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GAMMA-RAY ATTENUATION FACTORS FOR ANGULAR CORRELATION
AND ANGULAR DISTRIBUTION MEASUREMENTS

INTRODUCTION

The experiment to be described is intimately
associated with both angular distribution and angular
correlation experiments and it will be useful to discuss
distribution and correlation gunction-. In many nuclear
phenomena, it is of interest to determine the angular
distribution of particles emitted by a source, or the
directional correlation between pairs of particles emitted
by a source. In nuclear theory, the distribution and
correlation functions which describe these effects can be
calculated.

It is often convenient to represent such functionmns,
called W(O), in terms of Legendre polynomial expansions
(4, p. 610) "
w(o) = Z o« P (cos ©) (1)

n=o0
where, for angular distribution functions, © is the angle
between a particular direction in space and the propagation
direction of the particles under consideration, and for
angular correlation functions is the angle between
propagation directions of the coincident particles under
consideration. W(®) is the probability per unit solid

angle of the emission at angle © of a particle of one



particular energy.

This form of W(©) is not, however, conducive to the
direct experimental determination of the constants c(n
since that would require a detector having dimension in
only one direction. Therefore W(@) is altered so as to
fit a physically realizable situation; that is, a mathe-
matical process is imposed upon W(@) such that the result
will correspond to a quantity that is measurable, and
further, this result contains the various “n' thus
enabling their experimental determination. This operation
on W(O), discussed in more detail below, results in a
function W(@) differing from W(@®) in that each term is
multiplied by a quantity Q; that is,

m
O HZO Q, %, P, (cos ©). (2)
The significance of Qn will present itself in the mathe-
matical development of W(O).

Consider first a single cylindrical region of space,
such as region 2 Figure 1, symmetrically located about
the angle © and subtending a total solid angle Vo with
respect to the origin together with a source of particles
located at the origin. Let 62( §,¢) be the fraction of
these particles entering region 2 at angles § and ¢ that
are detected by the region so that the total number

detected per second is



Figure |. Geometry of the detectors.



C(®) = K, (W(s) ¢y (5, 6) awy

(3)
-xzmsr Sez (5,4) aw,.

Particularizing the property 62 of region 2 to a form
(1 - o= %205, ¢)) corresponding to the fraction of gamma
rays of a particular energy absorbed by actual scintilla-
tion crystals, where * is the absorption coefficient of
the region for this energy, and changing variables results
in

Sezt 5,4 )dwz = SBS¢(1 -e 1h“(m) singdsdé
o ~¢

where B is the angle between the axis of the region and the
direction of the gamma rays. It is important to note that
this integral is a function only of the properties and
dimensions of the crystal and specifically not a function
of ©. This being so, equation (1) indicates that c2(0)
is different from W(0) only by 2 constant multiplier.
Thus an experimental counting rate would be proportional
to W(0) which, it will be seen, explicitly contains
v(o).

It is now necessary to evaluate W(6). From (3)

- tx(B)

O Sa'( 6 ) (ﬁbx( ) ) sinBdB
S (1 -e sinBds

o

which becomes upon inserting (1)




o m

So ) a P (cos §) (1-e t%(8)) ginsas
O n=0

4

s (1 - e t*®)) ginpas

o
Integrals of the form

- 2x(8)

I, = %, S‘ P, (cos5) (1L-e ) sinBds
(o]

may be simplified by substitution of the Legendre
polynomial addition theorem (2, p. 109)
P (cos $) = P (cos0) P, (cosB) .

W(@) then becomes
m

V@ = Z Jp/de %p Py (cos @), (n = 0,2,4)

n= o0
where

- ?:x(s))

.3
3 - gorn (cosB) (1 - e sinBd8.  (4)

The Q, of equation (2) for angular distribution experiments
then are
Q = Io/d,

Thus, a knowledge of Qn makes it possible to connect an
experimentally determined distribution using finite sized
detectors with the idealized distribution function. It is
usually the latter which is associated with physical theory.

An angular correlation function W(O) may in a like
manner be altered to give a function W(@) proportional to
the coincident counting rate (4, p. 611) for two gamma-

rays defined as



=7, (Ey)x,(8,4) -Tg(Eg)xg(Bg)
S'(s')(l-- G L T 2(E2)xy 2)

- t,(B,)x,(8,) - Ug(Bg)xy(8g)
1B%1 B o “2F2)72(Ba

dwldvz

' S (1-e )dw, dw,,

where rq and 2'2 are the absorption coefficients of
regions 1 and 2, E, and Ey are the energies of the gamma-
rays considered in region 1 and 2 respectively, and the
other parameters are indicated in Figure 1. The Qn'
evaluated analogously, becomes

Q- Jn(l.) Jn(z)/-!o(l) Jo(z)
where Jn(l) refers to detector 1, so that

- t,(B,)x,(8,)
1717117y gins  dB

Y
J Q) - So P_(cosB,) (1-e 198,

and similarly for Jn(z), Jo(l), and Jo(ﬂ). For identical
detectors at a common source distance and energies such
that 21 ~ tz. "

Q, = /3y .

