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The Fractal Structure of Surface Water Waves

near Breaking

Chapter 1

Introduction

The study of fractals and chaotic systems is a fairly recent topic in the field of

mathematics. Great mathematicians of the past: Karl Weierstrass, Georg Can-

tor, Guiseppe Peano, David Hilbert, Helge von Koch, Waclaw Sierpinski, Gaston

Julia and Felix Hausdorff to name a few, already considered ideas that are now

related to the notion of fractals. However, fractals were regarded as exceptional

objects or 'mathematical monsters' until quite recently, see [Peit, 1992]. Despite

this early development, fractal geometry did not become popular until after the

sixties when Benoit B. Mandelbrot founded this new branch of mathematics. It

did not happen earlier partly due to philosophical reasons (people were convinced

that natural processes were smooth), and partly because technology was not suffi-

ciently advanced (the early computers were not powerful enough to carry out the

numerically intensive calculations necessary to compute fractal structures). Tech-
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nological developments have made it possible to discover the beauty and fascination

of fractals.

The typical way in which we visualize a fractal is as a complex, geometrical

pattern. Despite its complexity, it is surprising that the mathematical equations

behind it are usually very simple. This phenomenon of complexity resulting from

simplicity is common throughout fractal geometry and chaos theory.

Some of the computer images of fractals resemble patterns arising in nature

and therefore encouraged the task of finding fractal images which look 'natural'.

Success in this area is another reason why fractals are so fascinating. One realized

that, for instance, ferns, trees, coast lines, clouds and mountains possess a fractal

structure.

The problem of bringing order into chaos is an age old human endeavor.

Johannes Kepler attempted to model our solar system and discovered for himself

the complexity involved in such a task.

The study of chaotic patterns is part of the field of 'strongly' nonlinear

systems or systems far from equilibrium. In physics, one such 'strongly' nonlinear

system is a fluid in turbulent motion. Although we might not find chaotic systems

in all problems that contain fluids in turbulent motion, the presence of it strongly

suggests that we examine the problem from the fractal perspective. In this thesis

we will consider surface water waves just before they break and show that they

exhibit a fractal structure.

The notion of fractal structure we use here is not equivalent to self-similarity
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(which is used for Cantor sets, von Koch curves and Julia sets), but rather describes

roughness. A 'rough' surface will not be of dimension 2 as any other 'usual' (or

smooth) surface would be, but rather of a non-integer dimension between 2 and 3.

A sufficient condition for a set to be a fractal is for it to have a non-integer dimen-

sion. Several ways of finding the dimension of curves or areas will be described in

this paper.

The fractal objects we investigate in this thesis are surface water waves.

To describe the dynamics of waves mathematically, one begins with the basic

equations of fluid dynamics of non-viscous fluids. Very often when the behavior

of water waves is considered, the condition of surface tension is excluded. In

this thesis, while making other customary simplifications, we shall include the

condition of surface tension. Under the boundary conditions of free surfaces, we

shall reach a differential equation that represents the dynamics of breaking surface

water waves. In order to analyze this equation, we will break it up into multiple

cases according to different physical conditions. Then with the sine curve as the

initial condition, we shall show that the solutions for some of these cases develop

into highly irregular, non-differentiable curves. The fractal dimension of these

curves leads to the conclusion that, under certain conditions, surface water waves

possess a fractal surface structure.

The present thesis is divided in four parts:

1. Chapter 2 describes the basic notions and mathematical descriptions of water

waves.
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2. Chapter 3 presents the basic ideas and definitions of fractals, along with a

discussion of several well-known fractals that promote understanding of the

notion 'fractal'. Furthermore, we introduce several ways of determining the

fractal dimension of a set.

3. The results of Chapter 2 are analyzed in Chapter 4 under different conditions.

We shall obtain several equations which will be solved either analytically or

numerically and are then simulated. Two of these cases possess a rough

surface.

4. In the last part, one of these rough surfaces will be determined to be fractal

by using the methods introduced in chapter 3 of finding the fractal dimension.



Chapter 2

Waves

There exist two principle ways to describe continuum processes. One uses the

Lagrangian, the other one the Eulerian approach. Lagrange's method is based on

four independent variables, which are time t and the spatial variables xo, yo, zo of

a particle in a reference position, e.g. position at time t = 0. The position as well

as the pressure and density at time t are described using the paths of individual

fluid particles in reference to the position xo, yo and zo. This method is useful if

one wants to study the characteristic properties of solid bodies. In Euler's method,

the four independent variables are time t and the spatial coordinates x, y, z. One

uses the velocity (and acceleration) field in the region occupied by a fluid at a

given moment, to describe the velocity v, pressure p and density p, which will then

be functions of x, y, z and t. In our case, the Eulerian approach is much more

applicable.

For notational convenience, we shall write a variable x = (x1, x2, x3), if it is clear

from the context that we talk about three dimensions.
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2.1 Conservation of Mass

The mass m of a fluid that occupies a volume V is given by the formula

m I
e dx, (2.1)

v

where g = p(x,t), 0 > 0 is the density of the fluid.

The principle of conservation of mass states:

The mass of a fluid in a material volume V does not change as V moves

with the fluid,

or alternatively:

The rate of change of mass in a fixed volume V is equal to the mass flux

through its surface,

which is expressed by the following equation:

f
e dx = f 0(v n)dS .

s

Using the divergence theorem, we get:

Since V is arbitrary,

k Pt dx = I div(0v)dx
v

fv[et + div(gv)]dx = O.

£t + div(ev) = 0. (2.2)
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2.2 Navier-Stokes' Equations

The totality of the forces that act on a fluid are pressure, gravity and friction. We

get the equation:

ga = Vp eg + (2.3)

where p is pressure, g is the acceleration of gravity, g is density, ,a is viscosity and

a is acceleration.

To get an explicit formula for the acceleration a, we first calculate the coordinates

of a:

dv

a dt

dvi avt av-dx avidy avidz
dt at axdt aydt azdt

av avi avi aviv v
-a7

v
at 1 ay 2 3

avi
at +(vv)vi
dv av

(V)vv

av 17)2 12

a
dt + V

+ rotv x v. (2.4)

Inserting this in equation (2.3), we get the important Navier-Stokes' equations

in the form:

aveat + e(vv)v = Vp gg pAv.

The fluid may have specific properties, which lead to further conditions:

inviscid fluid = µ = 0.

(2.5)

An inviscid fluid is also called an 'ideal' fluid. The Navier-Stokes' equations



reduce to the Euler equations:

av , ,
0 + 0 yv v )t, = Vp gg.

incompressible fluid 0 = const.

Equation (2.2) implies now, that

8

divv = 0, (2.6)

which is known as the continuity condition.

irrotationality = rotv = 0.

An irrotational fluid is always inviscid. Equation (2.4) and equation (2.5)

imply therefore:

av
Lv120 + eV

2
= 'VP pg. (2.7)

The rotation of v being zero in a closed region S2 implies that there exists a function

co : S/ + R such that Vy) = v, where co is called the velocity potential. Using this

in equation (2.7), we get:

a(vco) Iv12
el at 2

= op pg.

Since the gravitational acceleration has only a component in the z-direction, we

note that pg = V(pgz), and hence:

acov(eat
Iv(p 12

+ e + p+ pgz) = 0
2

2

at
+ p

2

.9,0 Ivc01 +p+ pgz = c,p (2.8)
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where c is an arbitrary function of t.

This equation is called Bernoulli equation. c(t) can be taken to equal zero, since

we can always replace co by 0 + ci fot c(r)dr in calculating velocities. If we use

Vco = v in equation (2.6), we obtain the well-known Laplace equation:

2.3 Boundary Conditions at a Free Surface

Let z = h(x, y, t) describe the surface SM. We assume IVh12 0. The surface

must satisfy several conditions: The velocity of a point (x, y, z) on the surface in

the direction of the surface normal is given by:

ht
(hx2 hy2 hzy

A particle of fluid at the same point of the surface at that instant has a velocity

component in the direction of the surface normal given by:

uhs + vhy + whz
yr, = 1

(hx2 + hy2 +11,2)2

Since 8(t) is a boundary surface, there can be no transfer of matter across the

surface, which motivates the equation

0 = dh = ht+ uhx + vhy + whz
dt

The last equation implies the following:

uhx + vhy + whz = ht.
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In addition to the above, there are further dynamical conditions to be satisfied at a

surface. Considering a fluid with surface tension, we have to assume the following:

The effect of surface tension as one passes through the interface is to produce a

discontinuity in the normal stress proportional to the mean curvature n of the

boundary surface:

[P1= at;, (2.9)

where a is a constant. In the case of two-dimensional motion, the curvature is

given by:

hSX=
(1 + hD3 2

2.4 Mathematical Description of a Wave

The kinetic energy of a water volume is described by the following integral:

Ekin=
2 v (t)

e Ivcol2dx, (2.10)

where (p is the velocity potential introduced in section 2.2 for an irrotational fluid.

Taking the derivative of equation (2.10), we find:

d

dt
_Lkin = Tit2 e fiT(olv(012dx)

d (1

1 aco
= P J(V

2 svcov(ptdx + I Ivcor dS.
an(t) (t)

The first integral in (2.11) can be transformed using Green's identity:

Iv
uAw VuVw = f uaw.

s an

(2.11)
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Therefore, we obtain:

an
,dtEkin = cotAcodx eI (tot-60+e I ivc012an

dS.
vm Is(t) an 2 s(t)

Since water can be assumed to be irrotational and incompressible, Ac,o = 0 and we

obtain:

dt
= e I (cot +

1
lv col ayo

an
dS.

