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The most important part of parallel computation is communication. Except 

in the most embarassingly parallel examples, processors cannot work cooperatively 

to solve a problem unless they can communicate. One way to solve the problem of 

communication is to use an interconnection network. Processors are located at nodes 

of the network, which are joined by communication channels. Desirable aspects of 

an interconnection network include low maximum and average routing distances (as 

measured in the number of communication channels crossed), a large number of 

processors, and low number of communication channels per processor. 

A number of published networks are created from the hypercube by rearrang­

ing the hypercube's communication links in a systematic way [23] [28] [30] [33] [50]. 

These networks maintain the same number of processors, communication links, and 

links per processor as the hypercube, but have dramatically smaller maximum and 

average routing distances. 

This thesis derives one formal mathematical description for this family of 

networks. This formal description is used to derive graph-theoretic properties of 

existing networks, and to design new networks. The description is also used to 
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design generalized routing and other communications algorithms for these networks, 

and to show that these networks can embed and simulate other standard networks, 

for instance, ring and mesh networks. 

A network simulator is used to model the dynamic behavior of this family of 

networks under both store-and-forward and wormhole routing strategies for message-

passing. The simulation results are used to study and compare the networks' be­

havior under various message-passing loads, and to determine what properties are 

desirable in a network that exists in this model. 
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A LINEAR EQUATION MODEL FOR A FAMILY OF
 

INTERCONNECTION NETWORKS
 

1. INTRODUCTION AND MOTIVATION 

We introduce the Twisted 3-Cube, and explain the motivation behind creat­

ing hypercube variant networks. We describe several known generalizations of the 

Twisted 3-Cube. We explain the need for creating a unified description of these 

networks, and outline our research. 

1.1. INTRODUCTION 

An interconnection network unites many processors to form a parallel com­

puter. Each processor can communicate directly only to a small number of neigh­

bors. Each processor can communicate with all other processors by forwarding 

messages through its neighbors. 

The design of large-scale multicomputers has two conflicting goals: a large 

number of nodes and a low communication delay (or latency) between any two 

processing nodes. In addition, engineering constraints require uniformity, such as a 

fixed number of channels per node, reuse of processing elements at each node, etc. 

The n-dimensional hypercube is one of the most popular interconnection 

networks. Its popularity is due in part to its highly symmetrical structure and 

relatively fast communication between processors. The n-dimensional hypercube 

has 2' processors, n communication channels from each processor, and n2' channels 

total. 
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Figure 1.1. The three-dimensional hypercube Q3. 

The hypercube compares favorably with other popular interconnection net­

works. For example, the 2-dimensional mesh has been widely used in parallel com­

puters because it has an extremely simple layout and only 4 communication channels 

per processor. However, this comes at a cost in communication delay. If N is the 

number of nodes in the network, then the diameter of the network (the maximum 

routing distance, as measured in the number of communication steps) is VTV for the 

mesh network, but only log(N) for the hypercube. This small diameter is a major 

attraction for using the hypercube network, because for many networks, a small 

diameter implies a small maximum communication delay. 

The hypercube network is not the smallest diameter network possible for 

the resources it uses. By switching several of the channels, the diameter of the 3­

dimensional hypercube (or Q3) can be reduced from 3 steps to 2 steps, as in Figures 
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Figure 1.2. The Twisted 3-Cube TQ3. 

1.1 and 1.2. This is the smallest diameter network that can be achieved with these 

resources. 

The Twisted 3-Cube (or TQ3) also has an average internodal distance of 

1.375 steps, compared to Q3's average distance of 1.5 steps, as averaged over all 

possible source/destination pairs. 

The utilization of any channel of TQ3 is also less than or equal to the utiliza­

tion of the corresponding channel on Q3. If we use the standard hypercube routing 

algorithm on TQ3, and add exceptions for any paths that are shorter, then the 

number of paths through any one channel on TQ3 is always less than or equal to 

the number through any channel on Q3, as shown in Figures 1.3 and 1.4. 
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Figure 1.3. The channel utilization of the 3-Cube. 

Figure 1.4. The channel utilization of the Twisted 3-Cube. 
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If we assume a uniform message-passing distribution, those channels will be 

utilized less in TQ3 than they would be in Q3. No channels of the TQ3 will be 

utilized more. 

1.2. MOTIVATION 

A number of researchers have tried to improve upon the hypercube, most with 

the goal of reducing the communication delay between processors. These attempts 

have led to the creation and assessment of a number of hypercube variant networks. 

Most hypercube variants attempt to improve upon the hypercube by adding 

processors and/or communication channels. The hypercube often appears as a 

squashed or relaxed embedding in these networks [45], [47] [48] [54] [52] [50]. Such 

"structure-preserving" variants can often use hypercube algorithms with few modi­

fications. Their major disadvantage is that they use more hardware resources than 

the hypercube. 

Other hypercube variant networks are "resource-preserving" . They rearrange 

the communication paths of a hypercube to create an entirely new network [24] [29] 

[31] [34] [51]. These variants have the same resources as the hypercube, but a dif­

ferent network structure. These networks are without exception generalizations of 

the Twisted 3-Cube to higher dimensions. Unfortunately, resource-preserving vari­

ants often cannot use algorithms written for the hypercube, because the rearranged 

channels destroy the original hypercube structure. 

Resource-preserving variants of the hypercube are worth study, because they 

seem to give "something for nothing." They show shorter communication delays 

than the hypercube of the same size, but without the need for additional resources. 

Because improvements in theoretical performance measures can translate into im­

provements in actual performance, study of these variants can lead to actual parallel 
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computers with more efficient communications. Also, existing hypercube comput­

ers may be reconfigured as a resource-preserving variant with little modification of 

its hardware. For some systems this reconfiguration may be as simple as re-wiring 

the communications channels and rewriting the communications software. The new 

network can give better performance with no additional purchase in hardware. 

1.3. PREVIOUS WORK ON RESOURCE PRESERVING VARIANTS 

The n-dimensional hypercube network (27, is defined by assigning to each 

node a unique address from the vector space .2.2 , and allowing a channel between 

only nodes X and f iff the Hamming weight of X + f is one, that is, the addresses 
ti 

je and f differ in only one component. 

About a decade ago, Hillis [35] constructed the Twisted 3-Cube in Figure 

1.2. Hillis went no further with this observation. But it was obvious that his result 

could be generalized in two ways. 

The Twisted N-Cube of Estafahanian et al. [31], has only one crossed pair of 

communication channels, so that one pair of channels connect addresses that differ 

by a Hamming weight of two. This "twist" gives a diameter of n 1. The Twisted 

N-Cube's routing algorithm is based on the hypercube's left-right bit correction 

algorithm, and has the same 0(n) run time, where n is the dimension of the cube. 

Curiously, this network contains not only a Hamiltonian circuit, but also a complete 

binary tree of 2' 1 nodes. 

The other obvious generalization is to consider an n-dimensional hypercube 

as a 3-dimensional hypercube in which all eight nodes are (n 3)- dimensional hyper­

cubes. Then the twist of two channels becomes a twist of the whole set of channels 

joining two of the (n 3)-dimensional sub-networks. We can recursively apply 
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twists to the network so that the nodes in Figure 1.2 are now (n 3)-dimensional 

"Generalized Twisted Cubes." 

This is exactly the construction given by Chedid and Chedid [12] for their 

Generalized Twisted cubes. They explicitly define the Twisted 3-Cube, then define 

their network GQ7, in higher dimensions by using graph composition. That is: 

GQ0 = Qo, GQi = Qi, GQ2 = Q2, 

GQ72+3 = TQ3 x GQ 

The GQ routing algorithm breaks the addresses of the source and destination 

address into groups of three components, and does Twisted 3-Cube routing on each 

group of three components. The algorithm routes a message to any destination in 

12n/3.1 steps. Its average distance, not computed by the authors, can be calculated 

by using a sum of the average distances of the graphs used in the composition: 

r n 1I + mod 3). 

Chedid and Chedid show that the Generalized Twisted cubes are Hamilto­

nian, and "show" that they contain a complete binary tree of 2n 1 nodes. (The 

proof is incorrect.) 

Cheng and Chuang [13] have designed essentially the same network with the 

Varietal Hypercubes. In addition to showing many of the the same graph-theoretic 

properties as Chedid and Chedid did for the Generalized Twisted Cubes, Cheng 

and Chuang managed to show the n-dimensional Varietal Hypercubes can embed 

an arbitrary 2" x 2q mesh, where p+ q < n. 

There are other generalizations of the Twisted 3-Cube. A summary of the 

ones we have discovered are listed in Table 1.1, along with their diameter, expected 

distance, and number of twisted channels. 

I 
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Network Diameter Expected Dist. Number of Routing 
Name (Leading Term) Twists Algorithm 

Hypercube 
Twisted Cube [34] 
Twisted N-Cube 
1311 

n 
(Pi 
n 1 

n 
2 
3nT 

,,,,, a 
2 

(n 
0 

1) x 2n-4 

2 

0 (n) 
0(n) 

0(n) 

Multiply Twisted 
Cube [29] 
Crossed Cube [30] 

rp-i 

651n 
'" 1890 ' 

for n = 2k 
21n 
64 ' 

for n = 2k + 1 

(k 2)22k + 2k+' 
forn = 2k 

k22k+1 3(22k 2k) 

forn = 2k + 1 

0 (n2) 

Flip MCube [51] Fpi a,...­
3 

(n 2) x 2n-1 0 (n2) 
0-Mobius Cube 
[23 

rn-i2-21 ,.., 'I 
3 

(n 2) x 2n-1 0(n) 
1-115bius Cube 

F23]
eneralized 

Twisted Cube [12] 
Twisted 
Hypercube [28] 

inpi 

I-1
3 

n 1 

,...., n 
3 

11n 
'''' 24 

,:..-. n/2 1/8 

n2n-1 

2n-3-I- NI /31 

2n-1 

O(n) 

0(n) 

0(n) 

Table 1.1. Diameter, expected distance, number of twists and routing algorithm run 
time of hypercube variants. 
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As early as 1987, Hilbers et al. [34] published the Twisted Cube, which 

was designed for odd n and had diameter 1(n + 1)/21. Their cube of dimension n 

is constructed from 4 sub-networks of dimension n 2. Their solution was to let 

half of a sub-network's channels be normal hypercube connections, and half of the 

channels be "twisted" connections. As in the hypercube, each node has a unique 

address in A normal connection between nodes is made by connecting a node 

with address X to a node with address fe + ei, where ei is the vector with a single 

1 in the i-th component. Similarly a twisted connection is made by connecting je 

to a node with address je + ei + ei+i. 

For 0 < j < n/2, the (2j 1)-th connections are all hypercube connections. 

The type of the (2j)-th connection is based on the parity of the node's address in 

components 2j through n. A hypercube connection is made if the parity is odd, and 

a cross connection is made if the parity of the remaining bits is even. 

The diameter of the Twisted Cube is at least (n + 1)/2 since at most 2 bits 

are corrected at each step. Hilbers shows that the diameter is exactly (n + 1)/2 by 

giving an exact routing algorithm that finds a path between any pair of nodes. 

Abraham and Padmanabhan ( [2] and [1]) compute the expected distance of 

the Twisted Cube, and compare the dynamic performance of the Twisted Cube and 

the hypercube. A stochastic simulation of the Twisted Cube in [1] shows that it has 

a performance comparable to the hypercube, but not quite what would be expected 

from the 1(n + 1)/21 diameter. 

The Multiply Twisted Cube of Kemal Efe [29] (later the Crossed Cube [30]) 

is quite similar to the Twisted Cube, in that it joins 4 (n 2)-cubes together to 

construct a n-cube. Its structure differs from the Twisted cube in that its connec­

tion rules cause communication channels to be twisted across several dimensions 

simultaneously, that is, the Hamming distance of two nodes joined by a channel can 
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be anywhere from 1 to n. Its diameter, like the Twisted Cube's, is 1(n + 1)/4 Efe 

gives a broadcasting algorithm and an optimal routing algorithm with an 0(n2) run 

time. Efe also demonstrates an efficient broadcasting algorithm, and demonstrates 

SIMD algorithms for semigroup computations, matrix multiplication and sorting. 

On interesting feature of the Crossed Cube is that a reconfigurable network can be 

constructed with switchable channels, so it can behave like either a hypercube or a 

Crossed Cube. 

Our own Mobius cubes [18] [19] [24] [42] are also generalizations of the 

Twisted 3-Cube. They actually are two closely related sets of twisted cubes, called 

the 0-Mobius cubes and the 1-Mobius cubes. Like the Twisted Cube of Hilbers et 

al., the Mobius cubes have a simple construction rule and an 0(n) routing algo­

rithm. A 0-Mobius cube of dimension n is formed by taking a 0-Mains cube and 

a 1-Mobius cube of dimension n 1 and connecting nodes of the same address. A 

1-Mobius cube of dimension n is formed by taking a 0-MObius cube and a 1-Mobius 

cube of dimension n 1 and joining nodes whose addresses are binary complements 

of each other. The diameter of the 0-MObius cube is 1(n + 2)/21 and the diameter of 

the 1-Mobius cube is 1(n + 1)/21, for n > 4. We have also given a routing algorithm 

with 0(n) run time for our Mobius cubes. In [21], we show an optimal routing 

algorithm that ultimately takes a 0(n) distributed run time, and we compute the 

diameter and expected distance. We show that the networks have a Hamiltonian 

ring, and a binomial tree rooted at any arbitrary node. A stochastic simulation 

based on Abraham and Padmanabhan's simulation showed that the Mobius cubes 

have a much smaller average message latency than the Twisted Cube, and somewhat 

smaller message latencies than the hypercube. 

An entire family of networks is described by Singhvi and Ghose [51]. Their 

MCube (the "M" is for "Mobius" they wanted to call their networks the Mobius 
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cubes, but we used the name first.) is constructed by decomposing two MCubes of 

dimension n 1 into 4 sub-networks each, and then joining each pair of cubes by a 

twisted connection to produce an MCube of dimension n. This method produces a 

family of networks because the decomposition of the two MCubes and the orientation 

of their sub-networks is arbitrary. A general MCube routing algorithm is presented 

that has a 0(n2) run time. Singhvi and Ghose claim that efficient communication 

can be done because the MCubes have a uniform distance distribution and a uniform 

rate of traffic flow across all channels. One particular MCube network, the "Flip 

MCube," has the orientation of its sub-networks specified. The Flip MCube has 

diameter 1(n+1)/21, and is shown in a dynamic simulation to have generally superior 

dynamic performance to the hypercube. 

Finally, the Twisted Hypercube of Das et. al. [28] has n/2 of the connections 

in the (n 1)-th dimension cross both dimensions n 1 and n. The diameter of the 

network is only n 1, like the Twisted n-Cube. However, Das et. al. show that two 

Twisted Hypercubes of dimension n 1 have disjoint embeddings into the Folded 

Hypercube of dimension n, which improves the Folded Hypercube's fault-tolerant 

behavior, by allowing it to emulate a Twisted Hypercube when a regular hypercube 

connection fails. 

These networks do not exhaust the list of possible hypercube variant net­

works. In this dissertation, we will introduce two new networks, the YAT (Yet 

Another Twisted) Cube and the Bent Cube. These two networks are patterned 

after the networks listed above, and compare favorably with published networks. 

(On the humorous side, we have found that other researchers working on 

twisted hypercube variants have been inexcusably unoriginal in christening their 

creations. There are now five networks with the word "twisted" in their names, and 

three that are based on the name "Mains" . Future cube-variant designers should 
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consider names from the following list: Rotated, coiled, torqued, braided, wriggly, 

spun, skewed, warped, Kleinian, Godelain, Escherian, bizarre, grotesque, eccentric, 

erratic, and oddball. To the best of our knowledge, not one of these has yet been 

claimed.) 

Finally, it should be noted that resource-preserving variants of the hyper­

cube can often be used to replace the hypercube structure in structure-preserving 

hypercube variants. Kumar and Patnaik [41] produce variant hypercube networks 

by taking the Enhanced Hypercube of Tzeng and Wei [53], which contains 3-Cubes, 

and replacing these 3-Cubes with Twisted 3-Cubes. They show that this substitu­

tion reduces the diameter of the network. Their technique can also be applied to 

networks like the Cube-Connected Cycles by replacing the hypercube connections 

with twisted cube connections. 

1.4. SIGNIFICANCE OF RESEARCH 

Every one of the networks discussed above has been constructed using a 

different method. This makes the comparison and evaluation of these networks 

a difficult and tedious task. A systematic approach to describing, creating, and 

comparing resource preserving variants is needed. 

This dissertation will explore the family of resource-preserving hypercube 

variants. In this dissertation, we will generalize this "twisted" network into a family 

of networks of higher dimensions. We will do this by producing a single mathematical 

model that can describe most or all of these networks. This model should be simple, 

yet powerful enough to describe a large number of possible networks. We will use this 

model to derive and prove communication algorithms. We will also use this model 

to show bounds on some performance measures for the networks in this model, and 
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we will use a computer model of the networks to empirically model these networks 

and compute their dynamic performance. 

1.4.1. The Need for a Formal Description 

Fitting the hypercube variants into one mathematical model will allow a 

method to compare and contrast them. A single mathematical or formal description 

of variant networks can have a number of advantages in developing new networks. 

These advantages include: 

Unification Presenting a model of the networks in the resource-preserving hy­

percube variant family is a stronger result than creating another resource-

preserving variant. It gives a single method of describing what initially appear 

to be very different networks. 

Generalization Formalizing the family of resource-preserving variants will pre­

vent duplication of research, in the sense that results for known members of 

the family can extend to new members. New networks can be systematically 

constructed using the formal description of resource-preserving variants. Fur­

ther, if limits exist for any performance measures of networks in the family, 

then proving membership for a new network shows that the same limits exist 

for that network. 

A formal description may also prevent duplication of work by presenting al­

gorithms or an algorithm schema that can (for every member of the resource-

preserving variant family) compute a point-to-point route or a broadcasting 

tree. The routing and broadcast algorithms for these new networks may well 

have a systematic design. 
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Specialization By specifying a formal model, it may be possible to design networks 

that meet a specific performance measure within the limits of the family. Net­

works might be tailored to meet a specific processing need. 

A model to describe resource-preserving variants does not need to be all-inclusive. 

Its main attraction should be that it can describe member networks simply, and 

that it is broad enough to describe a variety of networks. 

1.4.2. The Need for Comparative Evaluation 

All published papers on new interconnection networks include at least a com­

parison of the network's diameter with that of the hypercube. However, only a few 

authors have done an extensive evaluation of other performance measures for their 

networks. Only four authors have examined the mean internodal distance of any 

resource preserving variants [2] [31] [42] [51]. Only three authors have run stochas­

tic simulations to compare their network's dynamic behavior, [1], [42] and [51], but 

they have apparently used different models of communication which makes a direct 

comparison of the networks difficult. Only the dynamic behavior of the hypercube 

and the Twisted cube of Hilbers et al. [34] have been analyzed in any depth [3] [2] 

[1]. 

Since no one has done an extensive evaluation of the resource preserving 

variants, a direct comparison and evaluation of the currently published resource-

preserving variant networks is needed, for two reasons. First, differences in the 

descriptions of variant networks give rise to differences in their performance, as 

shown in a comparison of the Twisted cubes and Mi5bius cubes. An empirical sim­

ulation and comparison of the variants using several performance measures will tell 

exactly what networks have the most desirable performance measures. By examin­

ing networks with particularly good performance, we are able to specify which if any 
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network properties will produce the improved performance. Second, the choice of 

routing algorithm can affect a network's dynamic performance. In some instances, 

even non-optimal routing algorithms can give similar or even better performance 

than optimal algorithms. Simulations are a good empirical method for measuring 

the performance of any architecture/algorithm combination. 

1.5. OVERVIEW 

The rest of the dissertation is divided into the following chapters: 

Chapter 2 defines most of the terms for the rest of the paper. It defines a 

formal model of hypercube variant networks. This model is based on linear spaces 

defined by vectors and matrices over Z2. It defines both the double matrix networks 

(DM networks) and the linear equation networks (LE networks). It also shows how 

many of the currently published hypercube variant networks can be expressed using 

LE networks. 

Chapters 3 and 4 deal with the over-generality of the LE networks, in that the 

model allows disconnected networks and allows multiple descriptions for the same 

network. Chapter 3 shows necessary and sufficient conditions for several graph-

theoretic properties of the linear equation networks, e.g., redundant channels and 

connectedness. Chapter 4 deals with several problems in network isomorphism. 

Chapters 5 and 6 discuss general routing algorithms for LE networks. Chap­

ter 5 defines the concept of expansions, and uses them to deal with minimal routing 

on a DM network. This is preparation for Chapter 6, which deals with routing on 

a LE network. Chapter 6 also shows that routing on a LE network is NP-complete, 

and discusses what conditions will permit efficient routing algorithms for the pub­

lished networks. 
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Chapter 7 deals with several variations on routing, including non-minimal 

routing and wormhole routing. It discusses non-minimal routing algorithms. It also 

examines how the routing algorithms can be adapted to wormhole or circuit-switched 

routing strategies. 

Chapter 8 discusses direct one-to-one embeddings of such networks as Hamil­

tonian cycles and binomial trees, and discusses squashed and stretched embeddings 

of such networks as binary trees and meshes. It also shows that the hypercube can 

be efficiently emulated on many LE networks and vice versa. 

Chapter 9 discusses other communication algorithms, including broadcasting. 

It discusses several algorithms that can be implemented more efficiently on LE 

networks than on hypercube. 

Chapter 10 gives a description of the static properties of the networks in the 

twisted cube family, and derives bounds on static performance measures of networks 

in the formal model, i.e., network diameter, mean internodal distance, etc. 

Chapter 11 defines a simulation environment for testing the dynamic prop­

erties of the LE networks and routing algorithms. It uses this simulation to show 

some of the dynamic properties of networks and routing algorithms. It also examines 

what properties lead to better performance in LE networks. 

Chapter 12 summarizes our conclusions and recommendations for designing 

and using LE networks, and lists some directions of future research. 
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2. DEFINITION OF LINEAR EQUATION NETWORKS 

In this chapter, we define the class of linear equation networks and show that 

many new and existing Twisted Cube networks are in the class. We also show that 

some networks cannot be described by linear equation networks. 

2.1. NETWORK DEFINITIONS 

A network is constructed from two basic elements: channels and nodes. A 

channel is a fixed unidirectional link between two nodes which can transfer infor­

mation across a serial or parallel line. A node has two parts: a processing element 

and a router. The processing element performs general computations. The router is 

a switching element that connects the processing element to a number of incoming 

and outgoing channels. The router is capable of connecting any permutation of 

the incoming channels to the outgoing channels, and is usually implemented as a 

crossbar switch. 

The graph-theoretic structure of the network is its topology. The topology of 

a network can be described as a directed graph G = (V, E), where V is a set of nodes 

(vertices) and E is a set of channels (directed edges). The topology of the network 

has a one-to-one correspondence with the physical structure of the network. Nodes 

correspond to vertices of the graph and channels correspond to edges of the graph. 

When convenient, we will use network terminology and graph-theoretic terminology 

interchangeably. 

The most common way to describe the hypercube's topology is to assign each 

node a unique address from the vector space .ZT , and allow a channel between only 
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nodes )? and Y iff the Hamming weight of is 1, that is, the addresses )? and 
ti 

differ by only one component. 

The hypercube's topology can also be described as a Cayley graph, that 

is, as the graph associated with the group of permutations generated by a set of 

permutation operators acting on a finite set. The Cayley graph representation of 

the hypercube uses a set of 2n elements and n permutation operators. For in­

stance, the 3-dimensional hypercube can be represented using the set of permuta­

tions 1(213456), (124356), (123465)1 acting on the set (123456). 

In fact, Cayley graphs are a useful formal description of a large number of 

networks that are vertex symmetric [5] [7], [8]. However, a number of the Twisted 

Cube networks in the current literature are (in general) neither vertex symmetric 

nor edge symmetric [21] and are not members of the Cayley graph family. 

2.1.1. Double Matrix Networks 

The hypercube graph can also be described using a vector basis B over 

where n is the dimension of the hypercube. Let the set of basis vectors Bi E B 

be Bi = ei for 1 < i < n, where ei is the vector with a 1 in position i and zeroes 

elsewhere. Then the nodes V and the channels E of the network can be defined for 

1 < i < n by: 

V = Z;
 

E = I(? E V, E V) : -1-1" =
 

The basis B can be represented as an n x n matrix, where Bi is the i-th column of 

the matrix B. 

This model as presented can describe only one network the hypercube. Any 

other basis B over will describe a network isomorphic to the hypercube. 
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We can extend the description by using two matrices instead of one. This 

addition defines a family of digraphs of 2" nodes that are regular and have out-degree 

2n. 

Definition 2.1.1 The double matrix network (DM network) is defined as 

G = (B °, 131) of dimension n, where B° and Bl are each n-element sets of n-

element vectors over 4, and nodes and channels are defined for E {OM and 

1 < i < n by: 

V 

E {(.k EV,YEV):X +Y =B} 

Both B° and B1 can be described as n x n matrices, by placing the i-th 

element of B° or B1 on the i-th column of the matrix B° or B1, respectively. 

The hypercube Qn is trivially described by a DM network, by setting B° = I 

and B1 = 0, though there are two channels for every one channel in the original 

hypercube. The Folded Hypercube of [44] and [6] and the Enhanced Hypercube of 

[54] [36] are also described by DM networks. The n-dimensional Folded Hypercube 

is described by the set of vectors: 

{eh e2, , en} 

Bi = {el + e2, e2 + e3, , en_i + en, en} 

The n-dimensional Enhanced Hypercube is described by the set of vectors: 

B° = {el, e2, , en} 

B1 = lei + e2 + + en, e2, , en_i, en} 

If we don't want the extra channels, we can replace columns 2 through n of B1 with 

0. 
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We also describe a special class of the DM networks, in which B° and B1 are 

restricted: 

Definition 2.1.2 The lower triangular double matrix network (LTDM 

network) is a DM network with the following properties: B° and B1 are lower 

triangular matrices, with B?i = =1 for 1 < i < n. 

Notice that the n-dimensional hypercube and both n-dimensional Mobius 

cubes are subgraphs of the Folded Hypercube. This suggests that we may be able 

to use one common description to describe the Twisted Cube networks. 

2.1.2. Linear Equation Networks 

The DM network model is too broad for our needs. It defines up to 2n chan­

nels per node, when only n are desired. Clearly, it does not preserve the hypercube's 

resources. 

We can describe a class of networks that incorporates most of the Twisted 

Cube networks by introducing a selector function SEL : Z2 that will choose 

which channels from B° and B1 are actually used. A channel Y) is then defined 

if: 

j-c. itrS'EW.); 

The selector function, SEL(X), is usually a linear function, that is, 

SEL(-C.) = AX 

where A is an n x n matrix. 

The choice of B? or Bi- is always forced by the selector function, that is, 

exactly one of B? and B2 specifies a channel leading from X. 
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Definition 2.1.3 The linear equation network (LE network) is defined by G 

(B °, B1, A) of dimension n, where B° and B1 are n-element sets of n-element vectors 

over 4, and A is an n x n matrix over 4 , has nodes and directed channels defined 

for 1 < i < n by: 

V = 4
 

E = {(X E v,f E V) : = Lei}
 

The LE networks are clearly related to the DM networks in that a DM 

network G1 = (B°, B1) always contains the LE network G2 = (BO, Bi, A) 

subgraph. However, while the former is a digraph, the latter may not be, because 

the set E contains only directed channels. 

As before, both B° and B1 can be described by n x n matrices, by placing the 

i-th vector in the i-th column of the matrix. These two matrices, plus the matrix 

A, can be used to completely describe a resource preserving hypercube variant. 

Example: The Twisted 3-Cube of Figure 1.2 can be defined by the 3 ma­

trices: 

1 0 0 1 0 0 0 0 0 

B° 0 1 0 B1 = 0 1 0 ,A = 1 0 0 

0 0 1 0 1 1 0 0 0 

For much of this dissertation, we will be considering special cases of LE 

networks, where B°, B1, and A are restricted matrices. These special cases include: 

Definition 2.1.4 A lower triangular linear equation network (LTLE net­

work) G = (B °, B1, A) is a LE network with the following properties: B° and B1 

are lower triangular matrices, with 131)i = = 1 for 1 < i < n. A is a strictly 

lower triangular matrix, with A2,1 = 0 for 1 < i < n. 
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Definition 2.1.5 A banded lower triangular linear equation network 

(banded LTLE network G = (B °, B1, A) is a LE network with the following 

properties: B° and B1 are banded lower triangular matrices, with B?i = B= i = 1 for 

1 < i < n, and B1),i = Bt = 0 for i j > k and k constant. A is also strictly lower 

triangular, with Ai,1 = 0,1 < i < n. 

2.1.3. Neighbor Description of LE Networks 

The above definitions of DM networks and LE networks define channels be­

tween nodes by explicitly defining a set of channels for the entire network. A second 

way to define the network is with a set of "neighbor" functions that define the 

channels from a given node. 

For a LE network, we can define the n neighbors of a processor with address 

.)-e by an n x n matrix N(je), where each column i is the address of the i-th neighbor 

of fe: 

Mg.) = .feii.+130+ (B0+ B1) DIAG(Ag.) 

'where 1 is the matrix containing only l's in each position, and D/A G(') returns an 

n x n matrix with Xi in element (i, i) and zeroes elsewhere. 

The linear function uses ie to pick the columns of N(X) so that B? is a 

column i of N(X) if (Afe)i = 0 and /31 is a column i of N(X) if = 1. The 

choice is always forced, that is, exactly one of g' + B? or .R + Bi is in N(je). 

N(X) can be computed in 0(n2) bit operations. Although there is one 

matrix multiplication, this operation can be simplified to just comparisons and value 

copying. The rest of the operations run in only 0(n2) bit operations using classical 

matrix algorithms. 

We can use a simpler computation to compute the i-th neighbor of ./1?: 
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Ni(X) = .3? + B? + (B? + M)[Af?]i = X + WY)i 

Ni (X) can be computed in 0(n) bit operations. The operation takes a (1 x n) 

by (n x 1) matrix multiply to compute (AX)i (by multiplying the i-th row of A with 

X) and a n-element vector addition (of X and a column of B° or B1), which totals 

to 3n = 0(n) bit operations. 

We note what conditions will make Ni one-to-one: 

Lemma 2.1.1 The neighbor function Ni(?) = X + B(AX) 
. is one-to-one and onto 

if any one of the following conditions is true: 

rowi(A) = 0 

B? = 

(AB?)i = (AM)i 

Proof: if Ni is 1-1, it is also clearly onto, because its domain and range are 

the same size. 

Consider if rowi(A) = 0 V B? = M. If rowi(A) = 0, then only B? would 

legally define a channel. if B? = M, the two vectors are the same, so either one 

will define the same channel. Since Xi 0 Y2 B? X2 B?, the neighbor 

function Ni is 1-1 in this case. 

Now consider if (AB?)i = (AB, i. As before, we know that: 

X1 Y2 Xl + -13T Y2 + ./3) 

x1 jei+ Bil Y2 + 

So any two vectors Xi and X2 with (AYi)i = (Aje2)i will not map to the same 

image under Ni. But now consider (AXi)i # (AX.2)i. Let (wlog) (AJZi)i = 0 and 
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(AY2)i = 1. If (AB?)i = (ABni = 0, then (AYI)i + (AB?)i = (A[X1 + B?])i = 0 

and (AY2)1 + (ABni = (A[X2 + = 1. Since Xl + B? is the image of Xl under 

Ni and Y2 + B1 is the image of Y2 under Ni, the two vectors cannot map to the 

same image under Ni. If we assume (AB?)i = (ABni = 1, then using the same 
ti 

argument, and Y2 do not map to the same image under Ni. 

If we assume that rowi(A) 0 A B? # Bi A (AB?)i (ABni. Then all we 

have to do is choose Yi + B? = X2 + BZ, and these will map to the same image 

under 

From this proof, we can conclude that all lower triangular networks have Ni 

be 1-1 for 1 < i < n. 

2.1.4. Definitions 

There will be a number of definitions related to LE networks that will be 

used throughout this dissertation. These definitions refer mostly to properties of 

and relationships between channels in the network. These terms are defined here 

for convenience. 

First, we assign a name to an element of either set B° or Bl: 

Definition 2.1.6 Given a network G = (B °, B1, A), a term is an element of either 

set B° or Bl. A term is also a column of either matrix B° or B1. 

We also define a label for the relationship between terms and channels in 

both DM networks and LE networks. 

Definition 2.1.7 A term .131) defines a directed channel (.k. iff ijd-f = B,(11)8 , 

and does not define channel (X, Y) otherwise. 
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Clearly every term in a column of B° or B' "defines" a channel from any 

given node in a DM network. But in LE networks, a term may not define a channel 

from a particular node, because a particular channel's existence in a LE network 

depends on the source address and the selector function. 

The defined channels of a network have some properties, based on the weight 

of the term that defines them. 

Definition 2.1.8 A channel(, 13114.)*) spans dimension j iff Bn56' = 1. 

Definition 2.1.9 A channel is a twisted channel if it spans more than one di­

mension. 

A term may define a channel from a given node and not define a channel from 

a node neighboring the first, or vice versa. It will be useful for routing algorithms 

to know whether a channel exists at a neighboring node, especially if does not exist 

at the current node. 

Assume that the channels of a LE network G = (B °, B', A) are contained in 

the set E. Assume also that we are at a node X and that the term B.r)-7 defines 

the channel (X, X + B.`45)-7). Let Y = X + .e)2 be a node adjacent to X. We 

note that if the term B.r)1 does not define the channel (Y, + )3 ), then: 

(X, X + /3.Afe)') E E <#. (je,fe + B(Ag)s+(AB `AX)')j) E 

Which implies: 

(AX)i (AX)i (AL4A`g l)i 

So in binary (Afe.)')i is forced to be 1. 

Simply put, a term 131) that defines a channel leading from X will not define 

a channel leading from cr = X + 13.;' and vice versa if (AB?) = 1. We describe this 

relationship by the definition below: 
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Definition 2.1.10 The terms B? and B1 depend on another term 4 if B? Ell 

and (AB;li = 1. 

B? and /31 are not dependent on B1' if B? = Bi , because: 

(.)-e , + E E (X,)-e + B.) E E 

, + 13) E E 

, + B?) E E 

Example: Consider the term B? in the network defined below: 

1 0 0 1 0 0 0 0 0 

B° = 0 1 0 , B1 = 1 1 0 ,A = 1 0 0 

0 0 1 1 1 1 0 1 0 

For B1, the product is: 

0 

(A/31) = 1 

1 

and so both 14 and BI- depend on but B?, 131, 1313 and BI- do not depend on 

Pre-computing (AB ?); for all i, j E {1, , n} requires 0(n3) bit operations 

(using classical multiplication) and fills a table of 2n2 bits. Once we have the table, 

we can look up whether a term depends on another or not in at most 0(n) bit 

operations. 

2.2. NETWORKS IN THE LE NETWORK MODEL 

Most of the Twisted Cube networks we described in Section 1.3 can be rep­

resented by the LE model given in Definition 2.1.3. We describe how to describe 
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each of the published Twisted Cube networks using the model, and explain why two 

cannot be described using the model. We will also introduce two new networks and 

give their descriptions. 

2.2.1. Existing LE Networks 

The hypercube is trivially included in the LE networks: 

Theorem 2.2.1 The hypercube can be described as an LE network. 

Proof: For the hypercube, set B° = I, B1 = I, and A = 0. 

Our own MObius cubes can also be expressed as LE networks: 

Theorem 2.2.2 The Mobius Cubes can be described as LE networks. 

Proof: This is the most direct representation of the twisted cube networks. 

For the 0-Mains Cube, set B?, Be', and Ai,,, 1 < i < n and 1 < j < n, to: 

B? = ei, 

Bi = E;c1=i ek, 

Ai = 1, i = 1 

= 0, i j 1 

For the 1-Mobius Cube, set B?, B, , and Ai,;, 1 < i < n and 1 < j < n, to: 
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B? = Ek=1 ek, 

Bt = ei, 

i =1 

i > 1 

B? = el, 

13,1 = EZ=i ek, 

i =1 

i > 1 

Ai,.1 = 1, 

= 0, 

i 

i 

j 
j 1 

The only difference between the 0-Mobius Cube and the 1-Mobius Cube is 

that the 1-Mobius Cube has the two columns B? and 131 exchanged. For instance, 

the six-dimensional 0-Mobius Cube can be described by the matrices: 

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 

0 0 1 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 
B° B1 = A= 

0 0 0 1 0 0 1 1 1 1 0 0 0 0 1 0 0 0 

0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 1 0 0 

0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 0 

The six-dimensional 1-Mobius Cube differs from the 0-Mobius Cube only in columns 

B? and B1 : 
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1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 

B° 
1 0 1 0 0 0 

B1 = 
0 1 1 0 0 0 

A= 
0 1 0 0 0 0 

1 0 0 1 0 0 0 1 1 1 0 0 0 0 1 0 0 0 

1 0 0 0 1 0 0 1 1 1 1 0 0 0 0 1 0 0 

1 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 1 0 

The Generalized Twisted Cube (GQ,i) of Chedid and Chedid can also be 

expressed in our general model. In Chedid and Chedid's paper, GQ3 is defined 

differently from the Twisted 3-Cube representation in Section 2.1: 

Theorem 2.2.3 The Generalized Twisted Cubes can be described as a LE network. 

Proof: Set B?, Bh and Aid, 1 < i < n and 1 < j < n, to: 

B? = ei, 

= ei + ei+i, = 3k + 2, 0 < k < n/3 

= ei otherwise 

Aid = 1, i= j +1 and i = 3k + 1, 0 <k < n/3 

= 0, otherwise 

The 6-dimensional Generalized Twisted Cube's matrix description is: 
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1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 

B° = 
0 0 1 0 0 0 

B1 = 
0 1 1 0 0 0 

A= 
0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 

0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 

This version of the Generalized Twisted Cube is different from the one given 

by Chedid and Chedid. They used a different node labeling of the Twisted 3­

Cube that has a different matrix description. This network is trivially isomorphic 

to the Generalized Twisted Cube, because the Twisted 3-cubes used in the graph 

composition construction are isomorphic. Its only advantage is that it is a LTLE 

network. 

Before the Generalized Twisted Cube was published, an associate had devised 

a very similar network generalization we called the "JimTwist Cube" [37] which has 

the matrix description above. 

Not surprisingly, these two descriptions are not the only formulations of this 

network. The Varietal Hypercube of Cheng and Chuang [13] has exactly the same 

description as the Generalized Twisted Cube. 

The Folded Hypercube of Kim and Shin [40] has exactly half of the edges in 

one dimension twisted. This makes the description simple: 

Theorem 2.2.4 The Folded Hypercube can be described as a LE network. 

Proof: Set B?, , and Ai 1 < i < n and 1 < j < n, to: 
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B? = ei, 

= ei + + en, i = 2 

= ei otherwise 

Ai = 1, i = 2, j = 1 

= 0, otherwise 

The 6-dimensional Folded Hypercube's matrix description is: 

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 

B° = 
0 0 1 0 0 0 

B1 = 
0 1 1 0 0 0 

A= 
0 0 0 0 0 0 

0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 

The Twisted Cube of Hilbers is one of the earliest Twisted Cube networks. 

Theorem 2.2.5 The Twisted Cube can be described as a LE network. 

Proof: Set ./3?, and Ai 1 < i < n and 1 < j < n, to: 



32 

B? = ei, i 2k + 1, 0 < k < n/2 

= ei + ei_1, i = 2k, 0 < k < n/2 

= ei, i =n 

= ei 

= 1, i = 2k and i > j 

= 0, otherwise 

This is the description of the Twisted Cube given by Seth Abraham [2], and 

is slightly different from the definition of the Twisted Cube edges from [34]. The 

six-dimensional Twisted cube the matrix description: 

1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 

B° = 
0 0 1 1 0 0 

B1 = 
0 0 1 0 0 0 

A= 
0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 

0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 

The MCube described by Singhvi and Ghose is an alternate description 

of generalizing the Twisted 3-Cube. One specific network they define is the Flip 

MCube. 

Theorem 2.2.6 The Flip MCube can be described as a LE network. 

Proof: Set B?, and Aid, 1 < i < n and 1 < j < n, to: 
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B? = ei, 1 < i < n 

= ei+ ei+i, 1 < i < n 2 

= ei, n 1 <i <n 

Ai = 1, i > j 

= 1, j = n 

= 0, otherwise 

For example, the six-dimensional Flip MCube can be represented using the 

matrices: 

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 

0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 

= 
0 0 1 0 0 0 

B1 = 
0 1 1 0 0 0 

A= 
1 1 0 0 0 1 

0 0 0 1 0 0 0 0 1 1 0 0 1 1 1 0 0 1 

0 0 0 0 1 0 0 0 0 1 1 0 1 1 1 1 0 1 

0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 

(The last two rows of the A matrix can actually be anything we wish, because the 

last two columns of B° and B1 are equal it doesn't matter which we choose.) 

2.2.2. New LE Networks 

There are two new networks that we introduce in this dissertation. These are 

the Bent Cube [27], and the YAT Cube an acronym for "Yet Another Twisted." 

In searching for networks that offer a compromise between lower diameter 

and a simple routing algorithm, we discovered the Bent Cube. This network offers 
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a diameter that is the same as the Generalized Twisted Cube, but offers a smaller 

expected distance. 

The Bent Cube is constructed by setting B?, Bi-, and Aij, 1 < i < n and 

1 < j < n, to: 

B? = ei, 

13.1 = ei + ei+i, 1 < i < n 

= en, i =n 

Ai = 1, = j 1 

= 0, jOi+1 
For instance, the Bent Cube of six dimensions can be represented using the matrices: 

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 

B° = 
0 0 1 0 0 0 

B1 = 
0 1 1 0 0 0 

A= 
0 1 0 0 0 0 

0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 

0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 

0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 

The diameter of the network is not difficult to derive [26]. The address pairs: 

(000000...000) 

I'= (110110...110) 

require exactly 2n/3 steps to route between. For any n, the diameter is 12n/3] + 

n mod 3 larger than the diameters of most published networks, with the exception 

of the Generalized Twisted Cubes. 
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The YAT cube is related to the Flip MCube. It is identical to the Flip 

MCube, except that the two columns Bn° and Bnl are replaced by en_i en. The six 

dimensional YAT cube can be represented by: 

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 

0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 

B° = 
0 0 1 0 0 0 

B1 = 
0 1 1 0 0 0 

A= 
1 1 0 0 0 1 

0 0 0 1 0 0 0 0 1 1 0 0 1 1 1 0 0 1 

0 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 0 1 

0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 

2.3. NETWORKS THAT ARE NOT LE NETWORKS 

There are a number of published networks that cannot be represented as a 

LE network. These include the Twisted N-Cube and the Multiply Twisted Cube. 

Interestingly, the Twisted N-Cube cannot be described using a LE network because 

it has too few twisted channels, and the Multiply Twisted Cube cannot be described 

because it has "too many" twisted channels. 

Also, though the Flip MCube is a LE network, many networks that are 

MCubes are not LE networks. 

We begin by counting the number of twisted channels in a LE network. 

Lemma 2.3.1 Let G be a LE network. Exactly k2"-1 channels of G are "twisted", 

for some 0 < k < 2n. 

Proof: Let Ti denote the number of twisted channels in dimension i, and 

let WH(-e) be the Hamming weight of For a single dimension i, the selector 

function (A.fe)i is a parity function over ZT . 
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If row i of A is 6, then (A.)-e), = 0 for all 5?. The number of twisted channels 

in dimension i are: 

1. If WH(B?) < 2, then Ti = 0. 

2. If WH(B?) > 2, then Ti = 2' = 2(2'1) 

If row i of A is nonzero, then (AA = 0 for half of .)? in and (AX)2 = 1 for the 

rest. The number of twisted channels in dimension i are: 

1. If WH(B?) < 2 and WH(Bj) < 2, then Ti = O. 

2n-1.2. If WH(B?) > 2 or WH(Bfl > 2, then Ti 

3. If WH(B?) > 2 and WH(Bh > 2, then Ti = 2(2n-1). 

The total number of twisted channels in the entire network is a multiple of 211-1. 

The smallest number of twisted channels is 0 and the largest (of course) is n2" = 

(2n) (2n-1). I 

This lemma allows us to show that the Twisted N-Cube is not an LE network. 

Theorem 2.3.1 The Twisted N -Cube cannot be described using an LE network for 

dimension n > 3. 

Proof: The Twisted N-Cube has exactly four processors with twisted chan­

nels in only one dimension of the entire network. A LE network allows only k2"-1 

twisted channels in the network and so can have exactly four twisted channels for 

only n = 2 or n = 3. 

If we relax the definition of the network so that the selector function SELi(je) 

is not a linear function, we can then describe the Twisted N-Cube using B° and B1 

matrices and a selector function that returns 1 if X is one of the four nodes with a 

twisted channel. 
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The Crossed Cube cannot be represented even using a non-linear selector 

function: 

Theorem 2.3.2 The Crossed Cube cannot be described using a LE network for 

dimension n > 3. 

Proof: Consider an n-dimensional Crossed Cube CQ. The neighbor func­

tion N1 for a LE network can allow only two possible neighbors for 5C. + B? and 

+ /31. 

The Crossed Cube architecture has its neighbors defined by a "pair-wise" 

relation. Two binary strings x = x1x2 and y = y1 y2 are pair-related, denoted x-y iff 

(x, y) E {(00, 00), (10, 10), (01, 11), (11, 01)}. 

The channel (u1 un, vn) is in CQn iff for some 1, we have all of the 

following: 

u1 . . . 111_1 = 4J1 vl -1 

ui 0 VI 

ui +i = vii if n / is odd 

for 1 < i < L(n l) /2], 

(The indexing here is slightly changed from the definition in [30]). 

The Crossed Cubes CQ1, CQ2, CQ3 and CQ4 can be described using LE 

networks. However, CQ5 cannot be described using a LE network. In a LE network, 

an edge 37) exists only if X +Y = B1), where 1 < i < n and 0 E {0,1 }. For 

channels in dimension i, our model allows only B? and .13. , to be the mod 2 sum 

between connected nodes. But CQ7, allows at least four different vector sums in the 

cube's (n 4)-th dimension: 
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(0 . . . 0000000, 0 . . . 0100000) E E,
 

implies 0 ... 0000000 + 0 ... 0100000 = 0 . .. 0100000
 

(0 . . . 0000001, 0 . . . 0100011) E E,
 

implies 0 ... 0000001 + 0 ... 0100011 = 0 ... 0100010
 

(0 ... 0000100, 0 ...0101100) E E,
 

implies 0 ... 0000100 + 0 ... 0101100 = 0 ... 0101000
 

(0 . . . 0000001, 0 .. . 0100011) E E,
 

implies 0 ... 0000101 + 0 ... 0101111 = 0 . .. 0101010
 

So CQ is impossible to represent for n > 5. I 

While the Flip MCube is a LE network, Singhvi and Ghose describe a whole 

set of networks called MCubes. This is because an MCube of dimension n is re­

cursively defined from two MCubes of dimension n 1. More than one MCube 

can be designed under this specification, because the authors allow any arbitrary 

orientation of the two sub-MCubes. 