Consider a cylindrical scintillation crystal,
optically coupled to a photomultiplier tube which in turn
is coupled to an electrical pulse counting device, in
the vicinity of a gamma-ray emitting point source such
that the axis of the cylinder extends through the source
and the half angle subtended by the front face of the
region is 7 (Figure 1). In particular, consider only
those gamma-rays that exist in a beam, or pencil, at an
angle B from the axis and whose energy is between E; and



'1 + Axl. For small 681 (small meaning that for any

li in the range all, ?(El) and r(xl i A!l) are
different from 't(li) by not more than some number whose
magnitude will be discussed later), the number of pulses,
c(s, ll), recorded in a given time due only to gamma-

rays within AE, and within the pencil at angle B is

1
approximately proportional to the term

- t(ll)x(n)
(1 -e )

of the integral Jn(ll). With an experimentally obtained
pencil and energy selecting device, then, one is able

to find a number proportional to Jn(ll) by recording the
number of pulses for a given time tl at several values of
B between zero and ) , and either numerically or
graphically integrating the result; that is, equation (4)
becomes

¥
() =K S C(8,E ) P (coss ) sing ds, (5)

where C (31.!1) is the number of pulses recorded in t1
and K is a quantity in part dependent on tl. The desired
ratio then becomes

bt it
"o (11) So c(s i "1) sing 163 i
This indicates that an experiment can be designed to

¥

determine the Q, at any energy which will give a result



that can be compared with the theoretically calculated
values.

The integrals Jn/Jo(n = 2,4) have been calculated
(3, p. 719) from the form of Jn given in equation (4)
using theoretical values of 7. These calculations were
specifically for a 1.5 inch diameter cylindrical NalI(Tl)
crystal for several source distances, crystal heights, and
gamma-yrays of various energies ranging from 0.05 to 5
Mev. Some of these calculations are shown in Figure 5.
These calculated ratios were tested experimentally
(1, p. 43) over a limited range from the form of Jn given
in equation (5). The present experiment has as its
purpose the experimental evaluation of the ratios Jn/Jo

over an extended range.



EXPERIMENTAL ARRANGEMENT

A pencil of gamma-rays was obtained (as indicated on
Figure 2) by mounting a lead brick of suitable dimension
in front of a radioactive source. The brick had a
cylindrical cavity of approximately one millimeter
diameter penetrating it and was mounted so that it could
rotate about an axis perpendicular to and going through
both the axis of the cavity and the crystal. The point of
intersection of these three axes was then the apex of
the angle B. The distance from that point to the center
of the crystal face is called the source distance h, The
actual source was placed approximately 15 centimeters
behind that point to provide a well collimated pencil.

The voltage pulse output of the photomultiplier
underwent two stages of linear amplification, the
linearity being desirable in that the pulse height would
be proportional to the gamma-ray energy for ease of energy
selection.

Energy selection was accomplished with a pulse height
analyzer after the pulse amplification stage. Jn/Jb was
determined at three source distances h (bh=5,7,10 centi-
meters) for five different energies ranging from 0.1 Mev.

to 0.8 Mev., It was previously mentioned that the term

- t(ll)x(a)
(1L -e ) calls for the absorption coefficient

at a particular energy, say ‘1' whereas experimentally the
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total counts accepted by the analyzer due to gamma-rays
in the energy range axl were used which therefore
introduces an experimental error which decreases with
decreasing azl and of course is small at aay circumstance
provided 7?7/ ?7E is small in the energy region AE,. The
actual extent aln of the energy spectrum of a gamma-ray
with nominal energy xn accepted by the analyzer is
indicated on the energy distribution curve for a typical
source by the vertical lines AA on Figure 4. The decision
to bracket a complete energy peak was a compromise due to
several factors. It would seem desirable to choose a
smaller aln such as is indicated by the vertical lines
BB on Figure 4, but under such conditions a small shift of
the energy peak relative to the bracketing lines will
change the counting rate for reasons not of interest in
this experiment; i.e. a2 new undesirable variable becomes
prominent. It was found that the energy peak shifting
relative to the minimum and maximum energy settings of
the pulse height analyzer was significant and warranted
choosing both settings such that the vertical lines were
in regions of energy where the counting rate was nearly
constant thus minimizing the effect of this objectionable
variable. Another alternative was to set the lines at
the top of the peak (lines CC Figure 4) where the
counting rate approaches constancy but in doing so, the



Counting Rate

cl(R)p,(cosh) sinf

[
Figure 3. Typical graph of the
integrand of J, versus angle B

Figure 4.




counting rate for a given source strength is reduced
many-fold, thus increasing the time necessary to perform
the experiment for a fixed experimental accuracy. Upon
choosing the total energy peak as AE,, the problem of
drifting was not fully eliminated but was kept under
surveillance while taking data, for example, by period-
ically setting the energy range minimum to a standard
point l. on the spectrum where ?72C/ ?E << -1 and the
energy range maximum to a value such that all detected
photons of energy greater than n. were recorded. Then
only if the counting rate remained constant within the
statistical fluctuation was the data accepted.

