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Rotating machine play an important role in modern technology. Compressors in

ventilating and cooling systems, pumps in power generation facilities, as well as high

speed computer are all examples of flexible rotating machinery that must remain functional

during and after a sever earthquake. Recent earthquakes have demonstrated that an

aseismically designed structure may perform well during a strong earthquake yet still

become nonfunctional due to damage in critical nonstructural components. For example,

evacuation of several hospitals during the recent Northridge earthquake in the LA area

was not caused by structural failure bur resulted from mechanical failure of the systems

described above. Rotating machines are key components of such system. Further study

into the behavior of these systems and technique for their protection for their protection

during severe ground motion is needed.

The flexible rotating machine is significantly complex, even for highly simplified

models, due to gyroscopic and other effects. This paper presents the coupled, linear partial

differential equations of motion of a flexible rotating shaft subjected to ground motion.

Classical and finite element methods are developed to solve these equations. The effects of

various physical parameters on the response of the system; magnitude, duration, and

frequency content of the ground motion; bearing stiffness and damping; flexibility of the

deformation and rotatory inertia effects are investigated, Both vertical and horizontal

ground motion, individually and in combination, will be considered.
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Dynamic Response of Flexible Rotating Machine Subjected to Ground Motions

Chapter I

Introduction and Background

I. 1 Introduction

Rotating machines play an important role in modern technology. Turbines in power plants,

compressors in ventilating and cooling systems are a few examples. Since rotating

machines may serve a critical function, they must be designed to withstand the potentially

damaging effects of a strong earthquake.

The purpose of this study, therefore, is to present a methodology for predicting the

response of a flexible rotating machine subjected to strong ground motions. The

methodology will be used to determine the effects of the ground motion (duration,

magnitude and frequency), speed of rotation, shaft flexibility, and bearing properties

(damping and stiffness) on the response of the rotating machine. This information should

then prove useful in the aseismic design of rotating machines.

I. 2 Previous research

In the past, several investigators have developed rotor models to determine the response

of rotating machines subjected to seismic ground motions. To reduce the complexity of

the analysis, these scientists [1-7] have ignored the flexibility of the shaft in order to

specifically evaluate the effect of earthquake excitations on rotor bearings.

Some more realistic models of rotors where flexibility of the shaft is considered
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have been developed. The flexible shaft has been modeled as either a Euler-Bernoulli [8]

or Timoshenko [9-13] beam. The gyroscopic effects and the influence of bearing flexibility

and damping on the seismic response of rotor were considered in these studies.

A rotor-bearing system model of increasing generality and complexity has been

considered by Srinivasan and Soni [14,15]. A very general description of the base

excitation with three translational and three rotational components was considered. Their

analytical model includes the effects of rotatory inertia, shear deformation effects in the

flexible shaft, and rotor-bearing interaction. Gyroscopic effects and parametric terms

caused by the rotation of the base are included in the formulation. A finite element

formulation of the shaft with linear interpolation functions was used to analyze the

response of the rotor.

Although the finite element method with linear interpolation functions may be

advantageous in some situations [15], it has been shown that such a formulation may not

accurately predict some important dynamic characteristics such as instability of the

rotating system [16].

Suarez, Singh and Rohanimanesh [16] extended the work of Srinivasan and Soni

by using both linear as well as non-linear interpolation functions. They also showed that

several velocity dependent forcing function terms were missing from the equations of

motion developed by Srinivasan and Soni. New numerical results for the critical speed of

rotation (the speed above which the shaft system becomes unstable) are presented. The

seismic response characteristics of a rotating machine subjected to simulated base

excitation are also investigated. The numerical studies indicate that the non-linear
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parametric terms in the equations of motion can be ignored when the rotational base

excitations are insignificant in comparison to the translational base ground motions.

I. 3 Scope

In the rotor-disk-bearing system to be considered; the model of Suarez, Singh and

Rohanimanesh [16] will be used. Shear deformation effects are initially neglected in the

shaft flexibility. The shaft rotates with a constant speed and may have varying properties

along the length. To obtain the complete response of the rotor-bearing system, the

influences of the stiffness and damping of the fluid-bearing system are also considered. It

has been shown [16] that even for strong rotational inputs the parametric terms in the

equations of the motion can be ignored without affecting the response; therefore, only

three translation components of the ground motion are considered. The model of the

rotating machine subjected to earthquake ground motions is shown in Figure 1.

In chapter two, the equations of motion for the flexible rotating shaft ignoring

shear deformations are developed by a Newtonian approach and the theory of classical

dynamics. In chapter three, the equations of motion for the flexible rotating shaft ignoring

shear deformations are developed using energy principles and the shaft is modeled using

the finite element method. The equations of the equivalent discrete parameter model are

obtained using the system Lagrangian. In addition, the method of superposition [17] for

including shear effects in the system is also presented in this chapter. In chapter four, the

eigenvalue problem associated with the homogeneous equations of motion of the rotor-

disk-bearing system will be developed and used to predict the stability characteristics



Figure 1. Rotor-bearing system showing nodal coordinates and system of axes.
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of the system. Parametric studies to investigate the effects of various system parameters

(operating speeds of rotation with forward and reverse directions, shaft flexibility, bearing

properties, rigid (pin) supports, and ground motion characteristics) on the dynamic

response of the shaft using a Newmark-13 time integration scheme are also presented in

this chapter. Finally, conclusions regarding the behavior of flexible rotating machines

under seismic ground motion are offered.
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Chapter II

A Newtonian Approach for Determining the Equations of Motion for a Rotating,
Flexible Body

The differential equations for the rotor will be derived by the theory of classical dynamics.

The model of a rotor with a constant speed of rotation takes into account bending

deformations, rotatory inertia as well as gyroscopic effects. The shaft is assumed rigid in

the axial direction and shear deformations of the shaft are neglected.

Let ex, ey and ez be mutually perpendicular unit vectors fixed in inertia

(Newtonian) reference frame. Let eq, er and es be a set of mutually perpendicular unit

vectors fixed to a differential element B moving in the inertial reference frame N as shown

in Figure 2. Assuming small angles, the relationships between unit vectors (ex, ey, e) and

(eq, er, es) can be expressed as

and

e
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e z
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Figure 2. A differential element B moving in the inertia reference frame N.
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where u and v are the motions of the differential element of the shaft (shaft deformations)

in the x- and y-directions, respectively, and ( )' = d( )/ dz.

