

8.6	 The embedding of networks for hypercube variants, and the constant

factor of dilation for hypercube emulation. 188

8.7	 Timing stages for each type of path. 212

A LINEAR EQUATION MODEL FOR A FAMILY OF

INTERCONNECTION NETWORKS

1. INTRODUCTION AND MOTIVATION

We introduce the Twisted 3-Cube, and explain the motivation behind creat­

ing hypercube variant networks. We describe several known generalizations of the

Twisted 3-Cube. We explain the need for creating a unified description of these

networks, and outline our research.

1.1. INTRODUCTION

An interconnection network unites many processors to form a parallel com­

puter. Each processor can communicate directly only to a small number of neigh­

bors. Each processor can communicate with all other processors by forwarding

messages through its neighbors.

The design of large-scale multicomputers has two conflicting goals: a large

number of nodes and a low communication delay (or latency) between any two

processing nodes. In addition, engineering constraints require uniformity, such as a

fixed number of channels per node, reuse of processing elements at each node, etc.

The n-dimensional hypercube is one of the most popular interconnection

networks. Its popularity is due in part to its highly symmetrical structure and

relatively fast communication between processors. The n-dimensional hypercube

has 2' processors, n communication channels from each processor, and n2' channels

total.

2

000	 001

100	 101

A

110	 111

"1 \\

010	 011

Figure 1.1. The three-dimensional hypercube Q3.

The hypercube compares favorably with other popular interconnection net­

works. For example, the 2-dimensional mesh has been widely used in parallel com­

puters because it has an extremely simple layout and only 4 communication channels

per processor. However, this comes at a cost in communication delay. If N is the

number of nodes in the network, then the diameter of the network (the maximum

routing distance, as measured in the number of communication steps) is VTV for the

mesh network, but only log(N) for the hypercube. This small diameter is a major

attraction for using the hypercube network, because for many networks, a small

diameter implies a small maximum communication delay.

The hypercube network is not the smallest diameter network possible for

the resources it uses. By switching several of the channels, the diameter of the 3­

dimensional hypercube (or Q3) can be reduced from 3 steps to 2 steps, as in Figures

3

Figure 1.2. The Twisted 3-Cube TQ3.

1.1 and 1.2. This is the smallest diameter network that can be achieved with these

resources.

The Twisted 3-Cube (or TQ3) also has an average internodal distance of

1.375 steps, compared to Q3's average distance of 1.5 steps, as averaged over all

possible source/destination pairs.

The utilization of any channel of TQ3 is also less than or equal to the utiliza­

tion of the corresponding channel on Q3. If we use the standard hypercube routing

algorithm on TQ3, and add exceptions for any paths that are shorter, then the

number of paths through any one channel on TQ3 is always less than or equal to

the number through any channel on Q3, as shown in Figures 1.3 and 1.4.

4

000 001

4,.
100 101

4 4 4

110 in
 '\44

010 on

4

Figure 1.3. The channel utilization of the 3-Cube.

Figure 1.4. The channel utilization of the Twisted 3-Cube.

5

If we assume a uniform message-passing distribution, those channels will be

utilized less in TQ3 than they would be in Q3. No channels of the TQ3 will be

utilized more.

1.2. MOTIVATION

A number of researchers have tried to improve upon the hypercube, most with

the goal of reducing the communication delay between processors. These attempts

have led to the creation and assessment of a number of hypercube variant networks.

Most hypercube variants attempt to improve upon the hypercube by adding

processors and/or communication channels. The hypercube often appears as a

squashed or relaxed embedding in these networks [45], [47] [48] [54] [52] [50]. Such

"structure-preserving" variants can often use hypercube algorithms with few modi­

fications. Their major disadvantage is that they use more hardware resources than

the hypercube.

Other hypercube variant networks are "resource-preserving" . They rearrange

the communication paths of a hypercube to create an entirely new network [24] [29]

[31] [34] [51]. These variants have the same resources as the hypercube, but a dif­

ferent network structure. These networks are without exception generalizations of

the Twisted 3-Cube to higher dimensions. Unfortunately, resource-preserving vari­

ants often cannot use algorithms written for the hypercube, because the rearranged

channels destroy the original hypercube structure.

Resource-preserving variants of the hypercube are worth study, because they

seem to give "something for nothing." They show shorter communication delays

than the hypercube of the same size, but without the need for additional resources.

Because improvements in theoretical performance measures can translate into im­

provements in actual performance, study of these variants can lead to actual parallel

6

computers with more efficient communications. Also, existing hypercube comput­

ers may be reconfigured as a resource-preserving variant with little modification of

its hardware. For some systems this reconfiguration may be as simple as re-wiring

the communications channels and rewriting the communications software. The new

network can give better performance with no additional purchase in hardware.

1.3. PREVIOUS WORK ON RESOURCE PRESERVING VARIANTS

The n-dimensional hypercube network (27, is defined by assigning to each

node a unique address from the vector space .2.2 , and allowing a channel between

only nodes X and f iff the Hamming weight of X + f is one, that is, the addresses
ti

je and f differ in only one component.

About a decade ago, Hillis [35] constructed the Twisted 3-Cube in Figure

1.2. Hillis went no further with this observation. But it was obvious that his result

could be generalized in two ways.

The Twisted N-Cube of Estafahanian et al. [31], has only one crossed pair of

communication channels, so that one pair of channels connect addresses that differ

by a Hamming weight of two. This "twist" gives a diameter of n 1. The Twisted

N-Cube's routing algorithm is based on the hypercube's left-right bit correction

algorithm, and has the same 0(n) run time, where n is the dimension of the cube.

Curiously, this network contains not only a Hamiltonian circuit, but also a complete

binary tree of 2' 1 nodes.

The other obvious generalization is to consider an n-dimensional hypercube

as a 3-dimensional hypercube in which all eight nodes are (n 3)- dimensional hyper­

cubes. Then the twist of two channels becomes a twist of the whole set of channels

joining two of the (n 3)-dimensional sub-networks. We can recursively apply

7

twists to the network so that the nodes in Figure 1.2 are now (n 3)-dimensional

"Generalized Twisted Cubes."

This is exactly the construction given by Chedid and Chedid [12] for their

Generalized Twisted cubes. They explicitly define the Twisted 3-Cube, then define

their network GQ7, in higher dimensions by using graph composition. That is:

GQ0 = Qo, GQi = Qi, GQ2 = Q2,

GQ72+3 = TQ3 x GQ

The GQ routing algorithm breaks the addresses of the source and destination

address into groups of three components, and does Twisted 3-Cube routing on each

group of three components. The algorithm routes a message to any destination in

12n/3.1 steps. Its average distance, not computed by the authors, can be calculated

by using a sum of the average distances of the graphs used in the composition:

r n 1I + mod 3).

Chedid and Chedid show that the Generalized Twisted cubes are Hamilto­

nian, and "show" that they contain a complete binary tree of 2n 1 nodes. (The

proof is incorrect.)

Cheng and Chuang [13] have designed essentially the same network with the

Varietal Hypercubes. In addition to showing many of the the same graph-theoretic

properties as Chedid and Chedid did for the Generalized Twisted Cubes, Cheng

and Chuang managed to show the n-dimensional Varietal Hypercubes can embed

an arbitrary 2" x 2q mesh, where p+ q < n.

There are other generalizations of the Twisted 3-Cube. A summary of the

ones we have discovered are listed in Table 1.1, along with their diameter, expected

distance, and number of twisted channels.

I

8

Network Diameter Expected Dist. Number of Routing
Name (Leading Term) Twists Algorithm

Hypercube
Twisted Cube [34]
Twisted N-Cube
1311

n
(Pi
n 1

n
2
3nT

,,,,, a
2

(n
0

1) x 2n-4

2

0 (n)
0(n)

0(n)

Multiply Twisted
Cube [29]
Crossed Cube [30]

rp-i

651n
'" 1890 '

for n = 2k
21n
64 '

for n = 2k + 1

(k 2)22k + 2k+'
forn = 2k

k22k+1 3(22k 2k)

forn = 2k + 1

0 (n2)

Flip MCube [51] Fpi a,...­
3

(n 2) x 2n-1 0 (n2)
0-Mobius Cube
[23

rn-i2-21 ,.., 'I
3

(n 2) x 2n-1 0(n)
1-115bius Cube

F23]
eneralized

Twisted Cube [12]
Twisted
Hypercube [28]

inpi

I-1
3

n 1

,...., n
3

11n
'''' 24

,:..-. n/2 1/8

n2n-1

2n-3-I- NI /31

2n-1

O(n)

0(n)

0(n)

Table 1.1. Diameter, expected distance, number of twists and routing algorithm run
time of hypercube variants.

9

As early as 1987, Hilbers et al. [34] published the Twisted Cube, which

was designed for odd n and had diameter 1(n + 1)/21. Their cube of dimension n

is constructed from 4 sub-networks of dimension n 2. Their solution was to let

half of a sub-network's channels be normal hypercube connections, and half of the

channels be "twisted" connections. As in the hypercube, each node has a unique

address in A normal connection between nodes is made by connecting a node

with address X to a node with address fe + ei, where ei is the vector with a single

1 in the i-th component. Similarly a twisted connection is made by connecting je

to a node with address je + ei + ei+i.

For 0 < j < n/2, the (2j 1)-th connections are all hypercube connections.

The type of the (2j)-th connection is based on the parity of the node's address in

components 2j through n. A hypercube connection is made if the parity is odd, and

a cross connection is made if the parity of the remaining bits is even.

The diameter of the Twisted Cube is at least (n + 1)/2 since at most 2 bits

are corrected at each step. Hilbers shows that the diameter is exactly (n + 1)/2 by

giving an exact routing algorithm that finds a path between any pair of nodes.

Abraham and Padmanabhan ([2] and [1]) compute the expected distance of

the Twisted Cube, and compare the dynamic performance of the Twisted Cube and

the hypercube. A stochastic simulation of the Twisted Cube in [1] shows that it has

a performance comparable to the hypercube, but not quite what would be expected

from the 1(n + 1)/21 diameter.

The Multiply Twisted Cube of Kemal Efe [29] (later the Crossed Cube [30])

is quite similar to the Twisted Cube, in that it joins 4 (n 2)-cubes together to

construct a n-cube. Its structure differs from the Twisted cube in that its connec­

tion rules cause communication channels to be twisted across several dimensions

simultaneously, that is, the Hamming distance of two nodes joined by a channel can

10

be anywhere from 1 to n. Its diameter, like the Twisted Cube's, is 1(n + 1)/4 Efe

gives a broadcasting algorithm and an optimal routing algorithm with an 0(n2) run

time. Efe also demonstrates an efficient broadcasting algorithm, and demonstrates

SIMD algorithms for semigroup computations, matrix multiplication and sorting.

On interesting feature of the Crossed Cube is that a reconfigurable network can be

constructed with switchable channels, so it can behave like either a hypercube or a

Crossed Cube.

Our own Mobius cubes [18] [19] [24] [42] are also generalizations of the

Twisted 3-Cube. They actually are two closely related sets of twisted cubes, called

the 0-Mobius cubes and the 1-Mobius cubes. Like the Twisted Cube of Hilbers et

al., the Mobius cubes have a simple construction rule and an 0(n) routing algo­

rithm. A 0-Mobius cube of dimension n is formed by taking a 0-Mains cube and

a 1-Mobius cube of dimension n 1 and connecting nodes of the same address. A

1-Mobius cube of dimension n is formed by taking a 0-MObius cube and a 1-Mobius

cube of dimension n 1 and joining nodes whose addresses are binary complements

of each other. The diameter of the 0-MObius cube is 1(n + 2)/21 and the diameter of

the 1-Mobius cube is 1(n + 1)/21, for n > 4. We have also given a routing algorithm

with 0(n) run time for our Mobius cubes. In [21], we show an optimal routing

algorithm that ultimately takes a 0(n) distributed run time, and we compute the

diameter and expected distance. We show that the networks have a Hamiltonian

ring, and a binomial tree rooted at any arbitrary node. A stochastic simulation

based on Abraham and Padmanabhan's simulation showed that the Mobius cubes

have a much smaller average message latency than the Twisted Cube, and somewhat

smaller message latencies than the hypercube.

An entire family of networks is described by Singhvi and Ghose [51]. Their

MCube (the "M" is for "Mobius" they wanted to call their networks the Mobius

11

cubes, but we used the name first.) is constructed by decomposing two MCubes of

dimension n 1 into 4 sub-networks each, and then joining each pair of cubes by a

twisted connection to produce an MCube of dimension n. This method produces a

family of networks because the decomposition of the two MCubes and the orientation

of their sub-networks is arbitrary. A general MCube routing algorithm is presented

that has a 0(n2) run time. Singhvi and Ghose claim that efficient communication

can be done because the MCubes have a uniform distance distribution and a uniform

rate of traffic flow across all channels. One particular MCube network, the "Flip

MCube," has the orientation of its sub-networks specified. The Flip MCube has

diameter 1(n+1)/21, and is shown in a dynamic simulation to have generally superior

dynamic performance to the hypercube.

Finally, the Twisted Hypercube of Das et. al. [28] has n/2 of the connections

in the (n 1)-th dimension cross both dimensions n 1 and n. The diameter of the

network is only n 1, like the Twisted n-Cube. However, Das et. al. show that two

Twisted Hypercubes of dimension n 1 have disjoint embeddings into the Folded

Hypercube of dimension n, which improves the Folded Hypercube's fault-tolerant

behavior, by allowing it to emulate a Twisted Hypercube when a regular hypercube

connection fails.

These networks do not exhaust the list of possible hypercube variant net­

works. In this dissertation, we will introduce two new networks, the YAT (Yet

Another Twisted) Cube and the Bent Cube. These two networks are patterned

after the networks listed above, and compare favorably with published networks.

(On the humorous side, we have found that other researchers working on

twisted hypercube variants have been inexcusably unoriginal in christening their

creations. There are now five networks with the word "twisted" in their names, and

three that are based on the name "Mains" . Future cube-variant designers should

12

consider names from the following list: Rotated, coiled, torqued, braided, wriggly,

spun, skewed, warped, Kleinian, Godelain, Escherian, bizarre, grotesque, eccentric,

erratic, and oddball. To the best of our knowledge, not one of these has yet been

claimed.)

Finally, it should be noted that resource-preserving variants of the hyper­

cube can often be used to replace the hypercube structure in structure-preserving

hypercube variants. Kumar and Patnaik [41] produce variant hypercube networks

by taking the Enhanced Hypercube of Tzeng and Wei [53], which contains 3-Cubes,

and replacing these 3-Cubes with Twisted 3-Cubes. They show that this substitu­

tion reduces the diameter of the network. Their technique can also be applied to

networks like the Cube-Connected Cycles by replacing the hypercube connections

with twisted cube connections.

1.4. SIGNIFICANCE OF RESEARCH

Every one of the networks discussed above has been constructed using a

different method. This makes the comparison and evaluation of these networks

a difficult and tedious task. A systematic approach to describing, creating, and

comparing resource preserving variants is needed.

This dissertation will explore the family of resource-preserving hypercube

variants. In this dissertation, we will generalize this "twisted" network into a family

of networks of higher dimensions. We will do this by producing a single mathematical

model that can describe most or all of these networks. This model should be simple,

yet powerful enough to describe a large number of possible networks. We will use this

model to derive and prove communication algorithms. We will also use this model

to show bounds on some performance measures for the networks in this model, and

13

we will use a computer model of the networks to empirically model these networks

and compute their dynamic performance.

1.4.1. The Need for a Formal Description

Fitting the hypercube variants into one mathematical model will allow a

method to compare and contrast them. A single mathematical or formal description

of variant networks can have a number of advantages in developing new networks.

These advantages include:

Unification Presenting a model of the networks in the resource-preserving hy­

percube variant family is a stronger result than creating another resource-

preserving variant. It gives a single method of describing what initially appear

to be very different networks.

Generalization Formalizing the family of resource-preserving variants will pre­

vent duplication of research, in the sense that results for known members of

the family can extend to new members. New networks can be systematically

constructed using the formal description of resource-preserving variants. Fur­

ther, if limits exist for any performance measures of networks in the family,

then proving membership for a new network shows that the same limits exist

for that network.

A formal description may also prevent duplication of work by presenting al­

gorithms or an algorithm schema that can (for every member of the resource-

preserving variant family) compute a point-to-point route or a broadcasting

tree. The routing and broadcast algorithms for these new networks may well

have a systematic design.

14

Specialization By specifying a formal model, it may be possible to design networks

that meet a specific performance measure within the limits of the family. Net­

works might be tailored to meet a specific processing need.

A model to describe resource-preserving variants does not need to be all-inclusive.

Its main attraction should be that it can describe member networks simply, and

that it is broad enough to describe a variety of networks.

1.4.2. The Need for Comparative Evaluation

All published papers on new interconnection networks include at least a com­

parison of the network's diameter with that of the hypercube. However, only a few

authors have done an extensive evaluation of other performance measures for their

networks. Only four authors have examined the mean internodal distance of any

resource preserving variants [2] [31] [42] [51]. Only three authors have run stochas­

tic simulations to compare their network's dynamic behavior, [1], [42] and [51], but

they have apparently used different models of communication which makes a direct

comparison of the networks difficult. Only the dynamic behavior of the hypercube

and the Twisted cube of Hilbers et al. [34] have been analyzed in any depth [3] [2]

[1].

Since no one has done an extensive evaluation of the resource preserving

variants, a direct comparison and evaluation of the currently published resource-

preserving variant networks is needed, for two reasons. First, differences in the

descriptions of variant networks give rise to differences in their performance, as

shown in a comparison of the Twisted cubes and Mi5bius cubes. An empirical sim­

ulation and comparison of the variants using several performance measures will tell

exactly what networks have the most desirable performance measures. By examin­

ing networks with particularly good performance, we are able to specify which if any

15

network properties will produce the improved performance. Second, the choice of

routing algorithm can affect a network's dynamic performance. In some instances,

even non-optimal routing algorithms can give similar or even better performance

than optimal algorithms. Simulations are a good empirical method for measuring

the performance of any architecture/algorithm combination.

1.5. OVERVIEW

The rest of the dissertation is divided into the following chapters:

Chapter 2 defines most of the terms for the rest of the paper. It defines a

formal model of hypercube variant networks. This model is based on linear spaces

defined by vectors and matrices over Z2. It defines both the double matrix networks

(DM networks) and the linear equation networks (LE networks). It also shows how

many of the currently published hypercube variant networks can be expressed using

LE networks.

Chapters 3 and 4 deal with the over-generality of the LE networks, in that the

model allows disconnected networks and allows multiple descriptions for the same

network. Chapter 3 shows necessary and sufficient conditions for several graph-

theoretic properties of the linear equation networks, e.g., redundant channels and

connectedness. Chapter 4 deals with several problems in network isomorphism.

Chapters 5 and 6 discuss general routing algorithms for LE networks. Chap­

ter 5 defines the concept of expansions, and uses them to deal with minimal routing

on a DM network. This is preparation for Chapter 6, which deals with routing on

a LE network. Chapter 6 also shows that routing on a LE network is NP-complete,

and discusses what conditions will permit efficient routing algorithms for the pub­

lished networks.

16

Chapter 7 deals with several variations on routing, including non-minimal

routing and wormhole routing. It discusses non-minimal routing algorithms. It also

examines how the routing algorithms can be adapted to wormhole or circuit-switched

routing strategies.

Chapter 8 discusses direct one-to-one embeddings of such networks as Hamil­

tonian cycles and binomial trees, and discusses squashed and stretched embeddings

of such networks as binary trees and meshes. It also shows that the hypercube can

be efficiently emulated on many LE networks and vice versa.

Chapter 9 discusses other communication algorithms, including broadcasting.

It discusses several algorithms that can be implemented more efficiently on LE

networks than on hypercube.

Chapter 10 gives a description of the static properties of the networks in the

twisted cube family, and derives bounds on static performance measures of networks

in the formal model, i.e., network diameter, mean internodal distance, etc.

Chapter 11 defines a simulation environment for testing the dynamic prop­

erties of the LE networks and routing algorithms. It uses this simulation to show

some of the dynamic properties of networks and routing algorithms. It also examines

what properties lead to better performance in LE networks.

Chapter 12 summarizes our conclusions and recommendations for designing

and using LE networks, and lists some directions of future research.

17

2. DEFINITION OF LINEAR EQUATION NETWORKS

In this chapter, we define the class of linear equation networks and show that

many new and existing Twisted Cube networks are in the class. We also show that

some networks cannot be described by linear equation networks.

2.1. NETWORK DEFINITIONS

A network is constructed from two basic elements: channels and nodes. A

channel is a fixed unidirectional link between two nodes which can transfer infor­

mation across a serial or parallel line. A node has two parts: a processing element

and a router. The processing element performs general computations. The router is

a switching element that connects the processing element to a number of incoming

and outgoing channels. The router is capable of connecting any permutation of

the incoming channels to the outgoing channels, and is usually implemented as a

crossbar switch.

The graph-theoretic structure of the network is its topology. The topology of

a network can be described as a directed graph G = (V, E), where V is a set of nodes

(vertices) and E is a set of channels (directed edges). The topology of the network

has a one-to-one correspondence with the physical structure of the network. Nodes

correspond to vertices of the graph and channels correspond to edges of the graph.

When convenient, we will use network terminology and graph-theoretic terminology

interchangeably.

The most common way to describe the hypercube's topology is to assign each

node a unique address from the vector space .ZT , and allow a channel between only

18

nodes)? and Y iff the Hamming weight of is 1, that is, the addresses)? and
ti

differ by only one component.

The hypercube's topology can also be described as a Cayley graph, that

is, as the graph associated with the group of permutations generated by a set of

permutation operators acting on a finite set. The Cayley graph representation of

the hypercube uses a set of 2n elements and n permutation operators. For in­

stance, the 3-dimensional hypercube can be represented using the set of permuta­

tions 1(213456), (124356), (123465)1 acting on the set (123456).

In fact, Cayley graphs are a useful formal description of a large number of

networks that are vertex symmetric [5] [7], [8]. However, a number of the Twisted

Cube networks in the current literature are (in general) neither vertex symmetric

nor edge symmetric [21] and are not members of the Cayley graph family.

2.1.1. Double Matrix Networks

The hypercube graph can also be described using a vector basis B over

where n is the dimension of the hypercube. Let the set of basis vectors Bi E B

be Bi = ei for 1 < i < n, where ei is the vector with a 1 in position i and zeroes

elsewhere. Then the nodes V and the channels E of the network can be defined for

1 < i < n by:

V = Z;

E = I(? E V, E V) : -1-1" =

The basis B can be represented as an n x n matrix, where Bi is the i-th column of

the matrix B.

This model as presented can describe only one network the hypercube. Any

other basis B over will describe a network isomorphic to the hypercube.

19

We can extend the description by using two matrices instead of one. This

addition defines a family of digraphs of 2" nodes that are regular and have out-degree

2n.

Definition 2.1.1 The double matrix network (DM network) is defined as

G = (B °, 131) of dimension n, where B° and Bl are each n-element sets of n-

element vectors over 4, and nodes and channels are defined for E {OM and

1 < i < n by:

V

E {(.k EV,YEV):X +Y =B}

Both B° and B1 can be described as n x n matrices, by placing the i-th

element of B° or B1 on the i-th column of the matrix B° or B1, respectively.

The hypercube Qn is trivially described by a DM network, by setting B° = I

and B1 = 0, though there are two channels for every one channel in the original

hypercube. The Folded Hypercube of [44] and [6] and the Enhanced Hypercube of

[54] [36] are also described by DM networks. The n-dimensional Folded Hypercube

is described by the set of vectors:

{eh e2, , en}

Bi = {el + e2, e2 + e3, , en_i + en, en}

The n-dimensional Enhanced Hypercube is described by the set of vectors:

B° = {el, e2, , en}

B1 = lei + e2 + + en, e2, , en_i, en}

If we don't want the extra channels, we can replace columns 2 through n of B1 with

0.

20

We also describe a special class of the DM networks, in which B° and B1 are

restricted:

Definition 2.1.2 The lower triangular double matrix network (LTDM

network) is a DM network with the following properties: B° and B1 are lower

triangular matrices, with B?i = =1 for 1 < i < n.

Notice that the n-dimensional hypercube and both n-dimensional Mobius

cubes are subgraphs of the Folded Hypercube. This suggests that we may be able

to use one common description to describe the Twisted Cube networks.

2.1.2. Linear Equation Networks

The DM network model is too broad for our needs. It defines up to 2n chan­

nels per node, when only n are desired. Clearly, it does not preserve the hypercube's

resources.

We can describe a class of networks that incorporates most of the Twisted

Cube networks by introducing a selector function SEL : Z2 that will choose

which channels from B° and B1 are actually used. A channel Y) is then defined

if:

j-c. itrS'EW.);

The selector function, SEL(X), is usually a linear function, that is,

SEL(-C.) = AX

where A is an n x n matrix.

The choice of B? or Bi- is always forced by the selector function, that is,

exactly one of B? and B2 specifies a channel leading from X.

21

Definition 2.1.3 The linear equation network (LE network) is defined by G

(B °, B1, A) of dimension n, where B° and B1 are n-element sets of n-element vectors

over 4, and A is an n x n matrix over 4 , has nodes and directed channels defined

for 1 < i < n by:

V = 4

E = {(X E v,f E V) : = Lei}

The LE networks are clearly related to the DM networks in that a DM

network G1 = (B°, B1) always contains the LE network G2 = (BO, Bi, A)

subgraph. However, while the former is a digraph, the latter may not be, because

the set E contains only directed channels.

As before, both B° and B1 can be described by n x n matrices, by placing the

i-th vector in the i-th column of the matrix. These two matrices, plus the matrix

A, can be used to completely describe a resource preserving hypercube variant.

Example: The Twisted 3-Cube of Figure 1.2 can be defined by the 3 ma­

trices:

1 0 0 1 0 0 0 0 0

B° 0 1 0 B1 = 0 1 0 ,A = 1 0 0

0 0 1 0 1 1 0 0 0

For much of this dissertation, we will be considering special cases of LE

networks, where B°, B1, and A are restricted matrices. These special cases include:

Definition 2.1.4 A lower triangular linear equation network (LTLE net­

work) G = (B °, B1, A) is a LE network with the following properties: B° and B1

are lower triangular matrices, with 131)i = = 1 for 1 < i < n. A is a strictly

lower triangular matrix, with A2,1 = 0 for 1 < i < n.

22

Definition 2.1.5 A banded lower triangular linear equation network

(banded LTLE network G = (B °, B1, A) is a LE network with the following

properties: B° and B1 are banded lower triangular matrices, with B?i = B= i = 1 for

1 < i < n, and B1),i = Bt = 0 for i j > k and k constant. A is also strictly lower

triangular, with Ai,1 = 0,1 < i < n.

2.1.3. Neighbor Description of LE Networks

The above definitions of DM networks and LE networks define channels be­

tween nodes by explicitly defining a set of channels for the entire network. A second

way to define the network is with a set of "neighbor" functions that define the

channels from a given node.

For a LE network, we can define the n neighbors of a processor with address

.)-e by an n x n matrix N(je), where each column i is the address of the i-th neighbor

of fe:

Mg.) = .feii.+130+ (B0+ B1) DIAG(Ag.)

'where 1 is the matrix containing only l's in each position, and D/A G(') returns an

n x n matrix with Xi in element (i, i) and zeroes elsewhere.

The linear function uses ie to pick the columns of N(X) so that B? is a

column i of N(X) if (Afe)i = 0 and /31 is a column i of N(X) if = 1. The

choice is always forced, that is, exactly one of g' + B? or .R + Bi is in N(je).

N(X) can be computed in 0(n2) bit operations. Although there is one

matrix multiplication, this operation can be simplified to just comparisons and value

copying. The rest of the operations run in only 0(n2) bit operations using classical

matrix algorithms.

We can use a simpler computation to compute the i-th neighbor of ./1?:

23

Ni(X) = .3? + B? + (B? + M)[Af?]i = X + WY)i

Ni (X) can be computed in 0(n) bit operations. The operation takes a (1 x n)

by (n x 1) matrix multiply to compute (AX)i (by multiplying the i-th row of A with

X) and a n-element vector addition (of X and a column of B° or B1), which totals

to 3n = 0(n) bit operations.

We note what conditions will make Ni one-to-one:

Lemma 2.1.1 The neighbor function Ni(?) = X + B(AX)
. is one-to-one and onto

if any one of the following conditions is true:

rowi(A) = 0

B? =

(AB?)i = (AM)i

Proof: if Ni is 1-1, it is also clearly onto, because its domain and range are

the same size.

Consider if rowi(A) = 0 V B? = M. If rowi(A) = 0, then only B? would

legally define a channel. if B? = M, the two vectors are the same, so either one

will define the same channel. Since Xi 0 Y2 B? X2 B?, the neighbor

function Ni is 1-1 in this case.

Now consider if (AB?)i = (AB, i. As before, we know that:

X1 Y2 Xl + -13T Y2 + ./3)

x1 jei+ Bil Y2 +

So any two vectors Xi and X2 with (AYi)i = (Aje2)i will not map to the same

image under Ni. But now consider (AXi)i # (AX.2)i. Let (wlog) (AJZi)i = 0 and

24

(AY2)i = 1. If (AB?)i = (ABni = 0, then (AYI)i + (AB?)i = (A[X1 + B?])i = 0

and (AY2)1 + (ABni = (A[X2 + = 1. Since Xl + B? is the image of Xl under

Ni and Y2 + B1 is the image of Y2 under Ni, the two vectors cannot map to the

same image under Ni. If we assume (AB?)i = (ABni = 1, then using the same
ti

argument, and Y2 do not map to the same image under Ni.

If we assume that rowi(A) 0 A B? # Bi A (AB?)i (ABni. Then all we

have to do is choose Yi + B? = X2 + BZ, and these will map to the same image

under

From this proof, we can conclude that all lower triangular networks have Ni

be 1-1 for 1 < i < n.

2.1.4. Definitions

There will be a number of definitions related to LE networks that will be

used throughout this dissertation. These definitions refer mostly to properties of

and relationships between channels in the network. These terms are defined here

for convenience.

First, we assign a name to an element of either set B° or Bl:

Definition 2.1.6 Given a network G = (B °, B1, A), a term is an element of either

set B° or Bl. A term is also a column of either matrix B° or B1.

We also define a label for the relationship between terms and channels in

both DM networks and LE networks.

Definition 2.1.7 A term .131) defines a directed channel (.k. iff ijd-f = B,(11)8 ,

and does not define channel (X, Y) otherwise.

25

Clearly every term in a column of B° or B' "defines" a channel from any

given node in a DM network. But in LE networks, a term may not define a channel

from a particular node, because a particular channel's existence in a LE network

depends on the source address and the selector function.

The defined channels of a network have some properties, based on the weight

of the term that defines them.

Definition 2.1.8 A channel(, 13114.)*) spans dimension j iff Bn56' = 1.

Definition 2.1.9 A channel is a twisted channel if it spans more than one di­

mension.

A term may define a channel from a given node and not define a channel from

a node neighboring the first, or vice versa. It will be useful for routing algorithms

to know whether a channel exists at a neighboring node, especially if does not exist

at the current node.

Assume that the channels of a LE network G = (B °, B', A) are contained in

the set E. Assume also that we are at a node X and that the term B.r)-7 defines

the channel (X, X + B.`45)-7). Let Y = X + .e)2 be a node adjacent to X. We

note that if the term B.r)1 does not define the channel (Y, +)3), then:

(X, X + /3.Afe)') E E <#. (je,fe + B(Ag)s+(AB `AX)')j) E

Which implies:

(AX)i (AX)i (AL4A`g l)i

So in binary (Afe.)')i is forced to be 1.

Simply put, a term 131) that defines a channel leading from X will not define

a channel leading from cr = X + 13.;' and vice versa if (AB?) = 1. We describe this

relationship by the definition below:

26

Definition 2.1.10 The terms B? and B1 depend on another term 4 if B? Ell

and (AB;li = 1.

B? and /31 are not dependent on B1' if B? = Bi , because:

(.)-e , + E E (X,)-e + B.) E E

, + 13) E E

, + B?) E E

Example: Consider the term B? in the network defined below:

1 0 0 1 0 0 0 0 0

B° = 0 1 0 , B1 = 1 1 0 ,A = 1 0 0

0 0 1 1 1 1 0 1 0

For B1, the product is:

0

(A/31) = 1

1

and so both 14 and BI- depend on but B?, 131, 1313 and BI- do not depend on

Pre-computing (AB ?); for all i, j E {1, , n} requires 0(n3) bit operations

(using classical multiplication) and fills a table of 2n2 bits. Once we have the table,

we can look up whether a term depends on another or not in at most 0(n) bit

operations.

2.2. NETWORKS IN THE LE NETWORK MODEL

Most of the Twisted Cube networks we described in Section 1.3 can be rep­

resented by the LE model given in Definition 2.1.3. We describe how to describe

27

each of the published Twisted Cube networks using the model, and explain why two

cannot be described using the model. We will also introduce two new networks and

give their descriptions.

2.2.1. Existing LE Networks

The hypercube is trivially included in the LE networks:

Theorem 2.2.1 The hypercube can be described as an LE network.

Proof: For the hypercube, set B° = I, B1 = I, and A = 0.

Our own MObius cubes can also be expressed as LE networks:

Theorem 2.2.2 The Mobius Cubes can be described as LE networks.

Proof: This is the most direct representation of the twisted cube networks.

For the 0-Mains Cube, set B?, Be', and Ai,,, 1 < i < n and 1 < j < n, to:

B? = ei,

Bi = E;c1=i ek,

Ai = 1, i = 1

= 0, i j 1

For the 1-Mobius Cube, set B?, B, , and Ai,;, 1 < i < n and 1 < j < n, to:

28

B? = Ek=1 ek,

Bt = ei,

i =1

i > 1

B? = el,

13,1 = EZ=i ek,

i =1

i > 1

Ai,.1 = 1,

= 0,

i

i

j
j 1

The only difference between the 0-Mobius Cube and the 1-Mobius Cube is

that the 1-Mobius Cube has the two columns B? and 131 exchanged. For instance,

the six-dimensional 0-Mobius Cube can be described by the matrices:

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0

0 0 1 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0
B° B1 = A=

0 0 0 1 0 0 1 1 1 1 0 0 0 0 1 0 0 0

0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 1 0 0

0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 0

The six-dimensional 1-Mobius Cube differs from the 0-Mobius Cube only in columns

B? and B1 :

29

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

B°
1 0 1 0 0 0

B1 =
0 1 1 0 0 0

A=
0 1 0 0 0 0

1 0 0 1 0 0 0 1 1 1 0 0 0 0 1 0 0 0

1 0 0 0 1 0 0 1 1 1 1 0 0 0 0 1 0 0

1 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 1 0

The Generalized Twisted Cube (GQ,i) of Chedid and Chedid can also be

expressed in our general model. In Chedid and Chedid's paper, GQ3 is defined

differently from the Twisted 3-Cube representation in Section 2.1:

Theorem 2.2.3 The Generalized Twisted Cubes can be described as a LE network.

Proof: Set B?, Bh and Aid, 1 < i < n and 1 < j < n, to:

B? = ei,

= ei + ei+i, = 3k + 2, 0 < k < n/3

= ei otherwise

Aid = 1, i= j +1 and i = 3k + 1, 0 <k < n/3

= 0, otherwise

The 6-dimensional Generalized Twisted Cube's matrix description is:

30

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

B° =
0 0 1 0 0 0

B1 =
0 1 1 0 0 0

A=
0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0

This version of the Generalized Twisted Cube is different from the one given

by Chedid and Chedid. They used a different node labeling of the Twisted 3­

Cube that has a different matrix description. This network is trivially isomorphic

to the Generalized Twisted Cube, because the Twisted 3-cubes used in the graph

composition construction are isomorphic. Its only advantage is that it is a LTLE

network.

Before the Generalized Twisted Cube was published, an associate had devised

a very similar network generalization we called the "JimTwist Cube" [37] which has

the matrix description above.

Not surprisingly, these two descriptions are not the only formulations of this

network. The Varietal Hypercube of Cheng and Chuang [13] has exactly the same

description as the Generalized Twisted Cube.

The Folded Hypercube of Kim and Shin [40] has exactly half of the edges in

one dimension twisted. This makes the description simple:

Theorem 2.2.4 The Folded Hypercube can be described as a LE network.

Proof: Set B?, , and Ai 1 < i < n and 1 < j < n, to:

31

B? = ei,

= ei + + en, i = 2

= ei otherwise

Ai = 1, i = 2, j = 1

= 0, otherwise

The 6-dimensional Folded Hypercube's matrix description is:

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

B° =
0 0 1 0 0 0

B1 =
0 1 1 0 0 0

A=
0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0

The Twisted Cube of Hilbers is one of the earliest Twisted Cube networks.

Theorem 2.2.5 The Twisted Cube can be described as a LE network.

Proof: Set ./3?, and Ai 1 < i < n and 1 < j < n, to:

32

B? = ei, i 2k + 1, 0 < k < n/2

= ei + ei_1, i = 2k, 0 < k < n/2

= ei, i =n

= ei

= 1, i = 2k and i > j

= 0, otherwise

This is the description of the Twisted Cube given by Seth Abraham [2], and

is slightly different from the definition of the Twisted Cube edges from [34]. The

six-dimensional Twisted cube the matrix description:

1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1

B° =
0 0 1 1 0 0

B1 =
0 0 1 0 0 0

A=
0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

The MCube described by Singhvi and Ghose is an alternate description

of generalizing the Twisted 3-Cube. One specific network they define is the Flip

MCube.

Theorem 2.2.6 The Flip MCube can be described as a LE network.

Proof: Set B?, and Aid, 1 < i < n and 1 < j < n, to:

33

B? = ei, 1 < i < n

= ei+ ei+i, 1 < i < n 2

= ei, n 1 <i <n

Ai = 1, i > j

= 1, j = n

= 0, otherwise

For example, the six-dimensional Flip MCube can be represented using the

matrices:

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1

=
0 0 1 0 0 0

B1 =
0 1 1 0 0 0

A=
1 1 0 0 0 1

0 0 0 1 0 0 0 0 1 1 0 0 1 1 1 0 0 1

0 0 0 0 1 0 0 0 0 1 1 0 1 1 1 1 0 1

0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1

(The last two rows of the A matrix can actually be anything we wish, because the

last two columns of B° and B1 are equal it doesn't matter which we choose.)

2.2.2. New LE Networks

There are two new networks that we introduce in this dissertation. These are

the Bent Cube [27], and the YAT Cube an acronym for "Yet Another Twisted."

In searching for networks that offer a compromise between lower diameter

and a simple routing algorithm, we discovered the Bent Cube. This network offers

34

a diameter that is the same as the Generalized Twisted Cube, but offers a smaller

expected distance.

The Bent Cube is constructed by setting B?, Bi-, and Aij, 1 < i < n and

1 < j < n, to:

B? = ei,

13.1 = ei + ei+i, 1 < i < n

= en, i =n

Ai = 1, = j 1

= 0, jOi+1
For instance, the Bent Cube of six dimensions can be represented using the matrices:

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0

B° =
0 0 1 0 0 0

B1 =
0 1 1 0 0 0

A=
0 1 0 0 0 0

0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0

The diameter of the network is not difficult to derive [26]. The address pairs:

(000000...000)

I'= (110110...110)

require exactly 2n/3 steps to route between. For any n, the diameter is 12n/3] +

n mod 3 larger than the diameters of most published networks, with the exception

of the Generalized Twisted Cubes.

35

The YAT cube is related to the Flip MCube. It is identical to the Flip

MCube, except that the two columns Bn° and Bnl are replaced by en_i en. The six

dimensional YAT cube can be represented by:

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1

B° =
0 0 1 0 0 0

B1 =
0 1 1 0 0 0

A=
1 1 0 0 0 1

0 0 0 1 0 0 0 0 1 1 0 0 1 1 1 0 0 1

0 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 0 1

0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1

2.3. NETWORKS THAT ARE NOT LE NETWORKS

There are a number of published networks that cannot be represented as a

LE network. These include the Twisted N-Cube and the Multiply Twisted Cube.

Interestingly, the Twisted N-Cube cannot be described using a LE network because

it has too few twisted channels, and the Multiply Twisted Cube cannot be described

because it has "too many" twisted channels.

Also, though the Flip MCube is a LE network, many networks that are

MCubes are not LE networks.

We begin by counting the number of twisted channels in a LE network.

Lemma 2.3.1 Let G be a LE network. Exactly k2"-1 channels of G are "twisted",

for some 0 < k < 2n.

Proof: Let Ti denote the number of twisted channels in dimension i, and

let WH(-e) be the Hamming weight of For a single dimension i, the selector

function (A.fe)i is a parity function over ZT .

36

If row i of A is 6, then (A.)-e), = 0 for all 5?. The number of twisted channels

in dimension i are:

1. If WH(B?) < 2, then Ti = 0.

2. If WH(B?) > 2, then Ti = 2' = 2(2'1)

If row i of A is nonzero, then (AA = 0 for half of .)? in and (AX)2 = 1 for the

rest. The number of twisted channels in dimension i are:

1. If WH(B?) < 2 and WH(Bj) < 2, then Ti = O.

2n-1.2. If WH(B?) > 2 or WH(Bfl > 2, then Ti

3. If WH(B?) > 2 and WH(Bh > 2, then Ti = 2(2n-1).

The total number of twisted channels in the entire network is a multiple of 211-1.

The smallest number of twisted channels is 0 and the largest (of course) is n2" =

(2n) (2n-1). I

This lemma allows us to show that the Twisted N-Cube is not an LE network.

Theorem 2.3.1 The Twisted N -Cube cannot be described using an LE network for

dimension n > 3.

Proof: The Twisted N-Cube has exactly four processors with twisted chan­

nels in only one dimension of the entire network. A LE network allows only k2"-1

twisted channels in the network and so can have exactly four twisted channels for

only n = 2 or n = 3.

If we relax the definition of the network so that the selector function SELi(je)

is not a linear function, we can then describe the Twisted N-Cube using B° and B1

matrices and a selector function that returns 1 if X is one of the four nodes with a

twisted channel.

37

The Crossed Cube cannot be represented even using a non-linear selector

function:

Theorem 2.3.2 The Crossed Cube cannot be described using a LE network for

dimension n > 3.

Proof: Consider an n-dimensional Crossed Cube CQ. The neighbor func­

tion N1 for a LE network can allow only two possible neighbors for 5C. + B? and

+ /31.

The Crossed Cube architecture has its neighbors defined by a "pair-wise"

relation. Two binary strings x = x1x2 and y = y1 y2 are pair-related, denoted x-y iff

(x, y) E {(00, 00), (10, 10), (01, 11), (11, 01)}.

The channel (u1 un, vn) is in CQn iff for some 1, we have all of the

following:

u1 . . . 111_1 = 4J1 vl -1

ui 0 VI

ui +i = vii if n / is odd

for 1 < i < L(n l) /2],

(The indexing here is slightly changed from the definition in [30]).

The Crossed Cubes CQ1, CQ2, CQ3 and CQ4 can be described using LE

networks. However, CQ5 cannot be described using a LE network. In a LE network,

an edge 37) exists only if X +Y = B1), where 1 < i < n and 0 E {0,1 }. For

channels in dimension i, our model allows only B? and .13. , to be the mod 2 sum

between connected nodes. But CQ7, allows at least four different vector sums in the

cube's (n 4)-th dimension:

38

(0 . . . 0000000, 0 . . . 0100000) E E,

implies 0 ... 0000000 + 0 ... 0100000 = 0 . .. 0100000

(0 . . . 0000001, 0 . . . 0100011) E E,

implies 0 ... 0000001 + 0 ... 0100011 = 0 ... 0100010

(0 ... 0000100, 0 ...0101100) E E,

implies 0 ... 0000100 + 0 ... 0101100 = 0 ... 0101000

(0 . . . 0000001, 0 .. . 0100011) E E,

implies 0 ... 0000101 + 0 ... 0101111 = 0 . .. 0101010

So CQ is impossible to represent for n > 5. I

While the Flip MCube is a LE network, Singhvi and Ghose describe a whole

set of networks called MCubes. This is because an MCube of dimension n is re­

cursively defined from two MCubes of dimension n 1. More than one MCube

can be designed under this specification, because the authors allow any arbitrary

orientation of the two sub-MCubes.

The set of networks described by the MCube construction and the set of the

LE networks intersect with each other, but neither set is a subset of the other. This

is trivially shown. First, the set of LE networks contains disconnected networks,

while the MCube model does not. Second, the (2,2)-MCube network shown in

Figure 2.1 cannot be represented using LE networks the number of twisted edges

in each dimension of the MCube is incorrect, by Lemma 2.3.1.

However, these networks can be described if we again lift the restriction that

the selector function must be linear. Since each channel in dimension i of an MCube

39

1010 1011

Figure 2.1. A (2,2)-MCube that is not a LE network.

network can either be a hypercube channel or twisted channel across dimensions i

and i + 1, 2n vectors are enough to describe all the possible channels.

2.4. SUMMARY

We have described a linear equation model for representing interconnection

networks, and have shown that a number of published Twisted Cube networks are

included in the family of networks described by this model. We have also developed

several new networks using this model. Though not all Twisted Cube networks can

be described using LE networks, we have shown that some extensions to the LE

network model can include those networks as well.

40

3. NETWORK PROPERTIES

In this chapter, we examine some basic properties of general LE networks,

including conditions for network connectedness. We show that a number of these

properties are NP-complete or NP-hard. We then show that all LTLE networks

share many properties, including connectedness.

3.1. CHANNEL PROPERTIES OF LE NETWORKS

The LE network uses unidirectional channels in its definition. This allows

it to be general enough to describe most published Twisted Cube networks. Un­

fortunately, this allows it to describe not only networks in which all channels are

bidirectional (using two unidirectional channels), but it can also describe networks

that have strictly unidirectional channels. It can also describe networks with self-

looping or redundant channels.

We define three properties of directed channels in a general network, then

show what conditions must hold for DM networks and LE networks to have channels

with these properties. We then give algorithms to compute these conditions and

bound their run time complexity.

Definition 3.1.1 Let G = (V, E) be any network. Then for any .fit. , f E V:

Reflexive If there is a channel (j e , Jj) E E, it is a reflexive channel.

Redundant If there is more than one channel ()?,f) E E, then all such channels

are redundant channels.

41

Reciprocal If there is a channel (X, I') E E and another channel (Y, fe) E E,

then they are both reciprocal channels. (They may also be called a single

bidirectional channel for convenience.)

A desirable property of a network is that it has only reciprocal channels.

The purpose of a channel is to communicate information, so it is not useful to

have a reflexive channel. For instance, the two self-loops in a deBruijn network are

removed when the network is implemented in hardware [45]. It also is not useful

to have redundant channels in a network, unless there is a need to increase the

traffic throughput between two adjacent nodes in the network. On the other hand,

it is useful to have all channels in the network be reciprocal. A network with only

reciprocal channels can always respond to a message using the same path, if needed.

