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Abstract approved:

Synchronization is one of the important issues in digital system design. While

other approaches have been intriguing, up until now a globally clocked timing

discipline has been the dominant design philosophy. However, we have reached the

point, with advances in technology, where other options should be given serious

consideration. VLSI promises great processing power at low cost. This increase in

computation power has been obtained by scaling the digital IC process. But as this

scaling continues, it is doubtful that the advantages of faster devices can be fully

exploited. This is because the clock periods are getting much smaller in relation to the

interconnect propagation delays, even within a single chip and certainly at the board and

backplane level.

In this thesis, some alternative approaches to synchronization in digital system

design are described and developed. We owe these techniques to a long history of

effort in both digital computational system design as well as digital communication

system design. The latter field is relevant because large propagation delays have always

been a dominant consideration in its design methods.
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Asynchronous design gives better performance than comparable synchronous

design in situations for which a global synchronization with a high speed clock

becomes a constraint for greater system throughput. Asynchronous circuits with

unbounded gate delays, or self-timed digital circuit can be designed by employing either

of two request-acknowledge protocols 4-cycle and 2-cycle.

We will also present an alternative approach to the problem of mapping

computation algorithms directly into asynchronous circuits. Data flow graph or

language is used to describe the computation algorithms. The data flow primitives have

been designed using both the 2-cycle and 4-cycle signaling schemes which are

compared in terms of performance and transistor count. The 2-cycle implementations

prove to be better than their 4-cycle counterparts.

A promising application of self-timed design is in high performance DSP

systems. Since there is no global constraint of clock distribution, localized forward-

only connection allows computation to be extended and sped up using pipelining. A

decimation filter was designed and simulated to check the system level performance of

the two protocols. Simulations were carried out using VHDL for high level definition

of the design. The simulation results will demonstrate not only the efficacy of our

synthesis procedure but also the improved efficiency of the 2-cycle scheme over the 4-

cycle scheme.
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MICRO DATA FLOW (MDF):

A Data Flow Approach to Self-timed VLSI System Design for DSP

Chapter 1. SYNCHRONIZATION

1.0 Introduction

The last two decades and in essence the '80s have observed the realization of

the visions of science fiction writers, considered fanciful at best, even twenty years

ago. One of those visions involved the creation of an information society. This

required the storage, transformation and communication of information. The main

force behind these great technological advances has been the digital model for system

design. System here includes both computer systems and communication systems.

In the world of computers and computing, there is always an imbalance

between the supply and demand of computing power. Problems which occur in the

fields of meteorology, image processing, global models, wind tunnel simulation and

simulation of computer systems, among others, are examples of a class of problems

which demand very high computing power. Even with the impressive choice of

machines that is available to us today, we find ourselves at a great disadvantage when

trying to solve such problems.

In recent years, we have seen a veritable explosion of VLSI-based solutions

for digital signal and image processing. With the advent of multi-media, the

computation and speed requirements of application specific digital systems, which up

until now slowly increased, will now steeply rise. Digital cellular telephony, High

Definition Television, re-recordable optical memories will all contribute to this rise.
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Thus, in both the worlds of general-purpose and application specific

computing the speed requirements are reaching a stage at which it would be worth

evaluating the basic assumptions of current digital system design models.

We are also interested in systems that scale up as the size of the problem

increases. This flexibility is going to be very important in the design of future digital

systems. We need to look at models that lend themselves very naturally to these

requirements of scaling. Linked to these reuiremnets are issues of power

consumption, as we become increasingly aware of our environmental responsibilities.

The problem of developing new models is definitely non-trivial. But, where

do we begin our re-learning? A basic assumption is that do any effective computing

we require a global clock. Like the communications industry, can the computing

industry divest itself of this self-imposed restriction of a global clock? In the next

section, we discuss the basic issue of synchronization and the effect it has on the way

we have designed digital computing systems up until now.

1.1 Asynchronous and Synchronous Digital System Design

Synchronization is one of the important issues in digital system design,

especially in the effective design of any large computer and communication system.

While other approaches have been intriguing, up until now a globally clocked timing

discipline has been the dominant design philosophy. Some of the important factors

that influenced the methodology of digital system design to take this course were:

Major components of a computer system, like the memory and the

ALU, were built synchronously.
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With global synchronization, the circuit transients do not affect the

proper operation of the whole system.

The step by step nature of synchronous systems made it easy to

design and trace the sequence of actions performed by them.

Synchronous systems were favored because they required fewer gates,

which meant a lower cost if the systems were built from gates.

In fact, the reasons that contributed to the control flow, or von Neumann,

model of digital computer system design becoming the widely accepted norm in the

design of digital computers also contributed to the computer architects at that time

favoring global synchronization. But digital communication continued to employ

asynchronous design philosophy. The main reason for this was that the clock period

was many orders of magnitude smaller than the communication delays.

However, we have reached a point, with advances in VLSI technology, where

global synchronization does not suffice. This is because the clock periods are getting

much smaller than the interconnect propagation delays within a single chip, not to

mention at the board and backplane level. At the same time the theory and

methodology of asynchronous computing system design has been maturing. So an

intuitive first look suggests that asynchronous computing system design is worth a

closer scrutiny.