Substituting equation (1) into equation (2) and taking derivatives with respect to

time, the time derivatives of unit vectors in the relative frame become

1e =-ue =-221(-ule +e)
s g

./e = -v e = -v (-u e r+es )

.1 .1 .1 1e= ue +ve= u (e +u e ) + v (e + v des) (3)

where dot denotes differentiation with respect to time. The angular velocity NO' of a

differential element B in the inertial reference frame N (see Figure 2) is defined as [18]

N B = e e -e + e e e
q

+ e e -eq r s r s q r

.1 .1 ./=-ve +ue +uve =De +Cle
T r (4)

where and Or are the angular velocities in the eq and er directions, respectively. Since

the displacements u and v are small, the term ii'v'es in the above equation can be neglected

in comparison to the other terms. Equating similar terms on the both sides of equation (4)

gives u'=0, and -v'=S-2q. According to equation (4), the angular acceleration NaB of

differential element B can be obtained by taking the time derivative of the angular velocity

which results in
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B = n e + 6 e (5)

In order to develop the equations of motion governing the deformations u and v,

concepts from the three-dimensional kinetics of rigid bodies will be used [18]. As

illustrated in the following development of a "generalized inertia torque", this

methodology is an effective means of including gyroscopic and other complex dynamic

effects.

Consider a differential element B with symmetric and circular cross section

rotating in the inertial reference frame N. Since the shaft is modeled as an Euler-Bernoulli

beam, the area of B does not change after deforming, in this case, the particles can not

move independently but instead their motions must be such that they maintain fixed

distances from each other, preserving the rigidity of B. Let G be the mass center of B, and

let P be a typical particle in B as shown in Figure 2. Let r locate P relative to G. Then the

acceleration of P and G in the inertial reference frame N, Nap and NaG, are related by the

expression [ 18]

map.NaG+NceBxr+NcoBx(N(oBxr) (6)

where NaB and 'to' are the angular acceleration and angular velocity of B in the inertial

reference frame N. The equivalent inertia torque M* is defined as

M" = -f rxNaPdm (7)



10

where dm is a differential mass located at P. By substituting equation (6) into equation (7),

the inertia torque M* becomes

M* = i TX[AT 11G +N aBxr+N 4)BX(N COB Xr)]dM
B

=-f
B

rxNaGdm- f
B
rx(NaBxr)dm- f

B
rx[No)Bx(No)Bxr)JcInz

If G is the mass center of B, the sum of the first moments relative to G is zero. That is

(8)

f Brdm=0 (9)

Therefore, the first term in equation (8) is zero. By using the vector identity

ax(bxc) = (ac)b-(ab)c (10)

the last term in equation (8) can be rewritten as

f[ref coBxrAN 0as dm f or.N Gyaf 0)13 xrdm
B B

Note that the first term in equation (11) is zero since r is perpendicular to NcoB x r The

second term in equation (11) can be expressed as



fB.NB Nu) BN[(r )N6) B xr-( ca Bxr)r]dm

f N caBx[rx(NcaBxr)]dm

_N Bx f [rx(N B xr)]dni

Therefore, the inertia torque M* in equation (8) can be rewritten as

M*= f rx(Na Bxr)dm -NwB f rxe 1 B

Suppose that NaB and NO' are expressed as

B
AlaB=INaBle i=aei ;~63 -I (0B wei (J =4,r,$)

(12)

(13)

(14)

11

where a and o..) are defined as the magnitude of NaB and NcoB, respectively, and ei are the

unit vectors shown in Figure 2. Then using equation (14), the first term of equation (13) is

a frx(e xr)dm
B

while the second term of equation (13) is

(ONG) Bxf Tx(e oxr)dm
B

(15)

(16)
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Thus the expression for the inertia torque in equation (13) is

= -a f rx(e xr)dm (4N C)B X f rx (e xr)dm

The inertia matrix I is defined as

I = f rx(e ixr)dm

(17)

(18)

The inertia matrix riG of the differential element B relative to the mass center G is, for

mutually perpendicular unit vectors eq, er and es shown in Figure 2

/VG

I 0 0
qq

0 I, 0

0 0 1_.

I 0 0
= 0 I 0

0 0 J
(19)

In the above, I is mass moment of inertia relative to either eq or er, while J is the polar

moment of inertia for the circular cross section. Note that I =1 /2J. Using the definitions,

the inertia torque in equation (17) can be rewritten as

m0 IB/GN B _N B (133/G .N B) (20)

The components of No.)13 parallel and perpendicular to Ncol3 are expressed as



cos = ,N6).13\e xNcos\xe
s s s s

Combining equation (21) with equation (19), we have

s coB je Fe
s
xN (os)xe

k

Taking the cross product between N wB and both sides of equation (22) results in

IticBx0B/G.N0).8) =N6)Bx[jo i+AesxN(0B)xes]

=Ncosxjr2
S s

(22)

(23)

Substituting equation (23) into equation (20) and using equations (4) and (5), the inertia

torque M* becomes

M* = (/E21 sCI)e (la + q)e (24)

In general, the mass moment and polar mass moment of an element of the shaft

with length dz can be expressed as

I = pAk2dz ; J = 2pAk2dz (25)
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where p and A are the mass density and cross sectional area of the shaft, respectively. The

radius of gyration of the cross section is k2(=UA) In classical dynamics, the equivalent

equation of the generalized active torque M and inertia torque M* is expressed as

M + 0 (26)

The above equivalent equation is simply an expression of d'Alembert's principle. Referring

to Figure 3, the moment acting on the differential element is

M = [Mx(z+dz)-Mx(z)-Vy(z)dz]e + [My(z+dz)-My(z)+V(z)dz]er (27)

The shaft is assumed to be a Bernoulli-Euler beam when the slopes of the deflection curve

are very small and neglect the shear deformations, Mx=-EIv" and My=EIu" Combining

these expressions with equations (24) - (27) and the kinematic relations (0,=u1, S2q -V),

resulting in

a2 a2u a2[EI] [mk2(a2u-20 --v-a)] m a2" = 0
az2 aZ 2 aZ 2 at2 $ at at2

a2 a2v a2 a2v au a2v[EI] [mk (+ L + m-- = 0
az2 az2 aZ 2 at2 Sat ate

(28)

(29)



M(Z)

Figure 3. Free-Body diagram of the differential element of the shaft.
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where m(=p A) is mass per unit length.

The governing equations of motion given above for the free-vibration ofa shaft

rotating with constant angular velocity were derived by Newtonian mechanics. These

coupled partial differential equations can, in principle, be used to determine the response

of a rotating, flexible shaft with various properties along the length of the shaft and

appropriate boundary conditions at the supports. The applications of these coupled partial

differential equations to determine the vibration frequency and the critical speed of the

rotating system will be discussed in chapter IV. In the subsequent chapter, energy and

finite element methods will be used to obtain the equations of motion.
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Chapter III

Finite Element Equations for the Rotating, Flexible Shaft
by an Energy Approach

III. 1 Energy methods for the differential equations

The finite element equations of motion for the rotating, flexible shaft will be derived using

energy methods. The shaft is modeled as a Bernoulli-Euler beam with circular cross

section. The properties of the shaft may vary along the length. It is assumed that the shaft

is rigid in the axial direction and shear deformations of the shaft are neglected. The motion

is described by two reference frames as shown in Figure 1. The Newtonian reference

frame, (X,Y,Z) system, maintains a fixed orientation in space while the local reference

frame, (x,y,z) system, is attached to the base of the machine. Translational motion of the

base can be described by a vector R from the origin of the Newtonian frame to a typical

point on the base. The components of R are Xb,Yb and Zb. The shaft is spinning with a

constant angular velocity S2 about the z-axis. The location of a typical point G on the

shaft is given with respect to the local coordinate axes (x,y,z) by the contributions vector

h, z) where h is the height of the shaft from base and z is location point G with

respect to the local frame. In the deformed shaft point G is located at r--(ux, uy+h, z) where

ux and uy are the contributions to the displacement vector due to the flexibility of the shaft.