Is(t) 2

The Bernoulli equation (2.8) and equation (2.12) imply therefore:

d
_Lkin

dt

(2.12)

s(t) '° L
P I (t + 01 Iv(P12) ±na°a,-,dS

(2.13)

4(90
= I

(t)
(p + egh)

an,
dS. (2.14)

,s

The above equation is true for the surface of any volume element, so it is also true

for the water surface. At the interface of water and air, the pressure p becomes the

pressure difference [p] of water pressure pu, and air pressure pa. The air pressure

is approximately zero. Therefore [p] = Au. At the water surface, we have the

equality of water pressure and surface tension. Combining the equation for surface

tension (2.9) and equation (2.14), we get:

d
(aic egh)a

ands.dt
= (

(t9
(2.15)

If we consider now the time derivative of the work W, we find d.47 = F velocity.dt

The velocity is the time derivative of h(x(t), t), therefore we obtain:

ah dx
dt

h(x(t),t)= ht +
ax dt

= ht + vihx,
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dx
iwhere v1 = ddxt The derivative dt is the drift in the x-direction which we set equal

to vh. Using this result, we find that the derivative of work is represented by the

following:

dW
dt

F velocity

= F (ht + vhhx)

= ism A (ht + vhhx) -C2(9dS
an

(2.16)

Conservation of energy implies that the time derivatives of the kinetic energy and

the work have to be equal:

av Oco
ism

(o-lc
egh) an dS = I

(t)
A (ht + vhhx) an dS.

s
(2.17)

This equality holds for every surface, therefore we have to have equality of the

coefficients of '" and obtain:an

0" ii egh = A (ht + vhhx) .

Division by A gives us the general equation:

ht + vhhx = criK gigh,

which alters in two dimensions to:

hssht + vhhs =
X1(1

eigh (2.18)

In order to give a mathematical description of a wave, we used a plausibility argu-

ment. The rigorous derivation of equation (2.18) is a statistical argument at a mi-

croscopic level which is then averaged. One can find discussions of the strict deriva-

tions in [Krug, 1991], [Baus, 1981], [Wall, 1979], [Kawa, 1982-1], [Kawa, 1982-2],
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[Buff, 1965] and [Dieh, 1980]. Our derivation was not given at a microscopic level,

rather at a macroscopic, to promote understanding and give a motivation why the

equation is true.



Chapter 3

Fractals

The word fractal was first introduced by Benoit B. Mandelbrot in his fundamental

essay: Fractals and turbulence: attractors and dispersion [Mand, 1977a]. It is

derived from the Latin 'fractus' (meaning 'broken') to describe objects that were

too irregular to fit into a traditional geometric setting. Since then many different

definitions of fractals have been used. The characteristic properties of fractals we

are considering are the following.

Properties: Let the set F be a fractal. Then

F has a fine structure, i.e. detail on arbitrarily small scales.

F is too irregular to be described in traditional geometrical language, both

locally and globally, i.e. near each of its points are a large number of other

points, separated by gaps of varying length.

Many fractals have some degree of self-similarity, either approximate or sta-

tistical.
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Classical geometry or calculus cannot be used to describe fractals, so one has

to find alternative techniques. One of these techniques is to find the fractal

dimension, which can be defined in several different ways, as one can see in

section 3.2.

Usually the fractal dimension of F (defined in some way) is greater than its

topological dimension. This means that the size of F is not quantified by the

usual measures, such as length.

In most cases of interest, F is defined in a recursive manner, although it has

an intricate detailed structure.

We will now focus on the construction of some examples of fractal sets and prove

for some of them why they are considered to be a fractal set.

3.1 Examples of Fractals

3.1.1 The Cantor Set

The most important 'early' fractal is the Cantor set, which is also known as

the Cantor dust, the Cantor space or the Cantor discontinuum. Georg Cantor

(1845-1918), a German mathematician at the University of Halle, first published

his set in 1883. The set is visually less appealing than most other fractal sets, and

being so peculiar and pathological, it is taken for granted that it cannot be used

for any immediate natural interpretation. The basic middle third Cantor set is the
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Figure 1. Initial steps of the construction of the Cantor set.

infinite number of points in [0,1], which have a base-3 expansion x = > ai with

ai = 0 or 2 for all j. Therefore the set contains the following numbers:

0, 1, 1/3, 2/3, 1/9, 2/9, 7/9, 8/9, ...

The classical construction that makes it easier to imagine the set is shown in

figure 1. We start with the interval [0, 1] and take away the open (middle third)

interval (1/3, 2/3). The next step will take away the middle third of the two

remaining closed intervals. In the following step we remove the middle thirds

of the now four remaining intervals. The Cantor set is the set of points that

remains after doing the procedure of removing the middle third infinitely often.

The endpoints of all the closed intervals that appear throughout the construction

are elements of the Cantor set.
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3.1.2 The Von-Koch Curve

Helge von Koch, a Swedish mathematician, introduced in 1904 what is now called

the von-Koch curve. The geometric construction can be seen in figures 2, 3, 4 and 5.

Figure 2. First step of the construction of the von-Koch curve.

Figure 3. Second step of the construction of the von-Koch curve.

As with the Cantor set, the von-Koch curve is also constructed recursively. We

start with a straight line, partition it into three equal parts, then replace the middle

part by an equilateral triangle and take away its base. The von-Koch curve is the

curve that is obtained after doing this construction step infinitely often. The curve

is everywhere continuous, but nowhere differentiable. It contains no straight lines

or segments which are smooth. The complexity of the curve reminds much more of
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Figure 4. Third step of the construction of the von-Koch curve.

Figure 5. Seventh step of the construction of the von-Koch curve.
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Figure 6. The snowflake curve obtained from three von-Koch curves.

the complexity one would see in a natural coastline, folds within folds within folds.

Fitting together three suitably rotated copies of the von-Koch curve produces the

so-called snowflake curve or the Koch island, which is shown in figure 6.

3.1.3 Julia and Mandelbrot Sets

Much of the theory of Julia sets was developed at the beginning of the twentieth

century by the French mathematician Gaston Julia. Since, in this time, he did not

have the tools of modern technology, his results did not seem and especially look

as impressive as they do today, when the sets are made visible with the help of

a computer. Benoit B. Mandelbrot, a Polish mathematician, made the Julia sets

popular again. Today his work has become one of the most fascinating areas in

mathematics.

As with many fractals, Julia sets are derived from a simple process, that very
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often leads to highly intricate sets. Consider functions f : C > C, where f is a

polynomial of degree n > 2 with complex coefficients:

f(z) = ao + aiz + a2z2 + ... + anzn.

Let fk be the k-fold composition f o f o ... o f.

Definition 1

The escape set is defined to be the set of all points z, for which fk (z) is unbounded

(÷ oo) as k approaches infinity.

The prisoner set contains all points z that are not in the escape set.

The Julia set J is the boundary between the sets of points which iterate to 0 and

those which iterate to oo, i.e. the boundary between the escape and the prisoner

set.

The Julia set is non-empty, compact and usually of fractal structure.

The most often used family of functions, when dealing with Julia sets, are the

quadratic ones:

fc(z) = z2 + c,

which are usually used in the following iterative form:

Zrz2

In order to determine in an experiment whether a specific zn approaches infinity,

we need a boundary value r that allows us to conclude: Izn 1 > r implies that z is

an element of the escape set.
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Definition 2 The value r(c) = max{icl,2} is called the threshold radius.

Lemma 3.1 If zk exceeds r(c) in absolute value, then the iteration process for

z z2 + c escapes to infinity.

Proof: Let c be a fixed parameter, so r(c) = max{Icl, 2}. Now assume Izi > I el

and > 2. There exists a small positive number E > 0 such that Izi = 2 + s.

Using the triangle inequality for complex numbers, we get:

12.21 = Iz' + c cl < 1z2 + el + lel.

This equation implies now:

I z2 + el > I z2I lel

= I z 12 lel

> I z 12 lzl

= (1z1 1)1z1

+ E)1z1,

so Izn+11 = cl > (1+6)14. Therefore, after one iteration the absolute value

will increase at least by (1 + e), after k iterations, it will have increased by at least

(1 + E)k. Hence the absolute values tend to infinity.

In figure 7, we show the Julia set for a quadratic function.

Definition 3 The Mandelbrot set M is the set of parameters c for which the

Julia set of L is connected:

M = {c E C : J(fc) is connected}
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Figure 7. The Julia set

A fact that makes it easier to determine whether a point c belongs to the Mandel-

brot set is the following:

Fact: The prisoner set Pc is connected if and only if the critical orbit 0 c

c2 ... is bounded.

A more detailed discussion about this fact can be found in [Peit, 1992]. The above

fact allows us to give an alternative definition of the Mandelbrot set.

Definition 4 (alternative) The Mandelbrot set M is the set of c for which

0 -4 c + c2 + c ... remains bounded:

M = {c E C : 0 > c > c2 + c -4 ... remains bounded }

The Mandelbrot set itself is connected. In figure 8, we show one of the most

popular representations of the Mandelbrot set.
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Figure 8. The Mandelbrot set

3.1.4 Strange Attractors

In the discussion of chaos in dynamical systems of two or more dimensions, we find

that the notion of strange attractors is of importance. Strange attractors occur in

dissipative dynamical systems, i.e. systems with some sort of friction. Until re-

cently, scientists believed that the long term behavior of dissipative systems would

always run into simple patterns of motion such as a rest point or a limit cycle.

But scientists discovered that the long term behavior sometimes moves randomly,

but always remains close to a certain set the attractor. If this set has a fractal

structure, we call it fractal attractor or strange attractor.

We will now introduce several attractors. The first example is the Henon attrac-

tor, for which we use a 'stretching and folding' transformation the Henon map



f : R2 4 R2:

Figure 9. The Henon attractor for a = 1.4 and b = 0.3.

f (x, y) = (y + 1 ax2 , bx),

24

where a and b are constants. Henon used the values a = 1.4 and b = 0.3,

[Heno, 1976]. For these values, we show the Henon attractor in figure 9. Numerical

estimates give a box dimension of about 1.26, see section 3.2.2 and [Falc, 1990].