The set of networks described by the MCube construction and the set of the 

LE networks intersect with each other, but neither set is a subset of the other. This 

is trivially shown. First, the set of LE networks contains disconnected networks, 

while the MCube model does not. Second, the (2,2)-MCube network shown in 

Figure 2.1 cannot be represented using LE networks the number of twisted edges 

in each dimension of the MCube is incorrect, by Lemma 2.3.1. 

However, these networks can be described if we again lift the restriction that 

the selector function must be linear. Since each channel in dimension i of an MCube 
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1010 1011 

Figure 2.1. A (2,2)-MCube that is not a LE network. 

network can either be a hypercube channel or twisted channel across dimensions i 

and i + 1, 2n vectors are enough to describe all the possible channels. 

2.4. SUMMARY 

We have described a linear equation model for representing interconnection 

networks, and have shown that a number of published Twisted Cube networks are 

included in the family of networks described by this model. We have also developed 

several new networks using this model. Though not all Twisted Cube networks can 

be described using LE networks, we have shown that some extensions to the LE 

network model can include those networks as well. 
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3. NETWORK PROPERTIES 

In this chapter, we examine some basic properties of general LE networks, 

including conditions for network connectedness. We show that a number of these 

properties are NP-complete or NP-hard. We then show that all LTLE networks 

share many properties, including connectedness. 

3.1. CHANNEL PROPERTIES OF LE NETWORKS 

The LE network uses unidirectional channels in its definition. This allows 

it to be general enough to describe most published Twisted Cube networks. Un­

fortunately, this allows it to describe not only networks in which all channels are 

bidirectional (using two unidirectional channels), but it can also describe networks 

that have strictly unidirectional channels. It can also describe networks with self-

looping or redundant channels. 

We define three properties of directed channels in a general network, then 

show what conditions must hold for DM networks and LE networks to have channels 

with these properties. We then give algorithms to compute these conditions and 

bound their run time complexity. 

Definition 3.1.1 Let G = (V, E) be any network. Then for any .fit. , f E V: 

Reflexive If there is a channel (j e , Jj) E E, it is a reflexive channel. 

Redundant If there is more than one channel ()?,f) E E, then all such channels 

are redundant channels. 
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Reciprocal If there is a channel (X, I') E E and another channel (Y, fe) E E, 

then they are both reciprocal channels. (They may also be called a single 

bidirectional channel for convenience.) 

A desirable property of a network is that it has only reciprocal channels. 

The purpose of a channel is to communicate information, so it is not useful to 

have a reflexive channel. For instance, the two self-loops in a deBruijn network are 

removed when the network is implemented in hardware [45]. It also is not useful 

to have redundant channels in a network, unless there is a need to increase the 

traffic throughput between two adjacent nodes in the network. On the other hand, 

it is useful to have all channels in the network be reciprocal. A network with only 

reciprocal channels can always respond to a message using the same path, if needed. 

What are the necessary and sufficient conditions for the two network classes 

above to have each kind of these channels? The two theorems below describe what 

conditions are needed to remove the undesirable types of channels from the network 

and ensure that only desirable channels are in the network. First, we consider 

channel properties on DM networks: 

Theorem 3.1.1 Let G = (B °, B1) be an n-dimensional DM network. Then: 

G has no reflexive channels if 0 {B°, B1 }. 

G has no redundant channels iff Vi, j E {1,...,n} : Vcb, E {0, 1} : B? . 

Every channel in G is reciprocal. 

Proof: These follow directly from Definition 2.1.1 for DM networks and from 

addition of binary vectors. 

Next, we consider channel properties in LE networks: 
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Theorem 3.1.2 Let G = (Bo Bi A) Then: 

I. G has no reflexive channels iff VX E : Vi, 1 < i < n : 0 0. 

2. G has no redundant channels iff VX. E Z2 : Vi,Vj, 1<i0j<n:B AX); 

B`VA).i 

3. G has only reciprocal channels iff V 
ti 

E : Vi, 1 < i < n : 3j, 1 < j < n : 

B(Ag); B(A.k);+(Ale'z)i); 

Proof: Each of these follow from the definition of LE networks. 

1. To have reflexive channels, we must have: 

B(A-k)i = 0 <#. je. WX') 

<#. (jj, E E 

2. To have redundant channels, we must have: 

B01). 1330-v), X + Y = + Y = .E(iAg).7 

, E E 

3. To have only reciprocal channels, we must have: 

AX');(fe,f) E E = 

And: 

B(1U)i±(AB,CA'?)i)iB(Af )3(3", fe) E E + 
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There are efficient methods to compute whether or not a DM network has 

reflexive, redundant, or non-reciprocal channels. 

To compute if a DM network has reflexive channels, we need to find if 

0 E {B°, This check would require at most 0(n2) bit operations to com­

pute. To find if a DM network has redundant channels, we need to find if 

{B°,./31} : .X = Y. This check would require at most 0(n3) bit oper­

ations to compute. However, a DM network always has only reciprocal channels, by 

Theorem 3.1.1. 

Computing if a LE network has channels with these properties will be some­

what more involved. In Figure 3.1, Algorithm ReflexiveChannel computes if any 

reflexive channels exist in a given network. 

Theorem 3.1.3 Let G = (Bo Bi A) be an n-dimensional LE network. Algorithm 

ReflexiveChannel correctly tests to see any channels in G are reflexive in 0(n3) bit 

operations. 

Proof: If some .131) = 0, then we must check if 0 can be chosen by (A)i. 

For 0 = 0, X = 0 will always make (A), = 0; for = 1, A?,3 = 1 and X = ei will 

make (,v-e), = 1, but if rowi(A) = 0, then (A.)?)i can never be equal to one. This 

exhausts all possibilities for a reflexive channel at any node X, so the algorithm is 

correct. 

Finding all Bt = 0 takes 0(n2) bit operations and determining if a given 

Bf causes any reflexive channels take 0(n) bit operations, so at worst 0(n3) bit 

operations are needed. 

In Figure 3.2, Algorithm RedundantChannel computes if any redundant 

channels exist in a given network. 
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Input: A n-dimensional LE network G = (B °, B1, A). 

Output: "Yes" if G has any reflexive channels, "No" otherwise. 

Procedure ReflexiveChannel( G = (B °, B1, A) ) 
for each Bls E {B°, B1 } do 

if B = 0 then 
if 0 = 0 then 

output "Yes : .)e = ", 0 
Stop 

else if 0 = 1 and 3j : Ai = 1 and rowi(A) 0 then
ti

output "Yes : X = ", ei 
Stop 

end if 
end if
 

end for
 
output "No"
 
Stop
 

end procedure 

Figure 3.1. Algorithm ReflexiveChannel. 



45 

Input: A n-dimensional LE network G = (B °, B1, A). 

Output: "Yes" if G has redundant channels, "No" otherwise. 

Procedure RedundantChannel( G = (B °, B1, A) ) 
for each Btil, B42 E {8°, Bi } do 
if Btil = gb2 then 

if 01 = 0 and 02 = 0 then
 
Output "Yes" : X = ", 0
 
Stop
 

else if 01 = 0 and 02 = 1 then
 
if 3j : Ai1j = 0 A Al2,j = 1 then 

Output "Yes" : X = " , ej 
Stop 

end if
 
else if 01 = 1 and 02 = 0 then
 

if 3j : = 1 A Ai2 = 0 then 
Output "Yes" : X = ", ej 
Stop 

end if
 
else if 01 = 1 and 02 = 1 then
 

if 3j : Ai, = Ai; = 1 then 
Output "Yes" : X = ", e3 

Stop 
else if 3 ji ,i2 : Ai1,J1 = Ai2J2 = 1 A Ail 7:12 A i 2 '31 = 0 then 

Output "Yes" : X = ", eji ej2 

Stop 
end if 

end if 
end if
 

end for
 
Output "No"
 
Stop
 

end procedure 

Figure 3.2. Algorithm RedundantChannel. 
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Theorem 3.1.4 Let G = (B °, B1, A) be an n-dimensional LE network. Algorithm 

Redundant Channel tests to see any channels in G are redundant in 0(n4) bit oper­

ations. 

Proof: The algorithm finds a pair of terms Bti1 = Bci62.2, then based on the 

possible values of 01 and 02, it generates a node g that sets (Ag)il = 01 and 

(AX)i2 = 02 

For 01 = 02 = 0, g = 0 always suffices. 

For 0i 0 (/)2, if there is a j so that = 01 and Ai2ij = 02, then g = ej 

suffices, otherwise B' and Bt: do not define redundant channels. 

Finally, for 01 = 02 = 1, if there is a j so that Ai, = = 1, then 

= ej suffices. Alternately, if there are ji and j2 so that = Ai2,22 = 1 

Ai 1,i2 2j1 = 0, then g = +e j2 suffices. Otherwise Bci'1 and Bt22 do not define 

redundant channels. 

This exhausts all possibilities for a redundant channel from any node g, so 

the algorithm is correct. An example node for which a redundant channel exists is 

also output. Finding all pairs Bti1 = It takes 0(n3) bit operations, and then each 

check will take 0(n) bit operations, so at worst 0(n4) bit operations are needed. 

In Figure 3.3, Algorithm Reciprocal Channel computes if a given network 

contains only channels that are reciprocal. 

Theorem 3.1.5 Let G = (B °, B1, A) be an n-dimensional LE network. Algorithm 

Reciprocal Channel tests to see all channels in G are reciprocal in 0(n4) bit opera­

tions. 

Proof: For each Bt, the algorithm looks for other terms equal to B ?, then 

does a series of tests to see if the other terms define channels reciprocal to B ?. The 

first test determines if some 13jb defines a reciprocal channel for all X. 
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Input: A n-dimensional LE network G = (Bo B1 A). 

Output: "Yes" if G has only reciprocal channels, "No" otherwise. 

Procedure ReciprocalChannel( G = (B °, B1, A) ) 
for each Bt E {B°,B1} : 3je : (A)i = ¢ do
 

ReciprocalChannel + false
 
if 3j : rows (A) = 0 V 14 = Bt then
 

ReciprocalChannel 4-- true 
else if 3./1, j2 : rowji(A) = rowi,(A) V B.14 = = Bt then 

ReciprocalChannel +- true 
else if 3j : rows (A) = rowi(A) V B41 = Bt V (ABt)3 = 0 then 

ReciprocalChannel < true
 
end if
 
if not ReciprocalChannel then
 

Output "No : Bt = " , 
Stop 

end if
 
end for
 
Output "Yes"
 
Stop
 

end procedure 

Figure 3.3. Algorithm ReciprocalChannel. 
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The second test determines if two different terms B'!" and B(P2 might be used
31 32 

together to define reciprocal channels for all X. The only way this can happen is if 

one term defines a reciprocal channel only when the other does not. Thus we must 

have rows, (A) = rowi, (A) and /PI 0 02 

The final test determines if 4 defines a reciprocal channel only when Bf 

defines a channel. This could only happen if rowi (A) = rowi(A). Further, since 

the channel must be reciprocal, at node X + Bt we must have A(-j. + B ?)3 = 

A(X); + (AB ?); (AX)i. Since (AX); = (A.g..)i, we must have (ABi)i = 0. 

This exhausts all of the possible ways that a reciprocal channel can exist. All 

other conditions for an channel defined by B? from some node X allow a possible 

reciprocal channel to be undefined for at least one node X. 

It takes 0(n) operations to find out if a given M- defines a channel (that is, 

to find if rowi(A) 0 CI). Since B? is always used as an channel, we don't need to 

check if it does. Once we verify that Bf is used as an channel, each of the tests can 

take up to 0(n3) bit operations to verify (especially finding a possible ji and j2 in 

the second test). Since there are 2n of the B ?, we must use in the worst case 0(n4) 

bit operations to compute this algorithm. 

The asymptotic run time complexity of Algorithm ReflexiveChannel is not 

prohibitively high. But if we wish to simplify the algorithm's complexity, we can 

restrict the definition of reciprocal channels to allow each term Bf to define not only 

a channel, but also define to its won reciprocal channel: 

Definition 3.1.2 An n-dimensional LE network G = (B°, B1, A) has restricted 

" = ....(Aje);+(A13,(Ax),),reciprocal channels iff VX : Vi 

This restriction leads to a simpler test for computing whether only restricted 

reciprocal channels exist: 
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Theorem 3.1.6 Let G = (B °, B1, A) be an n-dimensional network. All channels 

in G are restricted reciprocal if Vi E {1, ... , n} : [A.Bi]i,i = 0, and this 

can be tested in 0(n3) bit operations. 

Proof: The i-th neighbor of any node with address .fj can be computed by: 

AcAfe),Ni(-e) 

To guarantee that each channel of the network under our model is reciprocal, 

we need: 

= Ni(Ni()) 

B(ANiVeni= Ni(-e) 

= .1e); B(Al-ABi(A)i 

Assume that [Aje]i = 0. Then: 

= X + B? + e(AB?)i 

Bp Bco+AB?); 

This forces (Afe)i = (AB°)i,i = 0. Assuming that (A.X.*)i = 1 also forces 

(ABfli = (AB1)i,i = 0. Simply put, the network has only reciprocal channels iff the 

products AB° and AB1 have zeroed diagonals. 

We compute the products of AB° and AB' in 0(n3) operations using the 

classical matrix multiply, then we check if the diagonals of AB° and AB' are zero 

in 0(n) bit operations. So this test requires 0(n3) bit operations. 

This limited definition of reciprocal channels may not seem as robust as the 

previous definition, because it does not include some networks that have exclusively 
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reciprocal channels. However, all published LE networks have restricted reciprocal 

channels. The limited definition also has an advantage over the first in that it is 

conceptually simpler. 

3.2. CONNECTEDNESS OF LE NETWORKS 

Connectedness is (without doubt!) a major issue in interconnection networks. 

If we want to route a message through a network, then we must guarantee that the 

network is strongly connected. 

The DM and LE networks are flexible and powerful, because they allow a 

large number of hypercube-variant networks to be described compactly. But in a 

practical sense, they are also too general because they can describe networks that 

are disconnected. 

Consider the LE network described by the matrices: 
_ ­

1 0 0 0 0 0 0 0 1 

B° = 0 1 0 B1 = 0 0 0 A= 1 0 0 

0 0 1 0 0 0 0 1 0 

This network is illustrated in Figure 3.4. Clearly it is disconnected. 

It is also possible to describe networks that are only weakly connected. Con­

sider the network described by the matrices: 

1 0 0 1 0 1 0 0 1 

B° = 0 1 0 B1 = 1 1 0 A= 1 0 0 

0 0 1 0 1 1 0 1 0 

This network is illustrated in Figure 3.5. The nodes with addresses (000) 

and (111) each have in-degree 0 and cannot receive messages from the rest of the 

network. 
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000 001 

100 101 

111 

r 

Figure 3.4. A disconnected 3-cube. 

001 

010 011 

Nc 

Figure 3.5. A weakly connected 3-cube. 
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Figure 3.6. A disconnected 3-cube using restricted reciprocal channels. For instance 
there is no path from 000 to 111. 

The first example allowed reflexive channels. The second example allowed 

non-reciprocal channels. It could be conjectured that using these types of chan­

nels permits cubes that are disconnected. However, if we disallow reflexive and 

non-reciprocal channels, the network can still be disconnected, as in the network 

described by the matrices: 

1 0 1 

_ 

1 0 

-

1 1 0 0 

B° = 1 1 0 B1 = 1 1 0 A= 0 1 0 

0 1 1 0 1 1 0 0 1 

This network is illustrated in Figure 3.6. Though all the channels are reciprocal, 

the network still has two disconnected components. 

For DM networks, it is simple to tell if a given matrix description defines a 

connected network. If there in a complete basis over Z in the columns of the B° 
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and BI- matrices, then the network is connected. This is because there is a linear 

combination of terms in B° and B1 for every vector je E and so there is a path 

from to ". 

Unfortunately, for LE networks it is usually not easy to tell from a given ma­

trix description whether the network it describes is connected or not. One possible 

approach is to ignore the matrix description and represent the entire network as a 

graph. We can then use a standard graph connectedness algorithm which has a run 

time that is linear in the number of vertices. But because there are 2' vertices, the 

run time will be exponential in n, the dimension of the network. 

We can also ignore the graph description and try to compute connectedness 

from the matrix description alone. But the problem of network connectedness is 

more difficult than it might first appear. Even the apparently simpler problem of 

finding whether a single path exists in a given network is in general NP-hard, as we 

shall see. 

3.2.1. Path Existence 

We will examine the problem of whether a path exists between two given 

nodes in a network. This problem is defined as: 

Definition 3.2.1 Network Path Existence (NPath): 

Instance: An n-dimensional LE network G = (B° ,I31, A), and two nodes 

;Y , E 

Question: Is there a path from to V in G? 

If a path from X to V exists, then each edge (0,17) in the routing path from 

fC. to cancan be represented by the term B = U +17. We can then represent the 

entire routing path as a sequence of T terms: 



54 

13'4' ,B41 , Bt; (3.1) 

This path must meet some requirements. The first is that these steps must lead 

from X to 
ti 

: 

TX E =1" (3.2) 
u=i 

The second requirement is that every term must correspond to an network 

channel when it is used. That is, for 1 < V < T: 

+ E (Aritu)i, = ov 
U =1 

We can use these two requirements to verify that a path exists using at most O(Tn2) 

bit operations. 

Unfortunately, there is a problem in showing a bound on the length T of 

a minimal path between X and Y. The longest minimal path is the diameter of 

the network. Trivially, a loose upper bound of 2' 1 channels can be placed on 

the diameter of any LE network, because that is the longest path that can be 

constructed using 2' nodes. But we have not discovered a polynomial upper bound 

on the diameter of every LE network. 

If we limit the steps of the path to be unique terms, then we can artificially 

put a polynomial bound on the length of the path: 

Definition 3.2.2 Limited Network Path Existence (LNPath): 

Instance: An n-dimensional LE network G = (B°,.131 , A), and two nodes 

1,37 E 

Question: Is there a path from X to Y in G, where each tel m in B° or fr 

defines at most one channel in the path? 
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A limited path in a connected network can have a maximum 2n terms in its 

expansion, because there are at most 2n unique terms in B° and B1. 

We consider LNPath to be a valid limitation of NPath. First, we want paths 

in a network to be quite short ideally, they should be linearly bounded. After all, 

we are searching for networks that are improvements upon the hypercube design. 

If the hypercube has a maximum path length of n steps, and a variant cube has a 

maximum path length of 0(n2), then clearly we have failed in our search. Second, 

paths that include several channels defined by one term Bt are very likely to cause 

network bottlenecks, because the channels defined by Bt are being over-utilized. 

Using LNPath helps us avoid these two problems. 

The polynomial bound on the maximum path length allows us to show that 

LNPath is NP-complete: 

Theorem 3.2.1 LNPath is NP-complete. 

Proof: The proof is given by reduction from the problem 3SAT: 
ti


LNPath E NP: Guess a path from X to Y. Using Equations 3.1 and 3.2,

verify that the path uses no term Bt more than once, that the path correctly leads 

from X to Y and that each channel on the path exists. This verification takes 0(n3) 

steps. 

3SAT < LNPath: Start with an instance of 3SAT over a set X of variables 

x1, x2, ... , xixi and a set C of clauses, where the occurrence of each variable t in 

each clause j is identified by c(t, j) E C, where t E and 

1 < j < 1C1. 

We will construct a (21X1 + 31CD-dimensional network. We assign labels to 

each of the rows and columns. For the first 21X1 rows and columns, assign the labels 

of xi and x17 1 < i < 1X1. For the rest of the rows and columns of the 3 matrices 
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B°, B1 and A, assign the labels of c(t, j), for each occurrence of variable t in clause 

j for 1 < < ICI. 
Now, we assign the elements of B°. First, for all xi E X, set Bs°xs = 1 and 

Btx, = 1. Second, for all c(t,j) E C, set Bc°(t,i),t = 1. All other elements of B° are 

zero. 

Next, we assign the elements of B1. For all c(t, j) E C, set Bc1(tj),,(tj) = 1. 

All other elements of B1 are zero. 

Finally, we assign values to A. For t E {x1,..., xixi, xixi}, set At,t = 1. 

For each c(ti, j) E C, c(t2,j) E C, and c(t3, j) E C, set Ac(ti (t2 = 1, set 

Aco, = 1 and set Ac(t,,j),c(ti,j) = 1. All other elements of A are zero. 

Finally, set X = (000...0) and Y = (111 ... 1). 

The problem is now transformed. The construction clearly takes 0(n2) as­

signments and at most 0(n) time to scan through the clauses, so the transformation 

is polynomial time. 

There are two key points to note. First, for every xi: 

(ABs°,)x, = (A.13°,)T- = (A*xi = (A131°-i) = 1 

This means that once .13, defines a routing step in the path, then B-27 cannot define 

a routing step at all. This is also true for BT.. 

Also note that for all Bi with j i, (A13)s, = (A.13(1) = 0. This means 

that because we are starting from node (000 ... 0), either .1312, or .13Y7 can freely be 

used exactly once to define a routing step at any step in the path. 

Second, for any j, the three columns that correspond to the terms c(ti, j), 

c(t2, j), c(t3, j) in the j-th clause have: 

(A13,1(ti,j))c(t2,j) = 1 

(A./3,(t,,i)),(6,i) = 11
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(ABe(t3 ))e(ti ,j) = 1
 

Further, because of the way we set each 

(AB(1,),(t2,i) = 1
 

(AB?2),(t3 ,J) = 1
 

(ABZ)c(tim = 1
 

This means that none of ./31 B1 B1 can define a routing step until atc(ti,j), c(t2,i), c(t3,i)
 

least one of 41, BZ, or BZ defines a routing step. If we allow B° to define a routing 

step, then j) can define routing step later in the routing path, and then./3,1(t(.
 

Bli# 4, can also define a routing step still later. Only in this way can allCk. (5+2)mod 3 IJ

components c(ti,i), c(t2,j) and c(t3,j) can be set to 1 if starting from (000 ... 0). 

Assume that the 3SAT expression has an assignment of values for xl, x2, 

xixi that sets the expression true. Then at least one value of every clause is 

true, satisfying every clause. Now for each variable assignment x, with 1 < i < IX I, 

include the term BI2 if xi is set to true, and include the term BT.. if xi is set to 

false. Now for every j with 1 < j < ICI, at least one of the indices c(ti,i), c(t2,j) 

and c(t3, j) is set to 1, and the rest can now be set to 1 by adding the routing steps 

13,1(t1 ,j), Bel(t2,i), and/or Bc1(t3,i) to the end of the path as described in the preceding 

paragraph. 

Note that every BP. and Bel(t, J) is used either once or not at all. The path 

meets the requirements of the limited network path. 

Now assume that the 3SAT expression has no assignment of values xl, x2, 

xixi that can set the expression true. Then for every assignment of xl, x2, 

xixi, at least one clause j has no variables set to true. This means that the indices 

c(ti,j), c(t2,j) and c(t3,j) are all zero, and none of Bc1-(t1 j), ./3,1(t2J), Bc1(t3 j) can be 
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used in the routing path to set these indices. Thus (111 ... 1) is unreachable from 

(000 ... 0). 1 

Example:Let je = {xi, x2, x3} and let C = (x1 V -xi V ), (xj V T-i V x3). 

Then the constructed matrices are (with labeled rows and columns) shown in Figure 

3.7. 

Because the expression is satisfiable, there is a limited minimal routing path 

from (000000000000) to (111111111111). That path is .B?, B,7, Bg, Be', B12, 131-0. I 

The proof that 3SAT < LNPath is also trivially a proof that 3SAT < NPath, 

because LNPath is a special case of NPath. If we can show a bound on the maxi­

mum path length in any network, we could show that NPath is also NP-complete. 

However, for now we have: 

Corollary 3.2.1 NPath is NP -hard. 

Proof: This follows directly from the reduction of 3SAT to NPath. 

There are two possibilities for NPath. First, the maximum path length could 

be bounded by a polynomial in n, in which case NPath is NP-complete. Second, 

some networks could have diameters that are exponential to 7/, which implies that 

NPath has an exponential run time. As it currently stands, however, the upper 

bound on diameter is still an open question. 

Our original plan was to use NPath or LNPath to construct an proof that 

would show that network connectedness was NP-complete. We thought to show 

network connectedness by examining only a representative subset of node pairs for 

path existence. However, assuming that all paths are polynomial in length, we would 

need an exponential number of such paths to make sure we cover every node, unless 

we could show that each path examined guaranteed an exponential number of nodes 
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x1 x1 X2 Ti X3 x3 C(Xi, 1) c(±7, 1) c(,1) c(Tr., 2) 2) c(x3, 2) 
x1 1 0 0 0 0 0 0 0 0 0 0 0 

xl 0 1 0 0 0 0 0 0 0 0 0 0 

x2 0 0 1 0 0 0 0 0 0 0 0 0 

x2 0 0 0 1 0 0 0 0 0 0 0 0 
x3 0 0 0 0 1 0 0 0 0 0 0 0 

B° = x3 0 0 0 0 0 1 0 0 0 0 0 0 

c(xi, 1) 1 0 0 0 0 0 0 0 0 0 0 0 

c(72, 1) 0 0 0 1 0 0 0 0 0 0 0 0 
1) 0 0 0 0 0 1 0 0 0 0 0 0 
2) 0 1 0 0 0 0 0 0 0 0 0 0 

c(7-2-, 2) 0 0 0 1 0 0 0 0 0 0 0 0 

c(x3, 2) 0 0 0 0 1 0 0 0 0 0 0 o 

X1 X1 x2 x2 x3 x3 C(Xi, 1) 1) c(x3, 1) c(YT, 2) c(Yi, 2) c(x3, 2) 
X1 0 0 0 0 0 0 0 0 0 0 0 0 

Y1­ 0 0 0 0 0 0 0 0 0 0 0 0 

X2 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

X3 0 0 0 0 0 0 0 0 0 0 0 0 

B1 = 0 0 0 0 0 0 0 0 0 0 0 0 

C(Xi, 1) 0 0 0 0 0 0 1 0 0 0 0 0 

1) 0 0 0 0 0 0 0 1 0 0 0 0 

C(, 1) 0 0 0 0 0 0 0 0 1 0 0 0 

2) 0 0 0 0 0 0 0 0 0 1 0 0 

c(E2", 2) 0 0 0 0 0 0 0 0 0 0 1 0 

c(x3, 2) 0 0 0 0 0 0 0 0 0 0 0 1 

X1 TT x2 1-2- X3 T7 c(x1, 1) c(12, 1) 1) 2) 2) c(x3, 2) 
Xi 1 0 0 0 0 0 0 0 0 0 0 0 

Xi 0 1 0 0 0 0 0 0 0 0 0 0 

X2 0 0 1 0 0 0 0 0 0 0 0 0 

X2 0 0 0 1 0 0 0 0 0 0 0 0 

53 0 0 0 0 1 0 0 0 0 0 0 0 
A= 53 0 0 0 0 0 1 0 0 0 0 0 0 

C(X1, 1) 0 0 0 0 0 0 0 1 0 0 0 0 

C(1-2-, 1) 0 0 0 0 0 0 0 0 1 0 0 0 

1) 0 0 0 0 0 0 1 0 0 0 0 0 

2) 0 0 0 0 0 0 0 0 0 0 1 0 

2) 0 0 0 0 0 0 0 0 0 0 0 1 

c(x3, 2) 0 0 0 0 0 0 0 0 0 1 0 0 

Figure 3.7. The construction of a LE network from an instance of 3SAT. 
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were connected together. This seems unlikely, because each path is polynomial in 

length. 

3.2.2. Network Connectedness 

We now examine the problem of network connectedness, or whether a path 

exists between every pair of nodes in the network. 

Definition 3.2.3 Network Connectedness: 

Instance: An n-dimensional LE network G = (B °, 13', A). 

Question: Is there a path from every pair of nodes jj , Y in G ? 

Though we have been able to define some sufficient conditions and some 

necessary conditions for network connectedness, we have not been able to show both 

necessary and sufficient conditions simultaneously. At this time, it is not known if 

the problem of network connectedness is in P, or in NP, or is has a run time that is 

strictly exponential in the dimension n. 

We examine some necessary conditions for network connectedness first. 

Theorem 3.2.2 Let G = (B °, B1) be an n-dimensional DM network. If G is con­

nected, then some combination of n vectors from B° and B1 are linearly independent. 

Proof: G has 2n edges )e + Y = Bt defined for every )e . The addresses 

of the nodes clearly form a vector space over .Z2 using mod 2 addition. To have 

every vector in ZT reachable from (000... 0), we need at least one set of k linearly 

independent vectors in B° and B1, so that every vector in Z can be represented 
ti

as a linear combination of those vectors. Then the path from (000 ... 0) to je is 

composed of channels defined by terms in the linear combination of vectors.' 

This leads to the result: 
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Theorem 3.2.3 Let G = (B°, B1, A) be an n-dimensional LE network. G is con­

nected only if the DM network a = (B°, B4) is connected. 

Proof: Because G is a sub-network of 0, its connectedness depends on 

whether 0 is connected. Normally, it is possible for the subgraph of a disconnected 

graph to be connected, but only if the subgraph has fewer vertices, i.e., the subgraph 

is in one connected component of the disconnected graph. However, G has all the 

nodes of a, but not all of the channels, so if G is disconnected, then so is G. I 

A necessary condition for connectedness in an LE network is that at least one 

combination of the column vectors from B° and B1 must be linearly independent. 

Though this is sufficient to guarantee that a DM network is connected, it is not 

sufficient to guarantee that a LE network is connected. 

3.3. PROPERTIES OF LTLE NETWORKS 

The LTLE networks are a special case of LE networks, and so they have 

a number of special properties, such as reciprocal channels, connectedness, and a 

recursive construction that allows the LTLE networks to be subdivided into smaller 

LTLE networks. In this section, we show and examine these properties. 

3.3.1. Channel Properties 

First, we examine the channel properties of LTLE networks. We note that 

from Theorem 3.1.6 we can show that all LTLE networks have common channel 

properties. 

Theorem 3.3.1 Let G = (B °, B1, A) be an n-dimensional LTLE network. Then G 

has no reflexive or redundant channels, and only reciprocal channels. 
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Proof: By Definition 2.1.4, B? and 1 < i < n, cannot be zero, for all i. 

So G cannot have reflexive channels. 

Now for 1 < i < n, 1 < j < n, we have B? 0 By, i j, because if i < j, 

B?i = 1 and B?,i = 0, and if i > j, = 1 and BYi = 0. For the same reasons, 

BI- M and B? BJ- for j i. Now, it is possible to have B? = B1-, but by 

definition of LE networks, only one can define a channel from a given node je. So 

G cannot have redundant channels. 

Finally, by Definition 2.1.4, Ai,i = 0 for all i, and B°, Bl, and A are lower 

triangular matrices, so (AB°)i,i = 0 and (AB1)i,i = 0 for 1 < i < n. By Theorem 

3.1.6, all the channels of G are reciprocal. 

The theorem above shows that if we want a network with only reciprocal 

channels, we can simply use a LTLE network. 

3.3.2. Connectedness 

The LTLE networks share more than just channel properties. We can show 

that every LTLE network is constructed from two smaller LTLE networks and hence 

is connected. 

In general, a LE network is not decomposable into smaller LE networks. If 

we partition the nodes of a connected n-dimensional LE network into two groups, 

one containing the addresses with Xl = 0 and the other with X1 = 1, we would be 

able to describe the channels between nodes in each group as two LE networks of 

dimension n 1, but these two sub-networks may not themselves be connected. 

This means that many LE networks are not expansible, in that they cannot 

be built up from smaller LE networks. Further, it means that parallel algorithms 

that use a "divide and conquer" strategy cannot be easily computed on a general 
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LE network, because a subproblem cannot be recursively handed to a connected 

sub-network to be solved. 

However, there is a way to decompose a LTLE network into smaller LTLE 

networks. This method gives us a simple method to construct divide-and-conquer 

algorithms for LTLE networks. 

Theorem 3.3.2 Let G = (B °, B1, A) be a LTLE network of dimension n. Then G 

is composed of two disjoint LTLE networks of dimension n 1. 

Proof: The address space can be broken into two subspaces, the first with 
ti

vectors that have jei = 0 and the second with vectors that have jji = 1. The 

first column of B° and B1 are the only terms that define channels joining the first 

subspace with the second. 

Consider Go = (b°, E2, A), where: 

B°2,2 . . . 2,n B12,2 . B12,n A2,2 . A2,n 

A= 

./30 B1 B1 An,2 . An,.n,2 n,n n,2 n,n 

The network Go generated by these matrices is clearly a LTLE network and has 

dimension n 1. 

Now consider the network Gl = B1, A) where: 

B211,1 B211,nn1 BDA2 rppAn
2 . . . .L.127; A2,2 A2,n 

= A= 

BnA2i BnAv B'nA21 . . . BnAnn'i An,2 An,n 

The network G1 generated by these matrices is a LTLE network and has dimension 

n 1. This network is the same as Gl but with B.° and rn exchanged if Ai,1 = 1. 
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ti
Now Go is a subgraph of G, because each address fe E V corresponds to 

an address (0) E V, and because an edge (X, 2) E E corresponds to an edge 

((0.,?), (0Y)) E E: 

(0J(*)+.(02). 

((RR), (Of ) E E 

This is because (A(0.g))i = 
ti

Now G1 is a subgraph of G, because each address X E V corresponds to 

an address (lje) E V, and because an edge (J-C., E E corresponds to an edge 

((1.,Z), (12)) E E : 

(g',1,)E 

iffAi+1,1 = 0
(15e) + (IT) = 

iffAi+1,1 = 1 

((1X), (12) E E 

This is because (A(1)-6)i+1 = Ai+1,1 + (AX)i. 
ti 

Finally, the node addresses of Go are the sub-space of vectors with Xl = 0 

and the node addresses of G2 are the sub-space of vectors with X1 = 1. Thus G1 

and G2 are disjoint and together use all vertices of G. 

Example: In [42], we demonstrated that a 0-Mobius Cube of dimension 

7/ 1 and a 1-Mobius Cube of dimension n 1 can be joined together to form a 

0-Mobius or 1-Mobius Cube of dimension n. The definition of the 1-Mobius Cube 

differs only from the 0-Mobius Cube in that it has only the columns B? and Bl 

exchanged. This is because A2,1 = 1 is the only nonzero element of the first column 

in A, for both network definitions. 
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I 

From this, we can conclude that LTLE networks are connected: 

Corollary 3.3.1 Let G = (B°, B1, A) be an n-dimensional LTLE network. Then 

G is connected. 

Proof: The proof is inductive. For our base case, the 1-dimensional LTLE 

network G = [B °, B1, A] is trivially connected. Now we assume that for n' < n, 

any n'-dimensional LTLE network is connected. An n-dimensional LTLE network 

is composed of two connected (n 1)-dimensional LTLE networks, which are joined 

at every node by the neighbor function Ni. 

We can also determine the maximum path length for LTLE networks. 

Corollary 3.3.2 Let G = (B°,131, A) be an n-dimensional LTLE network. Then 

the maximum path length in G is n. 

Proof: The proof is inductive. For our base case, the 1-dimensional LTLE 

network G = [B °, B1, A] is trivially takes 1 maximum routing step to communicate a 

message between any two nodes. Now we assume that for n' < n, any n'-dimensional 

LTLE network requires at most n' routing steps. We can route to the (n 1)­

dimensional sub-network that contains the destination by using using a channels 

defined by N,, then recursively routing on the (n 1)-dimensional LTLE network. 

3.4. SUMMARY 

The LE model is overly general for describing interconnection networks. It 

allows descriptions of networks that are disconnected, weakly connected or have 

non-reciprocal, redundant or reflexive channels. There is strong evidence that there 
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is no efficient algorithm for determining if a network is connected. Even the upper 

bound on the maximum path length for LE networks remains an open question. 

However, one subclass of the LE model has a number of attractive features 

and properties. and resolves several of the problems listed above. LTLE networks 

are always strongly connected with only reciprocal, non-redundant, non-reflexive 

channels. The n-dimensional LTLE networks has a maximum path length of n 

channels, and a simple decomposition into 2 disjoint (n 1)-dimensional LTLE net­

works. These properties make LTLE networks preferable to a general LE network. 

All of these features make the LTLE networks very attractive as potential 

interconnection network topologies. For the rest of this dissertation, many of the 

results we show will be specifically for LTLE networks. 
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4. NETWORK ISOMORPHISM 

In this chapter, we examine some basic isomorphism properties of general LE 

networks. We show that a number of these properties are NP-complete or NP-hard. 

We then show that it is possible to determine if a LE network is isomorphic to a 

LTLE network. Lastly, we examine minimum-weight isomorphisms of a LE network. 

4.1. ISOMORPHISM OF LE NETWORKS 

In this section, we consider when two networks described by the formal model 

are isomorphic to each other as graphs that is, whether one network can be 

transformed to a second with a renumbering of its nodes. 

The LE network model is too general for uniquely describing Twisted Cube 

networks. For a given Twisted Cube network, there can be more than one LE 

network that describes it. For instance, the Twisted 3-Cube can be described by : 

1 0 0 1 0 0 0 0 0 

B° = 0 1 0 B1 = 0 1 0 A= 1 0 0 

0 0 1 0 1 1 0 0 0 

It can also be described by: 

1 0 0 1 0 0 0 0 0 

B °= 0 1 1 B1 = 0 1 0 A= 0 0 0 

0 0 1 0 0 1 1 0 0 

And even described by: 

1 0 0 1 0 0 0 0 0 

B° = 1 1 0 B1 = 0 1 0 A= 1 0 0 

1 1 1 0 0 1 1 1 0 
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While the addressing of the nodes may differ between the networks, the 

underlying networks are isomorphic as graphs to one another. Unfortunately, the 

matrix descriptions of two networks give little clue as to whether they are isomorphic. 

Network isomorphism is an important problem for at least two reasons. First, 

we already know a number of results for published networks. If we can show that 

one network is isomorphic to a second network, then the results for the first network 

will hold for the second network. Second, LE networks are divided into several 

sub-classes (for instance, LTLE networks) which have properties that not all LE 

networks share. We can use network isomorphisms to show that a network has 

membership in a sub-class, and so shares the sub-class's properties. 

The problem of network isomorphism is closely related to the problem of 

graph isomorphism: 

Definition 4.1.1 Graph Isomorphism Problem: 

Instance: G1 = (V, E1) and G2 = (V, E2) are two graphs of IV I = n nodes. 

Question: Is there a permutation f : V -+ V so that: 

VVi, V2 E V : (Vi, V2) E El < > (f (Vi), /(v2)) E E2 

Though the original problem statement of graph isomorphism considered 

only connected undirected graphs, it is clear that the variant problems of uncon­

nected graphs and directed graphs are computationally equivalent. It is important 

to know that these two variants are equivalent, because our networks are defined 

with directed channels and can potentially be unconnected. The polynomial-time 

transformations are outlined below: 

A pair of unconnected graphs G1 = (V1, E1) and G2 = (V2, E2) can be trans­

formed to connected graphs by adding one vertex vn+i to V1 and V2 and for every 
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i, 1 < i < n, add edges (vi, vii+i) to El and E2 to make them connected. Since vn+i 

is the only vertex in each graph with out-degree n, then vn+i E E1 must map to 

v,i+i E E2. The constructed graphs are then clearly isomorphic iff G1 is isomorphic 

to G2. 

Connected graphs are a trivial instances of potentially unconnected graphs, 

so no transformation in the other direction is needed. 

A pair of undirected graphs G1 = (V1, E1) and G2 = (V2, E2) can be trans­

formed to directed graphs by replacing each undirected edge (vi, vi) with two di­

rected edges (vi, v.i) and (vi, vi). The constructed graphs are clearly isomorphic iff 

G1 is isomorphic to G2. 

A pair of directed graphs G1 = (1/1, E1) and G2 = E2) can be transformed 

to undirected graphs, by encoding direction information into each undirected edge. 

One construction is to hang a chain of n + 1 new vertices from each original vertex, 

and replace each original directed edge (u, v) with 3 new vertices t1, t2, t3, and 4 

new undirected edges: (u, ti), (ti , t2), (t2, v), and (t2, t3). The construction take 

0(n2) steps. The constructed graphs are then isomorphic iff G1 is isomorphic to 

G2, because the chains can only map to each other, and the edge constructions will 

map to each other iff the original directed edges in G1 map to directed edges in G2. 

The problem of network isomorphism is similar to the problem of graph 

isomorphism. However, rather than using the graph representation of our network, 

we will use the matrix representation of our networks. 

Definition 4.1.2 Network Isomorphism Problem: 

Instance: Two n-dimensional LE networks G1 = (B °, B1, A) and G2 = 
0, 13- 1 A).

(B

Question: Is there is a 1-1 mapping f : 2"2 + .ZT so that: 
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f(X)+ f(f) = piAf()?», 

The problems of network isomorphism and graph isomorphism differ in the 

size of the instance. An algorithm for graph isomorphism can be used to solve an 

instance of network isomorphism by expanding the network definition into an entire 

graph, but since an n-dimensional network has n nodes of degree n, the problem 

size for graph isomorphism problem would be an exponential 0(n2"). We would 

like to find an algorithm that can find network isomorphisms in time polynomial in 

n. We will see strong evidence that such an algorithm does not exist. 

4.1.1. Basic Network Isomorphisms 

There are a number of "basic" or" standard" network isomorphisms that we 

can use to transform one network to another. These isomorphisms operate on the 

matrix descriptions, so they can be used to show that one network is isomorphic to 

another without expanding the network descriptions into entire graphs. 

First, certain substitutions in the matrix description can produce networks 

that are identical address-for-address to the original, though the matrix descriptions 

are different. 

Theorem 4.1.1 Let G = (B °, B1, A) be an n-dimensional LE network. If: 

V0,17, LV E .2; : B? = B1 = U, rowi(A) = 

then substituting: 

B? = U, , rowi (A) = 0 

creates a new network G = (B °, El, A), which is identical to the original network. 
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Proof: This is because for any g. E ejj.) = = O. This substitu­

tion can also be reversed. 

One simple isomorphism allows the translation of all addresses of a cube by a 

constant amount. This isomorphism is a "reflection" of the network across a vector 

value W. 

Theorem 4.1.2 Let G = (B°, B1, A) be an n-dimensional LE network. G is iso­

morphic to G = (Er = {1 < i < n : Le14.7)11, E1 = {1 < i < n : re)11, A), under 

the function f : Z defined by f (.k.) = X +W . 

Proof: Let )e,f7 E E. Then: 

E E .#> = e?)i 
+1,i7* +1;v" = BIA(X +W. +1,V)ji 

<=> + 

.#> (fe +W. ) + + = 111`".+1;17.)1'+(41-1)i) 

<4. f (5e) + f (f) = BIAM)li+(Avf)i 

4 f (77) = B 

<=> (f(), .f(f)) E 

There are a number of other isomorphisms that exist for any LE network. 

These transformations depend on the fact that vector addition and permutation 

form groups over Z. 

Theorem 4.1.3 Let G = (B °, B1, A) be an n-dimensional LE network. If f is an 

automorphism over the group (2 and 3A : : vi,1 < < n : (Afe)i = 

(Af(g.))i, then G is isomorphic to a = (f (B°), f (B1), A). 
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Proof: Let ., -17 E E. Then: 

(X,f)EE#4-Ff=Blu-6' 

:=> f (je +1-7') = f (Be)') 

4-> f (X) + f = f(.13)z) 

4-> f(X) +f ) = f (Beg)' 

4-> f (X) + f (17 ) = f (B)(A f (5?))* 

<=> (f (X), f (37 )) E 

Using this theorem, we can show that row permutation, column permutation, 

and row addition on the matrix descriptions are network isomorphisms: 

Theorem 4.1.4 Networks are isomorphic under row permutation. 

Let G = (B °, B1, A) be an n-dimensional LE network. G is isomorphic to 

A)G where: 

Proof: First, 1(X) = (X ,r(i)X7,(2) Xir(o) is an automorphism, because it 

is a bijection from ZT to itself (by definition of permutation), and f (X + Y) = 

(X) + f (Y), because Vi : 74(X + Y)i) = 71-(Xi) + ir(Y).
 

Second, the selector functions are equivalent:
 

(A f (X))i = E Ai,kf(X)k 
k=1 
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= E Air(k)X7r(k) 
k=1 

= E AikXk 
k=1 

= (AX)i 

Theorem 4.1.5 Networks are isomorphic under column permutation. 

Let G = (B °, B1, A) be an n-dimensional LE network. G is isomorphic to 

(fr, Ed., A), where:G 

B?,.(i) 

= BL7r(i) 

Ai,i = Artim 

Proof: First, the permutation of columns of B° and B1 is simply the re­

ordering the edges out of a vertex je, so the automorphism is the identity function 

f (fe) = X . Second, the selector functions are equivalent under permutation: 

(X))i = E Ai,kf(je)k 
k=1 

= E Ar(i),kXk 
k=1 

= (Aij),r(i) 

So we have: 

(X, E E a (.)? = 13,(A)' 

<4. (* = B(A(if)'(2) 

, E 
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Theorem 4.1.6 Networks are isomorphic under row addition. 

Let G = (B°, B1, A) be an n-dimensional LE network. G is isomorphic to 

G A), where: 

i r 
139 

BrOj Bsoj 

B 1-j i r 

13,1 j+ Bs1 i =r 

{Ai,i i r 
= 

Ajr + Ai, i =s 

ti
Proof: First, the mapping f (X) = (X1, . , Xr + Xs, . . . , X7,) is an auto­

morphism. The function f is 1-1, because if X, = 0, then f ve) = x, and if X, = 1, 

then f(X) = X + e,. Also, f(fe f) = f(X) + f(f), because if i r, then 

f + )i = f (X)i + f ( 1 7 ) i , and if i = r, then f(X + )i = (X + )1 (fe )3 = 

Xr +Yr +Xs +Y3= f(X)i +f(Y)i. 

Second, the selector functions of both networks are equivalent. For i r, 

(A f (X))i = (AX)i. For i = r: 

(Af(X))i = E Ai,kf(X)k 
k=1 

= (Ai,r Ai,$).fes . . . Ai,r(Xr Xs) + + Ai,njen 

= Ai,kXk Ai,r-ks kr-eles
 
k=1
 

n
 

= E Ai kXk 
k=1 

= (AX)i 
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A \Input: An n-dimensional LE network G = (B °, B1, II) where B° contains n linearly 
independent column vectors. 

Output: An n-dimensional LE network O = (I, E1, A) that is isomorphic to G. 

GaussianReduceNetwork( G = (B °, Bl , A) ) 
for i = n down to 2 do elimination
 

j = i
 
while j > 1 and B?i 0 1 do
 

j = j 1 

end while 
if j > 1 then
 

swap( B? , By )
 
swap( Bi-, )
 

swap( rowi(A), rowi(A) )
 
end if
 
for j = i 1 to 1 do
 

if B9. = 1 then 
rows (B °) rows (B °) + rowi(B°) 
rowi(B1) rowi(B1) + rowi(B1) 
Ai < Ai + 

end if 
end for
 

end for
 
for i = 1 to n do { back-substitution }
 

for j = i + 1 to n do 
if .14i = 1 then 

rows (B °) 4 rows (B°) rowi(B°) 
rowi(B1) row.i(B1) + rowi(B1) 
Ai 4 Ai + Ai 

end if
 
end for
 

end for
 
end procedure
 

Figure 4.1. Algorithm GaussianReduceNetwork. 
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The three isomorphisms above are useful by giving us a standard matrix 

description for a network. 