The kinetic energy of a typical differential element separates into two independent

parts: (i) the translational kinetic energy, dT and (ii) the rotational kinetic energy, dTrot;



Figure 1. Rotor-bearing system showing nodal coordinates and system of axes.

-00



i.e.

where

and

dT = dT, + dTro, (30)

1 2,drirans= vg Vgdm

3

dT (it) (..)rot ij j
2 ,J.1

(31)

(32)

The angular velocities and moments of inertia of the differential element are toi and 4,

respectively. The velocity vg of the point G on the deformed shaft with respect to the

Newtonian frame is defined as the sum of the velocity of the base vb relative to the

Newtonian frame and the velocity of the differential element point G, i-, relative to the

local reference frame, i.e.

vg =
b

+

and

(33)

19



Vb

Xb

b

2 b

(34)

20

Referring to equation (32), note that if a shaft rotates around a principal axis, both

angular velocity and the angular momentum are directed along this axis; then, the inertia

tensor consists solely of diagonal elements. Such axes are termed principal axes of

inertia. A considerable simplification in the expressions for the rotational kinetic energy of

the differential element dTrot can be written for principal axes of inertia, i.e.

3
1 V"--dr ot=

(35)

where I, are the principal moments of inertia of the differential element.

Substituting equation (33) into equation (31), the translational kinetic energy of

the differential element then can be written as

dr,,,,=
2

1 pA(vbT Vb + tri)dz (36)

where p and A are the mass density and the cross-sectional area of the differential

element, respectively.
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In equation (35), the angular velocity co; can be written in terms of the Eulerian

angles [20], 0 (about x-axis), Oy (about y-axis) and Sgt (about z-axis) where ax and ay are

the rotations of the differential element due to bending and t is the time, as

4) 2

(03

cos@ cosOt sialt 0
-cose sinat cosOt 0

sine 0 1

ox

0
y

Assuming small Eulerian angles, the angular velocities in equation (37) become

(01 = 6 . + ate

4)
2

= -e xat ey

4)
3

= ey6x + a

(37)

(38)

The rotational kinetic energy of differential element dTro, in equation (35) can be expressed

as

3

dT LElzo 2 q_to 2 1.4..) 2 Lt.) 2 \
rot (Is ca y 2 z 3 12 E.1 2

1 2 ' 2= V-13 + /-0 + 21-0 e 6 2 + 2t 2e 2 + 2t 26 2 +Le 26y z yx z x y y x z y x2

(39)

where h k and IZ (IR= 17=1/2 17) are moments of inertia of the cross sectional area about
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x-, y- and z-direction with respect to centroidal axis of shaft, respectively. Since the

Eulerian angles ex, ey, Sgt and their first derivative with respect to time are assumed to be

small, i.e. of order E where << 1; then the last three terms can be neglected. Equation

(39) can be written in matrix form as

dTrot= .12p (I A) T + 2 S1/79 Tei e2 T + 02/7)dz (40)

The vectors introduced in the above equation are

=

Let

ex

0 ; el =

1

0

0

=

; e2 =

us

0

0

1

0

(41)

(42)

According to Bernoulli-Euler theory (i.e. in the absence of shear deformations),

and ey=uxi, the potential energy dV can be expressed in terms of the internal bending strain

energy of the differential element, i.e.



1 HT IA dzdV =
2
(E1 u u )

x

where E is the Young's modulus.

(43)
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III. 2 Finite element equations (shear deformations neglected)

Consider a typical finite element of length L'. The displacements and rotations for a typical

element are ue and ye. These quantities can be expressed in terms of the nodal

displacements through interpolation functions as

e = [u ;e(S),uye(s),0]T = Nqe

e = [0:(s),c(s),Of = e (44)

where N is the matrix of interpolation functions; N' is the first derivative of N; qe are the

nodal quantities and s is a local coordinate measured along the length of a finite element.

The vector r appearing in equation (36) can also be expressed in terms of nodal

displacements as

r= ue + e

e =
0

12

zi+ S

(45)

(46)
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where the location of the left end of the finite element with respect to the xyz coordinate

system is z1.

The Lagrangian of a particular finite element (LC) can be obtained by integrating

the difference between the kinetic and potential energies from equations (36), (40) and

(43) over the length of the finite element. The nodal degrees of freedom of the element qie

are the generalized coordinates of Lagrange's method. Applying Lagrange's equations

directly,

where

az. d 0; (i=1,2,....,n)
()gig dt

L e = f (dr -dr)

(47)

(48)

one obtains the element equations of motion, i.e.

+ Cee + Kee = f(t) (49)

where the element mass, damping, stiffness and applied force matrices are defined as

Me = f pANTNds + f plxIVITNids (50)



1

Ce = Ofip NIT (ele2 r e2e1T)N'ds

Ke = fEixN"rNildS
0

J (t) = f[pANTdsPb

(51)

(52)

(53)
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where p is the mass density of the shaft and Vb is the vector of translational base

accelerations.

Referring to equation (44), in order to satisfy continuity requirements, the

interpolation functions must be assumed as continuous in displacement and slope on the

element boundaries, i.e. C' continuity. Thus appropriate nodal quantities are displacements

and rotations at each end of the element (see Figure 4). The cubic beam (Hermite)

polynomials satisfy C' continuity and are an appropriate choice for the interpolation

function N. The matrix of the cubic interpolation functions N is

N=

where

n
1

0 n2 0 n3 0 n4 0

n
1

0 n2 0 n3 0 n4

0 0 0 0 0 0 0 0

(54)



(le
UY1

Figure 4. Nodal displacements and rotations of a typical element of the shaft
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+
1 s 3

j2

2 3n3 3
S

2 S
12 13

1 3 1 2
n4 = s s

12 1

(55)

Because each finite element has two nodes (at the left and right ends of the

element), there are four degrees of freedom at each node; two translational degrees of

freedom (uxe, u3,e) and two rotational degrees of freedom (Oxe, eye) in the x- and y-

directions; therefore, qe in equation (49) is an 8x1 vector of nodal displacements and

rotations given by

qe ier e T
xl

(i= 1,28)

(56)

27

where the second subscripts 1 and 2 indicate the nodal displacements of the left and right

ends of the element, respectively.