Besides this, asynchronous computing system design offers other advantages

[1]. First of all, asynchronous designs are algorithmic. It is easier to convert an

algorithm to a wiring list for asynchronous modules than translating the algorithm

into step by step procedures. Secondly, speed independent modules allow the system

to perform correctly. There is no need to adjust the pulse width and clock period to

fit all modules' timing requirements. It will avoid the clock skewing problem. Third,
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the speed of execution is taken to be as fast as the problem or algorithm will allow.

Fourth, composition of asynchronous modules in to asynchronous systems is readily

simple. Building systems hierarchically is inherent. Building each individual

asynchronous module on a single chip enables the testing and verification of each

chip to be performed independently. With each module or chip verified to be

functionally correct, they can be assembled on a single chip if area permits with no

extra timing constraint needing to be satisfied. This ability to verify modules

independently is becoming more and more desirable since system testing consumes

larger and larger portions of the development cycle with each passing day. Fifth,

incremental performance gains are easier to come by. Since there is no global timing

requirement, any elements or blocks residing in the critical path may be replaced with

faster counterparts without having to readjust the system timing parameters. Sixth,

scaling up the system as the problem grows in size is much easier to accomplish.

Finally, lower system noise and zero stand-by power consumption add to the many

advantages listed before.

To contrast between the synchronous and asynchronous timing disciplines, we

present an example which will illustrate the difference [2,3,4]. Pictorially, a

synchronous system works like a scheduled train line. At every designated interval,

there will be a train taking off from the station whether there is a full load of

passengers or none at all. A particular passenger has to synchronize his/her travel

itinerary with the schedule of the train. In contrast, an asynchronous system is like

traveling in your own car. There is no fear of missing a scheduled departure time.

There is no waiting in a depot for a train to arrive. You may visit a new place

whenever you have finished visiting an old location.

This potential of asynchronous digital system design has many researchers in

academia and some in industry interested. Researchers have a great liking for coining
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new terms (as have we, by coining 'micro data flow'). As a result, asynchronous

system design has also been called delay-insensitive system design. Here the delays of

the interconnects within a chip and on the board were not taken into account. Other

terms that can be seen in recent literature are speed-independent and self-timed digital

system design. These both essentially mean the same. Both take into account the

delays of the interconnects. This is very important as interconnect delays have

become a very crucial issue in digital system design [5,6].

As can be understood from the simple analogy above, we are interested in the

sequence of events. We no more allow the different computation blocks to abdicate

their synchronization responsibility to a global clock. This requires the development

of a protocol strategy, with the help of which we can accomplish synchronization.

This protocol governs the proper relationship between events. In digital systems, this

is implemented with signaling. We require a strategy based on some form of a

request-acknowledge handshaking mechanism. Fig. 1.1 illustrates a block diagram of

a request-acknowledge handshake scheme.

SENDER

Request

Acknowledge

Data

RECEIVER

Figure 1.1 A block diagram viewpoint of a request-acknowledge handshake

scheme.
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Though, it is not apparent from the block diagram, it is very important to

enforce a simple condition on this handshake scheme. The request needs to be

bundled with the data, so that it does not arrive before valid data is ready for the

receiver.

1.2 Organization of this document

In the next chapter we discuss the two different protocol strategies that are the

most commonly used. We will also discuss the effect that pipelining has on digital

system throughput. Chapter 3 consists of a discussion of data flow graphs adapted for

signal processing functions. It will explain why a data flow graph is a natural method

for high-level specification of computing algorithms that need to be mapped onto

self-timed digital circuits. Chapter 4 is a brief discussion of how a hardware

description language can be effectively used for the synthesis and analysis of self-

timed circuits.

Chapter 5 concerns itself with the bulk of the self-timed digital circuits and

contains most of the original contribution made by this thesis. In Chapter 6, we will

use a decimation filter as an example to illustrate the performance issues involved.

We will then conclude and hint at future directions of research in Chapter 7.
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Chapter 2. PROTOCOLS AND PIPELINES

2.0 Introduction

To enable effective synchronization and also to make the computation blocks

responsible for synchronization, we require a request-acknowledge protocol. We also

know that in digital systems such a form of protocol can be implemented using

signaling.

Seitz [3] illustrates two main request-acknowledge protocol strategies - a 4-

cycle protocol (also known as Return-to-Zero protocol, or Muller signaling) and a 2-

cycle protocol (also known as Non-Return-to-Zero protocol, or transition-signaling).

In the case of the former protocol, we accomplish signaling by using pulses of

indeterminate lengths. In the second protocol, we use transitions to achieve the same

synchronization. In the rest of this thesis, these two strategies have been compared.

This thesis should enable us to decide which of these protocols offers greater

potential. But before we get to that stage we need to develop an understanding of the

protocols and the related issues.

2.1 Pipelining

The pipeline is a common paradigm for high-speed computation. The analogy

of a pipeline to the assembly line in an automobile factory is apt. The higher speed, or

the greater throughput, is due to the fact that the different stages can act concurrently

(i.e., after the pipeline has been filled, its latency has been overcome).
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Data_in Data_out

->. BLOCK A
Rin

Aout

Rout
BLOCK

B

Ain

Pipeline
Interconnection circuit

Figure 2.1 A simple example of a pipeline interconnection circuit that controls
data transfer between blocks A and B.