What are the necessary and sufficient conditions for the two network classes

above to have each kind of these channels? The two theorems below describe what

conditions are needed to remove the undesirable types of channels from the network

and ensure that only desirable channels are in the network. First, we consider

channel properties on DM networks:

Theorem 3.1.1 Let G = (B °, B1) be an n-dimensional DM network. Then:

G has no reflexive channels if 0 {B°, B1 }.

G has no redundant channels iff Vi, j E {1,...,n} : Vcb, E {0, 1} : B? .

Every channel in G is reciprocal.

Proof: These follow directly from Definition 2.1.1 for DM networks and from

addition of binary vectors.

Next, we consider channel properties in LE networks:

42

Theorem 3.1.2 Let G = (Bo Bi A) Then:

I. G has no reflexive channels iff VX E : Vi, 1 < i < n : 0 0.

2. G has no redundant channels iff VX. E Z2 : Vi,Vj, 1<i0j<n:B AX);

B`VA).i

3. G has only reciprocal channels iff V
ti

E : Vi, 1 < i < n : 3j, 1 < j < n :

B(Ag); B(A.k);+(Ale'z)i);

Proof: Each of these follow from the definition of LE networks.

1. To have reflexive channels, we must have:

B(A-k)i = 0 <#. je. WX')

<#. (jj, E E

2. To have redundant channels, we must have:

B01). 1330-v), X + Y = + Y = .E(iAg).7

, E E

3. To have only reciprocal channels, we must have:

AX');(fe,f) E E =

And:

B(1U)i±(AB,CA'?)i)iB(Af)3(3", fe) E E +

43

There are efficient methods to compute whether or not a DM network has

reflexive, redundant, or non-reciprocal channels.

To compute if a DM network has reflexive channels, we need to find if

0 E {B°, This check would require at most 0(n2) bit operations to com­

pute. To find if a DM network has redundant channels, we need to find if

{B°,./31} : .X = Y. This check would require at most 0(n3) bit oper­

ations to compute. However, a DM network always has only reciprocal channels, by

Theorem 3.1.1.

Computing if a LE network has channels with these properties will be some­

what more involved. In Figure 3.1, Algorithm ReflexiveChannel computes if any

reflexive channels exist in a given network.

Theorem 3.1.3 Let G = (Bo Bi A) be an n-dimensional LE network. Algorithm

ReflexiveChannel correctly tests to see any channels in G are reflexive in 0(n3) bit

operations.

Proof: If some .131) = 0, then we must check if 0 can be chosen by (A)i.

For 0 = 0, X = 0 will always make (A), = 0; for = 1, A?,3 = 1 and X = ei will

make (,v-e), = 1, but if rowi(A) = 0, then (A.)?)i can never be equal to one. This

exhausts all possibilities for a reflexive channel at any node X, so the algorithm is

correct.

Finding all Bt = 0 takes 0(n2) bit operations and determining if a given

Bf causes any reflexive channels take 0(n) bit operations, so at worst 0(n3) bit

operations are needed.

In Figure 3.2, Algorithm RedundantChannel computes if any redundant

channels exist in a given network.

44

Input: A n-dimensional LE network G = (B °, B1, A).

Output: "Yes" if G has any reflexive channels, "No" otherwise.

Procedure ReflexiveChannel(G = (B °, B1, A))
for each Bls E {B°, B1 } do

if B = 0 then
if 0 = 0 then

output "Yes : .)e = ", 0
Stop

else if 0 = 1 and 3j : Ai = 1 and rowi(A) 0 then
ti

output "Yes : X = ", ei
Stop

end if
end if

end for

output "No"

Stop

end procedure

Figure 3.1. Algorithm ReflexiveChannel.

45

Input: A n-dimensional LE network G = (B °, B1, A).

Output: "Yes" if G has redundant channels, "No" otherwise.

Procedure RedundantChannel(G = (B °, B1, A))
for each Btil, B42 E {8°, Bi } do
if Btil = gb2 then

if 01 = 0 and 02 = 0 then

Output "Yes" : X = ", 0

Stop

else if 01 = 0 and 02 = 1 then

if 3j : Ai1j = 0 A Al2,j = 1 then

Output "Yes" : X = " , ej
Stop

end if

else if 01 = 1 and 02 = 0 then

if 3j : = 1 A Ai2 = 0 then
Output "Yes" : X = ", ej
Stop

end if

else if 01 = 1 and 02 = 1 then

if 3j : Ai, = Ai; = 1 then
Output "Yes" : X = ", e3

Stop
else if 3 ji ,i2 : Ai1,J1 = Ai2J2 = 1 A Ail 7:12 A i 2 '31 = 0 then

Output "Yes" : X = ", eji ej2

Stop
end if

end if
end if

end for

Output "No"

Stop

end procedure

Figure 3.2. Algorithm RedundantChannel.

46

Theorem 3.1.4 Let G = (B °, B1, A) be an n-dimensional LE network. Algorithm

Redundant Channel tests to see any channels in G are redundant in 0(n4) bit oper­

ations.

Proof: The algorithm finds a pair of terms Bti1 = Bci62.2, then based on the

possible values of 01 and 02, it generates a node g that sets (Ag)il = 01 and

(AX)i2 = 02

For 01 = 02 = 0, g = 0 always suffices.

For 0i 0 (/)2, if there is a j so that = 01 and Ai2ij = 02, then g = ej

suffices, otherwise B' and Bt: do not define redundant channels.

Finally, for 01 = 02 = 1, if there is a j so that Ai, = = 1, then

= ej suffices. Alternately, if there are ji and j2 so that = Ai2,22 = 1

Ai 1,i2 2j1 = 0, then g = +e j2 suffices. Otherwise Bci'1 and Bt22 do not define

redundant channels.

This exhausts all possibilities for a redundant channel from any node g, so

the algorithm is correct. An example node for which a redundant channel exists is

also output. Finding all pairs Bti1 = It takes 0(n3) bit operations, and then each

check will take 0(n) bit operations, so at worst 0(n4) bit operations are needed.

In Figure 3.3, Algorithm Reciprocal Channel computes if a given network

contains only channels that are reciprocal.

Theorem 3.1.5 Let G = (B °, B1, A) be an n-dimensional LE network. Algorithm

Reciprocal Channel tests to see all channels in G are reciprocal in 0(n4) bit opera­

tions.

Proof: For each Bt, the algorithm looks for other terms equal to B ?, then

does a series of tests to see if the other terms define channels reciprocal to B ?. The

first test determines if some 13jb defines a reciprocal channel for all X.

47

Input: A n-dimensional LE network G = (Bo B1 A).

Output: "Yes" if G has only reciprocal channels, "No" otherwise.

Procedure ReciprocalChannel(G = (B °, B1, A))
for each Bt E {B°,B1} : 3je : (A)i = ¢ do

ReciprocalChannel + false

if 3j : rows (A) = 0 V 14 = Bt then

ReciprocalChannel 4-- true
else if 3./1, j2 : rowji(A) = rowi,(A) V B.14 = = Bt then

ReciprocalChannel +- true
else if 3j : rows (A) = rowi(A) V B41 = Bt V (ABt)3 = 0 then

ReciprocalChannel < true

end if

if not ReciprocalChannel then

Output "No : Bt = " ,
Stop

end if

end for

Output "Yes"

Stop

end procedure

Figure 3.3. Algorithm ReciprocalChannel.

48

The second test determines if two different terms B'!" and B(P2 might be used
31 32

together to define reciprocal channels for all X. The only way this can happen is if

one term defines a reciprocal channel only when the other does not. Thus we must

have rows, (A) = rowi, (A) and /PI 0 02

The final test determines if 4 defines a reciprocal channel only when Bf

defines a channel. This could only happen if rowi (A) = rowi(A). Further, since

the channel must be reciprocal, at node X + Bt we must have A(-j. + B ?)3 =

A(X); + (AB ?); (AX)i. Since (AX); = (A.g..)i, we must have (ABi)i = 0.

This exhausts all of the possible ways that a reciprocal channel can exist. All

other conditions for an channel defined by B? from some node X allow a possible

reciprocal channel to be undefined for at least one node X.

It takes 0(n) operations to find out if a given M- defines a channel (that is,

to find if rowi(A) 0 CI). Since B? is always used as an channel, we don't need to

check if it does. Once we verify that Bf is used as an channel, each of the tests can

take up to 0(n3) bit operations to verify (especially finding a possible ji and j2 in

the second test). Since there are 2n of the B ?, we must use in the worst case 0(n4)

bit operations to compute this algorithm.

The asymptotic run time complexity of Algorithm ReflexiveChannel is not

prohibitively high. But if we wish to simplify the algorithm's complexity, we can

restrict the definition of reciprocal channels to allow each term Bf to define not only

a channel, but also define to its won reciprocal channel:

Definition 3.1.2 An n-dimensional LE network G = (B°, B1, A) has restricted

" =(Aje);+(A13,(Ax),),reciprocal channels iff VX : Vi

This restriction leads to a simpler test for computing whether only restricted

reciprocal channels exist:

49

Theorem 3.1.6 Let G = (B °, B1, A) be an n-dimensional network. All channels

in G are restricted reciprocal if Vi E {1, ... , n} : [A.Bi]i,i = 0, and this

can be tested in 0(n3) bit operations.

Proof: The i-th neighbor of any node with address .fj can be computed by:

AcAfe),Ni(-e)

To guarantee that each channel of the network under our model is reciprocal,

we need:

= Ni(Ni())

B(ANiVeni= Ni(-e)

= .1e); B(Al-ABi(A)i

Assume that [Aje]i = 0. Then:

= X + B? + e(AB?)i

Bp Bco+AB?);

This forces (Afe)i = (AB°)i,i = 0. Assuming that (A.X.*)i = 1 also forces

(ABfli = (AB1)i,i = 0. Simply put, the network has only reciprocal channels iff the

products AB° and AB1 have zeroed diagonals.

We compute the products of AB° and AB' in 0(n3) operations using the

classical matrix multiply, then we check if the diagonals of AB° and AB' are zero

in 0(n) bit operations. So this test requires 0(n3) bit operations.

This limited definition of reciprocal channels may not seem as robust as the

previous definition, because it does not include some networks that have exclusively

50

reciprocal channels. However, all published LE networks have restricted reciprocal

channels. The limited definition also has an advantage over the first in that it is

conceptually simpler.

3.2. CONNECTEDNESS OF LE NETWORKS

Connectedness is (without doubt!) a major issue in interconnection networks.

If we want to route a message through a network, then we must guarantee that the

network is strongly connected.

The DM and LE networks are flexible and powerful, because they allow a

large number of hypercube-variant networks to be described compactly. But in a

practical sense, they are also too general because they can describe networks that

are disconnected.

Consider the LE network described by the matrices:
_ ­

1 0 0 0 0 0 0 0 1

B° = 0 1 0 B1 = 0 0 0 A= 1 0 0

0 0 1 0 0 0 0 1 0

This network is illustrated in Figure 3.4. Clearly it is disconnected.

It is also possible to describe networks that are only weakly connected. Con­

sider the network described by the matrices:

1 0 0 1 0 1 0 0 1

B° = 0 1 0 B1 = 1 1 0 A= 1 0 0

0 0 1 0 1 1 0 1 0

This network is illustrated in Figure 3.5. The nodes with addresses (000)

and (111) each have in-degree 0 and cannot receive messages from the rest of the

network.

51

000 001

100 101

111

r

Figure 3.4. A disconnected 3-cube.

001

010 011

Nc

Figure 3.5. A weakly connected 3-cube.

52

Figure 3.6. A disconnected 3-cube using restricted reciprocal channels. For instance
there is no path from 000 to 111.

The first example allowed reflexive channels. The second example allowed

non-reciprocal channels. It could be conjectured that using these types of chan­

nels permits cubes that are disconnected. However, if we disallow reflexive and

non-reciprocal channels, the network can still be disconnected, as in the network

described by the matrices:

1 0 1

_

1 0

-

1 1 0 0

B° = 1 1 0 B1 = 1 1 0 A= 0 1 0

0 1 1 0 1 1 0 0 1

This network is illustrated in Figure 3.6. Though all the channels are reciprocal,

the network still has two disconnected components.

For DM networks, it is simple to tell if a given matrix description defines a

connected network. If there in a complete basis over Z in the columns of the B°

53

and BI- matrices, then the network is connected. This is because there is a linear

combination of terms in B° and B1 for every vector je E and so there is a path

from to ".

Unfortunately, for LE networks it is usually not easy to tell from a given ma­

trix description whether the network it describes is connected or not. One possible

approach is to ignore the matrix description and represent the entire network as a

graph. We can then use a standard graph connectedness algorithm which has a run

time that is linear in the number of vertices. But because there are 2' vertices, the

run time will be exponential in n, the dimension of the network.

We can also ignore the graph description and try to compute connectedness

from the matrix description alone. But the problem of network connectedness is

more difficult than it might first appear. Even the apparently simpler problem of

finding whether a single path exists in a given network is in general NP-hard, as we

shall see.

3.2.1. Path Existence

We will examine the problem of whether a path exists between two given

nodes in a network. This problem is defined as:

Definition 3.2.1 Network Path Existence (NPath):

Instance: An n-dimensional LE network G = (B° ,I31, A), and two nodes

;Y , E

Question: Is there a path from to V in G?

If a path from X to V exists, then each edge (0,17) in the routing path from

fC. to cancan be represented by the term B = U +17. We can then represent the

entire routing path as a sequence of T terms:

54

13'4' ,B41 , Bt; (3.1)

This path must meet some requirements. The first is that these steps must lead

from X to
ti

:

TX E =1" (3.2)
u=i

The second requirement is that every term must correspond to an network

channel when it is used. That is, for 1 < V < T:

+ E (Aritu)i, = ov
U =1

We can use these two requirements to verify that a path exists using at most O(Tn2)

bit operations.

Unfortunately, there is a problem in showing a bound on the length T of

a minimal path between X and Y. The longest minimal path is the diameter of

the network. Trivially, a loose upper bound of 2' 1 channels can be placed on

the diameter of any LE network, because that is the longest path that can be

constructed using 2' nodes. But we have not discovered a polynomial upper bound

on the diameter of every LE network.

If we limit the steps of the path to be unique terms, then we can artificially

put a polynomial bound on the length of the path:

Definition 3.2.2 Limited Network Path Existence (LNPath):

Instance: An n-dimensional LE network G = (B°,.131 , A), and two nodes

1,37 E

Question: Is there a path from X to Y in G, where each tel m in B° or fr

defines at most one channel in the path?

55

A limited path in a connected network can have a maximum 2n terms in its

expansion, because there are at most 2n unique terms in B° and B1.

We consider LNPath to be a valid limitation of NPath. First, we want paths

in a network to be quite short ideally, they should be linearly bounded. After all,

we are searching for networks that are improvements upon the hypercube design.

If the hypercube has a maximum path length of n steps, and a variant cube has a

maximum path length of 0(n2), then clearly we have failed in our search. Second,

paths that include several channels defined by one term Bt are very likely to cause

network bottlenecks, because the channels defined by Bt are being over-utilized.

Using LNPath helps us avoid these two problems.

The polynomial bound on the maximum path length allows us to show that

LNPath is NP-complete:

Theorem 3.2.1 LNPath is NP-complete.

Proof: The proof is given by reduction from the problem 3SAT:
ti

LNPath E NP: Guess a path from X to Y. Using Equations 3.1 and 3.2,

verify that the path uses no term Bt more than once, that the path correctly leads

from X to Y and that each channel on the path exists. This verification takes 0(n3)

steps.

3SAT < LNPath: Start with an instance of 3SAT over a set X of variables

x1, x2, ... , xixi and a set C of clauses, where the occurrence of each variable t in

each clause j is identified by c(t, j) E C, where t E and

1 < j < 1C1.

We will construct a (21X1 + 31CD-dimensional network. We assign labels to

each of the rows and columns. For the first 21X1 rows and columns, assign the labels

of xi and x17 1 < i < 1X1. For the rest of the rows and columns of the 3 matrices

56

B°, B1 and A, assign the labels of c(t, j), for each occurrence of variable t in clause

j for 1 < < ICI.
Now, we assign the elements of B°. First, for all xi E X, set Bs°xs = 1 and

Btx, = 1. Second, for all c(t,j) E C, set Bc°(t,i),t = 1. All other elements of B° are

zero.

Next, we assign the elements of B1. For all c(t, j) E C, set Bc1(tj),,(tj) = 1.

All other elements of B1 are zero.

Finally, we assign values to A. For t E {x1,..., xixi, xixi}, set At,t = 1.

For each c(ti, j) E C, c(t2,j) E C, and c(t3, j) E C, set Ac(ti (t2 = 1, set

Aco, = 1 and set Ac(t,,j),c(ti,j) = 1. All other elements of A are zero.

Finally, set X = (000...0) and Y = (111 ... 1).

The problem is now transformed. The construction clearly takes 0(n2) as­

signments and at most 0(n) time to scan through the clauses, so the transformation

is polynomial time.

There are two key points to note. First, for every xi:

(ABs°,)x, = (A.13°,)T- = (A*xi = (A131°-i) = 1

This means that once .13, defines a routing step in the path, then B-27 cannot define

a routing step at all. This is also true for BT..

Also note that for all Bi with j i, (A13)s, = (A.13(1) = 0. This means

that because we are starting from node (000 ... 0), either .1312, or .13Y7 can freely be

used exactly once to define a routing step at any step in the path.

Second, for any j, the three columns that correspond to the terms c(ti, j),

c(t2, j), c(t3, j) in the j-th clause have:

(A13,1(ti,j))c(t2,j) = 1

(A./3,(t,,i)),(6,i) = 11

57

(ABe(t3))e(ti ,j) = 1

Further, because of the way we set each

(AB(1,),(t2,i) = 1

(AB?2),(t3 ,J) = 1

(ABZ)c(tim = 1

This means that none of ./31 B1 B1 can define a routing step until atc(ti,j), c(t2,i), c(t3,i)

least one of 41, BZ, or BZ defines a routing step. If we allow B° to define a routing

step, then j) can define routing step later in the routing path, and then./3,1(t(.

Bli# 4, can also define a routing step still later. Only in this way can allCk. (5+2)mod 3 IJ

components c(ti,i), c(t2,j) and c(t3,j) can be set to 1 if starting from (000 ... 0).

Assume that the 3SAT expression has an assignment of values for xl, x2,

xixi that sets the expression true. Then at least one value of every clause is

true, satisfying every clause. Now for each variable assignment x, with 1 < i < IX I,

include the term BI2 if xi is set to true, and include the term BT.. if xi is set to

false. Now for every j with 1 < j < ICI, at least one of the indices c(ti,i), c(t2,j)

and c(t3, j) is set to 1, and the rest can now be set to 1 by adding the routing steps

13,1(t1 ,j), Bel(t2,i), and/or Bc1(t3,i) to the end of the path as described in the preceding

paragraph.

Note that every BP. and Bel(t, J) is used either once or not at all. The path

meets the requirements of the limited network path.

Now assume that the 3SAT expression has no assignment of values xl, x2,

xixi that can set the expression true. Then for every assignment of xl, x2,

xixi, at least one clause j has no variables set to true. This means that the indices

c(ti,j), c(t2,j) and c(t3,j) are all zero, and none of Bc1-(t1 j), ./3,1(t2J), Bc1(t3 j) can be

58

used in the routing path to set these indices. Thus (111 ... 1) is unreachable from

(000 ... 0). 1

Example:Let je = {xi, x2, x3} and let C = (x1 V -xi V), (xj V T-i V x3).

Then the constructed matrices are (with labeled rows and columns) shown in Figure

3.7.

Because the expression is satisfiable, there is a limited minimal routing path

from (000000000000) to (111111111111). That path is .B?, B,7, Bg, Be', B12, 131-0. I

The proof that 3SAT < LNPath is also trivially a proof that 3SAT < NPath,

because LNPath is a special case of NPath. If we can show a bound on the maxi­

mum path length in any network, we could show that NPath is also NP-complete.

However, for now we have:

Corollary 3.2.1 NPath is NP -hard.

Proof: This follows directly from the reduction of 3SAT to NPath.

There are two possibilities for NPath. First, the maximum path length could

be bounded by a polynomial in n, in which case NPath is NP-complete. Second,

some networks could have diameters that are exponential to 7/, which implies that

NPath has an exponential run time. As it currently stands, however, the upper

bound on diameter is still an open question.

Our original plan was to use NPath or LNPath to construct an proof that

would show that network connectedness was NP-complete. We thought to show

network connectedness by examining only a representative subset of node pairs for

path existence. However, assuming that all paths are polynomial in length, we would

need an exponential number of such paths to make sure we cover every node, unless

we could show that each path examined guaranteed an exponential number of nodes

59

x1 x1 X2 Ti X3 x3 C(Xi, 1) c(±7, 1) c(,1) c(Tr., 2) 2) c(x3, 2)
x1 1 0 0 0 0 0 0 0 0 0 0 0

xl 0 1 0 0 0 0 0 0 0 0 0 0

x2 0 0 1 0 0 0 0 0 0 0 0 0

x2 0 0 0 1 0 0 0 0 0 0 0 0
x3 0 0 0 0 1 0 0 0 0 0 0 0

B° = x3 0 0 0 0 0 1 0 0 0 0 0 0

c(xi, 1) 1 0 0 0 0 0 0 0 0 0 0 0

c(72, 1) 0 0 0 1 0 0 0 0 0 0 0 0
1) 0 0 0 0 0 1 0 0 0 0 0 0
2) 0 1 0 0 0 0 0 0 0 0 0 0

c(7-2-, 2) 0 0 0 1 0 0 0 0 0 0 0 0

c(x3, 2) 0 0 0 0 1 0 0 0 0 0 0 o

X1 X1 x2 x2 x3 x3 C(Xi, 1) 1) c(x3, 1) c(YT, 2) c(Yi, 2) c(x3, 2)
X1 0 0 0 0 0 0 0 0 0 0 0 0

Y1­ 0 0 0 0 0 0 0 0 0 0 0 0

X2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

X3 0 0 0 0 0 0 0 0 0 0 0 0

B1 = 0 0 0 0 0 0 0 0 0 0 0 0

C(Xi, 1) 0 0 0 0 0 0 1 0 0 0 0 0

1) 0 0 0 0 0 0 0 1 0 0 0 0

C(, 1) 0 0 0 0 0 0 0 0 1 0 0 0

2) 0 0 0 0 0 0 0 0 0 1 0 0

c(E2", 2) 0 0 0 0 0 0 0 0 0 0 1 0

c(x3, 2) 0 0 0 0 0 0 0 0 0 0 0 1

X1 TT x2 1-2- X3 T7 c(x1, 1) c(12, 1) 1) 2) 2) c(x3, 2)
Xi 1 0 0 0 0 0 0 0 0 0 0 0

Xi 0 1 0 0 0 0 0 0 0 0 0 0

X2 0 0 1 0 0 0 0 0 0 0 0 0

X2 0 0 0 1 0 0 0 0 0 0 0 0

53 0 0 0 0 1 0 0 0 0 0 0 0
A= 53 0 0 0 0 0 1 0 0 0 0 0 0

C(X1, 1) 0 0 0 0 0 0 0 1 0 0 0 0

C(1-2-, 1) 0 0 0 0 0 0 0 0 1 0 0 0

1) 0 0 0 0 0 0 1 0 0 0 0 0

2) 0 0 0 0 0 0 0 0 0 0 1 0

2) 0 0 0 0 0 0 0 0 0 0 0 1

c(x3, 2) 0 0 0 0 0 0 0 0 0 1 0 0

Figure 3.7. The construction of a LE network from an instance of 3SAT.

60

were connected together. This seems unlikely, because each path is polynomial in

length.

3.2.2. Network Connectedness

We now examine the problem of network connectedness, or whether a path

exists between every pair of nodes in the network.

Definition 3.2.3 Network Connectedness:

Instance: An n-dimensional LE network G = (B °, 13', A).

Question: Is there a path from every pair of nodes jj , Y in G ?

Though we have been able to define some sufficient conditions and some

necessary conditions for network connectedness, we have not been able to show both

necessary and sufficient conditions simultaneously. At this time, it is not known if

the problem of network connectedness is in P, or in NP, or is has a run time that is

strictly exponential in the dimension n.

We examine some necessary conditions for network connectedness first.

Theorem 3.2.2 Let G = (B °, B1) be an n-dimensional DM network. If G is con­

nected, then some combination of n vectors from B° and B1 are linearly independent.

Proof: G has 2n edges)e + Y = Bt defined for every)e . The addresses

of the nodes clearly form a vector space over .Z2 using mod 2 addition. To have

every vector in ZT reachable from (000... 0), we need at least one set of k linearly

independent vectors in B° and B1, so that every vector in Z can be represented
ti

as a linear combination of those vectors. Then the path from (000 ... 0) to je is

composed of channels defined by terms in the linear combination of vectors.'

This leads to the result:

61

Theorem 3.2.3 Let G = (B°, B1, A) be an n-dimensional LE network. G is con­

nected only if the DM network a = (B°, B4) is connected.

Proof: Because G is a sub-network of 0, its connectedness depends on

whether 0 is connected. Normally, it is possible for the subgraph of a disconnected

graph to be connected, but only if the subgraph has fewer vertices, i.e., the subgraph

is in one connected component of the disconnected graph. However, G has all the

nodes of a, but not all of the channels, so if G is disconnected, then so is G. I

A necessary condition for connectedness in an LE network is that at least one

combination of the column vectors from B° and B1 must be linearly independent.

Though this is sufficient to guarantee that a DM network is connected, it is not

sufficient to guarantee that a LE network is connected.

3.3. PROPERTIES OF LTLE NETWORKS

The LTLE networks are a special case of LE networks, and so they have

a number of special properties, such as reciprocal channels, connectedness, and a

recursive construction that allows the LTLE networks to be subdivided into smaller

LTLE networks. In this section, we show and examine these properties.

3.3.1. Channel Properties

First, we examine the channel properties of LTLE networks. We note that

from Theorem 3.1.6 we can show that all LTLE networks have common channel

properties.

Theorem 3.3.1 Let G = (B °, B1, A) be an n-dimensional LTLE network. Then G

has no reflexive or redundant channels, and only reciprocal channels.

62

Proof: By Definition 2.1.4, B? and 1 < i < n, cannot be zero, for all i.

So G cannot have reflexive channels.

Now for 1 < i < n, 1 < j < n, we have B? 0 By, i j, because if i < j,

B?i = 1 and B?,i = 0, and if i > j, = 1 and BYi = 0. For the same reasons,

BI- M and B? BJ- for j i. Now, it is possible to have B? = B1-, but by

definition of LE networks, only one can define a channel from a given node je. So

G cannot have redundant channels.

Finally, by Definition 2.1.4, Ai,i = 0 for all i, and B°, Bl, and A are lower

triangular matrices, so (AB°)i,i = 0 and (AB1)i,i = 0 for 1 < i < n. By Theorem

3.1.6, all the channels of G are reciprocal.

The theorem above shows that if we want a network with only reciprocal

channels, we can simply use a LTLE network.

3.3.2. Connectedness

The LTLE networks share more than just channel properties. We can show

that every LTLE network is constructed from two smaller LTLE networks and hence

is connected.

In general, a LE network is not decomposable into smaller LE networks. If

we partition the nodes of a connected n-dimensional LE network into two groups,

one containing the addresses with Xl = 0 and the other with X1 = 1, we would be

able to describe the channels between nodes in each group as two LE networks of

dimension n 1, but these two sub-networks may not themselves be connected.

This means that many LE networks are not expansible, in that they cannot

be built up from smaller LE networks. Further, it means that parallel algorithms

that use a "divide and conquer" strategy cannot be easily computed on a general

63

LE network, because a subproblem cannot be recursively handed to a connected

sub-network to be solved.

However, there is a way to decompose a LTLE network into smaller LTLE

networks. This method gives us a simple method to construct divide-and-conquer

algorithms for LTLE networks.

Theorem 3.3.2 Let G = (B °, B1, A) be a LTLE network of dimension n. Then G

is composed of two disjoint LTLE networks of dimension n 1.

Proof: The address space can be broken into two subspaces, the first with
ti

vectors that have jei = 0 and the second with vectors that have jji = 1. The

first column of B° and B1 are the only terms that define channels joining the first

subspace with the second.

Consider Go = (b°, E2, A), where:

B°2,2 . . . 2,n B12,2 . B12,n A2,2 . A2,n

A=

./30 B1 B1 An,2 . An,.n,2 n,n n,2 n,n

The network Go generated by these matrices is clearly a LTLE network and has

dimension n 1.

Now consider the network Gl = B1, A) where:

B211,1 B211,nn1 BDA2 rppAn
2L.127; A2,2 A2,n

= A=

BnA2i BnAv B'nA21 . . . BnAnn'i An,2 An,n

The network G1 generated by these matrices is a LTLE network and has dimension

n 1. This network is the same as Gl but with B.° and rn exchanged if Ai,1 = 1.

64

ti
Now Go is a subgraph of G, because each address fe E V corresponds to

an address (0) E V, and because an edge (X, 2) E E corresponds to an edge

((0.,?), (0Y)) E E:

(0J(*)+.(02).

((RR), (Of) E E

This is because (A(0.g))i =
ti

Now G1 is a subgraph of G, because each address X E V corresponds to

an address (lje) E V, and because an edge (J-C., E E corresponds to an edge

((1.,Z), (12)) E E :

(g',1,)E

iffAi+1,1 = 0
(15e) + (IT) =

iffAi+1,1 = 1

((1X), (12) E E

This is because (A(1)-6)i+1 = Ai+1,1 + (AX)i.
ti

Finally, the node addresses of Go are the sub-space of vectors with Xl = 0

and the node addresses of G2 are the sub-space of vectors with X1 = 1. Thus G1

and G2 are disjoint and together use all vertices of G.

Example: In [42], we demonstrated that a 0-Mobius Cube of dimension

7/ 1 and a 1-Mobius Cube of dimension n 1 can be joined together to form a

0-Mobius or 1-Mobius Cube of dimension n. The definition of the 1-Mobius Cube

differs only from the 0-Mobius Cube in that it has only the columns B? and Bl

exchanged. This is because A2,1 = 1 is the only nonzero element of the first column

in A, for both network definitions.

65

I

From this, we can conclude that LTLE networks are connected:

Corollary 3.3.1 Let G = (B°, B1, A) be an n-dimensional LTLE network. Then

G is connected.

Proof: The proof is inductive. For our base case, the 1-dimensional LTLE

network G = [B °, B1, A] is trivially connected. Now we assume that for n' < n,

any n'-dimensional LTLE network is connected. An n-dimensional LTLE network

is composed of two connected (n 1)-dimensional LTLE networks, which are joined

at every node by the neighbor function Ni.

We can also determine the maximum path length for LTLE networks.

Corollary 3.3.2 Let G = (B°,131, A) be an n-dimensional LTLE network. Then

the maximum path length in G is n.

Proof: The proof is inductive. For our base case, the 1-dimensional LTLE

network G = [B °, B1, A] is trivially takes 1 maximum routing step to communicate a

message between any two nodes. Now we assume that for n' < n, any n'-dimensional

LTLE network requires at most n' routing steps. We can route to the (n 1)­

dimensional sub-network that contains the destination by using using a channels

defined by N,, then recursively routing on the (n 1)-dimensional LTLE network.

3.4. SUMMARY

The LE model is overly general for describing interconnection networks. It

allows descriptions of networks that are disconnected, weakly connected or have

non-reciprocal, redundant or reflexive channels. There is strong evidence that there

66

is no efficient algorithm for determining if a network is connected. Even the upper

bound on the maximum path length for LE networks remains an open question.

However, one subclass of the LE model has a number of attractive features

and properties. and resolves several of the problems listed above. LTLE networks

are always strongly connected with only reciprocal, non-redundant, non-reflexive

channels. The n-dimensional LTLE networks has a maximum path length of n

channels, and a simple decomposition into 2 disjoint (n 1)-dimensional LTLE net­

works. These properties make LTLE networks preferable to a general LE network.

All of these features make the LTLE networks very attractive as potential

interconnection network topologies. For the rest of this dissertation, many of the

results we show will be specifically for LTLE networks.

67

4. NETWORK ISOMORPHISM

In this chapter, we examine some basic isomorphism properties of general LE

networks. We show that a number of these properties are NP-complete or NP-hard.

We then show that it is possible to determine if a LE network is isomorphic to a

LTLE network. Lastly, we examine minimum-weight isomorphisms of a LE network.

4.1. ISOMORPHISM OF LE NETWORKS

In this section, we consider when two networks described by the formal model

are isomorphic to each other as graphs that is, whether one network can be

transformed to a second with a renumbering of its nodes.

The LE network model is too general for uniquely describing Twisted Cube

networks. For a given Twisted Cube network, there can be more than one LE

network that describes it. For instance, the Twisted 3-Cube can be described by :

1 0 0 1 0 0 0 0 0

B° = 0 1 0 B1 = 0 1 0 A= 1 0 0

0 0 1 0 1 1 0 0 0

It can also be described by:

1 0 0 1 0 0 0 0 0

B °= 0 1 1 B1 = 0 1 0 A= 0 0 0

0 0 1 0 0 1 1 0 0

And even described by:

1 0 0 1 0 0 0 0 0

B° = 1 1 0 B1 = 0 1 0 A= 1 0 0

1 1 1 0 0 1 1 1 0

68

While the addressing of the nodes may differ between the networks, the

underlying networks are isomorphic as graphs to one another. Unfortunately, the

matrix descriptions of two networks give little clue as to whether they are isomorphic.

Network isomorphism is an important problem for at least two reasons. First,

we already know a number of results for published networks. If we can show that

one network is isomorphic to a second network, then the results for the first network

will hold for the second network. Second, LE networks are divided into several

sub-classes (for instance, LTLE networks) which have properties that not all LE

networks share. We can use network isomorphisms to show that a network has

membership in a sub-class, and so shares the sub-class's properties.

The problem of network isomorphism is closely related to the problem of

graph isomorphism:

Definition 4.1.1 Graph Isomorphism Problem:

Instance: G1 = (V, E1) and G2 = (V, E2) are two graphs of IV I = n nodes.

Question: Is there a permutation f : V -+ V so that:

VVi, V2 E V : (Vi, V2) E El < > (f (Vi), /(v2)) E E2

Though the original problem statement of graph isomorphism considered

only connected undirected graphs, it is clear that the variant problems of uncon­

nected graphs and directed graphs are computationally equivalent. It is important

to know that these two variants are equivalent, because our networks are defined

with directed channels and can potentially be unconnected. The polynomial-time

transformations are outlined below:

A pair of unconnected graphs G1 = (V1, E1) and G2 = (V2, E2) can be trans­

formed to connected graphs by adding one vertex vn+i to V1 and V2 and for every

69

i, 1 < i < n, add edges (vi, vii+i) to El and E2 to make them connected. Since vn+i

is the only vertex in each graph with out-degree n, then vn+i E E1 must map to

v,i+i E E2. The constructed graphs are then clearly isomorphic iff G1 is isomorphic

to G2.

Connected graphs are a trivial instances of potentially unconnected graphs,

so no transformation in the other direction is needed.

A pair of undirected graphs G1 = (V1, E1) and G2 = (V2, E2) can be trans­

formed to directed graphs by replacing each undirected edge (vi, vi) with two di­

rected edges (vi, v.i) and (vi, vi). The constructed graphs are clearly isomorphic iff

G1 is isomorphic to G2.

A pair of directed graphs G1 = (1/1, E1) and G2 = E2) can be transformed

to undirected graphs, by encoding direction information into each undirected edge.

One construction is to hang a chain of n + 1 new vertices from each original vertex,

and replace each original directed edge (u, v) with 3 new vertices t1, t2, t3, and 4

new undirected edges: (u, ti), (ti , t2), (t2, v), and (t2, t3). The construction take

0(n2) steps. The constructed graphs are then isomorphic iff G1 is isomorphic to

G2, because the chains can only map to each other, and the edge constructions will

map to each other iff the original directed edges in G1 map to directed edges in G2.

The problem of network isomorphism is similar to the problem of graph

isomorphism. However, rather than using the graph representation of our network,

we will use the matrix representation of our networks.

Definition 4.1.2 Network Isomorphism Problem:

Instance: Two n-dimensional LE networks G1 = (B °, B1, A) and G2 =
0, 13- 1 A).

(B

Question: Is there is a 1-1 mapping f : 2"2 + .ZT so that:

70

f(X)+ f(f) = piAf()?»,

The problems of network isomorphism and graph isomorphism differ in the

size of the instance. An algorithm for graph isomorphism can be used to solve an

instance of network isomorphism by expanding the network definition into an entire

graph, but since an n-dimensional network has n nodes of degree n, the problem

size for graph isomorphism problem would be an exponential 0(n2"). We would

like to find an algorithm that can find network isomorphisms in time polynomial in

n. We will see strong evidence that such an algorithm does not exist.

4.1.1. Basic Network Isomorphisms

There are a number of "basic" or" standard" network isomorphisms that we

can use to transform one network to another. These isomorphisms operate on the

matrix descriptions, so they can be used to show that one network is isomorphic to

another without expanding the network descriptions into entire graphs.

First, certain substitutions in the matrix description can produce networks

that are identical address-for-address to the original, though the matrix descriptions

are different.

Theorem 4.1.1 Let G = (B °, B1, A) be an n-dimensional LE network. If:

V0,17, LV E .2; : B? = B1 = U, rowi(A) =

then substituting:

B? = U, , rowi (A) = 0

creates a new network G = (B °, El, A), which is identical to the original network.

71

Proof: This is because for any g. E ejj.) = = O. This substitu­

tion can also be reversed.

One simple isomorphism allows the translation of all addresses of a cube by a

constant amount. This isomorphism is a "reflection" of the network across a vector

value W.

Theorem 4.1.2 Let G = (B°, B1, A) be an n-dimensional LE network. G is iso­

morphic to G = (Er = {1 < i < n : Le14.7)11, E1 = {1 < i < n : re)11, A), under

the function f : Z defined by f (.k.) = X +W .

Proof: Let)e,f7 E E. Then:

E E .#> = e?)i
+1,i7* +1;v" = BIA(X +W. +1,V)ji

<=> +

.#> (fe +W.) + + = 111`".+1;17.)1'+(41-1)i)

<4. f (5e) + f (f) = BIAM)li+(Avf)i

4 f (77) = B

<=> (f(), .f(f)) E

There are a number of other isomorphisms that exist for any LE network.

These transformations depend on the fact that vector addition and permutation

form groups over Z.

Theorem 4.1.3 Let G = (B °, B1, A) be an n-dimensional LE network. If f is an

automorphism over the group (2 and 3A : : vi,1 < < n : (Afe)i =

(Af(g.))i, then G is isomorphic to a = (f (B°), f (B1), A).

72

Proof: Let ., -17 E E. Then:

(X,f)EE#4-Ff=Blu-6'

:=> f (je +1-7') = f (Be)')

4-> f (X) + f = f(.13)z)

4-> f(X) +f) = f (Beg)'

4-> f (X) + f (17) = f (B)(A f (5?))*

<=> (f (X), f (37)) E

Using this theorem, we can show that row permutation, column permutation,

and row addition on the matrix descriptions are network isomorphisms:

Theorem 4.1.4 Networks are isomorphic under row permutation.

Let G = (B °, B1, A) be an n-dimensional LE network. G is isomorphic to

A)G where:

Proof: First, 1(X) = (X ,r(i)X7,(2) Xir(o) is an automorphism, because it

is a bijection from ZT to itself (by definition of permutation), and f (X + Y) =

(X) + f (Y), because Vi : 74(X + Y)i) = 71-(Xi) + ir(Y).

Second, the selector functions are equivalent:

(A f (X))i = E Ai,kf(X)k
k=1

73

= E Air(k)X7r(k)
k=1

= E AikXk
k=1

= (AX)i

Theorem 4.1.5 Networks are isomorphic under column permutation.

Let G = (B °, B1, A) be an n-dimensional LE network. G is isomorphic to

(fr, Ed., A), where:G

B?,.(i)

= BL7r(i)

Ai,i = Artim

Proof: First, the permutation of columns of B° and B1 is simply the re­

ordering the edges out of a vertex je, so the automorphism is the identity function

f (fe) = X . Second, the selector functions are equivalent under permutation:

(X))i = E Ai,kf(je)k
k=1

= E Ar(i),kXk
k=1

= (Aij),r(i)

So we have:

(X, E E a (.)? = 13,(A)'

<4. (* = B(A(if)'(2)

, E

74

Theorem 4.1.6 Networks are isomorphic under row addition.

Let G = (B°, B1, A) be an n-dimensional LE network. G is isomorphic to

G A), where:

i r
139

BrOj Bsoj

B 1-j i r

13,1 j+ Bs1 i =r

{Ai,i i r
=

Ajr + Ai, i =s

ti
Proof: First, the mapping f (X) = (X1, . , Xr + Xs, . . . , X7,) is an auto­

morphism. The function f is 1-1, because if X, = 0, then f ve) = x, and if X, = 1,

then f(X) = X + e,. Also, f(fe f) = f(X) + f(f), because if i r, then

f +)i = f (X)i + f (1 7) i , and if i = r, then f(X +)i = (X +)1 (fe)3 =

Xr +Yr +Xs +Y3= f(X)i +f(Y)i.

Second, the selector functions of both networks are equivalent. For i r,

(A f (X))i = (AX)i. For i = r:

(Af(X))i = E Ai,kf(X)k
k=1

= (Ai,r Ai,$).fes . . . Ai,r(Xr Xs) + + Ai,njen

= Ai,kXk Ai,r-ks kr-eles

k=1

n

= E Ai kXk
k=1

= (AX)i

75

A \Input: An n-dimensional LE network G = (B °, B1, II) where B° contains n linearly
independent column vectors.

Output: An n-dimensional LE network O = (I, E1, A) that is isomorphic to G.

GaussianReduceNetwork(G = (B °, Bl , A))
for i = n down to 2 do elimination

j = i

while j > 1 and B?i 0 1 do

j = j 1

end while
if j > 1 then

swap(B? , By)

swap(Bi-,)

swap(rowi(A), rowi(A))

end if

for j = i 1 to 1 do

if B9. = 1 then
rows (B °) rows (B °) + rowi(B°)
rowi(B1) rowi(B1) + rowi(B1)
Ai < Ai +

end if
end for

end for

for i = 1 to n do { back-substitution }

for j = i + 1 to n do
if .14i = 1 then

rows (B °) 4 rows (B°) rowi(B°)
rowi(B1) row.i(B1) + rowi(B1)
Ai 4 Ai + Ai

end if

end for

end for

end procedure

Figure 4.1. Algorithm GaussianReduceNetwork.

76

The three isomorphisms above are useful by giving us a standard matrix

description for a network.

Theorem 4.1.7 Let G = (B °, B1, A) be an n-dimensional LE network. Let B° have

n linearly independent columns. Then G is isomorphic to a network O = B1, A).

Proof: We can apply a method similar to a standard Gaussian reduction to

convert B° to I, using the three isomorphisms listed above. Algorithm GaussianRe­

duceNetwork is listed in Figure 4.1.

B° must have n linearly independent columns, or the algorithm will produce

a network with the first matrix not equal to I, but with ones and zeros on the

diagonal and zeros elsewhere.

We can use the transformations above to show that some of the published

networks isomorphic to others.

Theorem 4.1.8 The Flip MCube is isomorphic to the 1-Mobius cube.

Proof: Begin with an n-dimensional MCube. Transform it to the isomor­

phic network with B° = I using Algorithm GaussianReduceNetwork. Use the row

addition isomorphism to add row 1 to row 2, add row 2 to row 3, ... , and add row

n 1 to row n, in that order. Then, because row 1 of A is zero, substitute column

M with 100 ... 0.

The resulting network is identical to the n-dimensional 1-M6bius cube, except

that B? and B,1, 2 < i < n, are exchanged. Use Theorem 4.1.2 to map each node
ti

X to je + 100... 0. The matrix description of the resulting network is the 1-MObius

cube's description.

Theorem 4.1.9 The YAT cube is isomorphic to the 0-Mobius cube.

77

Proof: The proof is the same as for the Flip MCube to 1-Mobius cube.

In fact, after we discovered that the Flip MCube is isomorphic to the 1­

Mobius cube, we constructed the YAT cube as the Flip MCube's analog of the

0-Mobius cube.

4.1.2. The Complexity of Network Isomorphism

The general problem of Graph Isomorphism has not been shown to be NP-

complete. In fact, Graph Isomorphism is usually cited as a problem in NP-P which

is not NP-complete [11]. There is no known efficient polynomial algorithm for deter­

mining if two graphs are isomorphic, nor is there a transformation from an instance

of an NP-complete problem to an instance of graph isomorphism. As we will see,

the problem of network isomorphism is at least as difficult as graph isomorphism.

Theorem 4.1.10 Graph Isomorphism < Network Isomorphism

Proof: To show this, we transform an instance of Graph Isomorphism to an

instance of Network Isomorphism using a polynomial number of operations. Assume

that we have a pair of connected digraphs G1 = (V1, E1) and G2 = (V2, E2) with no

self-looping edges (vi, v,) and assume that 11711 = IV2i = R.

(The restriction of no self-looping edges in an instance of the Graph Isomor­

phism problem will not affect the complexity of the problem. We can transform an

instance of Graph Isomorphism to Graph Isomorphism without self-loops in polyno­

mial time. We replace each self-loop in the two graphs with a directed chain of n + 1

nodes. This guarantees that each chain in one transformed graph will be mapped

to a chain in the other transformed graph. Hence the two transformed graphs are

isomorphic iff the original graphs are isomorphic.)

78

Notice that G1 and G2 can be represented by n x n adjacency matrices M1

and M2, where each ct,,, E M1 equals 1 iff (vi, v;) E E1 and 0 otherwise. This

construction takes polynomial time, because M1 and M2 are n x n matrices and

can be constructed in 0(1V12) operations. Clearly if G1 is isomorphic to G2, then

some permutation of vertex numbering can be done on G1 to transform it to G2.

This permutation can be done by a series of exchanges of vertex numbers, which

corresponds to a series of simultaneous row/column exchanges in M1.

Construct two networks 01 = (I, M1, I) and G2 = (I, M2, I). This construc­

tion takes only 0(n2) steps, the size of the matrix descriptions for G1 and G2. If

G1 is isomorphic to G2, then clearly G1 is isomorphic to G2, because simultaneous

row/column exchanges on the matrices will not affect the identity matrix I.

If Gl is isomorphic to G2, then there is some mapping f : Z2 from

the nodes of 01 to the nodes of G2.

We note several properties of G1 and 02. The linear selector function for

01 is simple: (Ije)i = Xi. Further, the i-th channel (X, 2) with Xi = 0 has no

restricted reciprocal channel (2, je), because (Ag3), = (Iei)i = 1. Also,the i-th
ti

channel (je, 2) with X, = 1 has a restricted reciprocal channel because G1 has no

edge loops, M1 has ai,i = 0 and so (AB?)i = (I(M1)i), = 0. These same properties

hold true for G2.