Theorem 4.1.7 Let G = (B °, B1, A) be an n-dimensional LE network. Let B° have 

n linearly independent columns. Then G is isomorphic to a network O = B1, A). 

Proof: We can apply a method similar to a standard Gaussian reduction to 

convert B° to I, using the three isomorphisms listed above. Algorithm GaussianRe­

duceNetwork is listed in Figure 4.1. 

B° must have n linearly independent columns, or the algorithm will produce 

a network with the first matrix not equal to I, but with ones and zeros on the 

diagonal and zeros elsewhere. 

We can use the transformations above to show that some of the published 

networks isomorphic to others. 

Theorem 4.1.8 The Flip MCube is isomorphic to the 1-Mobius cube. 

Proof: Begin with an n-dimensional MCube. Transform it to the isomor­

phic network with B° = I using Algorithm GaussianReduceNetwork. Use the row 

addition isomorphism to add row 1 to row 2, add row 2 to row 3, ... , and add row 

n 1 to row n, in that order. Then, because row 1 of A is zero, substitute column 

M with 100 ... 0. 

The resulting network is identical to the n-dimensional 1-M6bius cube, except 

that B? and B,1, 2 < i < n, are exchanged. Use Theorem 4.1.2 to map each node 
ti 

X to je + 100... 0. The matrix description of the resulting network is the 1-MObius 

cube's description. 

Theorem 4.1.9 The YAT cube is isomorphic to the 0-Mobius cube. 
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Proof: The proof is the same as for the Flip MCube to 1-Mobius cube. 

In fact, after we discovered that the Flip MCube is isomorphic to the 1­

Mobius cube, we constructed the YAT cube as the Flip MCube's analog of the 

0-Mobius cube. 

4.1.2. The Complexity of Network Isomorphism 

The general problem of Graph Isomorphism has not been shown to be NP-

complete. In fact, Graph Isomorphism is usually cited as a problem in NP-P which 

is not NP-complete [11]. There is no known efficient polynomial algorithm for deter­

mining if two graphs are isomorphic, nor is there a transformation from an instance 

of an NP-complete problem to an instance of graph isomorphism. As we will see, 

the problem of network isomorphism is at least as difficult as graph isomorphism. 

Theorem 4.1.10 Graph Isomorphism < Network Isomorphism 

Proof: To show this, we transform an instance of Graph Isomorphism to an 

instance of Network Isomorphism using a polynomial number of operations. Assume 

that we have a pair of connected digraphs G1 = (V1, E1) and G2 = (V2, E2) with no 

self-looping edges (vi, v,) and assume that 11711 = IV2i = R. 

(The restriction of no self-looping edges in an instance of the Graph Isomor­

phism problem will not affect the complexity of the problem. We can transform an 

instance of Graph Isomorphism to Graph Isomorphism without self-loops in polyno­

mial time. We replace each self-loop in the two graphs with a directed chain of n + 1 

nodes. This guarantees that each chain in one transformed graph will be mapped 

to a chain in the other transformed graph. Hence the two transformed graphs are 

isomorphic iff the original graphs are isomorphic.) 
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Notice that G1 and G2 can be represented by n x n adjacency matrices M1 

and M2, where each ct,,, E M1 equals 1 iff (vi, v;) E E1 and 0 otherwise. This 

construction takes polynomial time, because M1 and M2 are n x n matrices and 

can be constructed in 0(1V12) operations. Clearly if G1 is isomorphic to G2, then 

some permutation of vertex numbering can be done on G1 to transform it to G2. 

This permutation can be done by a series of exchanges of vertex numbers, which 

corresponds to a series of simultaneous row/column exchanges in M1. 

Construct two networks 01 = (I, M1, I) and G2 = (I, M2, I). This construc­

tion takes only 0(n2) steps, the size of the matrix descriptions for G1 and G2. If 

G1 is isomorphic to G2, then clearly G1 is isomorphic to G2, because simultaneous 

row/column exchanges on the matrices will not affect the identity matrix I. 

If Gl is isomorphic to G2, then there is some mapping f : Z2 from 

the nodes of 01 to the nodes of G2. 

We note several properties of G1 and 02. The linear selector function for 

01 is simple: (Ije)i = Xi. Further, the i-th channel (X, 2) with Xi = 0 has no 

restricted reciprocal channel (2, je), because (Ag3), = (Iei)i = 1. Also,the i-th 
ti 

channel (je, 2) with X, = 1 has a restricted reciprocal channel because G1 has no 

edge loops, M1 has ai,i = 0 and so (AB?)i = (I(M1)i), = 0. These same properties 

hold true for G2. 

Consider only the set of edges generated by columns of B°. Such edges only 
ti

come from a node fe when Xi = 0, and together form the edges of a directed 

n-dimensional hypercube, as in Figure 4.2. If G1 is isomorphic to G2, then this 

subgraph in ai will map to the same subgraph in 02. The mapping f must be a 

homomorphism which corresponds to a rotation of the n-dimensional directed hy­

percube about the node with address 0. This limits f to a simultaneous permutation 

of the rows/columns in Gl and hence a simultaneous permutation of rows/columns 
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I 

1/I\
001 0 010 6 0 100 wo 0 ow 0 010 

011 

111 6 

G1 

Figure 4.2. Two directed hypercubes. 

in M1. So al isomorphic to G2 implies that G1 is isomorphic to G2, and vice versa. 

While Graph Isomorphism is in NP-P, we have been unable to show that the 

general problem of Network Isomorphism is in either NP-P or NP. The difficulty lies 

in computing the mapping f : Z2 -+ ZT from vertices in a network G1 to vertices 

in another network G2. This mapping may require up to 0 (n2") bits of space to 

describe completely and hence could take exponential time. 

If we limit the applicable isomorphisms to the ones given above, we can show 

that these restricted versions of the Network Isomorphism are in NP-P. These two 

restrictions can be expressed as: 

Definition 4.1.3 Network Permutation Isomorphism Problem: 

Instance: Two n-dimensional LE networks G1 and G2. 

Question: Is G1 isomorphic to G2 through a series of simultaneous 

row/column per mutations? 
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Definition 4.1.4 Network Automorphic Isomorphism Problem: 

Instance: Two n-dimensional LE networks G1 and G2 where the columns 

of B° in G1 and the columns of B° in G2 are each n-linearly independent. 

Question: Is G1 isomorphic to G2 through a series of row exchanges, column 

exchanges and row additions? 

We can now show that these restricted forms of Network isomorphism are 

equivalent to Graph Isomorphism, and hence in NP-P: 

Theorem 4.1.11 Network Permutation Isomorphism = Graph Isomor­

phism 

Proof: The proof is in two parts: 

Graph Isomorphism < Network Permutation Isomorphism: Theo­

rem 4.1.10 trivially applies to this restricted version of Network Isomorphism, be­

cause it uses only simultaneous row/column permutations. 

Network Permutation Isomorphism < Graph Isomorphism: Let G1 

and G2 be an instance of Network Permutation Isomorphism. We will transform 

them to an instance of Weighted Graph Isomorphism, a generalization of the Graph 

Isomorphism problem. 

(Weighted Graph Isomorphism is equivalent to Graph Isomorphism, because 

there are polynomial-time transformations from instances of one problem to in­

stances of the other. We can transform an instance of Weighted Graph Isomorphism, 

where the edge weights are integers 0 < P[n], to an instance of Graph Isomorphism. 

We can replace each weighted edge with a chain of two edges. The middle node of 

the chain has hanging from it a chain of length (n 1) w edges that correspond 

to the weight of the original edge. This transformation takes 0 (n2 P[n]) steps. An 
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instance of Graph Isomorphism is trivially transformed to an instance of Weighted 

Graph Isomorphism by setting the weights of all the edges to 1.) 

Use G1 to construct an n x n integer array M1, where each element = 

+ 2BL + 4Ai J. Use G2 to construct M2 in the same manner. Then M1 and 

M2 are the adjacency arrays of two weighted graphs G1 and G2 respectively. These 

graphs are clearly isomorphic if networks G1 and G2 are isomorphic. 

Theorem 4.1.12 Network Automorphic Isomorphism = Graph Isomor­

phism 

Proof: Because we can use Algorithm GaussianReduceNetwork to sim­

plify the B° matrix for the two networks, we only have to consider simultaneous 

row/column permutations. Thus the results of Theorem 4.1.11 hold for Network 

Automorphic Isomorphism too. 

(This problem also includes the use of the reflection isomorphism, because 

that isomorphism can be emulated with a series of row additions.) 

This shows that at least restricted versions of the the problem of Network 

Isomorphism are computationally equivalent to the problem of Graph Isomorphism. 

4.2. ISOMORPHISM OF LTLE NETWORKS 

We will consider two isomorphism problems of LTLE networks. First is the 

complexity of computing whether a general LE network is isomorphic to a LTLE 

network. Second is the complexity of computing whether two LTLE networks are 

isomorphic. 

First, we consider the current published LE networks. By applying the iso­

morphisms given above to the published LE networks, we can show that all the 

published LE networks are isomorphic to LTLE networks. 
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Theorem 4.2.1 The n-dimensional hypercube, the Mains Cubes, the Bent Cube 

and the YAT Cube are all LTLE networks. 

Proof: This is trivially true, because they already meet the definition of 

LTLE networks. 1 

Theorem 4.2.2 The Generalized Twisted Cube is isomorphic to a lower triangular 

network. 

Proof: The Generalized Twisted Cube is built by graph composition of 

Twisted 3-Cubes and a 1 or 2 dimensional hypercube. Since each of these net­

works are isomorphic to LTLE networks, their network composition will be a LTLE 

network, too. 1 

Theorem 4.2.3 The Twisted Cube is isomorphic to a LTLE network. 

Proof: Assume that we have a n-dimensional Twisted Cube as defined in 

2.2.5. Use the row exchange isomorphism to exchange each row 2j and 2j + 1. Then 

use column exchange isomorphism to exchange each column 2j and 2j + 1. The 

Twisted Cube is now in a LTLE configuration. 1 

Theorem 4.2.4 The Flip MCube is isomorphic to a LTLE network. 

Proof: Begin with the n-dimensional Flip MCube as defined in 2.2.6. Use 

the row permutation isomorphism to move each row i, 1 < i < n 1, to row i +1 and 

row n to row 1, then use the column exchange isomorphism to move each column i, 

1 < i < n 1, to column i + 1 and column n to column 1. The network is now in a 

LTLE configuration. 1 

All of the above examples are instances of a more general problem whether 

a network can be represented as a LTLE network. 
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Definition 4.2.1 LTLE Network Inclusion Problem (LTNI): 

Instance: An n-dimensional LE network G = (B °, B1, A). 

Question: Is G isomorphic to a LTLE network? 

We show that LTNI has an efficient algorithm: 

Theorem 4.2.5 LTNI E P. 

Proof: To show that this is possible, we need to specify some sequence of 

polynomial-time isomorphic transformations that can simultaneously rearrange each 

of the matrices B°, B1, and A to a LTLE configuration. Note that we don't have 

to show that G is isomorphic to a specific LTLE network O. Instead, we only have 

to show that G is isomorphic to any LTLE network. 

One method to show that a LE network cannot be LTLE is to use Algorithm 

GaussianReduceNetwork to transform it into a network O = (I, E1, A). If B° cannot 

be reduced to I, then it is not a LTLE network. Otherwise, we can assume that 

B° = I and do other tests. 

The two matrices B1, A can be interpreted as an adjacency matrix for a 

digraph of n nodes. If the LE network is a LTLE network, then each of the matrices 

are acyclic digraphs (with the exception of the self-looping edges (i, i) that occur 

because 13!),i = BY 2 = 1). The matrices B1 and A can be examined in 0(n2) time 

to find if they are (separately) DAGs with self-loops. This check can be done using 

depth-first search on the matrix to find cycles. If B° and A are not DAGs with 

self-loops at each vertex, then the network cannot be a LTLE network. 

Now since B° has l's only down the diagonal, the only isomorphisms that 

will maintain this property are simultaneous row/column permutations. Through 

a series of such interchanges, we can generate any permutation of rows/columns 
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we wish, including permutations that are in a particular order, say a topologically 

sorted order. 

Definition 4.2.2 Let G = (V, E) be a directed acyclic graph. A topological sort 

is the assignment of integers a(1), a(2), , a(IVI) to the vertices of G so that if 

there is a directed edge from vi to v j, then a(vi) < a(vi). 

Clearly, there can be more than one possible topological sort. One trivial 

example is a graph G = (V, {}), where no directed edges are in the graph. Then 

any numbering of the vertices is a topological sort. 

Once a DAG is topologically sorted, its adjacency matrix is lower triangular. 

We can use topological sort on either B1 and A to find a correct simultaneous 

row/column permutation that will make either one lower triangular. 

Our problem is that we have to find some permutation of vertices that is 

simultaneously a topological sort for both B1 and A. We can solve this problem by 

computing the graph union of B1 and A, that is the union of the edges of the graphs 

defined by B1 and A. If the graph union has a cycle, then there is no topological sort 

that can make B° and A both lower triangular matrices. If the union has no cycle, 

then it is a DAG and can be topologically sorted. Since B1 and A are subgraphs 

of the graph union, they are also DAGs, and the permutation computed by this 

topological sort can be applied to G so that B1 and A are simultaneously lower 

triangular matrices. 

The algorithm for LTLE network inclusion is straightforward. For a network 

G, first use the Gaussian elimination algorithm to set B° = I. If this cannot be 

done, then the network is not lower triangular. Then take the union of B1 and A, 

remove the self-loops of B1 from it, and check if the union is the adjacency matrix 

of a DAG. If it is not, then the network is not a LTLE network. If it is, topologically 
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sort it and use this ordering to simultaneously permute the rows and columns so that 

B1 and A are simultaneously lower triangular matrices. The Gaussian elimination 

algorithm has a run time of 0 (id) , the union of the two DAGs can be done in 0(n2) 

run time and the standard algorithm for topological sorting has asymptotic run time 

order of 0(1E1 + (V1) = 0(n2). The total run time for LTNI is polynomial in n. 

Like the LE networks, the LTLE networks can use all the isomorphisms 

listed in Section 4.1.1. There are some trivial isomorphisms between LTLE networks. 

Theorem 4.1.1 leads to an trivial isomorphism property of lower triangular networks: 

Lemma 4.2.1 Let F = (B °, B1, A) be an n-dimensional lower triangular network. 

Then for G, M and rown(A) can be changed to any value without changing the 

network's topology. 

Proof: This is obvious, because rows (A) = 0 and Bn° = B1.
 

LTLE networks can also be treated as a special case of Theorem 4.1.7:
 

Corollary 4.2.1 Let G = (B °, B1, A) be an n-dimensional LTLE network. Then 

G is isomorphic to a network a = A ) .13" 1 , 

Proof: Because G is LTLE , B° and .B1 meet the conditions of Theorem 

4.1.7. In fact, we need only to do the back-substitution portion of Algorithm Gaus­

sianReduceNetwork, because the elimination portion is already completed for us. 

We noticed before that Network Isomorphism is at least as hard as the Graph 

Isomorphism. However, LTNI has an algorithm with a strictly polynomial run 

time. We should also ask if two LTLE networks can be found to be isomorphic in 

polynomial time, too. This is not the case, because Graph Isomorphism on DAGs 

is at least as hard as Graph Isomorphism. 
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Definition 4.2.3 Graph Isomorphism on Directed Acyclic Graphs (GI­

DAG): 

Instance: Two directed graphs G1 = (V, Di) and G2 = (V, D2) 

Question: Is G1 isomorphic to G2 ? 

Theorem 4.2.6 Graph Isomorphism < GI-DAG. 

Proof: Given two undirected networks G1 = (V, E1) and G2 = (V, E2), we 

use a polynomial-time construction to make two directed graphs 01 = D1) and 

G2 = (fi, D2). 

To construct V, construct three vertices fii,2 and i)i,3 for each vertex 

vi E V. To construct D1, include the edges (f)i,1, and 'Do) for each vi E V. 

Then include the edge /Um) for each edge (vi, 2/j) e El. To construct D2, include 

the edges (i)j,1, and (i)j,2, f/i,3) for each vi E V. Then include the edge (Do , i)j,3) 

for each edge (vi, vj) E E2. 

Now, clearly if G1 is isomorphic to G2, then ai is isomorphic to 02. For each 

vertex vi of G1 that is mapped to vi of G2 in the undirected graphs, we map f/2,1 of 

01 to i3,1 of G2, v1,2 of G1 to of G2 and vZ,3 of G1 to f/j73 of G2. 

However, we must show that if 01 is isomorphic to G2, then G1 is isomorphic 

to G2. Assume that 01 is isomorphic to G2. Note that in the constructed digraph 

01 only the vertices ik1 where 1 < i < IV I have in-degree 0. From each v2,1, there is 

exactly one path of length 2. All others are length 1. This means if any isomorphism 

between G1 and 62 exists, then every v,,1 of ai must map to some of G2, and 

v1,2 and v1,3 of 01 must then map to i)i,2 and v1,3 of 02, respectively. 

Then the vertex v2 in G1 can map to vj in G2, and so G1 is isomorphic to 

G2. 



87 

This result is hardly surprising. After typing the proof, I found it given as 

an exercise in a textbook [4]. 

4.3. MINIMUM-WEIGHT ISOMORPHISMS FOR LTLE NETWORKS 

In Subsection 2.2, we saw that the Flip MCube and YAT cube are isomorphic 

to the Mobius cubes. This is an interesting isomorphism, because while the Mobius 

cubes have twisted edges that span up to n dimensions, the Flip Mcube and the 

YAT cube have twisted edges that span only 2 dimensions each. Using the standard 

isomorphisms, we can transform a network to an isomorphic network that has fewer 

twisted channels, or channels that twist across fewer dimensions. 

For limited classes of the LTLE networks, we can sometimes reduce the num­

ber of twists by transforming a LTLE network to another LTLE network. Theorem 

4.3.1 below gives some idea of how many twisted edges we can remove from such a 

network. 

Theorem 4.3.1 Let G = (B °, B1, A) be an n-dimensional LTLE network with B? + 

E {0, B? 1, Bi+1}. There is a n-dimensional LTLE network O = (B.°, El, A) 

which is isomorphic to G, and which has weights WH(M) < 2 and WH(.141) < 2 for 

1 < i < 71. Further, the l's in each column i of B° and El- will only appear in rows 

i and i + 1. 

Proof: This can be done by applying row addition transformations to each 

column from n to 1. This is computed by Algorithm MinimumWeightIsomorphism 

and is given in Figure 4.3. 

Because the initial network is defined with lower triangular matrices, Bn° and 

Bnl each have weight 1. For each iteration i, n 1 > i > 1 through the loop, the 
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Input: A n-dimensional LTLE network G = (B °, B1, A), where for 1 < i < n, 
B? + E {0,B41, B1+11. 

Output: A n-dimensional LTLE network G = (fi°, f31, A), where for 1 < i < n, 
B? < 2 and <2. 

Procedure MinimumWeightlsomprhism( G = (B °, B1, A) ) 
for i = n 1 down to 1 do 

if W(Bj+1) = 2 and B? + Bt = B1+1 
Add row i 1 to row i 2
 

end if
 
for j = i + 1 to n
 

if B9, 1 then 
Add row i to row j 

end if 
end for 

end for 
end procedure 

Figure 4.3. Algorithm MinimumWeightlsomorphism. 
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algorithm modifies columns i and i + 1 to guarantee that the weights of both B? 

and Bi are each at most two. 

The algorithm first checks if column B41 has weight 2. If it does and B11+1 = 

B? 13., the algorithm changes the weight of B1+1 to 1. In this way, each iteration 

forces B? and B differ by at most a single bit in row i + 1. The algorithm then 

forces B? to weight 1, with the 1 in row i, and forces Bi- to weight 2, with the l's 

in rows i and i + 1. 

At any point in the algorithm, the row addition will maintain the isomor­

phism to G and keep the LTLE network property. The addition of row i to higher 

rows does not affect columns i + 1 through n, because row i is zeroed in those 

columns the matrices are lower triangular. I 

Notice that all of the published LE networks are not only LTLE networks, 

but they also meet the conditions of the theorem above and so are isomorphic to 

networks with columns that have maximum Hamming weight 2. 

An advantage of using such a minimum-weight LTLE networks is that the 

physical layout of the network will be simpler, because channel twists will now occur 

across at most two dimensions. Fewer twisted channels also means that we can use 

a circuit layout that closely resembles the circuit layout for the hypercube. 

We can extend this algorithm to more general cases. Using a 

similar algorithm, a LTLE network G = (B °, B1, A) with B? B E 

{0, B41, Bi+i, B4k, M+0, 1 < k < n, can always be transformed to an iso­

morphic LTLE network G = (E°, B1, A) where W(B ?) < k and W(En < k, and 

where the l's in each column i of B° and B1 appear only in rows i through i+ (k 1), 

for i + (k 1) < I/. However, this may not be the absolute minimal weight network. 
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4.4. SUMMARY 

In this chapter, we have again demonstrated that the LE network model is too 

general for describing interconnection networks. It allows one network to have more 

than one matrix description. There is even strong evidence that there is no efficient 

algorithm for determining if two matrix descriptions describe isomorphic networks. 

This is true for matrix descriptions of either LE networks or LTLE networks. 

However, we did show a number of standard isomorphisms that could be used 

to to show that two networks are isomorphic. We also showed there is a efficient 

algorithm to determine if a LE network is isomorphic to a LTLE network, so that 

LTLE network results hold for these networks. Finally, we showed that at least some 

LTLE networks can be transformed to isomorphic LTLE networks with a minimal 

number of twisted edges. 
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5. ROUTING ALGORITHMS FOR DM NETWORKS 

In this chapter, we devise a method for computing a minimal routing path 

between a source node X and destination node on any LTDM network G = 

(B °, B1). We do this by computing a minimal expansion of X. + 17 over the column 

vectors of B° and B1. 

We show that the problem of computing a minimal expansion is intractable, 

even for DM networks with lower triangular B° and B1 matrices. We then show 

that certain subclasses of the DM networks have efficient algorithms for computing 

minimal expansions. 

These results on DM networks will be used in computing a general minimal 

routing algorithm for LE networks. 

5.1. DEFINITION OF MINIMAL EXPANSIONS 

Consider ZT, the n-dimensional vector space over {0, 1} with vector addition 

and scalar multiplication mod 2. Assume also that the set {B?, B1 : 1 < i < n} 

contains a basis for this vector space. It is possible, but not necessary, that B° and 

B1 are each a basis. 

Because B° U M contain at least one basis over 21, any vector je can be 

represented as a linear sum of these basis vectors. Let each ai E {0, 1} and 13i E 

10,11. Then: 

= E(aiB? + AM), (5.1) 
i=i 

Clearly, we can represent a vector X by the set of vectors B° and rn which have 

nonzero coefficients in this sum. 
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Definition 5.1.1 Sc)?) C {B?, B1 : 1 < i < is an expansion of )? if the 

equality in Equation 5.1 is true, with ai = 1 iff E S(X) and = 1 if E S(X). 

For convenience, S(X) is denoted S when )? is obvious. Any t E S(X) is called a 

term of S. 

Because there can be more than one subset of B°, B1 that can form a basis 

over there can be more than one expansion of a vector. Several different linear 

sums, each with possibly a different number of vectors, can add up to the same 

vector X. For this reason, we define the following: 

Definition 5.1.2 For a vector )-e, the weight of an expansion S() is the the 

cardinality of S(.). 

Equivalently, the weight of an expansion S(56 is the number of nonzero a's 

and /(i's in that expansion. An expansion can have a weight of up to 2n. But B° U B1 

contains a basis over ZT, and so every vector over Z2 clearly has an expansion of 

weight of n or less. 

Definition 5.1.3 For any vector )?, let a minimal expansion of )? be an ex­

pansion with least weight. For any vector )?, we let W (X) denote the weight of a 

minimal expansion of ). 

Certainly W(Z) is well-defined since there are only a finite number of ex­

pansions. However, there may be more than one minimal expansion for a particular 

vector fe under B° and B1. 
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5.2. USING MINIMUM EXPANSIONS TO ROUTE ON DM NET­
WORKS 

Assume that for a connected DM network G = (B °, je and Y are the 

source and destination nodes of a message. Any expansion SP? + ) is all that is 

necessary to compute a routing path. 

At each step k with 1 < k < ISI in the routing path, we only add Btkk E S 

to Xk = El1=1 143 to go to the next node X.k+1. Every step is legal, because 

every node .4 would have the channels (Yk, B°) and (?k, Xk + B1) defined, 

and the routing path correctly terminates at -V through mod 2 addition because: 

I sl 

X +> Btkk ES =Y 
k=1 

To route minimally, we only need to compute a minimal expansion. For a 

DM network G = (B °, B1), a minimal expansion S(X +f) defines one or more 

minimal routing paths between X' and S.; , because addition over .Z; is commutative. 

The length of the computed path will be I SI < n. A term will not appear 

more than once in a routing path, so we can represent the expansion S in as little 

as 2n bits, with each bit representing the inclusion or the exclusion of one term. 

Let the time to compute a minimal expansion be T(n) bit operations. We 

can compute a minimal expansion at the source node, and forward it along with 

the message to keep from repeatedly recomputing S at each address. We can also 

forward the last term used in routing, so that the routing algorithm doesn't have to 

check all 2n bits at each routing step. If we do both of these, the distributed run 

time at each node will be at worst O(T(n)) bit operations, because we compute S 

at the first node. The total run time will be 0(T(n) + n) bit operations at most 

a constant number of bit operations at each succeeding node. 
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We have not yet examined an algorithm to efficiently compute a minimal 

expansion S(X + Y), so we don't yet know what T(n) is. 

5.3. INTRACTABILITY OF THE MINIMAL EXPANSION PROBLEM 

The problem of finding a minimal expansion is important if we wish to quickly 

compute a minimal routing path on a given DM network. We define the minimal 

expansion problem below: 

Definition 5.3.1 ME-DMN: Minimal Expansions in DM Networks: 

Instance: An n-dimensional DM network G = (B °, B1), source and desti­

nation addresses je ,f E Z2 , and an integer K with 1 < K < 2n. 

Question: Is there a expansion S('' +I") C {B °, B1} with ISI < K? 

This problem is very similar to another problem, that of finding a minimal-

weight solution to a set of linear equations over Z2. 

Definition 5.3.2 COSET WEIGHT: [9] Coset Weights over 

Instance: A binary matrix A, a binary vector y, and a non-negative integer 

w. 

Question: Is there a vector x of Hamming weight < w such that xA = y. 

Theorem 5.3.1 CO SET WEIGHT is NP- complete. 

Proof: (See [9]). 

Theorem 5.3.2 ME-DMN is NP- complete. 

Proof: ME-DMN E NP, because we can guess an expansion S and verify 

that each B, SC {B °, B1}, and that E Bt E s=fe-Ef. These operations can 

be done in a polynomial number of bit operations. 
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COSET WEIGHT < ME-DMN, because we can choose the dimension of G 

to be max(n, m), then set B1 to d, and set B° to A, filling the extra columns and 

rows with zeros, and finally choose X + Y = y and K = w. Then a solution to 

ME-DMN of weight K is also clearly a solution to COSET WEIGHT of weight w. 

A minimal expansion is always a minimal routing path on a DM network, so 

the problem of computing a routing path on a DM network is also NP-complete. 

5.4. A MINIMAL EXPANSION ALGORITHM FOR LTDM NET­
WORKS 

Although the problem of computing minimal expansions is NP-complete, we 

can still design an efficient algorithm for a large number of DM networks. We will 

show that breadth-first search techniques will require at most a polynomial number 

of search states in many cases. 

The obvious method for finding the shortest path between two vertices in a 

graph is to find the destination vertex using breadth-first search from the source 

vertex. This takes in the worst case 0(1171 + IED operations for a general directed 

graphs G = (V, E), because every vertex and edge in the graph might be examined 

in the search. If we try this approach for a DM network, we may require up to 

O(2"` + n2n) = 0(n2n) search operations, which might each take 0(n2) bit operations 

to compute (the time to compute the address of a neighboring node). 

If we restrict ourselves to only lower triangular matrices for B° and B.', 

where B9, BZi = 1, then the search space can be reduced considerably. With 

lower triangular B° and B1, only the terms B?, Bi, . . . , B?, 131 can set Xi = Y. 

All terms B° with j > i cannot affect X.
3 

This affects our search for an expansion X + Y. Consider the search space 

as a tree structure that we construct, with a root node X. Each vertex of the tree 
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at level i is labeled with the address of a node .7?2 in G. Each edge (Xi, jei+i) is 

labeled with either 0, B?, B!, or B? .13?, which will be the mod 2 sum Xi + fei+i) 

The edge will be weighted with the number of terms in its label, which is either 0, 

1, or 2. 

From a node 1717 in the i-th level of the search, we need to examine only how 

B? and Bt can be included in the expansion from TT/. 

If (I/V + 2.)i = 1, then there must be an odd number of B? and 13, in the 

expansion. The only minimal choices are B? and fi! themselves. We compute the 

addresses of IT7+ B? and 171.7+ B!, insert them as nodes at level i +1, and recursively 

search from them to ft using only terms B?", B41, , B7,1. 

If (Ti T + f)i = 0, then there must be an even number of B? and Bi- in the 

expansion. The only minimal choices are 0 and B? + We compute the addresses 

of W + 0 and T'7 + B? + insert them as nodes at level i + 1, and recursively 

search from them to vecY using only MN, , B?, . 

This approach takes 0(2n) search operations, which can each take 0(n) bit 

operations to compute. If we construct this "expansion search tree" while we are 

searching it, we can reduce the number of vertices we construct by querying whether 

a vertex with a given address already exists in the tree before we insert it. If it 

doesn't exist, we insert a new vertex in the graph and add a new edge from our 

current vertex to it. If it does exists, we don't insert a new vertex; instead, we only 

add an edge from the current vertex to the existing vertex. 

The constructed expansion search tree will be a directed graph of depth n+1. 

This graph will have label (.ke, 1) as the "root" vertex and one "leaf" vertex with 

address (Y, n + 1). Algorithm ExpansionTree in Figure 5.1 will compute an expan­

sion search tree D. Figure 5.2 shows an expansion search tree between addresses 

X = (11011) and Y = (10110) for the Folded Hypercube of [6] of dimension 5. 
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Input: A n-dimensional LTDM network G = (B °, 131), a starting address X and a 
destination address Y. 

Output: A weighted, directed graph D = (V, E), where each path from the vertex 
(X, 1) to (f, n + 1) corresponds to an expansion of je + Y. 

Procedure ExpansionTree( G, X, Y ) 
v 1)} 
E 
for each i : 1 < i < n do 

for each (W. , i> E V do 
if W = Y then begin 

17(.11r,i+1),(1k+B?+131,i+1)} 
E < EU (W. , , (117. , i 1) , , 

((W, , (W B? + , i 1) , 2)} 
end if 
if Wi Yi then begin 

<VUlr,i+1),(T/V+B,i+1)} 
E E U (W. , , (W. , i 1) , , 

((;17' , , (W. + B , i 1) , 1)} 
end if 

end for 
end for 
return D < (V, E) 

end procedure 

Figure 5.1. Algorithm ExpansionTree. 
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<11011,1>
 

B0_1+ B1_1
die.................11....../..---­

<11011,2> 0 <10011,2>B12
 

B0_2
 
B0_2+B 1_2
 

<10011,3> 0 <10111,3>B1_3
 

B0_3
 B0_3+B1_3
 

<10111,4> BO 4+B1_4 B0_4 <10101,4>
 

0
 B1_4
 

<10111,5> <10110,5>
 

Figure 5.2. An expansion search tree between addresses X = (11011) and 
Y = (10110) on a 5-dimensional Folded Hypercube. The minimal path is shown 
in bold. 

http:die.................11
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-1/ii 

Theorem 5.4.1 The algorithm Expansion Tree( G, X, Y ) correctly computes a 

minimal expansion search tree D. 

Proof: The algorithm will eventually terminate, because there are at most 

n + 1 levels in the tree, and for each level i, there are at most 2n-i+1 vectors 

which have = yi with i < j < n, and the algorithm generates at most one vertex 

(W , i) for any one of these. 

The algorithm terminates with the correct result. The algorithm's loop in­

variants are for any vertex (W. , i) E V: 

1. There is a path from (X, 1) to (W, i). 

ti 
2. This path corresponds to an expansion S (X + VV) with a weight equal to the 

path's weight. 

3. For (W., i), Wi = Yi with 1 < j < i 1. 

It is not hard to show that if the algorithm inserts the edge ((l/V, i) , i + 1) , d), 

for some 17 E W + {0, B ?, B? + , then each of these conditions hold for the 

new vertex 07, i + 1). The only vertex that meets the third condition above when 

i = n + 1 is (f, n + 1). 

It is also clear that all paths in D correspond to some expansion S + 

and each path has a weight equal to its corresponding expansion's weight. 

There are no expansions that S (X + I") that do not define a path in D. 

Assume that there is such an expansion S. 

At some i with 1 < i < n, there is a path from (X, 1) to (W., i) that is 

defined by the set of terms 03/1 E S : 1 < j < i 11, but either: 

1. S contains either B? or Bi (but not both), but there are edges from (W, i) 

to (4V, i + 1) and Oil' + B? + , i + 1) . 
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2. S contains neither B? nor Be', but there are edges from (W , i) to 

(W. + B?, i + 1) and (1717 + B1 1 i + 1). 

But in the first case (je + W )1 = 0, so S cannot contain just B? or Bi- because S is 

an expansion of X + Y. In the second case (.)? + I/V)i = 1, so S must contain either 

B? or B? (but not both) because again S is an expansion of X + 

We can find a minimal expansion from D, by finding a minimally weighted 

path from V, 1) to (Y, n + 1). This can be done using a breadth-first search 

from V, EachEach edge in D corresponds to zero, one or two terms in one or 

more expansions of + 17., so a minimally weighted path corresponds to a minimal 

expansion of X + Y. Once we have found a shortest path in D, we can derive its 

corresponding minimal expansion quickly, by looking up which terms correspond to 

each channel in the path. 

What is the largest size that the search tree D can attain? At any level i, 

there can be at most 2n different nodes, because D has two branches from every 

node. The vertex (1/71.7, i) has the property that 14; = 0 for 1 < j < i 1, so that 

the vector T-4.7 is also limited to 2n4-1-' different values. Maximizing under these two 

constraints this shows the largest possible number of vertices at any level is 2Lni2J 

and summing over all possible vertices gives an upper bound of IDI = 0(2n/2). 

Clearly this is an exponential number of vertices, and will lead to an expo­

nential run time on any shortest path algorithm. We should consider any conditions 

that limits ID1 to a polynomial size, for instance, the number of linear combinations 

that can be made with B° and B1. 

Theorem 5.4.2 Let G = (B °, B1, A) be an n-dimensional lower triangular matrix, 

let D = (V, E) be the expansion search tree and let the matrix Hi be defined as: 
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B °1	 B °2 B9 Bi 1 BL2 

B41,1	 B41,2 . Bill+ .131-+ 1 ,1 B1+1,2 

B0	 Bn0,2 BnO,i Bnl B1 B1 

Then IV I is less than the sum of the sizes of the column spaces of Hi for 1 < i < n, 

that is: 

2i 

I VI E	 E a; (Ho; : aj E {0,1} } +1 
j=i 

Proof: For a given i, any vertex (W, i) has for aj, I3 E {0,1}: 

=	 E aj.BY ,3;B31 
j=1 

W. has the property that W.; = 0 for 1 < j < i 1, so all the vectors in vertices at 

level i will be the same in the first i 1 indices. If we ignore the first i 1 indices 

of the columns of B° and Bl, then we only need to know how many different values 

a linear combination of the remaining indices can make. This is exactly the size of 

the column space of Hi above. Finally, there is only one vertex (I", n + I). 

This is a rather loose upper bound, useful only for bounding the number of 

vertices in D to order. 

For most networks, the number of distinct vertices appearing at each level 

of D is a fairly small constant. The next theorem uses that fact to limit the run 

time of a minimal expansion algorithm to a constant times 0(n2), for most LTDM 

networks. 

Theorem 5.4.3 Let G = (B°,131) be an n-dimensional LTDM network. If the 

expansion tree can have at most 0(k) vertices at any depth, for some constant k, 

then a minimal expansion algorithm takes 0(kn2) bit operations to compute. 
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Proof: The algorithm has three stages: generating the expansion search tree 

D, computing a minimal weight path in D, and deriving a minimal expansion from 

the minimal weight path. 

The first stage generates the D. Each vertex in D takes 0(n + log n) bit 

operations to construct (a mod 2 vector addition and an integer increment). We 

can then divide the vertices into n + 1 groups or "buckets" by their depth in D (the 

second component of each node's label). Each group then always has at most 0(k) 

vertices (by the assumptions in theorem's conditions). Inserting a new vertex into 

D takes at most 0(n) bit operations, because we need 0(k) vector comparisons to 

prevent redundant vertices from being inserted. Inserting a new edge into D takes 

0(log k) bit operations, because there are at most 0(k) vertices to point to. The 

total number of bit operations to construct the tree is: 

0(kn) x 0(n) + 0(kn) x 0(log k) = 0(kn2) 

The second part of the algorithm uses a breadth-first search algorithm on D to find a 

minimal weight path from (X, I) to (3-7 ,n, + l>. This can be done quickly level-by­

level. Assume that we have already computed the distance of every node in level i 

from (X, 1). Consider an edge ((W, i , > , (17, i + 1) , w). We can compute distance 

of 17 from X by adding the distance of 1;1-'7 and the edge weight w. We compare this 

value to any previously computed distances of V, and keep the minimal for c. 

This operation takes 0(log k) bit operations for a pointer dereference to find 
ti 
17, plus 0(log n) bit operations to do a constant to integer addition, and an integer 

comparison. The size of the integer is bounded by log n because the maximum 

distance is n. Because there are at most 2k edges per level, the total number of bit 

operations is: 

0(kn) x [0(log n) + 0(log k)] = 0(knlogn) 



103 

We can keep track of a minimal path to each node by having each node keep a 

(log k)-bit pointer to its parent node that is closest to the root. When the minimal 

distance to each node has been computed, the chain of back-pointers from (Y, n + 1) 

to (X, 1) describes a minimal weight path (in reverse). This record-keeping does 

not change the complexity of the algorithm. 

The final part of the algorithm computes and stores the terms that correspond 

to edges on the minimal weight path. The terms can be looked up by following 

the path found by breadth-first search. The terms can be looked up by pointer 

dereference log k bit operations per term and compactly stored using 1 bit per 

term. The total number of bit operations to compute the expansion is: 

0(n) x [0(1) + 0(log k)] = 0(n log k) 

The total number of bit operations overall is: 

0(kn2) + 0(kn log n) + 0(n log k) = 0(kn2) 

I 

5.5. A LTDM NETWORK ROUTING ALGORITHM 

Now we use the results from the minimal expansion algorithm to produce a 

routing algorithm for LTDM networks. 

We present the steps to route minimally on a DM network in Algorithm 

DoubleMatrixRoute in Figure 5.3. We assume that the call to BreadthFirstSearch 

(not listed) does a standard breadth-first search on D and returns a minimal path 

P. We also assume that the call to PathToExpansion (not listed) converts P to its 

corresponding expansion S. Because we know the run time to compute the minimal 

expansion, we can compute the run time of Algorithm DoubleMatrixRoute. 



104 

Input: A n-dimensional DM network G = (B °, B1), the current address 11*/, a start­
ing address X and a destination address Y. 

Output: The next neighbor to route to from IV*. 

DoubleMatrixRoute( G = (B °, B1), 1-4 , X, 
if l/V = Y then 

accept message 
if IT/ = je then
 

D ExpansionTree(G,
 
P BreadthFirstSearch(D)
 
S PathToExpansion(P)
 

else
 
remove Bt from head of S
 
route from .fe to je + gib
 

end if 
end procedure 

Figure 5.3. Algorithm DoubleMatrixRoute. 
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Theorem 5.5.1 Let G = (B °, B1) be an n-dimensional LTDM network. If the 

expansion search tree D has at most 0(k) vertices at any level, for some constant 

k, then the distributed run time of Algorithm DoubleMatrixRoute is at most 0(kn2) 

bit operations per processor and the total run time is at most 0(kn2) bit operations. 

Proof: This is trivially true, because the computation of D dominates the 

run time of the algorithm, and forwarding through the network will take 0(1) bit 

operations per node. Since the routing computation is done entirely at the source 

node, the routing computation will dominate both the total and distributed com­

putation times. 

This gives a strict linear bound on a minimal expansion algorithm's run time, 

for all of the published LTLE networks. 

Corollary 5.5.1 For the Folded Hypercube of 1:44 and [6] and and the Enhanced 

Hypercube of [54] of dimension n, the distributed run time of Algorithm DoubleMa­

trixRoute is at most 0(4n2) bit operations per processor and the total run time is at 

most 0(4n2) bit operations. 

Proof: Examining the lower triangular matrix description of either of these 

networks reveals that the size of the column space of any H 1 < i < n is never 

more than 4, by Theorem 5.5.1. Both networks have at most 0(4n) vertices in the 

expansion search tree, and at most 4 vertices at any level of the expansion search 

tree. 

By Theorem 5.5.1, the algorithm will take at most 0(4n2) = 0(n2) bit 

operations to find a minimal expansion on either the Folded Hypercube and the 

Enhanced Hypercube. 

The best algorithms for the Folded Hypercube and the Enhanced Hypercube 

can compute a routing in 0(n) and 0(n2) bit operations, respectively. Though the 
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asymptotic run time order of our algorithm is larger, it has the advantage that it 

can efficiently route on a large number of LTDM networks. 

5.6. NONREDUNDANT MINIMAL EXPANSIONS 

Sometimes a minimal expansion of some vector .fe can contain both B? and 

for some i. Since this kind of expansion may be the only minimal expansion, 

any algorithm for finding minimal expansions must check for such an occurrence. 

If we could show conditions for which .8° and Bi would never occur together 

in a minimal expansion, then the expansion tree algorithm would be simpler, be­

cause it would never have to check for these "redundant" terms, and the resulting 

expansion tree would be smaller. 

If an expansion S(X) is a multi-set, where the same element can appear in 

S more than once, then we can define "redundancy" as: 

Definition 5.6.1 For an n-dimensional DM network G = (B °, B1), an expansion 

of a vector S(X) is redundant iff S contains both B? and BI- for some index i, or if 

S contains more than one occurrence of B? or 13,1 . Otherwise, S is nonredundant. 

The terms B? and .B1 are called redundant terms if they appear together or each 

appear more than once in S. 

For some DM networks, the only minimal expansion is a redundant one. For 

instance, for the matrices: 

1 0 0 0 1 0 0 0 

0 1 0 0 1 1 0 0 
B° = B1 = 

0 0 1 0 1 0 1 0 

0 0 0 1 1 0 0 1 

The only minimal expansion of (0111) is B° Bl. 
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Because some DM networks have redundant minimal expansions, we need to 

ask what necessary and sufficient conditions guarantee that no redundant expansions 

can exist in a network. 

Theorem 5.6.1 A DM network G = (B°, B1) contains no redundant minimal ex­

pansions if for all i, W (B? + < 1. 

Proof: Assume that SP-e) is a expansion that contains redundant terms at 

index i. Then either B° or B1 appear more than once each, or B° and Bl appear 

once each together. 

If B° or B1 appear more than once each, we can immediately remove pairs 

of Bt that occur more than once, because Bt + B = 0. So S cannot be minimal. 

If B° and B1 appear once each together, then either W(B? + = 0 or 

W(B? + = 1. 

If W (B? + fin = 0, then 13? = Bi and the expansion S = S {B?, Bn is 

smaller by two terms. 

If W(B? + = 1, then: 

B ° + = t E B41, , B411 

and the expansion S = S {B? , + {t} is smaller by one term. So S cannot be 

minimal. 

Now assume G contains no redundant minimal expansions. The minimal 

expansion of B? + BI- must have weight less than 2, or B? + B would be its own 

redundant minimal expansion. If it has weight 0 or 1, then the only minimal expan­

sions must be in the set 10, /3°, B1 1. 

For LTDM networks, the necessary and sufficient conditions can be restricted 

further to the condition that for all i, B? + Bi = t E {0, B:?+1, , B°, B7,1}. 
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Notice that for these networks B ?2 = 1, which implies that for as,, )3.; E 

{OM: 

n 

B ? +Bi = E aiB? + Al (5.2) 
j=i+i 

There are some LTDM networks that have redundant minimal expansions, but al­

ways have at least one alternate nonredundant minimal expansion for every source 

and destination address. The summation in Equation 5.2 allows us to specify which 

LTDM networks always have at least one nonredundant minimal expansion between 

any two addresses. Such networks will allow a nonredundant expansion tree algo­

rithm to be used on them even if redundant minimal expansions exist. 

Theorem 5.6.2 Let G = (B° ,B1) define a n-dimensional LTDM network. For any 
ti 

, there will always be a minimal expansion S(X) with no redundant terms iff for 

all i with 1 < i < n in Equation 5.2: 

E a, +/j <2 
j =i +1 

Proof: The proof is by induction on index i.
 

Base Case: For i = n, Bn° = B. Then:
 

E ai + =0 
j=n+1 

And the only nonredundant minimal expansions possible are S E {{}, {Bn°}, {B7,1} 1. 

Inductive Hypothesis: For any ; = min{ k : xk 1} with i > i and 

< 2, there is an minimal expansion S(X) with no redundant terms. 

Inductive Step: Let i = min {k : Xk 1} and W, < 2. Find a minimal 

expansion SPe). S cannot have more than one occurrence of the term B?, because 

duplicate terms of B? can be paired off and removed without cost. The same is true 

of 
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A single term B° or Bt in S is nonredundant. We can inductively find a 

nonredundant minimal expansion and so S(X) would be equal to B? + + B?) 

or Bi- + S(.? + Bn, respectively. 

IfB °ESAB, ES, then by 5.2: 

Wi(B? + = Wi( E ai./3?+oirm 2 
j=i+i 

S cannot be minimal if Wi(B?+M) < 2, because B? and /31 could then be replaced 

by the fewer terms in a minimal expansion of their sum. So B? + B, = Bi + 

where i < j < k < n. 

We can produce another expansion S' (X) = S(X) {B?, Bt + {B311', BD. 

= 0, so the smallest nonzero component of je is ; > i. Thus we can then 
ti

inductively find a nonredundant minimal expansion S for S, and then set SP?) = 

,§(-e). 

If we restrict LTDM networks to have only nonredundant minimal expan­

sions, then we can show several properties that these networks have: 

Theorem 5.6.3 Let G = (B°,13') be a LTDM network, and for all i with 1 < j < 

n, let W (B? + < 1. Then for a vector X. , a minimal expansion S(X) has: 

1. I f i = max{k : Xk = 1} then V j,1 < j < i : st S(X) and S(X). 

2. If i = max{k : Xk = 1} then either B? E S(?) or 131 E S(X). 

3. If i = max {k : Xk = 1} and cb E {0,1}, then W(?)	 1 < W(_k* ± 13?) < 

W(?). 