The second example is the Lorenz attractor. Lorenz tried to describe thermal con-

vection. His model does not only describe the motion of some viscous fluid, but

also contains information about the distribution of heat. When fluid is heated

from below, it rises. Once it reaches the surface, it cools and sinks. This result

can be modeled with parallel rotating cylindrical rolls. Lorenz used the continuity

equation, the Navier-Stokes equation from fluid dynamics and the heat conduction

equation to come up with a description of one of these rolls. After approximating
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and simplifying, he stated what are now known as the Lorenz equations:

dx

dt
dy

dt
dz

7fit

o-(y x)

rx y xz

xy bz,

where the variables and constants represent the following:

x: the rate of rotation of the cylinder,

y: the difference in temperature at opposite sides of the cylinder,

z: the deviation from a linear vertical temperature gradient,

a: the Prandtl number,

r: a control parameter representing the fixed temperature difference

between the bottom and the top of the system,

b: a constant depending on the width-to-height ratio of the layer.

Figure 10 shows a Lorenz attractor.

3.2 Dimensions

One of the most important tools, so far, to determine whether or not a set has a

fractal structure, is its dimension. There are many different definitions of dimen-

sion which will give varying results, but they all contain information about the

geometric properties of a set and they provide us with a description of how much

space is filled by a set. Not all of these definitions are generally applicable.
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Figure 10. The Lorenz attractor.
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3.2.1 Hausdorff Dimension

The notion of Hausdorff dimension is the most important concept in defining di-

mensions in a fractal setting. Mandelbrot defined a fractal as a set whose Hausdorff

dimension is strictly greater than its topological dimension. The topological di-

mension of a set is always an integer and is 0 if it is totally disconnected, 1 if each

point has arbitrarily small neighborhoods with boundary of dimension 0, and so

on. The Hausdorff dimension has the advantage of being defined for any set and is

mathematically convenient since it provides us with a measure-theoretic approach

to the problem of finding the dimension of curves and surfaces. Let us have a closer

look at this dimension.

Definition 5 In a metric space (X, p), the distance p from a point to a set and

the distance between two sets are defined as follows: Let x E X and let E, F C X,

then:

p(x , E) =-- inf {p(x, y) : y E E },

p(E,F) inf {p(x,y): x E E,y E F}.

Definition 6 The diameter of U, U C Rn (U )09 is defined to be:

diam U = sup {p(x , y) : x, y E U}.

Definition 7 Let {Ui} be a countable (or finite) collection of sets of diameter at

most 6 that cover F, i.e. F C U`1. UZ with 0 < diam UZ < 8, for all i. Then {Ili}

is a 6-cover of F.
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Suppose (Rn, p) is a metric space, s > 0 and 6 > 0. Since we are interested in

measures of Borel sets, we let F be a Borel set. If F C IV, let

7-Cs(F) = inf {E(diam Ui)8 : is a 6-cover of 11} (3.1)
21 JJJ

with the convention that the infimum of an empty set of real numbers is infinite.

Thus, we look at all covers of F by sets of diameters at most 6 and seek to minimize

the sum of the St h powers of the diameters. As 8 decreases, the infimum is taken

over a smaller family of coverings of F, so that 7-is(F) increases, and so approaches

a limit as 6 > 0. The quantity

lis(F) = linp-C6(F) (3.2)

is called the s-dimensional Hausdorff measure of F. Hausdorff measures gen-

eralize the familiar notions of length, area and volume.

For subsets of Rn, n-dimensional Hausdorff measure is, up to a constant multiple,

just n-dimensional Lebesgue measure, see e.g. [Foil, 1984].

If F is a Borel subset of Rn, then 1-0(F) = crimn(F), where rn,(F) is the Lebesgue

measure of F and cra = 7r722/F(i- + 1) is the volume of an n-dimensional ball of ra-

dius 1. For specific n's we get the following:

If F is a finite number of points:

n = 0 : 7-1 °(F) = co vol°(F) = vol°(F) = number of points of F.

If F is a smooth curve:

n = 1 : W(F) = c1 voll(F) = 2 voll(F) = length of F.

If F is a smooth surface:
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n = 2 : 7-0(F) = c2 vol2(F) = 7r area(F).

If F is a 3-dimensional volume:

n = 3 : 7-0(F) = c3 vol3(F) = `*t volume(F).

Equation (3.1) implies that 7-eg(F) is non-increasing in s for all F and for all S less

than 1. This statement together with equation (3.2) implies that Hs(F) is also

non-increasing. If t > s and {Ui} is a 6-cover of F, we have:

diam Ui <

(diam Ui)t-5 < St -5

(diam Ui)t < (diam Ui)s8t-5

(diam Ui)t `6's E (diam Ui)s
i=i

inf E(diam Ui)t < St' inf (diam Ui)5
1=1

7-4(F) < Sts7-tss(F).

Let S -4 0. If 7-15(F) < oo , then 7-C (F) = 0 for t > s. Thus a graph of 70(F)

versus s shows that there is a critical value of s at which Rs(F) jumps from

oo to 0, as one can see in figure 11. This value is called Hausdorff dimension of

F, denoted by:

dimH(F) = inf {s : 7-LS(F) = 0} = sup {s : Hs (F) = oo},
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00

so that

dimH(F)

s

Figure 11. An illustration of the Hausdorff dimension.

oo if s < dimH(F)

0 if s > dimH(F)

c if .s = dimH(F), where 0 < c < oo.

Simple example: Let F be a ball with radius 1 in R4. Then:

711 (F) = 2 length(F) = 00,

7i2(F) = it area(F) = 00,

1-0(F) = 47 volume(F) < 00,
3

7/4(F) = c4 vo/4(F) = 0.

Therefore, dimH(F) = 3 with 'Hs (F) = oo if s < 3 and Rs(F) = 0 if s > 3.

In the next example, we will show how one finds the dimension of the Cantor set

using the Hausdorff dimension.
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Example: Let F be the middle third Cantor set, introduced in section 3.1.1. If

og21 .6309, then dimH(F) = s and 1/2 <1--(8(F) < 1.log 3

Proof: Recall that after the kth construction step, the set Ek is a collection of

2k intervals of length 3-k. If we let k go to infinity, we obtain the Cantor set F,

i.e. F =limk,a0 Ek

Let {Ui} be the covering of F consisting of the 2k intervals of length 3-k. Since

= 3-k and (diam U1) = JU1J, we can write:

CO

7-0(F) = inf{E(diam U1)8 : {U1} is a 8-cover of F}

7-(;-k(F) < EaUilr
1=1

7_(; (F) < 2k3ks.

Using the assumption s = we find:log3

7-13_k (F) < 1.

Letting 6 go to zero, we obtain:

7-1s(F) = l6i97-C8(F) = k 1-t;_k(F) < 1.

Now, to prove that 7-0(F) > 1/2, it suffices to show that

Eauily > 1/2 = 3-8 (3.3)

for any cover cover of F.

We assume, without loss of generality, that the {Ui} are intervals, and by expand-

ing them slightly, we need only verify (3.3) if is a finite collection of closed



subintervals in [0,1].

For each Uz7 we will choose k to be the integer such that

3(k +1) < I Ui I <

32

(3.4)

Therefore, If, can intersect at most one of the intervals that determine Ek (since

they are separated by a distance of at least 3'). If j > k, then by construction,

Ui intersects at most 2jk = 2j3sk < 2j 38 lUils of the intervals, using (3.4). If we

choose j large enough, so that 3 -t' +1) < Ui for all UZ, then intersects all

23 intervals of length 3-3 Counting the intervals gives 23 < Ei 2j3sluils, which

reduces to (3.3). We have shown that 1/2 < 7-15(F) <1, if s = l16-11- This impliesog3

that for s < Lag/ Hs(F) = oo and for s > 7-0(F) = 0. Thus dimH(F) =
log 3 log 3 log 3

which is non-integer and therefore fractal.

3.2.2 Box Counting Dimension

The box-counting dimension is one of the most widely used dimensions, since it is

easily applicable. Other names for the box-counting dimension are 'Kolmogorov

entropy', 'entropy dimension', 'capacity dimension', 'metric dimension', 'logarith-

mic density' and 'information dimension'.

Definition 8 Let F be any nonempty bounded subset of Rn, then the lower and

upper box-counting dimension of F, respectively, are defined as:

dimes (F) =
N 8 ( F )

5-03 log
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dimB(F) = Ern sup
log N6(F)

8,c, log 6

If these are equal, then the common value is called the box-counting dimension

of F:

. log N5(F)
dimB(F) = ,I-59 log 6

where N5(F) is any of the following:

the smallest number of closed balls of radius S that cover F;

the smallest number of cubes of side S that cover F;

the number of 6-mesh cubes that intersect F;

the smallest number of sets of diameter at most 6 that cover F;

the largest number of disjoint balls of radius 6 with centers in F.

In practice one adopts the definition most convenient for a particular application.

An equivalent definition of box-counting dimension of a rather different form can

be introduced, starting out from the following.

Definition 9 The 6-parallel body Fs of F is

F8 = {X E Rn : IX yl <S for some y E F},

i.e. the set of points within distance 6 of F.

We consider now the rate at which the n-dimensional volume of 118 shrinks as S 0.

If F is a single point in R3, then the 'ball-like' volume of F8 equals vol(FS) = 37r0.
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If F is a segment of length 1 in R3, then the 'sausage-like' volume of F8 equals

vol(FS) r-s--' r182. If F is a flat set of area a in R3, then the volume of F6 equals

vol(Fs) ,c:-.1 2a5. In each case, we get vol(F5) c(53-s, where s is the dimension of

F and c a constant.

Definition 10 Let F be a subset of Rn. If for some s, S'voln(F8) tends to a

positive finite limit as 8 --4 0, we define F as 8-dimensional and the limiting value

as the s-dimensional content of F.

The s-dimensional content has a restricted usage. Since it is not a measure, it is

not necessarily additive on disjoint sets.

3.2.3 Similarity Dimension

The property of self-similarity or scaling, as exemplified by the von-Koch curve,

the Cantor set, the Mandelbrot set, etc. is one of the central concepts of fractional

geometry. An object normally considered as one-dimensional can be divided into

N identical parts, each of which is scaled down by the ratio r = k. Similarly, a

two dimensional object such as a square area in a plane can be divided into N

self-similar parts, each of which is scaled down by a factor r = 71---g. So, in general,

a D-dimensional self-similar object can be divided into N smaller copies of itself,

each of which is scaled down by a factor r, where

1 1
r =

N
N . NrD =1.