The flexible shaft may be modelled as Timoshenko beam (considering the effects of

shear deformations), carry one or more disks and is supported by journal-fluid bearings at

the ends (see Figure 5). These issues are discussed in the following sections.
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III. 3 Finite element equations (including shear deformations)

When the shaft of a rotating machine is short and stocky, the effect of transverse shear on

the response of the shaft can not be neglected. The effects of shear deformations should be

included in the analysis of the shaft.

When the effects of shear deformations are considered in the analysis and the same

interpolation functions are used to approximate the transverse deflection and the rotation,

the resulting stiffness matrix is often too stiff This is due to the inconsistency of

interpolation of the variables, and the phenomenon is known as "shear locking". In order

to overcome this problem, the methods of consistent interpolation element (CIE) and

reduced integration element (RIE) have been developed by Reddy [21]. In practical

applications, the stiffness matrix of the shaft obtained by the methods of CIE or RIE are

not so straightforward. An apparently simple formulation to modify the stiffness matrix of

equation (52) by using the method of superposition [17] is derived below.

In what follows, only the x-direction will be considered. The treatment is identical

for the y-direction. The transverse displacements of the shaft can be expressed by

superposing bending and shear displacements, i.e.

e eb es (57)

where uxe is the total element transverse displacement; ueb and ux's are the element

transverse displacements due to bending and shear deformations, respectively. The

element transverse displacements uxeb and u," defined in terms of interpolation functions



and nodal values are

eb eb eb +n eb +n=nu +
eb

xl 2esl 3
us2 4 s2

ux = nsuxi " es+n6u.2

(58)

(59)
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where n1, n2, n3 and n4 are cubic interpolation functions defined in equation (55); n5, n6 are

linear interpolation functions (n5=1-s/1, n6=s/1). There is no rotation of the cross section

due to shear deformations; therefore, a linear interpolation function can be used to

approximate the shear deformations.

Similarly, the nodal displacements and rotations can be expressed in two parts: (i)

the nodal displacements and rotations due to bending qbe and (ii) the nodal displacements

due to shear qse, i.e.

and

qbe =

useb
xl

eb
xl

Ux
eb

2

eb
x2

xl
q se

14 x2

(60)

(61)
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The element strains can be expressed as

E eb(Z)=Bebqb e; Eee(Z)=Beeqs e (62)

where Eeb(z) and E "(z) are element bending and shear strains, respectively; Beb and Ws are

defined as

and

Beb [12s-61 6s1-412 -12s+61 6s1-2121

13 13 13 13

The element stress can be expressed as

aeb. Deb eeb; aes. Des ees

(63)

(64)

(65)

where Deb=EI and Des=kGA.

Consider an element with nodal forces PelQxie, Mxie, Qx2e, Mx2e1T. Using the

principle of virtual displacement, the external virtual work OWE of the applied nodal forces



is given by

6 W=Q e e(81 eb +6 ues)+Qe ueb
+8 u

e 6 eeb +me 6 eeb
x2)+Mx1 (66)
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The internal virtual work 8W1 is the sum of two parts, one due to bending and one due to

shear, i.e.

6 = fo eeboebdX + ftS e"a"dx
o o

(67)

Substituting equations (62) and (65) into equation (67) and equating external and internal

work, the equilibrium equation can be expressed as

6 beT f BebT D ebBeb dxq 6 ser.1 BesT D eb Beb

0 0

= 8 berpe + 8 .l

Q
seTx

Qx2e

Since the virtual displacement 8 is arbitrary, the above equation yields

1

fBebTD eb Bebdxq pe
0

(68)

(69)
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f1 hi
Be Irr D"Ltes dxq se =

0 Q s2e

Equations (69) and (70) can be written as

Kbeqbe = Pe ; 'cgs' =

where

Qexj

eQs2

(70)

(71)

eKb

12E1 6E1 12E1 6E1

(72)

13 12

6E1 4E1

13 12

6E1 2E1
12 1

12E1 6E1

12 1

12E1 6E1

13 12

6E1 2E1

13 12

6E1 4E1

12 1 12 1

1 1

1 1

K e= kGA (73)
1 1

1 1



In the above G and k are the shear modulus and shear correction factor. The shear

correction factor for a circular cross-section is

k 6(1+v)
7 +6v

(74)
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where v is Poisson ratio. The shear forces at the nodes due to external applied forces can

be obtained from equation (71)

and

eb
EI xl s2[12 61]
13 e eb +6 eb

sl x2

[u
kGA

= Q e xl = Q x2

ea eaes] = Qsl e Qx2exl

Equating (75) and (76),

El
][1. L Ut

3

eb eb
14Ux1

e 4+4_0 eb
xl x2

Expanding equation (77) results in

e

kGA es ea\
xl x2 i

eb )_1 , ) eb+e eb,-,
21xles Ux2e: b[(uxleb Ux2 2k xi x2 Li

(75)

(76)

(77)

(78)



where b=12E1/(kGA12) is the effect factor of shear deformation. When b<< 1, the shear

deformations can be ignored relative to the bending deformations. From equation (57),

the relationships of nodal displacement have

es e eb. es e eb
xl xl xl x2 x2 x2

Combining equations (78) and (79)

1 b 1
u

x 1
eb ux2

eb (u le 2e) + ieb+0

(1 +b) x 2(1 +b) x
x2

(79)

(80)

34

Elements of the modified stiffness matrix for a shaft element with shear deformations

in the x-direction can be obtained by changing ii,deb and Ux eb of qbe in equation (71)

with the total transverse displacements, uxle and 1.1,2e in equation (80). The stiffness

matrix K., including shear deformations in the x-direction is

=

12E1 6E1 12E1 6E1

(1 +b)13 (1+b)12 (l+b)13 (1 +b)12

6E1 (4 +b)E 6E1 (2 -b)EI

(1 +b)12 (1 +b)! (1 +b)12 (1 +b)1

12E1 6E1 12E1 6E1

(1 +b)13 (1 +b)12 (1 +b)13 (1 +b)12

6E1 (2 -b)E1 6E1 (4 +b).E/

(1 +b)12 (1+01 (1 -1-b)!2 (1 +b)1

(81)
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For the stiffness matrix lc including shear deformations in the y-direction, the

same procedures apply as for the matrix K:. The complete stiffness matrix Ke

including shear deformation in x- and y-directions can be obtained by appropriately

adding matrices K, and ice.

III. 4 Rigid disks

A rotating machine may be carrying several rigid disks along the shaft. To consider the

effects of these rigid disks on the response of the flexible shaft, they can be modelled as

thin rigid disks with concentrated mass applied to the finite element nodes. Similarly,

the equations of motion for the rigid disk can be derived using energy and Lagrange's

methods.