Consider only the set of edges generated by columns of B°. Such edges only
ti

come from a node fe when Xi = 0, and together form the edges of a directed

n-dimensional hypercube, as in Figure 4.2. If G1 is isomorphic to G2, then this

subgraph in ai will map to the same subgraph in 02. The mapping f must be a

homomorphism which corresponds to a rotation of the n-dimensional directed hy­

percube about the node with address 0. This limits f to a simultaneous permutation

of the rows/columns in Gl and hence a simultaneous permutation of rows/columns

79

I

1/I\
001 0 010 6 0 100 wo 0 ow 0 010

011

111 6

G1

Figure 4.2. Two directed hypercubes.

in M1. So al isomorphic to G2 implies that G1 is isomorphic to G2, and vice versa.

While Graph Isomorphism is in NP-P, we have been unable to show that the

general problem of Network Isomorphism is in either NP-P or NP. The difficulty lies

in computing the mapping f : Z2 -+ ZT from vertices in a network G1 to vertices

in another network G2. This mapping may require up to 0 (n2") bits of space to

describe completely and hence could take exponential time.

If we limit the applicable isomorphisms to the ones given above, we can show

that these restricted versions of the Network Isomorphism are in NP-P. These two

restrictions can be expressed as:

Definition 4.1.3 Network Permutation Isomorphism Problem:

Instance: Two n-dimensional LE networks G1 and G2.

Question: Is G1 isomorphic to G2 through a series of simultaneous

row/column per mutations?

80

Definition 4.1.4 Network Automorphic Isomorphism Problem:

Instance: Two n-dimensional LE networks G1 and G2 where the columns

of B° in G1 and the columns of B° in G2 are each n-linearly independent.

Question: Is G1 isomorphic to G2 through a series of row exchanges, column

exchanges and row additions?

We can now show that these restricted forms of Network isomorphism are

equivalent to Graph Isomorphism, and hence in NP-P:

Theorem 4.1.11 Network Permutation Isomorphism = Graph Isomor­

phism

Proof: The proof is in two parts:

Graph Isomorphism < Network Permutation Isomorphism: Theo­

rem 4.1.10 trivially applies to this restricted version of Network Isomorphism, be­

cause it uses only simultaneous row/column permutations.

Network Permutation Isomorphism < Graph Isomorphism: Let G1

and G2 be an instance of Network Permutation Isomorphism. We will transform

them to an instance of Weighted Graph Isomorphism, a generalization of the Graph

Isomorphism problem.

(Weighted Graph Isomorphism is equivalent to Graph Isomorphism, because

there are polynomial-time transformations from instances of one problem to in­

stances of the other. We can transform an instance of Weighted Graph Isomorphism,

where the edge weights are integers 0 < P[n], to an instance of Graph Isomorphism.

We can replace each weighted edge with a chain of two edges. The middle node of

the chain has hanging from it a chain of length (n 1) w edges that correspond

to the weight of the original edge. This transformation takes 0 (n2 P[n]) steps. An

81

instance of Graph Isomorphism is trivially transformed to an instance of Weighted

Graph Isomorphism by setting the weights of all the edges to 1.)

Use G1 to construct an n x n integer array M1, where each element =

+ 2BL + 4Ai J. Use G2 to construct M2 in the same manner. Then M1 and

M2 are the adjacency arrays of two weighted graphs G1 and G2 respectively. These

graphs are clearly isomorphic if networks G1 and G2 are isomorphic.

Theorem 4.1.12 Network Automorphic Isomorphism = Graph Isomor­

phism

Proof: Because we can use Algorithm GaussianReduceNetwork to sim­

plify the B° matrix for the two networks, we only have to consider simultaneous

row/column permutations. Thus the results of Theorem 4.1.11 hold for Network

Automorphic Isomorphism too.

(This problem also includes the use of the reflection isomorphism, because

that isomorphism can be emulated with a series of row additions.)

This shows that at least restricted versions of the the problem of Network

Isomorphism are computationally equivalent to the problem of Graph Isomorphism.

4.2. ISOMORPHISM OF LTLE NETWORKS

We will consider two isomorphism problems of LTLE networks. First is the

complexity of computing whether a general LE network is isomorphic to a LTLE

network. Second is the complexity of computing whether two LTLE networks are

isomorphic.

First, we consider the current published LE networks. By applying the iso­

morphisms given above to the published LE networks, we can show that all the

published LE networks are isomorphic to LTLE networks.

82

Theorem 4.2.1 The n-dimensional hypercube, the Mains Cubes, the Bent Cube

and the YAT Cube are all LTLE networks.

Proof: This is trivially true, because they already meet the definition of

LTLE networks. 1

Theorem 4.2.2 The Generalized Twisted Cube is isomorphic to a lower triangular

network.

Proof: The Generalized Twisted Cube is built by graph composition of

Twisted 3-Cubes and a 1 or 2 dimensional hypercube. Since each of these net­

works are isomorphic to LTLE networks, their network composition will be a LTLE

network, too. 1

Theorem 4.2.3 The Twisted Cube is isomorphic to a LTLE network.

Proof: Assume that we have a n-dimensional Twisted Cube as defined in

2.2.5. Use the row exchange isomorphism to exchange each row 2j and 2j + 1. Then

use column exchange isomorphism to exchange each column 2j and 2j + 1. The

Twisted Cube is now in a LTLE configuration. 1

Theorem 4.2.4 The Flip MCube is isomorphic to a LTLE network.

Proof: Begin with the n-dimensional Flip MCube as defined in 2.2.6. Use

the row permutation isomorphism to move each row i, 1 < i < n 1, to row i +1 and

row n to row 1, then use the column exchange isomorphism to move each column i,

1 < i < n 1, to column i + 1 and column n to column 1. The network is now in a

LTLE configuration. 1

All of the above examples are instances of a more general problem whether

a network can be represented as a LTLE network.

83

Definition 4.2.1 LTLE Network Inclusion Problem (LTNI):

Instance: An n-dimensional LE network G = (B °, B1, A).

Question: Is G isomorphic to a LTLE network?

We show that LTNI has an efficient algorithm:

Theorem 4.2.5 LTNI E P.

Proof: To show that this is possible, we need to specify some sequence of

polynomial-time isomorphic transformations that can simultaneously rearrange each

of the matrices B°, B1, and A to a LTLE configuration. Note that we don't have

to show that G is isomorphic to a specific LTLE network O. Instead, we only have

to show that G is isomorphic to any LTLE network.

One method to show that a LE network cannot be LTLE is to use Algorithm

GaussianReduceNetwork to transform it into a network O = (I, E1, A). If B° cannot

be reduced to I, then it is not a LTLE network. Otherwise, we can assume that

B° = I and do other tests.

The two matrices B1, A can be interpreted as an adjacency matrix for a

digraph of n nodes. If the LE network is a LTLE network, then each of the matrices

are acyclic digraphs (with the exception of the self-looping edges (i, i) that occur

because 13!),i = BY 2 = 1). The matrices B1 and A can be examined in 0(n2) time

to find if they are (separately) DAGs with self-loops. This check can be done using

depth-first search on the matrix to find cycles. If B° and A are not DAGs with

self-loops at each vertex, then the network cannot be a LTLE network.

Now since B° has l's only down the diagonal, the only isomorphisms that

will maintain this property are simultaneous row/column permutations. Through

a series of such interchanges, we can generate any permutation of rows/columns

84

we wish, including permutations that are in a particular order, say a topologically

sorted order.

Definition 4.2.2 Let G = (V, E) be a directed acyclic graph. A topological sort

is the assignment of integers a(1), a(2), , a(IVI) to the vertices of G so that if

there is a directed edge from vi to v j, then a(vi) < a(vi).

Clearly, there can be more than one possible topological sort. One trivial

example is a graph G = (V, {}), where no directed edges are in the graph. Then

any numbering of the vertices is a topological sort.

Once a DAG is topologically sorted, its adjacency matrix is lower triangular.

We can use topological sort on either B1 and A to find a correct simultaneous

row/column permutation that will make either one lower triangular.

Our problem is that we have to find some permutation of vertices that is

simultaneously a topological sort for both B1 and A. We can solve this problem by

computing the graph union of B1 and A, that is the union of the edges of the graphs

defined by B1 and A. If the graph union has a cycle, then there is no topological sort

that can make B° and A both lower triangular matrices. If the union has no cycle,

then it is a DAG and can be topologically sorted. Since B1 and A are subgraphs

of the graph union, they are also DAGs, and the permutation computed by this

topological sort can be applied to G so that B1 and A are simultaneously lower

triangular matrices.

The algorithm for LTLE network inclusion is straightforward. For a network

G, first use the Gaussian elimination algorithm to set B° = I. If this cannot be

done, then the network is not lower triangular. Then take the union of B1 and A,

remove the self-loops of B1 from it, and check if the union is the adjacency matrix

of a DAG. If it is not, then the network is not a LTLE network. If it is, topologically

85

sort it and use this ordering to simultaneously permute the rows and columns so that

B1 and A are simultaneously lower triangular matrices. The Gaussian elimination

algorithm has a run time of 0 (id) , the union of the two DAGs can be done in 0(n2)

run time and the standard algorithm for topological sorting has asymptotic run time

order of 0(1E1 + (V1) = 0(n2). The total run time for LTNI is polynomial in n.

Like the LE networks, the LTLE networks can use all the isomorphisms

listed in Section 4.1.1. There are some trivial isomorphisms between LTLE networks.

Theorem 4.1.1 leads to an trivial isomorphism property of lower triangular networks:

Lemma 4.2.1 Let F = (B °, B1, A) be an n-dimensional lower triangular network.

Then for G, M and rown(A) can be changed to any value without changing the

network's topology.

Proof: This is obvious, because rows (A) = 0 and Bn° = B1.

LTLE networks can also be treated as a special case of Theorem 4.1.7:

Corollary 4.2.1 Let G = (B °, B1, A) be an n-dimensional LTLE network. Then

G is isomorphic to a network a = A) .13" 1 ,

Proof: Because G is LTLE , B° and .B1 meet the conditions of Theorem

4.1.7. In fact, we need only to do the back-substitution portion of Algorithm Gaus­

sianReduceNetwork, because the elimination portion is already completed for us.

We noticed before that Network Isomorphism is at least as hard as the Graph

Isomorphism. However, LTNI has an algorithm with a strictly polynomial run

time. We should also ask if two LTLE networks can be found to be isomorphic in

polynomial time, too. This is not the case, because Graph Isomorphism on DAGs

is at least as hard as Graph Isomorphism.

86

Definition 4.2.3 Graph Isomorphism on Directed Acyclic Graphs (GI­

DAG):

Instance: Two directed graphs G1 = (V, Di) and G2 = (V, D2)

Question: Is G1 isomorphic to G2 ?

Theorem 4.2.6 Graph Isomorphism < GI-DAG.

Proof: Given two undirected networks G1 = (V, E1) and G2 = (V, E2), we

use a polynomial-time construction to make two directed graphs 01 = D1) and

G2 = (fi, D2).

To construct V, construct three vertices fii,2 and i)i,3 for each vertex

vi E V. To construct D1, include the edges (f)i,1, and 'Do) for each vi E V.

Then include the edge /Um) for each edge (vi, 2/j) e El. To construct D2, include

the edges (i)j,1, and (i)j,2, f/i,3) for each vi E V. Then include the edge (Do , i)j,3)

for each edge (vi, vj) E E2.

Now, clearly if G1 is isomorphic to G2, then ai is isomorphic to 02. For each

vertex vi of G1 that is mapped to vi of G2 in the undirected graphs, we map f/2,1 of

01 to i3,1 of G2, v1,2 of G1 to of G2 and vZ,3 of G1 to f/j73 of G2.

However, we must show that if 01 is isomorphic to G2, then G1 is isomorphic

to G2. Assume that 01 is isomorphic to G2. Note that in the constructed digraph

01 only the vertices ik1 where 1 < i < IV I have in-degree 0. From each v2,1, there is

exactly one path of length 2. All others are length 1. This means if any isomorphism

between G1 and 62 exists, then every v,,1 of ai must map to some of G2, and

v1,2 and v1,3 of 01 must then map to i)i,2 and v1,3 of 02, respectively.

Then the vertex v2 in G1 can map to vj in G2, and so G1 is isomorphic to

G2.

87

This result is hardly surprising. After typing the proof, I found it given as

an exercise in a textbook [4].

4.3. MINIMUM-WEIGHT ISOMORPHISMS FOR LTLE NETWORKS

In Subsection 2.2, we saw that the Flip MCube and YAT cube are isomorphic

to the Mobius cubes. This is an interesting isomorphism, because while the Mobius

cubes have twisted edges that span up to n dimensions, the Flip Mcube and the

YAT cube have twisted edges that span only 2 dimensions each. Using the standard

isomorphisms, we can transform a network to an isomorphic network that has fewer

twisted channels, or channels that twist across fewer dimensions.

For limited classes of the LTLE networks, we can sometimes reduce the num­

ber of twists by transforming a LTLE network to another LTLE network. Theorem

4.3.1 below gives some idea of how many twisted edges we can remove from such a

network.

Theorem 4.3.1 Let G = (B °, B1, A) be an n-dimensional LTLE network with B? +

E {0, B? 1, Bi+1}. There is a n-dimensional LTLE network O = (B.°, El, A)

which is isomorphic to G, and which has weights WH(M) < 2 and WH(.141) < 2 for

1 < i < 71. Further, the l's in each column i of B° and El- will only appear in rows

i and i + 1.

Proof: This can be done by applying row addition transformations to each

column from n to 1. This is computed by Algorithm MinimumWeightIsomorphism

and is given in Figure 4.3.

Because the initial network is defined with lower triangular matrices, Bn° and

Bnl each have weight 1. For each iteration i, n 1 > i > 1 through the loop, the

88

Input: A n-dimensional LTLE network G = (B °, B1, A), where for 1 < i < n,
B? + E {0,B41, B1+11.

Output: A n-dimensional LTLE network G = (fi°, f31, A), where for 1 < i < n,
B? < 2 and <2.

Procedure MinimumWeightlsomprhism(G = (B °, B1, A))
for i = n 1 down to 1 do

if W(Bj+1) = 2 and B? + Bt = B1+1
Add row i 1 to row i 2

end if

for j = i + 1 to n

if B9, 1 then
Add row i to row j

end if
end for

end for
end procedure

Figure 4.3. Algorithm MinimumWeightlsomorphism.

89

algorithm modifies columns i and i + 1 to guarantee that the weights of both B?

and Bi are each at most two.

The algorithm first checks if column B41 has weight 2. If it does and B11+1 =

B? 13., the algorithm changes the weight of B1+1 to 1. In this way, each iteration

forces B? and B differ by at most a single bit in row i + 1. The algorithm then

forces B? to weight 1, with the 1 in row i, and forces Bi- to weight 2, with the l's

in rows i and i + 1.

At any point in the algorithm, the row addition will maintain the isomor­

phism to G and keep the LTLE network property. The addition of row i to higher

rows does not affect columns i + 1 through n, because row i is zeroed in those

columns the matrices are lower triangular. I

Notice that all of the published LE networks are not only LTLE networks,

but they also meet the conditions of the theorem above and so are isomorphic to

networks with columns that have maximum Hamming weight 2.

An advantage of using such a minimum-weight LTLE networks is that the

physical layout of the network will be simpler, because channel twists will now occur

across at most two dimensions. Fewer twisted channels also means that we can use

a circuit layout that closely resembles the circuit layout for the hypercube.

We can extend this algorithm to more general cases. Using a

similar algorithm, a LTLE network G = (B °, B1, A) with B? B E

{0, B41, Bi+i, B4k, M+0, 1 < k < n, can always be transformed to an iso­

morphic LTLE network G = (E°, B1, A) where W(B ?) < k and W(En < k, and

where the l's in each column i of B° and B1 appear only in rows i through i+ (k 1),

for i + (k 1) < I/. However, this may not be the absolute minimal weight network.

90

4.4. SUMMARY

In this chapter, we have again demonstrated that the LE network model is too

general for describing interconnection networks. It allows one network to have more

than one matrix description. There is even strong evidence that there is no efficient

algorithm for determining if two matrix descriptions describe isomorphic networks.

This is true for matrix descriptions of either LE networks or LTLE networks.

However, we did show a number of standard isomorphisms that could be used

to to show that two networks are isomorphic. We also showed there is a efficient

algorithm to determine if a LE network is isomorphic to a LTLE network, so that

LTLE network results hold for these networks. Finally, we showed that at least some

LTLE networks can be transformed to isomorphic LTLE networks with a minimal

number of twisted edges.

91

5. ROUTING ALGORITHMS FOR DM NETWORKS

In this chapter, we devise a method for computing a minimal routing path

between a source node X and destination node on any LTDM network G =

(B °, B1). We do this by computing a minimal expansion of X. + 17 over the column

vectors of B° and B1.

We show that the problem of computing a minimal expansion is intractable,

even for DM networks with lower triangular B° and B1 matrices. We then show

that certain subclasses of the DM networks have efficient algorithms for computing

minimal expansions.

These results on DM networks will be used in computing a general minimal

routing algorithm for LE networks.

5.1. DEFINITION OF MINIMAL EXPANSIONS

Consider ZT, the n-dimensional vector space over {0, 1} with vector addition

and scalar multiplication mod 2. Assume also that the set {B?, B1 : 1 < i < n}

contains a basis for this vector space. It is possible, but not necessary, that B° and

B1 are each a basis.

Because B° U M contain at least one basis over 21, any vector je can be

represented as a linear sum of these basis vectors. Let each ai E {0, 1} and 13i E

10,11. Then:

= E(aiB? + AM), (5.1)
i=i

Clearly, we can represent a vector X by the set of vectors B° and rn which have

nonzero coefficients in this sum.

92

Definition 5.1.1 Sc)?) C {B?, B1 : 1 < i < is an expansion of)? if the

equality in Equation 5.1 is true, with ai = 1 iff E S(X) and = 1 if E S(X).

For convenience, S(X) is denoted S when)? is obvious. Any t E S(X) is called a

term of S.

Because there can be more than one subset of B°, B1 that can form a basis

over there can be more than one expansion of a vector. Several different linear

sums, each with possibly a different number of vectors, can add up to the same

vector X. For this reason, we define the following:

Definition 5.1.2 For a vector)-e, the weight of an expansion S() is the the

cardinality of S(.).

Equivalently, the weight of an expansion S(56 is the number of nonzero a's

and /(i's in that expansion. An expansion can have a weight of up to 2n. But B° U B1

contains a basis over ZT, and so every vector over Z2 clearly has an expansion of

weight of n or less.

Definition 5.1.3 For any vector)?, let a minimal expansion of)? be an ex­

pansion with least weight. For any vector)?, we let W (X) denote the weight of a

minimal expansion of).

Certainly W(Z) is well-defined since there are only a finite number of ex­

pansions. However, there may be more than one minimal expansion for a particular

vector fe under B° and B1.

93

5.2. USING MINIMUM EXPANSIONS TO ROUTE ON DM NET­
WORKS

Assume that for a connected DM network G = (B °, je and Y are the

source and destination nodes of a message. Any expansion SP? +) is all that is

necessary to compute a routing path.

At each step k with 1 < k < ISI in the routing path, we only add Btkk E S

to Xk = El1=1 143 to go to the next node X.k+1. Every step is legal, because

every node .4 would have the channels (Yk, B°) and (?k, Xk + B1) defined,

and the routing path correctly terminates at -V through mod 2 addition because:

I sl

X +> Btkk ES =Y
k=1

To route minimally, we only need to compute a minimal expansion. For a

DM network G = (B °, B1), a minimal expansion S(X +f) defines one or more

minimal routing paths between X' and S.; , because addition over .Z; is commutative.

The length of the computed path will be I SI < n. A term will not appear

more than once in a routing path, so we can represent the expansion S in as little

as 2n bits, with each bit representing the inclusion or the exclusion of one term.

Let the time to compute a minimal expansion be T(n) bit operations. We

can compute a minimal expansion at the source node, and forward it along with

the message to keep from repeatedly recomputing S at each address. We can also

forward the last term used in routing, so that the routing algorithm doesn't have to

check all 2n bits at each routing step. If we do both of these, the distributed run

time at each node will be at worst O(T(n)) bit operations, because we compute S

at the first node. The total run time will be 0(T(n) + n) bit operations at most

a constant number of bit operations at each succeeding node.

94

We have not yet examined an algorithm to efficiently compute a minimal

expansion S(X + Y), so we don't yet know what T(n) is.

5.3. INTRACTABILITY OF THE MINIMAL EXPANSION PROBLEM

The problem of finding a minimal expansion is important if we wish to quickly

compute a minimal routing path on a given DM network. We define the minimal

expansion problem below:

Definition 5.3.1 ME-DMN: Minimal Expansions in DM Networks:

Instance: An n-dimensional DM network G = (B °, B1), source and desti­

nation addresses je ,f E Z2 , and an integer K with 1 < K < 2n.

Question: Is there a expansion S('' +I") C {B °, B1} with ISI < K?

This problem is very similar to another problem, that of finding a minimal-

weight solution to a set of linear equations over Z2.

Definition 5.3.2 COSET WEIGHT: [9] Coset Weights over

Instance: A binary matrix A, a binary vector y, and a non-negative integer

w.

Question: Is there a vector x of Hamming weight < w such that xA = y.

Theorem 5.3.1 CO SET WEIGHT is NP- complete.

Proof: (See [9]).

Theorem 5.3.2 ME-DMN is NP- complete.

Proof: ME-DMN E NP, because we can guess an expansion S and verify

that each B, SC {B °, B1}, and that E Bt E s=fe-Ef. These operations can

be done in a polynomial number of bit operations.

95

COSET WEIGHT < ME-DMN, because we can choose the dimension of G

to be max(n, m), then set B1 to d, and set B° to A, filling the extra columns and

rows with zeros, and finally choose X + Y = y and K = w. Then a solution to

ME-DMN of weight K is also clearly a solution to COSET WEIGHT of weight w.

A minimal expansion is always a minimal routing path on a DM network, so

the problem of computing a routing path on a DM network is also NP-complete.

5.4. A MINIMAL EXPANSION ALGORITHM FOR LTDM NET­
WORKS

Although the problem of computing minimal expansions is NP-complete, we

can still design an efficient algorithm for a large number of DM networks. We will

show that breadth-first search techniques will require at most a polynomial number

of search states in many cases.

The obvious method for finding the shortest path between two vertices in a

graph is to find the destination vertex using breadth-first search from the source

vertex. This takes in the worst case 0(1171 + IED operations for a general directed

graphs G = (V, E), because every vertex and edge in the graph might be examined

in the search. If we try this approach for a DM network, we may require up to

O(2"` + n2n) = 0(n2n) search operations, which might each take 0(n2) bit operations

to compute (the time to compute the address of a neighboring node).

If we restrict ourselves to only lower triangular matrices for B° and B.',

where B9, BZi = 1, then the search space can be reduced considerably. With

lower triangular B° and B1, only the terms B?, Bi, . . . , B?, 131 can set Xi = Y.

All terms B° with j > i cannot affect X.
3

This affects our search for an expansion X + Y. Consider the search space

as a tree structure that we construct, with a root node X. Each vertex of the tree

96

at level i is labeled with the address of a node .7?2 in G. Each edge (Xi, jei+i) is

labeled with either 0, B?, B!, or B? .13?, which will be the mod 2 sum Xi + fei+i)

The edge will be weighted with the number of terms in its label, which is either 0,

1, or 2.

From a node 1717 in the i-th level of the search, we need to examine only how

B? and Bt can be included in the expansion from TT/.

If (I/V + 2.)i = 1, then there must be an odd number of B? and 13, in the

expansion. The only minimal choices are B? and fi! themselves. We compute the

addresses of IT7+ B? and 171.7+ B!, insert them as nodes at level i +1, and recursively

search from them to ft using only terms B?", B41, , B7,1.

If (Ti T + f)i = 0, then there must be an even number of B? and Bi- in the

expansion. The only minimal choices are 0 and B? + We compute the addresses

of W + 0 and T'7 + B? + insert them as nodes at level i + 1, and recursively

search from them to vecY using only MN, , B?, .

This approach takes 0(2n) search operations, which can each take 0(n) bit

operations to compute. If we construct this "expansion search tree" while we are

searching it, we can reduce the number of vertices we construct by querying whether

a vertex with a given address already exists in the tree before we insert it. If it

doesn't exist, we insert a new vertex in the graph and add a new edge from our

current vertex to it. If it does exists, we don't insert a new vertex; instead, we only

add an edge from the current vertex to the existing vertex.

The constructed expansion search tree will be a directed graph of depth n+1.

This graph will have label (.ke, 1) as the "root" vertex and one "leaf" vertex with

address (Y, n + 1). Algorithm ExpansionTree in Figure 5.1 will compute an expan­

sion search tree D. Figure 5.2 shows an expansion search tree between addresses

X = (11011) and Y = (10110) for the Folded Hypercube of [6] of dimension 5.

97

Input: A n-dimensional LTDM network G = (B °, 131), a starting address X and a
destination address Y.

Output: A weighted, directed graph D = (V, E), where each path from the vertex
(X, 1) to (f, n + 1) corresponds to an expansion of je + Y.

Procedure ExpansionTree(G, X, Y)
v 1)}
E
for each i : 1 < i < n do

for each (W. , i> E V do
if W = Y then begin

17(.11r,i+1),(1k+B?+131,i+1)}
E < EU (W. , , (117. , i 1) , ,

((W, , (W B? + , i 1) , 2)}
end if
if Wi Yi then begin

<VUlr,i+1),(T/V+B,i+1)}
E E U (W. , , (W. , i 1) , ,

((;17' , , (W. + B , i 1) , 1)}
end if

end for
end for
return D < (V, E)

end procedure

Figure 5.1. Algorithm ExpansionTree.

98

<11011,1>

B0_1+ B1_1
die.................11....../..---­

<11011,2> 0 <10011,2>B12

B0_2

B0_2+B 1_2

<10011,3> 0 <10111,3>B1_3

B0_3
 B0_3+B1_3

<10111,4> BO 4+B1_4 B0_4 <10101,4>

0
 B1_4

<10111,5> <10110,5>

Figure 5.2. An expansion search tree between addresses X = (11011) and
Y = (10110) on a 5-dimensional Folded Hypercube. The minimal path is shown
in bold.

http:die.................11

99

-1/ii

Theorem 5.4.1 The algorithm Expansion Tree(G, X, Y) correctly computes a

minimal expansion search tree D.

Proof: The algorithm will eventually terminate, because there are at most

n + 1 levels in the tree, and for each level i, there are at most 2n-i+1 vectors

which have = yi with i < j < n, and the algorithm generates at most one vertex

(W , i) for any one of these.

The algorithm terminates with the correct result. The algorithm's loop in­

variants are for any vertex (W. , i) E V:

1. There is a path from (X, 1) to (W, i).

ti
2. This path corresponds to an expansion S (X + VV) with a weight equal to the

path's weight.

3. For (W., i), Wi = Yi with 1 < j < i 1.

It is not hard to show that if the algorithm inserts the edge ((l/V, i) , i + 1) , d),

for some 17 E W + {0, B ?, B? + , then each of these conditions hold for the

new vertex 07, i + 1). The only vertex that meets the third condition above when

i = n + 1 is (f, n + 1).

It is also clear that all paths in D correspond to some expansion S +

and each path has a weight equal to its corresponding expansion's weight.

There are no expansions that S (X + I") that do not define a path in D.

Assume that there is such an expansion S.

At some i with 1 < i < n, there is a path from (X, 1) to (W., i) that is

defined by the set of terms 03/1 E S : 1 < j < i 11, but either:

1. S contains either B? or Bi (but not both), but there are edges from (W, i)

to (4V, i + 1) and Oil' + B? + , i + 1) .

100

2. S contains neither B? nor Be', but there are edges from (W , i) to

(W. + B?, i + 1) and (1717 + B1 1 i + 1).

But in the first case (je + W)1 = 0, so S cannot contain just B? or Bi- because S is

an expansion of X + Y. In the second case (.)? + I/V)i = 1, so S must contain either

B? or B? (but not both) because again S is an expansion of X +

We can find a minimal expansion from D, by finding a minimally weighted

path from V, 1) to (Y, n + 1). This can be done using a breadth-first search

from V, EachEach edge in D corresponds to zero, one or two terms in one or

more expansions of + 17., so a minimally weighted path corresponds to a minimal

expansion of X + Y. Once we have found a shortest path in D, we can derive its

corresponding minimal expansion quickly, by looking up which terms correspond to

each channel in the path.

What is the largest size that the search tree D can attain? At any level i,

there can be at most 2n different nodes, because D has two branches from every

node. The vertex (1/71.7, i) has the property that 14; = 0 for 1 < j < i 1, so that

the vector T-4.7 is also limited to 2n4-1-' different values. Maximizing under these two

constraints this shows the largest possible number of vertices at any level is 2Lni2J

and summing over all possible vertices gives an upper bound of IDI = 0(2n/2).

Clearly this is an exponential number of vertices, and will lead to an expo­

nential run time on any shortest path algorithm. We should consider any conditions

that limits ID1 to a polynomial size, for instance, the number of linear combinations

that can be made with B° and B1.

Theorem 5.4.2 Let G = (B °, B1, A) be an n-dimensional lower triangular matrix,

let D = (V, E) be the expansion search tree and let the matrix Hi be defined as:

101

B °1	 B °2 B9 Bi 1 BL2

B41,1	 B41,2 . Bill+ .131-+ 1 ,1 B1+1,2

B0	 Bn0,2 BnO,i Bnl B1 B1

Then IV I is less than the sum of the sizes of the column spaces of Hi for 1 < i < n,

that is:

2i

I VI E	 E a; (Ho; : aj E {0,1} } +1
j=i

Proof: For a given i, any vertex (W, i) has for aj, I3 E {0,1}:

=	 E aj.BY ,3;B31
j=1

W. has the property that W.; = 0 for 1 < j < i 1, so all the vectors in vertices at

level i will be the same in the first i 1 indices. If we ignore the first i 1 indices

of the columns of B° and Bl, then we only need to know how many different values

a linear combination of the remaining indices can make. This is exactly the size of

the column space of Hi above. Finally, there is only one vertex (I", n + I).

This is a rather loose upper bound, useful only for bounding the number of

vertices in D to order.

For most networks, the number of distinct vertices appearing at each level

of D is a fairly small constant. The next theorem uses that fact to limit the run

time of a minimal expansion algorithm to a constant times 0(n2), for most LTDM

networks.

Theorem 5.4.3 Let G = (B°,131) be an n-dimensional LTDM network. If the

expansion tree can have at most 0(k) vertices at any depth, for some constant k,

then a minimal expansion algorithm takes 0(kn2) bit operations to compute.

102

Proof: The algorithm has three stages: generating the expansion search tree

D, computing a minimal weight path in D, and deriving a minimal expansion from

the minimal weight path.

The first stage generates the D. Each vertex in D takes 0(n + log n) bit

operations to construct (a mod 2 vector addition and an integer increment). We

can then divide the vertices into n + 1 groups or "buckets" by their depth in D (the

second component of each node's label). Each group then always has at most 0(k)

vertices (by the assumptions in theorem's conditions). Inserting a new vertex into

D takes at most 0(n) bit operations, because we need 0(k) vector comparisons to

prevent redundant vertices from being inserted. Inserting a new edge into D takes

0(log k) bit operations, because there are at most 0(k) vertices to point to. The

total number of bit operations to construct the tree is:

0(kn) x 0(n) + 0(kn) x 0(log k) = 0(kn2)

The second part of the algorithm uses a breadth-first search algorithm on D to find a

minimal weight path from (X, I) to (3-7 ,n, + l>. This can be done quickly level-by­

level. Assume that we have already computed the distance of every node in level i

from (X, 1). Consider an edge ((W, i , > , (17, i + 1) , w). We can compute distance

of 17 from X by adding the distance of 1;1-'7 and the edge weight w. We compare this

value to any previously computed distances of V, and keep the minimal for c.

This operation takes 0(log k) bit operations for a pointer dereference to find
ti
17, plus 0(log n) bit operations to do a constant to integer addition, and an integer

comparison. The size of the integer is bounded by log n because the maximum

distance is n. Because there are at most 2k edges per level, the total number of bit

operations is:

0(kn) x [0(log n) + 0(log k)] = 0(knlogn)

103

We can keep track of a minimal path to each node by having each node keep a

(log k)-bit pointer to its parent node that is closest to the root. When the minimal

distance to each node has been computed, the chain of back-pointers from (Y, n + 1)

to (X, 1) describes a minimal weight path (in reverse). This record-keeping does

not change the complexity of the algorithm.

The final part of the algorithm computes and stores the terms that correspond

to edges on the minimal weight path. The terms can be looked up by following

the path found by breadth-first search. The terms can be looked up by pointer

dereference log k bit operations per term and compactly stored using 1 bit per

term. The total number of bit operations to compute the expansion is:

0(n) x [0(1) + 0(log k)] = 0(n log k)

The total number of bit operations overall is:

0(kn2) + 0(kn log n) + 0(n log k) = 0(kn2)

I

5.5. A LTDM NETWORK ROUTING ALGORITHM

Now we use the results from the minimal expansion algorithm to produce a

routing algorithm for LTDM networks.

We present the steps to route minimally on a DM network in Algorithm

DoubleMatrixRoute in Figure 5.3. We assume that the call to BreadthFirstSearch

(not listed) does a standard breadth-first search on D and returns a minimal path

P. We also assume that the call to PathToExpansion (not listed) converts P to its

corresponding expansion S. Because we know the run time to compute the minimal

expansion, we can compute the run time of Algorithm DoubleMatrixRoute.

104

Input: A n-dimensional DM network G = (B °, B1), the current address 11*/, a start­
ing address X and a destination address Y.

Output: The next neighbor to route to from IV*.

DoubleMatrixRoute(G = (B °, B1), 1-4 , X,
if l/V = Y then

accept message
if IT/ = je then

D ExpansionTree(G,

P BreadthFirstSearch(D)

S PathToExpansion(P)

else

remove Bt from head of S

route from .fe to je + gib

end if
end procedure

Figure 5.3. Algorithm DoubleMatrixRoute.

105

Theorem 5.5.1 Let G = (B °, B1) be an n-dimensional LTDM network. If the

expansion search tree D has at most 0(k) vertices at any level, for some constant

k, then the distributed run time of Algorithm DoubleMatrixRoute is at most 0(kn2)

bit operations per processor and the total run time is at most 0(kn2) bit operations.

Proof: This is trivially true, because the computation of D dominates the

run time of the algorithm, and forwarding through the network will take 0(1) bit

operations per node. Since the routing computation is done entirely at the source

node, the routing computation will dominate both the total and distributed com­

putation times.

This gives a strict linear bound on a minimal expansion algorithm's run time,

for all of the published LTLE networks.

Corollary 5.5.1 For the Folded Hypercube of 1:44 and [6] and and the Enhanced

Hypercube of [54] of dimension n, the distributed run time of Algorithm DoubleMa­

trixRoute is at most 0(4n2) bit operations per processor and the total run time is at

most 0(4n2) bit operations.

Proof: Examining the lower triangular matrix description of either of these

networks reveals that the size of the column space of any H 1 < i < n is never

more than 4, by Theorem 5.5.1. Both networks have at most 0(4n) vertices in the

expansion search tree, and at most 4 vertices at any level of the expansion search

tree.

By Theorem 5.5.1, the algorithm will take at most 0(4n2) = 0(n2) bit

operations to find a minimal expansion on either the Folded Hypercube and the

Enhanced Hypercube.

The best algorithms for the Folded Hypercube and the Enhanced Hypercube

can compute a routing in 0(n) and 0(n2) bit operations, respectively. Though the

106

asymptotic run time order of our algorithm is larger, it has the advantage that it

can efficiently route on a large number of LTDM networks.

5.6. NONREDUNDANT MINIMAL EXPANSIONS

Sometimes a minimal expansion of some vector .fe can contain both B? and

for some i. Since this kind of expansion may be the only minimal expansion,

any algorithm for finding minimal expansions must check for such an occurrence.

If we could show conditions for which .8° and Bi would never occur together

in a minimal expansion, then the expansion tree algorithm would be simpler, be­

cause it would never have to check for these "redundant" terms, and the resulting

expansion tree would be smaller.

If an expansion S(X) is a multi-set, where the same element can appear in

S more than once, then we can define "redundancy" as:

Definition 5.6.1 For an n-dimensional DM network G = (B °, B1), an expansion

of a vector S(X) is redundant iff S contains both B? and BI- for some index i, or if

S contains more than one occurrence of B? or 13,1 . Otherwise, S is nonredundant.

The terms B? and .B1 are called redundant terms if they appear together or each

appear more than once in S.

For some DM networks, the only minimal expansion is a redundant one. For

instance, for the matrices:

1 0 0 0 1 0 0 0

0 1 0 0 1 1 0 0
B° = B1 =

0 0 1 0 1 0 1 0

0 0 0 1 1 0 0 1

The only minimal expansion of (0111) is B° Bl.

107

Because some DM networks have redundant minimal expansions, we need to

ask what necessary and sufficient conditions guarantee that no redundant expansions

can exist in a network.

Theorem 5.6.1 A DM network G = (B°, B1) contains no redundant minimal ex­

pansions if for all i, W (B? + < 1.

Proof: Assume that SP-e) is a expansion that contains redundant terms at

index i. Then either B° or B1 appear more than once each, or B° and Bl appear

once each together.

If B° or B1 appear more than once each, we can immediately remove pairs

of Bt that occur more than once, because Bt + B = 0. So S cannot be minimal.

If B° and B1 appear once each together, then either W(B? + = 0 or

W(B? + = 1.

If W (B? + fin = 0, then 13? = Bi and the expansion S = S {B?, Bn is

smaller by two terms.

If W(B? + = 1, then:

B ° + = t E B41, , B411

and the expansion S = S {B? , + {t} is smaller by one term. So S cannot be

minimal.

Now assume G contains no redundant minimal expansions. The minimal

expansion of B? + BI- must have weight less than 2, or B? + B would be its own

redundant minimal expansion. If it has weight 0 or 1, then the only minimal expan­

sions must be in the set 10, /3°, B1 1.

For LTDM networks, the necessary and sufficient conditions can be restricted

further to the condition that for all i, B? + Bi = t E {0, B:?+1, , B°, B7,1}.

108

Notice that for these networks B ?2 = 1, which implies that for as,,)3.; E

{OM:

n

B ? +Bi = E aiB? + Al (5.2)
j=i+i

There are some LTDM networks that have redundant minimal expansions, but al­

ways have at least one alternate nonredundant minimal expansion for every source

and destination address. The summation in Equation 5.2 allows us to specify which

LTDM networks always have at least one nonredundant minimal expansion between

any two addresses. Such networks will allow a nonredundant expansion tree algo­

rithm to be used on them even if redundant minimal expansions exist.

Theorem 5.6.2 Let G = (B° ,B1) define a n-dimensional LTDM network. For any
ti

, there will always be a minimal expansion S(X) with no redundant terms iff for

all i with 1 < i < n in Equation 5.2:

E a, +/j <2
j =i +1

Proof: The proof is by induction on index i.

Base Case: For i = n, Bn° = B. Then:

E ai + =0
j=n+1

And the only nonredundant minimal expansions possible are S E {{}, {Bn°}, {B7,1} 1.

Inductive Hypothesis: For any ; = min{ k : xk 1} with i > i and

< 2, there is an minimal expansion S(X) with no redundant terms.

Inductive Step: Let i = min {k : Xk 1} and W, < 2. Find a minimal

expansion SPe). S cannot have more than one occurrence of the term B?, because

duplicate terms of B? can be paired off and removed without cost. The same is true

of

109

A single term B° or Bt in S is nonredundant. We can inductively find a

nonredundant minimal expansion and so S(X) would be equal to B? + + B?)

or Bi- + S(.? + Bn, respectively.

IfB °ESAB, ES, then by 5.2:

Wi(B? + = Wi(E ai./3?+oirm 2
j=i+i

S cannot be minimal if Wi(B?+M) < 2, because B? and /31 could then be replaced

by the fewer terms in a minimal expansion of their sum. So B? + B, = Bi +

where i < j < k < n.

We can produce another expansion S' (X) = S(X) {B?, Bt + {B311', BD.

= 0, so the smallest nonzero component of je is ; > i. Thus we can then
ti

inductively find a nonredundant minimal expansion S for S, and then set SP?) =

,§(-e).

If we restrict LTDM networks to have only nonredundant minimal expan­

sions, then we can show several properties that these networks have:

Theorem 5.6.3 Let G = (B°,13') be a LTDM network, and for all i with 1 < j <

n, let W (B? + < 1. Then for a vector X. , a minimal expansion S(X) has:

1. I f i = max{k : Xk = 1} then V j,1 < j < i : st S(X) and S(X).

2. If i = max{k : Xk = 1} then either B? E S(?) or 131 E S(X).

3. If i = max {k : Xk = 1} and cb E {0,1}, then W(?)	 1 < W(_k* ± 13?) <

W(?).

Proof: We deal with each property in turn:

1. Assume that there are one or more terms with indices less than i in a minimal
ti

expansion SP?). The lowest indexed of these is at some position j. Then only

110

the terms B.? and Bi- can affect the component Xj. But because Xi = 0, there

must be an even number of terms By and by mod 2 addition. But because

W(B.? < 1, two or more terms at index j can be paired off and each

pair replaced by fewer terms, by Theorem 5.6.1 above. Then any expansion
ti

of)? that uses a term at position j has at least W(.k.) + 1 terms and so is

non-minimal.

2. By the arguments above, no term with index less than i is in S. Any term

B E S with index j > i will have Bt = 0 and cannot affect index i in the

sum, by definition of the LTDM networks. So either B? E S or rn E S.

3. We can express)? as B? + B? + X = B?	 + B?), so a minimal expansion

for)? cannot have more terms than 1 term for B?, plus the number of terms

in a minimal expansion for (X. B?). The same holds true for M.

We will use these properties to construct a expansion search tree algorithm for

a nonredundant LTDM network. This will be similar to Algorithm ExpansionTree

in Figure 5.1, but will reduce the number of vertices in the search space.

Consider a minimal expansion on the LTDM network G = (B°, B1) with

source address .k and destination address 3-1 . By Theorem 5.6.3, the smallest indexed

term B with i = min({k : X2 0 Yin must affect ()?+37)i in the expansion. Further,

no .13`k with 1 < j < i can be used. When we search for a minimal expansion

SP? +), this observation limits us to only two choices for the smallest indexed

term in the expansion: B? and B. We can then recursively search from both .)?+B?

and X + Bt for the shortest path.

Because there are at most two choices at every vertex, we have a binary

search tree. Because adding B? or Ell to X corrects the smallest bit (X -FY)i = 1,

111

the depth of any branch of this search tree is at most n. Thus an upper bound on

the number of vertices in the nonredundant expansion search tree is 0(2n).

As before, this upper bound can be reduced considerably, by querying if we

already have constructed a vertex and re-using it if we have.

Note that the address of every vertex at level i of the tree has the bits

1, , i corrected to bits 1, , i of Y. There are 2n-i possible combinations of bits

i +1, , n, so from level 1 to level n/2, there are at most 2i distinct vertices at each

level, and from level n/2 + 1 to level n, there can be at most 2' distinct vertices.

The total number of vertices in the tree is then 0(2n12) instead of 0(22n0).

Algorithm NonredundantExpansionTree in Figure 5.4 will compute a non-

redundant expansion tree. The the proof of correctness is similar to the one in

Theorem 5.4.1, so it won't be repeated here. However some differences should be

noted.

This algorithm generates only vertices (Tif. , i) where i > min ({k : Xk # Yk}

n + 1) and Wj = Yj for 1 < j < i, and Wi Y. Since our previous algorithm,

Algorithm ExpansionTree, allowed nodes with either W, Y, or W2 = Y, Algorithm

NonredundantExpansionTree generates at most half the vertices that ExpansionTree

does. This will often be even smaller than half, because the starting vertex is now

(fe, min ({k : Xk Yk} n + 1)).

All the edges now correspond to only one term and so all edges have the same

weight. This will simplify the depth-first search algorithm for a minimal expansion

in the expansion search tree.

Algorithm NonredundantExpansionTree can be used in place of Algorithm

ExpansionTree in computing minimal routing paths on a nonredundant LTDM net­

work. The only change to the routing algorithm will be the generation of the search

tree. Though Algorithm NonredundantExpansionTree has the same asymptotic run

112

Input: A n-dimensional LTDM network G = (B °, B1), a starting address je and a
destination address Y.

Output: A directed acyclic graph D = (V, E), where each path from the vertex
(X, min ({k : Xk Yk} n + 1)) to (Y, n + 1) corresponds to a nonredundant ex­
pansion of X + Y.

Procedure NonredundantExpansionTree(G, X, 1-7)

V < {(fe min ({k : Xk Yk} n + 1))}
E
for each i : 1 _< n do

for each (W, i E V do

j 4- min + BNOfk},n+1)
4 V U + /3T,j)}

E 4 E U (W, , (lk + , j)) }
j 4 min (k : Bnk fk} ,n +1)

< V U (CV' + B , j)}
E E U ((W. , , (W + Bj , j))}

end for
end for
return D 4 (V, E)

end procedure

Figure 5.4. Algorithm NonredundantExpansionTree.

113

<11011,2>

<11011,2> <10011,2>

B0_21 B12

<10011,3> <10111,3>
B13

B03

<10101,4>

B0_4

B1 4

<10111,5> <10110,5>

<10110,6>

Figure 5.5. A nonredundant expansion search tree between addresses X = (11011)
and Y = (10110) on a 5-dimensional Folded Hypercube. We include the vertices of
the redundant expansion for comparison.

time order (in the worst case) as Algorithm Expansion Tree, it can be used to reduce

the number of bit operations by half or often more.

Both the Folded Hypercube and the Enhanced Hypercube can be represented

using a nonredundant DM network description, and so can use Algorithm Nonre­

dundantExpansionTree. Figure 5.5 shows a nonredundant expansion search tree for

the Folded Hypercube cube of dimension 5.

114

5.7. SUMMARY

The problems of minimal point-to-point routing on DM networks and on

LTDM networks are both NP-complete. This strongly suggests that a polynomial

run time minimal routing algorithm does not exist.

For LTDM networks, we were able to devise routing algorithms that had a

polynomial run time in a large number of common cases. These algorithms have

total run time of at worst O(kn2) bit operations, compared to the hypercube's total

run time of 0(n) bit operations. While polynomial, our minimal algorithms are

not highly efficient, because they require a large amount of pre-computation at the

source node.

We were able to show that for a subclass of LTDM networks those with

nonredundant minimal expansions we could simplify the algorithm and reduce the

size of the search tree by half. This still required a large amount of pre-computation

at the source node, though reduced the run time by a constant factor.

The results in this chapter will be used in the next chapter, where we consider

minimal routing for the LE networks.