1 1

17
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This now defines the fractal (similarity) dimension D:

D =
log N
log

The fractal dimension need not be an integer, which will be the most interesting

case when one talks about fractals. Fractals will not have an integer dimension.

Examples:

1. Von-Koch Curve: Any segment of the von-Koch curve is composed of 4 sub-

segments, each of which is scaled down by a factor 3 from the beginning

segment. Its fractal dimension is D = log 3 1.26. This non-integral dimen-

sion reflects the unusual properties of the curve.

2. Cantor Set: Any segment of the Cantor set is composed of 2 sub-segments,

each of which is scaled down by a factors from the first segment. Its fractal

dimension is D = 1.4:ELa 63
log 3

The concept of fractal dimension can also be applied to statistically self-similar

objects, such as a coastline.



Chapter 4

Analysis of the Wave Equation

It was shown in the preceding chapter that the behavior of certain surface waves

is governed by the following equation:

hxsphhx ='
(1 + 111)312 Qhg

(4.1)

In order to study the solutions to this partial differential equation under various

conditions, it is convenient to nondimensionalize it. Let

h = Hu, x = L, t = TT. (4.2)

Here u, , T are dimensionless variables thought of as 'order one' and H, L, T are

constants which give the typical dimension for the problem. Applying the trans-

formation (4.2) to (4.1), we get:

HT -fur pH2 L-1 uug = a H L-2Ne(1 + H2 L-2 u2c)-312 pg Hu

,uHT L-1 uu = L-2Nj1 + H2 L-2 uD-312 ogTu.
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Since H, L and T are typical constants, which means they are suitable to the

problem, we can choose them such that pHTL-1 = L Then:

uT utq= o(aHL)-lu&(1+ H2L-2u2) -3I2 egRidirlu. (4.3)

Let E = HL- 6 croffi-Lyi a(aEL2)-1 and _ egL(pB)-i eg(1,6)-1

Applying these substitutions to (4.3), we obtain the wave equation represented in

the following form:

UT + uu = Suu(1 + 6214) 3/2 121. (4.4)

In order to solve this equation, it will be convenient to split it up into several cases,

representing certain conditions. Any of the parameters 8,6 and 9, which constitute

physical properties, might be assumed to be small so that corresponding terms in

(4.4) can be ignored. This leads to six different cases, which we shall analyze

separately:

Case a: 8, 9 small, e arbitrary wtq = 0.

Case b: S small, e, 9 arbitrary u, uu = 9u.

Case c: 6, 9 small, S arbitrary = ur utq = Sung.

Case d: e small, 8,77 arbitrary utq = Su&

Case e: 9 small, E,8 arbitrary ?LT utq = Suu(1 E2q)-3/2.

Case 1: 8,77, E arbitrary utq = Stqjl e2q)-3/2 9u.
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Several cases look familiar (e.g. Burgers' equation in case c) and we know that

the solution represents a smooth surface. Several authors, however, claim that

the solution to the wave equation is a "rough" (fractal) surface (e.g. [Stia, 1991],

[Hass, 1962], [Zakh, 1982]). Stiassnie [Stia, 1991] models the free-surface elevation,

neglecting the surface tension. He combines the linear model of Pierson and the

stochastic model of Hasselmann [Hass, 1962]. As a result, he finds an indication

of the possibility that the free surface of the ocean can become a fractal with di-

mension of about 2.3. In the one-dimensional case, the dimension would be about

1.3. In [Hass, 1962], Hasselmann uses a stochastic model to describe waves. The

energy flux in a gravity wave results from weak, non-linear couplings between the

spectral components. As the interactions are weak, it can be deduced from a

loose application of the Central Limit Theorem, that in the linear approximation

a wind-generated random sea is Gaussian. Hasselmann evaluates the energy flux,

using a perturbation method. In [Pier, 1955], it is also shown that we can model

the free-surface elevation by a multivariate Gaussian process. We shall show later

that the solution to cases (e) and (f) is indeed a non-smooth surface.

Before we continue solving each case, we shall find it convenient to state the fol-

lowing four lemmas

Lemma 4.1

1 [Coaxe e iwxwz dw
V4air L.
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Proof: An excellent discussion about this proof can be found in [Guen, 1988].

Lemma 4.2

Proof:

10

t
11nTjrndr

1
+11ntin+1

tn+1
}

t lot (Tn ln T)cir if < 1
loI ln TITn dT =

fol (Tn ln T)c/T + fit (Tn ln 7-)c/T if t > 1

Using partial integration, we find:

I ln TITndT {

{

1 n-1-1t Int + t ,rndTJ 71+1

fi Tnd,r tn+1 in
6

ft
O n+1 n +1

n-1-

1

1 n+
tn+1 { 1

1
In t}

1

n-I-1 r+1 {ln t n+11 11

If we consider the fact that 2 < 2f for all t > 1, we find:

IlnTITndT

n1
rn dr

+1

if t < 1

if t > 1.

{n+1 In if t < 1

n
tn-E1 {

n
1 + In t} if t> 1

-I-1 +1

1 tn+1 { 1 + I lln t .

n + 1 n + 1

if t < 1

if t > 1
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Lemma 4.3 Let cp(x,t) = u(y, t)dy [1(0), where 6 > 0. If u E L1,

then 0 < m < Rol < M and

I lncol lnD or 1111(701 < IlnDtl,

where D is a constant and t is fixed.

Proof: To find the upper bound on PI, we will consider the absolute value

Ico(x,t)I = lei/Wile-1/(20 fox u(y,t)dy1

Since t is fixed, N = leP(01, therefore:

1(70(x, < Nei-1/(20f: u(y,t)dyl.

The exponential function is strictly increasing, therefore we obtain:

l(p(x,t)1 < N el I (26) fox lu(y,t)Idy

< N /(2S) f°900 lu(y,t)Idy

Since u is a function of L1, the integral in the exponent is bounded:

Icp(x , M.

There exists a positive lower bound for c,o, since the exponential function is strictly

increasing:

1c0(X ,t)I
N e-1/ (20 f: u(y,t)dy

> N e-11(26) f: ju(Y,t)idy
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The integral in the exponent being bounded implies that the right hand side of the

equation above is strictly larger than zero. Therefore, for fixed t > 0:

0<m<cp<M<oo or 0 < mt < y < Mt < oo.

Let In D = max{ I In m I, I In MI} or I In Dtl ---.-- max{ I In mt I, I In Mil}, then:

I ln()ol 5_ lnD or IlncpI < I lnDtl.

Another helpful fact is that the fundamental solution of the heat equation is nor-

malized:

Lemma 4.4

oof
Lc° k(x , t)dx = 1,

where k(x, t) V4,rt exp (--'42t) is the fundamental solution of the heat equation.

Proof: A proof of this lemma can be found in most probability books.

4.1 Case a: ut uux = 0

This partial differential equation, which is the case where 6 = 0 in Burgers'

equation, can be solved using the method of characteristics:

dx
u, i.e. xi

dt
(t) = u(x(t),t).
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Since we know that u is constant along characteristics, we can conclude that xi(t)

is also constant along the characteristic lines. Therefore the characteristics have

to be straight lines. Given the profile of the initial condition uo(x) = u(x, 0), we

shall be able to determine the shape of the characteristics. If uo(x) is not larger

than or equal to 0 for all x, then shockwaves will appear. The shock velocity will

be 2 (ut Ur), where u1 and ur are the values of u on the left and right hand side

of the shock, respectively. Since we consider waves, the case where uo(x) is larger

than or equal to 0 for all x will never appear. Therefore shockwaves will always

OMIT.

Example: Let us consider the above case of Burgers' equation, with the initial

condition u(x, 0) = sin(x):

0.6
0.6
0.4
0.2

4

Figure 12. Initial condition for ut uux = 0

Since the first derivative of this initial condition is not larger than or equal to 0 for

all x, we get crossing characteristic lines, as one can see in figure 13. The crossing

characteristics indicate that a shock wave should appear. Figure 14 shows the

solution of ut uux = 0. As expected, an almost vertical line appears, indicating

where the shockwave would be.
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Figure 13. Characteristics of ut utt = 0
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Figure 14. Shock wave at t = 1
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4.2 Case b: ut -kuux =

This partial differential equation is the damped Burgers' equation with S = 0.

Analogously to case a, we will solve it using the method of characteristics. Let

dt dx
= u,

dr

du

dT 71U.
(4.5)

We solve the three ordinary differential equations in (4.5), and determine the con-

stants using the initial condition u(x, 0) = f (x), which we parametrize as xo(s) = s,

to(s) = 0 and uo(s) = f (s).

1. t =-- r c

Using the initial condition (7- = 0), we find c = 0. Therefore:

t = T. (4.6)

du
112L

dr

By separating variables, we find:

du = 11 dr

u

Using the initial condition, we determine uo(s) = C = f (3). Therefore:

u = f (s)e-'7 (4.7)

dx
3.

d
u

r

If we substitute the result we found in (4.7) for u, we get:

dx
= f (s)e-n,

dr



Applying the method of separating variables and integrating, we find:

x =
1

f (s)e-rir K

To find the constant K, we use the initial condition:

Therefore,

xo(s) = -1f (s) K(s) = s
1

1K (s) = s f (s)

x = -1f (s)e-711-
1

f (s) s.
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(4.8)

The solution of ut uux = -9u is now represented by the following system of

equations, which contains (4.6), (4.7) and (4.8):

t = r
u = f (s)e-nT

1 /
f (s) CI") s

We can transform these three equations into:

f (s)e-7t

1
f (s){1 s

and graph them using the initial condition f(x) = sin s, as shown in figures 15

and 16.

Starting with the sine curve at t = 0, the solution flattens out as t gets larger.
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Figure 15. Wave for t = 0 to t = 3

Figure 16. Wave for t = 0 to t = 10



47

4.3 Case c: ut uux = 6uxx

In this section, we will consider the standard Burgers' equation:

ut uux = Suxx.

This can be written in form of a conservation law, where we have a time derivative

on one side of the equality, and a space derivative on the other side.

ut = (6ux 1-2u
2

)x. (4.9)

In order to solve this conservation law, we use the following substitution, suggested

in [Hopf, 1950]:

u = 28V±x- = 26(ln i'Pi)x,

where S > 0.