Pipelines both store and process data, the storage elements and processing

logic alternating along their length. Stripped of all processing logic, any pipeline acts

like a series of storage elements through which data can pass. If the parts of the

pipeline act in response to a widely distributed, global clock, then the pipeline is said

to be clocked. If, on the other hand, the parts of the pipeline act independently as and

when local events permit, the pipeline is said to be event-driven. Stripped of any

processing logic, a pipeline acts like a First-In First-Out (FIFO) queue. We are

interested in an event-driven pipeline with or without internal processing.

2.2 The Basic Model

Before we discuss the specifics of the different protocols, we will develop a

basic model for a request-acknowledge protocol [7]. The simplest interconnection

circuit, a pipelining handshake circuit shown in Fig. 2.1, checks the input request

signal Rin (the completion signal of computation block A) to see if the output datum
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of block A is valid, and checks the feedback acknowledge Ain to see if block B is

ready for a new input. This is important since block A might take longer to finish than

block B, which might compute data more than once. This is known as "continual

feeding". If the situation reverses, data at the input of block B will be overwritten.

Such is a "run-away" condition. Root controls the request signal to block B, indicating

when block B should start evaluation. Aout controls the acknowledge signal to the

interconnection block preceding block A, notifying block A when its output datum is

transferred to block B.

2.3 The 4-cycle Request-acknowledge Protocol

The common four-phase handshake protocol works as follows. Assume that

the four signals Rill, Rout , Ain, and Aout are initially at logic level 0 (Rut, Root, Am,

Aotit). When block A finishes its computation, it raises Rin(Rin+) to request for a data

transfer to block B. Since Ain, is initially low, meaning that block B is ready to accept

a new input, the handshake circuit raises Aout(Aout+) to tell block A that its output

datum has been accepted. Rut can then be reset (Rin). The handshake circuit then

raises Rout(Rout+) to initiate the computation in block B. Eventually block B will

complete its task and output a completion signal. This information is fed back through

Aiu(Ain+) so that Rout(Rout) can be reset which will in turn reset Ain(Ain) and

complete the four-phase handshake loop. The four-phase handshake protocol

always uses the rising transitions to initiate operation and the falling transitions

to reset. The four-phase handshake protocol dictates that the sequence of signal

transitions on the right hand side of the handshake circuit in Fig. 2.1 is always the

iterative Rout --> Ain Rout Ain and on the left hand side RH,+ --> Aout
+

-->

Rin --> Aout-
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2.4 The Transition Signaling Conceptual Framework

Ivan Sutherland[81 proposed a different timing discipline, namely, the

transition-signal conceptual framework for the design of complex computation

systems. Sutherland employs the 2-cycle, or non-return-to-zero (NRZ) signaling

scheme. This is the most energy efficient and least time consuming signaling scheme.

In transition signaling we do not distinguish between rising or falling edge of a

signal. This means that, in effect, all responses to transition signals are edge triggered,

and are triggered on both rising and falling edges. This results in the fact that the

absolute state of control signals have no meaning. They are evaluated with respect to

other related signals.

Transition signaling circuits must be symmetric with respect to the high and

low states of control signals, since both rising and falling edges have the same

meaning. This symmetry of transition signaling is highly desirable because it

conforms with the symmetry of CMOS circuits.

If a sender and a receiver communicate using transition signaling, there will

be two control wires and many data wires between them. The data wires carry

conventional high or low states. The sender places a data value on the data wires and

then produces a transition (rising or falling, we make no distinction) on the request

control line to indicate that valid data are available. The receiver accepts data and

then produces an acknowledge transition to indicate that the data have been accepted.

The three events, data change, request and acknowledge always occur in cyclic order

(though the lengths of the different cycles can be different ).
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2.5 Event Logic and Muller-C Elements

Control circuits for the above request-acknowledge protocols are built out of

modules that form various logical combinations of events. The exclusive OR ( XOR )

circuit acts as the OR element for events. When either input of an XOR circuit

changes state, its output also changes state. Thus an event received on either the first

input OR the second input of the XOR will produce an output event. For more than

two inputs, XOR generalizes to parity; parity circuit acts as a multiple input OR for

events.

If inputs match in state
THEN copy it for output
ELSE hold previous state

If inputs match in state
THEN invert it for output
Else hold previous state

If inputs differ in state
THEN copy upper for output
ELSE hold previous state

Figure 2.2 Muller-C elements for control of events.

The Muller-C element acts as the AND element for events. A two-input C-

element implements the Boolean function C = AB + BC' + AC', where A and B are

the two input signals, C' is the previous output signal, and C is the present output
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signal. The C-element has the property that the output signal will change when both

inputs are of the same level; otherwise the output stays unchanged. Thus only after an

event takes place on both its inputs does an event occur at a C-element's output. The

C-element is one of the basic units in the early approaches to designing speed-

independent circuits. The C-element generalizes easily to three or more inputs

requiring that all of them reach a new logical state before copying the new state as

output. We use the standard AND logic symbol with a large C inside to represent a

Muller C-element that implements a logical AND for transition events, as illustrated

in Fig. 2.2.