115

6. ROUTING ALGORITHMS FOR LE NETWORKS

In the preceding chapter, we showed that a minimal expansion of X + f

can be used to compute a minimal routing path from)? to f on a LTDM network

G = (B °, B1). In this chapter, we expand those results to include LTLE networks.

In general, the computation of a minimal expansion not only allows us to

compute a minimal path between fe and ft for a DM network G = (B °, B1), but

it also allows us to find a lower bound on the length of a path on a LE network

G = (B°, B1, A), as the theorem below shows:

Theorem 6.0.1 Let G = (B °, B1, A) be a connected n-dimensional LE network.

Further, let je be a source address and Y be a destination address. Then the weight
ti

of a minimal expansion S(X d-f ') is a lower bound on length of the path from)-(to

Yon G.

Proof: Because the DM network G = (B°, B1) contains the LE network

a = (B°, Bl, A) as a sub-network with the same number of nodes but fewer

channels, the path from X to f on 6 will be as long as or longer than the path

from X to f on G.

Unfortunately, we may not be able to directly apply a minimal expansion

S(X + Y) as a routing path between .)? and f on a LE network G = (B °, B1, A).

The expansion S may not define a path if the terms of the expansion are applied in

the wrong order, or the expansion may define no legal path at all.

In this chapter, we consider the complexity of routing on a LE network. We

show that the general problem of routing on a LE network is at least NP-hard,

and for restricted cases is NP-complete. We also use a modified version of minimal

116

expansions to apply the LTDM routing algorithm in the previous chapter to LTLE

networks.

6.1. THE COMPLEXITY OF ROUTING IN LE NETWORKS

In this section, we consider the complexity of minimally routing on a general

LE network. We will show that the general problem is NP-hard, and that a restricted

version of the problem is NP-complete. We first define the problem of minimal

routing:

Definition 6.1.1 MR-LEN: Minimal Routing over LE Networks:

Instance: An n-dimensional LE network G = (B °, B1, A), source and des­

tination addresses j j,2 E ZT and an integer bound K > 1.

Question: Is there a path R from jj to Y in G, where 'RI < K?

As in Chapter 2, we are unable to put a polynomial upper bound on the

diameter of a LE network. Our inability to show that the maximum length of all

minimal paths is polynomially bounded makes it impossible for us to show that

MR-LEN E NP. We can avoid this problem by arbitrarily limiting the number of

times each term can appear as a step in the routing path:

Definition 6.1.2 LMR-LEN: Limited Minimal Routing Over LE Net­

works:

Instance: An n-dimensional LE network G = (B °, Bl, A), source and des­

tination addresses fe, Y E ZT, and an integer bound K with 1 < K < 2n.

Question: Is there a path R from fe to Y on G, where each term from B°

and B1 defines at most one channel in R and IRI < K?

117

We show that LMR-LEN is NP-complete by showing that there is a

polynomial-time transformation from an instance of the dominating vertex set prob­

lem. This problem was shown to be NP-complete in [33]:

Definition 6.1.3 DVS: Dominating Vertex Set:

Instance: A directed graph G = (V, E), and an integer B with 1 < B <IVI.

Question: Is there a set U C V, lUI < B so that Vv E {V U} : 3u E U :

(u,v) E E?

The original problem statement states that G is an undirected graph. But

the case where G is a directed graph is trivially proved to be NP-complete by taking

an instance of G and replacing each undirected edge (X, Y) with two directed edges
ti

,f) and (Y, fe). This transformation of an instance of DVS on undirected graphs

into an instance of DVS on directed graphs takes 0(1E1) operations and the resulting

directed graph clearly has a dominating vertex set of size B or less if the undirected

graph does.

We can use this result to show that there is probably no polynomial-time

algorithm for limited minimal routing:

Theorem 6.1.1 LMR-LEN is NP- Complete.

Proof: Proof is by transformation from DVS.

LMR-LEN E NP: Guess a routing path R from X to Y. Verify first that

each adjacent pair of nodes in the routing path are joined by channels in the network.

Second, verify that the starting node of R has address X and the ending node of R

has address andand 1R1 < K. There are at most 2n routing steps, and the verification

steps on each take 0(n2) bit operations (a matrix-vector multiply, a vector addition

and a vector comparison), so LMR-LEN E NP.

118

DVS < LMR-LEN: Let the directed graph G = (V, E) and the bound

B < 1V1 be an instance of DVS.

Also let B°, B1 and A to be 21V1 x 21V1 matrices. Then define B° as:

1, i = j
B°2i,2j = B°2i-1,2j-1 =

0, i j
B2oi Bo .-1,2j 2i,22-1

For 1 < i < 1V1 and 1 < j < 1V1.

Define B1 as:

pp]. n1
2i,2j '-' 2i,2j-1 '2i-1,2j-1

0, i j
- 0

For 1 < i <IVI and 1 < j

Define A as:

1, (24, Vj) E E
A2i,2j-1 = A2i-1,2j-1 =

0, (vi, vi) E

A2i,2j = A21-1,2j = 0

For 1 < i < 21V1 and 1 < j < 21V1. Let)? = (1111 ...11) and let Y = (0000 . 00),

and let K = L +IV' 21.171.

The transformation is complete. Now we show that a solution for LMR-LEN

exists if a solution for DVS exists.

Note that for i and j, B1_1 and B1_1 both depend on Mi_1 and if
(vi, vi) E E, because (AB2 _1)2i_1 = (A4)2i_1 = 1. But B2i_1 and B2i_1 never

depend on B2i_1, because (AB21j_1)2i_1 = 0, always.

Initially each B11_1 does not define a channel from either je or Y, and so

cannot be used as a routing step. Let (A/4_1)2i_1 = (A/4)2i_1 = 1. Then B2i_1

119

can be used as a routing step if either ./A3_1 or B° first used as a routing

step. This corresponds to the idea that a vertex v, can be a dominated vertex if a

dominating vertex vi is adjacent to it. Let (A.Mi_1)22_1 = (AA)2i_1 = 0. Then

/314_1 cannot be used as a routing step after either /4_1 or are used. This

corresponds to the idea that a vertex v, can never be dominated by vertex vi if vi

is not adjacent to vi.

If there is a dominating vertex set over G of size < K vertices, then there
ti

is a path from)? to 1" of length less than IV! + K. This can be constructed by

Algorithm ConstructTransformPath in Figure 6.1.

This algorithm takes K = IV I + B steps. This is two steps for each vertex

in U and one step for each vertex not in U. We mark each vertex not in U as it is

used in a routing step, so that each vertex is never considered more than once.

If there is no dominating vertex set over G of size < K vertices, then there is

no way to construct a path. No matter which set of vertices we choose for U, there

will be at least one vertex v, that is not dominated by any vertex in U. Hence B21_1

will not define any channel (Ti, 1T7 + B22_1) on the path R and 2 steps instead of 1/

will be required to correct indices 2i 1 and 2i.

Example: We apply the transformation to the instance of DVS to graph G

defined by the adjacency matrix below, and the bound L = 2:

0 1 0 1

1 0 0 0
G=

0 1 1 0

0 1 1 0

We define the matrices B°, B1 and A as:

120

Input: A dominating vertex set U for a graph G = (V, E).

ti
Output: A path R from X = (1111 ...11) to Y = (0000 ...00) on the network
G = (B °, B1, A) constructed by the transformation in Theorem 6.1.1.

Algorithm ConstructTransformPath(U)
W4-X
R {}

for i = 1 to IVI
mark[i] < 0

end for
for each j : vj E U do

W + f4j_i
R R+ {2j 1}

for each i : vi E {V U} A mark[i] = 0 do
W 4- W.. + B2,
R R + {2j 1}

mark[i] < 1
end for
W
R R + {2j}

end for
return R

end procedure

Figure 6.1. Algorithm ConstructTransformPath.

121

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 1 1

B° =
0 0 0 1 0 0 0 0

B1 =
0 0 1 1 0 0 0 0

A=
0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

We also define = (11111111), f = (00000000) and K = L + n = 6.

There is a dominating set of G of two vertices (in this case, it is {1, 3 }). There

is at least one routing path of length 6 from X to Y, which is R = (1, 3, 7, 2, 5, 6).

This path works because:

(11111111) -4 (01111111)

-3 (01001111)

-3 (01001100)

-3 (00001100)

-3 (00000100)

-+ (00000000)

The answer to both problem instances is "Yes" .

If the bound is changed to L = 1, then there is no dominating set of size 1 for

G, and no path of length 5 between .k to Y. The answer to both problem instances

is now "No" . 1

122

From the above proof of NP-completeness, we can conclude that a number of

special cases in LMR-LEN are also NP-complete. This is because the transformation

above results in an instance of these special cases.

Corollary 6.1.1 Minimal routing on networks where for all 1 < i < n, B?

is limited to the set 10, B2+.1, B4k, 14", Bi+k, for 1 < k < n is NP-

complete.

Corollary 6.1.2 Minimal routing on networks where B° and B1 are lower trian­

gular is NP- Complete.

We notice in the corollary above that B° and B1 are lower triangular matrices,

but that A is not necessarily lower triangular. If we restrict the problem instances

to only LTLE networks, LMR-LEN is still MP-complete. The proof of this stems

from the fact that DVS remains NP-complete when restricted to directed acyclic

graphs (DAGs):

Definition 6.1.4 Dominating Vertex Set on Directed Acyclic Graphs (DVS-DAG):

Instance: A directed acyclic graph G = (V, D), and an integer B with

1 < B < IVI.

Question: Is there a set U C V so that lUI < B and for every v U, there

is at least one u E U so that (u, v) E D?

This restricted version remains NP-complete:

Theorem 6.1.2 DVS-DAG is NP- complete.

Proof: DVS-DAG E NP: Guess U and verify that lUI < B. Then, for

each v E V, verify that either v E U, or that there is a u E U with (u, v) E D. This

verification takes at most 0(IUIIDI) < 0(1111D1) steps for each v, and so takes at

123

most 0(1V121D1) steps total to check clearly polynomial time in the size of the

input.

DVS-DAG < DVS: Assume that we have an instance of DVS with a graph

= (V, E) and a bound 1 < B < 1V1. We will use a polynomial-time transformation

to create a new directed acyclic graph G = (V, b) and a bound E.

For each vi E V, add two vertices :bi,1 and to V. Add one new vertex vo to

V. Have b initially contain the directed edges (i)0,14,1), (i)o, 7)2,1), , (ho, flvio.), and

the directed edges (14,1,1)1,2), (17245 v2,2), (f/IVI,11 7)111,2). Then, for each (vi, vi) E

E, add the edge (10, f)j,2) to D. Finally, set the bound B = B + 1.

The transformation is complete. This transformation can be computed in

polynomial time, because 1V1 = 21V1 + 1 and 1131 = 21V1 + 21E1.

Now to show that DV has a solution iff DV-DAG does.

It is clear that any solution to DVS gives a solution to DV-DAG. If U = {

uii, ui2, , ui, }, k < B is a solution to DVS, then we can use it to construct U =

{ f)o, vi,,1i f%,1, , }. The bound is then B = B +1. The construction works

for three reasons: first, 1)0 dominates all second, ui,- E U with 1 < r < k implies

that /Lir,' dominates uir,2i and third, uir with 1 < r < k dominates vs with 1 < s < k

implies that fLir,i dominates h3,2. So if U dominates all V, then U dominates all V.

It also is clear that v0 must be in any solution to DV-DAG because it has in-

degree 0. If U = < B is a solution to DVS-DAG, then

we can use it to construct U = {ui, ui2, ,ttikl. The bound is B = B 1. This is

because ui,,1 dominates fii2,2 implies that ui, dominates vi2, and because 2-41,2 E

implies that ui, is not dominated by any other vertex and so must be included in

U.

Example: The graph in Figure 6.2(a) is a general, undirected graph. We

can replace each undirected edge with two directed edges and create the directed

124

V1 V6

V2 V5

V3 V4

(a)
vo

V12 V21 V31 V41 V51 V62

(b)

Figure 6.2. The transformation of an instance of DV to DV-DAG.

125

graph in Figure 6.2(b), using the transformation in Theorem 6.1.2. The first graph

has the dominating vertex set U = {v2, v6} and the second has a dominating vertex

set U = {vo, v2,1, v6,11. However, neither has a smaller dominating vertex set.

Any DAG can have its vertices topologically sorted in polynomial time, as

mentioned in Chapter 4, which makes the graph's adjacency matrix lower triangular.

Let G be an instance of DVS-DAG. If we topologically sort G and then use the

transformation in Theorem 6.1.1 to create a LE network G = (B°, B1, A), it will

create a lower triangular A matrix and so O is a LTLE network. Hence, we have:

Lemma 6.1.1 Minimal routing on LTLE networks is NP- complete.

Though most of the variations on routing problems for LE networks are

intractable, this will not prevent us from writing an algorithm that is efficient in

many cases.

6.2. LEGAL EXPANSIONS

Like the DM networks, the LE networks can use a minimal expansion S(? +

17) over B° and B1 to find a minimal path between je and Y. All such paths must

correspond to some expansion, so we only have to find a minimal expansion that

can be used.

Unfortunately, there are two problems to using expansions to find a routing

path on a LE network G = (B°, B1, A). The first is that for a given expansion S,

a term in S may not define a channel from a particular node in G. We may have

to use the terms of S in a completely or partially specified order, so that each term

used defines a channel from an intermediate node in the routing path.

Second, a given expansion S may not correspond to any routing path in a

network G. If G is connected, then there must be some expansion whose terms

126

define the channels in a routing path, but there are possibly some expansions have

terms that do not define channels in any routing path.

For this reason, we have to distinguish between a "legal" expansion, for which

a corresponding routing path exists in G, and an "illegal" expansion, for which no

routing path exists:

Definition 6.2.1 For a network G = (B °, B1, A) and vectors fe and Y, an expan­

sion S(X + f) is a legal expansion if:

1. S is an expansion.

r(k)2. There is an permutation ir of the terms of S, so that for every BiOr(k)	 E S with

1 < k <151, we have:

[A (X + BC '6 '41) +
(

k- 111 Or(k)
iff (1) trk

k)

This definition describes the existence of some permutation of terms in S(? +

37) so that each term 4(k) E S defines a channel (1/17. ,1/17' + t,(k)) at step k of the

routing path. We can again use an expansion S(.* +
ti

) to find a routing path on

G = (B °, B1, A). The only difference is that now S must be a legal (and ordered)

expansion over B°, B1 and A instead of an expansion over B° and B'.

If the legal expansion between a pair of nodes is minimal, then clearly a

routing path corresponding to that legal expansion is also minimal. Further, if

we can quickly find the smallest (in weight) legal expansion that corresponds to a

routing path, then we have an efficient, minimal routing algorithm.

The task of finding a minimal legal expansion requires finding an expansion

that meets two possibly conflicting criteria. First, the expansion must meet the the

conditions in Definition 6.2.1 above. Second, it must be the smallest such expansion

meeting those criteria.

127

We define the problem of finding a legal minimal expansion below:

Definition 6.2.2 LME-LEN: Legal Minimal Expansions in LE Networks

Problem:

Instance: An n-dimensional LE network G = (B °, B1, A), source and des­

tination addresses .)? , fit E , and an integer K with 1 < K < 2n.

Question: Is there a legal expansion S(X f) in {B°, B1} with ISM < K?

Unfortunately, the problem LME-LEN is intractable:

Theorem 6.2.1 LME-LEN is NP-hard for general LE networks, and is NP-

complete for LTLE networks.

Proof: We use a polynomial-time transformation of an instance of MIN­

COSETS to LME-LEN, similar to the transformation of MIN-COSETS to ME-DMN

Theorem 5.3.2. The only difference is that we also set A to a.

LME-LEN remains NP-hard for LE networks, because we cannot bound the

maximum path length polynomially in n. LME-LEN is NP-complete for LTLE

networks, because the maximum path length is 0(n) steps, by Corollary 3.3.2. We

can guess an expansion and a permutation of it and verify it against the definition

in a polynomial time. I

For LTLE networks, we have a way to verify that an expansion is legal:

Theorem 6.2.2 Let G = (B°, Bl, A) be an n-dimensional LTLE network. An

expansion S(X Y) corresponds to a routing path from X to Y on G if for every

B E S, one of the following conditions are true:

1. (Af)i =

2. (Af)i = and 3j < i, 13'; E S : (ABA)i = 1

128

Input: A n-dimensional network G = (B °, B', A), a starting address X, an ending
address V, a legal minimal expansion S(X + Y) with the terms ordered by index
from smallest to largest.

Output: An ordered list R of the terms in S so that each term i correspond to a
legal channel in the i-th step of the routing path from X to Y. If no such path
exists, then the algorithm returns "Failure".

Procedure ConstructRoutePath(G, X, Y, s)
R 0
for k = 1 to ISM do

Bt +- Sk
ti

if (Acli = (/) then

insert Bt into R after Rim

else if (241-r.)i = (1). then

j = maxanz : (ARni)i = 11, 0)

if j > 0 then

insert B into R before Ri

else

return "Failure"

end if

end if

end for

return R

end procedure

Figure 6.3. Algorithm ConstructRoutePath

129

Proof: Sufficient: Assume that conditions 1 and 2 are true for an expansion

S, and let a routing path R be represented as an ordered list of terms. Algorithm

ConstructRoutePath in Figure 6.3 will correctly compute R from S, if the terms in

S are listed in order of increasing index.

In the loop with index variable k, we have a loop invariant for the beginning

of each repetition. R is a routing path from fe + Sk E S + + E S to Y. For

the first iteration k = 1, this is trivially true.

Let Bt be the k-th element of S. If (Af)i = 0 then we append Bt after

Rim E R, because the channel (f + Bt, E G.

If (A1-7)i = ¢ then insert Bt into R immediately before the last 11; E R with

j < i and (ARj)i = 1. This Ri E R exists because condition 2 guarantees that such

a term initially exists in S and the algorithm has already inserted all terms with

index j < i into R. For the node (Ri + . . . + Rim + we we have:

[A(R; + + Rim + f)]i = [(AR;)i + + (ARIRI)i + (Af)i

= 1 + 0 + + 0 +

=5

And so the channel (Ri + + + , E G.

Because G is a LTLE network, G guarantees that (ABt)i = 0 for j < i.

Inserting Bt into the prescribed position in R will not affect the other terms already

in R. This means that after the insertion, each term in R still defines a channel.

So, at then end of iteration k of the loop, R is a routing path from .,-e + Sk+ E

S + + S151 E S to Y. The end of the final iteration will then trivially have R
ti

contain a routing path from jj to Y.

Necessary: Assume that (AY)1 = Ti) and that Vj, 1 < j < E S :

(ABA i = 0. Then because G is lower triangular, Vj, 1 < j < E S : (ABM = 0.

130

Let W be any linear combination of Bc E S added to Y. Then:

(Aw.), = [A(37+ E ai./31;)
aiE{0,1},137ES

i

+ E a .ABA
L a je{0,1},B;ES

= 2 a [ABP
aiE{0,1},WIESi
= 0+ a-0

ajE{0,1},13!;ES

=

Any such node ITV. that can reach f will have (ATV')1 = ;b) and so will have no legal

channel (iii + W). Therefore, the expansion S corresponds to no path from X.

to f Y.

There are two corollaries that follow from this theorem:

Corollary 6.2.1 Let G = (B °, B1, A) be an n-dimensional LTLE network. The

time to compute if an expansion So? + f) corresponds to some routing path from

je to f on G is at worst 0(n2).

Proof: This can be computed directly from the conditions in Theorem 6.2.2.

For each Bt E S the product (A131') can be precomputed. For a given Y, each (i137)1

can be computed in 0(n) bit operations for a total of 0(n2) bit operations. Then

for each term of S, verifying Condition 1 takes 0(1) bit operations, and verifying

Condition 2 takes at worst ISM = 0(n) bit operations. There are ISI = 0(n) terms

so the run time is at worst 0(n2).

Corollary 6.2.2 Let G = (B °, B1, A) be an n-dimensional LTLE network. The

time to compute a routing path R from X to on G using a legal expansion SP- C.-1-f)

is at worst 0 (n2 log n) .

131

Proof: This can be computed directly from Algorithm ConstructRoutePath.

For each Bt E S the product (ABt) can be precomputed. For a given 17., each (A1-)1

can be computed in 0(n) bit operations for a total of 0(n2) bit operations.

There are IS1 = 0(n) terms to insert into R. If we use a linked list, at most

0(log n) bits will be needed to represent a pointer. Then inserting into the list can

take at most 0(n log n) bit operations for each term, because comparisons at each

element of the list will take 0(1) bit operations. Therefore, the run time of the

algorithm is 0(n2 log n) bit operations. I

Although Algorithm ConstructRoutePath gives only one path, a number of

paths can be created that meet this condition. The algorithm needs only to insert

the current term Bt before an even number of terms where (ARA = 1 if (AY); =

(or before an odd number of terms with (AR,), = 1 if (A17)i = q3). This will result

in an equally correct routing path, but one in which the terms may be used in a

different order.

We give an outline of the algorithm we will call LowerTriangularRoute. Given
ti

a LTLE network G, and nodes fe and Y, we can compute a routing path using the

following steps:

1. Generate an legal expansion search tree D for the addresses and Y.

2. Use breadth-first search in D to find a minimal legal expansion S(? f).

3. Order the terms of S into a routing path R.

4. Use R to route the message from je. to Y.

We have an algorithm to compute all but the first step. The next section

will present an algorithm to compute this.

132

6.3. A MINIMUM LEGAL EXPANSION ALGORITHM FOR LTLE
NETWORKS

Algorithm Expansion Tree in Figure 5.1 will correctly generate expansions,

but will have both legal and illegal expansions represented in the tree. To create an

expansion tree that contains only legal minimal expansions, we now need some way

to "prune" paths from the expansion tree so that edges corresponding to terms in

an illegal expansion are not included.

There is a problem with simply pruning edges from the expansion tree. Terms

that appear in legal expansions may also appear in illegal expansions, so simply an

edge from the expansion tree may remove perfectly legal expansions from the tree.

Instead, we may have to change the search tree to include a branch for the case

where a term can be used in a legal expansion, and another branch for the case

where the term cannot be used.

For a LTLE network G = (B °, B1, A), the terms B? and Bi- can depend on

another term /3; only if j < i and (ABM = 1. Say that B? depends on /3"; . By

placing B? either before or after Bc in an expansion, we can guarantee that B?

defines an channel in the routing path. Thus B? can be a part of a legal expansion

if BP is also part of the expansion. The same is also true for Be'.

The legal expansion tree algorithm generates a search tree of expansions,

starting with edges that correspond the terms B? and Bi. Any term with index i

is examined as part of the expansion only after terms with indices 1, , i 1 have

been examined. Because G is lower triangular, we can tell if terms B? and Bt can

be used in a legal expansion just by back-tracing up the search tree for any BF; with

j < i and (AB;)i = 1.

This back-tracing up the search tree could be done explicitly, but would in­

crease the run time order of the search tree algorithm. Instead, we can can place

133

additional information in the label of each vertex in the tree. This additional infor­

mation is an n-bit mask. If, for a vertex at level i, this mask has a 1 in index i, then

both B? and B1 are usable terms in a legal expansion and edges for both terms can

be added to the expansion search tree at that vertex. If the mask has a 0 in index

i, then only the one term ec)` is usable, and only the edge for that one term can

be added.

The terms that depend on .13'; can be computed quickly by the product A,T

If (AB1M = 1, then B? and .13, depend on B. Otherwise, they do not. In con­

structing new vertices, we can compute the new vertex's mask quickly by taking the

union of the current vertex's mask and AB';.

Algorithm LegalExpansionTree is listed in Figure 6.4. This algorithm is a

variation of Algorithm ExpansionTree. A legal expansion tree for X = (1000000)

and Y = (1101010) on the 7-dimensional Mobius Cube is shown in Figure 6.6.

Algorithm LegalExpansionTree is very similar to Algorithm ExpansionTree and can

be proved using similar arguments.

The major difference between Algorithm LegalExpansionTree and Algorithm

ExpansionTree is that Algorithm LegalExpansionTree labels each vertex with three

components instead of two. To simplify the algorithm, and reduce the number of

vertices, any vertex with a given i has Mi = 1 for 1 < j < i 1. This will also

guarantee that there is exactly one vertex with address Y in its label the one with

./t/ = f and i = n 1.

Theorem 6.3.1 Algorithm LegalExpansionTree(G, , Y) is correct.

Proof: The algorithm can be shown to be correct by a proof very similar to

Theorem 5.4.1, and will not be duplicated here. This algorithm will generate only

paths that correspond legal minimal expansions, because for each vertex, we now

134

Input: A n-dimensional network G = (B °, B1, A), a starting address X and a des­
tination address f.

Output: A weighted directed acyclic graph D = (V, E), where each path from the
vertex (X, 0, 1) to (Y, f, n + 1) corresponds to a legal expansion of X + Y.

Procedure LegalExpansionTree(G, X,
V (1,1)}
E
for i = 1 to n do

for each (117. , E V do

if Wi = Yi then

if A = 1 or (AVV)i = 0 then

< V U ir,fi V AB? V ei,i + 1)1

E 4- E U -117' , (1g7, fi V AB? V ei,i + 1) ,2)}
end if
if = 1 or (AW-.)i = 1 then

-VU r, /17/ V Arn V ei,i +1)1
E t EU (W. ,f/IV AB1V ei,i+1),2)}

end if
if A = 1 then

4-- VIT/V,IIIVAB?VAMVei,i+ 1)1
E t EU (W. , la V AB? V Arn V ei,i + 1),2)}

end if
f- Vir,fiVei,i+1)}

E t EU (W.,fi,i),(1;17',fiVei,i+1),0)}
end if
if Wi Y then

if Mi = 1 or (.411.7)i = 0 then
i--V1 + a V B? V ei,i)}

E EU (W.,111,i),(W. +B?,/-li V B?V ei,i),1)}
end if

(continued)

Figure 6.4. Algorithm LegalExpansionTree.

135

(continued from Figure 6.4)

if Mi =1 or (AITT)1 = 1 then
<VU +./31,/aVB?vei,i)}

E 4EU (W.,,i),(W. +rn,fiVMVei,i),1)}
end if
if A = 1 then

V +VU W. +M,1171VMVMVei,i)}
E < EU (Yr/ ,fi,i) + 14,11-I'VE?? V Bl V ei,i) ,3)}

4-- V U F B1-,11/1* V 13? V M V ei,i)}--1/V

E < EU (W. + ,I171 V B? V V ei,i),3)}
end if

end if
end for

end for

return D < (V, E)

end procedure

Figure 6.5. Algorithm LegalExpansionTree (continued).

136

<00000, 00000, 1>

B0_1

<10000, 10000, 2>

B0_2+B1_2+B1_2B0_2

131_2

<11000, 11100, 3> <11111,11 11,3> <11000, 11111, 3>
B0_3+B1_3 B0_3+B0_3

B1_3+B1_3

0 0_3+B1_3

B0_3+B1_3
B1_3+B1_3

V
<11000, 11100, 4> <11000, 11110, 4> <11000, 1111, 4> <11011, 11111, 4>

B0_4 B1_4

B1_4 B0_4+B0_4

<11011,11111,5> <11010, 11111, 5>

<11010, 11111, 6>

Figure 6.6. A legal expansion search tree between addresses ie = (1000000) and
Y = (1101010) on a 7-dimensional 1-Mobius Cube.

137

only add edges that correspond to terms that can be used in a legal expansion. All

legal expansions will be generated, because each edge added corresponds to a term

that depends only on terms that have already been included in the expansion at an

earlier level.

In the algorithm, we have included all of the branches that can possibly give

a minimal expansion. If Wi = Yi, then we generate branches for:

W,W + B? + B?,W. + + 1321, i/f/ B? Bi

If Wi Yi, then we generate branches for:

+ B?, W* + Bil, + + + ./3,1/17. + B,1 + B? + B?

All other possible summations of B° and B1 to 1/17. will lead to non-minimal expan­

sions and can be ignored.

How large will the legal expansion search tree D get? For Algorithm Legal-

ExpansionTree, the number of edges generated per vertex is a larger constant than

for Algorithm ExpansionTree. We have also added an orthogonal component to the

label of each vertex, so the number of vertices can be much larger. Where before

we considered the vector space of the columns in Algorithm ExpansionTree, we now

need to consider the union of the columns in the matrix products AB° and AB'.

The theorem below limits the number of expansion search tree vertices generated.

Theorem 6.3.2 Let G = (B°, B1, A) be an n-dimensional LTLE network and and

let the matrix H, be defined as in Theorem 5.4.2, and let the matrix K, be defined

as:

AB ? AB?2 . . . AB?i ABi 1 AB] 2 . . . ABh

AB?+,,, AB?+1,2 ABj+,,, AB41,2

A132,1 AB,2,2 . . . ABni AB,2 . . . AB7,1
,

138

Then for ai E {0,1} with 1 < j < 2i, the number of vertices in D is bounded above

by the sum:

2i

E ai(Hi)j} U ai(Ki)j}
i=i j=1

Proof: The proof is an extension of the proof of Theorem 5.4.2. In addition,

we have that for a given i with 1 < i < n, any vertex (W, M, i) has for ai, E

{O,1 }:

2i

M= V alcB.
j =1

Also, /1-4.. has the property that Mi = 1 with 1 < j < i 1, so that any vector /17/ in

vertices with a fixed i will be the same in the first i 1 indices. If we simply ignore

the first i 1 indices of the columns of AB°'s and ABl's, then we only need to know

how many different values a union of the remaining indices can make. Finally there

is only one final vertex (f , f, n 1).

This is a rather loose upper bound on the number of vertices in D, but it is

useful for bounding the size of D to order.

6.4. A MINIMAL LTLE NETWORK ROUTING ALGORITHM

Now we use the results from the legal minimal expansion algorithm to pro­

duce a routing algorithm for LTLE networks.

Algorithm LinearEquationRoute in Figure 6.7 will correctly route from source

to destination on a LE network G. The algorithm is similar to Algorithm DoubleMa­

trixRoute, with two differences: A call to LegalExpansionTree is made in place of

ExpansionTree, and call to ConstructRoutePath is made to correctly order the terms

of the legal expansion before routing. The algorithm to minimally route on a LTLE

139

Input: A n-dimensional LTLE network G = (B °, B1, A), the current address W. , a
starting address X and a destination address Y.

Output: The next neighbor to route to from VV..

LinearEquationRoute(G = (B °, B1, A), 1V, fe,
if VV = Y then

accept message
if ITT = .)? then

D 4- LegalExpansionTree(G, X ,
P < BreadthFirstSearch(D)
S < PathToExpansion(P)
R ConstructRoutePath(G, X, Y, S)

else
remove B from head of R
route from X to X + B.4,)

end if
end procedure

Figure 6.7. Algorithm LinearEquationRoute.

140

networks is slightly worse than the algorithm to minimally route on a LTDM net­

work.

Theorem 6.4.1 Let G = (B °, B1, A) be an n-dimensional LTLE network. If the

expansion tree has at most 0(k) vertices at any level, for some constant k, then Al­

gorithm LinearEquationRoute takes 0(n2 log n) bit operations to compute a minimal

routing path.

Proof: The algorithm has four parts: generating the expansion tree, com­

puting a minimal weight path in the expansion search tree, deriving a minimal

expansion from a minimal weight path, and ordering the terms of S into a routing

path R.

The proof is similar to that in Theorem 5.5.1. This time, however, a legal

expansion search tree is computed using Algorithm LegalExpansionTree instead of

ExpansionTree. Since these two algorithms take the same number of bit operations

(to order) to insert each new vertex and edge in the search tree, and since they

will both generate the same number of vertices and edges (to order), Algorithm

LegalExpansionTree will take 0(kn2) bit operations.

The second part of the algorithm is the same breadth-first search and will

take 0(kn log n) bit operations to do.

The third part of the algorithm is also the same expansion construction and

will take 0(n log n) bit operations to compute and store the terms in the legal

minimal expansion.

The final part of Algorithm LinearEquationRoute is the only part that is dif­

ferent from Algorithm DoubleMatrixRoute. By Corollary 6.2.2, ordering the terms

of the expansion will take 0(n2 log n) bit operations.

The total number of bit operations overall is:

141

0 (kn2) + 0 (kn log n) + 0(n log k) + 0(n2 log n) = 0 (n2 (k + log n))

For the published LE networks, a legal routing path can be computed very

quickly.

Corollary 6.4.1 For all the published n-dimensional networks that can be described

using LE networks, including the Twisted Cube, the MObius Cubes, the Generalized

Twisted Cube, the M-Cubes, and the Bent Cube, Algorithm LinearEquationRoute

will have a total run time of O(n2(12 + log n)) bit operations and a distributed run

time of O(n2(12 + log n)) bit operations.

Proof: From Theorem 6.3.2, each network has at most 4 linear combinations

of W each level i, where Wi = 1. If we examine the possible values of the mask fi

for each network, we see that there are at most only 3 possible unions at each level

i. Each level will have will have at most 4 x 3 = 12 vertices. By Theorem 6.4.1,

Algorithm LinearEquationRoute takes O(n2(12 + log n))bitoperations.

Since the routing computation is done entirely at the source node, the routing

computation will dominate both the total and distributed computation times.

This result shows that Algorithm LinearEquationRoute will compute mini­

mal routing paths in 0(n2 log n) bit operations for all of the published LE networks.

However, the Mobius cubes, and the Twisted Cube (for example) have routing al­

gorithms that use at most a linear number of bit operations. This is asymptotically

smaller than our algorithm can achieve.

There is an approach we can use to modify the algorithm LegalExpansion-

Tree. Rather than compute all the bits of I/V and fi in each vertex generated, we

can use "place holders" , or bits that indicate the condition for a whole set of indices.

142

If we use place holders, we no longer need to compute and copy the results of an

entire mod 2 sum or union over up to n bits just a constant number of bits.

For instance, on the Mobius cubes we notice that we need to keep track of

possible cases for the values of 17V.. First, if no indices of W have been complemented,

second, if only index i has been complemented (by adding B?), or third, if indices

i through n have been complemented (by adding Be'). These possibilities can be

represented using only two bits, and so only 2 bits of 11.7 need computing and copying

per vertex. Similarly, we can use place holders to tell if none of bits i through n of

fi are set, if only bit i of fi is set, or if all of bits i through n of /17/ are set. These

possibilities can also be represented in only 2 bits. Finally, if the component i of

each vertex is only implicitly represented in the structure of the graph by its depth

from the root vertex, we can skip any computation for incrementing i. So, only a

constant number of bit operations per vertex need be computed, and the algorithm

to compute a legal expansion search tree now takes 0(n) bit operations.

The same approach can be taken with the other published networks. How­

ever, the approach clearly requires writing a different legal expansion tree algorithm

for each network, because the place holders would have different meanings for each

network. The more general algorithms that we have developed have the advantage

that they can work with the algorithms unmodified.

This approach will not reduce the asymptotic run time of Algorithm LinearE­

quationRoute, because the last step of the algorithm takes 0 (n2 log n) bit operations.

If ordering the terms of the legal expansion can be done more quickly, then it might

be possible to reduce the run time of Algorithm LinearEquationRoute to a linear

number of bit operations in cases of specific networks.

143

6.5. NONREDUNDANT MINIMAL LEGAL EXPANSIONS

Just as minimal expansions can have redundant terms, legal minimal ex­

pansions can also have redundant terms. The DM networks have a simple condi­

tion for guaranteeing that no redundant minimal expansions exist in the network:

A(B? + Bt) < 1. Unfortunately, this condition alone is not sufficient to guarantee

that a LE network will have no redundant legal minimal expansions.

It is even possible that a DM network G = (B°, B1) will have a nonredundant

minimal expansion for two nodes .)? and Y, while the related LE network G =

(B °, B1, A) will have only a redundant legal minimal expansion for the same nodes.

Example: Sometimes a cube definition makes it necessary to "un-correct"

a certain term to route minimally. In the cube below, the first component controls

whether a weight 1 or a weight 2 term is corrected at even positions:

1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0

B° = 0 0 0 1 0 0 0 B1 = 0 0 0 1 0 0 0 A= 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0

For the DM network G = (B °, B1), a minimal expansion for jc = (0000000) and

= (0111111) is B1, B4, B4. For the LE network G = (B °, B1, A), a minimal legal

expansion is B?, 131, 13,14, B6, B? (in order). All other legal expansions will have

weight 6. The term B? is used twice in the minimal legal expansion in a network

that is lower triangular.

144

This example network meets the conditions for nonredundant minimal ex­

pansions, yet still fails to have a nonredundant legal minimal expansion.

To avoid redundant minimal legal expansions, we need to impose additional

conditions on the network. The theorem below states the sufficient conditions to

ensure that at least one minimal nonredundant legal expansion exists between any

two nodes on a LTLE network:

Theorem 6.5.1 Let G = (B°,B1 , A) is an n-dimensional LTLE network, where

Vi : W(B? + 13,1) < 1. Then the following conditions are together sufficient to

guarantee that a nonredundant legal minimal expansion S(.- e,f) always exists for
ti

every pair of nodes X and :

BI = B? + Bt = (A B?); = (AB1) = 1, i < j

((ABl').; = ((AB(t)k = 1 (A.By)k = (A Bj-)k = 1, i < j < k

Proof: Condition 1 states that .13? + Bi = B , then Bi depends on B? and

Condition 2 states that if Bi and Bre, with j < k, both depend on some Bcib,

then Br, also depends on B.

Assume that we have an legal minimal expansion S with redundant terms.

Consider a pair of redundant terms with the smallest index i. If B? or B.) appear

in S, then there are a series of terms B41 , . . . , B n that depend on B? or B1,

where k1 < k2 < < kn.

There can be one of three cases:

Case 1: B? appears twice. We simply remove the two occurrences of B?

from S, and transform the remaining terms.

If Bit' can be used in a legal expansion, then Condition 2 guarantees that

Eric/ 22 , . . . , Brn depend on Btil and so can be arranged before or after Bit' to make

a legal expansion :5' = S B? B? that is smaller than S.

145

If Bti' cannot be used in a legal expansion, then Bit' + = BI for some

j and Condition 1 allows us to replace Bit' with 13Z' + B1. Since Bi depends on

, we can place it before or after to make it part of a legal expansion. Condition

2 then guarantees that B2 2
. . , Bt: depend on Bi' or B, and so can be arranged

before or after these terms to form a legal expansion. This replacement expansion

= S B? B? Tri is as small as S.

If there are any other redundant terms in the resulting S, they have an index

greater than or equal to i and so can be removed recursively. This recursive process

will eventually end, because is removes one redundant pair of terms at index i, and

introduces no redundant pairs of terms at any index less than i.

Case 2: Bi appears twice in S. We can use arguments similar to Case 1 to

transform the expansion to a nonredundant expansion of the same or fewer terms.

Case 3: B? and M each appear once in S. If B? + Bt = 0, then we can

replace B2 with B? and use Case 1. However, if B? + Bi = 4, then we can replace

B? and B1 with B. Then Condition 1 states that BI depends on B? and and

so Condition 2 states that Bti' , B 22 , , B'1': depend on B.

We can use an argument similar to the one in Case 1 to get a nonredundant

expansion :S' that is equal to or smaller than S. Here, however, we use BI,

B t 2 , , Bt instead of Be', B Z2, . . . , gkb: in creating an expansion of equal or

smaller weight.

The published LE networks, including the Mobius cubes, the Flip MCube,

the Twisted Cube, and the Generalized Twisted Cube, all meet the criteria of The­

orem 6.5.1, so they are all nonredundant.

Algorithm NonredundantLegalExpansionTree in Figure 6.8 will compute a

nonredundant legal expansion tree. A nonredundant legal expansion search tree for

146

Input: A n-dimensional nonredundant LTLE network G = (B °, B1, A), a startingti
address ,? and a destination address V.

Output: A directed acyclic graph D = (V, E), where each path from the vertex
(X, Vi=i ek, j) with j = min ({k : Xk # Yk} ,n 1) to (Y, n 1) corresponds to a

nonredundant legal expansion of

Procedure NonredundantLegalExpansionTree(G, X, f)
< M,Vi=liek,i) :j = min ({k : Xk 0 Yk} ,n + 1)1

E 4 0
for i = 1 to n do

for each (W., /a, i) E V do

j 4 minak : (VV + B?)k fkl,n + 1)

if fii = 1 or (AT/V)i = 0 then

< V U ir + B?,fi V AB? V ei V ... V ei -1 , j)}
E 4-- E U (W. , la , i) , (W. + B?, la V AB? V ei V ... v ei-1,0

end if
j 4 minak : (1/7' +Bnk ffkl,n + 1)
if A = 1 or (ATV-.)i = 1 then begin

< V U 1 T/V +131,1171V ABi V eiV ...V ei-i,i)}

E < EU (W. ,111,i),(117. +rn,1171V AB1V ei V ... V ej-i,i))/
end if

end for
end for
return D 4 (V, E)

end procedure

Figure 6.8. Algorithm NonredundantLegalExpansionTree.

147

<00000, 00000, 1>

B0_1

<10000, 10000, 2>

B12

<11000, 11100, 3> <11111, 11111, 3> <11000, 11111, 3>

B0 2

BO 3 13

<11000, 11100, 4> <11000, 11110, 4> <11000, 1111, 4> <11011, 11111, 4>

B1 4
B0_4

BO 4
V

<11011, 11111, 5> <11010, 11111, 5>

B15
B0_5

<11010, 11111, 6>

Figure 6.9. A nonredundant legal expansion search tree between addresses
X = (1000000) and Y = (1101010) on a 7-dimensional Mobius Cube. The min­
imal path is shown in boldface.

148

= (1000000) and f = (1101010) on the 7-dimensional Mobius Cube is shown in

Figure 6.9.

Algorithm NonredundantLegalExpansionTree is an extension of Algorithm

NonredundantExpansionTree in Figure 5.4, in the same way that Algorithm Legal-

Expansion Tree is an extension of Algorithm Expansion Tree. The same arguments

given in Theorem 6.3.1 can be used to show that the algorithm is correct, and to

show that the algorithm can execute in O(kn2) bit operations.

This algorithm will of course will execute the same asymptotic number of

bit operations as the algorithm in Figure 6.4, because it generates the same or

fewer number of nodes. It is essentially the same algorithm, with all but two of

the cases removed. Because all the networks published in the literature to date

meet the sufficient conditions of nonredundant networks in Theorem 6.5.1, they

can all use Algorithm NonredundantExpansionTree to calculate nonredundant legal

expansions.

6.6. DETERMINISTIC MINIMAL LEGAL EXPANSIONS

Finally, we briefly consider removing non-determinism from the search for

minimal legal expansions. There is the possibility that a minimal legal expansion

is not unique. When faced with more than one nonredundant minimal expansion,

the breadth-first search may return arbitrarily either path. A simple heuristic can

make the breadth-first search algorithm always return the same path.

Our heuristic is: If two branches from one node have the same distance to

the destination node, choose the branch that leads to the node with the smallest

indexed component that differs from the destination. We used this heuristic to

determine a unique and deterministic legal minimal expansion from the legal expan­

sion search tree. We chose this algorithm somewhat empirically, because it gives

149

the best (by far) network performance for optimal routing. Other rules for making

choices (including randomly choosing a minimal path) did not work nearly so well.

This approach appears to work best because it forces the terms of the legal minimal

expansion S to be as low-indexed as possible.

6.7. SUMMARY

The problem of minimal routing on LE networks is NP-hard, and the problem

of minimal routing to LTLE networks is NP-complete. This is strong evidence that

a minimal routing algorithm with polynomial run time in 72 does not exist.

For LTLE networks, we were able to devise routing algorithms that had a

polynomial run time in a large number of common cases. These algorithms have total

run time of at worst 0 (n2 log n) bit operations, compared to the 0(n) bit operations

of the hypercube. While polynomial, our algorithms are not highly efficient, because

they require a large amount of pre-computation at the source node.

We were able to show that for certain subclasses of the LTLE networks

(nonredundant subclasses), we could simplify the algorithm and reduce the total run

time by a constant amount. This still required a large amount of pre-computation

at the source node.

Though these algorithms are important, because they are our most successful

effort at producing a general minimal routing algorithm, they leave a lot to be

desired. They do not have a small distributed run time (say, 0(1) bit operations

per node). The following chapter will discuss efficient, though non-minimal routing

algorithms for DM networks and LE networks.

150

7. NON-MINIMAL AND WORMHOLE ROUTING ALGORITHMS
FOR LE NETWORKS

In this chapter, we discuss variations on point-to-point routing, including

non-minimal routing, and wormhole routing. In particular, we will discuss an ef­

ficient routing algorithm that produces non-minimal routing paths, but captures

most of the behavior of the minimal algorithm. This algorithm can be shown to be

deadlock-free, which makes it usable under the wormhole routing strategy.

7.1. NON-MINIMAL ROUTING ALGORITHMS FOR LE NET­
WORKS

It is not always important that a routing algorithm generate minimal paths.

The asymptotic run time complexity of the routing algorithm sometimes can be

more important than a minimal path. A small (constant) number of bit operations

per vertex may be more desirable when the communication time approaches the

same order of magnitude as the routing computation time.

With the LE networks, we may need to trade minimality for simplicity. The

minimal routing algorithms in the previous chapters may seem unnecessarily com­

plicated for efficient message-routing. These algorithms also have a run time com­

plexity that approaches a total 0 (n2 log ii) bit operations, which is not at all efficient

when compared to the 0(n) bit operations of the hypercube's routing algorithm.

In this section, we examine some non-minimal routing algorithms for LTLE

networks, and derive properties for each algorithm.

151

Input: An n-dimensional LTLE network G = (B °, B1, A), a source address X, a
destination address Y and the current address W.

Output: If the message needs to be forwarded, the index of the neighbor to route
the message to. If the message is at its destination, a signal to accept the message
at the current processor.

LeftRightBitCorrectRoute(G, X, Y, vf7)
begin

ti
If VP = f then

Return "Accept"
else

i <-- min{ k : Wk Yk}

return i
end if

end procedure

Figure 7.1. Algorithm LeftRightBitCorrectRoute.

7.1.1. The Left-Right Bit Correction Algorithm

The hypercube has a very standard point-to-point routing algorithm the

left-right (LR) bit correction algorithm. This is also known as the "greedy" algo­

rithm or the "E-cube" routing algorithm [45]. This algorithm, which we will call

Algorithm LeftRightBitCorrectRoute, "corrects" any components of the source ad­

dress that differ from the destination address, starting with the smallest or left-most

index.

A distributed version of Algorithm LeftRightBitCorrectRoute appears in Fig­

ure 7.1, and is modified to work on LTLE networks.

152

Theorem 7.1.1 Let G = (B°,B1 , A) be an n-dimensional LTLE network. Algo­

rithm LeftRightBitCorrectRoute correctly routes a message from X to Y, and has a

distributed run time of 0(n) bit operations per node, and a total run time of 0(n)

bit operations.