Substituting (4.10) into (4.9), we get:

28(ln co)xt = (-262 (2-x C4) 282Vx2)
c02

(1n(p)tx = (-8(2f.
Co) x

x

We will integrate both sides with respect to the x-variable, which leads to:

Cot

(Pt

c(t)
Co

6C0xx c(t)(p.

(4.10)

(4.11)

After these transformations, we obtain a partial differential equation that appears

easier to solve than (4.9), especially because it reminds us of the heat equation.
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If we let co = cp exp f cdt, the last term in the equation (4.11) will vanish. This

results in the heat equation:

Sot = 6Co.s. (4.12)

We now have to solve the following restated problem:

Cot 6c0xx = 0, oo < x < oo, t > 0, (4.13)

c,o(x,0) = f(x), oo < x < co.

There exist several different ways to solve the heat equation. It turns out that in

our case, the most convenient method is the one using Fourier transforms. Recall

that a sufficiently well-behaved function has a Fourier transform:

co w) eno(x)dx.
co

The inverse Fourier transform is given by:

co(x) = 110° e`iwxy3(w)dw.
2ir

(4.14)

To write the heat equation using the Fourier transform of co, we multiply equa-

tion (4.14) by eiwx, and integrate over x from oo to oo:

J-00 eiwx(vt 6coxs)dx = 0.

Assuming cos, co + 0 as x +oo, we obtain:

00

0 = f eiwxc,odx Su2 f eiwxcodx
at -00 -00

= t) + sw2c4w,t).



The problem stated in (4.14) is therefore equivalent to:

cbt = sw20, 0) = f(w),
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(4.15)

which is an ordinary differential equation, solvable using separation of variables:

dco

=

Sw2dt

Ce-8w2t

To find the constant C, we use the initial condition given in (4.15):

(/' = (
^,s_6w2t.

f w)e (4.16)

We now found a solution of the heat equation, which contains the Fourier transform

of (p. To find a solution for our original cp, we apply the inverse Fourier transform,

given in (4.14) to equation (4.16) and obtain the following:

1 00
co(x,t) = f (w)e-i.x-sw2t dw.

27r -00

Now we have to apply (4.14) to f(w), which gives us:

twx(p(x, t)
2

=
7r

w8 2 t eiWY f (y)dy) dw.

Changing the order of integration, we find:

co(x,t) = (lc° iw(xy)(5w2tdco) f(y)
e

(4.17)

(4.18)

Lemma 4.1 gives the solution of the 'inner' integral and we find that the explicit

solution of the heat equation is the following:

pp

(P(X, t)
1 2(x-0i

e 46t
ru) ay,

46irt 00
(4.19)
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Figure 17. Solution of ut + uux = buxx

where f(y) is the initial condition.

As in the examples before, our initial condition is a sine curve. In this case the

developing surface smoothes out for large t.

4.4 Case d: ut + uux = 6uxs rtu

In this section, we will consider the damped Burgers' equation:

ut + uux = buxx liu. (4.20)

In order to solve equation (4.20), we use the same method as in case c. We will

transform parts of equation (4.20) into a conservation law. We then get:

ut = Susx uux iiu

1
4.> ut = (Sus 2u2)x riu. (4.21)
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Following [Hopf, 1950], we use the substitution

u = 28(1n(p)x (4.22)

in order to solve (4.21). Substituting (4.22) in equation (4.21), we find:

2 228(ln (,o)st (_282 (to= Sos2) So

2

x) + 20(ln (p)x
So So

"
.#> (ln (,0)tx = + (,o) .

So

Integrating this equality with respect to x, we get:

(Pt 8()± + c(t)
So

<=> Sot = --(5sosx + 77 In (,oca c(t)so

<=> cot 6Soss = In (7ov c(t)co.

Let

(4.23)

Q(x,t) = 771n coco c(t)co, (4.24)

then we obtain:

Sot 6(Pxx = Q(x,t). (4.25)

We have found an equation that looks very similar to the heat equation. To solve

this partial differential equation, we will use the fundamental solution of the heat

equation:

v(y, r) = k(x y, 6(t T)), (4.26)

where k(x,t) = 4t exp ('4), and the property of v, that vt 8v,x = 0, which

allows us to write (4.25) as:

vQ = v((,o, 6coyy) co(VT Svyy)
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= (v(P), (5(vyy'P vy'Py vy(Py v(Pyy)y

= (vo), 8(covy vsay)y. (4.27)

Integrating both sides of equation (4.27) from R < y < R and 0 < T <t E

results in:

TR te
vQdTdy

J-R
dY + 6I ((pvy_vc,),%,

fR(k(x y, 4,o(y, ,t e) k(x y, St)co(y, ,0))dy

tc
+6

.1((pvy npy)11R dr.
0

(4.28)

Assuming co and cox satisfy the growth estimates Icol, lcoxj < 2M exp(px2) and

using the fact that Iv(x, 01 and Ivx(x, 01 tend to zero as x > oo, we find that

(covy vcoy)IRR approaches zero as R > oo. Therefore,

jote
(C,OVy VVOIR_RdT 0 as IRI 00

and equation (4.28) can be written as:

TR ftc
JR JO

v Q dr dy = R k(x y, e)(,o(y, ,t e)dy f
R

k(x y, 6t)co(y, ,O)dy

Now we let e go to zero and R go to infinity and obtain:

oo

foo 0
vQdrdy = lim

_
k(x y, e)c,o(y, ,t e)dy

e>0 00

fao

k(x y, St)c,o(y, ,O)dy . (4.29)
oo

One of the basic properties of the fundamental solution of the heat equation, as

for example shown in [Guen, 1988] is:

00

lim f k(x y, at) f (y)dy = f(x0)
(x,t).(xo,o+) oo



This property transforms (4.29) into:

oo rt

ioo JO
vQdTdy = (x,,Ijirri.(x,0)1::k(x y ,SE)so(y ,t e)dy

J k(x y,St)co(y,O)dy

= co(x,t) k(x y,8t)co(y,0)dy.
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(4.30)

Therefore, using the definitions of v and Q, given in (4.26) and (4.24),respectively,

we get:

roo
co(x,t) = k(x y,St)so(y,O)dy

-00

+
oo 0

t
k(x y,S(t 7))( 771n cpco c(t)co)drdy. (4.31)

We now found an implicitly defined solution of equation (4.20). For this solution,

we will now prove existence and uniqueness with the following theorem.

Theorem 4.1 There exists a unique solution of

where

(p(x,t) = f k(x y, St)(p(y, , 0)dy

k(x y, 6(t 7))(-77v(y,7)1n(to(y,7))drdy,
oo 13

j't k(x y, (5(t 7))(c(7)co(y,7))drdy,
-00 i9

1 x2
k(x' t)

\747it eXP 4t).

Proof: The proof of this theorem is shown in Appendix A.
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In order to illustrate these results, let us take the initial condition u(x, 0) = sin x

and graph several iterations. The graph of the first iteration uo(x, t) was shown

in the last section as figure 17. The second and third iterations (ui, u2) are shown

in figure 18 and figure 19, respectively. We did not compute further iterations

since the difference between ui(x, t) and u2(x, t) is already very small, as shown

in figure 20, which raises the expectation that u2(x, t) did already converge very

well.

Figure 18. Second iteration: ui(s,t)

In figure 19, we see that the solution smoothes out and does not lead to a

rough surface.
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Figure 19. Third iteration: u2(X, i)

Figure 20. Difference between the second and the third iteration
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4.5 Case e: u1 uu, = 6u(1 E2212x)-312

We shall first transform this equation into a conservation law. It is obvious that

one can write the left hand side of the equation as ut uux = (u)t + (4)x. It can

be shown that the right hand side is equal to S(ux(1+ E2us2)-112,) The equation

in the form of a conservation law is

0 a
= 79-x- (8ux(1 E2u2) 1/2

1722)
2

(4.32)

This cannot be solved analytically, but the following figure 21 shows a speculative

numerical solution using Fast Fourier transforms and the Runge-Kutta method.

Using numerical methods, we will transform (4.32) into an equation, where the

derivative of u with respect to t is equal to a function of u:

du

dt Au)*
(4.33)

In order to find this function f , we will use Fourier series and Fast Fourier trans-

forms. Note that we are considering periodic initial conditions. Hence, we can

write u as a Fourier series with period L:

00

u(x) E aThei"x,
n=oo

where tin = 271-nL1.

To find a numerical solution, we will need the discrete form of (4.34):

N 1
j == 2(x7) 12 aneill77.sj

n =ZN

(4.34)
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Figure 21. Speculative solution of ut + uur = bux,(1+ E2uD-3/2
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where j = ,-12-1V 1.

Note: P\T is absent due to periodicity. Given the an's, the uj's can be found

using Fast Fourier transforms, and vice versa, given the ui's, the an's can be

computed with the inverse Fast Fourier transform. Therefore, we will be able to

find the coefficients of the Fourier representation of our initial condition. These

coefficients, on the other hand, will give us the derivative of u, which is:

2N -1

E(itinan)eitinxi.
n=- iN+1

Set a_ N = 0, otherwise an unwanted imaginary component is introduced. The

quantities (ignan) are called eigenvalues of u. With this information, we found the

quantity in parenthesis on the right hand side of (4.32). Set

1
v(x) = bus(1+ ,2,2 \ -1/2 2

'T./ 2
u

To find the derivative of v with respect to x, we use the Fast Fourier transform

again in order to obtain the coefficients of the Fourier series representation of v.

As before, we can find the coefficients of the Fourier series representation of the

derivative, and using the inverse Fast Fourier transform, we will find the actual

derivative. Now, we transformed our problem into one of the form:

du
dt f(u).

This form of our original equation can be solved numerically, using the Runge

Kutta method.