Although the absolute state of a transition signal does not matter, its state

relative to other related signals does. Thus it is sometimes important to invert

transition signals. We use 'bubbles' on inputs or outputs of logic symbols to represent

such inversions, as illustrated in Fig. 2.2. Every loop around which events flow must

contain an odd number of inversions. Such loops are, in effect, oscillators whose

oscillations are coordinated with those of other loops by the actions of C-elements or

other modules at loop junctions.

2.5.1 SR-Latches vs. C-Elements

In classical logic design, the Boolean function of an Set/Reset (SR)-latch is

written as Q(n) = S + R/Q(n-1). Here S and R are some combinational functions of

input signals, Q(n-1) is the previous output signal and / is used to denote active-low

signals. Thus S and R cannot be high at the same time, since the condition S = R = 1

would set the output Q undefined (a metastable condition) and represent a circuit

hazard. This problem is usually circumvented by designing set-dominant (or reset-

dominant) SR -latches in which the output is set high (or reset low) whenever S (or R)
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is high. However, because of the assumed unbounded gate delays, there are situations

in which the values of S and R cannot be predicted by the Boolean function. Hence

the choice of set dominant SR-latch or reset dominant SR-latch becomes a function of

gate delays.

Since logic delays are assumed to be finite but unbounded in speed-

independent circuits, S and R may both become high with different gate delay

assumptions. If we chose to abide by the orthodoxy of a pure speed-independent

design, any logic implementation incorporating SR-latches cannot be truly speed-

independent, as the mutual exclusion of S and R cannot be guaranteed through

unbounded gate delays. C-elements do not have this problem and it has been

proposed that speed-independent (and delay insensitive) circuits use only C-elements

as memory elements. The functionality of an SR-latch is similar to a C-element with

an inverter. Therefore C-elements can be used to replace SR-latches without any

functional difference.

2.6 A 2-cycle FIFO

In Section 2.1, the basic concept of a event-driven pipeline was presented.

Sutherland calls such a pipeline based on the transition-signaling framework - a

micropipeline. It is from this name that we derive the "micro" part of the acronym

MDF. The micro part of the name is appropriate, as a micropipeline consists of very

simple circuitry, is useful in short lengths and is very suitable for layout in an

integrated circuit. Also note that, when we look at general purpose computing

structures, such a pipeline is used to implement the microinstructions as compared to

a 'macro' instruction pipelined implementation.



14

Before we look at the actual structure of a micropipeline, let us understand the

logic required to control such a pipeline. A string of Muller-C elements interspersed

with inverters is the only logic required to control the pipeline. In fact, the third form

of Muller-C element shown in Fig. 2.2, is the kind that would be perfect for such a

type of control. We can then view this circuit by examining the state of each C-

element relative to the states of the predecessor and successor C-elements.

Remembering the behavior of the C-elements under discussion, one can see that the

control of each stage follows a very simple stage rule:

IF predecessor and successor differ in state

THEN copy predecessor's state

ELSE hold present state.

Let us now try to understand how a pipeline without any processing, i.e. a

FIFO, could be built with such simple control logic. In Fig. 2.3, we illustrate the basic

structure of a micropipeline. A set of event-controlled storage registers in series

serves as its data path while a string of Muller C-elements serves as its control. This

event controlled storage element is required to respond to both the rising and falling

transitions. This can be achieved by using two latches side by side, one controlled by

a control wire called "capture", and the other by another wire called "pass", which are

activated alternately. In fact, in Chapter 4 we will show that this event-controlled

register is in fact modeled as discussed above.

The reason the registers have been arranged to be driven from one end while

their control signals are being sensed from the other is because the control signals for

the register must be amplified to drive all the switches in the many storage elements

involved. Since the wires that carry control signals are long, there is always some
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delay in controlling the register. The reader must note that, from here on, in all those

figures that present both control and data signals, the control signals are denoted by

dotted lines and the data path by either a thick line or a thin line.

Rin A(1)

11"-- T

Din

DELAY

R(2) A(3)

DELAY

Rout

)-11/'"

-4111 ELA

Aout R(1) A(2)

DIRECTION OF DATA FLOW

Figure 2.3 The Structure of a Micropipeline.

2.7 A 4-cycle FIFO

Ain

In a similar discussion, a 4-cycle FIFO can be developed. But before that we

need to understand what kind of control logic would be required. Using the protocol

discussed in Section 2.3 and the event logic discussed in Section 2.5, we can obtain a

very simple circuit for the event control of a 4-cycle pipeline/FIFO, as shown in Fig.

2.4. This circuit is similar to the one developed by Meng.
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With the help of this event control logic and the concepts developed in Section

2.6 on micropipelines, we developed a similar pipeline for a 4-cycle implementation.

A significant difference between the storage elements used in the two FIFOs is that

the 4-cycle storage elements will respond only on the rising transitions, or if the level

of the request input is high. As will be obvious later in this discussion, these storage

elements were in fact modeled in a similar fashion as discussed above.

RIn
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Rout

Aout

Figure 2.4 Event control for a 4-cycle pipeline.
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FigureFigure 2.5 The Structure of a 4-cycle FIFO.
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2.8 Some Interesting Observations

Naturally, data must propagate through an event-controlled pipeline faster

than the control events propagate through its control. Sutherland assures this as

follows. First the C-elements used in the control circuit are more complex than the

storage element used in the data path, and hence inherently slower. Second, since

each control stage of the control system must drive the many storage elements that

hold a parallel word in each register, the control signals must be amplified to drive

multiple loads. The amplification inevitably delays the control signals. Third, the

layout of the circuit ensures that the zigzag path of the control signals has longer

wires in it than those in the data path. If this can not be guaranteed, the request

signal's arrival at the stage must be delayed by the computation time required by the

current block.