Proof: The routing algorithm will terminate when TT/ = Y. At each pro­

cessor it corrects the leftmost differing component between 11*7 and , by routing to

1;17' 's i-th neighbor. Because G is a LTLE network, routing from W to W. + B. A14.7)1

does not un-correct any component with index j < i, so progress to the destination

is made at each step. There are at most n indices the algorithm has to correct, so

it will terminate after a maximum of n iterations.

The total run time of 0(n) bit operations can be achieved by forwarding,

with the message, the index of the most recently corrected component. The next

node only has to examine components with indices greater than i for the next one

to correct.

Any LTLE network that uses Algorithm LeftRightBitCorrectRoute will have

the same maximum and average routing distance as the hypercube:

Theorem 7.1.2 Let G = (B°, B1, A) be an n-dimensional LTLE network. The

maximum routing distance of Algorithm LeftRightBitCorrectRoute is n steps and

the average routing distance is n/2 steps.

Proof: The proof is by induction on the dimension n:

Base Case: n = 1. The only LTLE network G = ([1], [1], [0]) has a maximum

routing distance of 1 step and an average routing distance of 1/2 step. (We include

the zero distance from a node to itself in the average distance.)

Inductive Hypothesis: For n < 11, the maximum routing distance is ft

steps and the average routing distance is n/2 steps.

153

Inductive Step: By Theorem 3.3.2, G can be subdivided into 2 disjoint

LTLE networks G1 and G2 of dimension n 1. Gi and G2 are joined by the

channels in dimension 1.

First we show the maximum routing distance. Assume that .k. and 177. are both

in G1 or G2, respectively. By induction, the maximum routing distance between)?

and f is (n 1) steps.

Assume that .g. and f are in G1 and G2, respectively. Then X1 Y. The

algorithm will first route from to some W. E G2. By induction, routing from IT/.

to f on G1 takes a maximum of n 1 steps, and so the maximum routing distance

from)? to 17 is n steps.

The maximum routing distance, over all possible cases, is n steps.

Now we show the average routing distance. Assume a uniform distribution

of X' and Y. Their mod 2 sum is then also uniformly distributed over Z. The

address pairs)? and .1-.. can be divided into two groups of 2"-1 pairs each, one group

with X1 = Y1 and the other with X1 Y1.

The address pairs with X1 = Y1 have mod 2 sums with a uniform distribution

over (0 4-1). By induction, they have an average routing distance of (n 1)/2.

The address pairs with X1 Y1 have mod 2 sums with a uniform distribution

over (1 Zr'). By Lemma 2.1.1 the neighbor function N1 is 1-1, and for LTLE

networks [N1(4).?1, so the mod 2 sums of N1(..) + I-7. will map uniformly

to (0 Zr'). By induction, these node pairs have an average routing distance of

(n 1)/2 + 1.

The two groups of node pairs are equal in size, so the average routing distance

is then 0.5((n 1)/2) + 0.5((n 1)/2 + 1) = n/2. I

Another concern of a routing algorithm is how the algorithm distributes

the routing paths of messages traveling through the network. If even a slightly

154

higher fraction of the messages are routed through a single channel, that channel

can quickly become a communications bottleneck for the entire network it will

slow the transmission of all messages.

One measure, the channel utilization, is defined as the number of routing

paths (generated by a routing algorithm) that pass through a given channel. This

is measured as a fraction of all routing paths generated between all source and

destination nodes in a network. In our measures, the channels are considered to

be unidirectional, so the utilization of a bidirectional channel would be the sum

of channel utilization for its corresponding unidirectional channels. The channel

utilization is related to the channel utilization rate, which measures the fraction of

time that a channel is utilized in transmitting messages.

The channel utilization depends not only on the topology of the network,

but also on the routing algorithm used. For the hypercube, the channel utilization

of any given channel is 0.25 of all messages, assuming that Algorithm LeftRight-

BitCorrectRoute. This is not true of all hypercube variants or routing algorithms.

Abraham and Padmanabhan [2] showed that the Twisted Cube of Hilbers [34] had

an non-uniform distribution of channel utilization, with some channel utilizations

exceeding 0.25. This caused the Twisted Cube to have a much worse overall network

behavior than the hypercube under heavy message loads.

We examine the channel utilizations for LTLE networks using Algorithm

LeftRightBitCorrectRoute and a uniform message distribution. Not surprisingly,

the channel utilizations are the same as the hypercube's channel utilizations.

Theorem 7.1.3 Let G = (B °, B1, A) be an n-dimensional LTLE network. If Algo­

rithm LeftRightBitCorrectRoute is used, then the channel utilization for all channels

will be uniformly 0.25.

155

Proof: The proof is by induction on the network's dimension n.

Base Case: For a 1-dimensional LTLE network, the channel utilization is

0.25. There are four source, destination pairs, only two of which will use one of the

two channels.

Inductive Hypothesis: Assume that for all (n 1)-dimensional LTLE net­

works using Algorithm LeftRightBitCorrectRoute, all of the unidirectional channels

each have a channel utilization of 0.25.

Inductive Step: By Theorem 3.3.2, G can be subdivided into 2 disjoint

LTLE networks G1 and G2 of dimension n 1. G1 and G2 are joined by the

channels in dimension 1.

The paths with source X- and destination Y can be divided into two groups

of 2n-1 pairs each, one group with X1 = Y1 and the other with X1 0 Y1. These two

groups are of equal size, or 0.5 of all paths.

If X1 = Yi, then the path is entirely in the sub-network G1 or G2. By

induction, this set of paths will give channels in dimension 2 through n a utilization

of 0.5 x 0.25 = 0.125.

If Xi 0 Y1, then the path crosses channels in dimension 1. All the channels

in dimension 1 will each have a channel utilization of 0.5 x 0.5 = 0.25. The neighbor

function is one to one, so after removing the first step of these paths, the remaining

sub-paths will have uniformly distributed sources and destinations in G1 and G2. By

induction, these sub-paths will give channels in dimension 2 through n an additional

utilization of 0.5 x 0.25 = 0.125.

The total channel utilization of any channel is then 0.25.

These results make the LTLE networks clearly comparable to the hypercube.

Specifically, any LTLE network has a routing algorithm with performance measures

that are at worst comparable to the hypercube. However, a LTLE network can often

156

from \ to 000 001 010 011 100 101 110 111
000 - 3 2 2 1 1 2 1

001 3 2 2 1 1 1 2
010 2 2 3 2 1 1 1

011 2 2 3 1 2 1 1

100 1 1 1 2 3 2 2

101 1 1 2 1 3 2 2
110 1 2 1 1 2 2 3
111 2 1 1 1 2 2 3

Table 7.2. A routing table for the Twisted 3-Cube.

achieve even better performance measures than the hypercube, if given a slightly

more complex routing algorithm.

7.1.2. The Three Bit Lookahead Algorithm

Consider for a moment, a routing algorithm for the Twisted 3-Cube. The

routing instructions for the Twisted 3-Cube can be written as a table, as shown in

Table 7.2, because the network is of fixed size. This table tells each processor which

neighbor in the Twisted 3-Cube to route to next. A minimal routing table for the

Twisted 3-Cube appears in Table 7.2.

This routing table follows (for the most part) the routing paths specified by

Algorithm LeftRightBitCorrectRoute, with the exceptions listed in boldface. Be­

cause there is exactly one exception for each source, and because that exception

always has the message route in dimension 2, this table can be stored very com­

pactly as a table of the eight exceptions in 3 x 8 = 24 bits:

[110,111,100,101,011,010,001,000]

157

For a message at current node address 1/i7 on the Twisted 3-Cube, the routing

algorithm looks up table entry W. If the table entry is equal to the message's

destination address, the algorithm routes to iii. 's second neighbor. If not, it follows

Algorithm LeftRightBitCorrectRoute.

We can extend this approach to higher dimensional LE networks, if we break

the address space of a vector X into triples of components, as below:

= (x1x2x3)(x4x5x6) ... (x._2xn_1xii)

We can treat each component triple with indices i, i + 1, i + 2 as a 3-dimensional

LTLE network, by ignoring all other components. At each node, a routing table can

be generated and stored for each group of three indices. We then use the f i/31-th

routing table to route along dimensions i, i + 1, or i + 2, ignoring what happens to

the components with indices i + 3, ... , n. By routing each component triple from

smallest to largest, all the indices will be corrected and the message will reach its

destination.

Depending on the number of component triples that are isomorphic to the

Twisted 3-Cube, this routing algorithm can give a maximum routing distance as

small as 12n/31, and an expected routing distance as small as ill + .(n mod 3).

This closely follows the approach used with the Generalized Twisted Cube

of Chedid and Chedid [12], because their networks are built by graph composition

of Twisted 3-Cubes. This approach always routes minimally for the Generalized

Twisted Cubes, but not for other networks.

In fact, arbitrarily breaking the node addresses into triples can sometimes

ignore the twisted channels that exist in the network. For instance, if Bgk = e3k

and Bik = e3k + e3k+1 for any 1 < k < n/3, then this algorithm will ignore the fact

that a step might be saved by routing on an channel defined by Bik instead of one

158

defined by Mk, because the components are broken into triples between indices 3k

and 3k + 1.

A slightly different approach, Algorithm ThreeBitLookaheadRoute, doesn't

break the address into triples. Instead, it operates more like Algorithm LeftRight-

BitCorrectRoute. It first finds the leftmost differing component between the current

address and the destination address, then routes the components with indices i, i+1,

and i + 2 as a 3-Cube, ignoring indices i + 3 through n. This approach is more ex­

pensive than the approach mentioned above, because it uses 71 3 routing tables

instead of 1n/31 routing tables, but it will be more minimal, because it will ignore

fewer twisted channels.

A distributed version of Algorithm ThreeBitLookaheadRoute is shown in

Figure 7.2.

Theorem 7.1.4 Let G = (B °, B1, A) be an n-dimensional LTLE network. Algo­

rithm ThreeBitLookaheadRoute correctly routes a message from X to Y. Further, it

has a distributed run time of at worst 0(n) bit operations per node and has a total

run time of at worst 0(n) bit operations.

Proof: The algorithm terminates correctly because it terminates only when

W = Y. Each routing step finds is the smallest index i where W, Yi, and then

corrects component Wi, except if correcting Wi+1 is locally shorter. Because G is

a LTLE network, correcting any component Wi will not "un-correct" components

with indices j < i, so at each successive node, i increases or stays the same. Also, if

the algorithm corrects component Wi+i, it will correct component Wi on the next

step, because the condition that selected index i + 1 will no longer be true. Thus

the algorithm will eventually terminate, because there are at most n components to

159

Input: An n-dimensional LTLE network G = (B °, B1, A), a source address X-, a
destination address Y, and the current address W.

Output: If the message needs to be forwarded, the index of the neighbor to route
the message to. If the message is at its destination, a signal to accept the message
at the current processor.

ThreeBitLookaheadRoute(G, X,
)

begin
if W = f then

return "Accept"
else

i min{ k : + = 1}

if i < n 2 then

U W + ./24+Ari)s+1

V 4-- CI +
end if

if 1 < i < n 2 and B41 ./3.41 and (Areg)')i+i =1

and ViVi+114+2 = YiYi+131+2 then

return i + 1
else

return i
end if

end if
end procedure

Figure 7.2. Algorithm ThreeBitLookaheadRoute.

160

correct, and each component is selected as the smallest differing component at most

twice and corrected at most once.

Consider each of the conditionals in the routing algorithm. The computation

of V takes a constant number of bit operations, because only components ViVi+i 14+2

need to be computed. If needed, the possible values of ViVi+i Vi+2 can be precom­

puted and stored in a table at each node. The comparison of V to cancan also be

done in a constant number of bit operations. All the other conditionals are inde­

pendent of the message destination and can be precomputed for each node 4V and

index i. The only computation that takes 0(n) bit operations is finding the lowest

index i where Wi # Y.

We can forward with the message the index i of the most recently corrected

component. Then the next node only has to examine any components with indices

j > i for the next component to correct. This algorithm then has a distributed run

time of 0(1) bit operations per node, and a total run time of 0(n) bit operations.

Algorithm ThreeBitLookaheadRoute has the same asymptotic run time or­

der as Algorithm LeftRightBitCorrectRoute. The relatively small number of bit

operations per node gives this algorithm a simple hardware implementation that is

not much more complicated than Algorithm LeftRightBitCorrectRoute.

The maximum and average routing distances of Algorithm ThreeBitLooka­

headRoute both compare favorably to Algorithm LeftRightBitCorrectRoute, as the

next theorem shows.

Theorem 7.1.5 Let G = (B°, B1, A) be an n-dimensional LTLE network. The

maximum routing distance of Algorithm ThreeBitLookaheadRoute is less than or

equal to n routing steps and greater than or equal to 12n/31 steps. The expected

routing distance is less than or equal to n/2 routing steps and greater than or equal

to E(n) steps, where:

161

3 5 1
E(n) = -7-n + + [(15 11V3-i)A7 + (15 + 11Vdi)A111

49 6 49 1

Where:

1 +

Al =

1
4

A2 =
4

Proof: There are three possible conditions for the components of node TT/.

at index i:

1. 1 < i < n 2, B? Bj and (AB?)i+i = (AB1)i.o. = 1.

2. 1 < i < n 2, B? = B1 or (AB?)i+1 = (ABni+i = 0.

3. n 1 < i < n.

If Condition 1 is true, then the algorithm routes on the components with indices i,

i + 1 and i + 2 like a Twisted 3-Cube. If Condition 2 is true, then the algorithm

routes on the components with indices i, i + 1 and i + 2 like a normal 3-cube. If

Condition 3 is true, then the algorithm routes on the components with index i or

indices i and i+ 1 like a normal 1-cube or 2-cube.

By Theorem 3.3.2, G can be decomposed into smaller dimension networks.

We will use this property to compute the maximum and expected distance.

For condition 3, n 1 < i < n. The maximum and average routing distance

can be calculated by enumeration:

D(0) = 0, D(1) = 1, D(2) = 2

E(0) = 0, E(1) = 0.5, E(2) = 1.0

162

Assume that for every triple of components starting at index i, 1 < i < n 2 in

network G meet Condition 1. There are eight cases, based on the leftmost differing

components of the sum W + Y. We can join the cases together into three main

cases, based partly on the possible values of V in the algorithm:

1. If W1 + Y1 = 0, then the algorithm will inductively look at W2 + Y2. By

induction, each of the four cases that meet this condition will have a maximum

distance D(n 1) and an average distance E(n 1).

2. If W1 + Yl = 1 and ViVi+iVi+2	 YiYi+1Yi+2, then the algorithm corrects the

first two components in one step, by routing to the neighbor of Tk in dimension

1. The third component may or may not be set. By induction, each of these

two cases will have a maximum distance 1 + D(n 2) and an average distance

1 + E(n 2).

3. If W1 + Y1 = 1 and V: 17,:+1 +2 = YiYi+1Yi+2, then the algorithm corrects the
4V

first components in two steps, by first routing to the neighbor of 17i7. dimension

2, the routing to the neighbor of that node in dimension 1. In these two

steps, the third component is also corrected. By induction, each of these two

cases will have a maximum distance 2 + D(n 3) and an average distance

2 + E (n 3).

The maximum and average routing distances are described by the recurrence rela­

tions:

D (n) = max (D(n 1) , 1 + D(n 2), 2 + D(n 3))

1 1 1 3E(n) = E (n 1) + TIE (n 2) + E (n 3) +

Solving these recurrences will give us the solutions:

163

D (n) = I-2 3n 1

5 1

E(n) = 3 + + [(15 11-V5i)A7 + (15 + 11f3-i)A121]

Where:

1+ fi
A1 =

4

1 Vi
A2 =

4

Now assume every index i, 1 < i < n 2 in network G meets Condition 2. The

algorithm cannot choose to correct components with indices i +1 and i+2 in one step,

so the algorithm then functions identically to Algorithm LeftRightBitCorrectRoute.

For average routing distance, the routing algorithm has 2 cases, based on the

first component of the mode 2 sum of ik + Y.

1. If W1 = Y1, then the algorithm will inductively look at W2 ± Y2. By induction

the maximum routing distance is D (n 1) and the average distance is E (n 1) .

2. If X1 0 Yl, then the algorithm routes to	 neighbor in dimension 1. By

induction, the maximum routing distance is 1 + D(n 1) and the average

distance in this case is 1 + E(n 1) .

The maximum and average cases can be described by recurrence relations:

D(n) = max(D(n 1), 1 + D(n 1))

E(n) = E(n 1) + [1 + E(n 1)]

Then the maximum routing distance is D(n) = n and the average routing distance

is E(n) = n/2.

We now show that these are the upper and lower bounds on the maximum

and average routing distance. Assume that we have two networks G1 and G2 that

164

have each triple of components meet the same conditions above, except that the

components starting at index 1 in G1 meet Condition 1 and the components starting

at index 1 in G2 meet Condition 2. Clearly from the recurrence relations, G1 will

have a smaller maximum and average routing distance than G2.

Further, if we use Theorem 3.3.2 to show that G1 is a sub-network of a

network 61, we can replace G1 with G2 to create a new network G2 that will have

an equal or larger maximum and expected routing distance. Thus each time we

change the definition of a network so that the components starting at index i meet

Condition 2 instead of Condition 1, the maximum and expected routing distance

will be equal or larger.

The maximum and expected routing distance can be maximized by ensuring

that all triples of components starting at index i with 1 < i < n 2 meet Condition

1, and minimized by ensuring that all triples of components starting at index i with

1 < i < n 2 meet Condition 2. I

A list of average routing distances for Algorithm ThreeBitLookaheadRoute

on the Bent Cube appears in Table 7.3. As can be seen, Algorithm ThreeBitLooka­

headRoute provides a not insubstantial savings on the expected distance about

11% for an 8-dimensional cube.

For a packet-switched network, this algorithm may not provide very much

savings in communication time when compared to a minimal algorithm. But aver­

age routing distance is not a dominant factor in network message delay for circuit-

switched networks. Instead, it is the message length that determines the message

delay. In a circuit switched network, the rate at which channels are utilized can be

more important than the average routing distance between nodes. In the theorem

below, we bound the channel utilization of networks using Algorithm ThreeBit-

LookaheadRoute.

165

Dimension Left-Right Lookahead Percent
Exp. Dist. Exp. Dist. Savings

1.00 0.500000 0.500000 0.0000 %
2.00 1.000000 1.000000 0.0000 %
3.00 1.500000 1.375000 8.3333 %
4.00 2.000000 1.812500 9.3750 %
5.00 2.500000 2.250000 10.0000 %
6.00 3.000000 2.671875 10.9375 %
7.00 3.500000 3.101562 11.3839 %
8.00 4.000000 3.531250 11.7188 %
9.00 4.500000 3.958984 12.0226 %

10.00 5.000000 4.387695 12.2461 %
11.00 5.500000 4.816406 12.4290 %
12.00 6.000000 5.244873 12.5854 %
13.00 6.500000 5.673462 12.7160 %
14.00 7.000000 6.102051 12.8278 %
15.00 7.500000 6.530609 12.9252 %

Table 7.3. Expected Distances of the 3-bit lookahead algorithm.

166

Theorem 7.1.6 Let G = (B°, B1, A) be an n-dimensional LTLE network. If Algo­

rithm ThreeBitLookaheadRoute is used, then the channel utilization for all channels

in dimensions 1 and 2 will be 0.25 of all paths in the network, and the utilization

for all channels in dimensions 3 through n will be between 0.1875 and 0.25 of all

paths in the network.

Proof: The proof is by induction on the dimension of the network. We will

represent the channel utilization for channels in dimension i on an n-dimensional

LTLE network as L(i , n) .

Base Case: n = 1, n = 2. The channel utilization can be computed by

enumerating all the cases. For a 1-dimensional cube, the channel utilization is:

L(1,1) = 0.25

and for a 2-dimensional cube, the channel utilization is:

L(1, 2) = L(2, 2) = 0.25

Inductive Step: n > 3. In Theorem 7.1.5, we listed the three conditions that

could occur for the components of a node 171/". at index i for a network G.

First assume that all triples of components starting at index i with 1 < i <

n 2 meet Condition 2. The routing paths can be broken into two cases, based

on the first differing component of W and Y. If W1 = Yi, then the algorithm

will inductively look at W2 + Y2. If W1 0 Y1, then the algorithm will route to W's

neighbor in dimension 1, and then inductively look at W2 ± Y2 . Because the neighbor

function is 1-1, the result of routing across dimension 1 will uniformly distribute

source and destinations of the remaining sub-paths across W + Y = (01-1). By

induction, the channel utilization can be written as a recurrence relation:

167

L(1, n) =
1

L(i + 1, n) = L(i, n 1), 1 < i < n

Solving the recurrence gives L(i, n) = 0.25 for all 1 < i < n.

Now assume that all all triples of components starting at index i with 1 <

i < n 2 meet Condition 1. The routing paths can be broken into eight cases, based

on the first three indices of the sum W. + Y. We can join the eight cases together

into three main cases:

1. If W1 +Y1 = 0, then the algorithm will inductively look at W2 + Y2. By induc­

tion, the four cases that meet this condition add 0 to L(1, n), add 0.5 L(1, n-1)

to L(2, n), add 0.5 L(2, n - 1) to L(3, n) and add 0.5 L(i, n 1) to L(i + 1, n)

for 3 < i < n 1.

2. If W1 + Y1 = 1 and ViVi+114+2	 YiYi+1Yi+2, then the algorithm corrects

the first two components in one step, by routing to the neighbor of IV' in

dimension 1. The third component may or may not be set. Because the

neighbor function is 1-1, the result of routing across dimension 1 will uniformly

distribute source and destinations of the remaining sub-paths across 1;1'7 +Y =

(0-1). By induction, the two cases add 0.125 to L(1, n), add 0 to L(2, n),

and add 0.25 L(i, n 2) to L(i + 2, n) for 1 < i < n 2.

3. If W1 +Y1 = 1 and 17,14-F1Vi-F2	 = YiYi+iYi+2, then the algorithm corrects the

first three components in two steps, by first routing to the neighbor of 1717.

in dimension 2, then routing in dimension 1. Because the neighbor function

is 1-1, the result of routing across dimension 2 and then dimension 1 will

uniformly distribute source and destinations of the remaining sub-paths across

168

W +Y = (000{2.2}71-4). By induction, the two cases add 0.125 to L(1, n), add

0.125 to L(2, n), and add 0.25 L(i, n 3) to L(i + 3, n) for 1 < i < n 3.

Summing the channel utilization for each L(i, n), we get:

L(1, n) = 0.125 + 0.125

L(2, n) = 0.5 L(1, n 1) + 0.125

L(3, n) = 0.5 L(2, n 1) + 0.25 L(1, n

L(i, n) = 0.5 L(i 1, n 1) + 0.25 L(i 2, n 2) + 0.25 L(i 3, n 3)

It is not even necessary to solve the recurrence relation set up in this

proof. Inductively substituting in the values of the L's into the recurrence will

give L(1, n) = 0.25, L(2, n) = 0.25, and L(3, n) = 0.1875, etc. The channel utiliza­

tion L(i, n) is an average over L(i 1, n-1), L(i 2, n-2) (twice) and L(i 3, n-3).

The smallest value for channel utilization will be 0.1875 and the largest value will

be 0.25, and so 0.1875 < L(i, n) < 0.25 for 1 < i < 7i. I

Table 7.4 gives a list of channel utilizations for 1- through 15-dimensional

Bent Cubes. The sequence eventually converges to 0.21428571 in the first 8 digits, or

approximately 85.71% of the channel utilization of the same channel using Algorithm

LeftRightBitCorrectRoute.

7.1.3. Extending the Three Bit Lookahead Algorithm

Algorithm ThreeBitLookaheadRoute computes which neighbor to route to by

using only the three components with indices i, i + 1 and i + 2, where i = min({k :

Wk # Yk }). The algorithm, as specified, computes the next neighbor to route to

"on the fly". If we store at each node ik a table of which neighbor to route to for

all possible values of components W + Yi, Wi+1 + Yi+i, and Wi+2 Yi+2, we don't

169

Dimension Channel Utilization
1 0.25
2 0.25
3 0.1875
4 0.21875
5 0.21875
6 0.2109375
7 0.21484375
8 0.21484375
9 0.2138671875
10 0.21435546875
11 0.21435546875
12 0.2142333984375
13 0.21429443359375
14 0.21429443359375
15 0.2142791748046875

Table 7.4. Minimal Channel Utilization of the 3-bit lookahead algorithm.

even need to worry about computing the next neighbor to route to; we can simply

look it up on the table. If we naively store the routing tables, (as in Table 7.2), we

need to store li 2 tables of 23 x 23 = 64 bits, so the total storage takes 64(n 2)

bits. We'll also need a table of 32 bits and a table of 4 bits to store which neighbors

to route to for indices i = n 1 and i = n, respectively.

We can extend Algorithm ThreeBitLookaheadRoute to "look ahead" at any

number of bits. If we extend the algorithm to k lookahead indices, then we need to

precompute all locally shortest paths (using the first k components starting from the

component with index i), and then store the first step of each. Using the minimal

routing algorithm we distributively compute these shortest paths on each node X- in

0 ((n k)(k2 log k)) bit operations. The results of these computations would have

170

to be stored in n k +1 different routing tables at each node, and each table would

store 2k x 2k numbers of k bits each, plus one table each for each 1 < i < k which

stores 2i x 2i numbers of i bits each. The total number of bits to store this would

be:

k-1
(71 k + 1)22k + E 22i

i=i

This amount of space grows exponentially as k increases, so network designers will

probably want to keep k small.

There are other reasons to avoid extending the lookahead of the algorithm.

For Twisted Cube networks of dimension 4 or larger, following minimal paths can

route channels asymmetrically across the network, as shown by the Twisted Cube

[2], which can lead to network bottlenecks. Also, any lookahead algorithms using

a lookahead of more than 2 components will also bring only exponentially growing

storage and lookup costs for diminishing returns.

7.2. WORMHOLE ROUTING ALGORITHMS FOR LE NETWORKS

The claim that LE networks are better than the hypercube rests on the

assumption that a reduced expected and maximum routing distance will lead to

shorter expected communication times. This claim is justified if the average number

of routing steps a message takes is a dominant factor in the message latency (the

time a message's transmission takes from source to destination). This can happen in

packet-switched message-passing strategies, such as the store-and-forward routing,

but for circuit-switched strategies, like wormhole routing, have message latencies

that are relatively independent of the expected and maximum routing distance. Such

strategies have become increasingly preferred in multicomputer implementations.

171

Two questions arise about the LE networks. First, can circuit-switched

strategies like wormhole routing be implemented on LE networks? Second, do these

alternate strategies show better performance on the LE networks than on the hyper­

cube? In this section, we show the answers for these two questions for the wormhole

routing strategy.

7.2.1. An Introduction to Wormhole Routing

Currently, "wormhole" routing is receiving wide attention as a routing

method that is preferable to store-and-forward routing [46]. In a typical store-and­

forward communications algorithm, each node along the path of a message receives

the message and stores it, then computes which neighbor to forward the message

to next. The message's latency the time to travel from source to destination is

dominated by the product of the message's length and the number of routing steps,

at least when a relatively small number of messages are in the network. Store-and­

forward routing requires storage buffers at each node, which can be expensive in

terms of hardware. If a message is too long to fit the buffer length, it may be broken

into packets, which are each sent separately and so store-and-forward routing is

known as a packet-switched strategy.

The wormhole routing approach avoids the problem of buffers. It allocates

all the communication channels along the routing path, as the head of the message

is sent. It breaks the message into flits the largest number of bits that can be

transmitted through a channel simultaneously and sends the flits directly to the

destination in pipeline fashion. If a communication channel is not immediately

available, the message waits until it can allocate the channel. When relatively few

messages are in the network, the message latency is dominated largely by the product

of the message's length and the time to transmit one flit. Wormhole routing is not

172

only often faster than store-and-forward routing, but has no need for storage buffers

at each intermediate node. Wormhole routing is usually implemented at the circuit

level hence it is known as a circuit-switched strategy.

One problem with the two routing strategies is that they can allow processes

to hold some resources while waiting for other resources. (For store-and-forward

routing strategies, the processes are messages and the resources are buffers. For

wormhole strategies, the processes are also messages, but instead the resources are

channels.) This holding of resources makes it possible for deadlock to occur. A group

of two or more processes may try to allocate resources the others hold, creating a

cycle of dependency, in which each process makes no progress.

It is important that a routing algorithm does not allow deadlock to occur.

Some routing algorithms are already inherently deadlock-free and can be used un­

modified. Other algorithms allow cycles of dependency. These algorithms must be

modified to prevent deadlock from ever occurring.

One way to show that a wormhole routing algorithm is deadlock-free is to

build a channel dependency graph. A channel dependency graph D consists of a set

C of vertices, one vertex for each unidirectional channel of the network, a set E of

edges, where for c1 , c2 E C we have (ci, c2) E E iff c1 and c2 are consecutive channels

in at least one of the routing algorithm's routing paths. Then a test on D will tell

if G is deadlock-free:

Theorem 7.2.1 [46] A routing algorithm is deadlock-free if its channel depen­

dency graph is acyclic.

An acyclic channel dependency graph prevents the messages from creating

a cycle of dependency. Since the channels of an acyclic channel dependency graph

173

are nodes in an DAG, they can be topologically sorted. The theorem below then

follows:

Theorem 7.2.2 [46] A routing algorithm is deadlock-free if its channels can be

assigned monotonic ordering so that the routing algorithm allocates the channels in

strictly increasing or decreasing numerical order.

The hypercube's standard left-to-right bit correction algorithm is deadlock-

free. This algorithm always uses the channels in the first dimension before channels

in the second, and so forth. Since the algorithm never routes using more than one

channel in each dimension, the channels can be ordered by their dimension (called

dimension-ordered routing). This "dimensional" monotonic ordering makes routing

deadlock-free.

This same left-to-right bit correction scheme also works for LTLE networks:

Theorem 7.2.3 Algorithm LeftRightBitCorrectRoute in Figure 7.1 is deadlock-free,

but not always minimal for all LTLE networks.

Proof: The arguments follow those for the hypercube. At most one channel

in dimension i is routed across, and the channels are always allocated in order of

increasing dimension. This ordering makes the algorithm deadlock-free. 1

It should be obvious that the same algorithm will also work on LTDM net­

works without modification.

The algorithm LeftRightBitCorrectRoute always produces minimal paths for

only a very small subset of the LE networks, including the the hypercube. Is it

possible for LE networks to have a wormhole routing algorithm that is both minimal

and deadlock-free? Unfortunately, the answer is "no" .

174

Figure 7.3. A cycle of dependency in the Twisted 3-Cube.

Theorem 7.2.4 The Twisted 3-Cube has no minimal and inherently deadlock-free

routing algorithm.

Proof: The Twisted 3-Cube contains eight pairs of nodes that are each

joined by only one path of length two. All other paths between them are longer.

Any minimal routing algorithm will always choose this unique shortest path, if given

one of these node pairs as source and destination. These paths are shown in Figure

7.3.

The union of these paths forms a cycle of length eight. Any minimal routing

algorithm on the Twisted 3-Cube can have this as a cycle of dependency, if all nodes

on the cycle simultaneously route messages to the nodes that are distance two away

on the cycle.

175

This excludes a large number of networks from the possibility of having a

deadlock-free routing algorithm:

Theorem 7.2.5 The Mains Cubes, the Twisted Cube, the Twisted Hypercube, the

Twisted N -Cube, the Flip MCube, the Crossed Cube, the Bent Cube and the Gener­

alized Twisted Cube all have no deadlock-free routing algorithm.

Proof: Consider the Twisted N-Cube first. It has a Twisted 3-Cube em­

bedded at the single pair of twisted channel. There are alternate routes for the

paths in the dependency cycle, but to step out of the Twisted 3-(sub)cube requires

at least five steps one step to jump out of the sub-network, three steps to correct

the Twisted 3-Cube's bits, and one step to jump back in. This is longer than the

minimal path's two steps.

Now consider the rest of the networks (assumed to be LTLE networks). All

of these networks have the Twisted 3-Cube as a sub-network if we examine the last

three components of the address vectors. Any alternate path between nodes of the

sub-network requires at least three steps one to set a component in dimension

1 < i < n 3, one to correctly set the last three components, and one to reset the

component in dimension 1 < i < n 3. Again this is not minimal. So none of these

networks have a routing algorithm that is minimal and deadlock-free

Though the LE networks do not have minimal and deadlock-free routing

algorithms, this does not exclude them from being used in wormhole routing archi­

tectures. For example, other networks whose minimal routing algorithms are not

deadlock-free include the toroidal mesh and the k-ary n-cubes. These networks are

still popularly used, despite the potential for deadlock.

176

7.2.2. Virtual Channels

In a network that has no inherently deadlock-free algorithm, there are two

ways to make the algorithm deadlock-free. The first way is to examine the channel

dependency graph and delete one edge from every cycle in the graph. This method

is used to prevent deadlock in the k-ary n-cubes [46].

Unfortunately, this means the routing algorithm will need to be changed,

so that it never uses any routing paths that use the removed dependency. It also

means that for some networks, the lengths of some routing paths must be made

non-minimal.

The second approach to removing deadlock from a routing algorithm involves

adding more channels to the network, so that cycles in the channel dependency graph

can be avoided. The channels are added between nodes that are already connected

by a channel, so that routing distances and the connectivity of the network are

unchanged. This approach will make the network a multigraph instead of a graph.

This approach has two advantages. First, the algorithm's routing paths are

unchanged, so that the network still has the same characteristics. Second, the

network does not need to have the additional channels physically added. Instead,

they can be treated as virtual channels and be multiplexed across a single physical

channel. The virtual channels take turns at using the physical channel, so at each

time step, only one virtual channel sends a flit across the physical channel. In

addition, multiplexing will need only a minimal amount of additional hardware.

The throughput of a multiplexed channel is an issue in network design. If we

allow a maximum of in virtual channels per physical channel, and k of those virtual

channels are allocated, then the multiplexer must alternate control between each of

the k allocated channels. With a channel bandwidth of W, the effective bandwidth

177

from \ to 000 001 010 011 100 101 110 111
000 3, 1 2, 1 2, 1 1, 1 1, 1 2, 2 1, 1

001 3,1 2, 1 2, 1 1, 1 1, 1 1, 1 2, 2
010 2, 1 2, 1 3, 1 2, 2 1, 1 1, 1 1, 1

011 2, 1 2, 1 3, 1 1, 1 2, 2 1, 1 1, 1

100 1, 1 1, 1 1, 1 2, 2 3, 1 2, 1 2, 1

101 1, 1 1, 1 2, 2 1, 1 3, 1 2, 1 2, 1

110 1, 1 2, 2 1, 1 1, 1 2, 1 2, 1 3,1
111 2, 2 1, 1 1, 1 1, 1 2, 1 2, 1 3, 1

Table 7.5. A wormhole routing table for the Twisted 3-Cube.

of each virtual channel is W/k. The throughput of any message using the the

channel then also drops to W/k, affecting the throughput of the message through

other channels in its path. We must choose how to add and use virtual channels

carefully, and we must consider how they affect the throughput of messages in the

network.

We can use additional channels to make routing on the Twisted 3-Cube

deadlock-free. If we allow virtual channels, then a maximum of 2 virtual channels

per physical channel are needed to make an minimal and deadlock-free routing

algorithm for the Twisted 3-Cube.

The output of a Twisted 3-Cube routing algorithm is a list R of ordered pairs

(i, c) of neighbors i and channels c. For instance, if the first element of R is (i, c)

the first step of the routing path uses virtual channel c between)? and Bt(Ag)`.

Table 7.5 shows, for each current node and destination node, the number of

the neighbor route to and the number of the virtual channel to route on. The only

time the second virtual channel is used is for any exceptions to the left-right bit

178

correction algorithm, as shown in Table 7.2, so only dimension 2 requires virtual

channels.

The routing algorithm encoded on this table correctly and minimally routes

without deadlock on the Twisted 3-Cube. There are a small number of source and

destination address pairs, that is, 26 pairs, so it is trivial to verify all the paths

are correct and minimal. The routing paths of the algorithm will always allocate

channels in the order: (2, 2), (1, 1), (2, 1), (3, 1). Again, this can be shown by

verifying all paths. By Theorem 7.2.2, this network is deadlock-free.

This approach can be generalized to LTLE networks of higher dimensions,

by examining only 3 adjacent components of the routing address at a time. The

distributed routing algorithm appears in Figure 7.4. Notice that it is a slightly

modified version of Algorithm ThreeBitLookaheadRoute.

Theorem 7.2.6 Algorithm WormHoleThreeBitLookaheadRoute is correct, minimal

and deadlock-free, and has a distributed run time of 0(n) bit operations and a total

run time of 0(n) bit operations.

Proof: The algorithm is correct and minimal by arguments given in Theorem

7.1.4.

The algorithm is deadlock-free because the network's channels can be

grouped into the following order:

(2, 2), (1 , 1) , (3, 2), (2, 1) , (4, 2), (3, 1), . . . , (n, 2), (n, 1 , 1), (n, 1)

and any path generated by the algorithm will use the channels in this order.

The algorithm has a distributed run time of 0(n) bit operations and a total

run time of 0(n) bit operations, again by arguments given in Theorem 7.1.4. 1

The channel utilization for Algorithm WormHoleThreeBitLookaheadRoute

will be the same as the channel utilization for Algorithm ThreeBitLookaheadRoute,

179

Input: An n-dimensional LTLE network G = (B°,13', A), a source address fe, a
destination address and the current address 17V.

Output: If the message needs to be forwarded, the number of the neighbor and the
number of the virtual channel to route the message to. If the message is at its
destination, a signal to accept the message at the current node.

WormHoleThreeBitLookaheadRoute(G,)

begin
ti

if W = Y then

return "Accept"

else

i E- min{lo : + = 1}

if i < n 2 then

U t W + ./31+/)'+'

17 < U + .13A17)1
end if

if 1 < i < n 2 and B41 0 B1+1 and (AeliTT)')i+i = 1
and V= Y and Vi+1 = Yi+1 and Vi+2 = Yi+2 then

return (i + 1,2)
else if 1 < i < n and B? and (AWIT17")i = 1) then

return (i, 1)
else

return either (i, 1) or (i, 2)
end if

end if
end procedure

Figure 7.4. Algorithm WormHoleThreeBitLookaheadRoute.

180

because the two algorithms use the same routing paths. For the dimensions that

use two virtual channels, the channel utilization of the second virtual channel will

be 1/4 of the total channel utilization for the physical channel, because only 2 of

the 8 possible conditions that can occur the algorithm will use the second virtual

channel.

As in Section 7.1, the 3-bit lookahead algorithm can be extended to a k-bit

lookahead algorithm. At the current time, we have bounded the number of virtual

channels to a number linear in n.

Theorem 7.2.7 Let G = (B °, B1, A) be a n-dimensional non-redundant LTLE net­

work. A k -bit lookahead algorithm for that network will require at most min(2k 1, n)

virtual channels per physical channel.

Proof: We can always route k terms in any given order if the indices of

the terms are unique (nonredundant) and we allow k channels per physical channel.

This is because we can arrange the dimension/virtual channel pairs as:

(1,1) (2,1) (k, 1)

(1, 2) (2, 2) (k, 2)

(k,1) (k, 2) (k, k)

If the i-th step has index j, then we route on the i-th virtual channel of physical

channel j. It is deadlock-free because it uses channels in strictly increasing order by

the dimension/virtual channel pairs.

Let R be the ordered terms that describe the routing path between source

node .fe and destination node Y, and let the index of the Ri-th step be j. The

routing path R can always be broken into an ordered set of one or more sub-paths

or "chains" C1, C2, ... so that:

181

Vti E C,,Vt2 E C, : u < v ti <t2

The length of any chain of terms is at most k -1 terms long, because there can

be simultaneously at most k -2 terms that are either before Ri and have an index

greater than j, or are after Ri and have an index less than j.

Further, the terms in a chain can have indices that differ by at most k -1,

because the terms before Ri with index greater than j can only have indices between

j +1 and j k.

For each physical channel across dimension i, allocate 2k -1 virtual channels

numbered from max(1, i k + 1) to min(i k 1, n). These dimension/virtual

channel pairs can be ordered with dimension major, virtual channel minor. For

instance, a network with n = 7 and k = 3, we have the channels ordered as:

(1,1) (2,1) (3,1)

(1, 2) (2, 2) (3, 2) (4, 2)

(1, 3) (2, 3) (3, 3) (4, 3) (5, 3)

(2, 4) (3, 4) (4, 4) (5, 4) (6, 4)

(3, 5) (4, 5) (5, 5) (6, 5) (7, 5)

(4, 6) (5, 6) (6, 6) (7, 6)

(5, 7) (6, 7) (7, 7)

(We break the channels into rows so the pattern is more clear.)

For any chain C, the last term tic' will have the smallest index j (or the chain

can be broken into two smaller chains). For t1c1 , assign the physical channel/virtual

channel pair to be (j, j -1-k-1). Then the terms ti , t2, , E C can be routed

deadlock-free no matter what order they appear in, because we have the channels

in the following order:

182

(j +1,i), , (j+k -1,j),
1 1

U+1,j+k), , (j+k-1,j+k)

As noted above, this is enough to route using all the terms with indices j+1 through

j -I- k in any order, without deadlock, before we route using a term with index j.

No two chains will not use the same physical channel/virtual channel pairs,

because all the terms in one chain can be used as a routing step before any term

in a following chain, and chains are always used as routing sub-paths in increasing

order. Thus the algorithm is deadlock-free, because the chains will always use the

channels in a strictly increasing order of dimension/virtual channel pairs.

So far, this approach still uses virtual channels numbered 1 through n. We

can reduce this to at most 2k 1 virtual channels by noting that we can assign the

virtual channels modulo 2k 1 without channel conflict. 1

Theorem 7.2.7 only shows an upper bound on the number of virtual channels.

For instance, the three-bit lookahead algorithm needs only two virtual channels and

not three as the theorem suggests.

7.2.3. Minimal Wormhole Routing Algorithms

For the Twisted 3-Cube, only two virtual channels are needed to make the

minimal routing algorithm deadlock-free. For larger LE networks, more virtual

channels may be needed to make a minimal routing algorithm deadlock-free. By

setting k = n in Theorem 7.2.7, we can see that at most 71 virtual channels are

needed. However, we may not need n virtual channels to make the minimal routing

algorithm deadlock-free.

183

There are some special cases where minimal and deadlock-free routing is

trivially possible. The algorithm LeftRightBitCorrectRoute is clearly minimal for

the hypercube network. It is also trivially deadlock-free, by Theorem 7.2.3.

Another trivial algorithm uses the Twisted 3-Cube to create a minimal and

deadlock-free routing algorithm for at least the Generalized Twisted Cube.

Theorem 7.2.8 The Generalized Twisted Cube has a deadlock free minimal routing

algorithm that uses at most two virtual channels.

Proof: In its definition, the Generalized Twisted Cube of dimension n is

constructed by graph composition of Ln/3i Twisted 3-cubes and at most one hyper­

cube of dimension n mod 3. We can then route each Twisted 3-Cube sub-network

using the routing table in Table 7.2, and the remaining hypercube using Algorithm

LeftRightBitCorrectRoute. If we route through these composed graphs in a fixed

order (say, from the smallest indexed one to the largest), then no more than 2 virtual

channels are needed. I

Now consider the more general case of a LTLE network G = (B °, B1, A). The

algorithm for this case is more complicated than the algorithm for the Generalized

Twisted Cube. We cannot use the same trick of decomposing the network into

trivially routed sub-networks.

One problem in designing a deadlock-free minimal algorithm comes from the

ordering of channels in the routing path. The minimal routing algorithm must

sometimes route along the dimensions out-of-order. We have found no simple way

restrict the possible orderings of the terms in the routing path, and so cannot put

a bound on the number of virtual channels.

The simplest approach to modifying the minimal routing algorithm to be

deadlock-free is to allow an arbitrary number of virtual channels. The simplest

184

Input: An n-dimensional LTLE network G = (B °, B1, A), a source address J?, a
destination address Y and a minimal routing path R from X to Y.

Output: A wormhole routing path ft, with neighbor and virtual channel number.

ti
NaiveWormholeMinimalRoute(G, .fe,f,R)

i+-1
for each t E R do

1?- < R + (t, i)
i i + 1

end for
end procedure

Figure 7.5. Algorithm NaiveWormholeMinimalRoute.

method is to put each successive step of a routing path onto a different virtual

channel. This is Algorithm NaiveWormholeMinimalRoute, shown in Figure 7.5.

Theorem 7.2.9 Algorithm NaiveWorm,holeMinimalRoute is correct, minimal and

deadlock-free and uses DG virtual channels, where DG is the diameter of the network.

Proof: The algorithm is clearly correct and minimal, because it uses only

the terms in R, a correct and minimal legal expansion.

The algorithm will use exactly DG virtual channels because it uses a different

virtual channel on each routing step of a routing path, and DG is the length of the

longest minimal path in G. The channels of the network can be identified as ordered

pairs of dimension and channel number, as below:

(1 , 1) , . . . , (n, 1) , (1 , 2), . . . , (n, 2), , (1, DG), . (n, DG)

The list is ordered by channel number major, dimension minor. The algorithm

allocates channel numbers in strictly increasing order, so the channels will be allo­

185

cated in left-to-right order from the list above. By Theorem 7.2.2, this is enough to

guarantee that NaiveWormholeMinimalRoute is deadlock-free.

There are problems with the algorithm NaiveWormholeMinimalRoute. The

virtual channels will not be evenly utilized. For instance, the channels in dimension

1 will have their virtual channel 1 heavily utilized, because channel 1 is used most

often as the first routing step in a path.

Since the diameter of the LE networks is (to some measure) a function of the

dimension, using this algorithm means that increasing the dimension of the network

will force an increase in the number of virtual channels per physical channel. This

increase will require that the complexity of the hardware also increase.

One partial solution would be to find a routing algorithm that requires at

most a constant number of virtual channels, independent of the network diameter.

The Generalized Twisted Cube has already been shown to need only 2 virtual chan­

nels. Are there other network algorithms that use a constant number of channels?

Unfortunately,we have not yet found a satisfactory solution for this problem.

7.3. SUMMARY

We have shown that the hypercube routing algorithm can be implemented

on LTLE networks, and that it will cause LTLE networks to behave similar to the

hypercube in performance. We have also developed an algorithm which is based on

the hypercube routing algorithm, but which "looks ahead" three bits to see if there

is a locally shorter path to route on. This lookahead algorithm compares favorably

to the hypercube routing algorithm, and captures much of the performance of the

minimal routing algorithm. Both of these algorithms are interesting because they

use a constant number of bit operations per node to compute the step in the routing

186

path. This is a big advantage over the minimal routing algorithms before, which

required that the path be precomputed at the source node.

We also examined the idea of wormhole routing on LTLE networks. In par­

ticular, we showed that the hypercube routing algorithm was deadlock-free and that

the three bit lookahead algorithm could be made deadlock-free by adding a second,

virtual channel to each physical channel. This allowed us to design wormhole routing

algorithms for LTLE networks. Unfortunately, the minimal LTLE network routing

algorithm can (to date) only be made deadlock-free by using a number of virtual

channels equal to the diameter of the network.