Proof: We deal with each property in turn: 

1. Assume that there are one or more terms with indices less than i in a minimal 
ti 

expansion SP?). The lowest indexed of these is at some position j. Then only 
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the terms B.? and Bi- can affect the component Xj. But because Xi = 0, there 

must be an even number of terms By and by mod 2 addition. But because 

W(B.? < 1, two or more terms at index j can be paired off and each 

pair replaced by fewer terms, by Theorem 5.6.1 above. Then any expansion 
ti

of )? that uses a term at position j has at least W(.k.) + 1 terms and so is 

non-minimal. 

2. By the arguments above, no term with index less than i is in S. Any term 

B E S with index j > i will have Bt = 0 and cannot affect index i in the 

sum, by definition of the LTDM networks. So either B? E S or rn E S. 

3. We can express )? as B? + B? + X = B?	 + B?), so a minimal expansion 

for )? cannot have more terms than 1 term for B?, plus the number of terms 

in a minimal expansion for (X. B?). The same holds true for M. 

We will use these properties to construct a expansion search tree algorithm for 

a nonredundant LTDM network. This will be similar to Algorithm ExpansionTree 

in Figure 5.1, but will reduce the number of vertices in the search space. 

Consider a minimal expansion on the LTDM network G = (B°, B1) with 

source address .k and destination address 3-1 . By Theorem 5.6.3, the smallest indexed 

term B with i = min( {k : X2 0 Yin must affect ()?+37 )i in the expansion. Further, 

no .13`k with 1 < j < i can be used. When we search for a minimal expansion 

SP? + ), this observation limits us to only two choices for the smallest indexed 

term in the expansion: B? and B. We can then recursively search from both .)?+B? 

and X + Bt for the shortest path. 

Because there are at most two choices at every vertex, we have a binary 

search tree. Because adding B? or Ell to X corrects the smallest bit (X -FY)i = 1, 
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the depth of any branch of this search tree is at most n. Thus an upper bound on 

the number of vertices in the nonredundant expansion search tree is 0(2n). 

As before, this upper bound can be reduced considerably, by querying if we 

already have constructed a vertex and re-using it if we have. 

Note that the address of every vertex at level i of the tree has the bits 

1, , i corrected to bits 1, , i of Y. There are 2n-i possible combinations of bits 

i +1, , n, so from level 1 to level n/2, there are at most 2i distinct vertices at each 

level, and from level n/2 + 1 to level n, there can be at most 2' distinct vertices. 

The total number of vertices in the tree is then 0(2n12) instead of 0(22n0). 

Algorithm NonredundantExpansionTree in Figure 5.4 will compute a non-

redundant expansion tree. The the proof of correctness is similar to the one in 

Theorem 5.4.1, so it won't be repeated here. However some differences should be 

noted. 

This algorithm generates only vertices (Tif. , i) where i > min ({k : Xk # Yk} 

n + 1) and Wj = Yj for 1 < j < i, and Wi Y. Since our previous algorithm, 

Algorithm ExpansionTree, allowed nodes with either W, Y, or W2 = Y, Algorithm 

NonredundantExpansionTree generates at most half the vertices that ExpansionTree 

does. This will often be even smaller than half, because the starting vertex is now 

(fe, min ({k : Xk Yk} n + 1)). 

All the edges now correspond to only one term and so all edges have the same 

weight. This will simplify the depth-first search algorithm for a minimal expansion 

in the expansion search tree. 

Algorithm NonredundantExpansionTree can be used in place of Algorithm 

ExpansionTree in computing minimal routing paths on a nonredundant LTDM net­

work. The only change to the routing algorithm will be the generation of the search 

tree. Though Algorithm NonredundantExpansionTree has the same asymptotic run 
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Input: A n-dimensional LTDM network G = (B °, B1), a starting address je and a 
destination address Y. 

Output: A directed acyclic graph D = (V, E), where each path from the vertex 
(X, min ({k : Xk Yk} n + 1)) to (Y, n + 1) corresponds to a nonredundant ex­
pansion of X + Y. 

Procedure NonredundantExpansionTree( G, X, 1-7 ) 

V < {(fe min ({k : Xk Yk} n + 1))} 
E 
for each i : 1 _< n do 

for each (W, i E V do 

j 4- min + BNOfk},n+1) 
4 V U + /3T,j)} 

E 4 E U (W, , (lk + , j)) } 
j 4 min ( k : Bnk fk} ,n +1) 

< V U (CV' + B , j)} 
E E U ((W. , , (W + Bj , j))} 

end for 
end for 
return D 4 (V, E) 

end procedure 

Figure 5.4. Algorithm NonredundantExpansionTree. 
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<11011,2>
 

<11011,2> <10011,2>
 

B0_21 B12
 

<10011,3> <10111,3> 
B13
 

B03
 
<10101,4>
 

B0_4
 

B1 4
 

<10111,5> <10110,5>
 

<10110,6>
 

Figure 5.5. A nonredundant expansion search tree between addresses X = (11011) 
and Y = (10110) on a 5-dimensional Folded Hypercube. We include the vertices of 
the redundant expansion for comparison. 

time order (in the worst case) as Algorithm Expansion Tree, it can be used to reduce 

the number of bit operations by half or often more. 

Both the Folded Hypercube and the Enhanced Hypercube can be represented 

using a nonredundant DM network description, and so can use Algorithm Nonre­

dundantExpansionTree. Figure 5.5 shows a nonredundant expansion search tree for 

the Folded Hypercube cube of dimension 5. 
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5.7. SUMMARY 

The problems of minimal point-to-point routing on DM networks and on 

LTDM networks are both NP-complete. This strongly suggests that a polynomial 

run time minimal routing algorithm does not exist. 

For LTDM networks, we were able to devise routing algorithms that had a 

polynomial run time in a large number of common cases. These algorithms have 

total run time of at worst O(kn2) bit operations, compared to the hypercube's total 

run time of 0(n) bit operations. While polynomial, our minimal algorithms are 

not highly efficient, because they require a large amount of pre-computation at the 

source node. 

We were able to show that for a subclass of LTDM networks those with 

nonredundant minimal expansions we could simplify the algorithm and reduce the 

size of the search tree by half. This still required a large amount of pre-computation 

at the source node, though reduced the run time by a constant factor. 

The results in this chapter will be used in the next chapter, where we consider 

minimal routing for the LE networks. 
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6. ROUTING ALGORITHMS FOR LE NETWORKS 

In the preceding chapter, we showed that a minimal expansion of X + f 

can be used to compute a minimal routing path from )? to f on a LTDM network 

G = (B °, B1). In this chapter, we expand those results to include LTLE networks. 

In general, the computation of a minimal expansion not only allows us to 

compute a minimal path between fe and ft for a DM network G = (B °, B1), but 

it also allows us to find a lower bound on the length of a path on a LE network 

G = (B°, B1, A), as the theorem below shows: 

Theorem 6.0.1 Let G = (B °, B1, A) be a connected n-dimensional LE network. 

Further, let je be a source address and Y be a destination address. Then the weight 
ti 

of a minimal expansion S(X d-f ' ) is a lower bound on length of the path from )-( to 

Yon G. 

Proof: Because the DM network G = (B°, B1) contains the LE network 

a = (B°, Bl, A) as a sub-network with the same number of nodes but fewer 

channels, the path from X to f on 6 will be as long as or longer than the path 

from X to f on G. 

Unfortunately, we may not be able to directly apply a minimal expansion 

S(X + Y) as a routing path between .)? and f on a LE network G = (B °, B1, A). 

The expansion S may not define a path if the terms of the expansion are applied in 

the wrong order, or the expansion may define no legal path at all. 

In this chapter, we consider the complexity of routing on a LE network. We 

show that the general problem of routing on a LE network is at least NP-hard, 

and for restricted cases is NP-complete. We also use a modified version of minimal 
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expansions to apply the LTDM routing algorithm in the previous chapter to LTLE 

networks. 

6.1. THE COMPLEXITY OF ROUTING IN LE NETWORKS 

In this section, we consider the complexity of minimally routing on a general 

LE network. We will show that the general problem is NP-hard, and that a restricted 

version of the problem is NP-complete. We first define the problem of minimal 

routing: 

Definition 6.1.1 MR-LEN: Minimal Routing over LE Networks: 

Instance: An n-dimensional LE network G = (B °, B1, A), source and des­

tination addresses j j,2 E ZT and an integer bound K > 1. 

Question: Is there a path R from jj to Y in G, where 'RI < K? 

As in Chapter 2, we are unable to put a polynomial upper bound on the 

diameter of a LE network. Our inability to show that the maximum length of all 

minimal paths is polynomially bounded makes it impossible for us to show that 

MR-LEN E NP. We can avoid this problem by arbitrarily limiting the number of 

times each term can appear as a step in the routing path: 

Definition 6.1.2 LMR-LEN: Limited Minimal Routing Over LE Net­

works: 

Instance: An n-dimensional LE network G = (B °, Bl, A), source and des­

tination addresses fe, Y E ZT, and an integer bound K with 1 < K < 2n. 

Question: Is there a path R from fe to Y on G, where each term from B° 

and B1 defines at most one channel in R and IRI < K? 
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We show that LMR-LEN is NP-complete by showing that there is a 

polynomial-time transformation from an instance of the dominating vertex set prob­

lem. This problem was shown to be NP-complete in [33]: 

Definition 6.1.3 DVS: Dominating Vertex Set: 

Instance: A directed graph G = (V, E), and an integer B with 1 < B <IVI. 

Question: Is there a set U C V, lUI < B so that Vv E {V U} : 3u E U : 

(u,v) E E? 

The original problem statement states that G is an undirected graph. But 

the case where G is a directed graph is trivially proved to be NP-complete by taking 

an instance of G and replacing each undirected edge (X, Y) with two directed edges 
ti 

,f ) and (Y, fe). This transformation of an instance of DVS on undirected graphs 

into an instance of DVS on directed graphs takes 0(1E1) operations and the resulting 

directed graph clearly has a dominating vertex set of size B or less if the undirected 

graph does. 

We can use this result to show that there is probably no polynomial-time 

algorithm for limited minimal routing: 

Theorem 6.1.1 LMR-LEN is NP- Complete. 

Proof: Proof is by transformation from DVS. 

LMR-LEN E NP: Guess a routing path R from X to Y. Verify first that 

each adjacent pair of nodes in the routing path are joined by channels in the network. 

Second, verify that the starting node of R has address X and the ending node of R 

has address andand 1R1 < K. There are at most 2n routing steps, and the verification 

steps on each take 0(n2) bit operations (a matrix-vector multiply, a vector addition 

and a vector comparison), so LMR-LEN E NP. 
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DVS < LMR-LEN: Let the directed graph G = (V, E) and the bound 

B < 1V1 be an instance of DVS. 

Also let B°, B1 and A to be 21V1 x 21V1 matrices. Then define B° as: 

1, i = j
B°2i,2j = B°2i-1,2j-1 = 

0, i j 
B2oi Bo .-1,2j 2i,22-1 

For 1 < i < 1V1 and 1 < j < 1V1. 

Define B1 as: 

pp]. n1 
2i,2j '-' 2i,2j-1 '2i-1,2j-1 

0, i j 
- 0 

For 1 < i <IVI and 1 < j 

Define A as: 

1, (24, Vj) E E 
A2i,2j-1 = A2i-1,2j-1 = 

0, (vi, vi) E 

A2i,2j = A21-1,2j = 0 

For 1 < i < 21V1 and 1 < j < 21V1. Let )? = (1111 ...11) and let Y = (0000 . 00), 

and let K = L +IV' 21.171. 

The transformation is complete. Now we show that a solution for LMR-LEN 

exists if a solution for DVS exists. 

Note that for i and j, B1_1 and B1_1 both depend on Mi_1 and if 
(vi, vi) E E, because (AB2 _1)2i_1 = (A4)2i_1 = 1. But B2i_1 and B2i_1 never 

depend on B2i_1, because (AB21j_1)2i_1 = 0, always. 

Initially each B11_1 does not define a channel from either je or Y, and so 

cannot be used as a routing step. Let (A/4_1)2i_1 = (A/4)2i_1 = 1. Then B2i_1 
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can be used as a routing step if either ./A3_1 or B° first used as a routing 

step. This corresponds to the idea that a vertex v, can be a dominated vertex if a 

dominating vertex vi is adjacent to it. Let (A.Mi_1)22_1 = (AA)2i_1 = 0. Then 

/314_1 cannot be used as a routing step after either /4_1 or are used. This 

corresponds to the idea that a vertex v, can never be dominated by vertex vi if vi 

is not adjacent to vi. 

If there is a dominating vertex set over G of size < K vertices, then there 
ti 

is a path from )? to 1" of length less than IV! + K. This can be constructed by 

Algorithm ConstructTransformPath in Figure 6.1. 

This algorithm takes K = IV I + B steps. This is two steps for each vertex 

in U and one step for each vertex not in U. We mark each vertex not in U as it is 

used in a routing step, so that each vertex is never considered more than once. 

If there is no dominating vertex set over G of size < K vertices, then there is 

no way to construct a path. No matter which set of vertices we choose for U, there 

will be at least one vertex v, that is not dominated by any vertex in U. Hence B21_1 

will not define any channel (Ti, 1T7 + B22_1) on the path R and 2 steps instead of 1/ 

will be required to correct indices 2i 1 and 2i. 

Example: We apply the transformation to the instance of DVS to graph G 

defined by the adjacency matrix below, and the bound L = 2: 

0 1 0 1 

1 0 0 0
G= 

0 1 1 0 

0 1 1 0 

We define the matrices B°, B1 and A as: 
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Input: A dominating vertex set U for a graph G = (V, E). 

ti
Output: A path R from X = (1111 ...11) to Y = (0000 ...00) on the network 
G = (B °, B1, A) constructed by the transformation in Theorem 6.1.1. 

Algorithm ConstructTransformPath( U ) 
W4-X 
R {} 

for i = 1 to IVI 
mark[i] < 0 

end for 
for each j : vj E U do 

W + f4j_i 
R R+ {2j 1} 

for each i : vi E {V U} A mark[i] = 0 do 
W 4- W.. + B2, 
R R + {2j 1} 

mark[i] < 1 
end for 
W 
R R + {2j} 

end for 
return R 

end procedure 

Figure 6.1. Algorithm ConstructTransformPath. 
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1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 

0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 1 1 

B° = 
0 0 0 1 0 0 0 0 

B1 = 
0 0 1 1 0 0 0 0 

A= 
0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 

0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 

We also define = (11111111), f = (00000000) and K = L + n = 6. 

There is a dominating set of G of two vertices (in this case, it is {1, 3 }). There 

is at least one routing path of length 6 from X to Y, which is R = (1, 3, 7, 2, 5, 6). 

This path works because: 

(11111111) -4 (01111111) 

-3 (01001111) 

-3 (01001100) 

-3 (00001100) 

-3 (00000100) 

-+ (00000000) 

The answer to both problem instances is "Yes" . 

If the bound is changed to L = 1, then there is no dominating set of size 1 for 

G, and no path of length 5 between .k to Y. The answer to both problem instances 

is now "No" . 1 
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From the above proof of NP-completeness, we can conclude that a number of 

special cases in LMR-LEN are also NP-complete. This is because the transformation 

above results in an instance of these special cases. 

Corollary 6.1.1 Minimal routing on networks where for all 1 < i < n, B? 

is limited to the set 10, B2+.1, B4k, 14", Bi+k, for 1 < k < n is NP-

complete. 

Corollary 6.1.2 Minimal routing on networks where B° and B1 are lower trian­

gular is NP- Complete. 

We notice in the corollary above that B° and B1 are lower triangular matrices, 

but that A is not necessarily lower triangular. If we restrict the problem instances 

to only LTLE networks, LMR-LEN is still MP-complete. The proof of this stems 

from the fact that DVS remains NP-complete when restricted to directed acyclic 

graphs (DAGs): 

Definition 6.1.4 Dominating Vertex Set on Directed Acyclic Graphs (DVS-DAG): 

Instance: A directed acyclic graph G = (V, D), and an integer B with 

1 < B < IVI. 

Question: Is there a set U C V so that lUI < B and for every v U, there 

is at least one u E U so that (u, v) E D? 

This restricted version remains NP-complete: 

Theorem 6.1.2 DVS-DAG is NP- complete. 

Proof: DVS-DAG E NP: Guess U and verify that lUI < B. Then, for 

each v E V, verify that either v E U, or that there is a u E U with (u, v) E D. This 

verification takes at most 0(IUIIDI) < 0(1111D1) steps for each v, and so takes at 
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most 0(1V121D1) steps total to check clearly polynomial time in the size of the 

input. 

DVS-DAG < DVS: Assume that we have an instance of DVS with a graph 

= (V, E) and a bound 1 < B < 1V1. We will use a polynomial-time transformation 

to create a new directed acyclic graph G = (V, b) and a bound E. 

For each vi E V, add two vertices :bi,1 and to V. Add one new vertex vo to 

V. Have b initially contain the directed edges (i)0,14,1), (i)o, 7)2,1), , (ho, flvio.), and 

the directed edges (14,1,1)1,2), (17245 v2,2), (f/IVI,11 7)111,2). Then, for each (vi, vi) E 

E, add the edge (10, f)j,2) to D. Finally, set the bound B = B + 1. 

The transformation is complete. This transformation can be computed in 

polynomial time, because 1V1 = 21V1 + 1 and 1131 = 21V1 + 21E1. 

Now to show that DV has a solution iff DV-DAG does. 

It is clear that any solution to DVS gives a solution to DV-DAG. If U = { 

uii, ui2, , ui, }, k < B is a solution to DVS, then we can use it to construct U = 

{ f)o, vi,,1i f%,1, , }. The bound is then B = B +1. The construction works 

for three reasons: first, 1)0 dominates all second, ui,- E U with 1 < r < k implies 

that /Lir,' dominates uir,2i and third, uir with 1 < r < k dominates vs with 1 < s < k 

implies that fLir,i dominates h3,2. So if U dominates all V, then U dominates all V. 

It also is clear that v0 must be in any solution to DV-DAG because it has in-

degree 0. If U = < B is a solution to DVS-DAG, then 

we can use it to construct U = {ui, ui2, ,ttikl. The bound is B = B 1. This is 

because ui,,1 dominates fii2,2 implies that ui, dominates vi2, and because 2-41,2 E 

implies that ui, is not dominated by any other vertex and so must be included in 

U. 

Example: The graph in Figure 6.2(a) is a general, undirected graph. We 

can replace each undirected edge with two directed edges and create the directed 
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V1 V6 

V2 V5 

V3 V4 

(a) 
vo 

V12 V21 V31 V41 V51 V62 

(b) 

Figure 6.2. The transformation of an instance of DV to DV-DAG. 
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graph in Figure 6.2(b), using the transformation in Theorem 6.1.2. The first graph 

has the dominating vertex set U = {v2, v6} and the second has a dominating vertex 

set U = {vo, v2,1, v6,11. However, neither has a smaller dominating vertex set. 

Any DAG can have its vertices topologically sorted in polynomial time, as 

mentioned in Chapter 4, which makes the graph's adjacency matrix lower triangular. 

Let G be an instance of DVS-DAG. If we topologically sort G and then use the 

transformation in Theorem 6.1.1 to create a LE network G = (B°, B1, A), it will 

create a lower triangular A matrix and so O is a LTLE network. Hence, we have: 

Lemma 6.1.1 Minimal routing on LTLE networks is NP- complete. 

Though most of the variations on routing problems for LE networks are 

intractable, this will not prevent us from writing an algorithm that is efficient in 

many cases. 

6.2. LEGAL EXPANSIONS 

Like the DM networks, the LE networks can use a minimal expansion S(? + 

17) over B° and B1 to find a minimal path between je and Y. All such paths must 

correspond to some expansion, so we only have to find a minimal expansion that 

can be used. 

Unfortunately, there are two problems to using expansions to find a routing 

path on a LE network G = (B°, B1, A). The first is that for a given expansion S, 

a term in S may not define a channel from a particular node in G. We may have 

to use the terms of S in a completely or partially specified order, so that each term 

used defines a channel from an intermediate node in the routing path. 

Second, a given expansion S may not correspond to any routing path in a 

network G. If G is connected, then there must be some expansion whose terms 
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define the channels in a routing path, but there are possibly some expansions have 

terms that do not define channels in any routing path. 

For this reason, we have to distinguish between a "legal" expansion, for which 

a corresponding routing path exists in G, and an "illegal" expansion, for which no 

routing path exists: 

Definition 6.2.1 For a network G = (B °, B1, A) and vectors fe and Y, an expan­

sion S(X + f) is a legal expansion if: 

1. S is an expansion. 

r(k)2. There is an permutation ir of the terms of S, so that for every BiOr(k)	 E S with 

1 < k <151, we have: 

[A (X + BC '6 '41) + 
(

k- 111 Or(k)
iff (1) trk 

k) 

This definition describes the existence of some permutation of terms in S(? + 

37) so that each term 4(k) E S defines a channel (1/17. ,1/17' + t,(k)) at step k of the 

routing path. We can again use an expansion S(.* + 
ti 

) to find a routing path on 

G = (B °, B1, A). The only difference is that now S must be a legal (and ordered) 

expansion over B°, B1 and A instead of an expansion over B° and B'. 

If the legal expansion between a pair of nodes is minimal, then clearly a 

routing path corresponding to that legal expansion is also minimal. Further, if 

we can quickly find the smallest (in weight) legal expansion that corresponds to a 

routing path, then we have an efficient, minimal routing algorithm. 

The task of finding a minimal legal expansion requires finding an expansion 

that meets two possibly conflicting criteria. First, the expansion must meet the the 

conditions in Definition 6.2.1 above. Second, it must be the smallest such expansion 

meeting those criteria. 
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We define the problem of finding a legal minimal expansion below: 

Definition 6.2.2 LME-LEN: Legal Minimal Expansions in LE Networks 

Problem: 

Instance: An n-dimensional LE network G = (B °, B1, A), source and des­

tination addresses .)? , fit E , and an integer K with 1 < K < 2n. 

Question: Is there a legal expansion S(X f) in {B°, B1} with ISM < K? 

Unfortunately, the problem LME-LEN is intractable: 

Theorem 6.2.1 LME-LEN is NP-hard for general LE networks, and is NP-

complete for LTLE networks. 

Proof: We use a polynomial-time transformation of an instance of MIN­

COSETS to LME-LEN, similar to the transformation of MIN-COSETS to ME-DMN 

Theorem 5.3.2. The only difference is that we also set A to a. 

LME-LEN remains NP-hard for LE networks, because we cannot bound the 

maximum path length polynomially in n. LME-LEN is NP-complete for LTLE 

networks, because the maximum path length is 0(n) steps, by Corollary 3.3.2. We 

can guess an expansion and a permutation of it and verify it against the definition 

in a polynomial time. I 

For LTLE networks, we have a way to verify that an expansion is legal: 

Theorem 6.2.2 Let G = (B°, Bl, A) be an n-dimensional LTLE network. An 

expansion S(X Y) corresponds to a routing path from X to Y on G if for every 

B E S, one of the following conditions are true: 

1. (Af )i = 

2. (Af)i = and 3j < i, 13'; E S : (ABA )i = 1 
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Input: A n-dimensional network G = (B °, B', A), a starting address X, an ending 
address V, a legal minimal expansion S(X + Y) with the terms ordered by index 
from smallest to largest. 

Output: An ordered list R of the terms in S so that each term i correspond to a 
legal channel in the i-th step of the routing path from X to Y. If no such path 
exists, then the algorithm returns "Failure". 

Procedure ConstructRoutePath( G, X, Y, s ) 
R 0 
for k = 1 to ISM do 

Bt +- Sk
ti 

if (Acli = (/) then
 
insert Bt into R after Rim
 

else if (241-r.)i = (1). then
 
j = maxanz : (ARni)i = 11, 0)
 
if j > 0 then
 

insert B into R before Ri
 
else
 

return "Failure"
 
end if
 

end if
 
end for
 
return R
 

end procedure 

Figure 6.3. Algorithm ConstructRoutePath 
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Proof: Sufficient: Assume that conditions 1 and 2 are true for an expansion 

S, and let a routing path R be represented as an ordered list of terms. Algorithm 

ConstructRoutePath in Figure 6.3 will correctly compute R from S, if the terms in 

S are listed in order of increasing index. 

In the loop with index variable k, we have a loop invariant for the beginning 

of each repetition. R is a routing path from fe + Sk E S + + E S to Y. For 

the first iteration k = 1, this is trivially true. 

Let Bt be the k-th element of S. If (Af)i = 0 then we append Bt after 

Rim E R, because the channel (f + Bt, E G. 

If (A1-7)i = ¢ then insert Bt into R immediately before the last 11; E R with 

j < i and (ARj)i = 1. This Ri E R exists because condition 2 guarantees that such 

a term initially exists in S and the algorithm has already inserted all terms with 

index j < i into R. For the node (Ri + . . . + Rim + we we have: 

[A(R; + + Rim + f)]i = [(AR;)i + + (ARIRI)i + (Af)i 

= 1 + 0 + + 0 + 

=5
 

And so the channel (Ri + + + , E G. 

Because G is a LTLE network, G guarantees that (ABt)i = 0 for j < i. 

Inserting Bt into the prescribed position in R will not affect the other terms already 

in R. This means that after the insertion, each term in R still defines a channel. 

So, at then end of iteration k of the loop, R is a routing path from .,-e + Sk+ E 

S + + S151 E S to Y. The end of the final iteration will then trivially have R 
ti 

contain a routing path from jj to Y. 

Necessary: Assume that (AY)1 = Ti) and that Vj, 1 < j < E S : 

(ABA i = 0. Then because G is lower triangular, Vj, 1 < j < E S : (ABM = 0. 
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Let W be any linear combination of Bc E S added to Y. Then: 

(Aw.), = [A(37+ E ai./31;) 
aiE{0,1},137ES 

i 

+ E a .ABA 
L a je{0,1},B;ES 

= 2 a [ABP 
aiE{0,1},WIESi
= 0+ a-0 

ajE{0,1},13!;ES 

= 

Any such node ITV. that can reach f will have (ATV' )1 = ;b) and so will have no legal 

channel (iii + W ). Therefore, the expansion S corresponds to no path from X. 

to f Y. 

There are two corollaries that follow from this theorem: 

Corollary 6.2.1 Let G = (B °, B1, A) be an n-dimensional LTLE network. The 

time to compute if an expansion So? + f) corresponds to some routing path from 

je to f on G is at worst 0(n2). 

Proof: This can be computed directly from the conditions in Theorem 6.2.2. 

For each Bt E S the product (A131') can be precomputed. For a given Y, each (i137)1 

can be computed in 0(n) bit operations for a total of 0(n2) bit operations. Then 

for each term of S, verifying Condition 1 takes 0(1) bit operations, and verifying 

Condition 2 takes at worst ISM = 0(n) bit operations. There are ISI = 0(n) terms 

so the run time is at worst 0(n2). 

Corollary 6.2.2 Let G = (B °, B1, A) be an n-dimensional LTLE network. The 

time to compute a routing path R from X to on G using a legal expansion SP- C.-1-f) 

is at worst 0 (n2 log n) . 
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Proof: This can be computed directly from Algorithm ConstructRoutePath. 

For each Bt E S the product (ABt) can be precomputed. For a given 17., each (A1-)1 

can be computed in 0(n) bit operations for a total of 0(n2) bit operations. 

There are IS1 = 0(n) terms to insert into R. If we use a linked list, at most 

0(log n) bits will be needed to represent a pointer. Then inserting into the list can 

take at most 0(n log n) bit operations for each term, because comparisons at each 

element of the list will take 0(1) bit operations. Therefore, the run time of the 

algorithm is 0(n2 log n) bit operations. I 

Although Algorithm ConstructRoutePath gives only one path, a number of 

paths can be created that meet this condition. The algorithm needs only to insert 

the current term Bt before an even number of terms where (ARA = 1 if (AY); = 

(or before an odd number of terms with (AR,), = 1 if (A17)i = q3). This will result 

in an equally correct routing path, but one in which the terms may be used in a 

different order. 

We give an outline of the algorithm we will call LowerTriangularRoute. Given 
ti 

a LTLE network G, and nodes fe and Y, we can compute a routing path using the 

following steps: 

1. Generate an legal expansion search tree D for the addresses and Y. 

2. Use breadth-first search in D to find a minimal legal expansion S(? f). 

3. Order the terms of S into a routing path R. 

4. Use R to route the message from je. to Y. 

We have an algorithm to compute all but the first step. The next section 

will present an algorithm to compute this. 



132 

6.3. A MINIMUM LEGAL EXPANSION ALGORITHM FOR LTLE 
NETWORKS 

Algorithm Expansion Tree in Figure 5.1 will correctly generate expansions, 

but will have both legal and illegal expansions represented in the tree. To create an 

expansion tree that contains only legal minimal expansions, we now need some way 

to "prune" paths from the expansion tree so that edges corresponding to terms in 

an illegal expansion are not included. 

There is a problem with simply pruning edges from the expansion tree. Terms 

that appear in legal expansions may also appear in illegal expansions, so simply an 

edge from the expansion tree may remove perfectly legal expansions from the tree. 

Instead, we may have to change the search tree to include a branch for the case 

where a term can be used in a legal expansion, and another branch for the case 

where the term cannot be used. 

For a LTLE network G = (B °, B1, A), the terms B? and Bi- can depend on 

another term /3; only if j < i and (ABM = 1. Say that B? depends on /3"; . By 

placing B? either before or after Bc in an expansion, we can guarantee that B? 

defines an channel in the routing path. Thus B? can be a part of a legal expansion 

if BP is also part of the expansion. The same is also true for Be'. 

The legal expansion tree algorithm generates a search tree of expansions, 

starting with edges that correspond the terms B? and Bi. Any term with index i 

is examined as part of the expansion only after terms with indices 1, , i 1 have 

been examined. Because G is lower triangular, we can tell if terms B? and Bt can 

be used in a legal expansion just by back-tracing up the search tree for any BF; with 

j < i and (AB;)i = 1. 

This back-tracing up the search tree could be done explicitly, but would in­

crease the run time order of the search tree algorithm. Instead, we can can place 
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additional information in the label of each vertex in the tree. This additional infor­

mation is an n-bit mask. If, for a vertex at level i, this mask has a 1 in index i, then 

both B? and B1 are usable terms in a legal expansion and edges for both terms can 

be added to the expansion search tree at that vertex. If the mask has a 0 in index 

i, then only the one term ec)` is usable, and only the edge for that one term can 

be added. 

The terms that depend on .13'; can be computed quickly by the product A,T 

If (AB1M = 1, then B? and .13, depend on B. Otherwise, they do not. In con­

structing new vertices, we can compute the new vertex's mask quickly by taking the 

union of the current vertex's mask and AB';. 

Algorithm LegalExpansionTree is listed in Figure 6.4. This algorithm is a 

variation of Algorithm ExpansionTree. A legal expansion tree for X = (1000000) 

and Y = (1101010) on the 7-dimensional Mobius Cube is shown in Figure 6.6. 

Algorithm LegalExpansionTree is very similar to Algorithm ExpansionTree and can 

be proved using similar arguments. 

The major difference between Algorithm LegalExpansionTree and Algorithm 

ExpansionTree is that Algorithm LegalExpansionTree labels each vertex with three 

components instead of two. To simplify the algorithm, and reduce the number of 

vertices, any vertex with a given i has Mi = 1 for 1 < j < i 1. This will also 

guarantee that there is exactly one vertex with address Y in its label the one with 

./t/ = f and i = n 1. 

Theorem 6.3.1 Algorithm LegalExpansionTree( G, , Y ) is correct. 

Proof: The algorithm can be shown to be correct by a proof very similar to 

Theorem 5.4.1, and will not be duplicated here. This algorithm will generate only 

paths that correspond legal minimal expansions, because for each vertex, we now 
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Input: A n-dimensional network G = (B °, B1, A), a starting address X and a des­
tination address f. 

Output: A weighted directed acyclic graph D = (V, E), where each path from the 
vertex (X, 0, 1) to (Y, f, n + 1) corresponds to a legal expansion of X + Y. 

Procedure LegalExpansionTree( G, X, 
V (1,1)} 
E 
for i = 1 to n do
 

for each (117. , E V do
 
if Wi = Yi then
 

if A = 1 or (AVV)i = 0 then
 
< V U ir,fi V AB? V ei,i + 1)1
 

E 4- E U -117' , (1g7, fi V AB? V ei,i + 1) ,2)} 
end if 
if = 1 or (AW-.)i = 1 then 

-VU r, /17/ V Arn V ei,i +1)1 
E t EU (W. ,f/IV AB1V ei,i+1),2)} 

end if 
if A = 1 then 

4-- VIT/V,IIIVAB?VAMVei,i+ 1)1 
E t EU (W. , la V AB? V Arn V ei,i + 1),2)} 

end if 
f- Vir,fiVei,i+1)} 

E t EU (W.,fi,i),(1;17',fiVei,i+1),0)} 
end if 
if Wi Y then 

if Mi = 1 or (.411.7)i = 0 then 
i--V1 + a V B? V ei,i)} 

E EU (W.,111,i),(W. +B?,/-li V B?V ei,i),1)} 
end if 

(continued) 

Figure 6.4. Algorithm LegalExpansionTree. 
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(continued from Figure 6.4) 

if Mi =1 or (AITT)1 = 1 then 
<VU +./31,/aVB?vei,i)} 

E 4EU (W.,,i),(W. +rn,fiVMVei,i),1)} 
end if 
if A = 1 then 

V +VU W. +M,1171VMVMVei,i)} 
E < EU (Yr/ ,fi,i) + 14,11-I'VE?? V Bl V ei,i) ,3)} 

4-- V U F B1-,11/1* V 13? V M V ei,i)}--1/V 

E < EU (W. + ,I171 V B? V V ei,i),3)} 
end if 

end if 
end for
 

end for
 
return D < (V, E)
 

end procedure 

Figure 6.5. Algorithm LegalExpansionTree (continued). 
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<00000, 00000, 1> 

B0_1 

<10000, 10000, 2> 

B0_2+B1_2+B1_2B0_2 

131_2 

<11000, 11100, 3> <11111,11 11,3> <11000, 11111, 3> 
B0_3+B1_3 B0_3+B0_3 

B1_3+B1_3 

0 0_3+B1_3 

B0_3+B1_3 
B1_3+B1_3 

V 
<11000, 11100, 4> <11000, 11110, 4> <11000, 1111, 4> <11011, 11111, 4> 

B0_4 B1_4 

B1_4 B0_4+B0_4 

<11011,11111,5> <11010, 11111, 5> 

<11010, 11111, 6> 

Figure 6.6. A legal expansion search tree between addresses ie = (1000000) and 
Y = (1101010) on a 7-dimensional 1-Mobius Cube. 
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only add edges that correspond to terms that can be used in a legal expansion. All 

legal expansions will be generated, because each edge added corresponds to a term 

that depends only on terms that have already been included in the expansion at an 

earlier level. 

In the algorithm, we have included all of the branches that can possibly give 

a minimal expansion. If Wi = Yi, then we generate branches for: 

W,W + B? + B?,W. + + 1321, i/f/ B? Bi 

If Wi Yi, then we generate branches for: 

+ B?, W* + Bil, + + + ./3,1/17. + B,1 + B? + B? 

All other possible summations of B° and B1 to 1/17. will lead to non-minimal expan­

sions and can be ignored. 

How large will the legal expansion search tree D get? For Algorithm Legal-

ExpansionTree, the number of edges generated per vertex is a larger constant than 

for Algorithm ExpansionTree. We have also added an orthogonal component to the 

label of each vertex, so the number of vertices can be much larger. Where before 

we considered the vector space of the columns in Algorithm ExpansionTree, we now 

need to consider the union of the columns in the matrix products AB° and AB'. 

The theorem below limits the number of expansion search tree vertices generated. 

Theorem 6.3.2 Let G = (B°, B1, A) be an n-dimensional LTLE network and and 

let the matrix H, be defined as in Theorem 5.4.2, and let the matrix K, be defined 

as: 

AB ? AB?2 . . . AB?i ABi 1 AB] 2 . . . ABh 

AB?+,,, AB?+1,2 ABj+,,, AB41,2 

A132,1 AB,2,2 . . . ABni AB,2 . . . AB7,1 
, 
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Then for ai E {0,1} with 1 < j < 2i, the number of vertices in D is bounded above 

by the sum: 

2i 

E ai(Hi)j} U ai(Ki)j}
i=i j=1 

Proof: The proof is an extension of the proof of Theorem 5.4.2. In addition, 

we have that for a given i with 1 < i < n, any vertex (W, M, i) has for ai, E 

{O,1 }: 

2i 

M= V alcB. 
j =1 

Also, /1-4.. has the property that Mi = 1 with 1 < j < i 1, so that any vector /17/ in 

vertices with a fixed i will be the same in the first i 1 indices. If we simply ignore 

the first i 1 indices of the columns of AB°'s and ABl's, then we only need to know 

how many different values a union of the remaining indices can make. Finally there 

is only one final vertex (f , f, n 1). 

This is a rather loose upper bound on the number of vertices in D, but it is 

useful for bounding the size of D to order. 

6.4. A MINIMAL LTLE NETWORK ROUTING ALGORITHM 

Now we use the results from the legal minimal expansion algorithm to pro­

duce a routing algorithm for LTLE networks. 

Algorithm LinearEquationRoute in Figure 6.7 will correctly route from source 

to destination on a LE network G. The algorithm is similar to Algorithm DoubleMa­

trixRoute, with two differences: A call to LegalExpansionTree is made in place of 

ExpansionTree, and call to ConstructRoutePath is made to correctly order the terms 

of the legal expansion before routing. The algorithm to minimally route on a LTLE 
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Input: A n-dimensional LTLE network G = (B °, B1, A), the current address W. , a 
starting address X and a destination address Y. 

Output: The next neighbor to route to from VV.. 

LinearEquationRoute( G = (B °, B1, A), 1V, fe, 
if VV = Y then 

accept message 
if ITT = .)? then 

D 4- LegalExpansionTree(G, X , 
P < BreadthFirstSearch(D) 
S < PathToExpansion(P) 
R ConstructRoutePath(G, X, Y, S) 

else 
remove B from head of R 
route from X to X + B.4,) 

end if 
end procedure 

Figure 6.7. Algorithm LinearEquationRoute. 
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networks is slightly worse than the algorithm to minimally route on a LTDM net­

work. 

Theorem 6.4.1 Let G = (B °, B1, A) be an n-dimensional LTLE network. If the 

expansion tree has at most 0(k) vertices at any level, for some constant k, then Al­

gorithm LinearEquationRoute takes 0(n2 log n) bit operations to compute a minimal 

routing path. 

Proof: The algorithm has four parts: generating the expansion tree, com­

puting a minimal weight path in the expansion search tree, deriving a minimal 

expansion from a minimal weight path, and ordering the terms of S into a routing 

path R. 

The proof is similar to that in Theorem 5.5.1. This time, however, a legal 

expansion search tree is computed using Algorithm LegalExpansionTree instead of 

ExpansionTree. Since these two algorithms take the same number of bit operations 

(to order) to insert each new vertex and edge in the search tree, and since they 

will both generate the same number of vertices and edges (to order), Algorithm 

LegalExpansionTree will take 0(kn2) bit operations. 

The second part of the algorithm is the same breadth-first search and will 

take 0(kn log n) bit operations to do. 

The third part of the algorithm is also the same expansion construction and 

will take 0(n log n) bit operations to compute and store the terms in the legal 

minimal expansion. 

The final part of Algorithm LinearEquationRoute is the only part that is dif­

ferent from Algorithm DoubleMatrixRoute. By Corollary 6.2.2, ordering the terms 

of the expansion will take 0(n2 log n) bit operations. 

The total number of bit operations overall is: 
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0 (kn2) + 0 (kn log n) + 0(n log k) + 0(n2 log n) = 0 (n2 (k + log n)) 

For the published LE networks, a legal routing path can be computed very 

quickly. 

Corollary 6.4.1 For all the published n-dimensional networks that can be described 

using LE networks, including the Twisted Cube, the MObius Cubes, the Generalized 

Twisted Cube, the M-Cubes, and the Bent Cube, Algorithm LinearEquationRoute 

will have a total run time of O(n2(12 + log n)) bit operations and a distributed run 

time of O(n2(12 + log n)) bit operations. 

Proof: From Theorem 6.3.2, each network has at most 4 linear combinations 

of W each level i, where Wi = 1. If we examine the possible values of the mask fi 

for each network, we see that there are at most only 3 possible unions at each level 

i. Each level will have will have at most 4 x 3 = 12 vertices. By Theorem 6.4.1, 

Algorithm LinearEquationRoute takes O(n2(12 + log n))bitoperations. 

Since the routing computation is done entirely at the source node, the routing 

computation will dominate both the total and distributed computation times. 

This result shows that Algorithm LinearEquationRoute will compute mini­

mal routing paths in 0(n2 log n) bit operations for all of the published LE networks. 

However, the Mobius cubes, and the Twisted Cube (for example) have routing al­

gorithms that use at most a linear number of bit operations. This is asymptotically 

smaller than our algorithm can achieve. 

There is an approach we can use to modify the algorithm LegalExpansion-

Tree. Rather than compute all the bits of I/V and fi in each vertex generated, we 

can use "place holders" , or bits that indicate the condition for a whole set of indices. 
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If we use place holders, we no longer need to compute and copy the results of an 

entire mod 2 sum or union over up to n bits just a constant number of bits. 

For instance, on the Mobius cubes we notice that we need to keep track of 

possible cases for the values of 17V.. First, if no indices of W have been complemented, 

second, if only index i has been complemented (by adding B?), or third, if indices 

i through n have been complemented (by adding Be'). These possibilities can be 

represented using only two bits, and so only 2 bits of 11.7 need computing and copying 

per vertex. Similarly, we can use place holders to tell if none of bits i through n of 

fi are set, if only bit i of fi is set, or if all of bits i through n of /17/ are set. These 

possibilities can also be represented in only 2 bits. Finally, if the component i of 

each vertex is only implicitly represented in the structure of the graph by its depth 

from the root vertex, we can skip any computation for incrementing i. So, only a 

constant number of bit operations per vertex need be computed, and the algorithm 

to compute a legal expansion search tree now takes 0(n) bit operations. 

The same approach can be taken with the other published networks. How­

ever, the approach clearly requires writing a different legal expansion tree algorithm 

for each network, because the place holders would have different meanings for each 

network. The more general algorithms that we have developed have the advantage 

that they can work with the algorithms unmodified. 

This approach will not reduce the asymptotic run time of Algorithm LinearE­

quationRoute, because the last step of the algorithm takes 0 (n2 log n) bit operations. 

If ordering the terms of the legal expansion can be done more quickly, then it might 

be possible to reduce the run time of Algorithm LinearEquationRoute to a linear 

number of bit operations in cases of specific networks. 
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6.5. NONREDUNDANT MINIMAL LEGAL EXPANSIONS 

Just as minimal expansions can have redundant terms, legal minimal ex­

pansions can also have redundant terms. The DM networks have a simple condi­

tion for guaranteeing that no redundant minimal expansions exist in the network: 

A(B? + Bt) < 1. Unfortunately, this condition alone is not sufficient to guarantee 

that a LE network will have no redundant legal minimal expansions. 

It is even possible that a DM network G = (B°, B1) will have a nonredundant 

minimal expansion for two nodes .)? and Y, while the related LE network G = 

(B °, B1, A) will have only a redundant legal minimal expansion for the same nodes. 

Example: Sometimes a cube definition makes it necessary to "un-correct" 

a certain term to route minimally. In the cube below, the first component controls 

whether a weight 1 or a weight 2 term is corrected at even positions: 

1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 

B° = 0 0 0 1 0 0 0 B1 = 0 0 0 1 0 0 0 A= 1 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 

For the DM network G = (B °, B1), a minimal expansion for jc = (0000000) and 

= (0111111) is B1, B4, B4. For the LE network G = (B °, B1, A), a minimal legal 

expansion is B?, 131, 13,14, B6, B? (in order). All other legal expansions will have 

weight 6. The term B? is used twice in the minimal legal expansion in a network 

that is lower triangular. 
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This example network meets the conditions for nonredundant minimal ex­

pansions, yet still fails to have a nonredundant legal minimal expansion. 

To avoid redundant minimal legal expansions, we need to impose additional 

conditions on the network. The theorem below states the sufficient conditions to 

ensure that at least one minimal nonredundant legal expansion exists between any 

two nodes on a LTLE network: 

Theorem 6.5.1 Let G = (B°,B1 , A) is an n-dimensional LTLE network, where 

Vi : W(B? + 13,1) < 1. Then the following conditions are together sufficient to 

guarantee that a nonredundant legal minimal expansion S(.- e,f) always exists for 
ti

every pair of nodes X and : 

BI = B? + Bt = (A B?); = (AB1) = 1, i < j 

((ABl').; = ((AB(t)k = 1 (A.By)k = (A Bj-)k = 1, i < j < k 

Proof: Condition 1 states that .13? + Bi = B , then Bi depends on B? and 

Condition 2 states that if Bi and Bre, with j < k, both depend on some Bcib, 

then Br, also depends on B. 

Assume that we have an legal minimal expansion S with redundant terms. 

Consider a pair of redundant terms with the smallest index i. If B? or B.) appear 

in S, then there are a series of terms B41 , . . . , B n that depend on B? or B1, 

where k1 < k2 < < kn. 

There can be one of three cases: 

Case 1: B? appears twice. We simply remove the two occurrences of B? 

from S, and transform the remaining terms. 

If Bit' can be used in a legal expansion, then Condition 2 guarantees that 

Eric/ 22 , . . . , Brn depend on Btil and so can be arranged before or after Bit' to make 

a legal expansion :5' = S B? B? that is smaller than S. 
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If Bti' cannot be used in a legal expansion, then Bit' + = BI for some 

j and Condition 1 allows us to replace Bit' with 13Z' + B1. Since Bi depends on 

, we can place it before or after to make it part of a legal expansion. Condition 

2 then guarantees that B2 2 
. . , Bt: depend on Bi' or B, and so can be arranged 

before or after these terms to form a legal expansion. This replacement expansion 

= S B? B? Tri is as small as S. 

If there are any other redundant terms in the resulting S, they have an index 

greater than or equal to i and so can be removed recursively. This recursive process 

will eventually end, because is removes one redundant pair of terms at index i, and 

introduces no redundant pairs of terms at any index less than i. 

Case 2: Bi appears twice in S. We can use arguments similar to Case 1 to 

transform the expansion to a nonredundant expansion of the same or fewer terms. 

Case 3: B? and M each appear once in S. If B? + Bt = 0, then we can 

replace B2 with B? and use Case 1. However, if B? + Bi = 4, then we can replace 

B? and B1 with B. Then Condition 1 states that BI depends on B? and and 

so Condition 2 states that Bti' , B 22 , , B'1': depend on B. 

We can use an argument similar to the one in Case 1 to get a nonredundant 

expansion :S' that is equal to or smaller than S. Here, however, we use BI, 

B t 2 , , Bt instead of Be', B Z2, . . . , gkb: in creating an expansion of equal or 

smaller weight. 

The published LE networks, including the Mobius cubes, the Flip MCube, 

the Twisted Cube, and the Generalized Twisted Cube, all meet the criteria of The­

orem 6.5.1, so they are all nonredundant. 