Other suggestions are having the data path (i.e. the computation block)

generate a completion signal. This completion signal can require considerable

circuitry to implement. In Chapter 5, we will discuss a new logic family/topology at

the transistor level that self-generates a completion signal.

The pipelines developed in the above 2-cycle and 4-cycle frameworks provide

for a variety of pipeline processors. In fact, any micropipeline (we will now use it for

both types of pipelines without copyright or loss of generality) with processing has

combinatorial circuits placed between the storage registers. One can trade off the

number of stages and the complexity of the intervening logic to obtain a suitable

balance between latency and throughput rate. With less combinatorial logic between

stages and more stages of storage, one obtains higher throughput rate at the cost of

greater latency. This might entail greater hardware cost.
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In this discussion, we are going to make an attempt to compare these two

protocols and the issues that arise thereof. It is intuitive that there is a possibility of

greater performance possible in the 2-cycle framework, but at what cost? But before

we can assess the trade-offs therein we need to know what kind of control circuits

would be required. We need to develop a higher level abstraction or method for

specifying algorithms. This is the topic of discussion in the next chapter.
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Chapter 3. DATA FLOW PROGRAM GRAPHS FOR DSP

3.0 Introduction

Digital signal processing (DSP) applications differ from general-purpose

computation both in the nature of the algorithms and in the target hardware. The DSP

algorithms usually involve a lesser degree of decision making. The target hardware is

often dedicated to a particular algorithm, or at the most to a small class of algorithms,

rather than being general purpose. They also have stiff cost/performance ratio

requirements, especially in the case of real-time DSP. As mainstream computer

science techniques can not be effectively employed, the DSP community usually

designs its own microprocessors, languages, multiprocessor architectures and

software.

DSP designers have been using "block-diagram languages" for high level

specification. These languages have been nothing else but variations on the data flow

representation of algorithms. Thus, a data-flow representation is very natural for the

representation of DSP algorithms. Add to this the additional advantage of built in

parallelism and concurrency, and we have a very simple and elegant method for

specifying DSP algorithms.

In this chapter, we will try to highlight the major issues of concern. We will

begin by explaining the basic concepts of data flow computing without regard to

whether the the computation is general purpose, or application specific like DSP. We

will then present a brief introduction to data flow program graphs. Finally, the issues

concerning scheduling of data flow graphs for DSP will be briefly discussed.
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3.1 The Data Flow Concept

For decades computers have been designed based on the control flow, more

commonly known as the von Neumann model of computing. The corner stones of this

philosophy are the program counters that are used to sequence the execution of

instructions in a centralized control environment and the fact that data is passed

between instructions via references to shared memory. Parallelism was restricted to

the switching of a processor among separate processes and programmer-specified

decomposition of a program into parallel instruction or data streams, to be processed

by separate processors. Although in the last few years some work has been done in

the field of parallel compilers to relieve the programmer of the tedium of partitioning

the program into parallel processes, there are still many lacunae that need to be

explored [10].

A major problem in a traditional multiprocessor system with a shared memory

is memory interference. Given that a single processor usually tends to be memory

bound, the addition of other processors attached to a shared memory provides only a

limited gain (Amdahl's law!!). Local caches may have reduced the problem

marginally, but it still remains a prickly problem, especially with the added

consideration of memory integrity. Except for the advantages in the area of system

availability, multiprocessor systems tend to have poorer cost/performance ratios than

their uniprocessor system counterparts.

A second motivation for data flow architectures stems from properties of most

current programming languages and the recognition that they mimic the underlying

von Neumann computer organization. The organization is one of a passive storage

(variable), a processing unit that performs state changes in the storage (assignment),
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and a control unit that controls the state of the processing unit by sending it

sequentially through a stream of instructions (control flow) [11,12].

Data flow advocates and programming language theorists argue that these

three fundamental ideas are artificial, foreign to the way that programs should be

expressed. These ideas contribute to programming complexity. Thus current

programming languages were derived not from the outside-in (i.e. from the

programmer's viewpoint), but from the inside-out (i.e. heavily influenced by the

organization of earlier stored program machines).

The concept of data flow discards these basic principles by eliminating the

idea of instruction streams and control flow, eliminating the concept of memory as a

passive repository for program variables (an exception being associative memory),

and providing a means of taking advantage of opportunities for parallel processing

within programs without requiring explicit directions from the programmer.

3.2 A Data Flow Language

In a data flow computing environment, instructions are activated by the

availability of data tokens (i.e. instructions/statements are data-driven). An instruction

(or statement) is considered to be enabled (capable of being executed) when

(1) a datum exists on each of its input ports and

(2) no datum exists on its output port.

When an instruction is executed, the data on its input ports disappear and a

result appears on its output port. Programs are represented by connecting instructions

in a directed graph (i.e., connecting an instruction's output port to another instruction's
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input port ). Thus the order of instruction execution is controlled not by an instruction

counter, but by the flow of data among instructions.