In later chapters, we will compare the behavior of the wormhole routing

algorithms to see if they compare well to store-and-forward routing algorithms.

187

8. EMBEDDINGS AND EMULATIONS FOR LE NETWORKS

One reason for the hypercube's popularity is that it can efficiently emulate

any bounded-degree network [45]. The hypercube can route between any two of its

processors in n steps. This allows the hypercube to simulate a single communication

step for any arbitrary network of 2" processors in at worst n communication steps,

ignoring message collisions. Because of this, the hypercube can emulate algorithms

written for these other networks with at worst a logarithmic slowdown or dilation

(in the number of nodes).

The hypercube also directly embeds a number of well-studied networks, in­

cluding ring networks, meshes, k-ary n-cubes and binomial trees. It can also "almost

directly" embed several other networks, in particular, the binary tree. Because it

can embed these networks, the hypercube can simulate a single communication step

on these networks with no dilation, or at worst constant dilation.

The embeddings of the hypercube extend to many LE networks, because

these networks share many of the hypercube's properties. In this chapter, we discuss

several embeddings that can be done on LTLE networks, including Hamiltonian

cycles, binomial trees and binary trees. We discuss the emulation of LE networks

on the hypercube and vice versa.

8.1. PREVIOUS RESULTS

The literature on twisted hypercube variants contains several results on the

embeddings and emulations for the twisted cubes. These results have been pre­

sented on an individual, network-by-network basis and occasionally contain errors.

A summary of the embedding of ring networks, binary trees, and binomial trees,

188

Network Hamiltonian Binary Binomial Hypercube

Name Cycle Tree Tree Emulation

Hypercube Yes No Yes 1

Twisted Cube [34] Yes (?) Yes 2

Twisted N-Cube [31] Yes Yes Yes 2
Multiply Twisted
Cube [29] Yes (?) Yes 2 $
Crossed Cube [301
Flip MCube [51] Yes (?) Yes 4 (2 t)
0-MObius Cube [23] Yes (?) Yes 4 (2 t)
1-Mobius Cube [23] Yes (?) Yes 4 (2 t)
Generalized Twisted
Cube 112]
Twisted Hypercube
[28]

Yes

Yes

(?)

Yes

Yes

Yes

2

2

$:

Table 8.6. The embedding of networks for hypercube variants, and the constant
factor of dilation for hypercube emulation.

and a summary of the dilation for emulation of the hypercube on LE networks is

summarized in Table 8.6.

Clearly there are a number of results that remain to be shown for LE net­

works.

8.2. EMBEDDINGS

Many parallel algorithms have a communications pattern that is different

from the structure of the hypercube. For example, matrix multiplication and

discrete-space simulation algorithms are based on 2-dimensional meshes. These

algorithms can be used on the hypercube by embedding a mesh through Gray-

encoding. Many other algorithms are based on the divide-and-conquer paradigm,

189

which uses either binary or binomial trees. These algorithms can also be used on

the hypercube, by embedding these tree networks. If we are to use these algorithms

on a LE network, it is important to us to know which topologies the network can

embed.

We will examine a number of common hypercube-embedded topologies and

show that they can be embedded into LE networks. For the most part, we limit our

discussion to LTLE networks. Some of our embedding results cannot be extended

to LE networks, because the embeddings depend heavily on the properties of LTLE

networks. This not a significant problem for us, because all published LE networks

are also LTLE networks.

A network embedding requires that all channels of the embedded network be

mapped to disjoint paths or channels. No two channels of the embedded network can

map to the same channel, or two messages may have to compete for this channels.

These "channel collisions" can result in a longer communication delay and so are to

be avoided.

There are several types of embeddings. The first is a direct embedding, where

each node of the embedded network is mapped to a unique node, and all the channels

of the embedded network map to a single channel. A squashed embedding has two or

more nodes of the embedded network map to the same node. A stretched embedding

has each channel of the embedded network map to a path of two or more channels.

We define the dilation of a network embedding or emulation to be the maxi­

mum number of communication or computation steps needed to simulate one com­

munication or computation step for the embedded network. For direct embeddings,

the dilation is 1. For squashed embeddings, the dilation is the maximum number

of nodes in the embedded network that are mapped to one node, and for stretched

190

1010 1011

Figure 8.1. A Hamiltonian circuit on the 4-dimensional 0-Mobius cube.

embeddings, the dilation is equal to the length of the longest path that a channel

in the embedded network is mapped to.

We examine in turn embeddings of ring networks, binomial and binary trees.

8.2.1. Hamiltonian Circuits and Ring Networks

If an n-dimensional LE network has a Hamiltonian circuit, then we can di­

rectly embed a ring network of length 2' nodes into the network, and so use ring

network algorithms on it. Theorem 8.2.1 shows that all LTLE networks have Hamil­

tonian circuits. It does so by showing that a Hamiltonian path with adjacent end

points exists on every LTLE network.

Theorem 8.2.1 Let G = (B °, B1, A) be an n-dimensional LTLE network, n > 2.

G contains a Hamiltonian circuit of length 2".

Example: The Hamiltonian circuit for the 4-dimensional 0-Mobius cube is:

191

0000 -+ 1000 -4 1111 > 0111 -4 0100

-4 1100 -> 1011 -> 0011 -* 0010

-4 1010 -4 1101-3 0101 -) 0110

-4 1111 -4 1001 +0001 -40000

and is shown in Figure 8.1.

Proof: For a path P, let the path PR denote the reverse of the path P. We

show there is a Hamiltonian path Hn for G from the node w/ address 0 to the node

Bn°, where the path H, is defined recursively by Hi = Hi_iBti Hjil with Oi E {0, 1}

and H1 = B?. G then contains a Hamiltonian circuit, because 0 is adjacent to B.

First, we show by induction that Hi is a legal path, and that the end points

of the path differ by Bt' for cbi E {0,1}. Further, Hi contains 2i unique nodes.

Trivially H1 = B? is a path from X to X + B?. Further, it contains two

uniquely addressed nodes.

Assume that H-1_1 is a legal path of 2i unique nodes, and that its end points

differ by for E {0,1}. Then recursively follow the channels of Hi_1 to

reach X+Btli' . Only channels in dimensions 1 through i-1 are used in I/1_1. Route

to the i-th neighbor. Because G is a LTLE network, no term Bcib-j<1_1 depends on

Hit'', so we can trace the path HR 1 to get from X + Bt' 1' + Bt' to X + Bt. . The

first 21-i nodes are each visited only once by induction, as are the last 21-i nodes.

Because every node in the first half of the path differs from every node in the second

half by Bn°, all 2i nodes in the path Hi are visited only once.

Now we show a Hamiltonian cycle exists.

The path 1-17, will route from X to X + .13(11ta . Because the path II connects

all 2n unique nodes, it is a Hamiltonian path. Because G is a LTLE network,

192

Azo B,11 = ./3",.. Thus)e is always adjacent to X + /3"/:., and so a Hamiltonian

cycle exists. 1

From the proof above, we can show that a number of disjoint circuits with

smaller lengths exist in the LTLE networks and so several rings can be simultane­

ously embedded in the LTLE networks.

Corollary 8.2.1 Let G = (B °, B1, A) be an n-dimensional LTLE network. G con­

tains 2n-k disjoint circuits of length 2k.

Proof: By the corollary of Theorem 3.3.2, G contains k disjoint LTLE net­

works, each of dimension n k. By Theorem 8.2.1, a Hamiltonian circuit of length

2n-k can be embedded into each of these networks.'

Any two nodes in the same Hamiltonian cycle will have all of the first k

components match, and any two nodes in different Hamiltonian cycles will have at

least one of the first k components differ, so we can number the Hamiltonian cycles

by the first k components of their nodes, and we tell which Hamiltonian circuit given

node is in, simply by examining its address.

8.2.2. Binomial Trees

Another network that directly embeds into a LE network is the binomial

tree. The binomial tree (not the binary tree) is a useful graph structure that is

often embedded into the hypercube for divide-and-conquer parallel algorithms.

First, we define the binomial tree.

Definition 8.2.1 (POD The binomial class Bk of ordered trees is defined as:

I. Any tree of a single node is a Bo tree.

193

Figure 8.2. The binomial tree of order 4.

ti
2. If X and f are disjoint Bk_i trees for k > 1, then the tree obtained by adding

an edge to make the root of f become the rightmost offspring of the root of di?

is a Bk tree. All binomial trees of order k are isomorphic in the sense that

they have the same topology.

The binomial tree B4 appears in Figure 8.2. The binomial tree is aptly

named, because the number of vertices at each distance from the root form a bino­

mial distribution. It should be clear that for any k > 0, a Bk tree has 2k nodes.

We can directly embed binomial trees into the LTLE networks, as shown

in Theorem 8.2.2 below. The theorem depends on the decomposition of a LTLE

network into two smaller networks.

Theorem 8.2.2 Let G = (B°, B1, A) be an n-dimensional LTLE network. Every

node in G is the root of at least one binomial tree B.

194

Proof: The proof is by induction on the dimension 71 of the network.

Base Case: For n = 0, the only 0-dimensional network G is a single node.

The Bo tree can be trivially embedded in G, because it is also a single node.

Inductive Hypothesis: Assume that any (n 1)-dimensional LTLE net­

work G has every node as the root of at least one Bn_1 tree.

Inductive Step: Any node X-. in G has X + B1Aj?)1 as its neighbor in the

first dimension. By Theorem 3.3.2, G can be decomposed into two disjoint LTLE

networks Go and G1, which each have dimension n 1. Clearly either X lies in Go

and X + BIA"?)1 lies in G1, or vice versa. By induction, X is the root of a /3_1 tree

in Go and X + re?)' is the root of a Bn_1 tree in G1. Because these two B_1

trees are joined at the root, X is the root of a 137, tree.

Binomial trees are used extensively in hypercube networks for a large class of

parallel divide-and-conquer algorithms. This class of problems can also be efficiently

computed on a LTLE network G. Assume that a problem P can be solved by

dividing P into two equally sized subproblems P1 and P2 and then inductively

solving P1 and P2. If we map a Br, tree into G with root X and place P at .71?, then

the subproblem P1 can remain at JZ while other subproblem P2 can be transmitted

to X + BIA'?)1. The subproblems can then be recursively solved in parallel on the

two Bn_1 trees rooted at Xt and fe + BIA`g)1 , and the solutions recombined at fe.

Each problem division and re-combination takes only one communication step, for

a total of 2n communication steps.

8.2.3. Binary Trees

There are standard parallel divide-and-conquer algorithms that do not use a

binomial tree structure. Instead, they have the parent node do divide and combine

195

operations in parallel while two child nodes recursively solve the sub-problems. For

these algorithms, the ideal embedding is a binary tree.

We define the complete binary tree class as:

Definition 8.2.2 The class Tk of complete binary trees is defined as:

1. Any tree of a single node is a To tree.

ti

2. If _k* and Y are disjoint Tk_1 trees for k > 1, then the tree obtained by adding

a root node R and one edge from R to the root of X and a second edge to the

root of Y is a Tk tree. All full binary trees of order k are isomorphic in the

sense that they have the same topology.

It is clear that a Tk tree has 2n +1 1 nodes, because it is constructed from

two Tk_1 trees, plus a root node. A Tk tree also has 2d nodes that are a distance d

from the root.

The binomial tree Bn has a squashed embedding of a binary tree Tn. [45].

This squashed embedding is achieved by mapping each parent node and its left child

to the same node. This method maps 7/ nodes of the binary tree to the root of the

binomial tree.

There are several problems with this squashed embedding. Since every left

child and its parent are mapped to the same node, the parent and child nodes

cannot do computations simultaneously. This means that the squashed binary tree

embedding has dilation n, because the root node must emulate n nodes. This result

is not great, but it shows that a complete binary tree of 2n+1 1 nodes can be

squashed embedded on any LTLE network.

We now consider a direct embedding of a binary tree into a hypercube net­

work. A Tn_1 tree has 2' 1 nodes. It might be thought that a Tn_1 tree can be

196

embedded into an n-dimensional hypercube Qn, but this is not the case, as can be

shown by an red-black node coloring argument [45]. Color the nodes of Q7, with

two colors, red and black, so that no two adjacent nodes have the same color. Then

color the nodes of Tn_.1 the same way. Clearly all the nodes distance d from the root

must all have the same color. The number of nodes of one color in the binary tree

are either too large or too small to match the number of same-colored nodes in the

hypercube.

At best, a 7;2_1 tree can be mapped into Qn using a stretched embedding.

This can be done by using a double rooted binary tree. Instead of a single node of

degree 2 at the root, the double rooted Tn_1 tree has 2 joined roots of degree 2.

A communication between the two main subtrees then takes an extra routing step,

which means that a Tn_1 tree can be simulated on Qn with a dilation of 2 [45].

Though the network Q2 can trivially contain a T1 tree, Q3 cannot contain a

T2 tree. Oddly, the Twisted 3-Cube can directly embed a T2 tree, as in Figure 8.3.

Since the hypercube is trivially an LE network, it shows that not all LE networks

can directly embed a binary tree.

Can we generalize the Twisted 3-Cube's embedding of a T2 tree? Chedid and

Chedid [12] attempted to show that a tree can be embedded in an n-dimensional

Generalized Twisted Cube. Their proof is incorrect.

They note that a complete T2 tree of 7 nodes can be embedded in a Twisted 3­

Cube, as in Figure 8.3. They attempt to construct a complete binary tree embedding

by inductively embedding two trees in two disjoint (n- 1) dimensional sub-networks.

They add a new root which joins these subtrees into a single tree, as in Figure 8.4.

The construction fails because it assumes that there will always be an unused

node adjacent to the root of at least one subtree. This assumption is true in the

base case. But in the inductive step, when the new root is inserted that joins two

197

Figure 8.3. A Twisted 3-Cube with an embedded 7 node binary tree. The tree is
indicated by the solid lines, and the root is circled.

000...000

000...001 100...000

0-subcube 1-subcube

A
depth (n-1) tree depth (n-1) tree

Figure 8.4. The inductive step of Chedid and Chedid's proof to embed a binary
tree.

198

inductively constructed 7;2_1 trees, the proof fails to show that the remaining unused

node of TQ is now adjacent to the root of the embedded tree.

This error can be seen in the 6-dimensional cube example given in their

Figure 11. When we filled in the addresses of the nodes that Chedid and Chedid

claim should be in the unexpanded subtrees at the bottom of their figure, we found

that these subtrees contain nodes that were already used to connect the subtrees

together.

If we don't mind wasting a large number of network nodes, we can use the

embedding of the T2 tree into the Twisted 3-Cube (in Figure 8.3 as a basic unit for

embedding a Tp,v3i tree into an n-dimensional Bent Cube or Generalized Twisted

Cube network. Every three dimensions of the Bent Cube or Generalized Twisted

Cube network allow us to add 2 levels of depth to a binary tree. This embedding

uses a total of 2L2n/31 +1 1 nodes a fairly small fraction of the total number of

nodes in the network. However, we can do better.

The Twisted N-cube of Estafahanian et al. [31] can directly embed at least

one Tn_1 tree. The construction of this embedding is exactly the same as for embed­

ding the double rooted binary tree into the hypercube, but with one change. One

ordinary hypercube channel and one of the network's two twisted channels are used

to connect the two binary subtrees to one root. In fact, this network was designed

to embed a binary tree.

We can use a construction similar to the one given for Twisted N-cube to

directly embed a Tn_1 tree in at least one LE network. This construction starts

with a double-rooted binary tree directly embedded into an ordinary hypercube

(27, = (I, I, 0). We use the embedding given in [45]. This construction is illustrated

in Figure 8.5. It works by embedding double-rooted binary trees in the two (n 1)­

dimensional sub-networks, then joining them at the roots. Channels along dimension

199

0100... 1000... 1010...

0101... 0010... 1100... 1011...

(a)
0100... 1000... 1010...

1011...

(b)
0100... moo_ 1010...

0101... 0010... 1100... 1011...

(c)

Figure 8.5. Construction of a single-rooted Tn tree from two double-rooted Tn--1
trees on a LE network.

200

k on the hypercube are not used below level k + 2 on the double-rooted binary tree,

which means that dimension 2 channels will not be used below level 4 of the tree.

We then modify the definition of the hypercube Qn to a new network

G, so that M = el + e2, and row2(A) = el + e3 + e4. Of the four channels

of the binary tree that span dimension 2, the three channels (0101 ... , 0001 ...),

(0010 , 0110...) and (1011 , 1111 ...) remain unchanged, because (A.,)2 = 1

for each of these addresses. But the channel (0000 , 1000 ...) no longer exists.

We can remove the channels (0000 , 1000 ...) and (0000 , 0100...) and add the

channel (0100 , 1000 ...) to change the double-rooted binary tree into a Tn_1 tree.

The channels in levels 3 and 4 of Tn, that cross dimension 2 are defined by M and

so are unchanged, and no channels in any other level of Tn are defined by M or

Thus TT, is embeddable in at least one LE network.

The general question of embedding a complete Tn_1 tree into an arbitrary

n-dimensional LE network is still unanswered. On the one hand, the hypercube is

a LE network that cannot directly embed a binary tree. On the other hand, there

is at least one LE network that does embed a binary tree. It is not known what the

necessary and sufficient conditions are for an arbitrary network.

8.2.4. Meshes

Not all topologies that embed into the hypercube will embed as easily into

LE networks. Mesh networks, which embed onto the hypercube by Gray-encoding,

apparently cannot be directly embedded (in general) onto a LE network because

the Gray-encoding no longer works.

If we have a LTLE network, we can embed the special case of a 2 by 2" 1

mesh by noting that the i-th node in an embedded Hamiltonian circuit has the

201

(n i 1)-th node as a neighbor in dimension n. This is because the second half of

the circuit is the same as the first, with node addresses differing only in the last bit.

Cheng and Chuang [13] managed to show that their Varietal Hypercube

(a.k.a. the Generalized Twisted Cube) can embed 2-dimensional meshes of size

2P x 2q for p + q = n. Their proof rests on the fact that a Twisted 3-Cube can

embed a 1 x 8 mesh or a 2 x 4 mesh, a 2-cube can embed a 1 x 4 mesh or a 2 x 2

mesh, and a 1-cube can embed a 1 x 2 mesh.

A Generalized Twisted Cube is built from the graph composition of In /3i

Twisted 3-Cubes and sometimes an additional n mod 3-Cube. Since each of these

networks can embed a mesh, their graph composition can embed an arbitrary mesh

of 2' nodes and up to 12n/31 dimensions, which can in turn embed a 2-dimensional

mesh by Gray-encoding. Cheng and Chuang showed that the values of p and q in

the dimensions above can be any two positive numbers that add to 9Z.

It is not clear how we can extend this result to other LE networks. The

problem is that their proof depends on the graph composition of networks to produce

a Generalized Twisted Cube. Since most of the other networks are not produced by

graph composition, this mesh embedding cannot be directly applied. The question

of whether a LE network can directly embed a mesh network of arbitrary dimensions

is still unanswered.

8.3. LE NETWORK EMULATIONS

In this section, we consider the emulation of one network by another. A

network emulation is different from a network embedding. An embedding allows

a mapping of each channel of one network to a path in another, but requires that

these paths must be disjoint they can contain no common nodes or channels. An

202

emulation allows each channel of the emulated network to be mapped to a path, but

the set of set paths in the mapping do not necessarily have to be disjoint.

In an emulation two messages may attempt to use the same channel simul­

taneously, causing a channel collision. One message must wait while the other

proceeds, possibly causing the emulation to have a larger dilation. In proving that

an emulation can be done with a given dilation, we must consider the possibility of

channel collisions.

Because the hypercube C27, and an n-dimensional LE network G have the

same number of nodes and the same node addressing scheme, we can write an

algorithm for Qn, then transfer it to G, replacing each of Qn's communication steps

with a series of communication steps on G. If it is possible to emulate a single

hypercube routing step in a constant number of steps on G, then we could directly

run hypercube algorithms on G with little modification and only a constant amount

of "slowdown" or dilation. Conversely, we could execute LE network programs on a

hypercube with constant dilation, by emulating each of the network's routing steps

on the hypercube.

8.3.1. Emulating LE Networks on Hypercubes

How well a hypercube can emulate a LE network? As the theorem below

shows, a hypercube can emulate a general LE network with a dilation at worst

linear in n.

Theorem 8.3.1 Let G = (B °, B1, A) be an n-dimensional general LE network. The

hypercube Qri can simulate G with dilation n using the store-and-forward routing

strategy.

203

Proof: We assume a direct mapping of node addresses between Q and G,

so that X E Qn maps to X E G.

A single term in G can have weight n, so that it takes a path of at least

steps in Qn to emulate the single channel in G. We can emulate a single routing

step of a single message in G, by using the hypercube's routing algorithm to correct

the components one at a time.

There is at least one LE network (a trivial one) that must be emulated in

at least n steps using our mapping. This is the network G = (B°, B1, A) where

B? = Bi = ei, except for ./23- = e2 + e3 + . . . + en, and A is zeroed out, except for

A2,1 = 1. A message that travels from X to fe + B? will require n 1 steps to route

on the hypercube. (We will ignore mapping isomorphisms of G to Q,.)

We show a way to avoid channel collisions during the emulation ofone routing

step. We allow n synchronous routing steps on (27, for each routing step of G.

Consider a message routing along channel Pe, X + Bt) in G. At routing step j with

1 < j < n, we route the message along dimension ((i + j 2) mod n) + 1 of Qn

iff 13((i-1-j 2) modn)+1 = 1. At the end of n steps the message will be at the correct1,

destination. Two messages using Bt and Bf with it = i2 will not collide with each

other, because the i-th neighbor function is one-to-one, and two messages using B4

and Bt with i1 i2 will not collide, because they are routed in different dimensions

of Qn at each time step j.

Though the hypercube cannot always emulate a general LE network with

less than linear dilation, there are subclasses of LE networks that can be emulated

with constant dilation.

Theorem 8.3.2 Let G = (B °, B1, A) be an n-dimensional LTLE network, where

B° and B1 are banded lower triangular matrices, and where k is the largest number

204

such that Bti_k_i = 1 with 0 E {0, 1} and 1 < i < n. The hypercube Q can simulate

G with dilation k using the store-and-forward routing strategy.

Proof: If B° and B1 are banded lower triangular matrices, then the Ham­

ming distance between any node je and je + iec)l is at most k. Q can simulate

a single communication step in G in at most k steps. Consider a message routing

along channel (.g, .1? + B?) in G. At routing step j with 1 < j < k, we route the

message along dimension (i + j) 1 of iff (i + j) 1 < n and B(1
)_1 = 1. Two

messages using Bt and fit with it = i2 will not collide with each other, because

the i-th neighbor function is one-to-one, and two messages using B and B with

it i2 will not collide, because they are routed in different dimensions of Q at

each time step j.

Notice that most of the published LTLE networks have banded lower triangu­

lar B° and B1 matrices. We can make the following inference about non-redundant

LTLE networks:

Corollary 8.3.1 Let G = (B °, B1, A) be an non-redundant n-dimensional LTLE

network, where for all i, B? + B2 E {0, B41, B41, , BP. Let k be the largest

number of components with index i that all have B? + Bi sum to By or B with the

same index j where 1 < i < j < n. The hypercube Q can simulate G with dilation

k +1 using the store-and-forward routing strategy.

Proof: By using an extension of Algorithm MinimumWeightIsomorphism in

Figure 4.3, we can transform G into a network a = (E°, El, A), where each A) and

El has weight of at most k. The network G then has B° and B1 be banded matrices

with at most k + 1 bands on and below the triangular LE . Then by Theorem 8.3.2,

we can emulate a on the hypercube with dilation k.

205

This leads immediately to a conclusion about the dilation for emulating a

number of published networks on the hypercube:

Corollary 8.3.2 The MObius Cubes, the Twisted Cube, the Flip MCube, the Gen­

eralized Twisted Cube, the Bent Cube and the YATC Cube of dimension n can all

be emulated on the hypercube C2,2 with dilation 2.

Proof: Notice that all of these networks have B? E {0, B? 1, ALI}

with 1 < i < n. All but the Mobius cubes can be emulated by Theorem 8.3.2. The

Mobius cubes can emulated by first using Algorithm MinimumWeightIsomorphism

to an isomorphism where the matrix descriptions have B° and B1 be banded lower

triangular matrices with maximum weight 2.

8.3.2. Emulating Hypercubes on LE Networks

If LE network family are going to be used, it is important that we show that

LE networks can emulate the hypercube. The hypercube has a large number of

parallel algorithms designed for its architecture. We would like to be able to use

those algorithms directly on LE networks.

We have shown that the hypercube can emulate the LE network family with

at worst linear dilation. The reverse, emulating Q on G, is somewhat more dif­

ficult to prove. The problem is that we have not proven a polynomial bound on

the maximum number of steps needed to route in a LE network. Until we can,

we cannot put a polynomial bound on the dilation, because the LE network may

require an exponential number of communication steps to emulate one hypercube

communication step.

206

Input: An n-dimensional LTLE network G = (B °, B1, A), and a set of messages M.

Procedure HypercubeEmulate (G, M)
begin
for each W E Z do in parallel

for each message M at W with source X and destination .71?" + et do in parallel

Send M from W. to W + W11.7)'
end parallel

end parallel
for k = i 1 to n

for each 117 E .22 do in parallel
for each message M at "W' with source .fe and destination X + e,
with i + k 1 < n do in parallel

if Wil-k-1 Xi+k-i then
Send M from 1-4.7 to Y-17' + fey.)*

end if
end parallel

end parallel
end for
end procedure

Figure 8.6. Algorithm HypercubeEmulate.

We can avoid this problem by (again) restricting the class of networks we

use. An n-dimensional LTLE network can emulate the hypercube Qn with at worst

linear dilation, as shown in the theorem below:

Theorem 8.3.3 Let G = (B °, B1, A) be an n-dimensional LTLE network. Then G

can emulate the hypercube Qii with dilation n.

Proof: Algorithm HypercubeEmulate effectively emulates one hypercube

routing step, and is shown in Figure 8.6. Notice the similarity between this algorithm

and Algorithm LeftRightBitCorrectRoute. This algorithm will use the same routing

207

paths as Algorithm LeftRightBitCorrectRoute, and so correctly routes messages

from source to destination.

We assume that for a single communication step of the hypercube Q,, there

is at most one message crossing each unidirectional channel of Qn. Since Algorithm

HypercubeEmulate will use only channels in dimensions i through 71 of G to route

from X to X + ei on G, at worst n communication steps on G will be needed to

emulate any routing step on Qn.

Now we show that no two messages will collide.

Assume that message M1 travels from X to)? +ei in Qn and that message M2

travel from Y Y + ei in Qn, where i < j. Let M1 and M2 be routed simultaneously

at any time step k in the emulation algorithm. M1 is routed from a node jj(k) to

node:

jj(k+1) pp(AY(k)),+k_iX(k) I

and M2 gets routed from a node (k) to node:

f(k+1) 3,(k) n(Af(k));+-i
-r- j+k 1

Message Mi. and M2 will never have a channel collision, because they never route

across the same neighbor at the same time step.

Now assume that message M1 travels from X to X + ei and that message

M2 travels from Y to Y + ei in Qn. The only way that M1 and M2 could cause a

channel collision is if at some stage, they were routed to the same node VV. during

the emulation algorithm.

From Theorem 3.3.2, G can be divided into 2k sub-networks of 2n-k nodes

each. These sub-networks are differentiated by components 1 through k of the node

addresses, and each node inside a sub-network has a unique address in components

k +1 through n.

208

We state two loop invariants for Algorithm HypercubeEmulate and show

that these remain true for the entire algorithm. The first invariant is that before

stage k, M1 is at some X(k) and M2 is at some (k), where X(k) 37'(k). The second

invariant is that if before stage k, M1 and M2 are in the same (n k)-dimensional

sub-network, then:

A!(k) + e1) = f(k) + ei)

These invariants hold before stage 1, because M1 and M2 are at nodes J-C*(1) = ./1?

(1) = Y in the same n-dimensional cube G, and:

X (i) + + ez) = f(1) + (7+ e1)

If after stage k, M1 and M2 are in different (n k)-sub-networks, then Xlk) Yi(k)

for at least some component with index 1 < j < k. Then because Algorithm

HypercubeEmulate will not affect indices 1 through k, M1 and M2 will not be in the

same sub-network after step k + 1, because their new addresses di-j(k+1) and c"(k+1)

will also differ in index j.

If after stage k, M1 and M2 are in the same (n k)-sub-network, then X.r) =

-17-(k) for all 1 < j < k. Either both messages M1 and M2 get routed in step k + 1

or neither of them do, because the second invariant implies that for the (k + 1)-th

component:

(.(k) + (je + = (f(k) + ei))k+i

So M1 gets routed to node:

-T­

and M2 gets routed to node:

209

-17 (k+1) (k) D(c(k)),+k

Since:

(A)e(k))i+k_l= (Af(k))i+k_l

we have 5C. (k+1) (k+1) by mod 2 vector addition. So X and 3-7. do not get routed to

the same node W. Also, if fe(k+1) and (k+1) are in the same (n(k+1))-dimensional

sub-network, we have:

(k+1) (fe ei) (k+1) (17- ei)

by mod 2 vector addition. So our loop invariants remain true in step k + 1 and MI

and M2 do not collide.

The above proof allows any LTLE network to emulate the hypercube with at

worst linear dilation. We were unable to show that in general a LTLE network can

emulate a hypercube with at most constant dilation. However, there is a restricted

subset of networks that can emulate the hypercube with constant dilation, as the

theorem below shows.

Theorem 8.3.4 Let G = (B °, B1, A) be an n-dimensional LTLE network. Let

{ 0, +1, B41} and let (ABP)i+1 = (ABP)i+1 = 1. Then C can emulate

the hypercube Qn with dilation 4.

Proof: The algorithm to generate the routing paths is Algorithm Limited-

HypercubeEmulate, shown in Figure 8.7. For each Qn routing step that a message
ti

takes from a node X to its i-th neighbor ei, G performs a series of routing steps

along its channels to get the message to ei.

210

Input: An n-dimensional LTLE network G = (B °, B1, A) where B? + B2 E
{0, B?+1, Bi-±1} and (AB?)i+i = (AB?)i+i = 1 with 1 < i < n, a source node
and a hypercube dimension i to route in.

Procedure LimitedHypercubeEmulate (G)
ti

for each W E ZT do in parallel
for each message M at W. with source fC. and destination jC. + ei do in parallel

if B(AX)1 = ei then
Send M from W. to W. + r(Avi7)'

if /e)' ei and B? + ./31+Al'?"1 then

Send M from W. to 1717 +
end if

end parallel
end parallel
for each W E Z do in parallel

for each message M at W with source X and destination X + ei do in parallel
if 13(A)i ei and B? + Bi 14i_Al'?)'' then

Send M from IT/ to W +
end if

end parallel
end parallel
for each W E Z2 do in parallel

for each message M at 11.7 with source .kand destination X + ei do in parallel
B(AX)i ei and B? + Bi then

Send M from 117 to 11/* + ./31+Ail41)'+'

end if

end parallel

end parallel
for each IT/ E Z2 do in parallel

for each message M at W. with source .k.and destination _;c: + ei Cdo in parallel
ilex)'

1

ei and B? + Bt = Bl+Aix),+, then

Send M from W. to 121/* + e1/47)1

end if

end parallel
end parallel
end procedure

Figure 8.7. Algorithm LimitedHypercubeEmulate.

211

We assume that G has minimal-weight B° and BI-. If not, we can transform

it to an isomorphic network that does, by using Algorithm MinimumWeightlsomor­

phism. In G, if B? = B.j, then B? = Bi = ei. If B? 131 , then B? + B, = ei+i,

and so either B? = ei and B1 = ei + ei+i, or BZ = ei and B? = ei+ei+1.

If the conditions of the theorem are true, then the LTLE network will never

need more than two routing steps to emulate one hypercube routing step. Assume

B? = ei. If B? defines a channel (.,?,.k + B?) in G, we route in one step from ,3?

to .)? + ei. If B? does not define a channel (X, X + B?) in G, then B? = ei + ei+1
ti

does and we route in two steps from je to .)? + ei by using channels defined by 13!

and Bt+1, where Bt+1 = B? + B. Since Bi4.)+1 depends on Bi (by the theorem's

conditions), we can ensure that Bic6+1 defines a channel in the path. This is done by

ordering the step across a channel of dimension i 1 either either before or after

the step across a channel of dimension i.

This same argument is also true for /3! = ei.

Algorithm LimitedHypercubeEmulate simulates a single communication step

of the hypercube. For a message that is routed along ei in the hypercube Q, the

algorithm determines if there is a corresponding legal channel in G and sends the

message along channel. If there is no legal channel, the algorithm routes the message

along two legal channels to reach the destination. If we ignore channel collisions, a

dilation of 2 is sufficient to route a single hypercube message on G.

If we cannot ignore channel collisions, then we must guarantee that no two

paths use the same channel simultaneously. There are three sets of paths used by

Algorithm LimitedHypercubeEmulate for any dimension i with 1 < i < ii 1. These

paths are listed below, by their conditions:

1. ei = (AX)i. The path is)? ./311"?.)1 (and)? ---+)-e

212

Path Type Stage 1 Stage 2 Stage 3 Stage 4

1 B(A5?)i

2 130g)i BL_Ai.)1+1

,(Ag) i Dog);
3	 .L.,i+1 '4- /Ji

Table 8.7. Timing stages for each type of path.

2. ei = (Ail-01 and ei+1 = (Ag.)1+1. The path is fe -4 X + BLA1)'+1 -+ fi;

.13,1'4.1+ .1e)`, for i < n.

3. ei = (AX)1 and ei+i = (A)Z)1+1. The path is fe)-e+B,CAC). -4 .)-C.+/e). +

./4A)`+1, for i < It.

Within each type of path, the individual paths do not cause channel collisions.

Two paths of the same type that emulate ei on G do not collide, because by Lemma

2.1.1 the neighbor function Ni is 1-1. Two paths of the same type that emulate ei

and e; with i j cannot collide, because at each step they use channels in different

dimensions.

If each type of path is routed in separately, then the hypercube can be sim­

ulated without channel collisions with dilation 5. We can overlap the routing step

for paths of type 1 with the first routing step for paths of type 2, because they use

disjoint sets of channels. This gives us a dilation of at worst 4, as shown in Table

8.7. However, overlapping the routing steps for paths of types 2 and 3 will allow

channel collisions. A message on a path of type 3 emulating ei can have an collision

with a message on a path of type 2 emulating ei+i, and vice versa. So we cannot

use this method to get a dilation of 2 or 3.

213

If we join and transmit simultaneously messages that use the same channels,

then the dilation can be effectively reduced to 2 steps. This might be considered

"cheating," since the network hardware and software must be designed to allow

message joining and splitting.

We can apply the results from the above theorem to the published LE net­

works.

Corollary 8.3.3 The Mobius Cubes, the Flip MCube, the Bent Cube and the YATC

Cube of dimension n can emulate a hypercube Qn with dilation 4.

Proof: This follows directly from the theorem above.

Corollary 8.3.4 The Twisted Cube and the Generalized Twisted Cube of dimension

n can emulate a hypercube Q with dilation 2.

Proof: This follows from the theorem above. However, because W(B? +

= 1 implies that W(B?+1 + B41) = 0 in these networks, the paths of type 2

and 3 can now overlap without collision, because we no longer need to worry about

whether a path of type 3 emulating ei will collide with a path of type 2 emulating

ei+i, or vice versa. Because we can overlap all three types of paths, G can emulate

the hypercube Qn with dilation 2.

So while LTLE networks apparently need linear dilation to emulate the hy­

percube, all of the published LE networks need only constant dilation.

8.3.3. Emulating Other Networks on LTLE Networks

The LTLE network emulation of the hypercube can be generally applied to

a number of networks. The hypercube is a member of a family of networks that

can emulate each other with a constant dilation [45]. These networks include the

214

Cube Connected Cycles network, the DeBruijn network, and the Butterfly network.

Because the published twisted cube networks can emulate the hypercube with a

constant dilation, they also belong to this family of networks. Any LTLE network

can also emulate these networks with a constant dilation.

However, we are interested in emulating networks that we could not directly

embed into the LTLE networks. We can emulate a toroidal mesh (or an ordinary

mesh) on a LTLE network G, by emulating a hypercube Qn on G.

Corollary 8.3.5 Let G = (B°, B1, A) be an n-dimensional LTLE network. If G

can emulate Q, with dilation t, then G can emulate a 21-n12j x 2L"I'i toroidal mesh

with dilation t, and G can emulate a k-ary (n k)-cube with dilation t.

Proof: Trivially true, because Qn can directly embed a 2L11/2i x 2L"i21 toroidal

mesh or a k-ary (n k)-cube by Gray-encoding.

In fact, any network that is directly embedded into the hypercube can be

emulated on a LTLE network with the same dilation that emulating a hypercube

requires. If the embedding is squashed or stretched, then the dilation may increase.

This is the case with emulating a binary tree on an arbitrary LTLE network.

Though the direct embedding of a binary tree was shown possible for a given LE

network, we would like to be able to emulate a binary tree on any LTLE network.

Corollary 8.3.6 Let G = (B°,131, A) be an n-dimensional LTLE network. If G

can emulate Q, with dilation t, then G can emulate a 2n 1 node binary tree with

dilation at worst t +1.

Proof: Trivially true, because Q, can directly embed a 2" node double-

rooted binary tree. This means Q, can emulate the 2n 1 node binary tree with

dilation 2. We only have to rearrange the dimension so that the channel connecting

215

the double roots falls along dimension n. Because dimension 77 can always be routed

in one step for both Q7, and G, communication between the first level children and

the root can take at most 2 steps on Q and at most t 1 steps on G. The rest of

the communications will take one step on Q7, and t steps on G.

The binary tree emulation is a special case. In general, this technique of

emulating a network A by emulating an emulation of A on Q will have a dilation

of at worst k1 x k2, where k1 is the dilation of emulating Q on G, and k2 is the

dilation of emulating A on Q.

8.4. SUMMARY

In this chapter, we have dealt with several different aspects of LE networks,

including embeddings, emulations. We have managed to show that LTLE networks

are able to embed such networks as rings, binomial trees, and in some cases binary

trees. We have also shown that all LTLE networks can emulate the hypercube

with linear dilation, and that some of the published LE networks can emulate the

hypercube with constant dilation. This allows the published LE networks to emulate

a large number of networks with constant slowdown, including binary trees, meshes,

and k-ary n-cubes.

216

9. ALGORITHMS FOR LE NETWORKS

One reason that the hypercube interconnection network remains popular is

because it can efficiently compute a large number of standard parallel algorithms,

including most algorithms with a divide-and-conquer structure. Coupled with effi­

cient general communications algorithms, this makes the hypercube network ideal

for writing simple and efficient parallel algorithms.

In this chapter, we will discuss broadcasting algorithms for the LE networks.

We will examine some algorithms that can be computed using fewer communication

steps than the hypercube. Finally, we consider the implementation of a hypercube

and several LE networks by using a single reconfigurable network.

9.1. BROADCASTING ALGORITHMS

The typical Twisted Cube paper examines direct one-to-one routing, since it

is essential to interconnection network study. However, there are very few papers on

resource-preserving hypercube variants that examine other general communication

algorithms for their particular networks. The only paper that considers any other

communication algorithms is the Multiply Twisted Cube [29] (later the Crossed

Cube [30]), which examined the one-to-many broadcast algorithm.

Communication algorithms are always designed for one of two communi­

cations models. The first, the single-channel model, allows each processor to

send/receive only one message along a single channel at each communication step.

The second, the multiple-channel model, allows a node to send/receive multiple

messages across several or all channels at each communication step. Efe showed

217

that under the multiple-channel model, the Crossed Cube was able to broadcast to

all processors in 1(n + 1)/21 steps.

In this section, we demonstrate that some broadcasting algorithms for the

hypercube can be modified for use on LTLE networks. We show that hypercube's

broadcasting algorithm under the single-channel model is minimal for LE networks.

We demonstrate several broadcasting algorithms under the multiple-channel model

that are at least as efficient as the same algorithms for the hypercube. These algo­

rithms are nonredundant, in the sense that each node receives exactly one message

and no channel is used more than once.

We begin with the single-channel model of communications:

Theorem 9.1.1 Let G = (B °, B1, A) be an n-dimensional LTLE network using

single-channel communications. Algorithm SingleChannelBroadcast in Figure 9.1

broadcasts on an n-dimensional LTLE networks in n communication steps, which is

minimal.

Proof: Each node that has received the message in a previous communi­

cation step can send the message to at most one other node during the current

step. This implies that the number of nodes that have received the message can at

most double at each communication step. So the lower bound on any single channel

broadcast algorithm is log2 2' = n communication steps.

The broadcasting tree of Algorithm SingleChannelBroadcast follows the

channels of an embedded spanning binomial tree rooted at the source node A..

It is similar to the algorithm given in [38].
ti

At step 0 of the algorithm, the source node fe has the broadcast message.

At step 0 < i < n, each node that has the message forwards it to the neighbor in

dimension i.

218

Input: An n-dimensional LTLE network G = (B °, B1, A), the source node X, and
a message M.

ti
Procedure SingleChannelBroadcast (G,
for i = 1 to n do

for all nodes Ti / E .ZT do in parallel
ti

if IV has the message M

send M from IT/ to 1/V + /31A14.11
end if

end for
end parallel
end procedure

Figure 9.1. Algorithm SingleChannelBroadcast.

On an n-dimensional cube, assume that after step (i-1), there are 2j-1 nodes

with the message, and that the addresses of the nodes with the message all differ

somewhere in components 1 through (i 1).

On step i, a node 1;17. with the message transmits the message to 17 = +

./44/47)*. By the definition of the LTLE networks, the addresses ii" and V differ

in the i-th component, and are equal in components 1 through (i 1). V differs

from any U 0 ITT that had the message in step i 1, because 17 and U must differ

somewhere in components 1 through i 1. Every node 1/17.' will produce a unique 17

because the neighbor function is 1-1, so there are 2(2i-1) = 2' nodes that have the

message at step i.

At step n, 2n unique nodes have the message, so the message has been broad­

cast to the entire network.

Algorithm SingleChannelBroadcast is basically the same algorithm that the

hypercube uses. In practice, the hypercube's single-channel broadcasting algorithm

http:31A14.11

219

is often used for multiple-channel broadcasting, because the diameter of the hyper­

cube is the same as the bound on single-channel broadcasting. Because the LTLE

networks have diameters that can be less than n, algorithm SingleChannelBroadcast

may not be minimal under the multiple-channel model.

Theorem 9.1.2 Let G = (B °, B1, A) be an n-dimensional LTLE network using

multiple-channel communications, and let D(G) be the diameter of G. Algorithm

MultipleChannelBroadcast in Figure 9.2 executes in at most D(G) communication

steps, which is minimal.

Proof: The diameter is clearly a lower bound on the number of steps that a

multiple-channel broadcasting. algorithm a message cannot be transmitted from

the source to a node a distance D(G) in fewer steps.

The minimal point-to-point routing algorithm gives a unique path from a

source node X to a destination Y. For any path of length 1 or more, there is clearly

a unique next-to-last node W on the path adjacent to Y.

At step 0, the message is given to the source node X. At each following step,

and for each node 171.7 with the message, each neighbor 17 of if/ is examined. If V

would receive a message from X through I/P (say, using Algorithm LinearEquation-

Route from Figure 6.7), then the message is sent to 17 in the broadcast.

In the algorithm, a boolean variable "Forwarded" is used to have each node

broadcast only once. V is the j-th neighbor of W.. A list P is used to store the path

from)? to V. The final element of the list, Fjpi, will be B.(iA7)3 if ITT is on the path

from X to 17, because IT/ is the j-th neighbor of f

Messages must arrive at all nodes because all LTLE networks are connected

and so a path exists between every pair of nodes in each network. Only one copy of

the message arrives at each node because every path from X given by the routing

220

Input: An n-dimensional LTLE network G = (B °, B1, A), the source node jj, and
the message M.

Procedure MultipleChannelBroadcast (G, X , M)
for all 11.7 E Z2 do in parallel

NotSent 4-- true
end parallel
for i = 1 to D(G) do

for all W E ZT do in parallel
if T/V has the message M and NotSent = true

for j = 1 to n do
-11 + BjAw)-1

P MinimalRoute(G, X, V)

if PPS = Bi(Alk)3 then
send message M from W to V

end if
end for
NotSent false

end if
end for

end parallel
end procedure

Figure 9.2. Algorithm MultipleChannelBroadcast.

221

1 4
3 4

1 4t,/ 4 4 '
, 42

Step I Step 2

Figure 9.3. Broadcasting in two steps on a Twisted 3-Cube.

algorithm is unique. At most D(G) communication steps are needed for any network

G, because no longer routing path will be given by the minimal routing algorithm.

The algorithm takes 0(n) x 0(n2 log n) = 0(n3 log n) bit operations per

each routing step, by Theorem 6.4.1, because the routing algorithm is run for each

neighbor of a single processor. The number of communication steps is D(G), and

so is minimal.

Algorithm MultipleChannelBroadcast is a general method for multiple-

channel broadcasting that is applicable not just to the LE networks, but also for

other networks. There is another multiple-channel broadcasting algorithm that can

take advantage of some of the structure in a LE network, and so can in general

broadcast using fewer communication steps than the hypercube. This algorithm

does not use an optimal number of communication steps, but does use asymptoti­

cally fewer bit operations than Algorithm MultipleChannelBroadcast above.

The method used by this algorithm is similar to one used by the 3-bit looka­

head algorithm. In Figure 9.3, we note that the Twisted 3-Cube has a diameter of

222

2, and any message can communicate to the rest in 2 steps. In the first routing step

the source node distributes the message to all three of its neighbors, then in the

second routing step two neighbors of the source node distribute the message to the

four remaining nodes.

This Twisted 3-Cube broadcast suggests a fairly simple broadcasting algo­

rithm, as shown in Figures 9.4 and 9.5. We won't formally prove the behavior of

Algorithm ThreeBitBroadcast, as it is similar to Algorithm ThreeBitLookahead-

Route in Figure 7.2.

This broadcasting algorithm takes a maximum of 0(n) routing steps and a

minimum of 0(12n/31) routing steps, depending on the network used. This algo­

rithm also has a distributed run time of 0(1) bit operations and a total run time

of 0(n) bit operations mostly through pre-computing of matrix operations and

simultaneous transmission of the broadcast message.

Algorithm ThreeBitBroadcast deals with the conditions that can occur lo­

cally in a twisted define sub-networks that are ordinary 3-Cubes, the algorithm

behaves much the hypercube's multiple-channel broadcast algorithm. However, if

the components i, i + 1 and i + 2 define sub-networks that are Twisted 3-Cubes,

then each node must do different actions to broadcast to all nodes in the Twisted

3-Cube formed by components i, i + 1 and i + 2. If we group together different

nodes that do the same action, we have four different cases to consider. The case

corresponding to each node is shown by the numbers in Figure 9.3, and the actions

required for each case are listed in Algorithm ThreeBitBroadcast.