Singularities in the solution to this equation develop quickly and are exacubated by
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numerical inaccuracies. Consequently the Fourier transform becomes less trustwor-

thy. The many singularities in the solution surface, however, indicate the physical

behavior of the surface tension collapsing and a wave breaking open which in turn

would enable water particles to leave the fluid body. This indicates that the sur-

face shown in figure 21 does seem to represent the physical behavior of the onset

of a breaking water surface. The onset of the roughness is being measured by the

fact that the wave is tending toward being bounded by a fractal curve. A partial

differential equation, however, may not be viewed as an appropriate tool to mathe-

matically model breaking fluid surfaces and an alternate formulation is needed. It

may be possible to introduce a suitable concept of a generalized solution to handle

the case when singularities begin to appear, but such an appropriate concept is not

clear at this time. We will therefore consider figure 21 as a speculative solution,

showing a very rough surface behavior, which is what we expected to see in at

least one of the cases of our wave equation.

4.6 Case f: ut + nu, = 6u(1 + 6'214)-3/2 TM

This partial differential equation is the damped form of case e. Again we will not

be able to solve it analytically, but using the same methods as in case e, we will

obtain a numerical solution, which is shown in the following figure 22.

As expected, we note that the solution behaves more moderately than the one in

figure 21, but it still shows a somewhat rough surface.
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Chapter 5

Fractal Structure of Waves near their Breaking
Point

In the preceding chapter, we found that in cases e and f of the wave equation,

the wave surface starts to become very rough. In order to determine whether we

have fractal surfaces, we will consider cross-sectional cuts of the wave at certain

time steps. To measure the irregularity/roughness, we will use the box-counting

method which was discussed in section 3.2.

Recall that, if we let F be a graph, then the box-counting dimension is defined to

be

log No (F)
dimE(F)

.

log

where N6(F) is, in our case, the smallest number of squares of length S covering F.

In order to find this limit, we use several grids of decreasing values of 5, count the

boxes that cover F, respectively, and then fit a linear (a + bS) and an exponential

(exp(a bS)) model to these counts in order to predict the limit (S = 0). To justify

the use of the box-counting method, we determined the dimensions of a linear, a
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quadratic and a sine curve, which should be close to 1 if the box-counting method

is valid. In the appendix, we show a table with the number of boxes covering F for

different 8's, and the dimensions of the three different curves calculated according

to the linear model fit. The exponential model was not found to fit the data

significantly better than the linear model. Therefore the simpler (linear) model is

used for predicting the dimensions. Using the linear model, we get the following

dimensions:

Linear curve: 1.10319 + 0.01308296 = dimB(F) R.,' 1.10319,

Quadratic curve: 1.16182 + 0.01916296 dimB(F) ti 1.16182,

Sine curve: 1.14817 + 0.02150576 dimB(F) N 1.14817.

The true dimension in all three cases equals 1. The reason why the box-counting

method does not achieve this value exactly is, that the measuring (counting) pro-

cess is limited by a smallest box size greater than zero, at which the human eye

cannot distinguish boxes any more. This creates a source of variation which leads

to inaccurate dimensions.

The dimension of the surface shown in figure 21 is determined by taking cross-

sectional cuts at time steps M dt, where dt is taken to be 0.02 and M = 0, 50, 100,

150, 200, 256. For M = 0 we get a sine curve, whose dimension is already known.

The resulting dimensions according to the other time steps mentioned above are

shown in the following table:
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M time step dimB(F)

0 0 1.14817

50 1 1.42240

100 2 1.60361

150 3 1.56929

200 4 1.63834

256 5.12 1.64056

Table 1. Resulting dimensions for the time steps

We note that the dimensions for the curves corresponding to the surface at the

time points 0 above are significantly higher than the dimension for time = 0.

This leads to the conclusion that these curves possess a fractal dimension in the

plane. Moreover, the surface itself has a fractal dimension in space. In contrast,

the dimension for an ocean wave and a wave in a wave tank was calculated to be

1.7 in [Gill, 1991].
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Appendix A

Existence and Uniqueness Proof of Theorem 4.1

Theorem 4.1 There exists a unique solution of

Toocp(x,t) k(x y, St)co(y, ,O)dy

+f k(x y, (t 7-))(-77(to(y,, r) lnc,o(y, r))d rdy
-00 o

where

+ I
00

k(x y, S(t 7))(c(r)co(y,, (A.1)
-00 o

1 x2
k(x, t) exp (Td. (A.2)

Proof: For ease of notation, we will sometimes write k instead of k(xy, 8(tr)).

The initial condition co(x, 0) equals f(x). Set sups If(y)l = M. Since co(x, 0) =

exp{-5 f u(x, O)dx} and the initial condition for u is usually either a sine or a

cosine function or a linear combination of both, we may assume that cp(x, 0) is

bounded. Also set

sup Ic(t)1 = C. (A.3)



EXISTENCE: Let us define a sequence of functions {c,on(x,t)} successively by:

S00(X, t)

(P1(x, t)

k(x y, St) f(y)dy

cp 0(x , t)

k(x y, 8(t wo(y, 7-) In yoo(y, r))ch-dy
-00 o
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(A.4)

+ I-00 k(x y, 8(t T))(c(7-)0(y (A.5)

V)2 7 c00(X, t)

k(x y, 8(t T))(-77coi(y,, T) In col (y, r))drdy
-00 o

00

k(x y , T))(c(r)coi(y ,r))drdy

con(x, t) = wo(x, t)

+
k(x y, 6(t 7-) In con -1(y, T))drdy

-00 13

oo pt

+ I- k(x y, 8(t TM c(r)(pn-i (y, T))drdy.

Using the fact that If I has an upper bound and applying lemma 4.4 to equa-

tion (A.4), we find:

koo(x , < M I k(x y, St)dy = M. (A.6)

We have to prove now that {sa(x, t)} converges uniformly, and the limit co(x, t) of

the sequence {cori(x, t)} is a solution of (A.1). For uniform convergence, we have
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to show that kon(x,t) (7orn(x,t)1 tends to zero as n and m go to infinity. To

obtain an expression for Icon(x,t) corn(x, 01, we will try to find upper bounds on

kon(x,t) con_1(x,t)1 for all n. Let n = 1, then:

koi(x,t) Wo(x,t)I 5_
J-00
fo° lot Ik(x Y,b(t 7))117111400(Y,T)Illn cooly, r)jdrdy

+I
oo rt

Ik(x y, 6(t le(T)Ikoo(y, 7)1clicly.
-00 o

According to the bounds on coo given in (A.6) and on Ic(r)1 given in (A.3), we

obtain:

t)1 Ik(x y,8(t r))1i711Mi In coo(y, 7-)Idrcly1401(x,t) cpc,(x,
00 13

f00

Ik(x y, 8(t r))ICMdrdy.

Since (cool < M, we can apply lemma 4.3 and therefore find the bound lnD for

In coo. Now,

t

t) (i7/ 1M D + CM) Ik(x y, (5(t r))1cly) dr.
13 00ce)0(X,

Using lemma 4.4, we get:

IC°1(x,t) ,00(x,t)1 < f (17/1M1nD + CM)dr

= (1711M1nD+CM)t

where M1 = 1771M in D +CM.

Let n = 2, then:

1 o2(x, t) coi(x, =

= ma, (A.7)

ft

J-00 /9
k(x y,S(t 7))71401(Y,T)Incoi(y,r)drdy,
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JO-00 13

k(x y, b(t 7-))7r,o0(y , 7-) In coo (y, T)dTdy

+ j k(x y, 8(t rnc(r)coi(y,r)drcly,
co t

-00 o

k(x y, 7-))47-)co0(y,r)drcly

Applying the mean value theorem to coin co, we find:

1C°2(X, c01(X7 01 < 100 1k117/11(P1,0(Y, T)11111c011(Y7 T) ildrdy

IkIle(T)N1,0(Y, T)1C/TdY,
oo

where coi(y, T) coo(Y, T) = T) and con E forcol] for fixed y and T.

The results found in inequality (A.7), the bound on Ic(r)1 in (A.3) and the triangle

inequality result in:

1CO2(x,t) (Pi(x,t)I 5- 1-0: jot In con (Y, r)Idi-dy

roo rt co t

+ j Ik11711Mirdrdy + lkIC drdy.
- o -00 13

The inequality (A.6) assures that coo is bounded. Therefore inequality (A.7) implies

that col is also bounded. Assume col > (po for fixed x, t, then con < col. Therefore

Coil is bounded. If col < coo, then con < coo. We will get the same result, namely

that con is bounded. Hence we can apply lemma 4.3 and get:

ko2(x,t) coi(x,t)1 <
00 Jot

Ik(x y, b(t r))11771Mirl ln(Dir)ldrdy

roo ft

J+ .1-09 Ik(x Y) (5(t T))11711-111irdrdy

oo

+ Ik(x y, b(t T))IC Mirch-dy.
00 (.3
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Changing the order of integration and applying lemma 4.4, we get:

t
1c702(x,t) co1(x,t)1 < f 1111MiT I ln(DiT)IdT (1771+ C)Mirdr.

The laws of the logarithm and the triangle inequality lead to the next estimate:

t t
ko2(x,t)- coi(x,t)1 < 1711MilinDil I rch- +1/70/11 11nrIrdr

o o

t

+Mi(17/1 + C)I0 Tdr. (A.8)

The first and the third integral in equation (A.8) can be easily solved. In order

to solve the second integral, we will use lemma 4.2, which we stated earlier. This

leads us to the following:

Ic02(x,t)- coi(x,t)1 < 2Mi (177111nDil 17/1 Ot2 .1711/t/1 + !Intl) t2.

The absolute value of In t has different functions as bounds, depending on t being

larger or smaller than 1:

it ift>1
Ilntl <

t-1/2 if t < 1.

This fact gives two different results for ko2(x,t) cpi(x,t)I:

For t > 1 :

(A.9)

ko2(x,t) coi(x,t)1 < (77111n/311+1771+
2

17/1+C)t2+
2

3
-M1(17/111nDil -17/1+C)t2 +
2 2 2

1 1

-217/1Mit3

= -At2 + Bt3
'

1711Mit3



where A = (19011Di I + + C) and B =

Since t3 > t2 for all t greater than or equal to 1, we find:

1402 (x , t) (pi(x, t)I < (A + B)t3

= 2M2t3'

where M2 =- A + B = In Di I + + .