The displacements and rotations at an arbitrary point in a typical element of the

shaft are given in equations (44) and (54). Without loss of generality, assume a rigid

disk is attached to the left end (s=0 location) of a typical element. Since the disk is

attached to only one end, the quantities of equation (56) are

where

u; = ue(s=0) = AqI (82)

Ezi.,ziy,e.,61



Note that

where

A=
1 0 0 0
0 1 0 0

0 0 0 0

u del = uel (s=0) = Al q ea

Al =

0 0 1 0

0 0 0 1

0 0 0 0

(83)

(84)

(85)
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Since we are only considering the effect of attaching a rigid disk to the element,

the internal bending strain energy is zero. Therefore, the potential energy term dVe in

equation (48) will vanish. The equations of motion can be obtained by using the

Lagrange equations directly in a manner similar to the previous section, resulting in

maeide + cde4de ÷ Kaeq de fe d(r) (86)
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The mass, damping, stiffness and applied force matrices are

mall TA + itAlrAl

C; = Di0Anie
1
e2 T e2 e1 rlie

'a e = 0

raw -mdArob (87)

where and = mass of disk , I, = transverse mass moment of inertia, 10 = polar mass

moment of inertia.

Ill. 5 Journal-fluid-bearing system

To obtain the equations of motion of the complete shaft, the stiffness and damping

characteristics of the journal-fluid-bearing system must be considered. The bearing

system is often the major source to provide significant stiffness as well as damping for

the rotating machine. The bearing affects the critical speeds and the stability of the

rotor. Fluid-film bearings are generally modeled by two linear orthogonal elastic and

damping forces which depend on the displacements and velocities at the bearing

location, respectively [22]. The fluid-film reaction force is a function of the speed of

rotation, journal length, journal diameter, radial clearance, lubricant viscosity and the

weight of the bearing. The stiffness and damping characteristics of the bearing with



L/D = 1 are given by Ear les et al. [23]

WE..
= (1f =1,2)

= (if =1,2)

(88)

(89)

38

where W, h, D and L are the weight on bearing, radial clearance, journal diameter and

bearing length respectively; k1 and cij are

kll

k21

k22

=

=

=

1.512 3.218s + 0.889s2

-0.73 + 18.217s + 1.67s2

-2.677 8.675s 3.65852

3.61 + 15.962s + 5.874s2 (90)

and

cll = 0.8222 + 13.051s 0.528s2

c12 -2.764 + 23.949s 1.755s2

Ell = -2.764 + 23.949s 1.755s2



4.31 + 43.087s + 6.18s2c22 =

where s is the Summerfield number defined as

s P.c.aDL (R )2
W h
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(91)

(92)

where u, co and R are lubricant visocity, rotating speed and journal radius,

respectively. Therefore, the stiffness and damping matrices of the bearing can be

written in the following form;

Kb e K11 K12

K21 K22
C be =

C11 C12

C21 C22

where the subscripts 1 and 2 correspond to directions x and y, respectively.

(93)

III. 6 The system equations of motion

In order to obtain the system equations of motion, the direct stiffness method to

assemble the element mass, damping, stiffness and applied force matrices will be used

[24]. The system matrices are constructed simply by adding terms from the individual

element matrices into their corresponding locations in global matrices. The system

equations of the motion for the shaft including rigid disks and bearing system become



where

Mg + C4 + liq = fit) (94)

M = Me + M de

C = Ce + C Z + C be

K = V + I Cde + If be

f(t) = fe (t) + Id' (t)

The system mass, damping, stiffness and applied force matrices are M, C, K

and f(t), respectively. The generalized coordinates q for the system are

q = T [Us], 2,1 yl'ex1' e yl''Ux4(m-lr u y4(m-lye x4(m-lrey4(m -1)1T=

(i = 1,2 4 (m 1))

(95)

(96)
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where m is the total number of nodes in the system.

In the next chapter, the eigenvalue and stability problem associated with the

homogeneous equations of motion combining the rotor and bearing system will be

developed. Parametric studies to investigate the effects of various system parameters on

the dynamic response using a Newmark-13 time integration scheme are presented.
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Chapter IV

Parametric Studies

IV. 1 Frequency and stability analysis

The natural frequency of the system at a constant speed of rotation can be obtained

from the homogeneous equations of motion. An eigenvalue analysis of the equations of

motion can be used to identify the critical speed at which the motion of a rotor will

become unbounded.

The complex eigenvalue problem associated with the rotor-bearing system with

rigid disks is

On 2 + CA +10-x=0 (97)

where X is an eigenvalue of the system and x is the corresponding eigenvector. This

complex eigenvalue problem can be solved by introducing an additional unknown

eigenvector y, resulting in the 2N x 2N (N is the degree of freedom) eigensystem,

I 1[1
= 1

-M 11.K1.K -M-1.0 y
yl

(98)

where M, C and K are the mass, damping and stiffness matrices of the complete



system, respectively; and I is an identity matrix. The complex eigenvalues provide

complete information about the system frequencies co and corresponding modal

damping ratios p, i.e.

at(1)
6)=111; P-

(..)
(99)
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If the motion of a rotor is stable, the real parts of all the eigenvalues must not be

positive which implies that the modal damping ratios are zero or negative. To obtain

the speed at which a rotor would become unstable, one can plot the largest real part of

the system eigenvalues against the rotating speed. For the rotor-disk-bearing model,

one can observe a change from a negative to a positive value at the critical rotation

speeds of about 2310 and 104 rpm (see Figure 5).

IV. 2 Parametric studies

In general, the equations of motion of a rotor-bearing system subjected to seismic

excitation are quite complex. It is difficult to integrate these equations analytically;

therefore a step-by-step approach such as the Newmark-p integration scheme [25] is

used.

As an example for seismic analysis, a stable rotor-disk-bearing model is shown

in Figure 6. The physical properties of this model are provided in Table 1. The rotor is

modelled using 14 finite elements with a total of 60 degrees of freedom. The bearings have

stiffness and damping coefficients as given by Lund and Tomsen [23] for elliptical bearings
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Table 1. Physical and mechanical properties of the rotor machine

Shaft :
Modulus of elasticity, E = 2.078x10" N/m2
Mass density, p = 7806 kg/m2
Poisson's ratio, v = 0.3
Revolutions per minute, Q = 880 rpm

Rotor disk :
Disk mass, and = 5670 kg
Transverse moment of inertia, I, = 3550 kgm2
Polar moment of inertia, 1 = 7100 kgm2

Bearing system :
Viscosity, µ = 0.14839 Ns/m2
Diameter ofjournal, D = 0.229 m
Length ofjournal, L = 0.229 m
Clearance, C = 3.8x10'
Weight on bearing, W = 67120 N
L/D ratio = 1.0

Bearing stiffness coefficients (N/m) at operating speed 880 rpm

Kxx= 0.18305x109 = 0.37487x109
Kya = -0.72481 x109 Kyy = 0.10977x101°

Bearing damping coefficients at operating speed (Ns/m)

C,= 0.54139x107 Cxy = 0.17090x107
Cyx = 0.17090x 107 Cyy = 0.21294x10g
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with L/D=1.