Though Algorithm ThreeBitBroadcast does not use the minimal number of

communication steps, it has the advantage that (in many cases) it takes fewer routing

steps than the multiple-channel broadcasting algorithm of the hypercube, and takes

fewer computation steps than the minimal multi-channel broadcasting algorithm.

223

Input: An n-dimensional LTLE network G = (B °, B1, A), the source node X, and
message M.

ti
Procedure ThreeBitBroadcast (G, X, M)
For node je, state f- 1

ti
for all nodes TV E Z do in parallel

NotSent < true
end parallel
i < 1
delay 4--- 0
while i < n do

for all nodes W. E Z do in parallel
if Tg7 has message M and NotSent = true then

case state = 1:

if 1 < i < n 2 and B.41 Bj+i and (AMA-C)i)i+i = 1

Route M to W + Bl+Aiv17)'+' with state = 2

Route M to 1;17' + E4A2/1r)' with state = 3

Route M to W + Bl+A3147"3 with state = 4

Route M to W + BJcAW)J with state = 1 for i + 3 < j <
else

Route M to W + B(AvVi)j with state = 1 for i < j < 71
end if

case state = 2

Route M to 4V + fei.f)' with state = 4
Route M to W + Bi_Af)`+' with state = 4

Route M to 4V + BCAW)j with state = 1 for i + 3 < j < 71
case state = 3

Route M to 1717. + B.LAI.W)'+' with state = 4

Route M to W + .Bit3)'+' with state = 4
Route M to W + ./3.A/T1)2 with state = 1 for i + 3 < j < n

case state = 4

Route M to W -1-./311/47)' with state = 1 for i + 3 < j < 71
end case
NotSent false

end if
end parallel

(continued)

Figure 9.4. Algorithm ThreeBitBroadcast.

224

(continued from Figure 9.4)

if 1 < i < n 2 and ./3?+1 # B41 and (A.eig)')i+1 = 1 then
if delay = 0 then

delay 1

else
i i + 3
delay 0

end if
else

i i 1

end if
end while
end procedure

Figure 9.5. Algorithm ThreeBitBroadcast (continued).

This algorithm should require at most a constant computation time per routing

step, provided we precompute which sets of components define sub-networks that

are Twisted 3-Cubes. The only disadvantage is that a constant number of bits have

to be sent with the message to signal the type of broadcasting action the node should

perform.

There are certain cases where this algorithm is minimal:

Theorem 9.1.3 The Bent Cube and the Generalized Twisted Cube have a multi­

channel broadcasting algorithm that takes 12n/31 communication steps, and is min­

imal for both networks. The Twisted Hypercube has a multi-channel broadcasting

algorithm that takes n 1 communication steps and is minimal.

Proof: This result depends on the fact that a Twisted 3-Cube has a diameter

of 2. We can group the components of the address vector into Twisted 3-Cubes and

then broadcast in 2 steps to each 3-dimensional sub-network. Since the diameters

225

of these 2 networks are both 12n/31, Algorithm ThreeBitBroadcast is minimal

we cannot broadcast to all nodes in fewer communication steps. The Twisted Hy­

percube has only the last three components of its address vector form sub-networks

that are Twisted 3-Cubes and so must broadcast like the Hypercube for the first

n 3 steps, and then broadcast like the Twisted 3-Cube in the last 2 steps. This is

optimal because the Twisted Hypercube has a diameter of n 1.

But there are also cases where this algorithm is not minimal:

Theorem 9.1.4 The MObius Cubes, the MCube, and the YAT Cube have a multi­

channel broadcasting algorithm that takes 12n/31 communication steps.

Proof: The proof is the same as in Theorem 9.1.3. But with these networks,

the algorithm is not minimal, because the diameter of all of these networks is 1(n +

1)/21.

9.2. GENERAL ALGORITHMS

Only the Crossed Cube of Kemal Efe [30] has had any sort of parallel appli­

cation written for it. Efe examined semi-group computations, matrix multiplication,

and sorting. He showed that these problems could be computed using almost half

the communication steps that the hypercube would use for the same algorithms,

largely because of the reduced diameter of the network. (In reality, Efe "cheated"

a little. The semigroup calculation will operate as he suggests, but will have the

correct result at only the root node. The sorting algorithm used the rank sorting

method, which isn't really the traditional problem of sorting, and which requires 22/c

processor nodes to compute 2's' values).

226

We consider the problem of implementing various algorithms on the LE net­

works. We begin with a few examples, which admittedly duplicate the results of

Efe.

Efe defines a semigroup operation as a recurrence relation over a binary

associative operation o over a set of elements al, , :

Yi = al

yi= aioyi_1fori =2...m

Assume that each element ai is at a different processor of a hypercube. All yi can

be computed on a hypercube in n communication steps, by using a binomial tree to

collect and compute values. Because LTLE networks embed binomial trees, we can

replicate the algorithm on a LTLE network in the same number of communication

steps.

If we want to compute just yi at one node X in a LTLE network, then the

communication time can be shortened. The algorithm assumes that each node either

knows or can compute its parent and children in a broadcast tree from Any leaf

simply sends its value to its parent. Any interior node waits until receives all the

results of its children's computations, and then computes the group sum of their

results and sends the sum to its own parent. At the end of the computation, the

root node contains the group sum of all elements.

This computation takes only as many communication steps as a broadcast

algorithm, and so will take at most as many steps as the hypercube would. This

algorithm allows us to compute many collection problems, such as global maximum,

global sum, etc.

Another algorithm that can take advantage of the smaller broadcasting dis­

tances of LTLE networks is matrix-vector multiplication AX where A is a 2"/2 x 2n/2

227

matrix. First, examine the algorithm on a 2n/2 x 2n/2 mesh. The rows and columns

of A are stored on the rows and columns of the mesh, and the elements of X are

stored in the leftmost column. The algorithm first has the elements of the first

column broadcast their Xi values to their rows, then computes the product

at each element. The final phase is adding the elements of each row into the first

element of each row.

The hypercube can do this algorithm by Gray-encoding. It will take n com­

munication steps, because the broadcast and summation can treated as broadcasts

and group sums over dimension n/2 sub-networks, which will each take n/2 steps.

By Corollary 8.2.1, up to 2f12 disjoint Hamiltonian cycles of length 2712 can be

put onto one LE network. We can use these cycles to do simultaneous computation

of each row in the matrix-vector product. Then the algorithm will take as little

as 2D(Gii/2) communication steps, where D(Gti/2) is the maximum diameter of the

sub-networks. For instance, the algorithm will take n + 2 communication steps for

the 0-Mobius cube.

When running parallel algorithms, the LTLE networks can show a improve­

ment in communications delay over the hypercube in at least two ways. First,

direct one-to-one communications (over a uniform source/destination distribution)

have shorter paths on a LTLE network than on the hypercube, and so require fewer

communication steps. Second, one-to-many broadcast trees generally have smaller

height, and so broadcast and collect algorithms are also faster on an LTLE network.

The LTLE networks can compute many parallel algorithms with the same

number of communications steps as the hypercube. Most parallel algorithms use

a divide-and-conquer approach, where one of two recursive subproblems is trans­

mitted to another processor and computed simultaneously. These algorithms have

a binomial tree communication pattern and so map easily to the hypercube's re­

228

cursive, easily decomposable structure. The LTLE networks embedding of binomial

trees, also allow us to implement a parallel divide-and-conquer algorithm on a LTLE

network with the same communications complexity as on a hypercube.

A LTLE network will have a communications time improvement over a hy­

percube in the emulation of PRAM algorithms. Since the PRAM is a global memory

model, and the LTLE network and hypercube are not, we are faced with two choices:

Either the processors split the memory so each processor has one segment of the

global memory, or each processor contains an image of the shared memory space. In

the first case, a processor will require direct one-to-one communication with another

processor if it accesses a memory location outside its own local space. In the sec­

ond, broadcast and partial semigroup computations will be needed to update each

image of the global memory. In either case, the LTLE network has an advantage

over the hypercube if its diameter is smaller and if memory accesses are uniformly

distributed.

However, there are situations where a LTLE network will have no advantage

over a hypercube in communications time. When the communications patterns

are heavily dependent on the hypercube's structure, the shorter routing distances

offered by an LTLE network will be of little use. This is especially true if the LTLE

network cannot efficiently embed or emulate a hypercube.

9.3. RECONFIGURABLE NETWORKS

An interesting property of the Crossed Cube architecture of Efe [30] is that

it can be obtained from a hypercube of the same dimension by adding crossover

switches to a small number of channels. We can control the switches' settings

so that the channels are configured for either the hypercube or the Crossed Cube

architecture at any given time.

229

(a)

(b)

Figure 9.6. A reconfigurable switch.

We find four processors T, U, V, W where, (T, U) and (V, 147) are channels only

in the hypercube, and where (T, W) and (U, V) are channels only in the Crossed

Cube. We then put in a switch that ties the two channels together. By setting the

switch, we can either let the two channels pass straight through or cross each other,

as in Figure 9.6.

Efe showed that the hypercube network requires only a fairly small number

of switches to reconfigure into a Crossed Cube network. For a network of dimension

n = 2k or n = 2k + 1, the number of switches needed is:

2)22k-1 +2kS2k = (k

3(22k-1 2k-1)
s2k+i = k22k

230

This number is relatively small compared to the number of channels in the Crossed

Cube network. Because the switches are relatively simple, the complexity of con­

structing the network will be dominated by the number of routing elements and not

by the number of switches.

The advantages of this reconfigurable network are clear. The switches can

initially set the network to a hypercube configuration. However, when the Crossed

Cube has a better communication algorithm, we can temporarily turn the switches

to configure the network as a Crossed Cube and communicate. The best of both

networks exist in this "dynamically reconfigurable network" .

The reconfigurable network concept can be applied to the LTLE networks.

Here, each pair of twisted channels can be joined by a switch, so that the network

is reconfigurable as a hypercube.

We will limit our discussion to LTLE networks for now.

The twisted channels of the LTLE network will always occur in pairs. Let

(X, fe+B.A4) be a twisted channel in a LTLE network. Then (jj+ei+el)' , JZ+

ei) is also a twisted channel in the LTLE network, because: (Aei)i = 0 and
(AB' A)i),

Bi = 0 by definition of a LTLE network, and so:

Bfit(je+ei+B!Ag);)1,X + ei elf6i

B04 + B(Af3i(Ag)i)i= X + ei +
ti

=X+ei+ 0+0

Also, (X, ei) and (fe + ei + .1e)s,je + B,Vv?)s) are channels in a hypercube

network. So the two LE network channels can be made reconfigurable into hypercube

channels with one switch.

Assume that the addresses of the nodes in the reconfigurable network will be

the same for both the hypercube setting and the LE network setting. The number

231

of switches needed is one-half of the total number of twisted channels in the LTLE

network, as computed by Theorem 2.3.1. If we implement one of the published LTLE

networks as a reconfigurable network using unidirectional channels, the number of

switches will be half the number of twisted channels listed in Table 1.1.

All LTLE networks have reciprocal unidirectional channels. In real hardware

implementations, the two unidirectional channels are often replaced by one bidi­

rectional channel. This will cut hardware costs by cutting the number of switches

needed in half, because the one bidirectional channel can work as the two reciprocal

unidirectional channels. If we implement the network using bidirectional channels,

the number of switches needed will be one-quarter of the total number of twisted

channels, as computed by Theorem 2.3.1.

The logical generalization is to ask how many different LE networks can be

implemented into a single reconfigurable network. The theorem below presents at

least a partial result:

Theorem 9.3.1 Let RQ be an n-dimensional reconfigurable hypercube network,

with a switch between every pair of channels (f et) and (.,1? d-ei+i, X +ei+ei+i)

a total of (n-1)271-1 switches. Then 1:1(27, can emulate every n-dimensional LTLE

network which has B? E {0, B?", Bi4i }.

Proof: Let G be an n-dimensional LTLE network that meets the conditions

of the theorem. We can use Theorem 4.3.1 to transform the network G to a banded

LTLE network G = (B °, B1, A) where the only nonzero elements of and B1 are

on the main diagonal and the diagonal immediately below it. Then each channel of

is either ei or ei+ ei+i for dimension i.

For network G, we only have to compute whether each switch needs to be

configured. For the switch controlling channels (X, X + ei) and (X + ei+1, X + ei +

232

ei+i), we compute (A)-61. If W(E111)1) > 1, the switch must cross the channels

to make RQ emulate G. If W(filA56`) = 1, the switch must be set to leave the

channels un-crossed.

Note that the reconfigurable network RQ can be configured to emulate all

of the published LTLE networks, because all of those networks meet the criteria of

Theorem 9.3.1. RQ can also (with the right settings) emulate all of the MCubes of

Singhvi and Ghose [51], and the Twisted N-Cube of Estafahanian [31], by setting

exactly one switch to twist its channels. Because it can emulate Twisted N-Cube,

it can also be reconfigured to embed a 2n 1 node binary tree. Unfortunately, RQ7,

cannot be configured to emulate the Crossed Cube of Efe.

It might be questioned if RQ can put some arbitrary setting on the switches

to reduce the diameter of the reconfigurable network to less than that of the best

published LTLE network. The answer is no, because each routing step can correct

at most 2 components, and the routing step across the channel in the first dimension

can always be forced to correct only one component, no matter what the settings

on the switches in the first dimension. So RQ also has a diameter of at least

r(n + 1)/21 steps.

9.4. SUMMARY

In this chapter, we showed that a variety of broadcasting algorithms exist

for the LTLE networks. We also showed that at least a few algorithms can be

implemented more efficiently on a LTLE network than on a hypercube.

Possibly the most important part of this chapter was the section on recon­

figurable networks. We could show that one reconfigurable network was able to

configure not only to the hypercube, but also to most of the published LE networks

233

(or isomorphisms of them). This allows us to use "the best of both worlds ", so to

speak. If we need efficient point-to-point routing or single node broadcasting, we can

configure the network to a LE network. If we need a more general communication,

or want to implement a hypercube algorithm, we can configure the network to a

hypercube. This can be done "on the fly" , so to speak, with a control bus changing

the network to whatever configuration is currently needed.

234

10. STATIC PERFORMANCE MEASURES FOR LE NETWORKS

The performance of a network depends on several factors: The topology

of the network, the routing paths computed routing algorithm, the strategy used

for forwarding messages, and the distribution of messages in the network. If the

topology of the network is poorly designed, say in the case where only one channel

joins two large components of the network, then the network performance will be

poor, regardless of the other factors. To examine and compare the behavior of the

interconnection networks, we need some measures of the performance of a network's

topology.

Performance measures that are based on the graph-theoretic properties of

the network's topology are typically called static performance measures, because

they are independent of ephemeral conditions, such as the number and distribution

of messages in the network.

Because they are relatively easy to derive, most published papers on resource-

preserving hypercube variants have derived some static measures for their own net­

works. Static measures include:

Diameter The maximal routing distance between any two processors, as measured

by the number of communications channels crossed. This is an estimate of the

maximum time a message will be in transit through the network.

Expected Distance The expected minimal distance between any pair of proces­

sors, averaged over all pairs of processors. This is an estimate of the average

time a message will be in transit in the network.

235

Bisection Width The number of channels that must be removed to disconnect

the network. This is a measure of the fault tolerance, and also an estimate of

the network's bandwidth.

There has been a careful examination of the static properties of nearly all the pub­

lished Twisted Cube networks. This has usually been necessary because the major

claim of most Twisted Cube networks is a reduced diameter and expected distance.

We summarize the diameter and expected distance results about these LE

networks in Table 1.1. We also include information about the routing algorithm and

number of twists. The diameter and expected distance are, of course, computed

for all the published networks. The bisection width has been computed for the

hypercube, the Mobius Cubes, and the MCubes and is n in all cases.

In this chapter, we will compare the static performance measures of the LE

networks. In particular, we will try to put bounds on the diameter and expected

distance for the LE networks.

10.1. STATIC MEASURES FOR LE NETWORKS

In this section, we consider bounds on the performance measures of the gen­

eral LE networks. We discuss mostly the bounds we have achieved on the minimal

and maximal diameters.

We were unable to compute reasonable bounds on expected distances, and

so give no results in this section. However, the minimal network bisection width

is trivially 0, because a disconnected network is already bisected. The maximal

bisection width is n, because a single node can be disconnected from the network

only with the removal of n edges. This bound is tight because the hypercube has a

bisection width of n [49].

236

10.1.1. Lower Bounds on Minimal Diameter

We first consider a trivial lower bound on the LE network diameter. We can

find the lower bound on the diameter for not only the LE networks, but all possible

networks formed by the rearranging the resources of a hypercube.

Lemma 10.1.1 Let G be a graph on 2" vertices in which each vertex has degree at

most n. Then the diameter is:

L

longn)

and the bound can be attained by a tree.

Proof: If the out-degree of each vertex is n, then the maximum number of

vertices within distance D is at most 1 n + n2 + n3 nD, which is n°+'-1n-1

For D to be the diameter, we must have

nD+1 1

>
n 1

So:

n log(n 1)D >
log n log n

and D = Si(7) Clearly a tree with branching factor n and 2" vertices has alogn

diameter that meets this lower bound.

This lower bound on the LE network diameter is not tight, because it is not

clear how we can "twist" a cube to make such a tree.

We tried to raise the lower bound on the LE networks by finding a bound

on the DM networks. The lower bound on the minimal DM network diameter can

be used to put a lower bound on the minimal LE network diameter, by Theorem

6.0.1. However, we show that computing the lower bound on the minimal DM

237

network diameter does not raise our current lower bound on the minimal LE network

diameter.

Consider a n-dimensional DM network G = (B °, B1). In a minimal routing

path, no term Bt will be used more than once (if it was, the duplicate terms can be

paired and removed from the path). However, B? and Bz1 may be used together in
2n

a routing path. So there are at most (k) nodes a distance k from a node .."?. Then

the smallest maximal distance from node is D, where:

D

i=0

Since the DM network is symmetric, this is a lower bound on the distance from any

node to all other nodes, and so is also a lower bound on the minimal diameter of a

n-dimensional DM network.

The tree of possible routing paths based on the above arguments will be the

binomial tree B2n with 22n nodes. Clearly, there will be redundant paths to at least

some of the 2n network nodes. Even so, we can assume the tree has no redundant

nodes in the first D levels.

If we can compute an upper bound on the summation, then we can bound

the diameter from below, by underestimating k. However, it should already be clear

that this lower bound on the minimal DM network diameter will not raise the lower

bound on the minimal LE network diameter, because the B2n tree can easily contain

a full n-ary tree of depth n/ log n, and so the value of D obtained by this argument

is equal to or less than our previous argument.

238

10.1.2. Upper Bounds on Minimal Diameter

Now we consider the upper bound on minimal LE network diameter. So far,

we've only seen LE networks that have a diameter of at least Rn + 1) /21. Are there

networks that have a diameter that break the n/2 bound?

Consider the 2-dimensional DM network:

1 0 1 0

01 11

It takes only 3 vectors to place any node at most one routing step away from any

other. This means that for an n-dimensional DM network, we need at most 3n/2 of

the 2n vectors to correct all n components of a source address to the components

of a destination address in n/2 steps. Can we use the other n/2 vectors to reduce

the diameter of a n-dimensional DM network to less than n/2? Actually, we can.

Theorem 10.1.1 Let G = (B °, B1) be an n-dimensional DM network. The mini­

mal diameter of G has an upper bound of

[2n/5j + 1(n mod 5)/21

which is less than n/2 for n > 5.

Proof: It takes 7 vectors to place any node at most one step away from any

other in a 3-dimensional DM network. Though there are only 6 vectors available

in a 3-cube, there are 10 vectors in a 5-cube. This means that we can correct 3

components in 1 step using 7 vectors, then correct the remaining 2 components in

1 step using the remaining 3 vectors. This DM network is:

239

1 1 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0

B° = 0 0 0 1 1 B1 = 1 1 0 0 0

0 0 0 1 1 0 0 1 1 0

0 0 0 1 0 1 0 1 0 1

We can construct larger DM networks with dimension n = 5k by graph composition,

similar to the construction of the Generalized Twisted Cube. This makes the upper

bound on minimal DM network diameter 2n/5 for n divisible by five. For T1 not

divisible by five, we can construct a network by using the graph composition of

a 5k-dimensional DM network with 1- and 2-dimensional DM networks that can

be corrected (routed on) in 1 step each. This gives our upper hound on minimal

diameter.

This is the smallest diameter that we can achieve by our method. We can

prove this by extending the method. Let us subdivide the n-component vector

address into r groups of components and try to correct each group of components

in one step. These groups of components will have sizes k1, k2, , kr, and must

meet the following properties:

k2 . kr = n (2k1 1) + (2ki 1) + + (2ki 1) < 2n

We can assume that all ki (except one) must be equal to 1 or 2, because 2k1 > 2ki

for ki > 2. (if there are more than one group with more than 2 components, then we

can break the groups into 2 sets, each with one group of more than 2 components.

Let w1 be the number of groups of 1 component and w2 be the number of groups of

2 components. Then we have:

wi 2w2 + kr = n

240

/Di + 3w2 + 2kr 1 < 2n

We want to minimize:

r 2w2 + 1
n =

n

We can solve for n and w1 and w2:

2kr 2kr
n 2kr+1 3kr 1 + w2

To minimize this ratio, we must maximize w2, so we set w1 = 0 and w2 = r 1.

When we do so, the ratio of r/n grows to 1/2 as kr approaches infinity. The ratio

is thus minimal for kr = 3. 1

This bound may not be the smallest possible to achieve. We may be able

reduce the bound by considering groups of components that we correct in two or

more steps.

This lower bound may not seem very useful for LE networks, but we can

create a LE network with a diameter that is only a constant larger than this DM

network.

Theorem 10.1.2 Let G = (B °, B1) be an n-dimensional DM network with diam­

eter at most D. Then there is an (n 1)-dimensional LE network G that has a

diameter of at most D + 2.

Proof: The LE network a = (p°, El, A) can be defined as:

1 0 0 1 0 0
1 0 0

0 Mo. B?,,, 0 B11,1po

k,

13' = A=

1 0 0

0 B,9,1 0 /37,14

241

Note that the choice of A ensures that all terms in E? and El with 2 < i < n

depend on in, and depend on no other term.

The routing algorithm on G starts by finding a minimal expansion S of

(X2 + Xn) + (Y2 + Y) on the DM network G, and use that to construct a

routing path on G.

If X1 = 0, we route using all terms b? : B? E S, then route using P? = el,

then route using all terms ./.j : 131 E S. Otherwise if X1 = 1, we route using all

terms bl : Bi E S, then route using in = el, then route using all terms /31) : B? E S.

At this point, all Xi = Y for 2 < i < n. If Xl Y,, we route using in = et.

This will correctly get us from .)-e to Y. Since 181 < D, the length of the path

generated is at most D + 2.

This gives us an upper bound on the minimal LE network diameter:

Theorem 10.1.3 Let G = (B°, B1, A) be an n-dimensional LE network. The min­

imal diameter of G has an upper bound of:

1_2(n 1)/5] + 1((n 1) mod 5)/2-1 + 2

Which is equal to n/2 when n = 16 and less than n/2 when 71 = 21.

Proof: We combine the results of Theorem 10.1.1 and Theorem 10.1.2 I

This network has a diameter that grows at a rate less than n/2, but not by

much. There are probably several ways to reduce this upper bound on the minimal

LE network diameter, but our point is that a LE network with diameter less than

n/2 does exist.

10.1.3. Lower Bounds on Maximal Diameter

Now we consider the bounds on the maximal LE network diameter. For the

lower bound on maximal LE network diameter, we have had some success in showing

242

00010 00110 01110 10110 10010
11110

00011

00001

00000 00100

Figure 10.1. A five-dimensional network with an 0(1/2) diameter.

that the lower bound on maximal diameter is at least super-linear. However, we

were unable to show that the lower bound is limited to a polynomial.

Theorem 10.1.4 Let G = (B °, B1, A) be an n-dimensional LE network. Then the

lower bound on maximal diameter is at least [n(n 1)]/2.

Proof: This bound is proved by giving an example network. This network

is defined by B° (a, , 0, en), B1 = (el e3, e2 e4, , ei,_2 -4- en, e_1, en), and

A = (6, el, , en_i). The five-dimensional network is described by the matrices

below, and is displayed in Figure 10.1.

243

0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0

B° = 0 0 0 0 0 131 = 1 0 1 0 0 A= 0 0 0 1 0

0 0 0 0 0 0 1 0 1 0 0 0 0 0 1

0 0 0 0 1 0 0 1 0 1 0 0 0 0 0

This network can be shown to have a diameter of [n(n + 1)]/2 by recursive ar­

gument. Assume that the network G- of dimension n 1 has a diameter of

[(n 1)n] /2. The network G can be constructed from two networks Go and

G1. Go has its addresses pre-pended with a zero and Go has its addresses pre

with a one. Go and G1 are connected together with channels of the form

/ended
((cti3O,a2,a3,...,ar,), (aT, 0, cT2, a3, , an)).

The distance to route from (0,1,1,1, ,1) to (0,0,1,1, ... , 1) on Go and

from (1,0,1,1, ,1) to (1,1,1,1, , 1) on G1 is n(n 1)/2 steps each. But note

that the step from Go to G1 essentially saves up to (n 1)(n 2)/2 1 steps (the

maximum distance between the corresponding addresses on Go and G1). The total

distance between (0, 1 , 1 , 1 , . . . , 1) and (1, 1, 1, 1, . . . , 1) is:

D (G) = 2 [fracn(n 1)2]
1)(n

2

2)

1]
2n(n 1) (n 1)(n 2) + 2

n2+n
2

2
n(n + 1)

2

So the diameter of G is n(n + 1)/2.

There is a variation of this network for four dimensions. This network is

connected and has a diameter of 12 channels. It is shown in Figure 10.2, and its

matrix description is:

244

1010 1000 1001 1011

0010 0001 0011

0110 0100 0101 0111

1110 1100 1101

Figure 10.2. A four-dimensional network with a diameter of 12.

0 0 0 0 1 0 0 0 0 1 0 1

0 1 0 0 0 0 0 0 1 0 0 0
B° = B1 = A=

0 0 1 0 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 1 0 0 0 0

This network is an extension of the maximal diameter network of dimension 3. 6

channels are added to the longest path by increasing the dimension by one. Unfortu­

nately, this technique is not useful for n > 5, because the series of "large diameter"

networks above have their diameter grow at a rate of at least n2, while this extension

adds only 6 channels to the longest path.

10.1.4. Upper Bounds on Maximal Diameter

The upper bound on maximal LE network diameter is (in effect) infinity,

because an LE network can be disconnected. Even when we limit the problem to

245

instances of connected networks, the best upper bound on maximal diameter we

could achieve is a trivial 2n 1 the minimal number of channels to connect all

nodes in the network. To date, we cannot limit the maximal routing distance of any

LE network to a polynomial number of channels in n.

This is discouraging, because the maximal diameter of a connected DM net­

work is easy to bound. The only way that the DM network can be connected is if 71

of the vectors in B° and B1 form a basis over n components, which means that all

expansions can be written as a linear combination of those n vectors. So the upper

bound on the maximal diameter of a DM network is n. This bound is tight, because

we can choose B° = B1 = I, which has diameter n.

The problem of computing the upper bound on maximal diameter for LE

networks is that in our model, local linearity does not imply global linearity. Without

global linearity, it is often difficult to compute the diameter of even a single LE

network, let alone show the upper bound over all LE networks.

We can restrict the upper bound on the maximal diameter to 2n 1, if we

restrict ourselves to a subset of networks that have the property that there can exist

no group or cycle of terms that mutually depend on each other:

Theorem 10.1.5 Let G = (B°, B1, A) be an n-dimensional LE network where the

terms of B° and B1 can be ordered:

,Bt2 , .13(n

so that:

(A.13`44)it, = 1 u > v

Then the maximal diameter is bounded above by 2n 1.

246

Proof: Assume that a (possibly non-minimal) path of any length exists. In

this path, more than one copy of a term Bit may exist. If an even number of copies

exist, then the mod 2 sum of these copies is zero. If an odd number of copies exist,

the mod 2 sum of these copies is Bit . Remove all but 2 copies of g: from the path

if the number is even, and all but the leftmost copy if the number is odd. Order the

remaining terms into a list as in the the statement of the lemma above.

Consider each single term or pair of terms Bit in order. If Bit defines a

channel from node jj, insert single or double terms first in the new path. If Bt:

does not define a channel from node fe, then insert it in the new path after the

first term Bit with (ABt)i. = 1. This will make term gib: define a channel from

node fe + + ...+ B. A term Bt coming after Bt: will still define a channel,

because (ABt = 0, but it will now define a channel from node 1-C. + + +

Btu + Btu + Btu++: + +B 11.

The leading term always defines a path from node ,1?, because it depends on

no other term in the original path. This makes it always possible to insert it into

the empty path. The entire construction will give us a path of at most 4n, or at

most two occurrences of each term.

We can shorten the path length even further. Note that any term gib can

appear at most once or twice along a path from X to 17". We split the set of terms

that appear in the path into 2 sets. The set Si contains terms that occur exactly

once in the path, and S2 contains terms that appear exactly twice. The length of

the path is:

D = +21,521

We can specify some bounds on the size of Si. First, Si must be nonempty if ./1? # IT'.

Second, Si represents a linear expansion over 71 components of + and so can
and

247

be represented using no more than n vectors from B° and Bl. If k > n, then some

terms have a linear dependence and can be removed. So, 1 < < n.

Similarly, the size of S2 can be bounded. A term B7' E S2 is included because

another term Mb in the path needed some I-4.7 along the path to have (AITI3 = but

(A,-e); and there is no term Bi E S1 with (ABi% = 1. However, (A/3f); = 1,

and can be placed before and after 14 in the path to make it a step across a legal

channel.

The set S2 can be empty, and because each nonzero term in the routing path

can affect a minimal of 1 component each, the total sum of terms in both sets cannot

be greater than n. So 0 < 1821 < n 1,911.

Maximizing the distance equation over these two constraints, we get:

D < 2n 1

10.2. STATIC MEASURES FOR LTLE NETWORKS

We now turn from LE networks to LTLE networks. These networks have a

lot of properties that are much easier to prove, partly because the networks can be

decomposed into smaller LTLE networks.

10.2.1. Bounds on Minimal Diameter

We could not put a tight lower bound on the minimal LE diameter except

in limited cases. However, we were able to prove that that the upper bound on the

minimal LTLE network diameter is less than n/2.

248

First consider LTDM networks. We can design a LTDM network with a

diameter approaching n/2, using the same technique that was used on DM networks.

This time, however, we have the limitation that /32 = .13! = en for LTDM networks.

Theorem 10.2.1 Let G = (B °, B1) be an n-dimensional LTDM network. The

minimal diameter of G has an upper bound of:

I_2(n 1) /5J + 1((n 1) mod 5)/21 + 2

This is equal to n/2 when n = 6 and less than n/2 when it = 11.

Proof: We can rearrange the columns of the network in Theorem 10.1.1,

and add l's where required by the definition of LTLE networks. Then the network

will be:

1 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 1 0 0 0

B° = 0 0 1 0 0 B1 = 1 1 1 0 0

0 0 0 1 0 1 1 0 1 0

0 0 0 0 1 1 0 1 1 1

We can route on this network in three steps. First, we correct the last three compo­

nents in one step by using BI3, B91, IA, B1, and B. Then, we use .13° and

BZ to correct the first two components in at most 2 steps. If we blindly use graph

composition again to create network of dimension n = 5k, it will have a diameter of

3n/5 for n divisible by five.

We can reduce the diameter to less than n/2 for larger LTDM networks, if

we change every Mk with k < n/5. Originally Mk = e5k and so Mk = Bigk, but

we can modify it to e5k + e5k+1 e5k+2 so that we can use it to correct components

5k + 1 and 5k + 2 in one step.

249

The algorithm to correct all the components is then to repeatedly, from

k = n/5 1 to k = 0, correct components 5k + 3, 5k + 4 and 5k + 5 in one step

using the vectors 4+3, B(5)k+4, Bh+i, B5k+2, B5k +3 and B5k+5, then correct

5k + 1 and 5k -I- 2 in one step using Bigk+i 4+2 and B(5)k (or at most two steps using

13? and .14 if k = 0). This gives us the bound in our theorem.

We can use Theorem 10.2.1 to get an upper bound on the minimal LTLE

network diameter:

Theorem 10.2.2 Let G = (B °, B1, A) be an n-dimensional LTLE network. The

minimal diameter of G has an upper bound of:

1_2(n 2)/5] + 1((n 2) mod 5)/21 + 3

Which is equal to n/2 when n = 22 and less than n/2 when 71 = 27.

However, we note that the published LTLE networks have at best a diameter

of 1(n + 1)/21. Notably, only the 1-Mobius cube, the Flip MCube and the Twisted

Cube meet this bound. Why do none of these networks have a diameter smaller

than 1(n + 1)/21?

Part of the answer lies in the the fact that for these networks, the condition

B? + E {0,B?+1,/41_1} is held. This severely limits the choices possible for

expansions over B° and B1:

Theorem 10.2.3 Let G = (B °, Bl) be an n-dimensional nonredundant LTDM net­

work, where B? + E {0,B41,B41}. The minimal diameter of G is in121.

Proof: The proof of the DM network diameter is by induction on the di­

mension n.

250

Base Case: If n = 1 the minimal diameter is D(1) = 1, because we can

construct G = ([1], [1]). If n = 2 the minimal diameter is D(2) = 1, because we can

construct:

1 0 1 0

01 11

Inductive Hypothesis Assume that for n < n, the minimal diameter is at

least rn/21.

Inductive Step: Since G is a DM network, we can assume wlog that any

path in the network can route on its routing steps in any order, so wiog we assume

the routing steps are always in order of their increasing index in B° and B1. Also,

no term with any index i will appear in the routing path more than once, because

B? E {0, B41, B41} is sufficient to make G a nonredundant network. We also

use Theorem 3.3.2 to decompose G into (n 1)-dimensional and (n 2)-dimensional

sub-networks.

Assume we start at any node X in the network. .:ct is in one (n 1)­

dimensional sub-network of G.

If B? + BZ = 0, then both paths je .k + B° and X ---+ Bi map to

the same node in the opposite sub-network. This is the only way to cross to the

opposite sub-network. This gives us a minimal diameter of:

D(n) = max{D(n 1), D(n 1) + = 1(n 1)/2 + 11 = r(n +1)/21

If B? + B2 = B?+1, then the (n 1)-dimensional sub-network opposite X can be

reached by + B? or X p X + Bi. Because B?i = 1, ,1? B? and + Bi

will be in separate (n 2)-dimensional sub-networks in the sub-network opposite

X. This gives us a minimal diameter of:

D(n) = max{D(n 1), D(n 2) + 1, D(n 2)+11 = r(n 2)/2 +11 = in/21

251

The smallest possible diameter is then the smaller of the above two cases, or 1n/21.

No other paths are shorter, because to reach nodes in the (n 1)-dimensional

sub-network opposite X, we must use B? or BI in the path. All other paths using

these terms can be replaced with paths of equal or lesser length because:

fe--PB?±B=je-FB1

)?+.131-EM-,--.)?+B?

ie+B?+B.,e+.131._FtElo,B3,B3}

)-e+Bl+B.x+Bl+tE10,14,B11

Finally, if B? 1313 = B.j+1, we can use arguments similar to the ones above to show

that the minimal diameter is D(n) in/2 + 11.

This minimal diameter is tight, because it is the diameter of the Enhanced

Hypercube.I

Corollary 10.2.1 Let G = (B°, B1, A) be an n-dimensional nonredundant LTLE

network with the same B° and .13' matrices. Then the lower bound on the minimal

diameter of G is F(n + 1)/21, and this bound is tight.

Proof: For G, we note that B? (and never 131) must always be chosen to

reach the (n 1)-dimensional sub-network opposite X. If we assume that we can

always choose the terms in the opposite sub-network, we can treat the sub-network

like a DM network and so the diameter is at least F(n 1)/2 + 11 = F(n + 1)/21.

This lower bound on the minimal diameter is tight because it is the diameter of the

1-Mobius cube and the Flip MCube.

252

10.2.2. Bounds on Maximal Diameter

Now we consider the maximal LTLE network diameter. The hypercube has

a diameter of 11, which is the maximal Hamming distance between two nodes in the

hypercube. Calculating the diameters of the LTLE networks can be slightly more

complicated, due to the asymmetries of the network. Fortunately, we can use one

of our routing algorithms to bound the maximal routing distance.

Theorem 10.2.4 Let G = (B °, B1, A) be an n-dimensional LTLE network. The

maximal diameter of G is n, and this bound is tight.

Proof: The Algorithm LeftRightBitCorrectRoute always takes at most n

routing steps. The hypercube, a LTLE network, has a proven diameter of 12 steps

[49].

10.2.3. Bounds on Expected Distance

The diameter represents the worst-case behavior of a single message traveling

in the network. The average-case behavior would be measured by the expected

distance, or the average number of routing steps between nodes. The asymmetries

and variance of the LTLE networks make a general calculation of the expected

distance difficult. However, it is possible to bound the expected distance to a value

below the hypercube's expected distance of n/2.

Theorem 10.2.5 Let G be an n-dimensional LTLE network. The maximal expected

distance of G is Fn/21, and this bound is tight.

Proof: If we choose a uniform distribution of source and destination address

vectors, the mod 2 sums of the source and destination will be uniformly distributed

253

over Z. This means that the probability of any component i differing between the

source and destination is 0.5. At each step i of Algorithm LeftRightBitCorrectRoute,

there is a probability of 0.5 that the algorithm will route to the i-th neighbor of a

node. So Algorithm LeftRightBitCorrectRoute has an average routing distance of

in/21 routing steps.

The hypercube has a expected distance of in/21 steps, so this upper bound

is tight.

In general, we can't put a tight lower bound on the minimal LTLE network

expected distance, but we can make some reasonable statements about it. Because

the expected distance is always less than the diameter, it is clear that the minimal

expected distance has an upper bound of 2n/5 3, for large 72.

In restricted cases of LTLE networks, we can make a stronger statement on

the bounds on minimal expected distance:

Theorem 10.2.6 Let G = (B °, B1, A) be an n-dimensional LTLE network, where

B? Bj E {0, B?+i, B41} . The lower bound on the minimal expected distance of G

is:

1 n 1 (--1)n1

and the upper bound on the minimal expected distance is E(n.) + 1.

Proof: We show the bounds by computing E(n), the expected number of

terms in the minimal expansion of a vector. If we choose a uniform distribution of

source and destination address vectors, the mod 2 sums of the source and destination

will be uniformly distributed over Z.

Assume wlog that B? rn for 1 < i < n. If so, then 1.3?+BI E { B2+1, Bz+1 .

Assume also wlog that we can always choose which of B? or Bt we want to use, so

254

that we can always correct at least 2 components per time step. This will guarantee

that at least components with index i and i+1 are correct after correcting component

i.

Then the expected distance is expressed by the recurrence:

T(1) = 1/2, T(2) = 3/4, T(n) = -1T(n 1) + -1 (1 + T(n 2))
2 2

The solution of this recurrence relation is:

n 1
T (n) = + [1 (--12)1

which can easily be verified by substitution.

Since the number of terms in the minimal expansion is a lower bound on the

number of routing steps, the expected distance is greater than or equal to this value.

Since the highest indexed term can only correct at most one component, the

expected distance is then bounded from below by:

E(n) =
1

+ T (n 1)

1 n- 1 +1 (-1)n-11
2 3

1 1 1)n-11
6 3 9 I.

For some qualifying networks (as in the case of the 1-Mobius cube), the

routing path requires at most 1 extra routing step over the minimal expansion.

This restricts the upper bound on expected distance to E(n) + 1.

This result gives bounds on the minimal expected distance for all of the

published LE networks, because they meet the theorem's conditions. The 1-Mobius

cube, the Flip MCube and the Twisted Cube all have expected distances between

E(n) and E(n) + 1 (these cubes sometimes require one "extra" step to route between

some nodes. However, E(n) is not a tight lower bound on the minimal LTLE network

255

expected distance, because it assumes we can always choose between Bf'-' and BI

when routing, which is just not true.

10.2.4. Bisection Width

One measure of a network's performance for many messages is the network's

bisection width, or the number of channels that must be removed to disconnect the

network.

Theorem 10.2.7 If G = (B°, B1, A) is an n-dimensional LTLE network, then the

bisection width of G is n.

Proof: The proof is by induction on the dimension 71 of the network. For

this proof, we assume that all the channels are bidirectional.

Base Case: n = 1 The 1-dimensional LE network G = ([1], [1], [0]) has

only one edge and two nodes, so its bisection width is 1.

Inductive Hypothesis: Assume that for n < n, the bisection width of any

(h)-dimensional LTLE network a = (E°, .1j1, A) is fi.

Inductive Step: We can clearly disconnect a single node from G by re­

moving all n channels adjacent to the node. Remove any 71 1 edges from G. By

Theorem 3.3.2 G can be divided into two (n 1)-dimensional sub-networks, so these

removed channels are distributed inside one or the other sub-network, and/or in the

channels between the two sub-networks.

If the removed channels are taken from both of the two (n 1)-dimensional

sub-networks and from the channels between the two sub-networks, then these sub­

networks each remain connected by our inductive assumption, and they remain

joined to each other by at least 2n (n 1) connections. If all the removed chan­

nels are taken from one sub-network, then that sub-network may be disconnected.

256

However, every node in that sub-network has a channel to the other connected

sub-network, so a path still exists between each pair of nodes in the disconnected

sub-network through the connected one. I

10.3. CONCLUSIONS

In this chapter we have attempted to put bounds on some of the static

performance measures of LE networks, including diameter and expected distance.

Though we were unable to put tight bounds on the diameters of the LE networks,

we were able to show that minimal diameter is at most 2n/5 + 2, and that the

maximal diameter is at least n(n + 1)/2.

For LTLE networks, we showed that the minimal diameter is at most 2n/5+3,

and that the maximal diameter is tightly bounded at n. Further, we were able to

show why none of the published LTLE networks have a diameter less than 1(n +

1)/21, and we were able to put bounds on the minimal expected distance for these

networks.

Lastly, we were able to show that the bisection width of all the LTLE net­

works is n. This means that all LTLE networks have the same "fault tolerance" as

the hypercube.

There are still a number of open problems in bounding the static performance

measures. The most important is that no tight bound on minimal or maximal di­

ameter has been found for the LE networks. We currently suspect that the maximal

diameter is polynomial in n, and that the minimal diameter is strictly less than

2n/5 + c, though there is no proof that this is true.

There are also many more static measures and properties to derive and bound

for the LE networks. One static property that we did not examine is distance

distribution, or the number of nodes a given distance from a source node. The Flip

257

MCube has a uniform distance distribution [51] the distance distribution is the

same no matter which node we choose. Because the 1-Mobius cube is isomorphic

to the Flip MCube, it must also have a uniform distance distribution. However, the

distance distributions of other LE networks are still unknown.

258

11. DYNAMIC PERFORMANCE OF LE NETWORKS

Static measures describe the behavior of a single message traveling in the

network, and so they are not always useful measures of network performance. To

examine the actual performance of a network, we will need to use dynamic perfor­

mance measures, or measures based not only on the network's topology, but also the

particular routing algorithm, routing strategy, and the number of messages passing

through the network at a given time. Even if the topology of the network is reason­

able, the network performance may still be poor if the routing algorithm is poorly

designed, as in the case where every message is first routed through one node before

getting routed to its destination.

In this chapter, we will design a program that simulates routing algorithms on

LTLE networks and examines their dynamic performance. This simulation will be

run using both wormhole and store-and-forward strategies, and using both optimal

and approximate routing algorithms.

11.1. DYNAMIC PERFORMANCE MEASURES

Dynamic performance measures examine the interaction of a message with

the network and with other messages. Unlike static measures, dynamic measures

can depend not only on the topology of the network, but also on the particular

routing algorithm used and on the number and distribution of messages traveling

in the network. For this reason, dynamic performance measures may give a better

overall picture of the real behavior of the network.

Dynamic performance measures are difficult to derive analytically from the

network structure of an asymmetrical Twisted Cube network, so not many papers

259

have any calculation of these measures. Seth Abraham has done a statistical calcu­

lation and derivation of performance measures of both the hypercube and Hilber's

Twisted Cube [3] [2] [1]. Despite the complexity of deriving the performance of

those networks, they are relatively simple compared to other LTLE networks, for

instance, the Mains cubes. Because we want to generate and test these perfor­

mance measures for a large number of LTLE networks, simulating these networks is

the preferable method for measuring dynamic performance.

Typical dynamic performance measures include:

Channel Utilization Rate The utilization of a particular channel, as measured

by the average number of messages processed through that processor/channel

per unit time step.

Message Latency If only one message per unit time step can be transmitted

through a communications channel, then other messages that need that same

channel must be buffered until a later time. Message latency is the mean

number of time steps that a message takes to route between its source and

destination.

Probability of Arrival Consider a system that uses store-and-forward routing

and allows only a finite number of messages to be buffered at a busy com­

munication channel. Some messages may be lost if a buffer becomes full. The

probability of arrival is the probability that a transmitted message will reach

its destination in a finite buffered system.

In this dissertation, we will examine the expected message latency, and ex­

pected channel utilization for several LE networks. We will not examine probability

of arrival, because it is not valid in our simulation model (we assume no finite buffers

in store-and-forward routing).

260

1 1

2 2

3 3

n n

n+1 n+1

Figure 11.1. The model of a network node used in the simulation.

11.2. THE SIMULATION

We have programmed a discrete-time simulation of a Twisted Cube network,

similar to the simulation described in Abraham [1]. The design of each network

node element is shown in Figure 11.1. Each node in the network has two parts: a

processing element, and a routing element. The processing element, or PE, is the

element that does the actual computation of the network and so is the source and

destination for all messages. The routing element, or router, simulates a crossbar

switch with n unidirectional input and n unidirectional output channels. The pro­

cessing and routing elements are joined together by 2 unidirectional channels. To

complete the model, the 71 input and n output channels of each router are connected

to the other nodes of the network by the interconnection rules.

The finished program can simulate any LTLE network, by taking as input

a dimension n and three n x n matrices: B°, B1 and A. In addition, a number

261

of command-line arguments can be used to set various switches for the modeled

network. These switches include:

The network configuration file (containing n, B°, .B1 and A).

The simulation run time.

The message generation rate.

The mean and standard deviation of the message length (as measured in flits,

the largest amount of information that can be sent across a channel in one

time step).

The routing algorithm. We have a choice of Algorithms LeftRightBitCorrec­

tRoute, NonRedundantMinimalRoute and ThreeBitLookaheadRoute.

The routing strategy, either wormhole or store-and-forward.