For t < 1 :

2ko2 , y)i(x , t) 5_ -M1 0/111nDll 17/1 2
+ CI) t2

21171M;t3/2

= 2
-m; (111111n 2

+ 191 + t2 -21171/03/2

1 1
= 2At3/

2
2 Bt2 ,

where A = 1771 M; and B = M; (177111n Di I + z I I + c)

Since t3/2 > t2 for all t less than or equal to 1, we find:

k02(x, t) < (A+ B)t3/2

1m,t3/2
2 2

where ./14.; A + B = M; (111111n + P11 + CY)

1

Therefore, we get:

ko2(x t) t)
2Mi.(111 111nDil+ 2111 1+C)t3

P I ; (111111nDil + NI + Ot3/2

Now, we will prove the general claim.

if t > 1

if t < 1.

72

(A.10)
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Claim A.1 For all n > 0, the absolute value of the difference of andand c,on-1 will

satisfy the following inequality:

kon(x,t) (pn-i(x, 01 _<

1 Al 42n-1
2n-1(n-1)!Ivinb

2n-1 3! t(n+11/2
(n+2)!

where Mn = Mn-1 ((2 + 2 ;,17)1771+ ICI in(Dn_i) c)

and Min = ((2 + 7,f2) + ICI ln(Dn_i) + c).

if t > 1

if t < 1,
(A.11)

Proof: By induction. Let n = 2 in (A.11), and compare it to equation (A.10),

then one realizes, that the claim is already proven for n = 2. We will assume that

it holds for n. Then:

k°n+1(X7 t) Y)n(X, t) I = k con(y T) ln (,on(y , T) dTdy
o

t
+ k c ( con(y,T) dTdy

00 o

.

00 t

-
k c(T) cion_1(y,T) dTdy

00 o

k n-i(Y ,T) In (pni(y, T) dTdy

Applying the mean value theorem to co In co, we find:

kon+i(x,t) con(x,t)I < f f Ik117111cP n,n-1(y, T)111nonn(y,T) +11dTdy
-00 a

+ -co 1)IdTdy,
00 o

Ewhere con(Y, T) (Pn-i (Y, T) = SOn,n-1(y, 7-) and nn e Ron-1,(pn] for fixed y and T.

The assumption that the claim holds for n, the bound on Ic(r)( in (A.3) and the

triangle inequality lead us to the next result, where we will consider different cases



74

for t > 1 and for t < 1.

First let t > 1:

foo ft
kon-Fi(x,t) con(x,t)1 < o 2n-1 (n 1)!

Mrir2n-111nconn(y, dy
-0.

+ fx) Ik117/1

1
mriT2-1 dr dy

-00 J0 2n-1(n 1)!
00

+ 'kr 1 114-7,7-'1 dr dy
-0. o 2n-1(n 1)!

Using the same reasoning as we used for the case of n = 2, we find that conn is

bounded. This implies that we can apply lemma 4.3 and get:

l(Pn+1(X1t) cPn(x,t)I f70 jot lk11771 2n_i(n MmT2n-1I 1n(Dnr)Ididy

+ f 00
fot Ikl 1711 2n_1( MnT2n-ldTdy

oo

+I 'kr 1
MnT2n-ldrdy.

o 2n-1(n 1)!

Changing the order of integration and applying lemma 4.4, we find:

ft 1 mnr2n-i ln(Dnr)IctrICPn+1(X, t) cOn(X, < l
17/1

0 2n-1(77, 1)!
ft 1

+
nm T2n-ldT

t

0 2n-1(n 1)!

1
+ C m-nr2n-ldr.

0 2n-1(n 1)!

The laws of logarithm and the triangle inequality lead to the next estimate:

1
Icpn +1(x,t) cpn(x,t)I < 2n-1(n _ l)! Mn (I 1-11(Dn0/1 + C)

0
T2n-idT

1 ft
+2n-1(n en11/1 Jo T271-111-11(T)IdT.
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In order to solve the last integral above, we will use lemma 4.2, which we stated

earlier. The other integral can be integrated in a straightforward manner.

1

l(Pn-Fi(x,t) con(x, 2n-1(n 1)!Mn
(11n(Dn)117/1 1171 C)

2n
t2n

1

1)!
Mn ICI 2n

t
2n

2n
+ 'Intl).

The inequality stated in (A.9) provides a bound on the logarithm function. There-

fore, we obtain the following:

1Wn-F1(X, can(X, t)1 5_
1 1 \ 1

2n-1(n 1)!Mn (iin(Dn)117/1 1771 C NIK) Kt
2,

1 1 en+1.
2n-1-(n 1)! 2n

Since en+1 > t2n for t > 1, we get:

1 _1
14=In+1(X) Y,n(X, 01 2n(n)!Mn

1n(Dn)11171 1 + C en+1

1 1

2n(n)!Mn
((2 17/111n(Dn)1

t2(n+1)-1.
2n 1

Comparing this with the definition for Afn+1 in claim A.1, we realize that we found:

1
1(Pn+1(X, t) cOn(X,

2n(n)!
t2(n+1)-1.

This is exactly the expression we claimed to get for bpn+i(x, t) con(x, 01, if t > 1.

We will now consider the case for t < 1 :

2n-1 3! 7(no/21
c,onn(Y, "1")1 drily

00 t

kon+i(x,t) Son(x f< ikiJ-00 (n 2)! n



+ Jot

2" 3! r(n+1)/2 drcly
foo f

n

oo

+ 1/C1 C 2n-1 31 Mn r(n+1)12 drcly.
oo ci (n + 2)!

As before, (,ann is bounded. Using lemma 4.3, we get:

Icon+i(x,t) con(
00 t

2x, l .11k! (n +2)!23)!! M
-co 0

+1°f ft 2n-1 3!
Ikl 1711-00 Jo (n + 2)!
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T(n+1)/2 I in(Dnr)1 drcly

T(n+1)/2 dr dy

+1
00 t

C 2n-1 31 Mn r(n+1)12 ch-dy.
00 Jo (n + 2)!

After changing the order of integration and applying lemma 4.4, we find:

(P f r(n+1)/2 1111(DnT)1 drn+1 (X, t) (Pn(X7 jo (n 2)! n
ft 2n-1 3! , (n+1)/2 dT+

1171 (n + 2)! Mn T

t
C

2n-1

+
13! m, T(n+1)/2 dr.

(n 2)! n

The next estimate follows from the laws of logarithm and the triangle inequality:

' 3! ,

kon+i(x, t) (,on(x, t)I
2

+< (n + 2)!
Mn (I lll(Dn)11771+1771+C)fotr(n+1)/2dr

n2 -1 3! , ft
+(n

+ 2)!
Mn T(n+1)12 ln(r)I dT.

The solution of the last integral is given by lemma 4.2:

<
(n + 2)!

Mn (11n(Dn)1Con+i(x,t) son(x,t)I
2

117/1+ 17/1+ C) n +3 t(n+3)/2

2n-1 3! , 2
+(n + 2)! Mn 1711 n +3 t(n+3)/2 (

n + 3
2 + Iint1)

Applying the inequality given in (A.9), we find the following estimate:

2'3!
M'

2 17/1 ) 2 t(n+3)12
14°n+1(X)t) ,On(X,t)1

(n + 2)!Mn ln(Dn)11711+ 17/1+ C + n +3 n +3



2n-1- 3!
+ (n 2)!

Since t(n +2)12 > t(n+3)/2 for t < 1, we get:

(n+3)! Mn

2' 3! ,
149,2+i (x, t) con(x, <

2n 3! Min ((2

(n + 3)!

77

In1
2 n+2)/2.

n + 3

ln(Dn)11 1 + 11177i 217/1+C+ t(n+2)/2
n + 3

n + 3) 1771 + 1771n(Dn)1 + t(n+2)/2.

Comparing the quantity in parentheses above

claim A.1, we realize that:

with the definition of /14+1 in

ICD7H-1(X)t) cOn(X, <
1

n+
it.

This is exactly the expression, we claimed to get for kon+i(x, 01, if t < 1.

Since we now found the bounds for 149n con-1I, we will address the problem

to prove that 1(pn (pm I tends to zero as n and m tend to infinity. For n > m, we

obtain by the triangle inequality:

Icon(x,t) orn(x,01 Icon(x,t) (Pn-i(x, + 1con-i(x,t) con-2(x, +

+kom+i(x,0 0.(x,01

L kpi(x, t) soi-1(x,t)I
i=rn+1

oo

< E koi(x,t)
i=m+1



In order to apply claim A.1, we need to consider the two cases:

Case 1: t > 1:

00

kon(x, < E mit
i=m+1

2i-1.

2i-1(i 1)!
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After factoring out all the common factors, we obtain:

()!
kon(x,t) Som(x,t)I

29n
t2m+1E

23 (m
m

j)! Mm +i +j t2 .

(
lm)!

j=0

The right side of the last inequality tends to zero as n, m oo, provided that the

infinite sum converges.

Claim A.2

00
(rn)!

2' (m j)!
Mmmj t2i < 00.

!Proof: To show that the infinite series °° a where a = (m)io 31 3 2 (m+j)!

converges, we will use the ratio test. Consider:

3-'00

aj+1
= 11M

3-400

(m)! Mni+2+ j tgi+1) (TM j)!
a 2i-F1 (m j 1)1 (m)! Mm+i+i 2j

11111
3 -*00

Mm-F2-Fa t2

2 Mm -F1 +3 (rn + 1)

Applying the definition of M, stated in claim A.1, we get:

lim
aj+i
a3

= lim
3-400

= lim
3-'00

= 0.

Mm+1+ j ((2 2(m+1+3)) 1111 + 17/ In Dm+1+3

2 Mm-Fi-Fi j + 1)

((2 2(m14+3)) 17/1 i7/111Dm-Fi-Fi t2

2 (m+j +1)

m+1-1-j t2j)

t2



Since the limit is less than 1, the ratio test proves that claim A.2 is true.

We will now consider the case, where t < 1.