The total translational acceleration of the shaft is obtained by adding the

approximate results of the Newmark-13 approach to the ground acceleration. The relative

deformation of the shaft is obtained by considering the rigid body motion induced by the

bearing system and the results of the Newmark-13 integration scheme. A crude

approximation for the maximum normal stress of the shaft can be obtained by the

following procedures. Assuming that the bending moment is constant along the shaft, the

approximate deformation shape of the shaft is taken as a parabola of the form

v(x) = ax2 -1-bx+c (100)

where v(x) is the deformation of the shaft at x position. Since the deformations and

location of the ends of the shaft and rigid disk are known, the constants a,b and c can be

evaluated. The approximate normal stress a can be obtained by using the equation

M=EIv" and the simple flexure formula o=Mc/I ( where c is the distance from the neutral

axis to the extreme fiber).

The maximum relative deformation, absolute translational acceleration and

approximate maximum stress of the disk considering shear deformations as well as

ignoring shear effects are examined. The seismic response of a rotating machine subjected

to different components of the El Centro (1940) earthquake and various speeds of rotation

are given in Tables 2-7. Tables 2-7 indicate that the shear term does not have a significant

contribution to the maximum responses. Therefore, the shear deformations of the shaft are
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neglected in subsequent analysis.

The maximum responses due to different components of Loma Prieta (1989)

earthquake and various speeds of rotation are also examined and given in Tables 8-11.

Since the vertical component of Loma Prieta (1989) earthquake is significant when

compared to the vertical component of the El Centro (1940) record, the maximum

responses due to Loma Prieta earthquake is significant then El Centro. Since the

governing equations of the motion (29) are coupled, if one or both of the components of

earthquake are significant, the responses in both directions will be significant

simultaneously. The response time histories of the disk subjected El Centro (1940) and

Loma Prieta (1989) earthquakes are shown in Figures 7 and 8.

Effects of shaft flexibility and bearing rigidity on the response of the disk for the

rotor-disk-bearing model are given in Tables 12 and 13. From Tables 12 and 13,

increasing the flexibility of the shaft as well as the rigidity of the bearing will increase the

maximum responses for the particular systems considered.

Consider the rotor-disk-pin model given in Figure 9. The physical properties of the

rotor are the same as the rotor-disk-bearing model, except that flexible bearing supports

are replaced with pin supports. Damping that was present in the flexible bearing system is

absent here, since here is no material damping of the shaft and no damping in the supports.

The natural frequency of the system can be obtained from equations (98) and (99). The

entire system is undamped, therefore the real parts of the eigenvalues should be zero. This

conclusion is indeed substantiated by numerical experiments. The first three natural

frequencies of the rotor-disk-pin model are given in Table 14. The response time histories
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Table 2. Maximum relative deformation (mm) of the disk considering shear effects for
rotor-disk-bearing model subjected to El Centro (1940) earthquake.

operating speed
(rpm)

El Centro SOOE &
vertical components

El Centro SOOE
component

El Centro vertical
component

150 0.203157 0.194874 0.264245

880 0.204163 0.202638 0.189601

1500 0.216140 0.188782 0.190274

2250 0.380290 0.284973 0.215155

Table 3. Maximum relative deformation (mm) of the disk ignoring shear effects for rotor-
disk-bearing model subjected to El Centro (1940) earthquake.

operating speed
(rpm)

El Centro SOOE &
vertical components

El Centro SOOE
component

El Centro vertical
component

150 0.225179 0.191825 0.222867

880 0.205061 0.198155 0.177954

1500 0.198774 0.186877 0.181708

2250 0.347791 0.243294 0.204124

Table 4. Maximum absolute acceleration (m/s2) of the disk considering shear effects for
rotor-disk-bearing model subjected to El Centro (1940) earthquake.

operating speed
(rpm)

El Centro SOOE &
vertical components

El Centro SOOE
component

El Centro vertical
component

150 4.77396 4.33634 6.15797

880 4.55867 4.51949 4.24360

1500 4.89356 4.19534 4.25994

2250 8.57095 6.27479 4.80681
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Table 5. Maximum absolute acceleration (rnis2) of the disk ignoring shear effects for rotor-
disk-bearing model subjected to El Centro (1940) earthquake.

operating speed
(rpm)

El Centro SOOE &
vertical components

El Centro SOOE
component

El Centro vertical
component

150 5.10355 4.36251 5.21776

880 4.69425 4.51463 4.05918

1500 4.56446 4.24364 4.14968

2250 7.89774 5.45480 4.68362

Table 6. Maximum stress (N/m2) of the disk considering shear effects for rotor-disk-
bearing model subjected to El Centro (1940) earthquake.

operating speed
(rpm)

El Centro SOOE &
vertical components

El Centro SOOE
component

El Centro vertical
component

150 2.57753x109 2.47244x 109 3.35258x109

880 2.59029x109 2.57094x109 2.40554x 109

1500 2.74225 x 109 2.39515x109 2.41408x109

2250 4.82488 x 109 3.61556x109 2.72975 x 109

Table 7. Maximum stress (N/m2) of the disk ignoring shear effects for rotor-disk bearing
model subjected to El Centro (1940) earthquake.

operating speed
(rpm)

El Centro SOOE &
vertical components

El Centro SOOE
component

El Centro vertical
component

150 2.85693 x109 2.43376x109 2.82760 x109

880 2.60619x109 2.51407x109 2.25777x 109

1500 2.52192x109 2.37098x109 2.30540x109

2250 4 41256x109 3.08676x109 2.58980x109
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Table 8. Maximum relative deformation (mm) of the disk ignoring shear effects for rotor-
disk-bearing model subjected to Loma Prieta (1989) earthquake.

operating speed
(rpm)

Loma Prieta SOOE
& vertical
components

Loma Prieta SOOE
component

Loma Prieta
vertical component

150 0.654945 0.256270 0.651867

880 0.529355 0.255227 0.532416

1500 0.510600 0.279614 0.520532

2250 0.724948 0.394961 0.677929

Table 9. Maximum absolute acceleration (m/s2) of the disk ignoring shear effects for rotor-
disk-bearing model subjected Loma Prieta (1989) earthquake.

operating speed
(rpm)

Loma Prieta SOOE
& vertical
components

Loma Prieta SOOE
component

Loma Prieta
vertical component

150 15.1538 5.60715 15.4252

880 12.5824 5.57797 12.6572

1500 12.1266 6.14448 12.3629

2250 16.7221 8.83667 16.0139
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Table 10. Maximum relative acceleration (rn/s2) of the disk ignoring shear effects for
rotor-disk-bearing model subjected to Loma Prieta (1989) earthquake.