Algorithm NonredundantLegalExpansionTree in Figure 6.8 will compute a 

nonredundant legal expansion tree. A nonredundant legal expansion search tree for 
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Input: A n-dimensional nonredundant LTLE network G = (B °, B1, A), a startingti 
address ,? and a destination address V. 

Output: A directed acyclic graph D = (V, E), where each path from the vertex 
(X, Vi=i ek, j) with j = min ({k : Xk # Yk} ,n 1) to (Y, n 1) corresponds to a 

nonredundant legal expansion of 

Procedure NonredundantLegalExpansionTree( G, X, f ) 
< M,Vi=liek,i) :j = min ({k : Xk 0 Yk} ,n + 1)1

E 4 0 
for i = 1 to n do 

for each (W., /a, i) E V do
 
j 4 minak : (VV + B?)k fkl,n + 1)
 
if fii = 1 or (AT/V)i = 0 then
 

< V U ir + B?,fi V AB? V ei V ... V ei -1 , j)} 
E 4-- E U (W. , la , i) , (W. + B?, la V AB? V ei V ... v ei-1,0 

end if 
j 4 minak : (1/7' +Bnk ffkl,n + 1) 
if A = 1 or (ATV-. )i = 1 then begin 

< V U 1 T/V +131,1171V ABi V eiV ...V ei-i,i)} 

E < EU (W. ,111,i),(117. +rn,1171V AB1V ei V ... V ej-i,i))/ 
end if 

end for 
end for 
return D 4 (V, E) 

end procedure 

Figure 6.8. Algorithm NonredundantLegalExpansionTree. 
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<00000, 00000, 1> 

B0_1 

<10000, 10000, 2> 

B12 

<11000, 11100, 3> <11111, 11111, 3> <11000, 11111, 3> 

B0 2 

BO 3 13 

<11000, 11100, 4> <11000, 11110, 4> <11000, 1111, 4> <11011, 11111, 4> 

B1 4 
B0_4 

BO 4 
V 

<11011, 11111, 5> <11010, 11111, 5> 

B15 
B0_5 

<11010, 11111, 6> 

Figure 6.9. A nonredundant legal expansion search tree between addresses 
X = (1000000) and Y = (1101010) on a 7-dimensional Mobius Cube. The min­
imal path is shown in boldface. 
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= (1000000) and f = (1101010) on the 7-dimensional Mobius Cube is shown in 

Figure 6.9. 

Algorithm NonredundantLegalExpansionTree is an extension of Algorithm 

NonredundantExpansionTree in Figure 5.4, in the same way that Algorithm Legal-

Expansion Tree is an extension of Algorithm Expansion Tree. The same arguments 

given in Theorem 6.3.1 can be used to show that the algorithm is correct, and to 

show that the algorithm can execute in O(kn2) bit operations. 

This algorithm will of course will execute the same asymptotic number of 

bit operations as the algorithm in Figure 6.4, because it generates the same or 

fewer number of nodes. It is essentially the same algorithm, with all but two of 

the cases removed. Because all the networks published in the literature to date 

meet the sufficient conditions of nonredundant networks in Theorem 6.5.1, they 

can all use Algorithm NonredundantExpansionTree to calculate nonredundant legal 

expansions. 

6.6. DETERMINISTIC MINIMAL LEGAL EXPANSIONS 

Finally, we briefly consider removing non-determinism from the search for 

minimal legal expansions. There is the possibility that a minimal legal expansion 

is not unique. When faced with more than one nonredundant minimal expansion, 

the breadth-first search may return arbitrarily either path. A simple heuristic can 

make the breadth-first search algorithm always return the same path. 

Our heuristic is: If two branches from one node have the same distance to 

the destination node, choose the branch that leads to the node with the smallest 

indexed component that differs from the destination. We used this heuristic to 

determine a unique and deterministic legal minimal expansion from the legal expan­

sion search tree. We chose this algorithm somewhat empirically, because it gives 
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the best (by far) network performance for optimal routing. Other rules for making 

choices (including randomly choosing a minimal path) did not work nearly so well. 

This approach appears to work best because it forces the terms of the legal minimal 

expansion S to be as low-indexed as possible. 

6.7. SUMMARY 

The problem of minimal routing on LE networks is NP-hard, and the problem 

of minimal routing to LTLE networks is NP-complete. This is strong evidence that 

a minimal routing algorithm with polynomial run time in 72 does not exist. 

For LTLE networks, we were able to devise routing algorithms that had a 

polynomial run time in a large number of common cases. These algorithms have total 

run time of at worst 0 (n2 log n) bit operations, compared to the 0(n) bit operations 

of the hypercube. While polynomial, our algorithms are not highly efficient, because 

they require a large amount of pre-computation at the source node. 

We were able to show that for certain subclasses of the LTLE networks 

(nonredundant subclasses), we could simplify the algorithm and reduce the total run 

time by a constant amount. This still required a large amount of pre-computation 

at the source node. 

Though these algorithms are important, because they are our most successful 

effort at producing a general minimal routing algorithm, they leave a lot to be 

desired. They do not have a small distributed run time (say, 0(1) bit operations 

per node). The following chapter will discuss efficient, though non-minimal routing 

algorithms for DM networks and LE networks. 
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7. NON-MINIMAL AND WORMHOLE ROUTING ALGORITHMS 
FOR LE NETWORKS 

In this chapter, we discuss variations on point-to-point routing, including 

non-minimal routing, and wormhole routing. In particular, we will discuss an ef­

ficient routing algorithm that produces non-minimal routing paths, but captures 

most of the behavior of the minimal algorithm. This algorithm can be shown to be 

deadlock-free, which makes it usable under the wormhole routing strategy. 

7.1. NON-MINIMAL ROUTING ALGORITHMS FOR LE NET­
WORKS 

It is not always important that a routing algorithm generate minimal paths. 

The asymptotic run time complexity of the routing algorithm sometimes can be 

more important than a minimal path. A small (constant) number of bit operations 

per vertex may be more desirable when the communication time approaches the 

same order of magnitude as the routing computation time. 

With the LE networks, we may need to trade minimality for simplicity. The 

minimal routing algorithms in the previous chapters may seem unnecessarily com­

plicated for efficient message-routing. These algorithms also have a run time com­

plexity that approaches a total 0 (n2 log ii) bit operations, which is not at all efficient 

when compared to the 0(n) bit operations of the hypercube's routing algorithm. 

In this section, we examine some non-minimal routing algorithms for LTLE 

networks, and derive properties for each algorithm. 
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Input: An n-dimensional LTLE network G = (B °, B1, A), a source address X, a 
destination address Y and the current address W. 

Output: If the message needs to be forwarded, the index of the neighbor to route 
the message to. If the message is at its destination, a signal to accept the message 
at the current processor. 

LeftRightBitCorrectRoute( G, X, Y, vf7 ) 
begin 

ti
If VP = f then 

Return "Accept" 
else 

i <-- min{ k : Wk Yk} 

return i 
end if 

end procedure 

Figure 7.1. Algorithm LeftRightBitCorrectRoute. 

7.1.1. The Left-Right Bit Correction Algorithm 

The hypercube has a very standard point-to-point routing algorithm the 

left-right (LR) bit correction algorithm. This is also known as the "greedy" algo­

rithm or the "E-cube" routing algorithm [45]. This algorithm, which we will call 

Algorithm LeftRightBitCorrectRoute, "corrects" any components of the source ad­

dress that differ from the destination address, starting with the smallest or left-most 

index. 

A distributed version of Algorithm LeftRightBitCorrectRoute appears in Fig­

ure 7.1, and is modified to work on LTLE networks. 
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Theorem 7.1.1 Let G = (B°,B1 , A) be an n-dimensional LTLE network. Algo­

rithm LeftRightBitCorrectRoute correctly routes a message from X to Y, and has a 

distributed run time of 0(n) bit operations per node, and a total run time of 0(n) 

bit operations. 

Proof: The routing algorithm will terminate when TT/ = Y. At each pro­

cessor it corrects the leftmost differing component between 11*7 and , by routing to 

1;17' 's i-th neighbor. Because G is a LTLE network, routing from W to W. + B. A14.7)1 

does not un-correct any component with index j < i, so progress to the destination 

is made at each step. There are at most n indices the algorithm has to correct, so 

it will terminate after a maximum of n iterations. 

The total run time of 0(n) bit operations can be achieved by forwarding, 

with the message, the index of the most recently corrected component. The next 

node only has to examine components with indices greater than i for the next one 

to correct. 

Any LTLE network that uses Algorithm LeftRightBitCorrectRoute will have 

the same maximum and average routing distance as the hypercube: 

Theorem 7.1.2 Let G = (B°, B1, A) be an n-dimensional LTLE network. The 

maximum routing distance of Algorithm LeftRightBitCorrectRoute is n steps and 

the average routing distance is n/2 steps. 

Proof: The proof is by induction on the dimension n: 

Base Case: n = 1. The only LTLE network G = ([1], [1], [0]) has a maximum 

routing distance of 1 step and an average routing distance of 1/2 step. (We include 

the zero distance from a node to itself in the average distance.) 

Inductive Hypothesis: For n < 11, the maximum routing distance is ft 

steps and the average routing distance is n/2 steps. 
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Inductive Step: By Theorem 3.3.2, G can be subdivided into 2 disjoint 

LTLE networks G1 and G2 of dimension n 1. Gi and G2 are joined by the 

channels in dimension 1. 

First we show the maximum routing distance. Assume that .k. and 177. are both 

in G1 or G2, respectively. By induction, the maximum routing distance between )? 

and f is (n 1) steps. 

Assume that .g. and f are in G1 and G2, respectively. Then X1 Y. The 

algorithm will first route from to some W. E G2. By induction, routing from IT/. 

to f on G1 takes a maximum of n 1 steps, and so the maximum routing distance 

from )? to 17 is n steps. 

The maximum routing distance, over all possible cases, is n steps. 

Now we show the average routing distance. Assume a uniform distribution 

of X' and Y. Their mod 2 sum is then also uniformly distributed over Z. The 

address pairs )? and .1-.. can be divided into two groups of 2"-1 pairs each, one group 

with X1 = Y1 and the other with X1 Y1. 

The address pairs with X1 = Y1 have mod 2 sums with a uniform distribution 

over (0 4-1). By induction, they have an average routing distance of (n 1)/2. 

The address pairs with X1 Y1 have mod 2 sums with a uniform distribution 

over (1 Zr'). By Lemma 2.1.1 the neighbor function N1 is 1-1, and for LTLE 

networks [N1(4 ).?1, so the mod 2 sums of N1(..) + I-7. will map uniformly 

to (0 Zr'). By induction, these node pairs have an average routing distance of 

(n 1)/2 + 1. 

The two groups of node pairs are equal in size, so the average routing distance 

is then 0.5((n 1)/2) + 0.5((n 1)/2 + 1) = n/2. I 

Another concern of a routing algorithm is how the algorithm distributes 

the routing paths of messages traveling through the network. If even a slightly 
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higher fraction of the messages are routed through a single channel, that channel 

can quickly become a communications bottleneck for the entire network it will 

slow the transmission of all messages. 

One measure, the channel utilization, is defined as the number of routing 

paths (generated by a routing algorithm) that pass through a given channel. This 

is measured as a fraction of all routing paths generated between all source and 

destination nodes in a network. In our measures, the channels are considered to 

be unidirectional, so the utilization of a bidirectional channel would be the sum 

of channel utilization for its corresponding unidirectional channels. The channel 

utilization is related to the channel utilization rate, which measures the fraction of 

time that a channel is utilized in transmitting messages. 

The channel utilization depends not only on the topology of the network, 

but also on the routing algorithm used. For the hypercube, the channel utilization 

of any given channel is 0.25 of all messages, assuming that Algorithm LeftRight-

BitCorrectRoute. This is not true of all hypercube variants or routing algorithms. 

Abraham and Padmanabhan [2] showed that the Twisted Cube of Hilbers [34] had 

an non-uniform distribution of channel utilization, with some channel utilizations 

exceeding 0.25. This caused the Twisted Cube to have a much worse overall network 

behavior than the hypercube under heavy message loads. 

We examine the channel utilizations for LTLE networks using Algorithm 

LeftRightBitCorrectRoute and a uniform message distribution. Not surprisingly, 

the channel utilizations are the same as the hypercube's channel utilizations. 

Theorem 7.1.3 Let G = (B °, B1, A) be an n-dimensional LTLE network. If Algo­

rithm LeftRightBitCorrectRoute is used, then the channel utilization for all channels 

will be uniformly 0.25. 
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Proof: The proof is by induction on the network's dimension n.
 

Base Case: For a 1-dimensional LTLE network, the channel utilization is
 

0.25. There are four source, destination pairs, only two of which will use one of the 

two channels. 

Inductive Hypothesis: Assume that for all (n 1)-dimensional LTLE net­

works using Algorithm LeftRightBitCorrectRoute, all of the unidirectional channels 

each have a channel utilization of 0.25. 

Inductive Step: By Theorem 3.3.2, G can be subdivided into 2 disjoint 

LTLE networks G1 and G2 of dimension n 1. G1 and G2 are joined by the 

channels in dimension 1. 

The paths with source X- and destination Y can be divided into two groups 

of 2n-1 pairs each, one group with X1 = Y1 and the other with X1 0 Y1. These two 

groups are of equal size, or 0.5 of all paths. 

If X1 = Yi, then the path is entirely in the sub-network G1 or G2. By 

induction, this set of paths will give channels in dimension 2 through n a utilization 

of 0.5 x 0.25 = 0.125. 

If Xi 0 Y1, then the path crosses channels in dimension 1. All the channels 

in dimension 1 will each have a channel utilization of 0.5 x 0.5 = 0.25. The neighbor 

function is one to one, so after removing the first step of these paths, the remaining 

sub-paths will have uniformly distributed sources and destinations in G1 and G2. By 

induction, these sub-paths will give channels in dimension 2 through n an additional 

utilization of 0.5 x 0.25 = 0.125. 

The total channel utilization of any channel is then 0.25. 

These results make the LTLE networks clearly comparable to the hypercube. 

Specifically, any LTLE network has a routing algorithm with performance measures 

that are at worst comparable to the hypercube. However, a LTLE network can often 
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from \ to 000 001 010 011 100 101 110 111 
000 - 3 2 2 1 1 2 1 

001 3 2 2 1 1 1 2 
010 2 2 3 2 1 1 1 

011 2 2 3 1 2 1 1 

100 1 1 1 2 3 2 2 

101 1 1 2 1 3 2 2 
110 1 2 1 1 2 2 3 
111 2 1 1 1 2 2 3 

Table 7.2. A routing table for the Twisted 3-Cube. 

achieve even better performance measures than the hypercube, if given a slightly 

more complex routing algorithm. 

7.1.2. The Three Bit Lookahead Algorithm 

Consider for a moment, a routing algorithm for the Twisted 3-Cube. The 

routing instructions for the Twisted 3-Cube can be written as a table, as shown in 

Table 7.2, because the network is of fixed size. This table tells each processor which 

neighbor in the Twisted 3-Cube to route to next. A minimal routing table for the 

Twisted 3-Cube appears in Table 7.2. 

This routing table follows (for the most part) the routing paths specified by 

Algorithm LeftRightBitCorrectRoute, with the exceptions listed in boldface. Be­

cause there is exactly one exception for each source, and because that exception 

always has the message route in dimension 2, this table can be stored very com­

pactly as a table of the eight exceptions in 3 x 8 = 24 bits: 

[110,111,100,101,011,010,001,000] 
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For a message at current node address 1/i7 on the Twisted 3-Cube, the routing 

algorithm looks up table entry W. If the table entry is equal to the message's 

destination address, the algorithm routes to iii. 's second neighbor. If not, it follows 

Algorithm LeftRightBitCorrectRoute. 

We can extend this approach to higher dimensional LE networks, if we break 

the address space of a vector X into triples of components, as below: 

= (x1x2x3)(x4x5x6) ... (x._2xn_1xii) 

We can treat each component triple with indices i, i + 1, i + 2 as a 3-dimensional 

LTLE network, by ignoring all other components. At each node, a routing table can 

be generated and stored for each group of three indices. We then use the f i/31-th 

routing table to route along dimensions i, i + 1, or i + 2, ignoring what happens to 

the components with indices i + 3, ... , n. By routing each component triple from 

smallest to largest, all the indices will be corrected and the message will reach its 

destination. 

Depending on the number of component triples that are isomorphic to the 

Twisted 3-Cube, this routing algorithm can give a maximum routing distance as 

small as 12n/31, and an expected routing distance as small as ill + .(n mod 3). 

This closely follows the approach used with the Generalized Twisted Cube 

of Chedid and Chedid [12], because their networks are built by graph composition 

of Twisted 3-Cubes. This approach always routes minimally for the Generalized 

Twisted Cubes, but not for other networks. 

In fact, arbitrarily breaking the node addresses into triples can sometimes 

ignore the twisted channels that exist in the network. For instance, if Bgk = e3k 

and Bik = e3k + e3k+1 for any 1 < k < n/3, then this algorithm will ignore the fact 

that a step might be saved by routing on an channel defined by Bik instead of one 
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defined by Mk, because the components are broken into triples between indices 3k 

and 3k + 1. 

A slightly different approach, Algorithm ThreeBitLookaheadRoute, doesn't 

break the address into triples. Instead, it operates more like Algorithm LeftRight-

BitCorrectRoute. It first finds the leftmost differing component between the current 

address and the destination address, then routes the components with indices i, i+1, 

and i + 2 as a 3-Cube, ignoring indices i + 3 through n. This approach is more ex­

pensive than the approach mentioned above, because it uses 71 3 routing tables 

instead of 1n/31 routing tables, but it will be more minimal, because it will ignore 

fewer twisted channels. 

A distributed version of Algorithm ThreeBitLookaheadRoute is shown in 

Figure 7.2. 

Theorem 7.1.4 Let G = (B °, B1, A) be an n-dimensional LTLE network. Algo­

rithm ThreeBitLookaheadRoute correctly routes a message from X to Y. Further, it 

has a distributed run time of at worst 0(n) bit operations per node and has a total 

run time of at worst 0(n) bit operations. 

Proof: The algorithm terminates correctly because it terminates only when 

W = Y. Each routing step finds is the smallest index i where W, Yi, and then 

corrects component Wi, except if correcting Wi+1 is locally shorter. Because G is 

a LTLE network, correcting any component Wi will not "un-correct" components 

with indices j < i, so at each successive node, i increases or stays the same. Also, if 

the algorithm corrects component Wi+i, it will correct component Wi on the next 

step, because the condition that selected index i + 1 will no longer be true. Thus 

the algorithm will eventually terminate, because there are at most n components to 
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Input: An n-dimensional LTLE network G = (B °, B1, A), a source address X-, a 
destination address Y, and the current address W. 

Output: If the message needs to be forwarded, the index of the neighbor to route 
the message to. If the message is at its destination, a signal to accept the message 
at the current processor. 

ThreeBitLookaheadRoute( G, X, 
) 

begin 
if W = f then 

return "Accept" 
else
 

i min{ k : + = 1}
 
if i < n 2 then
 

U W + ./24+Ari)s+1 

V 4-- CI + 
end if
 

if 1 < i < n 2 and B41 ./3.41 and (Areg)')i+i =1
 
and ViVi+114+2 = YiYi+131+2 then
 

return i + 1 
else 

return i 
end if 

end if 
end procedure 

Figure 7.2. Algorithm ThreeBitLookaheadRoute. 
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correct, and each component is selected as the smallest differing component at most 

twice and corrected at most once. 

Consider each of the conditionals in the routing algorithm. The computation 

of V takes a constant number of bit operations, because only components ViVi+i 14+2 

need to be computed. If needed, the possible values of ViVi+i Vi+2 can be precom­

puted and stored in a table at each node. The comparison of V to cancan also be 

done in a constant number of bit operations. All the other conditionals are inde­

pendent of the message destination and can be precomputed for each node 4V and 

index i. The only computation that takes 0(n) bit operations is finding the lowest 

index i where Wi # Y. 

We can forward with the message the index i of the most recently corrected 

component. Then the next node only has to examine any components with indices 

j > i for the next component to correct. This algorithm then has a distributed run 

time of 0(1) bit operations per node, and a total run time of 0(n) bit operations. 

Algorithm ThreeBitLookaheadRoute has the same asymptotic run time or­

der as Algorithm LeftRightBitCorrectRoute. The relatively small number of bit 

operations per node gives this algorithm a simple hardware implementation that is 

not much more complicated than Algorithm LeftRightBitCorrectRoute. 

The maximum and average routing distances of Algorithm ThreeBitLooka­

headRoute both compare favorably to Algorithm LeftRightBitCorrectRoute, as the 

next theorem shows. 

Theorem 7.1.5 Let G = (B°, B1, A) be an n-dimensional LTLE network. The 

maximum routing distance of Algorithm ThreeBitLookaheadRoute is less than or 

equal to n routing steps and greater than or equal to 12n/31 steps. The expected 

routing distance is less than or equal to n/2 routing steps and greater than or equal 

to E(n) steps, where: 
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3 5 1
E(n) = -7-n + + [(15 11V3-i)A7 + (15 + 11Vdi)A111

49 6 49 1 

Where: 

1 +

Al = 

1
4 

A2 = 
4 

Proof: There are three possible conditions for the components of node TT/. 

at index i: 

1. 1 < i < n 2, B? Bj and (AB?)i+i = (AB1)i.o. = 1. 

2. 1 < i < n 2, B? = B1 or (AB?)i+1 = (ABni+i = 0. 

3. n 1 < i < n. 

If Condition 1 is true, then the algorithm routes on the components with indices i, 

i + 1 and i + 2 like a Twisted 3-Cube. If Condition 2 is true, then the algorithm 

routes on the components with indices i, i + 1 and i + 2 like a normal 3-cube. If 

Condition 3 is true, then the algorithm routes on the components with index i or 

indices i and i+ 1 like a normal 1-cube or 2-cube. 

By Theorem 3.3.2, G can be decomposed into smaller dimension networks. 

We will use this property to compute the maximum and expected distance. 

For condition 3, n 1 < i < n. The maximum and average routing distance 

can be calculated by enumeration: 

D(0) = 0, D(1) = 1, D(2) = 2 

E(0) = 0, E(1) = 0.5, E(2) = 1.0 
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Assume that for every triple of components starting at index i, 1 < i < n 2 in 

network G meet Condition 1. There are eight cases, based on the leftmost differing 

components of the sum W + Y. We can join the cases together into three main 

cases, based partly on the possible values of V in the algorithm: 

1. If W1 + Y1 = 0, then the algorithm will inductively look at W2 + Y2. By 

induction, each of the four cases that meet this condition will have a maximum 

distance D(n 1) and an average distance E(n 1). 

2. If W1 + Yl = 1 and ViVi+iVi+2	 YiYi+1Yi+2, then the algorithm corrects the 

first two components in one step, by routing to the neighbor of Tk in dimension 

1. The third component may or may not be set. By induction, each of these 

two cases will have a maximum distance 1 + D(n 2) and an average distance 

1 + E(n 2). 

3. If W1 + Y1 = 1 and V: 17,:+1 +2 = YiYi+1Yi+2, then the algorithm corrects the
4V 

first components in two steps, by first routing to the neighbor of 17i7. dimension 

2, the routing to the neighbor of that node in dimension 1. In these two 

steps, the third component is also corrected. By induction, each of these two 

cases will have a maximum distance 2 + D(n 3) and an average distance 

2 + E (n 3). 

The maximum and average routing distances are described by the recurrence rela­

tions: 

D (n) = max (D(n 1) , 1 + D(n 2), 2 + D(n 3)) 

1 1 1 3E(n) = E (n 1) + TIE (n 2) + E (n 3) + 

Solving these recurrences will give us the solutions: 
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D (n) = I-2 3n 1
 

5 1

E(n) = 3 + + [(15 11-V5i)A7 + (15 + 11f3-i)A121] 

Where: 

1+ fi 
A1 = 

4

1 Vi 
A2 = 

4 

Now assume every index i, 1 < i < n 2 in network G meets Condition 2. The 

algorithm cannot choose to correct components with indices i +1 and i+2 in one step, 

so the algorithm then functions identically to Algorithm LeftRightBitCorrectRoute. 

For average routing distance, the routing algorithm has 2 cases, based on the 

first component of the mode 2 sum of ik + Y. 

1. If W1 = Y1, then the algorithm will inductively look at W2 ± Y2. By induction 

the maximum routing distance is D (n 1) and the average distance is E (n 1) . 

2. If X1 0 Yl, then the algorithm routes to	 neighbor in dimension 1. By 

induction, the maximum routing distance is 1 + D(n 1) and the average 

distance in this case is 1 + E(n 1) . 

The maximum and average cases can be described by recurrence relations: 

D(n) = max(D(n 1), 1 + D(n 1))
 

E(n) = E(n 1) + [1 + E(n 1)]
 

Then the maximum routing distance is D(n) = n and the average routing distance 

is E(n) = n/2. 

We now show that these are the upper and lower bounds on the maximum 

and average routing distance. Assume that we have two networks G1 and G2 that 
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have each triple of components meet the same conditions above, except that the 

components starting at index 1 in G1 meet Condition 1 and the components starting 

at index 1 in G2 meet Condition 2. Clearly from the recurrence relations, G1 will 

have a smaller maximum and average routing distance than G2. 

Further, if we use Theorem 3.3.2 to show that G1 is a sub-network of a 

network 61, we can replace G1 with G2 to create a new network G2 that will have 

an equal or larger maximum and expected routing distance. Thus each time we 

change the definition of a network so that the components starting at index i meet 

Condition 2 instead of Condition 1, the maximum and expected routing distance 

will be equal or larger. 

The maximum and expected routing distance can be maximized by ensuring 

that all triples of components starting at index i with 1 < i < n 2 meet Condition 

1, and minimized by ensuring that all triples of components starting at index i with 

1 < i < n 2 meet Condition 2. I 

A list of average routing distances for Algorithm ThreeBitLookaheadRoute 

on the Bent Cube appears in Table 7.3. As can be seen, Algorithm ThreeBitLooka­

headRoute provides a not insubstantial savings on the expected distance about 

11% for an 8-dimensional cube. 

For a packet-switched network, this algorithm may not provide very much 

savings in communication time when compared to a minimal algorithm. But aver­

age routing distance is not a dominant factor in network message delay for circuit-

switched networks. Instead, it is the message length that determines the message 

delay. In a circuit switched network, the rate at which channels are utilized can be 

more important than the average routing distance between nodes. In the theorem 

below, we bound the channel utilization of networks using Algorithm ThreeBit-

LookaheadRoute. 
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Dimension Left-Right Lookahead Percent 
Exp. Dist. Exp. Dist. Savings 

1.00 0.500000 0.500000 0.0000 % 
2.00 1.000000 1.000000 0.0000 % 
3.00 1.500000 1.375000 8.3333 % 
4.00 2.000000 1.812500 9.3750 % 
5.00 2.500000 2.250000 10.0000 % 
6.00 3.000000 2.671875 10.9375 % 
7.00 3.500000 3.101562 11.3839 % 
8.00 4.000000 3.531250 11.7188 % 
9.00 4.500000 3.958984 12.0226 % 

10.00 5.000000 4.387695 12.2461 % 
11.00 5.500000 4.816406 12.4290 % 
12.00 6.000000 5.244873 12.5854 % 
13.00 6.500000 5.673462 12.7160 % 
14.00 7.000000 6.102051 12.8278 % 
15.00 7.500000 6.530609 12.9252 % 

Table 7.3. Expected Distances of the 3-bit lookahead algorithm. 
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Theorem 7.1.6 Let G = (B°, B1, A) be an n-dimensional LTLE network. If Algo­

rithm ThreeBitLookaheadRoute is used, then the channel utilization for all channels 

in dimensions 1 and 2 will be 0.25 of all paths in the network, and the utilization 

for all channels in dimensions 3 through n will be between 0.1875 and 0.25 of all 

paths in the network. 

Proof: The proof is by induction on the dimension of the network. We will 

represent the channel utilization for channels in dimension i on an n-dimensional 

LTLE network as L(i , n) . 

Base Case: n = 1, n = 2. The channel utilization can be computed by 

enumerating all the cases. For a 1-dimensional cube, the channel utilization is: 

L(1,1) = 0.25 

and for a 2-dimensional cube, the channel utilization is: 

L(1, 2) = L(2, 2) = 0.25 

Inductive Step: n > 3. In Theorem 7.1.5, we listed the three conditions that 

could occur for the components of a node 171/". at index i for a network G. 

First assume that all triples of components starting at index i with 1 < i < 

n 2 meet Condition 2. The routing paths can be broken into two cases, based 

on the first differing component of W and Y. If W1 = Yi, then the algorithm 

will inductively look at W2 + Y2. If W1 0 Y1, then the algorithm will route to W's 

neighbor in dimension 1, and then inductively look at W2 ± Y2 . Because the neighbor 

function is 1-1, the result of routing across dimension 1 will uniformly distribute 

source and destinations of the remaining sub-paths across W + Y = (01-1). By 

induction, the channel utilization can be written as a recurrence relation: 
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L(1, n) = 
1 

L(i + 1, n) = L(i, n 1), 1 < i < n 

Solving the recurrence gives L(i, n) = 0.25 for all 1 < i < n. 

Now assume that all all triples of components starting at index i with 1 < 

i < n 2 meet Condition 1. The routing paths can be broken into eight cases, based 

on the first three indices of the sum W. + Y. We can join the eight cases together 

into three main cases: 

1. If W1 +Y1 = 0, then the algorithm will inductively look at W2 + Y2. By induc­

tion, the four cases that meet this condition add 0 to L(1, n), add 0.5 L(1, n-1) 

to L(2, n), add 0.5 L(2, n - 1) to L(3, n) and add 0.5 L(i, n 1) to L(i + 1, n) 

for 3 < i < n 1. 

2. If W1 + Y1 = 1 and ViVi+114+2	 YiYi+1Yi+2, then the algorithm corrects 

the first two components in one step, by routing to the neighbor of IV' in 

dimension 1. The third component may or may not be set. Because the 

neighbor function is 1-1, the result of routing across dimension 1 will uniformly 

distribute source and destinations of the remaining sub-paths across 1;1'7 +Y = 

(0-1). By induction, the two cases add 0.125 to L(1, n), add 0 to L(2, n), 

and add 0.25 L(i, n 2) to L(i + 2, n) for 1 < i < n 2. 

3. If W1 +Y1 = 1 and 17,14-F1Vi-F2	 = YiYi+iYi+2, then the algorithm corrects the 

first three components in two steps, by first routing to the neighbor of 1717. 

in dimension 2, then routing in dimension 1. Because the neighbor function 

is 1-1, the result of routing across dimension 2 and then dimension 1 will 

uniformly distribute source and destinations of the remaining sub-paths across 
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W +Y = (000{2.2}71-4). By induction, the two cases add 0.125 to L(1, n), add 

0.125 to L(2, n), and add 0.25 L(i, n 3) to L(i + 3, n) for 1 < i < n 3. 

Summing the channel utilization for each L(i, n), we get: 

L(1, n) = 0.125 + 0.125 

L(2, n) = 0.5 L(1, n 1) + 0.125 

L(3, n) = 0.5 L(2, n 1) + 0.25 L(1, n 

L(i, n) = 0.5 L(i 1, n 1) + 0.25 L(i 2, n 2) + 0.25 L(i 3, n 3) 

It is not even necessary to solve the recurrence relation set up in this 

proof. Inductively substituting in the values of the L's into the recurrence will 

give L(1, n) = 0.25, L(2, n) = 0.25, and L(3, n) = 0.1875, etc. The channel utiliza­

tion L(i, n) is an average over L(i 1, n-1), L(i 2, n-2) (twice) and L(i 3, n-3). 

The smallest value for channel utilization will be 0.1875 and the largest value will 

be 0.25, and so 0.1875 < L(i, n) < 0.25 for 1 < i < 7i. I 

Table 7.4 gives a list of channel utilizations for 1- through 15-dimensional 

Bent Cubes. The sequence eventually converges to 0.21428571 in the first 8 digits, or 

approximately 85.71% of the channel utilization of the same channel using Algorithm 

LeftRightBitCorrectRoute. 

7.1.3. Extending the Three Bit Lookahead Algorithm 

Algorithm ThreeBitLookaheadRoute computes which neighbor to route to by 

using only the three components with indices i, i + 1 and i + 2, where i = min( {k : 

Wk # Yk }). The algorithm, as specified, computes the next neighbor to route to 

"on the fly". If we store at each node ik a table of which neighbor to route to for 

all possible values of components W + Yi, Wi+1 + Yi+i, and Wi+2 Yi+2, we don't 
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Dimension Channel Utilization 
1 0.25 
2 0.25 
3 0.1875 
4 0.21875 
5 0.21875 
6 0.2109375 
7 0.21484375 
8 0.21484375 
9 0.2138671875 
10 0.21435546875 
11 0.21435546875 
12 0.2142333984375 
13 0.21429443359375 
14 0.21429443359375 
15 0.2142791748046875 

Table 7.4. Minimal Channel Utilization of the 3-bit lookahead algorithm. 

even need to worry about computing the next neighbor to route to; we can simply 

look it up on the table. If we naively store the routing tables, (as in Table 7.2), we 

need to store li 2 tables of 23 x 23 = 64 bits, so the total storage takes 64(n 2) 

bits. We'll also need a table of 32 bits and a table of 4 bits to store which neighbors 

to route to for indices i = n 1 and i = n, respectively. 

We can extend Algorithm ThreeBitLookaheadRoute to "look ahead" at any 

number of bits. If we extend the algorithm to k lookahead indices, then we need to 

precompute all locally shortest paths (using the first k components starting from the 

component with index i), and then store the first step of each. Using the minimal 

routing algorithm we distributively compute these shortest paths on each node X- in 

0 ((n k)(k2 log k)) bit operations. The results of these computations would have 



170 

to be stored in n k +1 different routing tables at each node, and each table would 

store 2k x 2k numbers of k bits each, plus one table each for each 1 < i < k which 

stores 2i x 2i numbers of i bits each. The total number of bits to store this would 

be: 

k-1 
(71 k + 1)22k + E 22i 

i=i 

This amount of space grows exponentially as k increases, so network designers will 

probably want to keep k small. 

There are other reasons to avoid extending the lookahead of the algorithm. 

For Twisted Cube networks of dimension 4 or larger, following minimal paths can 

route channels asymmetrically across the network, as shown by the Twisted Cube 

[2], which can lead to network bottlenecks. Also, any lookahead algorithms using 

a lookahead of more than 2 components will also bring only exponentially growing 

storage and lookup costs for diminishing returns. 

7.2. WORMHOLE ROUTING ALGORITHMS FOR LE NETWORKS 

The claim that LE networks are better than the hypercube rests on the 

assumption that a reduced expected and maximum routing distance will lead to 

shorter expected communication times. This claim is justified if the average number 

of routing steps a message takes is a dominant factor in the message latency (the 

time a message's transmission takes from source to destination). This can happen in 

packet-switched message-passing strategies, such as the store-and-forward routing, 

but for circuit-switched strategies, like wormhole routing, have message latencies 

that are relatively independent of the expected and maximum routing distance. Such 

strategies have become increasingly preferred in multicomputer implementations. 
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Two questions arise about the LE networks. First, can circuit-switched 

strategies like wormhole routing be implemented on LE networks? Second, do these 

alternate strategies show better performance on the LE networks than on the hyper­

cube? In this section, we show the answers for these two questions for the wormhole 

routing strategy. 

7.2.1. An Introduction to Wormhole Routing 

Currently, "wormhole" routing is receiving wide attention as a routing 

method that is preferable to store-and-forward routing [46]. In a typical store-and­

forward communications algorithm, each node along the path of a message receives 

the message and stores it, then computes which neighbor to forward the message 

to next. The message's latency the time to travel from source to destination is 

dominated by the product of the message's length and the number of routing steps, 

at least when a relatively small number of messages are in the network. Store-and­

forward routing requires storage buffers at each node, which can be expensive in 

terms of hardware. If a message is too long to fit the buffer length, it may be broken 

into packets, which are each sent separately and so store-and-forward routing is 

known as a packet-switched strategy. 

The wormhole routing approach avoids the problem of buffers. It allocates 

all the communication channels along the routing path, as the head of the message 

is sent. It breaks the message into flits the largest number of bits that can be 

transmitted through a channel simultaneously and sends the flits directly to the 

destination in pipeline fashion. If a communication channel is not immediately 

available, the message waits until it can allocate the channel. When relatively few 

messages are in the network, the message latency is dominated largely by the product 

of the message's length and the time to transmit one flit. Wormhole routing is not 
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only often faster than store-and-forward routing, but has no need for storage buffers 

at each intermediate node. Wormhole routing is usually implemented at the circuit 

level hence it is known as a circuit-switched strategy. 

One problem with the two routing strategies is that they can allow processes 

to hold some resources while waiting for other resources. (For store-and-forward 

routing strategies, the processes are messages and the resources are buffers. For 

wormhole strategies, the processes are also messages, but instead the resources are 

channels.) This holding of resources makes it possible for deadlock to occur. A group 

of two or more processes may try to allocate resources the others hold, creating a 

cycle of dependency, in which each process makes no progress. 

It is important that a routing algorithm does not allow deadlock to occur. 

Some routing algorithms are already inherently deadlock-free and can be used un­

modified. Other algorithms allow cycles of dependency. These algorithms must be 

modified to prevent deadlock from ever occurring. 

One way to show that a wormhole routing algorithm is deadlock-free is to 

build a channel dependency graph. A channel dependency graph D consists of a set 

C of vertices, one vertex for each unidirectional channel of the network, a set E of 

edges, where for c1 , c2 E C we have (ci, c2) E E iff c1 and c2 are consecutive channels 

in at least one of the routing algorithm's routing paths. Then a test on D will tell 

if G is deadlock-free: 

Theorem 7.2.1 [46] A routing algorithm is deadlock-free if its channel depen­

dency graph is acyclic. 

An acyclic channel dependency graph prevents the messages from creating 

a cycle of dependency. Since the channels of an acyclic channel dependency graph 
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are nodes in an DAG, they can be topologically sorted. The theorem below then 

follows: 

Theorem 7.2.2 [46] A routing algorithm is deadlock-free if its channels can be 

assigned monotonic ordering so that the routing algorithm allocates the channels in 

strictly increasing or decreasing numerical order. 

The hypercube's standard left-to-right bit correction algorithm is deadlock-

free. This algorithm always uses the channels in the first dimension before channels 

in the second, and so forth. Since the algorithm never routes using more than one 

channel in each dimension, the channels can be ordered by their dimension (called 

dimension-ordered routing). This "dimensional" monotonic ordering makes routing 

deadlock-free. 

This same left-to-right bit correction scheme also works for LTLE networks: 

Theorem 7.2.3 Algorithm LeftRightBitCorrectRoute in Figure 7.1 is deadlock-free, 

but not always minimal for all LTLE networks. 

Proof: The arguments follow those for the hypercube. At most one channel 

in dimension i is routed across, and the channels are always allocated in order of 

increasing dimension. This ordering makes the algorithm deadlock-free. 1 

It should be obvious that the same algorithm will also work on LTDM net­

works without modification. 

The algorithm LeftRightBitCorrectRoute always produces minimal paths for 

only a very small subset of the LE networks, including the the hypercube. Is it 

possible for LE networks to have a wormhole routing algorithm that is both minimal 

and deadlock-free? Unfortunately, the answer is "no" . 
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Figure 7.3. A cycle of dependency in the Twisted 3-Cube. 

Theorem 7.2.4 The Twisted 3-Cube has no minimal and inherently deadlock-free 

routing algorithm. 

Proof: The Twisted 3-Cube contains eight pairs of nodes that are each 

joined by only one path of length two. All other paths between them are longer. 

Any minimal routing algorithm will always choose this unique shortest path, if given 

one of these node pairs as source and destination. These paths are shown in Figure 

7.3. 

The union of these paths forms a cycle of length eight. Any minimal routing 

algorithm on the Twisted 3-Cube can have this as a cycle of dependency, if all nodes 

on the cycle simultaneously route messages to the nodes that are distance two away 

on the cycle. 
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This excludes a large number of networks from the possibility of having a 

deadlock-free routing algorithm: 

Theorem 7.2.5 The Mains Cubes, the Twisted Cube, the Twisted Hypercube, the 

Twisted N -Cube, the Flip MCube, the Crossed Cube, the Bent Cube and the Gener­

alized Twisted Cube all have no deadlock-free routing algorithm. 

Proof: Consider the Twisted N-Cube first. It has a Twisted 3-Cube em­

bedded at the single pair of twisted channel. There are alternate routes for the 

paths in the dependency cycle, but to step out of the Twisted 3-(sub)cube requires 

at least five steps one step to jump out of the sub-network, three steps to correct 

the Twisted 3-Cube's bits, and one step to jump back in. This is longer than the 

minimal path's two steps. 

Now consider the rest of the networks (assumed to be LTLE networks). All 

of these networks have the Twisted 3-Cube as a sub-network if we examine the last 

three components of the address vectors. Any alternate path between nodes of the 

sub-network requires at least three steps one to set a component in dimension 

1 < i < n 3, one to correctly set the last three components, and one to reset the 

component in dimension 1 < i < n 3. Again this is not minimal. So none of these 

networks have a routing algorithm that is minimal and deadlock-free 

Though the LE networks do not have minimal and deadlock-free routing 

algorithms, this does not exclude them from being used in wormhole routing archi­

tectures. For example, other networks whose minimal routing algorithms are not 

deadlock-free include the toroidal mesh and the k-ary n-cubes. These networks are 

still popularly used, despite the potential for deadlock. 
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7.2.2. Virtual Channels 

In a network that has no inherently deadlock-free algorithm, there are two 

ways to make the algorithm deadlock-free. The first way is to examine the channel 

dependency graph and delete one edge from every cycle in the graph. This method 

is used to prevent deadlock in the k-ary n-cubes [46]. 

Unfortunately, this means the routing algorithm will need to be changed, 

so that it never uses any routing paths that use the removed dependency. It also 

means that for some networks, the lengths of some routing paths must be made 

non-minimal. 

The second approach to removing deadlock from a routing algorithm involves 

adding more channels to the network, so that cycles in the channel dependency graph 

can be avoided. The channels are added between nodes that are already connected 

by a channel, so that routing distances and the connectivity of the network are 

unchanged. This approach will make the network a multigraph instead of a graph. 

This approach has two advantages. First, the algorithm's routing paths are 

unchanged, so that the network still has the same characteristics. Second, the 

network does not need to have the additional channels physically added. Instead, 

they can be treated as virtual channels and be multiplexed across a single physical 

channel. The virtual channels take turns at using the physical channel, so at each 

time step, only one virtual channel sends a flit across the physical channel. In 

addition, multiplexing will need only a minimal amount of additional hardware. 

The throughput of a multiplexed channel is an issue in network design. If we 

allow a maximum of in virtual channels per physical channel, and k of those virtual 

channels are allocated, then the multiplexer must alternate control between each of 

the k allocated channels. With a channel bandwidth of W, the effective bandwidth 
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from \ to 000 001 010 011 100 101 110 111 
000 3, 1 2, 1 2, 1 1, 1 1, 1 2, 2 1, 1 

001 3,1 2, 1 2, 1 1, 1 1, 1 1, 1 2, 2 
010 2, 1 2, 1 3, 1 2, 2 1, 1 1, 1 1, 1 

011 2, 1 2, 1 3, 1 1, 1 2, 2 1, 1 1, 1 

100 1, 1 1, 1 1, 1 2, 2 3, 1 2, 1 2, 1 

101 1, 1 1, 1 2, 2 1, 1 3, 1 2, 1 2, 1 

110 1, 1 2, 2 1, 1 1, 1 2, 1 2, 1 3,1 
111 2, 2 1, 1 1, 1 1, 1 2, 1 2, 1 3, 1 

Table 7.5. A wormhole routing table for the Twisted 3-Cube. 

of each virtual channel is W/k. The throughput of any message using the the 

channel then also drops to W/k, affecting the throughput of the message through 

other channels in its path. We must choose how to add and use virtual channels 

carefully, and we must consider how they affect the throughput of messages in the 

network. 

We can use additional channels to make routing on the Twisted 3-Cube 

deadlock-free. If we allow virtual channels, then a maximum of 2 virtual channels 

per physical channel are needed to make an minimal and deadlock-free routing 

algorithm for the Twisted 3-Cube. 

The output of a Twisted 3-Cube routing algorithm is a list R of ordered pairs 

(i, c) of neighbors i and channels c. For instance, if the first element of R is (i, c) 

the first step of the routing path uses virtual channel c between )? and Bt(Ag)`. 

Table 7.5 shows, for each current node and destination node, the number of 

the neighbor route to and the number of the virtual channel to route on. The only 

time the second virtual channel is used is for any exceptions to the left-right bit 
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correction algorithm, as shown in Table 7.2, so only dimension 2 requires virtual 

channels. 

The routing algorithm encoded on this table correctly and minimally routes 

without deadlock on the Twisted 3-Cube. There are a small number of source and 

destination address pairs, that is, 26 pairs, so it is trivial to verify all the paths 

are correct and minimal. The routing paths of the algorithm will always allocate 

channels in the order: (2, 2), (1, 1), (2, 1), (3, 1). Again, this can be shown by 

verifying all paths. By Theorem 7.2.2, this network is deadlock-free. 

This approach can be generalized to LTLE networks of higher dimensions, 

by examining only 3 adjacent components of the routing address at a time. The 

distributed routing algorithm appears in Figure 7.4. Notice that it is a slightly 

modified version of Algorithm ThreeBitLookaheadRoute. 

Theorem 7.2.6 Algorithm WormHoleThreeBitLookaheadRoute is correct, minimal 

and deadlock-free, and has a distributed run time of 0(n) bit operations and a total 

run time of 0(n) bit operations. 

Proof: The algorithm is correct and minimal by arguments given in Theorem 

7.1.4. 

The algorithm is deadlock-free because the network's channels can be 

grouped into the following order: 

(2, 2), ( 1 , 1 ) , (3, 2), (2, 1 ) , (4, 2), (3, 1), . . . , (n, 2), (n, 1 , 1), (n, 1) 

and any path generated by the algorithm will use the channels in this order. 

The algorithm has a distributed run time of 0(n) bit operations and a total 

run time of 0(n) bit operations, again by arguments given in Theorem 7.1.4. 1 

The channel utilization for Algorithm WormHoleThreeBitLookaheadRoute 

will be the same as the channel utilization for Algorithm ThreeBitLookaheadRoute, 
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Input: An n-dimensional LTLE network G = (B°,13', A), a source address fe, a 
destination address and the current address 17V. 

Output: If the message needs to be forwarded, the number of the neighbor and the 
number of the virtual channel to route the message to. If the message is at its 
destination, a signal to accept the message at the current node. 

WormHoleThreeBitLookaheadRoute( G, ) 

begin 
ti

if W = Y then
 
return "Accept"
 

else
 
i E- min{lo : + = 1}
 
if i < n 2 then
 

U t W + ./31+/)'+' 

17 < U + .13A17)1 
end if 

if 1 < i < n 2 and B41 0 B1+1 and (AeliTT)')i+i = 1 
and V= Y and Vi+1 = Yi+1 and Vi+2 = Yi+2 then 

return (i + 1,2) 
else if 1 < i < n and B? and (AWIT17")i = 1) then 

return (i, 1) 
else 

return either (i, 1) or (i, 2) 
end if 

end if 
end procedure 

Figure 7.4. Algorithm WormHoleThreeBitLookaheadRoute. 
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because the two algorithms use the same routing paths. For the dimensions that 

use two virtual channels, the channel utilization of the second virtual channel will 

be 1/4 of the total channel utilization for the physical channel, because only 2 of 

the 8 possible conditions that can occur the algorithm will use the second virtual 

channel. 