Case 2: t < 1:

00 2j-1 3!
kon(x,t)-- y),n(x,t)1 < E

(i 2)!i=m+1

Factoring out the common factors, we obtain:

t(i+1)2

icon(x,t) com(x,t)I <
2m 3! t° 2i (m 3)!

(rn 3)! j=0 (m +j)! m+1+3 to'
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Assuming that the infinite series converges, we can conclude that the right side of

the inequality tends to zero as n, m + oo.

Claim A.3

c-,`) 23 (m 3)!

j =0 j)!
m+1+3 t < oo.

Proof: We will show the convergence of this sequence, using the ratio test:

11M
3-400

aj +l

a3

2(j + 1) (m + 3)! Mmi+2+j t(j+1)/2 (m j)!

(m j 1)! 2j (m 3)! t3/2

2 M.'m+2+3

(m j + 1) M741+:1

Recall the definition of M', stated in claim A.1:

m+21-j ((2 +24 j) 1771+ 17/111n(Dm+i+j)1+



This leads to the following:

lim
aj+i

a3

2 Mi ((2 m+4+i) IC + 17/111n(Dm+i+i)i+ c) t112

(m j 1) Mrn1

2 t1/2 ((9 2
(7.72 +i 4 +i) 17/1 171111n(Dm-Fi+i)1
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Since the right hand sides of case 1 and case 2 both tend to zero as n, m oo,

{(Pn(x,t)} converges uniformly to a function co(x,t). Therefore c,o(x,t) is continu-

ous. To prove that co(x,t) is a solution, we use the following fact: If the sequence

of functions {cpn,(x,t)} converges uniformly and (p,,(x,t) is continuous in the given

domain, then:

co 00

y)lim yon(y,r)drdy oo 0
(lim ,,(x,t))drdy.noo oo Jot

Hence we obtain:

(p(X,t) = lim Ond_i(X,t)
n*00

c- 00(X,,,)

lim
ft k(x y, (5(t r))(-7p,on(y,r)lnc,on(y,r))th-dy,

oo 0
00

k(x y,S(t r))(c(T)cion(y,r))drdy
--oo

Y7o(x,t)

k(x y,S(t 7-)) lim(ippri(y,r)lncon(y,r))th-dy
oo 0

+ /oo 0 n0
ft k(x y, 8(t r)) lim(c(r)con(y,T))drdy>oo
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= coo(x ,t)

+
oo
Ilc° k(x y, 6(t T))(rico(y, r) In (70(y , T) c(r)co(y,, r))dr dy

fco

k(x y, St) f (y)dy.
ft k(x y,, 6(t r))(Tico(y ,r) ln co(y, r) c(r)co(y., r))drdy.

-co o

Therefore (p(x,t) is a solution of (A.1).

UNIQUENESS: Assume there exist two solutions (pi and so2 of equation (A.1). If

(Pi and c02 satisfy equation (A.1), then they also satisfy equation (4.25) and we

obtain:

colt 6C°1xx

(702i 45(P2xs

= Q (x ,t),

= Q (x ,t),

wi(x,o) = f(x)

y)2(x,o) = f(x).

Subtracting these two equations, we need to solve the following problem:

(col co2)t 6 (Sol (P2) x x = 0 and coi(x, 0) yo2(x, 0) = 0.

Let b = col co2, then:

Ot 60xx = 0 and 0(x, 0) = O. (A.12)

Equation (A.12) is the heat equation, which we solved already in section 4.3 and

the solution is given by equation (4.19):

0(x, t) =
1 (x_02

N/4(51rt
e 46t 0(Y)°) dy,-.
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where '(x, 0) is the initial condition. In our case the initial condition '(x, 0) = 0.

Since the integral of zero equals zero, we note that 10(x, t) 1 = 0. This implies

that coi = (,02. Therefore equation (A.1) has a unique solution and the proof is

complete.



Appendix B

Dimensions of a Linear, a Quadratic and a Sine
Curve

p.1 Linear Curve

Figure 23. Linear curve

The linear fit program employed indicated that the best linear fit to our data

obtained by counting boxes covered by the linear curve at various box lengths was

dlmB(F) ti 1.10319 + 0.0130829S. Thus dimB(F) logNi6g(8F) 1.10319.
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LINEAR CURVE

box dimension S in dm number of boxes N5 In Ns/ In 8

.08 21 1.2054

.07 24 1.1951

.06 28 1.1844

.05 33 1.1672

.04 42 1.1612

.03 54 1.1376

Table 2. Box counts for the linear curve

(1n. N) / 1n delta)
1.22

1.2
1.18
1.16
1.14
1.12

2 4 6 8 delta /mm

Figure 24. Linear fit and extrapolation for the linear curve
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13.2 Quadratic Curve

25

20

15

10

5

-4 -2 0 2

Figure 25. Quadratic curve

4 6

QUADRATIC CURVE

box dimension 8 in dm number of boxes N8 In N6/ in 8

.08 28 1.3193

.07 30 1.2790

.06 37 1.2835

.05 45 1.2707

.04 54 1.2392

.03 70 1.2116

Table 3. Box counts for the quadratic curve



(1/1. N)/(111. delta)

1.325
1.3

1.275
1.25
1.225

1.175
de1ta/mm
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Figure 26. Linear fit and extrapolation for the quadratic curve

The linear fit program employed indicated that the best linear fit to our data ob-

tained by counting boxes covered by the quadratic curve at various box lengths was

dimB(F) ti 1.16182 + 0.01916298. Thus dimB(F) = limb o
log

g
N6 (F) = 1 16182lo 8



B.3 Sine curve
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Figure 27. Sine curve

SINE CURVE

box dimension 8 in dm number of boxes N8 In N5/ In 8

.08 27 1.3049

.07 32 1.3033

.06 38 1.2929

.05 45 1.2707

.04 50 1.2153

.03 70 1.2116

Table 4. Box counts for the sine curve



(Ira N)/(1n delta)

del ta/mm
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Figure 28. Linear fit and extrapolation for the sine curve

The linear fit program employed indicated that the best linear fit to our data

obtained by counting boxes covered by the sine curve at various box lengths was

dimB(F) ;--:-., 1.14817 + 0.02150576. Thus dimB(F) = hills
log

g
6 (F) 1 14817'13 lo 6
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Appendix C

Dimensions of Cross-Sectional Cuts at Certain
Time Periods

Figure 29. Cross-sectional cut at M = 50

The linear fit program employed indicated that the best linear fit to our data

obtained by counting boxes covered by the curve shown in figure 29 at various box

lengths was dimB(F) 1.42240 + 0.01411436. Thus dimB(F)
iogNio,g(6F)

1.42240.
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CROSS-SECTIONAL CUT AT M = 50

box dimension 6 in dm number of boxes N8 In Nil In S

.08 47 1.5243

.07 60 1.5397

.06 70 1.5101

.05 86 1.4869

.04 111 1.4631

.03 177 1.4761

Table 5. Box counts for the cut at M = 50

(1ri / (1r-i delta)
1.54
1.52

1.48
1.46
1.44
1.42

delta/trim

Figure 30. Linear fit and extrapolation for the cut at M = 50
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Figure 31. Cross-sectional cut at M = 100
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CROSS-SECTIONAL CUT AT M = 100

box dimension 6 in dm number of boxes N8 In N6/ In S

.08 66 1.6588

.07 82 1.6571

.06 101 1.6404

.05 134 1.6349

.04 192 1.6333

.03 299 1.6257

Table 6. Box counts for the cut at M = 100
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(1n N)/(ln delta)

1.66
1.65
1.64
1.63
1.62

delta/mm

Figure 32. Linear fit and extrapolation for the cut at M = 100

The linear fit programm employed indicated that the best linear fit to our data

obtained by counting boxes covered by the curve shown in figure 31 at various box

lengths was dimB(F) ,c,-., 1.60361+0.00692571S. Thus dimB(F) = lims,01°11\46F) =

1.60361.
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Figure 33. Cross-sectional cut at M = 150

CROSS-SECTIONAL CUT AT M = 150

box dimension 6 in dm number of boxes N8 In N8/ In 8

.08 68 1.6706

.07 78 1.6383

.06 98 1.6297

.05 127 1.6170

.04 189 1.6284

.03 274 1.6008

Table 7. Box counts for the cut at M = 150
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- m) / delta)

delta /mm

Figure 34. Linear fit and extrapolation for the cut at M = 150

The linear fit program employed indicated that the best linear fit to our data

obtained by counting boxes covered by the curve shown in figure 33 at various box

lengths was dimB(F) P.: 1.56929 + 0.01118296. Thus dimB(F) lim8.0 log Ar6 (F)
log 6.

1.56929.
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Figure 35. Cross-sectional cut at M = 200

CROSS-SECTIONAL CUT AT M ---- 200

box dimension S in dm number of boxes N6 in N8/ in (5

.08 78 1.7249

.07 89 1.6879

.06 115 1.6865

.05 155 1.6835

.04 219 1.6742

.03 350 1.6706

Table 8. Box counts for the cut at M = 200



96

(1n. / delta.)

delta /mm

Figure 36. Linear fit and extrapolation for the cut at M 200

The linear fit programm employed indicated that the best linear fit to our data

obtained by counting boxes covered by the curve shown in figure 35 at various box

lengths was dimB(F) 1.63834+0.009017148. Thus dimB(F) = lims,o

1.63834.

log iV6iog(6F)
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Figure 37. Cross-sectional cut at M = 256
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CROSS-SECTIONAL CUT AT M = 256

box dimension 5 in dm number of boxes N8 In Ns/ In 6

.08 83 1.7495

.07 96 1.7165

.06 126 1.7190

.05 162 1.6983

.04 230 1.6894

.03 365 1.6825

Table 9. Box counts for the cut at M = 256



98

1\T ) / (1n delta)

delta/ram

Figure 38. Linear fit and extrapolation for the cut at M 256

The linear fit program employed indicated that the best linear fit to our data

obtained by counting boxes covered by the curve shown in figure 37 at various box

lengths was dimB(F) 1.64056 + 0.01247718. Thus dimB(F)
logNiog(5F)

1.64056.