Control flow computers have synchronous computations performed using

centralized control. Data flow computers are characterized by a passive examine

stage. Instructions are examined to reveal the operand availability, upon which they

are executed immediately if the functional units are available.

This data driven concept means asynchrony, which means that many

instructions can be executed simultaneously and asynchronously. A high degree of

implicit parallelism is expected in a data flow computer. Because there is no use of

shared memory cells, data flow programs are free from side effects. In other words, a

data flow operation is purely functional and produces no side effects such as the

changes of a memory word. Operands are directly passed as tokens of values instead

of as address variables. Data flow computations have no far-reaching effects. This

locality of effect plus asynchrony and functionality makes them suitable for

distributed implementation.

The language that will be discussed is basically a two-dimensional graphical

language, which suits our purpose very well. The particular language to be examined

is one proposed by Dennis [13]. Of course, there do exist data flow languages with

the more familiar statement-oriented syntax, but they will not help illustrate the

concept that will be discussed. In Dennis's language there are three major concepts:

3.2.1 Processing elements

A processing element is an operation that is enabled by the arrival of

information on its input arcs and the absence of information on its output arc. The two

categories of processing elements are actors and links. An actor is an operation with
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one output arc and one or more input arcs. A LINK is an operation with one input arc

and multiple output arcs [14].

3.2.2 Information

Information exists in the form of tokens (as we will see later, in our case it

will be the transitions), which are transmitted over arcs and consumed and created by

processing elements. The two basic types of information are data values (e.g.

numerical values and control or Boolean values (e.g. true/false value ). Note that at

the circuit level the control values are also treated as data.

3.2.3 Arcs

An arc is an unidirectional path for information from one processing element

to another. An arc can be either empty or contain a single token of information. The

arc is the replacement for the traditional concepts of variables and storage. Because of

the two classes of information, the arcs are classified as data arcs (denoted by solid

lines here) and control arcs (denoted by dashed lines).

Fig. 3.1 illustrates the processing elements of the language. A LINK (or

FORK) operation is enabled when a token appears on its single input arc, and all its

output arcs are empty. On firing it distributes the input token to the output arcs. An

OPERATOR actor normally has one or two input arcs. It is enabled for execution

when data tokens are present on all input arcs (except for the MERGE actor ), and its

output arc is empty. It absorbs the input tokens, performs some function across these
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values, and places the result data token on its output arc. Typical OPERATOR actors

are addition, subtraction, multiplication, negation, square root, and so on.

DATA
LINK

CONTROL
LINK

TRUE actor FALSE
actor

MERGE
actor

OPERATOR DECIDER
actor actor *

Figure 3.1 The Data Flow Links and Actors.

The DECIDER actor (or PREDICATE, or JOIN) is similar, except that it

produces a Boolean or control result. It computes some PREDICATE across the data

inputs, which produces a Boolean true or false value as a result. Typical

PREDICATEs are equality, inequality, less than, and so on.

The remaining three actors have both data and control inputs. The TRUE

actor is enabled when it has both a data token and a control token available as its

inputs (and, its output arc is empty). Like all other elements, it absorbs its inputs

when executed (fired). If the control value is true, the result is placed on the output

arc; otherwise, no result is produced. Thus the TRUE actor will either pass its data

input to the output arc, or it will simply absorb it. The FALSE actor is similar, except
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that a false control value instead of a true one causes the data to be passed to the

output arc.

The MERGE actor is an exception in that its execution does not cause all the

input tokens to be destroyed, and it does not require all input tokens to be present to

become enabled. It is enabled

when a true control token is present and a data token is present on the data

arc labeled T, or

when a false control token is present and a data token is present on the data

arc labeled F.

In both cases, the output arc must be empty.

If the control input is true then the data token on the T input arc is transmitted

to the output arc. These two input tokens are destroyed but the token on the F data

input is not destroyed, if present. The opposite is valid if the control input is false.

3.2.4 Motivation and advantages

Graphical representations of data flow graphs offer many advantages [15].

Besides, the fact that a mental image of the behavior of a program due to the data

availability firing rule is much easier to understand, data flow programs are easily

composable into larger programs. Also data flow programs prescribe only essential

data dependencies. It is very easy to attribute a formal meaning to a program by using

a graph. This meaning can take the form of an operational definition (i.e. defines a

permissible sequence of operations) or a functional one (i.e. describes a single

function independent of the execution model).
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3.3 Scheduling of Data Flow Programs for DSP

As discussed in the introduction to this chapter, we are interested in adapting

data flow graphs for DSP. Edward Lee and D. G. Messerchmitt of Berkeley suggest

that the data flow techniques of general purpose computing are too expensive for DSP

and more powerful than required [16, 17, 18, 19].

In this section, we will deal with the scheduling strategies for data flow

graphs. Scheduling is integral to the efficient exploitation of the inherent concurrency

of a data flow graph. We will consider only non-preemptive scheduling.

Scheduling involves three basic tasks:

(1) Assigning actors to processors,

(2) Ordering the actors on each processor, and

(3) Specifying their firing time.

Every data flow implementation must have these three components.

Implementations may differ by when (compile time or run time) they are

implemented. Complexity of scheduling strategy also affects implementation.