The number of virtual channels. This is the maximum number of virtual

channels that a physical channel can multiplex.

The flit buffer size, or the number of flits that a channel can queue up for

forwarding if the message stream gets interrupted. If there is more than one

virtual channel, each virtual channel has a separate flit buffer of this size.

A choice of whether the router-PE channels are single-accepting or multiple-

accepting. A PE can accept one message at a time from the router, or up to

n messages simultaneously.

The output of the simulation is a statistical summary. During the simulation, the

program records: the number of messages in transit at each time step; the latency

of each message; and the channel utilization for each channel. At the end of the

262

simulation, the maximum, mean and standard deviation of each measure is printed

out. The channel utilization is averaged for all the channels of each dimension 0

through n 1, and is averaged for all the PE-router channels.

11.2.1. Simulation Messages

The main element of the simulation is the message. In a wormhole routing

model, the message may be divided into several segments, each located at a different

PE in the network. Because of this, we chose to represent each message as a list of

segments, each knowing its own location and size. As the message travels through

the network, it updates its head and tail segments, and processes its flits through the

list of segments from tail to head. To keep track of all the messages, the simulation

maintains a list of all the currently existing messages and always processes them in

a FIFO order.

The simulation is discrete-time, with the unit of time measured as the time

to transmit one flit over a channel. During each step, the simulation does a sequence

of actions to each message. These steps are (in order):

1. Generate new messages with uniformly distributed random sources and desti­

nations, and place one message segment at the source location.

2. Try to allocate the channel to the next location on the message's path. If the

channel is allocated, create a new segment and make it the new head segment

of the message.

3. For each segment of each message that has not filled its available buffer space

and has a preceding segment with a nonempty buffer space, request the trans­

mission of one flit.

263

4. For each segment of each message that requested a flit in the previous step,

attempt to access the channel between the segment and its predecessor, and

forward one flit if access is given.

5. For each message with an empty tail segment, delete the tail segment. For

each message with only a segment at the message's destination location, delete

the message, and update any message statistics.

Unfortunately, these steps must be performed on all messages synchronously, which

means that the simulation must iterate through the list of messages five times per

step.

The simulation allows use of both the wormhole and store-and-forward rout­

ing strategies. A message using wormhole routing tries to advance its head segment

through the network until it reaches the destination router, then routes into the

destination PE. Store-and-forward routing is identical, except that a message routes

to each PE on the path (through the routers, of course) and will not advance its

head segment to the next PE until the last flit has arrived at the current one. In

this representation, store-and-forward routing is a special case of wormhole routing.

Since the model does not simulate message buffers at each PE, the store-and­

forward model assumes unlimited storage at each PE, which allows messages to be

blocked indefinitely while en route. In this way, the model avoids the possibility of

deadlock in the store and forward model. This is admittedly an unrealistic assump­

tion about store-and-forward processing, since all real PEs have finite storage.

264

11.2.2. Simulation Channels

Each channel in the network is unidirectional and allows the transmission

of one flit per time step (i.e., single-accepting). The only exception to this are the

channels between each PE and router

Each physical channel can control as many virtual channels as specified,

though no more virtual channels than dimensions should ever be needed. At most

one message can control a virtual channel at any one time step. Virtual channels

are multiplexed over the physical channel by a round-robin scheduler. To maximize

bandwidth, the scheduler only picks a virtual channel that has been requested to

transmit a flit in the current time step.

As mentioned before, the channel between the PE and router is a special

channel. It can either be made to accept one flit per time step (single-accepting),

or any number of flits per time step (multiple-accepting). To simplify matters for

the single-accepting option, the number of virtual channels is nv, where n is the

dimension of the network and v is the number of virtual channels on channels be­

tween routers. This allows up to the maximum of n messages using the Pes channels

through multiplexing. The multiple-accepting option does not use virtual channels.

Instead, all incoming messages can routed simultaneously through the same router-

PE channel.

11.2.3. Message Generation

The dynamic performance measurements will depend not just on the algo­

rithm and routing strategy, but on the rate and distribution at which messages are

being generated. Our simulation assumes that messages are being generated with

265

uniform source/destination addresses over the network. We define the probability

that a message will be created:

Definition 11.2.1 The message generation rate is the probability that a single pro­

cessor will generate a message during one time step.

At a high enough message generation rate, messages will be created faster

than the network can transmit them, leading to a backlog of messages. The net­

work will use every channel available to simultaneously route as many messages as

possible.

Definition 11.2.2 The saturation rate of a network is the message generation rate

at which every channel is at 100% utilization.

At message generation rates above the saturation rate, the number of mes­

sages in the network grows without bound.

The saturation rate is dependent not only on the network's topology, but also

the routing algorithm, and the routing strategy involved. As an extreme example,

consider a routing algorithm on the hypercube which routes every message through

processor 000... 0.

We can give several rough calculations on the upper hound for the saturation

rate for the hypercube and other LE networks. A network of dimension n has 2'

nodes and n2" unidirectional channels. Assume that we have a uniform message

generation rate of m9, and that the message sources and destinations are uniformly

distributed. Let the average message length be m1 and the expected distance of the

network be E(n).

Using the store-and-forward routing strategy, the product of the length of

the message and the expected distance is the dominating factor in the duration of

266

the message, because the entire message has to be transmitted over each channel

separately. The average number of messages that exist in the network at any time

is:

2nmg x miE(n)

Each message allocates at most one channel. At the saturation rate, all n2' channels

are utilized at once, so:

2"mg x miE(n) = nr

Then:

n
m =

E(n)

Using the wormhole routing strategy, the length of the message is the domi­

nating factor in the duration of the message. The average number of messages that

exist in the network at any time is:

r mg x mi

Each message allocates approximately E(n) channels. At the saturation rate, we

again have:

2nmgmi x E(n) = n2n

And:

n
mgmi = E(n)

So the saturation rate for the wormhole routing strategy is the same as for the store

and forward routing strategy.

267

For example, the hypercube's expected saturation rate would be about

771 772/ = 2, from its expected distance of n/2. The LE networks would of course

have higher saturation rates, theoretically.

When the processor channels are single-accepting, they create a network

bottleneck. As before, the number of messages in the system at any time is:

2"mgMi

There are 2"+1 channels between each processor and its router. Every message will

utilize two of these channels for most of its transmission. These single-accepting

channels will reach 100% utilization when:

2(2117//gA) = 2" + 1

So the network will saturate at mgrni = 1. This is considerably less than the

saturation rate calculated for networks with multiple-accepting processor channels.

For this reason, we chose to avoid using single-accepting channels in our simulation

tests.

11.3. SIMULATION RESULTS

In this section we examine the results of the simulation on some of the pub­

lished LTLE networks. Since the store-and-forward and the wormhole routing strate­

gies are substantially different approaches to routing messages, we will consider the

dynamic behavior of the LE networks separately for the two routing strategies.

11.3.1. Store and Forward Routing Strategy

We first compared the published LTLE networks using the store-and-forward

routing strategy. We used the following networks: the Hypercube, the Twisted

268

1000

0-Mobius Cube -0-­
1-Mobius Cube -4

Bent Cube
800 Generalized Twisted Cube -x

Hypercube -0­
Flip MCube

Twisted Cube -0E­

600

400

200

0
0 0.2 0.4 0.6 0.8 1.2 1.41

Message Generation Rate * Message Length

Figure 11.2. Message latencies for Algorithm LeftRightBitCorrectRoute, using the
store-and-forward routing strategy.

Cube, the 0-Mobius Cube, the 1-Mobius Cube, the Flip MCube,the Generalized

Twisted Cube, and the Bent Cube.

For the tests, we assumed that all networks are six-dimensional and lower

triangular, that each virtual channel had a flit buffer length of 1 flit, and that all

Pes were multiple-accepting. We also assumed that the messages averaged about

100 flits in length with a standard deviation of 10 flits. The simulation was run for

50,000 time steps, varying the message generation rate from 0.0 to approximately

0.0015 for each test run.

We compared the expected message latencies of networks using the three

Algorithms LeftRightBitCorrectRoute, NonRedundantMinimalRoute, and Three­

269

1000

0-Mobius Cube -e­
1-Mobius Cube -I

Bent Cube -a
800 Generalized Twisted Cube

Hypercube -e.­
Flip MCube

Twisted Cube

600
AY­

.40040Role.02 400

200

0
0	 0.2 0.4 0.6 0.8 1 1.2 1.4

Message Generation Rate Message Length

Figure 11.3. Message latencies for Algorithm NonRedundantMinimalRoute, using
the store-and-forward routing strategy.

BitLookaheadRoute. The expected message latencies for the three algorithms are

shown in Figures 11.2, 11.3, and 11.4, respectively.

Algorithm LeftRightBitCorrectRoute makes all the LTLE networks behave

more or less like the hypercube, with no appreciable difference in message latency. At

low message generation rates, the product of the message length and the expected

routing distance is the dominant factor in the message latency. As the message

generation rate increases, the LTLE networks show the same increase in message

latency. This performance shows that all LTLE networks can perform at least as

well as the hypercube.

Algorithm NonRedundantMinimalRoute produced the lowest message laten­

cies of any algorithm at high message generation rates. The difference in message

270

1000

0-Mobius Cube -0
1-Mobius Cube -I

Bent Cube -e­
800 Generalized Twisted Cube -x-­

Hypercube -0-­
Flip MCube

Twisted Cube

600

400

200

0

0	 0.2 0.4 0.6 0.8 1 1.2 1.4

Message Generation Rate * Message Length

Figure 11.4. Message latencies for Algorithm ThreeBitLookaheadRoute, using the
store-and-forward routing strategy.

latencies grows wider as the message generation rate grows, with the same approxi­

mate ratios between the networks. All of the LTLE networks produced notably lower

message generation rates, with the 1-Mobius Cube and the Flip MCube showing the

lowest latencies.

Networks using Algorithm ThreeBitLookaheadRoute showed expected mes­

sage latencies that were similar to the same networks using Algorithm NonRedun­

dantMinimalRoute, though slightly higher. The higher message latencies can be

explained by the longer routing paths generated by Algorithm ThreeBitLookahead-

Route.

The networks fall into three groups: The first is the hypercube, which shows

no change in message latencies from Algorithm LeftRightBitCorrectRoute. The

271

second is the Twisted Cube and the Generalized Twisted cube, which show approx­

imately the same message latencies. The third group is formed by the rest of the

networks. Notice that these networks all have both hypercube edges and twisted

cube edges in dimensions 1 through 4.

Networks using Algorithm ThreeBitLookaheadRoute were able to capture

most of their behavior under Algorithm NonRedundantMinimalRoute. This is es­

pecially true of the 1-MObius cube, the Flip MCube, and the Bent Cube. This is

important, because Algorithm ThreeBitLookaheadRoute requires only a constant

number of bit operations per node, while Algorithm NonRedundantMinimalRoute

requires heavy computation at the source node. For a slight reduction in perfor­

mance, we can use this much simpler algorithm.

We also examined the channel utilization rates of networks using the three

Algorithms LeftRightBitCorrectRoute, NonRedundantMinimalRoute, and Three-

BitLookaheadRoute. At a low message generation rate, the channel utilization rates

are near zero for all networks. We compared the behavior of the Hypercube, the

1-Mobius cube, the Bent Cube, the Twisted Cube and the Generalized Twisted

Cube.

The channel utilization rates for the hypercube appear in Figure 11.5. It

shows that the hypercube uniformly utilizes all of the channels uniformly, which

is due to the high symmetry of the hypercube. Not only is this typical of the hy­

percube for Algorithm LeftRightBitCorrectRoute, but also for the hypercube using

Algorithms NonRedundantMinimalRoute and ThreeBitLookaheadRoute. Further,

it is typical of channel utilization rates for the all LTLE networks using Algorithm

LeftRightBitCorrectRoute. For this reason, we do not show results for any other

network using Algorithm LeftRightBitCorrectRoute it would be redundant.

272

Channel Utilization

1 ­
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

1

Gener. Rate * Length
0.5

3
Channel Number

Figure 11.5. Channel utilization rates for the Hypercube, using Algorithm Left-
RightBitCorrectRoute and the store-and-forward routing strategy.

Notice that the channel utilization grows linearly with the message generation

rate. This indicates that the network has not reached a saturation rate in our graph,

which we estimated before to be 2.

The channel utilization rates of the Twisted Cube using Algorithms NonRe­

dundantMinimalRoute and ThreeBitLookaheadRoute are shown in Figures 11.6 and

11.7, respectively. Hilber's Twisted Cube shows some interesting results. The ra­

tios of the channel utilizations in Figure 11.6 closely follow the measured channel

utilizations given in Table 4 of [2].

We can derive the computed channel utilization for Algorithm ThreeBit-

LookaheadRoute, if we use the method outlined in Theorem 7.1.6. Then we get:

R(0) = 0.25

R(1) = 0.25

273

Channel Utilization

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

1.5

Gener. Rate * Length
0.52

Channel Number3

Figure 11.6. Channel utilization rates for the Twisted Cube, using Algorithm
NonRedundantMinimalRoute and the store-and-forward routing strategy.

Channel Utilization

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

1.5

2 0.5
Gener. Rate * Length

Channel Number
3

Figure 11.7. Channel utilization rates for the Twisted Cube, using Algorithm Three-
BitLookaheadRoute and the store-and-forward routing strategy.

274

R(2) = 0.1875

R(3) = 0.25

R(4) = 0.21875

R(5) = 0.25

The ratios of the channel utilizations in Figure 11.6 closely match these values.

Notice that the dimensions which receive lower channel utilization rates are

the ones immediately after dimensions that have both hypercube channels and

twisted channels in the definition. This corresponds to what was predicted for

Algorithm ThreeBitLookaheadRoute in Theorem 7.1.6.

We examined the standard deviation in channel utilization rates across each

of the dimensions, and found that Algorithm NonRedundantMinimalRoute had the

widest standard deviation .Algorithm ThreeBitLookaheadRoute had a quite low

standard deviation on channel utilization rates for all channels, and was very com­

parable to the standard deviations generated by Algorithm LeftRightBitCorrec­

tRoute. We conclude that this arises from the very uniform distribution of routing

paths generated by both Algorithms ThreeBitLookaheadRoute and LeftRightBit-

CorrectRoute. This remained true, not just for the Twisted Cube, but for all of the

LE networks.

The channel utilization rates of the Generalized Twisted Cube using Algo­

rithms NonRedundantMinimalRoute and ThreeBitLookaheadRoute are shown in

Figures 11.8 and 11.9, respectively. Because the Generalized Twisted Cube is a

graph composition of the Twisted 3-Cube, dimensions 1, 2, 3 and dimensions 4,

5, 6 of the Generalized Twisted Cube respectively have the same expected channel

utilization rates as dimensions 1, 2, 3 of the Twisted 3-Cube, or about 0.5mg, 0.5mg,

and 0.325mg, respectively.

275

Channel Utilization

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

1.5

1

0

2 0.5
Gener. Rate * Length

Channel Number
3

Figure 11.8. Channel utilization rates for the Generalized Twisted Cube, using Al­
gorithm NonRedundantMinimalRoute and the store-and-forward routing strategy.

Channel Utilization

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
1.5

0

2 5
Gener. Rate * Length

Channel Number
3

Figure 11.9. Channel utilization rates for the Generalized Twisted Cube, using Al­

gorithm ThreeBitLookaheadRoute and the store-and-forward routing strategy.

276

Channel Utilization

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

0

1.5

2

Channel Nurnber
3

0.5

1

Gener. Rate * Length

Figure 11.10. Channel utilization rates for the Bent Cube, using Algorithm NonRe­
dundantMinimalRoute and the store-and-forward routing strategy.

The figures demonstrate that the Generalized Twisted Cube behaves the

same under both algorithms. This is because looking ahead more than 3 components

buys no distance savings on this network.

The channel utilization rates of the Bent Cube using Algorithms NonRedun­

dantMinimalRoute and ThreeBitLookaheadRoute are shown in Figures 11.10 and

11.11, respectively. Similarly, the channel utilization rates of the 1-Mobius Cube

are shown in Figures 11.12 and 11.13.

Note that for Algorithm ThreeBitLookaheadRoute, the ratios of the channel

utilization rates of the Bent Cube and the 1-MObius cube closely match the lower

bounds on the channel utilization rates given in Theorem 7.1.6. This is no coinci­

dence. The Bent Cube was designed from this lower bound, and the 1-Mobius cube

inspired it.

277

Channel Utilization

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

1.5

Gener. Rate Length
0.52

Channel Number3

Figure 11.11. Channel utilization rates for the Bent Cube, using Algorithm Three-
BitLookaheadRoute and the store-and-forward routing strategy.

Channel Utilization

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

1.5

1

2

Channel Number3

5
Gener. Rate * Length

Figure 11.12. Channel utilization rates for the 1-Mobius Cube, using Algorithm
NonRedundantMinimalRoute and the store-and-forward routing strategy.

278

Channel Utilization

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

1.5

Gener. Rate * Length
2 0.5

3
Channel Number

Figure 11.13. Channel utilization rates for the 1-Mobius Cube, using Algorithm
ThreeBitLookaheadRoute and the store-and-forward routing strategy.

Also, note that for Algorithm ThreeBitLookaheadRoute, the channel utiliza­

tion rates of the Bent Cube and the 1-Mobius cube are identical. This is because the

Algorithm ThreeBitLookaheadRoute generates the same expected routing distance

and the same distribution of channel utilizations for both networks.

Finally, note that for Algorithm NonRedundantMinimalRoute, the channel

utilization rates of the Bent Cube and the 1-Mobius cube are still very similar, and

only slightly better than the channel utilization rates for Algorithm ThreeBitLooka­

headRoute. This helps explain why the Bent Cube has message latencies that are

almost as small as the 1-Mobius cube, even though it has a maximum routing dis­

tance of about 2n/3 instead of about n/2. This low channel utilization makes the

Bent Cube a viable alternative to the 1-Mobius cube for wormhole routing.

279

The common factor here is that the Bent Cube and the 1-MObius Cubes have

twisted channels in every dimension but 0 and 5. This explains why the networks

have lower utilizations in dimensions 2 through 5, which in turn help explain why

the message latencies for these networks are smaller. Smaller channel utilization

rates mean less delay for messages using those channels.

The channel utilization rates for the 0-Mobius cube and Flip MCube are

not shown, because the 0-Mobius cube's rates are just slightly higher, and the Flip

MCube's rates are identical.

11.3.2. Wormhole Routing Strategy

We next compared the behavior of the networks using the wormhole routing

strategy. We again assumed that all networks are six-dimensional and lower trian­

gular, that each virtual channel had a flit buffer length of 1 flit, and that all Pes

were multiple-accepting. This time, we assumed that all physical channels had up

to six virtual channels available for messages.

We again assumed that the messages averaged 100 flits in length with a

standard deviation of 10 flits. The simulation was run for 50,000 time steps, varying

the message generation rate from 0.0 to approximately 0.0015 for each test run.

We compared the expected message latencies of networks using the three

Algorithms LeftRightBitCorrectRoute, NonRedundantMinimalRoute, and Three-

BitLookaheadRoute. The expected message latencies for the three algorithms are

shown in Figures 11.16, 11.14, and 11.15, respectively.

With wormhole routing, the dominant factor in the message latency at low

message generation rates is the message's length. This is borne out by the near-

identical performance of all the networks at the lower rates. This makes the worm­

hole routing strategy preferable to the store-and-forward routing strategy, if the

280

1000

0-Mobius Cube -0
1-Mobius Cube -I

Bent Cube -a--­
800 Generalized Twisted Cube -x

Hypercube
MCube

Twisted Cube -x­

600

400

200

0
0	 0.2 0.4 0.6 0.8 1 1.2 1.4

Message Generation Rate * Message Length

Figure 11.14. Message latencies for Algorithm NonRedundantMinimalRoute, using
the wormhole routing strategy.

message-passing rates are kept suitably low. However, at higher message generation

rates, the expected message latencies grow at a much faster rate for the wormhole

routing strategy. All of the networks begin to saturate much sooner.

This lower saturation rate can be attributed to the nature of wormhole rout­

ing. Since under wormhole routing, a message can take multiple channels simulta­

neously, the chance of contention for a given channel will be greater. Since messages

that are waiting for access to a channel will not release the channels they already

have, the possibility of contention can increase considerably.

Wormhole routing will suffer more performance degradation at high mes­

sage passing rates than will store-and-forward routing. Since all the channels in

a message's path will be allocated at one time, the number of messages that can

simultaneously coexist in the network without contention is much smaller than for

281

1000

800

0- Mobius Cube -e­
1-Mobius Cube -I

Bent Cube -B
Generalized Twisted Cube -x

Hypercube
MCube

Twisted Cube --ok­

qd

600

I 400

200

0
0 0.2 0.4 0.6 0.8 1

Message Generation Rate * Message Length
1.2 1.4

Figure 11.15. Message latencies for Algorithm ThreeBitLookaheadRoute, using the
wormhole routing strategy.

1000

800

0-Mobius Cube -4-­
1-Mobius Cube

Bent Cube -a
Generalized Twisted Cube -x

Hypercube -a-­
Flip MCube -d

Twisted Cube

600

400

200

0
0 0.2 0.4 0.6 0.8 1

Message Generation Rate * Message Length
1.2 1.4

Figure 11.16. Message latencies for Algorithm LeftRightBitCorrectRoute, using the
wormhole routing strategy.

282

the store-and-forward routing strategy. Under store-and-forward message passing,

up to n2" can be transmitted simultaneously. Under wormhole message passing, up

to approximately n2"/E(n) = 0(2') messages can be transmitted simultaneously.

The network latencies for networks using Algorithm NonRedundantMini­

malRoute are abysmally large, because the algorithm is using a naive method of

assigning virtual channels.

Networks using Algorithm ThreeBitLookaheadRoute behave very similarly

when using wormhole routing. The Twisted Cube and the Generalized Twisted

Cube show by far the highest message latencies of the measured networks. The best

behavior is by the 1-MObius Cube and the Flip MCube, followed by the Bent Cube

and the 0-Mobius Cube.

We again examined the channel utilization rates of networks using the three

Algorithms LeftRightBitCorrectRoute, NonRedundantMinimalRoute, and Three-

BitLookaheadRoute. We compared the behavior of the Hypercube, the 1-Mobius

cube, the Bent Cube, the Twisted Cube and the Generalized Twisted Cube. At

a low message generation rate, the channel utilization rates are near zero for all

networks.

For comparison with the store-and-forward routing strategy, we include the

simulation results for all of the same networks, this time using the wormhole routing

strategy.

The channel utilization rates for the hypercube appear in Figure 11.17. Again

the hypercube uniformly utilizes all of the channels, and again the channel utilization

grows linearly with the message generation rate.

The channel utilization rates of various Twisted Cubes using Algorithms

NonRedundantMinimalRoute and ThreeBitLookaheadRoute are shown in Figures

11.18 through 11.25.

283

Channel Utilization

0.7
0.6
0.5
0.4
0.3

0.2
0.1

0

5 Gener. Rate * Length
2

Channel Number3

Figure 11.17. Channel utilization rates for the Hypercube, using Algorithm Left-
RightBitCorrectRoute and the wormhole routing strategy.

Channel Utilization

0.6

0.5

0.4

0.3

0.2

0.1

0

5 Gener. Rate * Length

Channel Number3

Figure 11.18. Channel utilization rates for the Twisted Cube, using Algorithm
NonRedundantMinimalRoute and the wormhole routing strategy.

284

Channel Utilization

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

1.5

Gener. Rate * Length
0.5

3
2

Channel Number

Figure 11.19. Channel utilization rates for the Twisted Cube, using Algorithm
ThreeBitLookaheadRoute and the wormhole routing strategy.

Channel Utilization

0.6

0.5

0.4

0.3

0.2

0.1

0

1.5

Gener. Rate " Length
2 5

Channel Number

Figure 11.20. Channel utilization rates for the Generalized Twisted Cube, using
Algorithm NonRedundantMinimalRoute and the wormhole routing strategy.

285

Channel Utilization

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

1.5

0

2

Channel Number
3

0.5
Gener. Rate * Length

Figure 11.21. Channel utilization rates for the Generalized Twisted Cube, using
Algorithm ThreeBitLookaheadRoute and the wormhole routing strategy.

For Algorithm ThreeBitLookaheadRoute the channel utilization rates are

nearly identical to the channel utilization rates for store-and-forward routing, for

every network. This indicates that the algorithm is suitable for both routing strate­

gies.

For Algorithm NonRedundantMinimalRoute, the message utilization is much

higher. This is because of the way that virtual channels were arbitrarily chosen for

each message, which causes even higher message latencies. Notice that the channel

utilization rates "flatten out" sharply for the Twisted Cube and the Generalized

Twisted Cube. This explains why the message latencies rose so quickly for networks.

Some of the channels in each network had begun to saturate at fairly low message

passing rates. This "flattening" is less pronounced in the other networks, which

have correspondingly lower message latencies.

286

Channel Utilization
0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1.5

0
Gener. Rate * Length

2 0.5
3

Channel Number

Figure 11.22. Channel utilization rates for the Bent Cube, using Algorithm NonRe­
dundantMinimalRoute and the wormhole routing strategy.

Channel Utilization

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

1.5

1

2

Channel Number
3

0.5
Gener. Rate * Length

Figure 11.23. Channel utilization rates for the Bent Cube, using Algorithm Three-
BitLookaheadRoute and the wormhole routing strategy.

287

Channel Utilization

0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

1.5

Gener. Rate * Length
52

Channel Number

Figure 11.24. Channel utilization rates for the 1-Mobius Cube, using Algorithm
NonRedundantMinimalRoute and the wormhole routing strategy.

Channel Utilization

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

1.5

Gener. Rate * Length
2 0.5

Channel Number

Figure 11.25. Channel utilization rates for the 1-Mobius Cube, using Algorithm
ThreeBitLookaheadRoute and the wormhole routing strategy.

288

11.3.3. Conclusions

There are several conclusions we reach here. First, all of the LTLE networks

perform approximately the same using Algorithm LeftRightBitCorrectRoute. This

suggests that any LTLE network can be used in place of the hypercube for general

routing, with about the same performance measures.

We also concluded that for store-and-forward routing, Algorithm NonRe­

dundantMinimalRoute gives a dynamic performance comparable to Algorithm Left-

RightBitCorrectRoute on the hypercube. The message latency for most networks

is consistently lower than the message latency of the hypercube, except possibly at

the very highest message generation rates. The only exceptions to this appear to be

the Twisted Cube and the Generalized Twisted Cube, which have an asymmetric

distribution of channel utilization rates.

The very best LTLE network appears to be the 1-Mobius cube (or its isomor­

phic twin, the Flip MCube). Its message latency using Algorithm NonRedundant-

MinimalRoute is much lower than the rest of the networks for store-and-forward

message passing.

If wormhole routing is preferred, then the best approach appears to be using

either the 1-MObius Cube or the Bent Cube, and Algorithm ThreeBitLookahead-

Route. The Bent Cube is quite comparable to the 1-Mobius Cube in performance.

Its larger diameter and expected distances do not add much to its expected mes­

sage latency when using Algorithm ThreeBitLookaheadRoute. We conclude that

having a large number of dimensions with both twisted and hypercube channels is

more important than a small diameter when it comes to overall performance under

wormhole routing.

289

We also feel that adapting Algorithm NonRedundantMinimalRoute for

wormhole routing does not appear to be a practical consideration. This is partly

because there does not seem to be an effective means of limiting the number of

virtual channels to a constant, but more because a wormhole algorithm implicitly

requires that each node on the routing path uses a small number of bit operations

for computations. Algorithm NonRedundantMinimalRoute takes a relatively large

number of bit operations and requires that the entire path be precomputed at the

source node.

Finally, we conclude that Algorithm ThreeBitLookaheadRoute gives the best

performance for the least amount of work. It requires a total of 0(n) bit operations

to compute, which can be distributed across the nodes in the message's routing

path. It also captures most of the dynamic behavior of Algorithm NonRedundant-

MinimalRoute, which means that an algorithm with further lookahead would give

only a diminishing return for the extra work done.

290

12. CONCLUSION

In this short chapter, we review what we have accomplished in our research.

We also discuss open problems for LE networks, and where future research should

be concentrated. Finally, we discuss the practicality and viability of implementing

networks in the Twisted Cube family.

12.1. RESEARCH ACCOMPLISHED

In this dissertation, we have designed the linear equation networks (or LE

networks), a new model for describing resource-preserving hypercube-variant inter­

connection networks, by using a system of linear equations to define the network's

communications channels. We have shown that a number of existing networks can

be expressed in our model, and have also designed a number of new networks using

this model. We have also shown sufficient conditions for certain network properties,

including connectedness and bidirectionality (reciprocality) of channels. We have

also shown some conditions and methods for showing network isomorphism.

We have managed to show that a number of basic results were NP-complete

or NP-hard, including:

(Limited) path existence on LE networks

Isomorphism of LE networks and LTLE networks

(Limited) minimal routing on LE networks

Minimal routing on LTDM networks and on LTLE networks

291

Many of these results seem to stem from one problem with the LE networks: Local

linearity in the network connections did not lead to global linearity.

Despite these problems, we managed to show a number of results for network

properties. In particular, by limiting ourselves to a subclass of the LE networks,

the LTLE networks, we managed to solve many of our problems, including network

connectedness, bidirectionality of channels, and routing.

We were able to produce results in several areas. These areas include:

Routing Algorithms We produced a minimal routing algorithm for the LTDM

networks and the LTLE networks, and showed that it used a polynomial

asymptotic run time for all of the published networks. We also designed non-

minimal routing algorithms the "3-bit lookahead" algorithm for the LTLE

networks that had the same run time order as the hypercube's "greedy" rout­

ing algorithm. We also designed deadlock-free routing algorithms for networks

using the wormhole routing strategy. Finally, we designed broadcasting algo­

rithms that take advantage of the LTLE networks topology and execute in

fewer communication steps than on the hypercube.

Embeddings and Emulations We were able to show that all of the LTLE net­

works can embed Hamiltonian rings and binomial trees. We were also able

to show that some of the LTLE networks are able to embed full binary trees

and other are able to embed meshes. Finally, we were able to show that some

LTLE networks are able to simulate the hypercube with constant dilation, and

vice versa.

Performance We bounded the diameter and expected routing distance for some

of the LE networks (and in the process showed that some LTLE networks are

able to have a diameter of less than n/2, though not much less).

292

We also wrote a program for simulating the behavior of routing algorithms

on the LTLE networks. Using this program, we were able to show that the

3-bit lookahead captures most of the behavior of minimal routing on the LTLE

networks, and saves about 13 to 15 percent in message latency. We also discov­

ered that it is more important to have many dimensions with both hypercube

channels and twisted channels, than it is to have a low diameter.

12.2. OPEN PROBLEMS

There are a number of problems that remain open for the LE networks.

Though we spent many weeks on these problems, we were not able to find any

satisfactory solutions. These problems include:

Connectedness of LE networks This is one of the most important problems we

were unable to solve. Currently, the only way to tell if a LE network is con­

nected is to construct its graph from a matrix description and run a connected

components algorithm on the graph. Though we were able to prove some nec­

essary and some sufficient conditions to make the matrix description produce

a connected LE network, we were unable to show simultaneous necessary and

sufficient conditions.

Upper bound on diameter for connected LE networks Though a trivial up­

per bound of 2n-1 exists for LE networks, we were not able to design a network

that had a diameter of more than 0(n2) steps. We were also unable to show

that a polynomial upper bound on the diameter exists, though we believe that

the bound is polynomial. The solution to this problem may show that the

connectedness problem is NP-complete.

293

Lower bound on diameter for LE networks Though we were able to show

that a network with a diameter of approximately 3n/5 does exist, we did

not show the lower bound on diameter for LE networks was tight. If there is

a smaller diameter possible on LE networks, what is it?

Minimal and Deadlock-Free Wormhole Routing We would like to be able to

do minimally routing on any LTLE networks with a small (constant) number

of virtual channels. The naive approach does not work very well. A minimal

wormhole algorithm that shows good dynamic performance would go a long

distance towards gaining acceptance for LE networks.

12.3. FUTURE WORK

Besides the problems above that we did consider and did not solve, there

were a number of problems we did not consider, partly due to time, and also partly

due to the amount of work already done. These problems included:

Other Network Embeddings We considered only the most common networks for

embedding into LE networks. It would be worthwhile to explore embedding

other networks, into either the entire LE network family, or into a specific LE

network.

Other Communications Algorithms Parallel algorithms are often not written

specifically for the architecture they are run upon. Instead, they use a "li­

brary" of standard communications routines. These routines include a number

of communications patterns, such as:

Single Node Broadcast: Also known as one-to-many routing. One

processor has a single message which is sent to all other processors in the

network.

294

Single Node Scatter: One processor has 2' messages, and each message

is sent to a different processor in the network.

Multiple Node Broadcast: Every processor has one message, and each

processor broadcasts its message to all other processors in the network.

Total Exchange: Every processor has 2' messages, and each processor

scatters its messages to all other processors in the network.

We did not consider the implementation of these general communications al­

gorithms for the LE networks. Using multiple-channel communications, the

minimal hypercube algorithms for these communication patterns require the

computation of the maximal number of independent paths from a single node

[32], [38], [39]. Though the problem of computing independent paths is well-

known for the hypercube, we did not find an simple, general method for com­

puting independent paths on a general LE network. Thus the minimal algo­

rithms for these problems remain unknown, and these other communications

algorithms are outside the scope of this dissertation.

General Parallel Algorithms Probably the most practical outstanding task is

finding algorithms that can effectively use the properties of the LE networks.

We considered mapping only one or two of the simpler parallel algorithms onto

the LE networks. The problem is that these problems are relatively simple

and isolated. Are there any significant algorithms for LE networks?

There are several things that can be done in this direction: First, an algorithm

could be mapped to a general LE network so that it could execute with the

same or fewer communication steps than the hypercube. Second, a LE net­

work could be specifically designed to run a given parallel algorithm in fewer

communication steps than the hypercube.

295

Processor Layout We did not consider the problem of processor layout for the LE

networks. The hypercube and other networks are often implemented as VLSI

circuits. It is important to performance that the processors are arranged to

minimize the longest physical channel length and minimize the total layout

area. Though we probably could modify the hypercube's processor layouts for

networks with a small number of twisted channels (each with a small Hamming

weight), it is not clear we could do so for networks with a large proportion of

twisted channels.

Extending the LE Network Simulation The simulation program was quite

general, in that we covered several networks and algorithms using different

routing strategies. However, the simulations are unrealistic in that they test

only uniformly distributed message transmissions. Most algorithms use highly

structured communication patterns. We could extend the program to simu­

late non-uniform communication distributions, including random "hot-spot"

sources and destinations, and distributions based on actually parallel algo­

rithms.

Though we do plan to eventually look at these other problems, we decided

that each of the above projects was too involved to consider in this dissertation.

12.4. EVALUATION

There are a number of summary conclusions we have about the LE networks.

These conclusions are mostly about the implementation of the routing algorithms

on LE networks and the implementation of LE networks as scalable multicomputers.

Our first conclusion is that the LE model is too general for rigorously proving

any properties. The full LE model allows networks that can be disconnected or

296

weakly connected, and can allow several matrix representations to describe the same

network. Further, its generality makes it difficult to prove even the simplest of

network properties.

We also conclude that minimal routing is not always the best way to do

routing. We've already shown that the three bit lookahead routing algorithm cap­

tures most of the behavior of the minimal routing algorithm. Its worst case routing

behavior (as measured by the diameter) is at most 16% worse than the minimal

routing algorithm, and for store-and-forward routing, its average message latency

is often better than the minimal algorithm's message latency. Since the three bit

lookahead routing algorithm also has the advantages of having a faster asymptotic

run time and not needing path pre-computation at the source node, we recommend

it over the minimal routing algorithm.

Also, we recommend the implementation of the reconfigurable network given

in Section 9.3. Though this network has more complicated hardware, it allows the

emulation of several networks, rather than the implementation of one. It even allows

the implementation of networks that are not in the LE model. Further, it allows

"the best of both worlds" , by using dynamic reconfiguration of the network. We

can always run the best communication algorithm on the best network to solve a

particular problem, even reconfiguring the network during an algorithm to optimize

the communications.

Finally, we recognize that the LE networks will probably will not be used for

interconnection network design. Its biggest draw, the reduced diameter, is rendered

superfluous by the fact that most actual networks now use wormhole routing for

point-to-point communications. Though there is some savings in message latency

offered by the wormhole implementation of the three-bit lookahead algorithm, it

may or may not be worth the asymmetry that is inherent in the LE network model.

297

Probably the results of this dissertation will be more useful in other areas

of interconnection networks. Already, at least one LE network has been used in

programming fault-tolerant behavior into Folded Hypercubes [40]. There is every

reason to believe that the same results could be repeated with any of the networks

here and the Enhanced Hypercubes. Finally, there is every reason to believe that

the basic premise of our dissertation, that of choosing channel connections by using

linear equations, can be extended to generate and describe new interconnection

networks.

298

12.5. REFERENCES

[1] Seth Abraham. Issues in the architecture of direct interconnection schemes for
multiprocessors. Technical Report 977, Center for Supercomputing Research
and Development, University of Illinois, Urbana, IL 61801-2392,1990.

[2] Seth Abraham and Krishnan Padmanabhan. An analysis of the twisted cube
topology. In 1989 International Conference on Parallel Processing, volume 1,
pages 116-120. Pennsylvania State Press, 1989.

[3] Seth Abraham and Krishnan Padmanabhan. Performance of the direct bi­
nary n-cube network for multiprocessors. IEEE Transactions on Computers,
38(7):1000-1011, Jul 1989.

[4] Alfred V. Aho and John E. Hoperoft amd Jeffrey D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley Publishing Co., Reading,
Massachusettes, 1974.

[5] Sheldon B. Akers and Balakrishnan Krishnamurthy. A group-theoretic model
for symmetric interconnection networks. IEEE Transactions on Computers,
38(4):555-566, Apr 1989.

[6] Ahmed Al-Amaway and Sharam Latifi. Properties and performace of folded
hypercubes. IEEE Transactions on Parallel and Distributed Systems, 2(1):31­
42, Jan 1991.

[7] Brian Alspatch. Cayley graphs with optimal fault-tolerance. IEEE Transactions
on Computers, 41(10):1337-1339, Oct 1992.

[8] M. Baumslag. Processor-time tradeoffs for Cayley graph interconnection net­
works. In The Sixth Distributed Memory Computing Conference Proceedings,
pages 630-636, Portland, Oregon, 1991. Springer-Verlag.

[9] Elwyn R. Berlekamp, Robert J. McEliece, and Henk C. A. Van Tilborg. On
the inherent intractibility of certain coding problems. IEEE Transactions on
Information Theory, 24(3):384-386, May 1978.

[10] M.R. Brown. Implementation and analysis of binomial queue algorithms. SIAM
Journal on Computing, 7(8):298-319, Aug 1978.

[11] by J. Kob ller, U. Schoning, and J. Toran. The Graph Isomorphism Problem.
Birkhauser, 1993.

[12] Fouad B. Chedid and Riad B. Chedid. A new variation on hypercubes with
smaller diameter. Information Processing Letters, 46(7):275-280, July 1993.

299

[13] Shou-Yi Cheng and Jen-Hui Chuang. Varietal hypercubes	 a new interconnec­
tion networks topology for large scale multicomputer. In ICPADS'94: Interna­
tional Conference on Parallel and Distributed Systems, pages 703-708. IEEE
Computer Society Press, 1994.

[14] P. Cull and S. Larson. The MObius cubes. IEEE Transactions on Computers,
44(5):647-659, May 1995.

[15] Paul Cull and Shawn Larson. The Mobius cube. Poster session at Proceedings of
the Second IEEE Symposium on Parallel and Distributed Processing, Dec 1990.

[16] Paul Cull and Shawn Larson. The Mobius cube. Technical Report 91-20-02,
Department of Computer Science, Oregon State University, Dec 1991.

[17] Paul Cull and Shawn Larson. The Mobius cube: An interconnection network for
parallel processing. Technical Report 91-20-2, Department of Computer Science,
Oregon State University, 1991.

[18] Paul Cull and Shawn Larson. The Mains cubes. In 6th Distributed Memory
Computing Conference, pages 699-702, Portland, Oregon, 1991. IEEE Com­
puter Society Press.

[19] Paul Cull and Shawn Larson. The Mains cubes: Improved cubelike networks
for parallel computation. In 6th International Parallel Processing Symposium,
pages 610-613. IEEE Computer Society Press, 1992.

[20] Paul Cull and Shawn Larson. The Mobius cubes: Improved cubelike networks
for parallel computation. Technical Report 92-20-01, Department of Computer
Science, Oregon State University, 1992.

[21] Paul Cull and Shawn Larson. The MObius cubes. Technical Report 93-20-01,
Department of Computer Science, Oregon State University, 1993.

[22] Paul Cull and Shawn Larson. The Mobius cubes: New twisted interconnection
networks for parallel computation. Technical Report 92-20-03, Department of
Computer Science, Oregon State University, 1993.

[23] Paul Cull and Shawn Larson. Static and dynamic performance of the Mobius
cubes (long version). Technical Report 93-20-2, Department of Computer Sci­
ence, Oregon State University, 1993.

[24] Paul Cull and Shawn Larson. Static and dynamic performance of the Mobius
cubes (short version). In PARLE'93: Parallel Languages and Architectures Eu­
rope, pages 92-103. Springer-Verlag, 1993.

[25] Paul Cull and Shawn Larson. Static and dynamic performance of the Mobius
cubes (short version). Technical Report 93-20-3, Department of Computer Sci­
ence, Oregon State University, 1993.

300

[26] Paul Cull and Shawn Larson. A linear equation model for twisted cube networks.
In ICPADS'94: International Conference on Parallel and Distributed Systems,
pages 708-714. IEEE Computer Society Press, 1994.

[27] Paul Cull and Shawn Larson. Wormhole routing algorithms for twisted cube
networks. In Proceedings of the 199.4 Symposium for Parallel and Distributed
Processing, pages 696-703. IEEE Computer Society Press, 1994.

[28] Rajib K. Das, Krishna Mukhopadhyaya, and Bhabani P. Sinha. A new fam­
ily of bridged and twisted hypercubes. IEEE Transactions on Computers,
43(10):1240 -1247, Oct 1994.

[29] Kemal Efe. A variation on the hypercube with lower diameter. IEEE Transac­
tions on Computers, 40(11):1312 -1316, Nov 1991.

[30] Kemal Efe. The crossed cube architecture for parallel computation. IEEE Trans­
actions on Parallel and Distributed Systems, 3(5):513-524, Sep 1992.

[31] Abdol-Hossein Estafahanian, Lionel M. Ni, and Bruce Sagan. The twisted N-
cube with application to multiprocessing. IEEE Transactions on Computers,
40(1):88-93, Jan 1991

[32] D.P. Bertserkas et al. Optimal communication algorithms for hypercubes. Jour­
nal of Parallel and Distributed Computing, 11(4):263-275, Apr 1991.

[33] M. Garey and D. Johnson. Computers and Intractibility: A Guide to the Theory
of NP- Completeness. Freeman and Co., San Francisco, 1979.

[34] Peter A.J. Hilbers, R.J. Marion Koopman, and Jan L.A. Van de Snepscheut.
The twisted cube. In J. deBakker, A. Numan, and P. Trelearen, editors, PARLE:
Parallel Architecture and Languages Europe, Volume 1: Parallel Architectures,
pages 152-158, Berlin, W. Germany, 1987. Springer-Verlag.

[35] Daniel W. Hillis. The Connection Machine (Computer Architecture for the New
Wave), Sep 1981.

[36] Ching-Tien Ho. An observation on the bisectional interconnection networks.
IEEE Transactions on Computers, 41(7):873-877, July 1992.

[37] Jim Holloway. Private Communication, 1987.

[38] S.L. Johnsson and C.T. Ho. Optimum broadcasting and personalized communi­
cation in hypercubes. IEEE Transactions on Computers, 38(9):1249 -1268, Sep
1989.

[39] S.L. Johnsson and C.T. Ho. Optimum all-to-all personalized communication
with minimum span on Boolean cubes. In The 6th Distributed Memory Com­

301

puting Conference Proceedings, pages 299-305, Portland, Oregon, 1991. IEEE
Computer Society Press.

[40] Jong Kim and Kang G. Shin. Operationally enhanced folded hypercubes. IEEE
Transactions on Parallel and Distributed Systems, 5(12):1310 -1316, Dec 1994.

[41] J. Mohan Kumar and L. M. Patnaik. Hierarchical network of hypercubes with
folded connections. In Proceedings of the 6th International Parallel Processing
Symposium: Parallel Systems Fair, pages 33-37, The Beverly Hilton, Beverly
Hills, CA, Mar 1992.

[42] Shawn M. Larson. The Mobius cube: An interconnection network for parallel
processing. Master's thesis, Department of Computer Science, Oregon State
University, 1991.

[43] Shawn M. Larson. A General Linear Equation Model for Hypercube- Variant
Networks. PhD thesis, Department of Computer Science, Oregon State Univer­
sity, 1994.

[44] Shahram Latifi. The efficiency of the folded hypercube in subcube allocation. In
1990 International Conference on Parallel Processing, volume I, pages 218-221.
Pennsyvania State University Press, 1990.

[45] F. T. Leighton. Introduction to Parallel Algorithms and Architectures. Morgan
Kaufman Publishers, San Mateo, CA, 1992.

[46] Lionel M. Ni and Philip K. McKinley. A survey of wormhole routing techniques
in direct networks. IEEE Computer, 26(2):62-76, Feb 1993.

[47] Krishnan Padmanabhan. Cube structures for multiprocessors. Communications
of the ACM, 33(1):43-52, Jan 1990.

[48] Franco F. Preparata and Jean Vuillemin. The cube-connected cycles: A versatile
network for parallel computation. Communications of the ACM, 24(5):300-309,
May 1981.

[49] Youcef Saad and Martin H. Schultz. Topological properties of hypercubes. IEEE
Transactions on Computers, 37(7):867-872, Jul 1988.

[50] M.R. Samatham and D.K. Pradhan. The de Bruijn multiprocessor network: A
versatile parallel processing and sorting network. IEEE Transactions on Com­
puters, 38(4):567-581, Apr 1989.

[51] Mitin K. Singhvi and Kanad Ghose. The MCube. Technical report, State Uni­
versity of New York, 1992.

[52] M. A. Sridhar and C.S. Raghavendra. Fault-tolerant networks based on the de
Bruijn graph. IEEE Transactions on Computers, 40(10):1167 -1174, Oct 1991.

302

[53] Nian-Feng Tzeng, Hsing-Lung Chen, and Po-Jen Chuang. Embeddings in in­
complete hypercubes. In 1990 International Conference on Parallel Processing,
volume III, pages 335-339. Pennsylvania State University Press, 1990.

[54] Nian-Feng Tzeng and Sizheng Wei. Enhanced hypercubes. IEEE Transactions
on Computers, 40(3):284-294, Mar 1991.