As in Section 7.1, the 3-bit lookahead algorithm can be extended to a k-bit 

lookahead algorithm. At the current time, we have bounded the number of virtual 

channels to a number linear in n. 

Theorem 7.2.7 Let G = (B °, B1, A) be a n-dimensional non-redundant LTLE net­

work. A k -bit lookahead algorithm for that network will require at most min(2k 1, n) 

virtual channels per physical channel. 

Proof: We can always route k terms in any given order if the indices of 

the terms are unique (nonredundant) and we allow k channels per physical channel. 

This is because we can arrange the dimension/virtual channel pairs as: 

(1,1) (2,1) (k, 1) 

(1, 2) (2, 2) (k, 2) 

(k,1) (k, 2) (k, k) 

If the i-th step has index j, then we route on the i-th virtual channel of physical 

channel j. It is deadlock-free because it uses channels in strictly increasing order by 

the dimension/virtual channel pairs. 

Let R be the ordered terms that describe the routing path between source 

node .fe and destination node Y, and let the index of the Ri-th step be j. The 

routing path R can always be broken into an ordered set of one or more sub-paths 

or "chains" C1, C2, ... so that: 
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Vti E C,,Vt2 E C, : u < v ti <t2 

The length of any chain of terms is at most k -1 terms long, because there can 

be simultaneously at most k -2 terms that are either before Ri and have an index 

greater than j, or are after Ri and have an index less than j. 

Further, the terms in a chain can have indices that differ by at most k -1, 

because the terms before Ri with index greater than j can only have indices between 

j +1 and j k.
 

For each physical channel across dimension i, allocate 2k -1 virtual channels 

numbered from max(1, i k + 1) to min(i k 1, n). These dimension/virtual 

channel pairs can be ordered with dimension major, virtual channel minor. For 

instance, a network with n = 7 and k = 3, we have the channels ordered as: 

(1,1) (2,1) (3,1) 

(1, 2) (2, 2) (3, 2) (4, 2) 

(1, 3) (2, 3) (3, 3) (4, 3) (5, 3) 

(2, 4) (3, 4) (4, 4) (5, 4) (6, 4) 

(3, 5) (4, 5) (5, 5) (6, 5) (7, 5) 

(4, 6) (5, 6) (6, 6) (7, 6) 

(5, 7) (6, 7) (7, 7) 

(We break the channels into rows so the pattern is more clear.) 

For any chain C, the last term tic' will have the smallest index j (or the chain 

can be broken into two smaller chains). For t1c1 , assign the physical channel/virtual 

channel pair to be (j, j -1-k-1). Then the terms ti , t2, , E C can be routed 

deadlock-free no matter what order they appear in, because we have the channels 

in the following order: 
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(j +1,i), , (j+k -1,j), 
1 1 

U+1,j+k), , (j+k-1,j+k) 

As noted above, this is enough to route using all the terms with indices j+1 through 

j -I- k in any order, without deadlock, before we route using a term with index j. 

No two chains will not use the same physical channel/virtual channel pairs, 

because all the terms in one chain can be used as a routing step before any term 

in a following chain, and chains are always used as routing sub-paths in increasing 

order. Thus the algorithm is deadlock-free, because the chains will always use the 

channels in a strictly increasing order of dimension/virtual channel pairs. 

So far, this approach still uses virtual channels numbered 1 through n. We 

can reduce this to at most 2k 1 virtual channels by noting that we can assign the 

virtual channels modulo 2k 1 without channel conflict. 1 

Theorem 7.2.7 only shows an upper bound on the number of virtual channels. 

For instance, the three-bit lookahead algorithm needs only two virtual channels and 

not three as the theorem suggests. 

7.2.3. Minimal Wormhole Routing Algorithms 

For the Twisted 3-Cube, only two virtual channels are needed to make the 

minimal routing algorithm deadlock-free. For larger LE networks, more virtual 

channels may be needed to make a minimal routing algorithm deadlock-free. By 

setting k = n in Theorem 7.2.7, we can see that at most 71 virtual channels are 

needed. However, we may not need n virtual channels to make the minimal routing 

algorithm deadlock-free. 
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There are some special cases where minimal and deadlock-free routing is 

trivially possible. The algorithm LeftRightBitCorrectRoute is clearly minimal for 

the hypercube network. It is also trivially deadlock-free, by Theorem 7.2.3. 

Another trivial algorithm uses the Twisted 3-Cube to create a minimal and 

deadlock-free routing algorithm for at least the Generalized Twisted Cube. 

Theorem 7.2.8 The Generalized Twisted Cube has a deadlock free minimal routing 

algorithm that uses at most two virtual channels. 

Proof: In its definition, the Generalized Twisted Cube of dimension n is 

constructed by graph composition of Ln/3i Twisted 3-cubes and at most one hyper­

cube of dimension n mod 3. We can then route each Twisted 3-Cube sub-network 

using the routing table in Table 7.2, and the remaining hypercube using Algorithm 

LeftRightBitCorrectRoute. If we route through these composed graphs in a fixed 

order (say, from the smallest indexed one to the largest), then no more than 2 virtual 

channels are needed. I 

Now consider the more general case of a LTLE network G = (B °, B1, A). The 

algorithm for this case is more complicated than the algorithm for the Generalized 

Twisted Cube. We cannot use the same trick of decomposing the network into 

trivially routed sub-networks. 

One problem in designing a deadlock-free minimal algorithm comes from the 

ordering of channels in the routing path. The minimal routing algorithm must 

sometimes route along the dimensions out-of-order. We have found no simple way 

restrict the possible orderings of the terms in the routing path, and so cannot put 

a bound on the number of virtual channels. 

The simplest approach to modifying the minimal routing algorithm to be 

deadlock-free is to allow an arbitrary number of virtual channels. The simplest 
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Input: An n-dimensional LTLE network G = (B °, B1, A), a source address J?, a 
destination address Y and a minimal routing path R from X to Y. 

Output: A wormhole routing path ft, with neighbor and virtual channel number. 

ti
NaiveWormholeMinimalRoute( G, .fe,f,R)

i+-1 
for each t E R do 

1?- < R + (t, i) 
i i + 1 

end for 
end procedure 

Figure 7.5. Algorithm NaiveWormholeMinimalRoute. 

method is to put each successive step of a routing path onto a different virtual 

channel. This is Algorithm NaiveWormholeMinimalRoute, shown in Figure 7.5. 

Theorem 7.2.9 Algorithm NaiveWorm,holeMinimalRoute is correct, minimal and 

deadlock-free and uses DG virtual channels, where DG is the diameter of the network. 

Proof: The algorithm is clearly correct and minimal, because it uses only 

the terms in R, a correct and minimal legal expansion. 

The algorithm will use exactly DG virtual channels because it uses a different 

virtual channel on each routing step of a routing path, and DG is the length of the 

longest minimal path in G. The channels of the network can be identified as ordered 

pairs of dimension and channel number, as below: 

( 1 , 1 ) , . . . , (n, 1 ) , ( 1 , 2), . . . , (n, 2), , (1, DG), . (n, DG) 

The list is ordered by channel number major, dimension minor. The algorithm 

allocates channel numbers in strictly increasing order, so the channels will be allo­
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cated in left-to-right order from the list above. By Theorem 7.2.2, this is enough to 

guarantee that NaiveWormholeMinimalRoute is deadlock-free. 

There are problems with the algorithm NaiveWormholeMinimalRoute. The 

virtual channels will not be evenly utilized. For instance, the channels in dimension 

1 will have their virtual channel 1 heavily utilized, because channel 1 is used most 

often as the first routing step in a path. 

Since the diameter of the LE networks is (to some measure) a function of the 

dimension, using this algorithm means that increasing the dimension of the network 

will force an increase in the number of virtual channels per physical channel. This 

increase will require that the complexity of the hardware also increase. 

One partial solution would be to find a routing algorithm that requires at 

most a constant number of virtual channels, independent of the network diameter. 

The Generalized Twisted Cube has already been shown to need only 2 virtual chan­

nels. Are there other network algorithms that use a constant number of channels? 

Unfortunately,we have not yet found a satisfactory solution for this problem. 

7.3. SUMMARY 

We have shown that the hypercube routing algorithm can be implemented 

on LTLE networks, and that it will cause LTLE networks to behave similar to the 

hypercube in performance. We have also developed an algorithm which is based on 

the hypercube routing algorithm, but which "looks ahead" three bits to see if there 

is a locally shorter path to route on. This lookahead algorithm compares favorably 

to the hypercube routing algorithm, and captures much of the performance of the 

minimal routing algorithm. Both of these algorithms are interesting because they 

use a constant number of bit operations per node to compute the step in the routing 
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path. This is a big advantage over the minimal routing algorithms before, which 

required that the path be precomputed at the source node. 

We also examined the idea of wormhole routing on LTLE networks. In par­

ticular, we showed that the hypercube routing algorithm was deadlock-free and that 

the three bit lookahead algorithm could be made deadlock-free by adding a second, 

virtual channel to each physical channel. This allowed us to design wormhole routing 

algorithms for LTLE networks. Unfortunately, the minimal LTLE network routing 

algorithm can (to date) only be made deadlock-free by using a number of virtual 

channels equal to the diameter of the network. 

In later chapters, we will compare the behavior of the wormhole routing 

algorithms to see if they compare well to store-and-forward routing algorithms. 
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8. EMBEDDINGS AND EMULATIONS FOR LE NETWORKS 

One reason for the hypercube's popularity is that it can efficiently emulate 

any bounded-degree network [45]. The hypercube can route between any two of its 

processors in n steps. This allows the hypercube to simulate a single communication 

step for any arbitrary network of 2" processors in at worst n communication steps, 

ignoring message collisions. Because of this, the hypercube can emulate algorithms 

written for these other networks with at worst a logarithmic slowdown or dilation 

(in the number of nodes). 

The hypercube also directly embeds a number of well-studied networks, in­

cluding ring networks, meshes, k-ary n-cubes and binomial trees. It can also "almost 

directly" embed several other networks, in particular, the binary tree. Because it 

can embed these networks, the hypercube can simulate a single communication step 

on these networks with no dilation, or at worst constant dilation. 

The embeddings of the hypercube extend to many LE networks, because 

these networks share many of the hypercube's properties. In this chapter, we discuss 

several embeddings that can be done on LTLE networks, including Hamiltonian 

cycles, binomial trees and binary trees. We discuss the emulation of LE networks 

on the hypercube and vice versa. 

8.1. PREVIOUS RESULTS 

The literature on twisted hypercube variants contains several results on the 

embeddings and emulations for the twisted cubes. These results have been pre­

sented on an individual, network-by-network basis and occasionally contain errors. 

A summary of the embedding of ring networks, binary trees, and binomial trees, 
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Network Hamiltonian Binary Binomial Hypercube
 
Name Cycle Tree Tree Emulation
 
Hypercube Yes No Yes 1 

Twisted Cube [34] Yes (?) Yes 2 

Twisted N-Cube [31] Yes Yes Yes 2 
Multiply Twisted 
Cube [29] Yes (?) Yes 2 $ 
Crossed Cube [301 
Flip MCube [51] Yes (?) Yes 4 (2 t) 
0-MObius Cube [23] Yes (?) Yes 4 (2 t) 
1-Mobius Cube [23] Yes (?) Yes 4 (2 t) 
Generalized Twisted 
Cube 112] 
Twisted Hypercube 
[28] 

Yes 

Yes 

(?) 

Yes 

Yes 

Yes 

2 

2 

$: 

Table 8.6. The embedding of networks for hypercube variants, and the constant 
factor of dilation for hypercube emulation. 

and a summary of the dilation for emulation of the hypercube on LE networks is 

summarized in Table 8.6. 

Clearly there are a number of results that remain to be shown for LE net­

works. 

8.2. EMBEDDINGS 

Many parallel algorithms have a communications pattern that is different 

from the structure of the hypercube. For example, matrix multiplication and 

discrete-space simulation algorithms are based on 2-dimensional meshes. These 

algorithms can be used on the hypercube by embedding a mesh through Gray-

encoding. Many other algorithms are based on the divide-and-conquer paradigm, 
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which uses either binary or binomial trees. These algorithms can also be used on 

the hypercube, by embedding these tree networks. If we are to use these algorithms 

on a LE network, it is important to us to know which topologies the network can 

embed. 

We will examine a number of common hypercube-embedded topologies and 

show that they can be embedded into LE networks. For the most part, we limit our 

discussion to LTLE networks. Some of our embedding results cannot be extended 

to LE networks, because the embeddings depend heavily on the properties of LTLE 

networks. This not a significant problem for us, because all published LE networks 

are also LTLE networks. 

A network embedding requires that all channels of the embedded network be 

mapped to disjoint paths or channels. No two channels of the embedded network can 

map to the same channel, or two messages may have to compete for this channels. 

These "channel collisions" can result in a longer communication delay and so are to 

be avoided. 

There are several types of embeddings. The first is a direct embedding, where 

each node of the embedded network is mapped to a unique node, and all the channels 

of the embedded network map to a single channel. A squashed embedding has two or 

more nodes of the embedded network map to the same node. A stretched embedding 

has each channel of the embedded network map to a path of two or more channels. 

We define the dilation of a network embedding or emulation to be the maxi­

mum number of communication or computation steps needed to simulate one com­

munication or computation step for the embedded network. For direct embeddings, 

the dilation is 1. For squashed embeddings, the dilation is the maximum number 

of nodes in the embedded network that are mapped to one node, and for stretched 
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1010 1011 

Figure 8.1. A Hamiltonian circuit on the 4-dimensional 0-Mobius cube. 

embeddings, the dilation is equal to the length of the longest path that a channel 

in the embedded network is mapped to. 

We examine in turn embeddings of ring networks, binomial and binary trees. 

8.2.1. Hamiltonian Circuits and Ring Networks 

If an n-dimensional LE network has a Hamiltonian circuit, then we can di­

rectly embed a ring network of length 2' nodes into the network, and so use ring 

network algorithms on it. Theorem 8.2.1 shows that all LTLE networks have Hamil­

tonian circuits. It does so by showing that a Hamiltonian path with adjacent end 

points exists on every LTLE network. 

Theorem 8.2.1 Let G = (B °, B1, A) be an n-dimensional LTLE network, n > 2. 

G contains a Hamiltonian circuit of length 2". 

Example: The Hamiltonian circuit for the 4-dimensional 0-Mobius cube is: 
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0000 -+ 1000 -4 1111 > 0111 -4 0100 

-4 1100 -> 1011 -> 0011 -* 0010 

-4 1010 -4 1101-3 0101 -) 0110 

-4 1111 -4 1001 +0001 -40000 

and is shown in Figure 8.1. 

Proof: For a path P, let the path PR denote the reverse of the path P. We 

show there is a Hamiltonian path Hn for G from the node w/ address 0 to the node 

Bn°, where the path H, is defined recursively by Hi = Hi_iBti Hjil with Oi E {0, 1} 

and H1 = B?. G then contains a Hamiltonian circuit, because 0 is adjacent to B. 

First, we show by induction that Hi is a legal path, and that the end points 

of the path differ by Bt' for cbi E {0,1}. Further, Hi contains 2i unique nodes. 

Trivially H1 = B? is a path from X to X + B?. Further, it contains two 

uniquely addressed nodes. 

Assume that H-1_1 is a legal path of 2i unique nodes, and that its end points 

differ by for E {0,1}. Then recursively follow the channels of Hi_1 to 

reach X+Btli' . Only channels in dimensions 1 through i-1 are used in I/1_1. Route 

to the i-th neighbor. Because G is a LTLE network, no term Bcib-j<1_1 depends on 

Hit'', so we can trace the path HR 1 to get from X + Bt' 1' + Bt' to X + Bt. . The 

first 21-i nodes are each visited only once by induction, as are the last 21-i nodes. 

Because every node in the first half of the path differs from every node in the second 

half by Bn°, all 2i nodes in the path Hi are visited only once. 

Now we show a Hamiltonian cycle exists. 

The path 1-17, will route from X to X + .13(11ta . Because the path II connects 

all 2n unique nodes, it is a Hamiltonian path. Because G is a LTLE network, 
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Azo B,11 = ./3",.. Thus )e is always adjacent to X + /3"/:., and so a Hamiltonian 

cycle exists. 1 

From the proof above, we can show that a number of disjoint circuits with 

smaller lengths exist in the LTLE networks and so several rings can be simultane­

ously embedded in the LTLE networks. 

Corollary 8.2.1 Let G = (B °, B1, A) be an n-dimensional LTLE network. G con­

tains 2n-k disjoint circuits of length 2k. 

Proof: By the corollary of Theorem 3.3.2, G contains k disjoint LTLE net­

works, each of dimension n k. By Theorem 8.2.1, a Hamiltonian circuit of length 

2n-k can be embedded into each of these networks.' 

Any two nodes in the same Hamiltonian cycle will have all of the first k 

components match, and any two nodes in different Hamiltonian cycles will have at 

least one of the first k components differ, so we can number the Hamiltonian cycles 

by the first k components of their nodes, and we tell which Hamiltonian circuit given 

node is in, simply by examining its address. 

8.2.2. Binomial Trees 

Another network that directly embeds into a LE network is the binomial 

tree. The binomial tree (not the binary tree) is a useful graph structure that is 

often embedded into the hypercube for divide-and-conquer parallel algorithms. 

First, we define the binomial tree. 

Definition 8.2.1 ( POD The binomial class Bk of ordered trees is defined as: 

I. Any tree of a single node is a Bo tree. 
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Figure 8.2. The binomial tree of order 4. 

ti 
2. If X and f are disjoint Bk_i trees for k > 1, then the tree obtained by adding 

an edge to make the root of f become the rightmost offspring of the root of di? 

is a Bk tree. All binomial trees of order k are isomorphic in the sense that 

they have the same topology. 

The binomial tree B4 appears in Figure 8.2. The binomial tree is aptly 

named, because the number of vertices at each distance from the root form a bino­

mial distribution. It should be clear that for any k > 0, a Bk tree has 2k nodes. 

We can directly embed binomial trees into the LTLE networks, as shown 

in Theorem 8.2.2 below. The theorem depends on the decomposition of a LTLE 

network into two smaller networks. 

Theorem 8.2.2 Let G = (B°, B1, A) be an n-dimensional LTLE network. Every 

node in G is the root of at least one binomial tree B. 



194 

Proof: The proof is by induction on the dimension 71 of the network. 

Base Case: For n = 0, the only 0-dimensional network G is a single node. 

The Bo tree can be trivially embedded in G, because it is also a single node. 

Inductive Hypothesis: Assume that any (n 1)-dimensional LTLE net­

work G has every node as the root of at least one Bn_1 tree. 

Inductive Step: Any node X-. in G has X + B1Aj?)1 as its neighbor in the 

first dimension. By Theorem 3.3.2, G can be decomposed into two disjoint LTLE 

networks Go and G1, which each have dimension n 1. Clearly either X lies in Go 

and X + BIA"?)1 lies in G1, or vice versa. By induction, X is the root of a /3_1 tree 

in Go and X + re?)' is the root of a Bn_1 tree in G1. Because these two B_1 

trees are joined at the root, X is the root of a 137, tree. 

Binomial trees are used extensively in hypercube networks for a large class of 

parallel divide-and-conquer algorithms. This class of problems can also be efficiently 

computed on a LTLE network G. Assume that a problem P can be solved by 

dividing P into two equally sized subproblems P1 and P2 and then inductively 

solving P1 and P2. If we map a Br, tree into G with root X and place P at .71?, then 

the subproblem P1 can remain at JZ while other subproblem P2 can be transmitted 

to X + BIA'?)1. The subproblems can then be recursively solved in parallel on the 

two Bn_1 trees rooted at Xt and fe + BIA`g)1 , and the solutions recombined at fe. 

Each problem division and re-combination takes only one communication step, for 

a total of 2n communication steps. 

8.2.3. Binary Trees 

There are standard parallel divide-and-conquer algorithms that do not use a 

binomial tree structure. Instead, they have the parent node do divide and combine 
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operations in parallel while two child nodes recursively solve the sub-problems. For 

these algorithms, the ideal embedding is a binary tree. 

We define the complete binary tree class as: 

Definition 8.2.2 The class Tk of complete binary trees is defined as: 

1. Any tree of a single node is a To tree. 

ti
 

2. If _k* and Y are disjoint Tk_1 trees for k > 1, then the tree obtained by adding 

a root node R and one edge from R to the root of X and a second edge to the 

root of Y is a Tk tree. All full binary trees of order k are isomorphic in the 

sense that they have the same topology. 

It is clear that a Tk tree has 2n +1 1 nodes, because it is constructed from 

two Tk_1 trees, plus a root node. A Tk tree also has 2d nodes that are a distance d 

from the root. 

The binomial tree Bn has a squashed embedding of a binary tree Tn. [45]. 

This squashed embedding is achieved by mapping each parent node and its left child 

to the same node. This method maps 7/ nodes of the binary tree to the root of the 

binomial tree. 

There are several problems with this squashed embedding. Since every left 

child and its parent are mapped to the same node, the parent and child nodes 

cannot do computations simultaneously. This means that the squashed binary tree 

embedding has dilation n, because the root node must emulate n nodes. This result 

is not great, but it shows that a complete binary tree of 2n+1 1 nodes can be 

squashed embedded on any LTLE network. 

We now consider a direct embedding of a binary tree into a hypercube net­

work. A Tn_1 tree has 2' 1 nodes. It might be thought that a Tn_1 tree can be 
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embedded into an n-dimensional hypercube Qn, but this is not the case, as can be 

shown by an red-black node coloring argument [45]. Color the nodes of Q7, with 

two colors, red and black, so that no two adjacent nodes have the same color. Then 

color the nodes of Tn_.1 the same way. Clearly all the nodes distance d from the root 

must all have the same color. The number of nodes of one color in the binary tree 

are either too large or too small to match the number of same-colored nodes in the 

hypercube. 

At best, a 7;2_1 tree can be mapped into Qn using a stretched embedding. 

This can be done by using a double rooted binary tree. Instead of a single node of 

degree 2 at the root, the double rooted Tn_1 tree has 2 joined roots of degree 2. 

A communication between the two main subtrees then takes an extra routing step, 

which means that a Tn_1 tree can be simulated on Qn with a dilation of 2 [45]. 

Though the network Q2 can trivially contain a T1 tree, Q3 cannot contain a 

T2 tree. Oddly, the Twisted 3-Cube can directly embed a T2 tree, as in Figure 8.3. 

Since the hypercube is trivially an LE network, it shows that not all LE networks 

can directly embed a binary tree. 

Can we generalize the Twisted 3-Cube's embedding of a T2 tree? Chedid and 

Chedid [12] attempted to show that a tree can be embedded in an n-dimensional 

Generalized Twisted Cube. Their proof is incorrect. 

They note that a complete T2 tree of 7 nodes can be embedded in a Twisted 3­

Cube, as in Figure 8.3. They attempt to construct a complete binary tree embedding 

by inductively embedding two trees in two disjoint (n- 1) dimensional sub-networks. 

They add a new root which joins these subtrees into a single tree, as in Figure 8.4. 

The construction fails because it assumes that there will always be an unused 

node adjacent to the root of at least one subtree. This assumption is true in the 

base case. But in the inductive step, when the new root is inserted that joins two 
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Figure 8.3. A Twisted 3-Cube with an embedded 7 node binary tree. The tree is 
indicated by the solid lines, and the root is circled. 

000...000 

000...001 100...000 

0-subcube 1-subcube

A 
depth (n-1) tree depth (n-1) tree 

Figure 8.4. The inductive step of Chedid and Chedid's proof to embed a binary 
tree. 
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inductively constructed 7;2_1 trees, the proof fails to show that the remaining unused 

node of TQ is now adjacent to the root of the embedded tree. 

This error can be seen in the 6-dimensional cube example given in their 

Figure 11. When we filled in the addresses of the nodes that Chedid and Chedid 

claim should be in the unexpanded subtrees at the bottom of their figure, we found 

that these subtrees contain nodes that were already used to connect the subtrees 

together. 

If we don't mind wasting a large number of network nodes, we can use the 

embedding of the T2 tree into the Twisted 3-Cube (in Figure 8.3 as a basic unit for 

embedding a Tp,v3i tree into an n-dimensional Bent Cube or Generalized Twisted 

Cube network. Every three dimensions of the Bent Cube or Generalized Twisted 

Cube network allow us to add 2 levels of depth to a binary tree. This embedding 

uses a total of 2L2n/31 +1 1 nodes a fairly small fraction of the total number of 

nodes in the network. However, we can do better. 

The Twisted N-cube of Estafahanian et al. [31] can directly embed at least 

one Tn_1 tree. The construction of this embedding is exactly the same as for embed­

ding the double rooted binary tree into the hypercube, but with one change. One 

ordinary hypercube channel and one of the network's two twisted channels are used 

to connect the two binary subtrees to one root. In fact, this network was designed 

to embed a binary tree. 

We can use a construction similar to the one given for Twisted N-cube to 

directly embed a Tn_1 tree in at least one LE network. This construction starts 

with a double-rooted binary tree directly embedded into an ordinary hypercube 

(27, = (I, I, 0). We use the embedding given in [45]. This construction is illustrated 

in Figure 8.5. It works by embedding double-rooted binary trees in the two (n 1)­

dimensional sub-networks, then joining them at the roots. Channels along dimension 
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0100... 1000... 1010... 

0101... 0010... 1100... 1011... 

(a) 
0100... 1000... 1010... 

1011... 

(b) 
0100... moo_ 1010... 

0101... 0010... 1100... 1011... 

(c) 

Figure 8.5. Construction of a single-rooted Tn tree from two double-rooted Tn--1 
trees on a LE network. 
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k on the hypercube are not used below level k + 2 on the double-rooted binary tree, 

which means that dimension 2 channels will not be used below level 4 of the tree. 

We then modify the definition of the hypercube Qn to a new network 

G, so that M = el + e2, and row2(A) = el + e3 + e4. Of the four channels 

of the binary tree that span dimension 2, the three channels (0101 ... , 0001 ...), 

(0010 , 0110...) and (1011 , 1111 ...) remain unchanged, because (A.,)2 = 1 

for each of these addresses. But the channel (0000 , 1000 ...) no longer exists. 

We can remove the channels (0000 , 1000 ...) and (0000 , 0100...) and add the 

channel (0100 , 1000 ...) to change the double-rooted binary tree into a Tn_1 tree. 

The channels in levels 3 and 4 of Tn, that cross dimension 2 are defined by M and 

so are unchanged, and no channels in any other level of Tn are defined by M or 

Thus TT, is embeddable in at least one LE network. 

The general question of embedding a complete Tn_1 tree into an arbitrary 

n-dimensional LE network is still unanswered. On the one hand, the hypercube is 

a LE network that cannot directly embed a binary tree. On the other hand, there 

is at least one LE network that does embed a binary tree. It is not known what the 

necessary and sufficient conditions are for an arbitrary network. 

8.2.4. Meshes 

Not all topologies that embed into the hypercube will embed as easily into 

LE networks. Mesh networks, which embed onto the hypercube by Gray-encoding, 

apparently cannot be directly embedded (in general) onto a LE network because 

the Gray-encoding no longer works. 

If we have a LTLE network, we can embed the special case of a 2 by 2" 1 

mesh by noting that the i-th node in an embedded Hamiltonian circuit has the 
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(n i 1)-th node as a neighbor in dimension n. This is because the second half of 

the circuit is the same as the first, with node addresses differing only in the last bit. 

Cheng and Chuang [13] managed to show that their Varietal Hypercube 

(a.k.a. the Generalized Twisted Cube) can embed 2-dimensional meshes of size 

2P x 2q for p + q = n. Their proof rests on the fact that a Twisted 3-Cube can 

embed a 1 x 8 mesh or a 2 x 4 mesh, a 2-cube can embed a 1 x 4 mesh or a 2 x 2 

mesh, and a 1-cube can embed a 1 x 2 mesh. 

A Generalized Twisted Cube is built from the graph composition of In /3i 

Twisted 3-Cubes and sometimes an additional n mod 3-Cube. Since each of these 

networks can embed a mesh, their graph composition can embed an arbitrary mesh 

of 2' nodes and up to 12n/31 dimensions, which can in turn embed a 2-dimensional 

mesh by Gray-encoding. Cheng and Chuang showed that the values of p and q in 

the dimensions above can be any two positive numbers that add to 9Z. 

It is not clear how we can extend this result to other LE networks. The 

problem is that their proof depends on the graph composition of networks to produce 

a Generalized Twisted Cube. Since most of the other networks are not produced by 

graph composition, this mesh embedding cannot be directly applied. The question 

of whether a LE network can directly embed a mesh network of arbitrary dimensions 

is still unanswered. 

8.3. LE NETWORK EMULATIONS 

In this section, we consider the emulation of one network by another. A 

network emulation is different from a network embedding. An embedding allows 

a mapping of each channel of one network to a path in another, but requires that 

these paths must be disjoint they can contain no common nodes or channels. An 
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emulation allows each channel of the emulated network to be mapped to a path, but 

the set of set paths in the mapping do not necessarily have to be disjoint. 

In an emulation two messages may attempt to use the same channel simul­

taneously, causing a channel collision. One message must wait while the other 

proceeds, possibly causing the emulation to have a larger dilation. In proving that 

an emulation can be done with a given dilation, we must consider the possibility of 

channel collisions. 

Because the hypercube C27, and an n-dimensional LE network G have the 

same number of nodes and the same node addressing scheme, we can write an 

algorithm for Qn, then transfer it to G, replacing each of Qn's communication steps 

with a series of communication steps on G. If it is possible to emulate a single 

hypercube routing step in a constant number of steps on G, then we could directly 

run hypercube algorithms on G with little modification and only a constant amount 

of "slowdown" or dilation. Conversely, we could execute LE network programs on a 

hypercube with constant dilation, by emulating each of the network's routing steps 

on the hypercube. 

8.3.1. Emulating LE Networks on Hypercubes 

How well a hypercube can emulate a LE network? As the theorem below 

shows, a hypercube can emulate a general LE network with a dilation at worst 

linear in n. 

Theorem 8.3.1 Let G = (B °, B1, A) be an n-dimensional general LE network. The 

hypercube Qri can simulate G with dilation n using the store-and-forward routing 

strategy. 
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Proof: We assume a direct mapping of node addresses between Q and G, 

so that X E Qn maps to X E G. 

A single term in G can have weight n, so that it takes a path of at least 

steps in Qn to emulate the single channel in G. We can emulate a single routing 

step of a single message in G, by using the hypercube's routing algorithm to correct 

the components one at a time. 

There is at least one LE network (a trivial one) that must be emulated in 

at least n steps using our mapping. This is the network G = (B°, B1, A) where 

B? = Bi = ei, except for ./23- = e2 + e3 + . . . + en, and A is zeroed out, except for 

A2,1 = 1. A message that travels from X to fe + B? will require n 1 steps to route 

on the hypercube. (We will ignore mapping isomorphisms of G to Q,.) 

We show a way to avoid channel collisions during the emulation ofone routing 

step. We allow n synchronous routing steps on (27, for each routing step of G. 

Consider a message routing along channel Pe, X + Bt) in G. At routing step j with 

1 < j < n, we route the message along dimension ((i + j 2) mod n) + 1 of Qn 

iff 13((i-1-j 2) modn)+1 = 1. At the end of n steps the message will be at the correct1, 

destination. Two messages using Bt and Bf with it = i2 will not collide with each 

other, because the i-th neighbor function is one-to-one, and two messages using B4 

and Bt with i1 i2 will not collide, because they are routed in different dimensions 

of Qn at each time step j. 

Though the hypercube cannot always emulate a general LE network with 

less than linear dilation, there are subclasses of LE networks that can be emulated 

with constant dilation. 

Theorem 8.3.2 Let G = (B °, B1, A) be an n-dimensional LTLE network, where 

B° and B1 are banded lower triangular matrices, and where k is the largest number 
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such that Bti_k_i = 1 with 0 E {0, 1} and 1 < i < n. The hypercube Q can simulate 

G with dilation k using the store-and-forward routing strategy. 

Proof: If B° and B1 are banded lower triangular matrices, then the Ham­

ming distance between any node je and je + iec)l is at most k. Q can simulate 

a single communication step in G in at most k steps. Consider a message routing 

along channel (.g, .1? + B?) in G. At routing step j with 1 < j < k, we route the 

message along dimension (i + j) 1 of iff (i + j) 1 < n and B(1 
)_1 = 1. Two 

messages using Bt and fit with it = i2 will not collide with each other, because 

the i-th neighbor function is one-to-one, and two messages using B and B with 

it i2 will not collide, because they are routed in different dimensions of Q at 

each time step j. 

Notice that most of the published LTLE networks have banded lower triangu­

lar B° and B1 matrices. We can make the following inference about non-redundant 

LTLE networks: 

Corollary 8.3.1 Let G = (B °, B1, A) be an non-redundant n-dimensional LTLE 

network, where for all i, B? + B2 E {0, B41, B41, , BP. Let k be the largest 

number of components with index i that all have B? + Bi sum to By or B with the 

same index j where 1 < i < j < n. The hypercube Q can simulate G with dilation 

k +1 using the store-and-forward routing strategy. 

Proof: By using an extension of Algorithm MinimumWeightIsomorphism in 

Figure 4.3, we can transform G into a network a = (E°, El, A), where each A) and 

El has weight of at most k. The network G then has B° and B1 be banded matrices 

with at most k + 1 bands on and below the triangular LE . Then by Theorem 8.3.2, 

we can emulate a on the hypercube with dilation k. 
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This leads immediately to a conclusion about the dilation for emulating a 

number of published networks on the hypercube: 

Corollary 8.3.2 The MObius Cubes, the Twisted Cube, the Flip MCube, the Gen­

eralized Twisted Cube, the Bent Cube and the YATC Cube of dimension n can all 

be emulated on the hypercube C2,2 with dilation 2. 

Proof: Notice that all of these networks have B? E {0, B? 1, ALI} 

with 1 < i < n. All but the Mobius cubes can be emulated by Theorem 8.3.2. The 

Mobius cubes can emulated by first using Algorithm MinimumWeightIsomorphism 

to an isomorphism where the matrix descriptions have B° and B1 be banded lower 

triangular matrices with maximum weight 2. 

8.3.2. Emulating Hypercubes on LE Networks 

If LE network family are going to be used, it is important that we show that 

LE networks can emulate the hypercube. The hypercube has a large number of 

parallel algorithms designed for its architecture. We would like to be able to use 

those algorithms directly on LE networks. 

We have shown that the hypercube can emulate the LE network family with 

at worst linear dilation. The reverse, emulating Q on G, is somewhat more dif­

ficult to prove. The problem is that we have not proven a polynomial bound on 

the maximum number of steps needed to route in a LE network. Until we can, 

we cannot put a polynomial bound on the dilation, because the LE network may 

require an exponential number of communication steps to emulate one hypercube 

communication step. 



206 

Input: An n-dimensional LTLE network G = (B °, B1, A), and a set of messages M. 

Procedure HypercubeEmulate ( G, M ) 
begin 
for each W E Z do in parallel 

for each message M at W with source X and destination .71?" + et do in parallel 

Send M from W. to W + W11.7)' 
end parallel 

end parallel 
for k = i 1 to n 

for each 117 E .22 do in parallel 
for each message M at "W' with source .fe and destination X + e, 
with i + k 1 < n do in parallel 

if Wil-k-1 Xi+k-i then 
Send M from 1-4.7 to Y-17' + fey. )* 

end if 
end parallel 

end parallel 
end for 
end procedure 

Figure 8.6. Algorithm HypercubeEmulate. 

We can avoid this problem by (again) restricting the class of networks we 

use. An n-dimensional LTLE network can emulate the hypercube Qn with at worst 

linear dilation, as shown in the theorem below: 

Theorem 8.3.3 Let G = (B °, B1, A) be an n-dimensional LTLE network. Then G 

can emulate the hypercube Qii with dilation n. 

Proof: Algorithm HypercubeEmulate effectively emulates one hypercube 

routing step, and is shown in Figure 8.6. Notice the similarity between this algorithm 

and Algorithm LeftRightBitCorrectRoute. This algorithm will use the same routing 
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paths as Algorithm LeftRightBitCorrectRoute, and so correctly routes messages 

from source to destination. 

We assume that for a single communication step of the hypercube Q,, there 

is at most one message crossing each unidirectional channel of Qn. Since Algorithm 

HypercubeEmulate will use only channels in dimensions i through 71 of G to route 

from X to X + ei on G, at worst n communication steps on G will be needed to 

emulate any routing step on Qn. 

Now we show that no two messages will collide. 

Assume that message M1 travels from X to )? +ei in Qn and that message M2 

travel from Y Y + ei in Qn, where i < j. Let M1 and M2 be routed simultaneously 

at any time step k in the emulation algorithm. M1 is routed from a node jj(k) to 

node: 

jj(k+1) pp(AY(k)),+k_iX(k) I 

and M2 gets routed from a node (k) to node: 

f(k+1) 3,(k) n(Af(k));+-i 
-r- j+k 1 

Message Mi. and M2 will never have a channel collision, because they never route 

across the same neighbor at the same time step. 

Now assume that message M1 travels from X to X + ei and that message 

M2 travels from Y to Y + ei in Qn. The only way that M1 and M2 could cause a 

channel collision is if at some stage, they were routed to the same node VV. during 

the emulation algorithm. 

From Theorem 3.3.2, G can be divided into 2k sub-networks of 2n-k nodes 

each. These sub-networks are differentiated by components 1 through k of the node 

addresses, and each node inside a sub-network has a unique address in components 

k +1 through n. 
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We state two loop invariants for Algorithm HypercubeEmulate and show 

that these remain true for the entire algorithm. The first invariant is that before 

stage k, M1 is at some X(k) and M2 is at some (k), where X(k) 37'(k). The second 

invariant is that if before stage k, M1 and M2 are in the same (n k)-dimensional 

sub-network, then: 

A!(k) + e1) = f(k) + ei) 

These invariants hold before stage 1, because M1 and M2 are at nodes J-C*(1) = ./1? 

(1) = Y in the same n-dimensional cube G, and: 

X (i) + + ez) = f(1) + (7+ e1) 

If after stage k, M1 and M2 are in different (n k)-sub-networks, then Xlk) Yi(k) 

for at least some component with index 1 < j < k. Then because Algorithm 

HypercubeEmulate will not affect indices 1 through k, M1 and M2 will not be in the 

same sub-network after step k + 1, because their new addresses di-j(k+1) and c"(k+1) 

will also differ in index j. 

If after stage k, M1 and M2 are in the same (n k)-sub-network, then X.r) = 

-17-(k) for all 1 < j < k. Either both messages M1 and M2 get routed in step k + 1 

or neither of them do, because the second invariant implies that for the (k + 1)-th 

component: 

(.(k) + (je + = (f(k) + ei))k+i 

So M1 gets routed to node: 

-T­

and M2 gets routed to node: 
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-17 (k+1) (k) D(c(k)),+k 

Since: 

(A)e(k))i+k_l= (Af(k))i+k_l 

we have 5C. (k+1) (k+1) by mod 2 vector addition. So X and 3-7. do not get routed to 

the same node W. Also, if fe(k+1) and (k+1) are in the same (n(k+1))-dimensional 

sub-network, we have: 

(k+1) (fe ei) (k+1) (17- ei) 

by mod 2 vector addition. So our loop invariants remain true in step k + 1 and MI 

and M2 do not collide. 

The above proof allows any LTLE network to emulate the hypercube with at 

worst linear dilation. We were unable to show that in general a LTLE network can 

emulate a hypercube with at most constant dilation. However, there is a restricted 

subset of networks that can emulate the hypercube with constant dilation, as the 

theorem below shows. 

Theorem 8.3.4 Let G = (B °, B1, A) be an n-dimensional LTLE network. Let 

{ 0, +1, B41} and let (ABP)i+1 = (ABP)i+1 = 1. Then C can emulate 

the hypercube Qn with dilation 4. 

Proof: The algorithm to generate the routing paths is Algorithm Limited-

HypercubeEmulate, shown in Figure 8.7. For each Qn routing step that a message 
ti 

takes from a node X to its i-th neighbor ei, G performs a series of routing steps 

along its channels to get the message to ei. 
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Input: An n-dimensional LTLE network G = (B °, B1, A) where B? + B2 E 
{0, B?+1, Bi-±1} and (AB?)i+i = (AB?)i+i = 1 with 1 < i < n, a source node 
and a hypercube dimension i to route in. 

Procedure LimitedHypercubeEmulate ( G )
ti 

for each W E ZT do in parallel 
for each message M at W. with source fC. and destination jC. + ei do in parallel 

if B(AX)1 = ei then 
Send M from W. to W. + r(Avi7)' 

if /e)' ei and B? + ./31+Al'?"1 then 

Send M from W. to 1717 + 
end if 

end parallel 
end parallel 
for each W E Z do in parallel 

for each message M at W with source X and destination X + ei do in parallel 
if 13(A)i ei and B? + Bi 14i_Al'?)'' then 

Send M from IT/ to W + 
end if 

end parallel 
end parallel 
for each W E Z2 do in parallel 

for each message M at 11.7 with source .kand destination X + ei do in parallel 
B(AX)i ei and B? + Bi then 

Send M from 117 to 11/* + ./31+Ail41)'+'
 

end if
 
end parallel 

end parallel 
for each IT/ E Z2 do in parallel 

for each message M at W. with source .k.and destination _;c: + ei Cdo in parallel
ilex)' 

1 

ei and B? + Bt = Bl+Aix),+, then 

Send M from W. to 121/* + e1/47)1
 
end if
 

end parallel 
end parallel 
end procedure 

Figure 8.7. Algorithm LimitedHypercubeEmulate. 
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We assume that G has minimal-weight B° and BI-. If not, we can transform 

it to an isomorphic network that does, by using Algorithm MinimumWeightlsomor­

phism. In G, if B? = B.j, then B? = Bi = ei. If B? 131 , then B? + B, = ei+i, 

and so either B? = ei and B1 = ei + ei+i, or BZ = ei and B? = ei+ei+1. 

If the conditions of the theorem are true, then the LTLE network will never 

need more than two routing steps to emulate one hypercube routing step. Assume 

B? = ei. If B? defines a channel (.,?,.k + B?) in G, we route in one step from ,3? 

to .)? + ei. If B? does not define a channel (X, X + B?) in G, then B? = ei + ei+1 
ti 

does and we route in two steps from je to .)? + ei by using channels defined by 13! 

and Bt+1, where Bt+1 = B? + B. Since Bi4.)+1 depends on Bi (by the theorem's 

conditions), we can ensure that Bic6+1 defines a channel in the path. This is done by 

ordering the step across a channel of dimension i 1 either either before or after 

the step across a channel of dimension i. 

This same argument is also true for /3! = ei. 

Algorithm LimitedHypercubeEmulate simulates a single communication step 

of the hypercube. For a message that is routed along ei in the hypercube Q, the 

algorithm determines if there is a corresponding legal channel in G and sends the 

message along channel. If there is no legal channel, the algorithm routes the message 

along two legal channels to reach the destination. If we ignore channel collisions, a 

dilation of 2 is sufficient to route a single hypercube message on G. 

If we cannot ignore channel collisions, then we must guarantee that no two 

paths use the same channel simultaneously. There are three sets of paths used by 

Algorithm LimitedHypercubeEmulate for any dimension i with 1 < i < ii 1. These 

paths are listed below, by their conditions: 

1. ei = (AX)i. The path is )? ./311"?.)1 (and )? ---+ )-e 
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Path Type Stage 1 Stage 2 Stage 3 Stage 4 

1 B(A5?)i 

2 130g)i BL_Ai.)1+1 

,(Ag) i Dog);
3	 .L.,i+1 '4- /Ji 

Table 8.7. Timing stages for each type of path. 

2. ei = (Ail-01 and ei+1 = (Ag.)1+1. The path is fe -4 X + BLA1 )'+1 -+ fi; 

.13,1'4.1+ .1e)`, for i < n. 

3. ei = (AX)1 and ei+i = (A)Z)1+1. The path is fe	 )-e+B,CAC ). -4 .)-C.+/e). + 

./4A)`+1, for i < It. 

Within each type of path, the individual paths do not cause channel collisions. 

Two paths of the same type that emulate ei on G do not collide, because by Lemma 

2.1.1 the neighbor function Ni is 1-1. Two paths of the same type that emulate ei 

and e; with i j cannot collide, because at each step they use channels in different 

dimensions. 

If each type of path is routed in separately, then the hypercube can be sim­

ulated without channel collisions with dilation 5. We can overlap the routing step 

for paths of type 1 with the first routing step for paths of type 2, because they use 

disjoint sets of channels. This gives us a dilation of at worst 4, as shown in Table 

8.7. However, overlapping the routing steps for paths of types 2 and 3 will allow 

channel collisions. A message on a path of type 3 emulating ei can have an collision 

with a message on a path of type 2 emulating ei+i, and vice versa. So we cannot 

use this method to get a dilation of 2 or 3. 
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If we join and transmit simultaneously messages that use the same channels, 

then the dilation can be effectively reduced to 2 steps. This might be considered 

"cheating," since the network hardware and software must be designed to allow 

message joining and splitting. 

We can apply the results from the above theorem to the published LE net­

works. 

Corollary 8.3.3 The Mobius Cubes, the Flip MCube, the Bent Cube and the YATC 

Cube of dimension n can emulate a hypercube Qn with dilation 4. 

Proof: This follows directly from the theorem above. 

Corollary 8.3.4 The Twisted Cube and the Generalized Twisted Cube of dimension 

n can emulate a hypercube Q with dilation 2. 

Proof: This follows from the theorem above. However, because W(B? + 

= 1 implies that W(B?+1 + B41) = 0 in these networks, the paths of type 2 

and 3 can now overlap without collision, because we no longer need to worry about 

whether a path of type 3 emulating ei will collide with a path of type 2 emulating 

ei+i, or vice versa. Because we can overlap all three types of paths, G can emulate 

the hypercube Qn with dilation 2. 

So while LTLE networks apparently need linear dilation to emulate the hy­

percube, all of the published LE networks need only constant dilation. 

8.3.3. Emulating Other Networks on LTLE Networks 

The LTLE network emulation of the hypercube can be generally applied to 

a number of networks. The hypercube is a member of a family of networks that 

can emulate each other with a constant dilation [45]. These networks include the 
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Cube Connected Cycles network, the DeBruijn network, and the Butterfly network. 

Because the published twisted cube networks can emulate the hypercube with a 

constant dilation, they also belong to this family of networks. Any LTLE network 

can also emulate these networks with a constant dilation. 

However, we are interested in emulating networks that we could not directly 

embed into the LTLE networks. We can emulate a toroidal mesh (or an ordinary 

mesh) on a LTLE network G, by emulating a hypercube Qn on G. 

Corollary 8.3.5 Let G = (B°, B1, A) be an n-dimensional LTLE network. If G 

can emulate Q, with dilation t, then G can emulate a 21-n12j x 2L"I'i toroidal mesh 

with dilation t, and G can emulate a k-ary (n k)-cube with dilation t. 