Coupled to the output of the linear amplifier was
an oscilloscope which insured against overdriving the
linear amplifier and thereby getting nonlinear amplifica-
tion.

Five different sources were used to obtain five
energy peaks. Each is listed below with its correspond-
ing energy and half-life.

Table I
Source Energy of peak Half-life
in Mev
ce 141 0.14 33 days
Hg 203 0.28 47 days
Sn 113 0.39 119 days
Cu 64 0.51 12.8 hours

gr 98 0.75 65 days
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Only for Cu®? was the half-life of such duration
that correction for decay was made before calculating Jn.

The source strengths varied over a range from 1 to
10 millicuries. For some the counting rate was of
sufficient magnitude that corrections for dead time of
the system were necessary.

Q, vere determined for different scintillation
crystals of the same nominal specifications in identical
geometries and no important differences were observed.

The J, were calculated by graphically integrating
the plot of c(si) Ph(cocsi) sin8; as a function of By
typically illustrated in Figure 3 where c(ni) is the
counting rate (corrected for background) recorded with
the gamma-ray beam at angle 01. For all energies and
source distances considered, the Jh were calculated twice
using independent data; that is, upon recording the
counting rate from B; = 0 through B; = ¥, the crystal
was rotated about its axis through some angle and
0(81) recorded again, and Jh was calculated from each set
of data, The final evaluation of Jn/Jo taken was the

average of the two determinations.
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RESULTS

The experimental results are listed in Table II below
and are compared graphically with the Stanford and Rivers
(3, p. 719) calculations in Figure 5.

TABLE II

Energy Jo/d J,/3
(Mev) 2/ o 4 "o

h in

centi~- 5 7 10 5 7 10

meters
0.14 0.9095 0.9475 0.9791 0.7283 0.8396 0.9177
0.28 0.9217 0.9540 0,9777 0.7606 0.8579 0.9242
0.39 0.9308 0.9560 0,9814 0,7760 0.8654 0.9339
0.51 0.9258 0.9550 0.9829 0.7765 0.8630 0.9313
0,75% 0,9305 0,.9559 0,9815 0.7790 0.8684 0.9247

*(0.75 Mev is the approximate mean of three peaks
unresolvable with the apparatus used.)

The agreement between the experimental results and
the calculations appear to be sufficiently good in spite
of the fact that the detecting device accepted a range of
gamma-ray energies so that the attenuation coefficients
of Stanford and Rivers can be used with scintillation
detectors of cylindrical geometry over the approximate

extended range of energies from 0.10 Mev to 3.00 Mev.
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UNCERTAINTY CALCULATIONS

The ratios Jn/Jo, as indicated above, are the average
of two calculations, here distinguished by the second
subscripts so that

Infdo = V2 Gpy/igy + Tpg/Tgy)

The uncertainty in this gquantity is .%
2

Q(Jn/Jo) = 1/2 ( [A(Jnlf.l’ol)]-t- [A(J Iﬂ/-";,z)]z )
where

1
2 z

and similarly for A(anfJoz). Approximations such as
8d,1/ a1 = A1 d01 = Bdgy/day = Adgg/gg
simplify the uncertainty to
&(Jn/Jo) - ‘AJBI/Jol
where Jo1 is the area under the curve typified in Figure 3
and AJol is the uncertainty of the area. The uncertainty
causes considered were
1) uncertainty in the recorded counting rate due to
statistical fluctuation,
2) inability to visually fit the best curve to the
points, and
3) errors of graphical integration.
Let cy be the total number of pulses counted at

angle Bi and B the background count so that the ordinate
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plotted in Figure 3 is
Ny = (¢5 - B) P, (cos By) sinB,.
With the uncertainty in 81 as zero, the uncertainty in
.1 is

an, = [Caep?+ (am)?
where Aci and AB are the uncertainties of ¢y and B.
Since the gamma-1ray emissions are random these uncertain-
ties equal the square root of the total count so that
AN, = m.
AJb was then evaluated by graphing bhoth '1 and
li + &li as & function of By and finding the difference
in their graphical integration. Except for energies 0.39
Mev and 0.51 Mev, A(Jn/Jo) was negligible in comparison
to uncertainties arising from other causes. The
uncertainties found for 0.39 Mev and 0.51 are approximately
0.007 and 0,003 respectively.
Uncertainties due to errors of curve fitting were
found relatively negligible.
The largest errors arose in graphical integration but
are conveniently all nearly equal since the graphs
(Figure 3) were forced to have approximately equal

dimensions. The uncertainty, AJ_, was determined by

o’
graphically integrating the same curve several times and

applying the relation
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This uncertainty is approximately 0.006.
The approximate total uncertainties are listed in
Table III below and included in Figure 5.

TABLE III

Uncertainties of Jn/Jo

f::"‘l)" AJ
0.14 0.006
0.28 0.006
0.39 0.009
0.51 0.007

0.75 0.006