operating speed
(rpm)

Loma Prieta SOOE
& vertical
components

Loma Prieta SOOE
component

Loma Prieta
vertical component

150 15.8556 1.88702 15.4014

880 13.3301 2.11672 13.3064

1500 13.4278 2.11363 13.4470

2250 16.5449 5.52459 16.4012

Table 11. Maximum stress (N/m2) of the disk ignoring shear effects for rotor-disk-bearing
model subjected to El Centro (1940) earthquake.

operating speed
(rpm)

Loma Prieta SOOE
& vertical
components

Loma Prieta SOOE
component

Loma Prieta
vertical component

150 8.30953 x109 3.25139x109 8.27048X 109

880 6.71613x109 3.23816x109 6.75496 x 109

1500 6.47817x109 3.54757x109 6.60419x109

2250 9.19769 x109 5.01102x109 8.60114x109
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Table 12. Effect of shaft flexibility on response of disk for rotor-disk-bearing model
subjected to Loma Prieta (1989) SOOE & vertical components.

flexibility EI EI EI/10 EI/10

operating
speed
(rpm)

relative
displacement

(mm)

relative
acceleration

(m/s2)

relative
displacement

(m)

relative
acceleration

(m/s2)

150 0.654945 15.8556 135.227 31.8663

880 0.529355 13.3301 111.048 27.0235

1500 0.510600 13.4278 133.456 31.1838

2250 0.724948 16.5449 158.888 37.7953

Table 13. Effect of bearing rigidity on response of disk for rotor-disk-bearing model
subjected to Loma Prieta (1989) SOOE & vertical components.

rigidity K K K/100 K/100

operating
speed
(rPm)

relative
displacement

(mm)

relative
acceleration

(m/s2)

relative
displacement

(mm)

relative
acceleration

(m/s2)

150 0.654945 15.8556 0.796388 19.0416

880 0.529355 13.3301 0.635024 14.6453

1500 0.510600 13.4278 0.666907 15.4235

2250 0.724948 16.5449 0.769126 17.1759
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Table 14. The first three natural frequencies (Hz) for rotor-disk-pin model

operating speed
(rpm)

wi cat CO 3

150 15.4011 15.4945 47.6803

880 15.2074 15.2076 22.3684

1500 14.4186 15.2790 15.8414

2250 9.98505 15.2333 16.1622



0.30

0.20 7

0.00

0.10 .::
n

;
0.20 ---

0.30 -
i I

0.00

i

1

111111111111111111111111111f1111111111111111111111TIIIIIIIIIIIII11111111111111
5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00

Time (sec)

Figure 7. Time history of disk displacement in the X-direction for rotor-disk-bearing model
with operation speed 880 (rpm) subjected to El Centro (1940) earthquake.



0.30

0.20

0.10

0.00

0.10

0.20

0.30

0.40
0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00

Time (sec)

Figure 8. Time history of disk displacement in the X-direction for rotor-disk-bearing model
with operation speed 880 (rpm) subjected to Loma Prieta (1989) earthquake.

40.00



5.84m

0.519m 0.428m

0.260m

0.428m 0.519m

0.260m

t
rn El

O

1.973m 1.973m

Figure 9. Schematic of a rotor-disk-pin model considered for seismic response study.
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of the disk shown in Figure 10 also show that the response of the disk subjected to El

Centro (1940) earthquake will not decay when the entire system is undamped.

The maximum responses and approximate normal stress of the rotor-disk-pin

model subjected to various components of El Centro (1940) and Loma Prieta (1989)

earthquakes are given in Tables 15-17 for both forward and reverse rotations. Comparing

Tables 15-17 and Tables 2-7, one can observe that the maximum responses of the disk for

the rotor-disk-pin model under forward rotation are larger than those for the rotor-disk-

bearing model subjected to the El Centro (1940) earthquake. Tables 15-17 also show the

responses of the disk with forward and reverse rotations are slightly different. Referring to

equation (51) the term 0 is replaced with -0 for the rotating shaft operating in reverse

direction. Only slight difference are observed in the responses because the magnitude of

this term is small.

For a uniform shaft without disk, the coupled equations for the bending of a

rotating shaft for in two directions are given by equations (28) and (29). These two

equations can be combined by introducing the symbol q=v+iu, resulting in one complex

equation, i.e.

a2 a2a a2 a2a -20 i-11+m
az' az' az2 at2 at at2

For a rotating uniform shaft supported by pins at both ends (see Figure 11), the

eigenfunction of the equation (101) is

(101)
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Table 15. Maximum absolute deformation (mm) of the disk ignoring shear effects for
rotor-disk-pin model subjected to El Centro (1940) earthquake.

operating speed
(rpm)

El Centro SOOE &
vertical components

El Centro SOOE
component

El Centreo vertical
component

150 0.765514 0.528266 0.524406

880 0.777368 0.522127 0.515074

1500 0.808396 0.518949 0.505442

2250 0.841389 0.517235 0.487162

-150 0.759113 0.528271 0.522406

-880 0.737478 0.522154 0.515074

-1500 0.715079 0.518968 0.505442

-2250 0.678080 0.517265 0.487162

Table 16. Maximum absolute acceleration (m/s2) of the disk ignoring shear effects for
rotor-disk-pin model subjected to El Centro (1940) earthquake.

operating speed
(rpm)

El Centro SOOE &
vertical components

El Centro SOOE
component

El Centreo vertical
component

150 17.4589 11.8105 12.1121

880 17.8560 11.7348 11.9226

1500 18.6735 11.7004 11.6983

2250 19.3031 11.6453 11.2719

-150 17.2423 11.8566 12.1121

-880 16.7383 11.8398 11.9226

-1500 16.1857 11.7699 11.6983

-2250 15.3206 11.7491 11.2719
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Table 17. Maximum stress (N/m2) of the disk ignoring shear effects for rotor-disk-pin
model subjected to El Centro (1940) earthquake.

operating speed
(rpm)

El Centro SOOE &
vertical components

El Centro SOOE
component

El Centreo vertical
component

150 9.71236x 109 6.70231 x109 6.65334x109

880 9.86276x109 6.62442x109 6.53494x109

1500 1.02564x109 6.58409x109 6.41273x109

2250 1.06753 x109 6.56235x109 6.18081x109

-150 9.63115x109 6.70237x109 6.65334x109

-880 9.35666x109 6.62476x109 6.53493 x109

-1500 9.07248 x109 6.58434x109 6.41273x109

-2250 8.60306x109 6.56276x109 6.18081x109
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Figure 10. Time history of disk displacement in the X-direction for rotor-disk-pin model
with operation speed 880 (rpm) subjected to Loma Prieta (1989) earthquake.