Proof: Trivially true, because Qn can directly embed a 2L11/2i x 2L"i21 toroidal 

mesh or a k-ary (n k)-cube by Gray-encoding. 

In fact, any network that is directly embedded into the hypercube can be 

emulated on a LTLE network with the same dilation that emulating a hypercube 

requires. If the embedding is squashed or stretched, then the dilation may increase. 

This is the case with emulating a binary tree on an arbitrary LTLE network. 

Though the direct embedding of a binary tree was shown possible for a given LE 

network, we would like to be able to emulate a binary tree on any LTLE network. 

Corollary 8.3.6 Let G = (B°,131, A) be an n-dimensional LTLE network. If G 

can emulate Q, with dilation t, then G can emulate a 2n 1 node binary tree with 

dilation at worst t +1. 

Proof: Trivially true, because Q, can directly embed a 2" node double-

rooted binary tree. This means Q, can emulate the 2n 1 node binary tree with 

dilation 2. We only have to rearrange the dimension so that the channel connecting 
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the double roots falls along dimension n. Because dimension 77 can always be routed 

in one step for both Q7, and G, communication between the first level children and 

the root can take at most 2 steps on Q and at most t 1 steps on G. The rest of 

the communications will take one step on Q7, and t steps on G. 

The binary tree emulation is a special case. In general, this technique of 

emulating a network A by emulating an emulation of A on Q will have a dilation 

of at worst k1 x k2, where k1 is the dilation of emulating Q on G, and k2 is the 

dilation of emulating A on Q. 

8.4. SUMMARY 

In this chapter, we have dealt with several different aspects of LE networks, 

including embeddings, emulations. We have managed to show that LTLE networks 

are able to embed such networks as rings, binomial trees, and in some cases binary 

trees. We have also shown that all LTLE networks can emulate the hypercube 

with linear dilation, and that some of the published LE networks can emulate the 

hypercube with constant dilation. This allows the published LE networks to emulate 

a large number of networks with constant slowdown, including binary trees, meshes, 

and k-ary n-cubes. 
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9. ALGORITHMS FOR LE NETWORKS 

One reason that the hypercube interconnection network remains popular is 

because it can efficiently compute a large number of standard parallel algorithms, 

including most algorithms with a divide-and-conquer structure. Coupled with effi­

cient general communications algorithms, this makes the hypercube network ideal 

for writing simple and efficient parallel algorithms. 

In this chapter, we will discuss broadcasting algorithms for the LE networks. 

We will examine some algorithms that can be computed using fewer communication 

steps than the hypercube. Finally, we consider the implementation of a hypercube 

and several LE networks by using a single reconfigurable network. 

9.1. BROADCASTING ALGORITHMS 

The typical Twisted Cube paper examines direct one-to-one routing, since it 

is essential to interconnection network study. However, there are very few papers on 

resource-preserving hypercube variants that examine other general communication 

algorithms for their particular networks. The only paper that considers any other 

communication algorithms is the Multiply Twisted Cube [29] (later the Crossed 

Cube [30]), which examined the one-to-many broadcast algorithm. 

Communication algorithms are always designed for one of two communi­

cations models. The first, the single-channel model, allows each processor to 

send/receive only one message along a single channel at each communication step. 

The second, the multiple-channel model, allows a node to send/receive multiple 

messages across several or all channels at each communication step. Efe showed 
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that under the multiple-channel model, the Crossed Cube was able to broadcast to 

all processors in 1(n + 1)/21 steps. 

In this section, we demonstrate that some broadcasting algorithms for the 

hypercube can be modified for use on LTLE networks. We show that hypercube's 

broadcasting algorithm under the single-channel model is minimal for LE networks. 

We demonstrate several broadcasting algorithms under the multiple-channel model 

that are at least as efficient as the same algorithms for the hypercube. These algo­

rithms are nonredundant, in the sense that each node receives exactly one message 

and no channel is used more than once. 

We begin with the single-channel model of communications: 

Theorem 9.1.1 Let G = (B °, B1, A) be an n-dimensional LTLE network using 

single-channel communications. Algorithm SingleChannelBroadcast in Figure 9.1 

broadcasts on an n-dimensional LTLE networks in n communication steps, which is 

minimal. 

Proof: Each node that has received the message in a previous communi­

cation step can send the message to at most one other node during the current 

step. This implies that the number of nodes that have received the message can at 

most double at each communication step. So the lower bound on any single channel 

broadcast algorithm is log2 2' = n communication steps. 

The broadcasting tree of Algorithm SingleChannelBroadcast follows the 

channels of an embedded spanning binomial tree rooted at the source node A.. 

It is similar to the algorithm given in [38]. 
ti 

At step 0 of the algorithm, the source node fe has the broadcast message. 

At step 0 < i < n, each node that has the message forwards it to the neighbor in 

dimension i. 
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Input: An n-dimensional LTLE network G = (B °, B1, A), the source node X, and 
a message M. 

ti 
Procedure SingleChannelBroadcast ( G, 
for i = 1 to n do 

for all nodes Ti / E .ZT do in parallel
ti 

if IV has the message M 

send M from IT/ to 1/V + /31A14.11 
end if 

end for 
end parallel 
end procedure 

Figure 9.1. Algorithm SingleChannelBroadcast. 

On an n-dimensional cube, assume that after step (i-1), there are 2j-1 nodes 

with the message, and that the addresses of the nodes with the message all differ 

somewhere in components 1 through (i 1). 

On step i, a node 1;17. with the message transmits the message to 17 = + 

./44/47)*. By the definition of the LTLE networks, the addresses ii" and V differ 

in the i-th component, and are equal in components 1 through (i 1). V differs 

from any U 0 ITT that had the message in step i 1, because 17 and U must differ 

somewhere in components 1 through i 1. Every node 1/17.' will produce a unique 17 

because the neighbor function is 1-1, so there are 2(2i-1) = 2' nodes that have the 

message at step i. 

At step n, 2n unique nodes have the message, so the message has been broad­

cast to the entire network. 

Algorithm SingleChannelBroadcast is basically the same algorithm that the 

hypercube uses. In practice, the hypercube's single-channel broadcasting algorithm 

http:31A14.11
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is often used for multiple-channel broadcasting, because the diameter of the hyper­

cube is the same as the bound on single-channel broadcasting. Because the LTLE 

networks have diameters that can be less than n, algorithm SingleChannelBroadcast 

may not be minimal under the multiple-channel model. 

Theorem 9.1.2 Let G = (B °, B1, A) be an n-dimensional LTLE network using 

multiple-channel communications, and let D(G) be the diameter of G. Algorithm 

MultipleChannelBroadcast in Figure 9.2 executes in at most D(G) communication 

steps, which is minimal. 

Proof: The diameter is clearly a lower bound on the number of steps that a 

multiple-channel broadcasting. algorithm a message cannot be transmitted from 

the source to a node a distance D(G) in fewer steps. 

The minimal point-to-point routing algorithm gives a unique path from a 

source node X to a destination Y. For any path of length 1 or more, there is clearly 

a unique next-to-last node W on the path adjacent to Y. 

At step 0, the message is given to the source node X. At each following step, 

and for each node 171.7 with the message, each neighbor 17 of if/ is examined. If V 

would receive a message from X through I/P (say, using Algorithm LinearEquation-

Route from Figure 6.7), then the message is sent to 17 in the broadcast. 

In the algorithm, a boolean variable "Forwarded" is used to have each node 

broadcast only once. V is the j-th neighbor of W.. A list P is used to store the path 

from )? to V. The final element of the list, Fjpi, will be B.(iA7)3 if ITT is on the path 

from X to 17, because IT/ is the j-th neighbor of f 

Messages must arrive at all nodes because all LTLE networks are connected 

and so a path exists between every pair of nodes in each network. Only one copy of 

the message arrives at each node because every path from X given by the routing 
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Input: An n-dimensional LTLE network G = (B °, B1, A), the source node jj, and 
the message M. 

Procedure MultipleChannelBroadcast ( G, X , M ) 
for all 11.7 E Z2 do in parallel 

NotSent 4-- true 
end parallel 
for i = 1 to D(G) do 

for all W E ZT do in parallel 
if T/V has the message M and NotSent = true 

for j = 1 to n do 
-11 + BjAw)-1 

P MinimalRoute( G, X, V ) 

if PPS = Bi(Alk)3 then 
send message M from W to V 

end if 
end for 
NotSent false 

end if 
end for 

end parallel 
end procedure 

Figure 9.2. Algorithm MultipleChannelBroadcast. 
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1 4 
3 4 

1 4t,/ 4 4 '
, 42 

Step I Step 2 

Figure 9.3. Broadcasting in two steps on a Twisted 3-Cube. 

algorithm is unique. At most D(G) communication steps are needed for any network 

G, because no longer routing path will be given by the minimal routing algorithm. 

The algorithm takes 0(n) x 0(n2 log n) = 0(n3 log n) bit operations per 

each routing step, by Theorem 6.4.1, because the routing algorithm is run for each 

neighbor of a single processor. The number of communication steps is D(G), and 

so is minimal. 

Algorithm MultipleChannelBroadcast is a general method for multiple-

channel broadcasting that is applicable not just to the LE networks, but also for 

other networks. There is another multiple-channel broadcasting algorithm that can 

take advantage of some of the structure in a LE network, and so can in general 

broadcast using fewer communication steps than the hypercube. This algorithm 

does not use an optimal number of communication steps, but does use asymptoti­

cally fewer bit operations than Algorithm MultipleChannelBroadcast above. 

The method used by this algorithm is similar to one used by the 3-bit looka­

head algorithm. In Figure 9.3, we note that the Twisted 3-Cube has a diameter of 
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2, and any message can communicate to the rest in 2 steps. In the first routing step 

the source node distributes the message to all three of its neighbors, then in the 

second routing step two neighbors of the source node distribute the message to the 

four remaining nodes. 

This Twisted 3-Cube broadcast suggests a fairly simple broadcasting algo­

rithm, as shown in Figures 9.4 and 9.5. We won't formally prove the behavior of 

Algorithm ThreeBitBroadcast, as it is similar to Algorithm ThreeBitLookahead-

Route in Figure 7.2. 

This broadcasting algorithm takes a maximum of 0(n) routing steps and a 

minimum of 0(12n/31) routing steps, depending on the network used. This algo­

rithm also has a distributed run time of 0(1) bit operations and a total run time 

of 0(n) bit operations mostly through pre-computing of matrix operations and 

simultaneous transmission of the broadcast message. 

Algorithm ThreeBitBroadcast deals with the conditions that can occur lo­

cally in a twisted define sub-networks that are ordinary 3-Cubes, the algorithm 

behaves much the hypercube's multiple-channel broadcast algorithm. However, if 

the components i, i + 1 and i + 2 define sub-networks that are Twisted 3-Cubes, 

then each node must do different actions to broadcast to all nodes in the Twisted 

3-Cube formed by components i, i + 1 and i + 2. If we group together different 

nodes that do the same action, we have four different cases to consider. The case 

corresponding to each node is shown by the numbers in Figure 9.3, and the actions 

required for each case are listed in Algorithm ThreeBitBroadcast. 

Though Algorithm ThreeBitBroadcast does not use the minimal number of 

communication steps, it has the advantage that (in many cases) it takes fewer routing 

steps than the multiple-channel broadcasting algorithm of the hypercube, and takes 

fewer computation steps than the minimal multi-channel broadcasting algorithm. 
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Input: An n-dimensional LTLE network G = (B °, B1, A), the source node X, and 
message M. 

ti
Procedure ThreeBitBroadcast ( G, X, M ) 
For node je, state f- 1

ti 
for all nodes TV E Z do in parallel 

NotSent < true 
end parallel 
i < 1 
delay 4--- 0 
while i < n do 

for all nodes W. E Z do in parallel 
if Tg7 has message M and NotSent = true then 

case state = 1: 

if 1 < i < n 2 and B.41 Bj+i and (AMA-C)i)i+i = 1 

Route M to W + Bl+Aiv17)'+' with state = 2 

Route M to 1;17' + E4A2/1r)' with state = 3 

Route M to W + Bl+A3147"3 with state = 4 

Route M to W + BJcAW)J with state = 1 for i + 3 < j < 
else 

Route M to W + B(AvVi)j with state = 1 for i < j < 71 
end if 

case state = 2 

Route M to 4V + fei.f)' with state = 4 
Route M to W + Bi_Af)`+' with state = 4 

Route M to 4V + BCAW)j with state = 1 for i + 3 < j < 71 
case state = 3 

Route M to 1717. + B.LAI.W)'+' with state = 4 

Route M to W + .Bit3)'+' with state = 4 
Route M to W + ./3.A/T1)2 with state = 1 for i + 3 < j < n 

case state = 4 

Route M to W -1-./311/47)' with state = 1 for i + 3 < j < 71 
end case 
NotSent false 

end if 
end parallel 

(continued) 

Figure 9.4. Algorithm ThreeBitBroadcast. 
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(continued from Figure 9.4) 

if 1 < i < n 2 and ./3?+1 # B41 and (A.eig)' )i+1 = 1 then 
if delay = 0 then 

delay 1 

else 
i i + 3 
delay 0 

end if 
else 

i i 1 

end if 
end while 
end procedure 

Figure 9.5. Algorithm ThreeBitBroadcast (continued). 

This algorithm should require at most a constant computation time per routing 

step, provided we precompute which sets of components define sub-networks that 

are Twisted 3-Cubes. The only disadvantage is that a constant number of bits have 

to be sent with the message to signal the type of broadcasting action the node should 

perform. 

There are certain cases where this algorithm is minimal: 

Theorem 9.1.3 The Bent Cube and the Generalized Twisted Cube have a multi­

channel broadcasting algorithm that takes 12n/31 communication steps, and is min­

imal for both networks. The Twisted Hypercube has a multi-channel broadcasting 

algorithm that takes n 1 communication steps and is minimal. 

Proof: This result depends on the fact that a Twisted 3-Cube has a diameter 

of 2. We can group the components of the address vector into Twisted 3-Cubes and 

then broadcast in 2 steps to each 3-dimensional sub-network. Since the diameters 
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of these 2 networks are both 12n/31, Algorithm ThreeBitBroadcast is minimal 

we cannot broadcast to all nodes in fewer communication steps. The Twisted Hy­

percube has only the last three components of its address vector form sub-networks 

that are Twisted 3-Cubes and so must broadcast like the Hypercube for the first 

n 3 steps, and then broadcast like the Twisted 3-Cube in the last 2 steps. This is 

optimal because the Twisted Hypercube has a diameter of n 1. 

But there are also cases where this algorithm is not minimal: 

Theorem 9.1.4 The MObius Cubes, the MCube, and the YAT Cube have a multi­

channel broadcasting algorithm that takes 12n/31 communication steps. 

Proof: The proof is the same as in Theorem 9.1.3. But with these networks, 

the algorithm is not minimal, because the diameter of all of these networks is 1(n + 

1)/21. 

9.2. GENERAL ALGORITHMS 

Only the Crossed Cube of Kemal Efe [30] has had any sort of parallel appli­

cation written for it. Efe examined semi-group computations, matrix multiplication, 

and sorting. He showed that these problems could be computed using almost half 

the communication steps that the hypercube would use for the same algorithms, 

largely because of the reduced diameter of the network. (In reality, Efe "cheated" 

a little. The semigroup calculation will operate as he suggests, but will have the 

correct result at only the root node. The sorting algorithm used the rank sorting 

method, which isn't really the traditional problem of sorting, and which requires 22/c 

processor nodes to compute 2's' values). 
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We consider the problem of implementing various algorithms on the LE net­

works. We begin with a few examples, which admittedly duplicate the results of 

Efe. 

Efe defines a semigroup operation as a recurrence relation over a binary 

associative operation o over a set of elements al, , : 

Yi = al 

yi= aioyi_1fori =2...m 

Assume that each element ai is at a different processor of a hypercube. All yi can 

be computed on a hypercube in n communication steps, by using a binomial tree to 

collect and compute values. Because LTLE networks embed binomial trees, we can 

replicate the algorithm on a LTLE network in the same number of communication 

steps. 

If we want to compute just yi at one node X in a LTLE network, then the 

communication time can be shortened. The algorithm assumes that each node either 

knows or can compute its parent and children in a broadcast tree from Any leaf 

simply sends its value to its parent. Any interior node waits until receives all the 

results of its children's computations, and then computes the group sum of their 

results and sends the sum to its own parent. At the end of the computation, the 

root node contains the group sum of all elements. 

This computation takes only as many communication steps as a broadcast 

algorithm, and so will take at most as many steps as the hypercube would. This 

algorithm allows us to compute many collection problems, such as global maximum, 

global sum, etc. 

Another algorithm that can take advantage of the smaller broadcasting dis­

tances of LTLE networks is matrix-vector multiplication AX where A is a 2"/2 x 2n/2 
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matrix. First, examine the algorithm on a 2n/2 x 2n/2 mesh. The rows and columns 

of A are stored on the rows and columns of the mesh, and the elements of X are 

stored in the leftmost column. The algorithm first has the elements of the first 

column broadcast their Xi values to their rows, then computes the product 

at each element. The final phase is adding the elements of each row into the first 

element of each row. 

The hypercube can do this algorithm by Gray-encoding. It will take n com­

munication steps, because the broadcast and summation can treated as broadcasts 

and group sums over dimension n/2 sub-networks, which will each take n/2 steps. 

By Corollary 8.2.1, up to 2f12 disjoint Hamiltonian cycles of length 2712 can be 

put onto one LE network. We can use these cycles to do simultaneous computation 

of each row in the matrix-vector product. Then the algorithm will take as little 

as 2D(Gii/2) communication steps, where D(Gti/2) is the maximum diameter of the 

sub-networks. For instance, the algorithm will take n + 2 communication steps for 

the 0-Mobius cube. 

When running parallel algorithms, the LTLE networks can show a improve­

ment in communications delay over the hypercube in at least two ways. First, 

direct one-to-one communications (over a uniform source/destination distribution) 

have shorter paths on a LTLE network than on the hypercube, and so require fewer 

communication steps. Second, one-to-many broadcast trees generally have smaller 

height, and so broadcast and collect algorithms are also faster on an LTLE network. 

The LTLE networks can compute many parallel algorithms with the same 

number of communications steps as the hypercube. Most parallel algorithms use 

a divide-and-conquer approach, where one of two recursive subproblems is trans­

mitted to another processor and computed simultaneously. These algorithms have 

a binomial tree communication pattern and so map easily to the hypercube's re­
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cursive, easily decomposable structure. The LTLE networks embedding of binomial 

trees, also allow us to implement a parallel divide-and-conquer algorithm on a LTLE 

network with the same communications complexity as on a hypercube. 

A LTLE network will have a communications time improvement over a hy­

percube in the emulation of PRAM algorithms. Since the PRAM is a global memory 

model, and the LTLE network and hypercube are not, we are faced with two choices: 

Either the processors split the memory so each processor has one segment of the 

global memory, or each processor contains an image of the shared memory space. In 

the first case, a processor will require direct one-to-one communication with another 

processor if it accesses a memory location outside its own local space. In the sec­

ond, broadcast and partial semigroup computations will be needed to update each 

image of the global memory. In either case, the LTLE network has an advantage 

over the hypercube if its diameter is smaller and if memory accesses are uniformly 

distributed. 

However, there are situations where a LTLE network will have no advantage 

over a hypercube in communications time. When the communications patterns 

are heavily dependent on the hypercube's structure, the shorter routing distances 

offered by an LTLE network will be of little use. This is especially true if the LTLE 

network cannot efficiently embed or emulate a hypercube. 

9.3. RECONFIGURABLE NETWORKS 

An interesting property of the Crossed Cube architecture of Efe [30] is that 

it can be obtained from a hypercube of the same dimension by adding crossover 

switches to a small number of channels. We can control the switches' settings 

so that the channels are configured for either the hypercube or the Crossed Cube 

architecture at any given time. 
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(a) 

(b) 

Figure 9.6. A reconfigurable switch. 

We find four processors T, U, V, W where, (T, U) and (V, 147) are channels only 

in the hypercube, and where (T, W) and (U, V) are channels only in the Crossed 

Cube. We then put in a switch that ties the two channels together. By setting the 

switch, we can either let the two channels pass straight through or cross each other, 

as in Figure 9.6. 

Efe showed that the hypercube network requires only a fairly small number 

of switches to reconfigure into a Crossed Cube network. For a network of dimension 

n = 2k or n = 2k + 1, the number of switches needed is: 

2)22k-1 +2kS2k = (k 

3(22k-1 2k-1)
s2k+i = k22k 
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This number is relatively small compared to the number of channels in the Crossed 

Cube network. Because the switches are relatively simple, the complexity of con­

structing the network will be dominated by the number of routing elements and not 

by the number of switches. 

The advantages of this reconfigurable network are clear. The switches can 

initially set the network to a hypercube configuration. However, when the Crossed 

Cube has a better communication algorithm, we can temporarily turn the switches 

to configure the network as a Crossed Cube and communicate. The best of both 

networks exist in this "dynamically reconfigurable network" . 

The reconfigurable network concept can be applied to the LTLE networks. 

Here, each pair of twisted channels can be joined by a switch, so that the network 

is reconfigurable as a hypercube. 

We will limit our discussion to LTLE networks for now. 

The twisted channels of the LTLE network will always occur in pairs. Let 

(X, fe+B.A4) be a twisted channel in a LTLE network. Then (jj+ei+el)' , JZ+ 

ei) is also a twisted channel in the LTLE network, because: (Aei)i = 0 and 
(AB' A)i ),

Bi = 0 by definition of a LTLE network, and so: 

Bfit(je+ei+B!Ag);)1,X + ei elf6i 

B04 + B(Af3i(Ag)i)i= X + ei + 
ti

=X+ei+ 0+0 

Also, (X, ei) and (fe + ei + .1e)s,je + B,Vv?)s) are channels in a hypercube 

network. So the two LE network channels can be made reconfigurable into hypercube 

channels with one switch. 

Assume that the addresses of the nodes in the reconfigurable network will be 

the same for both the hypercube setting and the LE network setting. The number 
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of switches needed is one-half of the total number of twisted channels in the LTLE 

network, as computed by Theorem 2.3.1. If we implement one of the published LTLE 

networks as a reconfigurable network using unidirectional channels, the number of 

switches will be half the number of twisted channels listed in Table 1.1. 

All LTLE networks have reciprocal unidirectional channels. In real hardware 

implementations, the two unidirectional channels are often replaced by one bidi­

rectional channel. This will cut hardware costs by cutting the number of switches 

needed in half, because the one bidirectional channel can work as the two reciprocal 

unidirectional channels. If we implement the network using bidirectional channels, 

the number of switches needed will be one-quarter of the total number of twisted 

channels, as computed by Theorem 2.3.1. 

The logical generalization is to ask how many different LE networks can be 

implemented into a single reconfigurable network. The theorem below presents at 

least a partial result: 

Theorem 9.3.1 Let RQ be an n-dimensional reconfigurable hypercube network, 

with a switch between every pair of channels (f et) and (.,1? d-ei+i, X +ei+ei+i) 

a total of (n-1)271-1 switches. Then 1:1(27, can emulate every n-dimensional LTLE 

network which has B? E {0, B?", Bi4i }. 

Proof: Let G be an n-dimensional LTLE network that meets the conditions 

of the theorem. We can use Theorem 4.3.1 to transform the network G to a banded 

LTLE network G = (B °, B1, A) where the only nonzero elements of and B1 are 

on the main diagonal and the diagonal immediately below it. Then each channel of 

is either ei or ei+ ei+i for dimension i. 

For network G, we only have to compute whether each switch needs to be 

configured. For the switch controlling channels (X, X + ei) and (X + ei+1, X + ei + 
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ei+i), we compute (A)-61. If W(E111)1) > 1, the switch must cross the channels 

to make RQ emulate G. If W(filA56`) = 1, the switch must be set to leave the 

channels un-crossed. 

Note that the reconfigurable network RQ can be configured to emulate all 

of the published LTLE networks, because all of those networks meet the criteria of 

Theorem 9.3.1. RQ can also (with the right settings) emulate all of the MCubes of 

Singhvi and Ghose [51], and the Twisted N-Cube of Estafahanian [31], by setting 

exactly one switch to twist its channels. Because it can emulate Twisted N-Cube, 

it can also be reconfigured to embed a 2n 1 node binary tree. Unfortunately, RQ7, 

cannot be configured to emulate the Crossed Cube of Efe. 

It might be questioned if RQ can put some arbitrary setting on the switches 

to reduce the diameter of the reconfigurable network to less than that of the best 

published LTLE network. The answer is no, because each routing step can correct 

at most 2 components, and the routing step across the channel in the first dimension 

can always be forced to correct only one component, no matter what the settings 

on the switches in the first dimension. So RQ also has a diameter of at least 

r(n + 1)/21 steps. 

9.4. SUMMARY 

In this chapter, we showed that a variety of broadcasting algorithms exist 

for the LTLE networks. We also showed that at least a few algorithms can be 

implemented more efficiently on a LTLE network than on a hypercube. 

Possibly the most important part of this chapter was the section on recon­

figurable networks. We could show that one reconfigurable network was able to 

configure not only to the hypercube, but also to most of the published LE networks 
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(or isomorphisms of them). This allows us to use "the best of both worlds ", so to 

speak. If we need efficient point-to-point routing or single node broadcasting, we can 

configure the network to a LE network. If we need a more general communication, 

or want to implement a hypercube algorithm, we can configure the network to a 

hypercube. This can be done "on the fly" , so to speak, with a control bus changing 

the network to whatever configuration is currently needed. 
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10. STATIC PERFORMANCE MEASURES FOR LE NETWORKS 

The performance of a network depends on several factors: The topology 

of the network, the routing paths computed routing algorithm, the strategy used 

for forwarding messages, and the distribution of messages in the network. If the 

topology of the network is poorly designed, say in the case where only one channel 

joins two large components of the network, then the network performance will be 

poor, regardless of the other factors. To examine and compare the behavior of the 

interconnection networks, we need some measures of the performance of a network's 

topology. 

Performance measures that are based on the graph-theoretic properties of 

the network's topology are typically called static performance measures, because 

they are independent of ephemeral conditions, such as the number and distribution 

of messages in the network. 

Because they are relatively easy to derive, most published papers on resource-

preserving hypercube variants have derived some static measures for their own net­

works. Static measures include: 

Diameter The maximal routing distance between any two processors, as measured 

by the number of communications channels crossed. This is an estimate of the 

maximum time a message will be in transit through the network. 

Expected Distance The expected minimal distance between any pair of proces­

sors, averaged over all pairs of processors. This is an estimate of the average 

time a message will be in transit in the network. 
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Bisection Width The number of channels that must be removed to disconnect 

the network. This is a measure of the fault tolerance, and also an estimate of 

the network's bandwidth. 

There has been a careful examination of the static properties of nearly all the pub­

lished Twisted Cube networks. This has usually been necessary because the major 

claim of most Twisted Cube networks is a reduced diameter and expected distance. 

We summarize the diameter and expected distance results about these LE 

networks in Table 1.1. We also include information about the routing algorithm and 

number of twists. The diameter and expected distance are, of course, computed 

for all the published networks. The bisection width has been computed for the 

hypercube, the Mobius Cubes, and the MCubes and is n in all cases. 

In this chapter, we will compare the static performance measures of the LE 

networks. In particular, we will try to put bounds on the diameter and expected 

distance for the LE networks. 

10.1. STATIC MEASURES FOR LE NETWORKS 

In this section, we consider bounds on the performance measures of the gen­

eral LE networks. We discuss mostly the bounds we have achieved on the minimal 

and maximal diameters. 

We were unable to compute reasonable bounds on expected distances, and 

so give no results in this section. However, the minimal network bisection width 

is trivially 0, because a disconnected network is already bisected. The maximal 

bisection width is n, because a single node can be disconnected from the network 

only with the removal of n edges. This bound is tight because the hypercube has a 

bisection width of n [49]. 
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10.1.1. Lower Bounds on Minimal Diameter 

We first consider a trivial lower bound on the LE network diameter. We can 

find the lower bound on the diameter for not only the LE networks, but all possible 

networks formed by the rearranging the resources of a hypercube. 

Lemma 10.1.1 Let G be a graph on 2" vertices in which each vertex has degree at 

most n. Then the diameter is: 

L 

longn) 

and the bound can be attained by a tree. 

Proof: If the out-degree of each vertex is n, then the maximum number of 

vertices within distance D is at most 1 n + n2 + n3 nD, which is n°+'-1n-1 

For D to be the diameter, we must have 

nD+1 1 

> 
n 1 

So: 

n log(n 1)D > 
log n log n 

and D = Si( 7) Clearly a tree with branching factor n and 2" vertices has alogn 

diameter that meets this lower bound. 

This lower bound on the LE network diameter is not tight, because it is not 

clear how we can "twist" a cube to make such a tree. 

We tried to raise the lower bound on the LE networks by finding a bound 

on the DM networks. The lower bound on the minimal DM network diameter can 

be used to put a lower bound on the minimal LE network diameter, by Theorem 

6.0.1. However, we show that computing the lower bound on the minimal DM 
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network diameter does not raise our current lower bound on the minimal LE network 

diameter. 

Consider a n-dimensional DM network G = (B °, B1). In a minimal routing 

path, no term Bt will be used more than once (if it was, the duplicate terms can be 

paired and removed from the path). However, B? and Bz1 may be used together in 
2n

a routing path. So there are at most (k) nodes a distance k from a node .."?. Then 

the smallest maximal distance from node is D, where: 

D
 

i=0 

Since the DM network is symmetric, this is a lower bound on the distance from any 

node to all other nodes, and so is also a lower bound on the minimal diameter of a 

n-dimensional DM network. 

The tree of possible routing paths based on the above arguments will be the 

binomial tree B2n with 22n nodes. Clearly, there will be redundant paths to at least 

some of the 2n network nodes. Even so, we can assume the tree has no redundant 

nodes in the first D levels. 

If we can compute an upper bound on the summation, then we can bound 

the diameter from below, by underestimating k. However, it should already be clear 

that this lower bound on the minimal DM network diameter will not raise the lower 

bound on the minimal LE network diameter, because the B2n tree can easily contain 

a full n-ary tree of depth n/ log n, and so the value of D obtained by this argument 

is equal to or less than our previous argument. 
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10.1.2. Upper Bounds on Minimal Diameter 

Now we consider the upper bound on minimal LE network diameter. So far, 

we've only seen LE networks that have a diameter of at least Rn + 1) /21. Are there 

networks that have a diameter that break the n/2 bound? 

Consider the 2-dimensional DM network: 

1 0 1 0 

01 11 

It takes only 3 vectors to place any node at most one routing step away from any 

other. This means that for an n-dimensional DM network, we need at most 3n/2 of 

the 2n vectors to correct all n components of a source address to the components 

of a destination address in n/2 steps. Can we use the other n/2 vectors to reduce 

the diameter of a n-dimensional DM network to less than n/2? Actually, we can. 

Theorem 10.1.1 Let G = (B °, B1) be an n-dimensional DM network. The mini­

mal diameter of G has an upper bound of 

[2n/5j + 1(n mod 5)/21 

which is less than n/2 for n > 5. 

Proof: It takes 7 vectors to place any node at most one step away from any 

other in a 3-dimensional DM network. Though there are only 6 vectors available 

in a 3-cube, there are 10 vectors in a 5-cube. This means that we can correct 3 

components in 1 step using 7 vectors, then correct the remaining 2 components in 

1 step using the remaining 3 vectors. This DM network is: 
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1 1 0 0 0 0 0 0 0 0 

1 0 1 0 0 0 0 0 0 0 

B° = 0 0 0 1 1 B1 = 1 1 0 0 0 

0 0 0 1 1 0 0 1 1 0 

0 0 0 1 0 1 0 1 0 1 

We can construct larger DM networks with dimension n = 5k by graph composition, 

similar to the construction of the Generalized Twisted Cube. This makes the upper 

bound on minimal DM network diameter 2n/5 for n divisible by five. For T1 not 

divisible by five, we can construct a network by using the graph composition of 

a 5k-dimensional DM network with 1- and 2-dimensional DM networks that can 

be corrected (routed on) in 1 step each. This gives our upper hound on minimal 

diameter. 

This is the smallest diameter that we can achieve by our method. We can 

prove this by extending the method. Let us subdivide the n-component vector 

address into r groups of components and try to correct each group of components 

in one step. These groups of components will have sizes k1, k2, , kr, and must 

meet the following properties: 

k2 . kr = n (2k1 1) + (2ki 1) + + (2ki 1) < 2n 

We can assume that all ki (except one) must be equal to 1 or 2, because 2k1 > 2ki 

for ki > 2. (if there are more than one group with more than 2 components, then we 

can break the groups into 2 sets, each with one group of more than 2 components. 

Let w1 be the number of groups of 1 component and w2 be the number of groups of 

2 components. Then we have: 

wi 2w2 + kr = n 
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/Di + 3w2 + 2kr 1 < 2n 

We want to minimize: 

r 2w2 + 1 
n = 

n
 

We can solve for n and w1 and w2: 

2kr 2kr 
n 2kr+1 3kr 1 + w2 

To minimize this ratio, we must maximize w2, so we set w1 = 0 and w2 = r 1. 

When we do so, the ratio of r/n grows to 1/2 as kr approaches infinity. The ratio 

is thus minimal for kr = 3. 1 

This bound may not be the smallest possible to achieve. We may be able 

reduce the bound by considering groups of components that we correct in two or 

more steps. 

This lower bound may not seem very useful for LE networks, but we can 

create a LE network with a diameter that is only a constant larger than this DM 

network. 

Theorem 10.1.2 Let G = (B °, B1) be an n-dimensional DM network with diam­

eter at most D. Then there is an (n 1)-dimensional LE network G that has a 

diameter of at most D + 2. 

Proof: The LE network a = (p°, El, A) can be defined as: 

1 0 0 1 0 0 
1 0 0 

0 Mo. B?,,, 0 B11,1po 

k,
 

13' = A=
 

1 0 0
 
0 B,9,1 0 /37,14 
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Note that the choice of A ensures that all terms in E? and El with 2 < i < n 

depend on in, and depend on no other term. 

The routing algorithm on G starts by finding a minimal expansion S of 

(X2 + Xn) + (Y2 + Y) on the DM network G, and use that to construct a 

routing path on G. 

If X1 = 0, we route using all terms b? : B? E S, then route using P? = el, 

then route using all terms ./.j : 131 E S. Otherwise if X1 = 1, we route using all 

terms bl : Bi E S, then route using in = el, then route using all terms /31) : B? E S. 

At this point, all Xi = Y for 2 < i < n. If Xl Y,, we route using in = et. 

This will correctly get us from .)-e to Y. Since 181 < D, the length of the path 

generated is at most D + 2. 

This gives us an upper bound on the minimal LE network diameter: 

Theorem 10.1.3 Let G = (B°, B1, A) be an n-dimensional LE network. The min­

imal diameter of G has an upper bound of: 

1_2(n 1)/5] + 1((n 1) mod 5)/2-1 + 2 

Which is equal to n/2 when n = 16 and less than n/2 when 71 = 21. 

Proof: We combine the results of Theorem 10.1.1 and Theorem 10.1.2 I 

This network has a diameter that grows at a rate less than n/2, but not by 

much. There are probably several ways to reduce this upper bound on the minimal 

LE network diameter, but our point is that a LE network with diameter less than 

n/2 does exist. 

10.1.3. Lower Bounds on Maximal Diameter 

Now we consider the bounds on the maximal LE network diameter. For the 

lower bound on maximal LE network diameter, we have had some success in showing 
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00010 00110 01110 10110 10010 
11110 

00011 

00001 

00000 00100 

Figure 10.1. A five-dimensional network with an 0(1/2) diameter. 

that the lower bound on maximal diameter is at least super-linear. However, we 

were unable to show that the lower bound is limited to a polynomial. 

Theorem 10.1.4 Let G = (B °, B1, A) be an n-dimensional LE network. Then the 

lower bound on maximal diameter is at least [n(n 1)]/2. 

Proof: This bound is proved by giving an example network. This network 

is defined by B° (a, , 0, en), B1 = (el e3, e2 e4, , ei,_2 -4- en, e_1, en), and 

A = (6, el, , en_i). The five-dimensional network is described by the matrices 

below, and is displayed in Figure 10.1. 
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0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 

B° = 0 0 0 0 0 131 = 1 0 1 0 0 A= 0 0 0 1 0 

0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 

0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 

This network can be shown to have a diameter of [n(n + 1)]/2 by recursive ar­

gument. Assume that the network G- of dimension n 1 has a diameter of 

[(n 1)n] /2. The network G can be constructed from two networks Go and 

G1. Go has its addresses pre-pended with a zero and Go has its addresses pre 

with a one. Go and G1 are connected together with channels of the form 

/ended
((cti3O,a2,a3,...,ar,), (aT, 0, cT2, a3, , an)). 

The distance to route from (0,1,1,1, ,1) to (0,0,1,1, ... , 1) on Go and 

from (1,0,1,1, ,1) to (1,1,1,1, , 1) on G1 is n(n 1)/2 steps each. But note 

that the step from Go to G1 essentially saves up to (n 1)(n 2)/2 1 steps (the 

maximum distance between the corresponding addresses on Go and G1). The total 

distance between (0, 1 , 1 , 1 , . . . , 1) and (1, 1, 1, 1, . . . , 1) is: 

D (G) = 2 [fracn(n 1)2] 
1)(n 

2 

2) 

1] 
2n(n 1) (n 1)(n 2) + 2 

n2+n 
2 

2 
n(n + 1) 

2 

So the diameter of G is n(n + 1)/2. 

There is a variation of this network for four dimensions. This network is 

connected and has a diameter of 12 channels. It is shown in Figure 10.2, and its 

matrix description is: 
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1010 1000 1001 1011 

0010 0001 0011 

0110 0100 0101 0111 

1110 1100 1101 

Figure 10.2. A four-dimensional network with a diameter of 12. 

0 0 0 0 1 0 0 0 0 1 0 1 

0 1 0 0 0 0 0 0 1 0 0 0 
B° = B1 = A= 

0 0 1 0 0 0 0 0 0 1 0 0 

0 0 0 1 0 0 0 1 0 0 0 0 

This network is an extension of the maximal diameter network of dimension 3. 6 

channels are added to the longest path by increasing the dimension by one. Unfortu­

nately, this technique is not useful for n > 5, because the series of "large diameter" 

networks above have their diameter grow at a rate of at least n2, while this extension 

adds only 6 channels to the longest path. 

10.1.4. Upper Bounds on Maximal Diameter 

The upper bound on maximal LE network diameter is (in effect) infinity, 

because an LE network can be disconnected. Even when we limit the problem to 
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instances of connected networks, the best upper bound on maximal diameter we 

could achieve is a trivial 2n 1 the minimal number of channels to connect all 

nodes in the network. To date, we cannot limit the maximal routing distance of any 

LE network to a polynomial number of channels in n. 

This is discouraging, because the maximal diameter of a connected DM net­

work is easy to bound. The only way that the DM network can be connected is if 71 

of the vectors in B° and B1 form a basis over n components, which means that all 

expansions can be written as a linear combination of those n vectors. So the upper 

bound on the maximal diameter of a DM network is n. This bound is tight, because 

we can choose B° = B1 = I, which has diameter n. 

The problem of computing the upper bound on maximal diameter for LE 

networks is that in our model, local linearity does not imply global linearity. Without 

global linearity, it is often difficult to compute the diameter of even a single LE 

network, let alone show the upper bound over all LE networks. 

We can restrict the upper bound on the maximal diameter to 2n 1, if we 

restrict ourselves to a subset of networks that have the property that there can exist 

no group or cycle of terms that mutually depend on each other: 

Theorem 10.1.5 Let G = (B°, B1, A) be an n-dimensional LE network where the 

terms of B° and B1 can be ordered: 

,Bt2 , .13(n 

so that: 

(A.13`44)it, = 1 u > v 

Then the maximal diameter is bounded above by 2n 1. 
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Proof: Assume that a (possibly non-minimal) path of any length exists. In 

this path, more than one copy of a term Bit may exist. If an even number of copies 

exist, then the mod 2 sum of these copies is zero. If an odd number of copies exist, 

the mod 2 sum of these copies is Bit . Remove all but 2 copies of g: from the path 

if the number is even, and all but the leftmost copy if the number is odd. Order the 

remaining terms into a list as in the the statement of the lemma above. 

Consider each single term or pair of terms Bit in order. If Bit defines a 

channel from node jj, insert single or double terms first in the new path. If Bt: 

does not define a channel from node fe, then insert it in the new path after the 

first term Bit with (ABt)i. = 1. This will make term gib: define a channel from 

node fe + + ...+ B. A term Bt coming after Bt: will still define a channel, 

because (ABt = 0, but it will now define a channel from node 1-C. + + + 

Btu + Btu + Btu++: + +B 11. 

The leading term always defines a path from node ,1?, because it depends on 

no other term in the original path. This makes it always possible to insert it into 

the empty path. The entire construction will give us a path of at most 4n, or at 

most two occurrences of each term. 

We can shorten the path length even further. Note that any term gib can 

appear at most once or twice along a path from X to 17". We split the set of terms 

that appear in the path into 2 sets. The set Si contains terms that occur exactly 

once in the path, and S2 contains terms that appear exactly twice. The length of 

the path is: 

D = +21,521 

We can specify some bounds on the size of Si. First, Si must be nonempty if ./1? # IT'.
 

Second, Si represents a linear expansion over 71 components of + and so can
and
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be represented using no more than n vectors from B° and Bl. If k > n, then some 

terms have a linear dependence and can be removed. So, 1 < < n. 

Similarly, the size of S2 can be bounded. A term B7' E S2 is included because 

another term Mb in the path needed some I-4.7 along the path to have (AITI3 = but 

(A,-e); and there is no term Bi E S1 with (ABi% = 1. However, (A/3f); = 1, 

and can be placed before and after 14 in the path to make it a step across a legal 

channel. 

The set S2 can be empty, and because each nonzero term in the routing path 

can affect a minimal of 1 component each, the total sum of terms in both sets cannot 

be greater than n. So 0 < 1821 < n 1,911. 

Maximizing the distance equation over these two constraints, we get: 

D < 2n 1 

10.2. STATIC MEASURES FOR LTLE NETWORKS 

We now turn from LE networks to LTLE networks. These networks have a 

lot of properties that are much easier to prove, partly because the networks can be 

decomposed into smaller LTLE networks. 

10.2.1. Bounds on Minimal Diameter 

We could not put a tight lower bound on the minimal LE diameter except 

in limited cases. However, we were able to prove that that the upper bound on the 

minimal LTLE network diameter is less than n/2. 
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First consider LTDM networks. We can design a LTDM network with a 

diameter approaching n/2, using the same technique that was used on DM networks. 

This time, however, we have the limitation that /32 = .13! = en for LTDM networks. 

Theorem 10.2.1 Let G = (B °, B1) be an n-dimensional LTDM network. The 

minimal diameter of G has an upper bound of: 

I_2(n 1) /5J + 1((n 1) mod 5)/21 + 2 

This is equal to n/2 when n = 6 and less than n/2 when it = 11. 

Proof: We can rearrange the columns of the network in Theorem 10.1.1, 

and add l's where required by the definition of LTLE networks. Then the network 

will be: 

1 0 0 0 0 1 0 0 0 0 

0 1 0 0 0 0 1 0 0 0 

B° = 0 0 1 0 0 B1 = 1 1 1 0 0 

0 0 0 1 0 1 1 0 1 0 

0 0 0 0 1 1 0 1 1 1 

We can route on this network in three steps. First, we correct the last three compo­

nents in one step by using BI3, B91, IA, B1, and B. Then, we use .13° and 

BZ to correct the first two components in at most 2 steps. If we blindly use graph 

composition again to create network of dimension n = 5k, it will have a diameter of 

3n/5 for n divisible by five. 

We can reduce the diameter to less than n/2 for larger LTDM networks, if 

we change every Mk with k < n/5. Originally Mk = e5k and so Mk = Bigk, but 

we can modify it to e5k + e5k+1 e5k+2 so that we can use it to correct components 

5k + 1 and 5k + 2 in one step. 
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The algorithm to correct all the components is then to repeatedly, from 

k = n/5 1 to k = 0, correct components 5k + 3, 5k + 4 and 5k + 5 in one step 

using the vectors 4+3, B(5)k+4, Bh+i, B5k+2, B5k +3 and B5k+5, then correct 

5k + 1 and 5k -I- 2 in one step using Bigk+i 4+2 and B(5)k (or at most two steps using 

13? and .14 if k = 0). This gives us the bound in our theorem. 

We can use Theorem 10.2.1 to get an upper bound on the minimal LTLE 

network diameter: 

Theorem 10.2.2 Let G = (B °, B1, A) be an n-dimensional LTLE network. The 

minimal diameter of G has an upper bound of: 

1_2(n 2)/5] + 1((n 2) mod 5)/21 + 3 

Which is equal to n/2 when n = 22 and less than n/2 when 71 = 27. 

However, we note that the published LTLE networks have at best a diameter 

of 1(n + 1)/21. Notably, only the 1-Mobius cube, the Flip MCube and the Twisted 

Cube meet this bound. Why do none of these networks have a diameter smaller 

than 1(n + 1)/21? 

Part of the answer lies in the the fact that for these networks, the condition 

B? + E {0,B?+1,/41_1} is held. This severely limits the choices possible for 

expansions over B° and B1: 

Theorem 10.2.3 Let G = (B °, Bl) be an n-dimensional nonredundant LTDM net­

work, where B? + E {0,B41,B41}. The minimal diameter of G is in121. 

Proof: The proof of the DM network diameter is by induction on the di­

mension n. 
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Base Case: If n = 1 the minimal diameter is D(1) = 1, because we can 

construct G = ([1], [1]). If n = 2 the minimal diameter is D(2) = 1, because we can 

construct: 

1 0 1 0 

01 11
 

Inductive Hypothesis Assume that for n < n, the minimal diameter is at 

least rn/21. 

Inductive Step: Since G is a DM network, we can assume wlog that any 

path in the network can route on its routing steps in any order, so wiog we assume 

the routing steps are always in order of their increasing index in B° and B1. Also, 

no term with any index i will appear in the routing path more than once, because 

B? E {0, B41, B41} is sufficient to make G a nonredundant network. We also 

use Theorem 3.3.2 to decompose G into (n 1)-dimensional and (n 2)-dimensional 

sub-networks. 

Assume we start at any node X in the network. .:ct is in one (n 1)­

dimensional sub-network of G. 

If B? + BZ = 0, then both paths je .k + B° and X ---+ Bi map to 

the same node in the opposite sub-network. This is the only way to cross to the 

opposite sub-network. This gives us a minimal diameter of: 

D(n) = max{D(n 1), D(n 1) + = 1(n 1)/2 + 11 = r(n +1)/21 

If B? + B2 = B?+1, then the (n 1)-dimensional sub-network opposite X can be 

reached by + B? or X p X + Bi. Because B?i = 1, ,1? B? and + Bi 

will be in separate (n 2)-dimensional sub-networks in the sub-network opposite 

X. This gives us a minimal diameter of: 

D(n) = max{D(n 1), D(n 2) + 1, D(n 2)+11 = r(n 2)/2 +11 = in/21 
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The smallest possible diameter is then the smaller of the above two cases, or 1n/21. 