Four classes of scheduling can be defined on the basis of which tasks are done

when. They are:

(a) Fully Dynamic : Actors are scheduled at run time (i.e. they are assigned to

a processor only when all the input operands are available).

(b) Static allocation : An actor is assigned to a processor at compile time, and

a local run time scheduler invokes actors assigned to the processor.
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(c) Self-timed : The order in which the actors will fire is determined by the

compiler. At run time, each processor waits for data to be available for the

next actor in its ordered list, and then fires that actor. This is analogous to self-

timed circuits.

(d) Fully Static : The exact firing time of the actors, and their assignment and

ordering information are all determined by the compiler. This is analogous to

synchronous circuits.

Note that the boundaries between the different classes are not rigid. But it is

interesting to note that as we go from strategy (a) to strategy (d), the degree of data

dependency decreases, which means the strategies become less complex and cheaper.

as they do not require special hardware support. In the case of self-timed scheduling,

some synchronization primitives like simple handshake mechanisms are required. In

fact, when extended to multiprocessor systems, the handshaking resembles Hoare's

concept of communicating sequential processes [20, 21].

But the class of algorithms that can exploit the advantages of strategies (c) and

(d) also reduces. Little or no data dependency, as well as comparable execution times

of the various actors, are important features of self-timed scheduling and fully static

scheduling. Although self-timed scheduling is better than fully static scheduling in

tolerating some variations, it is not very good at that. This is not a severe problem in

the case of signal processing algorithms and scientific computations [22, 23], like

floating point arithmetic [24]. As a result, it can be observed that a self-timed

schedule can be a very good option.

The compiler requires more information about the actors in order to construct

close-to-optimal schedules. A solution is having the compiler construct a fully static

suboptimal schedule and then discard the information that is not required. Static
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allocation or assignment strategy requires only assignment information, while self-

timed scheduling strategy requires both assignment and ordering information.

This gives rise to an important question how are we to accomplish a fully

static schedule for a self-timed scheduling strategy in the case of data dependencies

like conditionals, recursion, and data-dependent iteration without losing out on the

optimal strategies that would have been otherwise possible?

Considerable work has been done by Lee for synchronous data flow graphs,

and by Meng for asynchronous data flow graphs at Berkeley under the guidance of

Messerschmitt. For a detailed discussion, see the references in the bibliography. Here,

we will present the different problems and discuss some of the suggested solutions

and their effects.

3.3.1 Recurrences

A B

Figure 3.2 A data flow graph with a recurrence. Recurrences are expressed as

directed loops and delays.

It is important to support recursion, or self-referential function calls. In fact,

imperative languages implement recurrences and iteration in some combination. We

will avoid the notion of "function calls". We can at least characterize some of the
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recurrences as feedback paths in data flow program graphs. Data flow models for

iteration will be examined in a later section.

A schematic of a data flow graph with a recurrence is shown in Fig. 3.2. This

graph is assumed to fire repeatedly. The feedback path has a delay represented by a

diamond. This can be implemented by an initial token on the arc (in Chapter 4 we will

show the design of an actor that we call INIT actor). This delay is not a unit time

delay but a logical delay or separator. A necessary (but not sufficient) condition for

avoiding deadlock is to have at least one delay in a directed graph.

3.3.2 Conditionals

x

C

y

Figure 3.3 A data flow graph with conditional assignment. Both f(x) and g(x) are

evaluated, and only one of them is selected.

Conditionals in data flow graphs are harder to describe and schedule statically.

Conditionals are constructed within one large grain actor, and concurrency within

such actors is difficult to exploit. Hence instead of conditional evaluation we use

conditional assignment . We now require a slight variation on the MERGE actor that
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we use. We have seen before that after a MERGE actor has fired it will not destroy all

its input tokens. If we want to implement the functional expression (see Fig. 3.3)

y <- if (c) then f(x) else g(x),

we need a MERGE in which all the input tokens are destroyed each time the actor

fires. Let us call this new kind of MERGE a MUX actor. Hence, both f(x) and g(x)

are computed each time and only one of the results will be used. This is justifiable

only when the functions are simple (deep pipelining), or for hard real-time

applications when one of the two subgraphs is simple. Otherwise, the cost of

unnecessary computation might be excessive.

An alternative for an if-then-else structure might be the use of a SELECT

actor so that a token 'x' can be routed to one of the two functions, depending on the

value 'c'. The appropriate function fires, and its value is selected by the MERGE

actor. This has been schematically shown in Fig. 3.4.

3.3.3 Iterations

Iterations are of two types - manifest and data-dependent. Manifest iterations

are of the type where we know the number of repetitions at compile time, and hence

are independent of data. The others, as the name suggests, are data-dependent. They

may be known before the iteration begins or after. Though manifest and data-

dependent iterations pose different problems for the compiler, the resultant additional

actors required are the same. They are used in increasingly complex configurations in

order to achieve some degree of static scheduling.
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The study of the problems with iterations required three more actors that were

added to the four previously included. This will complete the set of data flow links

SUBGRAPH

1
SELECT
T F

T F
MERGE

SUBGRAPH

Figure 3.4 An alternative data flow graph for the expression y := if(c) then f(x)

else g(x).
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and actors for DSP applications. One of the actors that Lee suggests is called Last of

N. It simply outputs the last of a series of N tokens, where N is a parameter of the

1

REPEAT

COUNTER

1

1

SHIFT

Figure 3.5 Data flow graphical representation of 6 additional actors.
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actor. We call this, a little less euphemistically, a COUNTER actor. That is what it

actually does it counts N tokens and then lets only the last one through.