5.84m

A
A 747
03
tr3
ci

Figure 11. Schematic of a rotor-pin model with uniform cross sectional area considered for
seismic response study.



q(x,t)= Csin(=)e (n=1,2,3....) (102)
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where the unknown constant C depends upon the initial conditions The length of the shaft

is L and the eigenvalue of the system is A. For other boundary conditions, the

eigenfunctions are offered by Genta [8]. Substitution of equation (102) into expression

(100), gives the algebraic equation for the natural frequencies, i.e.

(1+
k2n272

)12 -20
k2n272 El n4114 -o

L2 L2 m L4

Solving equation (103) for a natural frequency A, results in

cl±,\I o2+0+k 2/2 21E2 ) El

1- (k2n2n2)
L2 me

L2
1 +(

k2/2 2112)

L 2

(103)

(104)

Equation (104) yields two values for A, one positive and the other negative. Only the

positive value for A is retained, since the negative eigenvalue has no physical significance.

In equation (104), forward rotation is given by a positive value for L while reverse

rotation is given by negative value for Q. The first three natural frequencies of the uniform

shaft without rigid disk for both forward and reverse rotation with the same properties as

the previous model (see Table 1) but replacing the flexible bearings with pin supports at



the end are given in Table 18.

In particular, when the speed of rotation is equal to the natural frequency of the

system, i.e. when .=.52, the equation for the determination of critical speeds for forward

rotation is

k2n 2112
(1

El n 47C 4

L2 m L4
(105)
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Therefore, the critical speeds Qcf of forward rotation can be obtained by solving equation

(105), i.e.

EI
n2112

L 2 k2n2n21-
L 2

(106)

Substituting A,=-0 into equation (105), an equation to determine the critical

speeds of reverse rotation is obtained, i.e.

3k2n 2n2
7 Eln4n4(1+ _0

L2 m L4
(107)

Therefore, the critical speeds Qcrof reverse rotation can be obtained by solving equation

(107), i.e.
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Table 18. The first three natural frequencies (Hz) for the uniform shaft without rigid disk
and pin supports at the two ends.

operating speed
(rpm)

col co 2 CO 3

150 198.102 786.424 1747.68

880 198.492 787.959 1751.05

1500 198.823 789.265 1753.91

2250 199.225 790.848 1757.39

-150 197.942 785.794 1746.29

-880 197.553 784.263 1742.93

-1500 197.224 782.965 1740.08

-2250 196.826 781.398 1736.64
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Cr
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2ir 2

L2
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Equation (106) shows that for a particular value of the ratio k/L, the value of pa

becomes imaginary when n is sufficiently large, indicating, that there will be no critical

speeds in this instance. However, for n=1, the expression in the denominator of equation

(106) can be negative when the ratio of the length of the shaft L to the radius of gyration

of the cross section k is less than .rc (i.e. k/L < 7c). In this instance as well there are no

critical speeds of forward rotation. From equation (108), it can be seen that there is

always an infinite number of critical speeds of reverse rotation.

For a particular value of n, the natural frequency A can be determined as a function

of 0, resulting in a family of curves (see Figure 12). In this figure, the critical speeds of

forward and reverse rotation are determined by the intersection of the individual curves

with the lines X=52 and A.=-Q.

Effect of shaft flexibility for the natural frequency and critical speeds are also

examined and given in Table 19 and Figure 13. From Table 19 and Figure 13, one can

readily observe that the natural frequencies and critical speeds for the forward and reverse

rotations have significant differences when the shaft becomes flexible. Conversely, the

natural frequencies and critical speeds for the forward and reverse rotations have no

significant differences when the shaft becomes more stiff
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Table 19. The first three natural frequencies (Hz) for the uniform shaft without rigid disk
and pin supports at the two ends when the shaft becomes flexible (EI/106).

operating speed
(rpm)

col co 2 CO 3

150 0.71124 2.82077 6.25897

880 1.25144 4.94553 10.9100

1500 1.81508 7.16272 15.7643

2250 2.55221 10.0640 22.1220

-150 0.55133 2.19077 4.87614

-880 0.31334 1.24955 2.79739

-1500 0.21604 0.86276 1.93599

-2250 0.15364 0.61404 1.37960
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Figure 12. The natural frequency ) of the stiff shaft with respect to speed of rotation 0 for a
particular value of n.
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Figure 13. The natural frequency A. of the flexible shaft with respect to speed of rotation C) for a
particular value of n.
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Chapter V

Summary and Conclusions

In this thesis, the equations of motion of a flexible rotating machine with uniform

properties along the length, constant speed of rotation, mounted on rigid supports at the

ends are developed using classical dynamics. These governing equations of motion can be

reduced to a single algebra equation for the natural frequencies or critical speeds. The

general expressions for the natural frequency and critical speed with any boundary

condition, speed of rotation, flexibility of the shaft can also be obtained from these

governing equations of motion. In addition, the effect of forward and reverse rotation can

be investigated. The study indicates that the responses of the rotating machine have no

significant differences for either forward or reverse rotation when the shaft of the rotor is

stiff However, the response for forward or reverse rotation differ significantly when the

shaft of the rotor becomes flexible.

Rotating machines may have varying properties along the shaft and rigid disks at

arbitrary locations on the shaft. In addition the shaft may be mounted on a flexible bearing

system that is subjected to random seismic motions. The effects of shear deformations may

be important when the shaft is short and stocky. In general, it is not possible to determine

the response of such complex systems using classical techniques. The finite element

method serves as a convenient technique for analyzing these systems. Finite element

equations based on an energy method are developed. A Newmark-0 integration scheme is

used to determine the response of the shaft when the system is subjected to seismic
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excitation.

Stability of a rotor-disk-bearing system is investigated using the finite element

method. The instability of this system is primarily caused by the asymmetric stiffness terms

of the fluid-film bearings, even though the fluid-film bearing also provides very desirable

damping. The coefficients of the bearing stiffness and damping depend on the speed of

rotation, which implies a rotating machine will become unstable at certain operating

speeds. The real parts of the eigenvalues can help to identify the instability characteristics

of the rotating machine. If a rotating machine is stable, the real parts of the eigenvalues of

the system must be negative or zero. Conversely, the responses of the rotor machine will

become unbounded when the sign of the largest real part of eigenvalue changes from

negative to positive.

For the rotor-disk-pin model where material damping is ignored, all of the real

parts of the eigenvalues are zero which implies that the modal damping ratios are zero.

This indicates that the system is undamped and that the responses of a rotating machine

would not decay with time.

The seismic responses of a rotating machine considering and ignoring shear

deformations are examined. Negligible differences in response were observed, thus shear

effects can be neglected in a seismic response analysis of systems of the type considered

herein. The effects of the flexibility of the shaft and the rigidity of the bearing system on

the response of the flexible rotating machine are also examined. Numerical results show

that, as expected, large responses are obtained when the shaft or bearing system becomes

flexible.
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