No other paths are shorter, because to reach nodes in the (n 1)-dimensional 

sub-network opposite X, we must use B? or BI in the path. All other paths using 

these terms can be replaced with paths of equal or lesser length because: 

fe--PB?±B=je-FB1 

)?+.131-EM-,--.)?+B? 

ie+B?+B.,e+.131._FtElo,B3,B3} 

)-e+Bl+B.x+Bl+tE10,14,B11 

Finally, if B? 1313 = B.j+1, we can use arguments similar to the ones above to show 

that the minimal diameter is D(n) in/2 + 11. 

This minimal diameter is tight, because it is the diameter of the Enhanced 

Hypercube.I 

Corollary 10.2.1 Let G = (B°, B1, A) be an n-dimensional nonredundant LTLE 

network with the same B° and .13' matrices. Then the lower bound on the minimal 

diameter of G is F(n + 1)/21, and this bound is tight. 

Proof: For G, we note that B? (and never 131) must always be chosen to 

reach the (n 1)-dimensional sub-network opposite X. If we assume that we can 

always choose the terms in the opposite sub-network, we can treat the sub-network 

like a DM network and so the diameter is at least F(n 1)/2 + 11 = F(n + 1)/21. 

This lower bound on the minimal diameter is tight because it is the diameter of the 

1-Mobius cube and the Flip MCube. 
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10.2.2. Bounds on Maximal Diameter 

Now we consider the maximal LTLE network diameter. The hypercube has 

a diameter of 11, which is the maximal Hamming distance between two nodes in the 

hypercube. Calculating the diameters of the LTLE networks can be slightly more 

complicated, due to the asymmetries of the network. Fortunately, we can use one 

of our routing algorithms to bound the maximal routing distance. 

Theorem 10.2.4 Let G = (B °, B1, A) be an n-dimensional LTLE network. The 

maximal diameter of G is n, and this bound is tight. 

Proof: The Algorithm LeftRightBitCorrectRoute always takes at most n 

routing steps. The hypercube, a LTLE network, has a proven diameter of 12 steps 

[49]. 

10.2.3. Bounds on Expected Distance 

The diameter represents the worst-case behavior of a single message traveling 

in the network. The average-case behavior would be measured by the expected 

distance, or the average number of routing steps between nodes. The asymmetries 

and variance of the LTLE networks make a general calculation of the expected 

distance difficult. However, it is possible to bound the expected distance to a value 

below the hypercube's expected distance of n/2. 

Theorem 10.2.5 Let G be an n-dimensional LTLE network. The maximal expected 

distance of G is Fn/21, and this bound is tight. 

Proof: If we choose a uniform distribution of source and destination address 

vectors, the mod 2 sums of the source and destination will be uniformly distributed 
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over Z. This means that the probability of any component i differing between the 

source and destination is 0.5. At each step i of Algorithm LeftRightBitCorrectRoute, 

there is a probability of 0.5 that the algorithm will route to the i-th neighbor of a 

node. So Algorithm LeftRightBitCorrectRoute has an average routing distance of 

in/21 routing steps. 

The hypercube has a expected distance of in/21 steps, so this upper bound 

is tight. 

In general, we can't put a tight lower bound on the minimal LTLE network 

expected distance, but we can make some reasonable statements about it. Because 

the expected distance is always less than the diameter, it is clear that the minimal 

expected distance has an upper bound of 2n/5 3, for large 72. 

In restricted cases of LTLE networks, we can make a stronger statement on 

the bounds on minimal expected distance: 

Theorem 10.2.6 Let G = (B °, B1, A) be an n-dimensional LTLE network, where 

B? Bj E {0, B?+i, B41} . The lower bound on the minimal expected distance of G 

is: 

1 n 1 (--1)n1 

and the upper bound on the minimal expected distance is E(n.) + 1. 

Proof: We show the bounds by computing E(n), the expected number of 

terms in the minimal expansion of a vector. If we choose a uniform distribution of 

source and destination address vectors, the mod 2 sums of the source and destination 

will be uniformly distributed over Z. 

Assume wlog that B? rn for 1 < i < n. If so, then 1.3?+BI E { B2+1, Bz+1 . 

Assume also wlog that we can always choose which of B? or Bt we want to use, so 
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that we can always correct at least 2 components per time step. This will guarantee 

that at least components with index i and i+1 are correct after correcting component 

i. 

Then the expected distance is expressed by the recurrence: 

T(1) = 1/2, T(2) = 3/4, T(n) = -1T(n 1) + -1 (1 + T(n 2))
2 2 

The solution of this recurrence relation is: 

n 1
T (n) = + [1 (--12)1 

which can easily be verified by substitution. 

Since the number of terms in the minimal expansion is a lower bound on the 

number of routing steps, the expected distance is greater than or equal to this value. 

Since the highest indexed term can only correct at most one component, the 

expected distance is then bounded from below by: 

E(n) = 
1 

+ T (n 1) 

1 n- 1 +1 (-1)n-11 
2 3 

1 1 1)n-11 
6 3 9 I. 

For some qualifying networks (as in the case of the 1-Mobius cube), the 

routing path requires at most 1 extra routing step over the minimal expansion. 

This restricts the upper bound on expected distance to E(n) + 1. 

This result gives bounds on the minimal expected distance for all of the 

published LE networks, because they meet the theorem's conditions. The 1-Mobius 

cube, the Flip MCube and the Twisted Cube all have expected distances between 

E(n) and E(n) + 1 (these cubes sometimes require one "extra" step to route between 

some nodes. However, E(n) is not a tight lower bound on the minimal LTLE network 
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expected distance, because it assumes we can always choose between Bf'-' and BI 

when routing, which is just not true. 

10.2.4. Bisection Width 

One measure of a network's performance for many messages is the network's 

bisection width, or the number of channels that must be removed to disconnect the 

network. 

Theorem 10.2.7 If G = (B°, B1, A) is an n-dimensional LTLE network, then the 

bisection width of G is n. 

Proof: The proof is by induction on the dimension 71 of the network. For 

this proof, we assume that all the channels are bidirectional. 

Base Case: n = 1 The 1-dimensional LE network G = ([1], [1], [0]) has 

only one edge and two nodes, so its bisection width is 1. 

Inductive Hypothesis: Assume that for n < n, the bisection width of any 

(h)-dimensional LTLE network a = (E°, .1j1, A) is fi. 

Inductive Step: We can clearly disconnect a single node from G by re­

moving all n channels adjacent to the node. Remove any 71 1 edges from G. By 

Theorem 3.3.2 G can be divided into two (n 1)-dimensional sub-networks, so these 

removed channels are distributed inside one or the other sub-network, and/or in the 

channels between the two sub-networks. 

If the removed channels are taken from both of the two (n 1)-dimensional 

sub-networks and from the channels between the two sub-networks, then these sub­

networks each remain connected by our inductive assumption, and they remain 

joined to each other by at least 2n (n 1) connections. If all the removed chan­

nels are taken from one sub-network, then that sub-network may be disconnected. 
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However, every node in that sub-network has a channel to the other connected 

sub-network, so a path still exists between each pair of nodes in the disconnected 

sub-network through the connected one. I 

10.3. CONCLUSIONS 

In this chapter we have attempted to put bounds on some of the static 

performance measures of LE networks, including diameter and expected distance. 

Though we were unable to put tight bounds on the diameters of the LE networks, 

we were able to show that minimal diameter is at most 2n/5 + 2, and that the 

maximal diameter is at least n(n + 1)/2. 

For LTLE networks, we showed that the minimal diameter is at most 2n/5+3, 

and that the maximal diameter is tightly bounded at n. Further, we were able to 

show why none of the published LTLE networks have a diameter less than 1(n + 

1)/21, and we were able to put bounds on the minimal expected distance for these 

networks. 

Lastly, we were able to show that the bisection width of all the LTLE net­

works is n. This means that all LTLE networks have the same "fault tolerance" as 

the hypercube. 

There are still a number of open problems in bounding the static performance 

measures. The most important is that no tight bound on minimal or maximal di­

ameter has been found for the LE networks. We currently suspect that the maximal 

diameter is polynomial in n, and that the minimal diameter is strictly less than 

2n/5 + c, though there is no proof that this is true. 

There are also many more static measures and properties to derive and bound 

for the LE networks. One static property that we did not examine is distance 

distribution, or the number of nodes a given distance from a source node. The Flip 
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MCube has a uniform distance distribution [51] the distance distribution is the 

same no matter which node we choose. Because the 1-Mobius cube is isomorphic 

to the Flip MCube, it must also have a uniform distance distribution. However, the 

distance distributions of other LE networks are still unknown. 
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11. DYNAMIC PERFORMANCE OF LE NETWORKS 

Static measures describe the behavior of a single message traveling in the 

network, and so they are not always useful measures of network performance. To 

examine the actual performance of a network, we will need to use dynamic perfor­

mance measures, or measures based not only on the network's topology, but also the 

particular routing algorithm, routing strategy, and the number of messages passing 

through the network at a given time. Even if the topology of the network is reason­

able, the network performance may still be poor if the routing algorithm is poorly 

designed, as in the case where every message is first routed through one node before 

getting routed to its destination. 

In this chapter, we will design a program that simulates routing algorithms on 

LTLE networks and examines their dynamic performance. This simulation will be 

run using both wormhole and store-and-forward strategies, and using both optimal 

and approximate routing algorithms. 

11.1. DYNAMIC PERFORMANCE MEASURES 

Dynamic performance measures examine the interaction of a message with 

the network and with other messages. Unlike static measures, dynamic measures 

can depend not only on the topology of the network, but also on the particular 

routing algorithm used and on the number and distribution of messages traveling 

in the network. For this reason, dynamic performance measures may give a better 

overall picture of the real behavior of the network. 

Dynamic performance measures are difficult to derive analytically from the 

network structure of an asymmetrical Twisted Cube network, so not many papers 
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have any calculation of these measures. Seth Abraham has done a statistical calcu­

lation and derivation of performance measures of both the hypercube and Hilber's 

Twisted Cube [3] [2] [1]. Despite the complexity of deriving the performance of 

those networks, they are relatively simple compared to other LTLE networks, for 

instance, the Mains cubes. Because we want to generate and test these perfor­

mance measures for a large number of LTLE networks, simulating these networks is 

the preferable method for measuring dynamic performance. 

Typical dynamic performance measures include: 

Channel Utilization Rate The utilization of a particular channel, as measured 

by the average number of messages processed through that processor/channel 

per unit time step. 

Message Latency If only one message per unit time step can be transmitted 

through a communications channel, then other messages that need that same 

channel must be buffered until a later time. Message latency is the mean 

number of time steps that a message takes to route between its source and 

destination. 

Probability of Arrival Consider a system that uses store-and-forward routing 

and allows only a finite number of messages to be buffered at a busy com­

munication channel. Some messages may be lost if a buffer becomes full. The 

probability of arrival is the probability that a transmitted message will reach 

its destination in a finite buffered system. 

In this dissertation, we will examine the expected message latency, and ex­

pected channel utilization for several LE networks. We will not examine probability 

of arrival, because it is not valid in our simulation model (we assume no finite buffers 

in store-and-forward routing). 
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Figure 11.1. The model of a network node used in the simulation. 

11.2. THE SIMULATION 

We have programmed a discrete-time simulation of a Twisted Cube network, 

similar to the simulation described in Abraham [1]. The design of each network 

node element is shown in Figure 11.1. Each node in the network has two parts: a 

processing element, and a routing element. The processing element, or PE, is the 

element that does the actual computation of the network and so is the source and 

destination for all messages. The routing element, or router, simulates a crossbar 

switch with n unidirectional input and n unidirectional output channels. The pro­

cessing and routing elements are joined together by 2 unidirectional channels. To 

complete the model, the 71 input and n output channels of each router are connected 

to the other nodes of the network by the interconnection rules. 

The finished program can simulate any LTLE network, by taking as input 

a dimension n and three n x n matrices: B°, B1 and A. In addition, a number 
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of command-line arguments can be used to set various switches for the modeled 

network. These switches include: 

The network configuration file (containing n, B°, .B1 and A). 

The simulation run time. 

The message generation rate. 

The mean and standard deviation of the message length (as measured in flits, 

the largest amount of information that can be sent across a channel in one 

time step). 

The routing algorithm. We have a choice of Algorithms LeftRightBitCorrec­

tRoute, NonRedundantMinimalRoute and ThreeBitLookaheadRoute. 

The routing strategy, either wormhole or store-and-forward. 

The number of virtual channels. This is the maximum number of virtual 

channels that a physical channel can multiplex. 

The flit buffer size, or the number of flits that a channel can queue up for 

forwarding if the message stream gets interrupted. If there is more than one 

virtual channel, each virtual channel has a separate flit buffer of this size. 

A choice of whether the router-PE channels are single-accepting or multiple-

accepting. A PE can accept one message at a time from the router, or up to 

n messages simultaneously. 

The output of the simulation is a statistical summary. During the simulation, the 

program records: the number of messages in transit at each time step; the latency 

of each message; and the channel utilization for each channel. At the end of the 



262 

simulation, the maximum, mean and standard deviation of each measure is printed 

out. The channel utilization is averaged for all the channels of each dimension 0 

through n 1, and is averaged for all the PE-router channels. 

11.2.1. Simulation Messages 

The main element of the simulation is the message. In a wormhole routing 

model, the message may be divided into several segments, each located at a different 

PE in the network. Because of this, we chose to represent each message as a list of 

segments, each knowing its own location and size. As the message travels through 

the network, it updates its head and tail segments, and processes its flits through the 

list of segments from tail to head. To keep track of all the messages, the simulation 

maintains a list of all the currently existing messages and always processes them in 

a FIFO order. 

The simulation is discrete-time, with the unit of time measured as the time 

to transmit one flit over a channel. During each step, the simulation does a sequence 

of actions to each message. These steps are (in order): 

1. Generate new messages with uniformly distributed random sources and desti­

nations, and place one message segment at the source location. 

2. Try to allocate the channel to the next location on the message's path. If the 

channel is allocated, create a new segment and make it the new head segment 

of the message. 

3. For each segment of each message that has not filled its available buffer space 

and has a preceding segment with a nonempty buffer space, request the trans­

mission of one flit. 
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4. For each segment of each message that requested a flit in the previous step, 

attempt to access the channel between the segment and its predecessor, and 

forward one flit if access is given. 

5. For each message with an empty tail segment, delete the tail segment. For 

each message with only a segment at the message's destination location, delete 

the message, and update any message statistics. 

Unfortunately, these steps must be performed on all messages synchronously, which 

means that the simulation must iterate through the list of messages five times per 

step. 

The simulation allows use of both the wormhole and store-and-forward rout­

ing strategies. A message using wormhole routing tries to advance its head segment 

through the network until it reaches the destination router, then routes into the 

destination PE. Store-and-forward routing is identical, except that a message routes 

to each PE on the path (through the routers, of course) and will not advance its 

head segment to the next PE until the last flit has arrived at the current one. In 

this representation, store-and-forward routing is a special case of wormhole routing. 

Since the model does not simulate message buffers at each PE, the store-and­

forward model assumes unlimited storage at each PE, which allows messages to be 

blocked indefinitely while en route. In this way, the model avoids the possibility of 

deadlock in the store and forward model. This is admittedly an unrealistic assump­

tion about store-and-forward processing, since all real PEs have finite storage. 
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11.2.2. Simulation Channels 

Each channel in the network is unidirectional and allows the transmission 

of one flit per time step (i.e., single-accepting). The only exception to this are the 

channels between each PE and router 

Each physical channel can control as many virtual channels as specified, 

though no more virtual channels than dimensions should ever be needed. At most 

one message can control a virtual channel at any one time step. Virtual channels 

are multiplexed over the physical channel by a round-robin scheduler. To maximize 

bandwidth, the scheduler only picks a virtual channel that has been requested to 

transmit a flit in the current time step. 

As mentioned before, the channel between the PE and router is a special 

channel. It can either be made to accept one flit per time step (single-accepting), 

or any number of flits per time step (multiple-accepting). To simplify matters for 

the single-accepting option, the number of virtual channels is nv, where n is the 

dimension of the network and v is the number of virtual channels on channels be­

tween routers. This allows up to the maximum of n messages using the Pes channels 

through multiplexing. The multiple-accepting option does not use virtual channels. 

Instead, all incoming messages can routed simultaneously through the same router-

PE channel. 

11.2.3. Message Generation 

The dynamic performance measurements will depend not just on the algo­

rithm and routing strategy, but on the rate and distribution at which messages are 

being generated. Our simulation assumes that messages are being generated with 
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uniform source/destination addresses over the network. We define the probability 

that a message will be created: 

Definition 11.2.1 The message generation rate is the probability that a single pro­

cessor will generate a message during one time step. 

At a high enough message generation rate, messages will be created faster 

than the network can transmit them, leading to a backlog of messages. The net­

work will use every channel available to simultaneously route as many messages as 

possible. 

Definition 11.2.2 The saturation rate of a network is the message generation rate 

at which every channel is at 100% utilization. 

At message generation rates above the saturation rate, the number of mes­

sages in the network grows without bound. 

The saturation rate is dependent not only on the network's topology, but also 

the routing algorithm, and the routing strategy involved. As an extreme example, 

consider a routing algorithm on the hypercube which routes every message through 

processor 000... 0. 

We can give several rough calculations on the upper hound for the saturation 

rate for the hypercube and other LE networks. A network of dimension n has 2' 

nodes and n2" unidirectional channels. Assume that we have a uniform message 

generation rate of m9, and that the message sources and destinations are uniformly 

distributed. Let the average message length be m1 and the expected distance of the 

network be E(n). 

Using the store-and-forward routing strategy, the product of the length of 

the message and the expected distance is the dominating factor in the duration of 
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the message, because the entire message has to be transmitted over each channel 

separately. The average number of messages that exist in the network at any time 

is: 

2nmg x miE(n) 

Each message allocates at most one channel. At the saturation rate, all n2' channels 

are utilized at once, so: 

2"mg x miE(n) = nr 

Then: 

n 
m = 

E(n) 

Using the wormhole routing strategy, the length of the message is the domi­

nating factor in the duration of the message. The average number of messages that 

exist in the network at any time is: 

r mg x mi 

Each message allocates approximately E(n) channels. At the saturation rate, we 

again have: 

2nmgmi x E(n) = n2n 

And: 

n 
mgmi = E(n) 

So the saturation rate for the wormhole routing strategy is the same as for the store 

and forward routing strategy. 
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For example, the hypercube's expected saturation rate would be about 

771 772/ = 2, from its expected distance of n/2. The LE networks would of course 

have higher saturation rates, theoretically. 

When the processor channels are single-accepting, they create a network 

bottleneck. As before, the number of messages in the system at any time is: 

2"mgMi 

There are 2"+1 channels between each processor and its router. Every message will 

utilize two of these channels for most of its transmission. These single-accepting 

channels will reach 100% utilization when: 

2(2117//gA) = 2" + 1 

So the network will saturate at mgrni = 1. This is considerably less than the 

saturation rate calculated for networks with multiple-accepting processor channels. 

For this reason, we chose to avoid using single-accepting channels in our simulation 

tests. 

11.3. SIMULATION RESULTS 

In this section we examine the results of the simulation on some of the pub­

lished LTLE networks. Since the store-and-forward and the wormhole routing strate­

gies are substantially different approaches to routing messages, we will consider the 

dynamic behavior of the LE networks separately for the two routing strategies. 

11.3.1. Store and Forward Routing Strategy 

We first compared the published LTLE networks using the store-and-forward 

routing strategy. We used the following networks: the Hypercube, the Twisted 
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Figure 11.2. Message latencies for Algorithm LeftRightBitCorrectRoute, using the 
store-and-forward routing strategy. 

Cube, the 0-Mobius Cube, the 1-Mobius Cube, the Flip MCube,the Generalized 

Twisted Cube, and the Bent Cube. 

For the tests, we assumed that all networks are six-dimensional and lower 

triangular, that each virtual channel had a flit buffer length of 1 flit, and that all 

Pes were multiple-accepting. We also assumed that the messages averaged about 

100 flits in length with a standard deviation of 10 flits. The simulation was run for 

50,000 time steps, varying the message generation rate from 0.0 to approximately 

0.0015 for each test run. 

We compared the expected message latencies of networks using the three 

Algorithms LeftRightBitCorrectRoute, NonRedundantMinimalRoute, and Three­
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Figure 11.3. Message latencies for Algorithm NonRedundantMinimalRoute, using 
the store-and-forward routing strategy. 

BitLookaheadRoute. The expected message latencies for the three algorithms are 

shown in Figures 11.2, 11.3, and 11.4, respectively. 

Algorithm LeftRightBitCorrectRoute makes all the LTLE networks behave 

more or less like the hypercube, with no appreciable difference in message latency. At 

low message generation rates, the product of the message length and the expected 

routing distance is the dominant factor in the message latency. As the message 

generation rate increases, the LTLE networks show the same increase in message 

latency. This performance shows that all LTLE networks can perform at least as 

well as the hypercube. 

Algorithm NonRedundantMinimalRoute produced the lowest message laten­

cies of any algorithm at high message generation rates. The difference in message 
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Figure 11.4. Message latencies for Algorithm ThreeBitLookaheadRoute, using the 
store-and-forward routing strategy. 

latencies grows wider as the message generation rate grows, with the same approxi­

mate ratios between the networks. All of the LTLE networks produced notably lower 

message generation rates, with the 1-Mobius Cube and the Flip MCube showing the 

lowest latencies. 

Networks using Algorithm ThreeBitLookaheadRoute showed expected mes­

sage latencies that were similar to the same networks using Algorithm NonRedun­

dantMinimalRoute, though slightly higher. The higher message latencies can be 

explained by the longer routing paths generated by Algorithm ThreeBitLookahead-

Route. 

The networks fall into three groups: The first is the hypercube, which shows 

no change in message latencies from Algorithm LeftRightBitCorrectRoute. The 
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second is the Twisted Cube and the Generalized Twisted cube, which show approx­

imately the same message latencies. The third group is formed by the rest of the 

networks. Notice that these networks all have both hypercube edges and twisted 

cube edges in dimensions 1 through 4. 

Networks using Algorithm ThreeBitLookaheadRoute were able to capture 

most of their behavior under Algorithm NonRedundantMinimalRoute. This is es­

pecially true of the 1-MObius cube, the Flip MCube, and the Bent Cube. This is 

important, because Algorithm ThreeBitLookaheadRoute requires only a constant 

number of bit operations per node, while Algorithm NonRedundantMinimalRoute 

requires heavy computation at the source node. For a slight reduction in perfor­

mance, we can use this much simpler algorithm. 

We also examined the channel utilization rates of networks using the three 

Algorithms LeftRightBitCorrectRoute, NonRedundantMinimalRoute, and Three-

BitLookaheadRoute. At a low message generation rate, the channel utilization rates 

are near zero for all networks. We compared the behavior of the Hypercube, the 

1-Mobius cube, the Bent Cube, the Twisted Cube and the Generalized Twisted 

Cube. 

The channel utilization rates for the hypercube appear in Figure 11.5. It 

shows that the hypercube uniformly utilizes all of the channels uniformly, which 

is due to the high symmetry of the hypercube. Not only is this typical of the hy­

percube for Algorithm LeftRightBitCorrectRoute, but also for the hypercube using 

Algorithms NonRedundantMinimalRoute and ThreeBitLookaheadRoute. Further, 

it is typical of channel utilization rates for the all LTLE networks using Algorithm 

LeftRightBitCorrectRoute. For this reason, we do not show results for any other 

network using Algorithm LeftRightBitCorrectRoute it would be redundant. 
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Figure 11.5. Channel utilization rates for the Hypercube, using Algorithm Left-
RightBitCorrectRoute and the store-and-forward routing strategy. 

Notice that the channel utilization grows linearly with the message generation 

rate. This indicates that the network has not reached a saturation rate in our graph, 

which we estimated before to be 2. 

The channel utilization rates of the Twisted Cube using Algorithms NonRe­

dundantMinimalRoute and ThreeBitLookaheadRoute are shown in Figures 11.6 and 

11.7, respectively. Hilber's Twisted Cube shows some interesting results. The ra­

tios of the channel utilizations in Figure 11.6 closely follow the measured channel 

utilizations given in Table 4 of [2]. 

We can derive the computed channel utilization for Algorithm ThreeBit-

LookaheadRoute, if we use the method outlined in Theorem 7.1.6. Then we get: 

R(0) = 0.25 

R(1) = 0.25 



273 

Channel Utilization 

0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1
 

0
 

1.5 

Gener. Rate * Length
0.52 

Channel Number3 

Figure 11.6. Channel utilization rates for the Twisted Cube, using Algorithm 
NonRedundantMinimalRoute and the store-and-forward routing strategy. 
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Figure 11.7. Channel utilization rates for the Twisted Cube, using Algorithm Three-
BitLookaheadRoute and the store-and-forward routing strategy. 
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R(2) = 0.1875 

R(3) = 0.25 

R(4) = 0.21875 

R(5) = 0.25 

The ratios of the channel utilizations in Figure 11.6 closely match these values. 

Notice that the dimensions which receive lower channel utilization rates are 

the ones immediately after dimensions that have both hypercube channels and 

twisted channels in the definition. This corresponds to what was predicted for 

Algorithm ThreeBitLookaheadRoute in Theorem 7.1.6. 

We examined the standard deviation in channel utilization rates across each 

of the dimensions, and found that Algorithm NonRedundantMinimalRoute had the 

widest standard deviation .Algorithm ThreeBitLookaheadRoute had a quite low 

standard deviation on channel utilization rates for all channels, and was very com­

parable to the standard deviations generated by Algorithm LeftRightBitCorrec­

tRoute. We conclude that this arises from the very uniform distribution of routing 

paths generated by both Algorithms ThreeBitLookaheadRoute and LeftRightBit-

CorrectRoute. This remained true, not just for the Twisted Cube, but for all of the 

LE networks. 

The channel utilization rates of the Generalized Twisted Cube using Algo­

rithms NonRedundantMinimalRoute and ThreeBitLookaheadRoute are shown in 

Figures 11.8 and 11.9, respectively. Because the Generalized Twisted Cube is a 

graph composition of the Twisted 3-Cube, dimensions 1, 2, 3 and dimensions 4, 

5, 6 of the Generalized Twisted Cube respectively have the same expected channel 

utilization rates as dimensions 1, 2, 3 of the Twisted 3-Cube, or about 0.5mg, 0.5mg, 

and 0.325mg, respectively. 
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Figure 11.8. Channel utilization rates for the Generalized Twisted Cube, using Al­
gorithm NonRedundantMinimalRoute and the store-and-forward routing strategy. 
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Figure 11.9. Channel utilization rates for the Generalized Twisted Cube, using Al­

gorithm ThreeBitLookaheadRoute and the store-and-forward routing strategy. 
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Figure 11.10. Channel utilization rates for the Bent Cube, using Algorithm NonRe­
dundantMinimalRoute and the store-and-forward routing strategy. 

The figures demonstrate that the Generalized Twisted Cube behaves the 

same under both algorithms. This is because looking ahead more than 3 components 

buys no distance savings on this network. 

The channel utilization rates of the Bent Cube using Algorithms NonRedun­

dantMinimalRoute and ThreeBitLookaheadRoute are shown in Figures 11.10 and 

11.11, respectively. Similarly, the channel utilization rates of the 1-Mobius Cube 

are shown in Figures 11.12 and 11.13. 

Note that for Algorithm ThreeBitLookaheadRoute, the ratios of the channel 

utilization rates of the Bent Cube and the 1-MObius cube closely match the lower 

bounds on the channel utilization rates given in Theorem 7.1.6. This is no coinci­

dence. The Bent Cube was designed from this lower bound, and the 1-Mobius cube 

inspired it. 



277 

Channel Utilization 

0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1
 

0
 

1.5 

Gener. Rate Length
0.52 

Channel Number3 

Figure 11.11. Channel utilization rates for the Bent Cube, using Algorithm Three-
BitLookaheadRoute and the store-and-forward routing strategy. 
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Figure 11.12. Channel utilization rates for the 1-Mobius Cube, using Algorithm 
NonRedundantMinimalRoute and the store-and-forward routing strategy. 
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Figure 11.13. Channel utilization rates for the 1-Mobius Cube, using Algorithm 
ThreeBitLookaheadRoute and the store-and-forward routing strategy. 

Also, note that for Algorithm ThreeBitLookaheadRoute, the channel utiliza­

tion rates of the Bent Cube and the 1-Mobius cube are identical. This is because the 

Algorithm ThreeBitLookaheadRoute generates the same expected routing distance 

and the same distribution of channel utilizations for both networks. 

Finally, note that for Algorithm NonRedundantMinimalRoute, the channel 

utilization rates of the Bent Cube and the 1-Mobius cube are still very similar, and 

only slightly better than the channel utilization rates for Algorithm ThreeBitLooka­

headRoute. This helps explain why the Bent Cube has message latencies that are 

almost as small as the 1-Mobius cube, even though it has a maximum routing dis­

tance of about 2n/3 instead of about n/2. This low channel utilization makes the 

Bent Cube a viable alternative to the 1-Mobius cube for wormhole routing. 
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The common factor here is that the Bent Cube and the 1-MObius Cubes have 

twisted channels in every dimension but 0 and 5. This explains why the networks 

have lower utilizations in dimensions 2 through 5, which in turn help explain why 

the message latencies for these networks are smaller. Smaller channel utilization 

rates mean less delay for messages using those channels. 

The channel utilization rates for the 0-Mobius cube and Flip MCube are 

not shown, because the 0-Mobius cube's rates are just slightly higher, and the Flip 

MCube's rates are identical. 

11.3.2. Wormhole Routing Strategy 

We next compared the behavior of the networks using the wormhole routing 

strategy. We again assumed that all networks are six-dimensional and lower trian­

gular, that each virtual channel had a flit buffer length of 1 flit, and that all Pes 

were multiple-accepting. This time, we assumed that all physical channels had up 

to six virtual channels available for messages. 

We again assumed that the messages averaged 100 flits in length with a 

standard deviation of 10 flits. The simulation was run for 50,000 time steps, varying 

the message generation rate from 0.0 to approximately 0.0015 for each test run. 

We compared the expected message latencies of networks using the three 

Algorithms LeftRightBitCorrectRoute, NonRedundantMinimalRoute, and Three-

BitLookaheadRoute. The expected message latencies for the three algorithms are 

shown in Figures 11.16, 11.14, and 11.15, respectively. 

With wormhole routing, the dominant factor in the message latency at low 

message generation rates is the message's length. This is borne out by the near-

identical performance of all the networks at the lower rates. This makes the worm­

hole routing strategy preferable to the store-and-forward routing strategy, if the 
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Figure 11.14. Message latencies for Algorithm NonRedundantMinimalRoute, using 
the wormhole routing strategy. 

message-passing rates are kept suitably low. However, at higher message generation 

rates, the expected message latencies grow at a much faster rate for the wormhole 

routing strategy. All of the networks begin to saturate much sooner. 

This lower saturation rate can be attributed to the nature of wormhole rout­

ing. Since under wormhole routing, a message can take multiple channels simulta­

neously, the chance of contention for a given channel will be greater. Since messages 

that are waiting for access to a channel will not release the channels they already 

have, the possibility of contention can increase considerably. 

Wormhole routing will suffer more performance degradation at high mes­

sage passing rates than will store-and-forward routing. Since all the channels in 

a message's path will be allocated at one time, the number of messages that can 

simultaneously coexist in the network without contention is much smaller than for 
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Figure 11.15. Message latencies for Algorithm ThreeBitLookaheadRoute, using the 
wormhole routing strategy. 

1000 

800 

0-Mobius Cube -4-­
1-Mobius Cube 

Bent Cube -a 
Generalized Twisted Cube -x 

Hypercube -a-­
Flip MCube -d 

Twisted Cube 

600 

400 

200 

0 
0 0.2 0.4 0.6 0.8 1 

Message Generation Rate * Message Length 
1.2 1.4 

Figure 11.16. Message latencies for Algorithm LeftRightBitCorrectRoute, using the 
wormhole routing strategy. 
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the store-and-forward routing strategy. Under store-and-forward message passing, 

up to n2" can be transmitted simultaneously. Under wormhole message passing, up 

to approximately n2"/E(n) = 0(2') messages can be transmitted simultaneously. 

The network latencies for networks using Algorithm NonRedundantMini­

malRoute are abysmally large, because the algorithm is using a naive method of 

assigning virtual channels. 

Networks using Algorithm ThreeBitLookaheadRoute behave very similarly 

when using wormhole routing. The Twisted Cube and the Generalized Twisted 

Cube show by far the highest message latencies of the measured networks. The best 

behavior is by the 1-MObius Cube and the Flip MCube, followed by the Bent Cube 

and the 0-Mobius Cube. 

We again examined the channel utilization rates of networks using the three 

Algorithms LeftRightBitCorrectRoute, NonRedundantMinimalRoute, and Three-

BitLookaheadRoute. We compared the behavior of the Hypercube, the 1-Mobius 

cube, the Bent Cube, the Twisted Cube and the Generalized Twisted Cube. At 

a low message generation rate, the channel utilization rates are near zero for all 

networks. 

For comparison with the store-and-forward routing strategy, we include the 

simulation results for all of the same networks, this time using the wormhole routing 

strategy. 

The channel utilization rates for the hypercube appear in Figure 11.17. Again 

the hypercube uniformly utilizes all of the channels, and again the channel utilization 

grows linearly with the message generation rate. 

The channel utilization rates of various Twisted Cubes using Algorithms 

NonRedundantMinimalRoute and ThreeBitLookaheadRoute are shown in Figures 

11.18 through 11.25. 
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Figure 11.17. Channel utilization rates for the Hypercube, using Algorithm Left-
RightBitCorrectRoute and the wormhole routing strategy. 
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Figure 11.18. Channel utilization rates for the Twisted Cube, using Algorithm 
NonRedundantMinimalRoute and the wormhole routing strategy. 
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Figure 11.19. Channel utilization rates for the Twisted Cube, using Algorithm 
ThreeBitLookaheadRoute and the wormhole routing strategy. 
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Figure 11.20. Channel utilization rates for the Generalized Twisted Cube, using 
Algorithm NonRedundantMinimalRoute and the wormhole routing strategy. 
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Figure 11.21. Channel utilization rates for the Generalized Twisted Cube, using 
Algorithm ThreeBitLookaheadRoute and the wormhole routing strategy. 

For Algorithm ThreeBitLookaheadRoute the channel utilization rates are 

nearly identical to the channel utilization rates for store-and-forward routing, for 

every network. This indicates that the algorithm is suitable for both routing strate­

gies. 

For Algorithm NonRedundantMinimalRoute, the message utilization is much 

higher. This is because of the way that virtual channels were arbitrarily chosen for 

each message, which causes even higher message latencies. Notice that the channel 

utilization rates "flatten out" sharply for the Twisted Cube and the Generalized 

Twisted Cube. This explains why the message latencies rose so quickly for networks. 

Some of the channels in each network had begun to saturate at fairly low message 

passing rates. This "flattening" is less pronounced in the other networks, which 

have correspondingly lower message latencies. 
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Figure 11.22. Channel utilization rates for the Bent Cube, using Algorithm NonRe­
dundantMinimalRoute and the wormhole routing strategy. 
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Figure 11.23. Channel utilization rates for the Bent Cube, using Algorithm Three-
BitLookaheadRoute and the wormhole routing strategy. 
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Figure 11.24. Channel utilization rates for the 1-Mobius Cube, using Algorithm 
NonRedundantMinimalRoute and the wormhole routing strategy. 
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Figure 11.25. Channel utilization rates for the 1-Mobius Cube, using Algorithm 
ThreeBitLookaheadRoute and the wormhole routing strategy. 
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11.3.3. Conclusions 

There are several conclusions we reach here. First, all of the LTLE networks 

perform approximately the same using Algorithm LeftRightBitCorrectRoute. This 

suggests that any LTLE network can be used in place of the hypercube for general 

routing, with about the same performance measures. 

We also concluded that for store-and-forward routing, Algorithm NonRe­

dundantMinimalRoute gives a dynamic performance comparable to Algorithm Left-

RightBitCorrectRoute on the hypercube. The message latency for most networks 

is consistently lower than the message latency of the hypercube, except possibly at 

the very highest message generation rates. The only exceptions to this appear to be 

the Twisted Cube and the Generalized Twisted Cube, which have an asymmetric 

distribution of channel utilization rates. 

The very best LTLE network appears to be the 1-Mobius cube (or its isomor­

phic twin, the Flip MCube). Its message latency using Algorithm NonRedundant-

MinimalRoute is much lower than the rest of the networks for store-and-forward 

message passing. 

If wormhole routing is preferred, then the best approach appears to be using 

either the 1-MObius Cube or the Bent Cube, and Algorithm ThreeBitLookahead-

Route. The Bent Cube is quite comparable to the 1-Mobius Cube in performance. 

Its larger diameter and expected distances do not add much to its expected mes­

sage latency when using Algorithm ThreeBitLookaheadRoute. We conclude that 

having a large number of dimensions with both twisted and hypercube channels is 

more important than a small diameter when it comes to overall performance under 

wormhole routing. 
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We also feel that adapting Algorithm NonRedundantMinimalRoute for 

wormhole routing does not appear to be a practical consideration. This is partly 

because there does not seem to be an effective means of limiting the number of 

virtual channels to a constant, but more because a wormhole algorithm implicitly 

requires that each node on the routing path uses a small number of bit operations 

for computations. Algorithm NonRedundantMinimalRoute takes a relatively large 

number of bit operations and requires that the entire path be precomputed at the 

source node. 

Finally, we conclude that Algorithm ThreeBitLookaheadRoute gives the best 

performance for the least amount of work. It requires a total of 0(n) bit operations 

to compute, which can be distributed across the nodes in the message's routing 

path. It also captures most of the dynamic behavior of Algorithm NonRedundant-

MinimalRoute, which means that an algorithm with further lookahead would give 

only a diminishing return for the extra work done. 
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12. CONCLUSION 

In this short chapter, we review what we have accomplished in our research. 

We also discuss open problems for LE networks, and where future research should 

be concentrated. Finally, we discuss the practicality and viability of implementing 

networks in the Twisted Cube family. 

12.1. RESEARCH ACCOMPLISHED 

In this dissertation, we have designed the linear equation networks (or LE 

networks), a new model for describing resource-preserving hypercube-variant inter­

connection networks, by using a system of linear equations to define the network's 

communications channels. We have shown that a number of existing networks can 

be expressed in our model, and have also designed a number of new networks using 

this model. We have also shown sufficient conditions for certain network properties, 

including connectedness and bidirectionality (reciprocality) of channels. We have 

also shown some conditions and methods for showing network isomorphism. 

We have managed to show that a number of basic results were NP-complete 

or NP-hard, including: 

(Limited) path existence on LE networks 

Isomorphism of LE networks and LTLE networks 

(Limited) minimal routing on LE networks 

Minimal routing on LTDM networks and on LTLE networks 
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Many of these results seem to stem from one problem with the LE networks: Local 

linearity in the network connections did not lead to global linearity. 

Despite these problems, we managed to show a number of results for network 

properties. In particular, by limiting ourselves to a subclass of the LE networks, 

the LTLE networks, we managed to solve many of our problems, including network 

connectedness, bidirectionality of channels, and routing. 

We were able to produce results in several areas. These areas include: 

Routing Algorithms We produced a minimal routing algorithm for the LTDM 

networks and the LTLE networks, and showed that it used a polynomial 

asymptotic run time for all of the published networks. We also designed non-

minimal routing algorithms the "3-bit lookahead" algorithm for the LTLE 

networks that had the same run time order as the hypercube's "greedy" rout­

ing algorithm. We also designed deadlock-free routing algorithms for networks 

using the wormhole routing strategy. Finally, we designed broadcasting algo­

rithms that take advantage of the LTLE networks topology and execute in 

fewer communication steps than on the hypercube. 

Embeddings and Emulations We were able to show that all of the LTLE net­

works can embed Hamiltonian rings and binomial trees. We were also able 

to show that some of the LTLE networks are able to embed full binary trees 

and other are able to embed meshes. Finally, we were able to show that some 

LTLE networks are able to simulate the hypercube with constant dilation, and 

vice versa. 

Performance We bounded the diameter and expected routing distance for some 

of the LE networks (and in the process showed that some LTLE networks are 

able to have a diameter of less than n/2, though not much less). 
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We also wrote a program for simulating the behavior of routing algorithms 

on the LTLE networks. Using this program, we were able to show that the 

3-bit lookahead captures most of the behavior of minimal routing on the LTLE 

networks, and saves about 13 to 15 percent in message latency. We also discov­

ered that it is more important to have many dimensions with both hypercube 

channels and twisted channels, than it is to have a low diameter. 

12.2. OPEN PROBLEMS 

There are a number of problems that remain open for the LE networks. 

Though we spent many weeks on these problems, we were not able to find any 

satisfactory solutions. These problems include: 

Connectedness of LE networks This is one of the most important problems we 

were unable to solve. Currently, the only way to tell if a LE network is con­

nected is to construct its graph from a matrix description and run a connected 

components algorithm on the graph. Though we were able to prove some nec­

essary and some sufficient conditions to make the matrix description produce 

a connected LE network, we were unable to show simultaneous necessary and 

sufficient conditions. 

Upper bound on diameter for connected LE networks Though a trivial up­

per bound of 2n-1 exists for LE networks, we were not able to design a network 

that had a diameter of more than 0(n2) steps. We were also unable to show 

that a polynomial upper bound on the diameter exists, though we believe that 

the bound is polynomial. The solution to this problem may show that the 

connectedness problem is NP-complete. 
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Lower bound on diameter for LE networks Though we were able to show 

that a network with a diameter of approximately 3n/5 does exist, we did 

not show the lower bound on diameter for LE networks was tight. If there is 

a smaller diameter possible on LE networks, what is it? 

Minimal and Deadlock-Free Wormhole Routing We would like to be able to 

do minimally routing on any LTLE networks with a small (constant) number 

of virtual channels. The naive approach does not work very well. A minimal 

wormhole algorithm that shows good dynamic performance would go a long 

distance towards gaining acceptance for LE networks. 

12.3. FUTURE WORK 

Besides the problems above that we did consider and did not solve, there 

were a number of problems we did not consider, partly due to time, and also partly 

due to the amount of work already done. These problems included: 

Other Network Embeddings We considered only the most common networks for 

embedding into LE networks. It would be worthwhile to explore embedding 

other networks, into either the entire LE network family, or into a specific LE 

network. 

Other Communications Algorithms Parallel algorithms are often not written 

specifically for the architecture they are run upon. Instead, they use a "li­

brary" of standard communications routines. These routines include a number 

of communications patterns, such as: 

Single Node Broadcast: Also known as one-to-many routing. One 

processor has a single message which is sent to all other processors in the 

network. 
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Single Node Scatter: One processor has 2' messages, and each message 

is sent to a different processor in the network.
 

Multiple Node Broadcast: Every processor has one message, and each
 

processor broadcasts its message to all other processors in the network.
 

Total Exchange: Every processor has 2' messages, and each processor 

scatters its messages to all other processors in the network. 

We did not consider the implementation of these general communications al­

gorithms for the LE networks. Using multiple-channel communications, the 

minimal hypercube algorithms for these communication patterns require the 

computation of the maximal number of independent paths from a single node 

[32], [38], [39]. Though the problem of computing independent paths is well-

known for the hypercube, we did not find an simple, general method for com­

puting independent paths on a general LE network. Thus the minimal algo­

rithms for these problems remain unknown, and these other communications 

algorithms are outside the scope of this dissertation. 

General Parallel Algorithms Probably the most practical outstanding task is 

finding algorithms that can effectively use the properties of the LE networks. 

We considered mapping only one or two of the simpler parallel algorithms onto 

the LE networks. The problem is that these problems are relatively simple 

and isolated. Are there any significant algorithms for LE networks? 

There are several things that can be done in this direction: First, an algorithm 

could be mapped to a general LE network so that it could execute with the 

same or fewer communication steps than the hypercube. Second, a LE net­

work could be specifically designed to run a given parallel algorithm in fewer 

communication steps than the hypercube. 
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Processor Layout We did not consider the problem of processor layout for the LE 

networks. The hypercube and other networks are often implemented as VLSI 

circuits. It is important to performance that the processors are arranged to 

minimize the longest physical channel length and minimize the total layout 

area. Though we probably could modify the hypercube's processor layouts for 

networks with a small number of twisted channels (each with a small Hamming 

weight), it is not clear we could do so for networks with a large proportion of 

twisted channels. 

Extending the LE Network Simulation The simulation program was quite 

general, in that we covered several networks and algorithms using different 

routing strategies. However, the simulations are unrealistic in that they test 

only uniformly distributed message transmissions. Most algorithms use highly 

structured communication patterns. We could extend the program to simu­

late non-uniform communication distributions, including random "hot-spot" 

sources and destinations, and distributions based on actually parallel algo­

rithms. 

Though we do plan to eventually look at these other problems, we decided 

that each of the above projects was too involved to consider in this dissertation. 

12.4. EVALUATION 

There are a number of summary conclusions we have about the LE networks. 

These conclusions are mostly about the implementation of the routing algorithms 

on LE networks and the implementation of LE networks as scalable multicomputers. 

Our first conclusion is that the LE model is too general for rigorously proving 

any properties. The full LE model allows networks that can be disconnected or 
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weakly connected, and can allow several matrix representations to describe the same 

network. Further, its generality makes it difficult to prove even the simplest of 

network properties. 

We also conclude that minimal routing is not always the best way to do 

routing. We've already shown that the three bit lookahead routing algorithm cap­

tures most of the behavior of the minimal routing algorithm. Its worst case routing 

behavior (as measured by the diameter) is at most 16% worse than the minimal 

routing algorithm, and for store-and-forward routing, its average message latency 

is often better than the minimal algorithm's message latency. Since the three bit 

lookahead routing algorithm also has the advantages of having a faster asymptotic 

run time and not needing path pre-computation at the source node, we recommend 

it over the minimal routing algorithm. 

Also, we recommend the implementation of the reconfigurable network given 

in Section 9.3. Though this network has more complicated hardware, it allows the 

emulation of several networks, rather than the implementation of one. It even allows 

the implementation of networks that are not in the LE model. Further, it allows 

"the best of both worlds" , by using dynamic reconfiguration of the network. We 

can always run the best communication algorithm on the best network to solve a 

particular problem, even reconfiguring the network during an algorithm to optimize 

the communications. 

Finally, we recognize that the LE networks will probably will not be used for 

interconnection network design. Its biggest draw, the reduced diameter, is rendered 

superfluous by the fact that most actual networks now use wormhole routing for 

point-to-point communications. Though there is some savings in message latency 

offered by the wormhole implementation of the three-bit lookahead algorithm, it 

may or may not be worth the asymmetry that is inherent in the LE network model. 
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Probably the results of this dissertation will be more useful in other areas 

of interconnection networks. Already, at least one LE network has been used in 

programming fault-tolerant behavior into Folded Hypercubes [40]. There is every 

reason to believe that the same results could be repeated with any of the networks 

here and the Enhanced Hypercubes. Finally, there is every reason to believe that 

the basic premise of our dissertation, that of choosing channel connections by using 

linear equations, can be extended to generate and describe new interconnection 

networks. 
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