Another actor he suggests he calls REPEAT actor. It basically takes one

input token and repeats it on the output N times. This can be implemented by using a

FIFO and a COUNTER actor. A variation on this is required if we need to output the

data in a serial fashion. We then require a parallel to serial shift register. We call this

actor a SHIFT actor.

There are other actors that he suggests, like one that takes in one input token

each time it fires, and outputs the last N tokens arrived. This can be built with a

COUNTER actor and a N-deep buffer in a self-loop. Since this actor can be built by

using other actors, it was not added to the list of links and actors.

Lee also suggest actors that he calls UPSAMPLE and DOWNSAMPLE.

Both are variations on the COUNTER and REPEAT actors. Fig. 3.5 shows a

graphical symbol for the 6 actors that have been added.

3.4 Some Interesting Observations

To the reader it would seem that, since all the additional actors can be

constructed using the basic set, these actors are redundant. At this point, we will

allude to a recent computer architecture related controversy Complex Instruction Set

Computers (CISC) versus Reduced Instruction Set Computers (RISC). The main

motivation for RISC processors was not to minimize the size of the instruction set but

to reduce it to the most relevant ones. Hence the authors feel that a more appropriate

name would be Relevant Instruction Set Computers.

In the specific case of data flow graphs for DSP algorithms, we added these

additional actors because of a high probability of their occurrence in such algorithms.
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So, although the basic primitives have been increased the additional primitives are

relevant and, hence, not unnecessary.

It is important to note that when we discuss the above actors, we are

essentially interested in the control path, or, as we call it, the distributed control path

(DCP). Although, the data path always exist along with most of the actors, its design

is not under discussion here. Simple actors like the DECIDER actor and the

OPERATOR have essentially similar control structure to a 'JOIN'. We call this

structure a PREDICATE. Similarly, the control LINK and the data LINK, have

essentially the same control structure and that of a 'FORK'. We will call this structure

as a LINK.

3.5 Summary

In concluding the discussion on data flow graphs, we would like to emphasize

that work still needs to be accomplished in terms of architectural development,

compilers, etc. for self-timed data flow implementations to enable us to engage in

fruitful activity as far as the design of programmable DSP processors. But it is

definitely an interesting study to find out whether such an effort would pay off against

using von Neumann based DSP processors.

A significant body of work has been developed in the last few years related to

constructing a strong theoretical framework for the automatic design, development

and testing of asynchronous circuits. In [25], A. P. W. Balm presents a very good

monograph on data flow computation. J. C. Ebergen [26] and E. Brunvand et. al. [27]

discuss the automatic translation of programs into delay-insensitive circuits. A. J.

Martin [28] investigates the compilation of communicating processes into delay-

insensitive circuits.
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T-A. Chu [29, 30, 31], T. Meng [32], C. J. Tan [33] discuss various methods

of synthesizing self-timed circuits. Using trace theory for automatic verification of

speed-independent circuits is discussed by D. L. Dill [34]. Dill along with Steven

Novick of Stanford [35] discuss the same issue for self-timed circuits in Chapter 7 of

Meng's book.

This chapter should enable the reader to understand the different actors

required for an effective implementation of DSP algorithms. In the next chapter, we

will discuss a hardware description language that allows us to define the functionality

of the data path and the structure of the control path. Explicit specification of the data

path is not required. Design energy can be concentrated in designing the DCP, and

subsequently automating the design of the DCP.
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Chapter 4. MODELING OF DIGITAL CIRCUITS USING VHDL

4.0 Introduction

Once we had developed an understanding of the kind of event control circuits

that would be required, the task was to design them. But it was important not to get

bogged down by details. VHSIC (Very High Speed Integrated Circuit) Hardware

Description Language (VHDL) provided a very nice solution to this problem. In this

chapter, we will explain how VHDL provides a very good method of describing the

structure and function of ICs. Also, looking at the future requirements of this project,

it is envisaged that some form of a translator of data flow program graphs into VHDL

specifications will be needed. This form of automation would relieve the designer

from worrying about all the details (for e.g., the design of the data path), especially in

the infancy stage of a new design. These, of course, are the advantages that

particularly apply to this project. In the next section, the basic advantages of VHDL

will be specified.

This chapter is not intended as a tutorial on the many varied aspects of VHDL.

References [36, 37, 38, 39, 40, 41] are provided in the bibliography that will

accomplish that. Here we present the reader with some of the basic tenets of this new

electronic circuit design philosophy and the approach that was taken by us in this

project. This project was developed using View logic® VHDL [42].

4.1 Origins of VHDL

As has been stated above, VHDL is a language for describing digital

electronic systems. It owes its origin to the United States Government's Very High
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Speed Integrated Circuit (VHSIC) program, initiated in 1980. VHDL has now been

adopted by the IEEE as a standard.

VHDL is designed to satisfy a number of needs in the design process. The

main among them are:

(1) It allows the description of structure in an hierarchical form.

(2) It allows the specification of the function (or, as is said in VHDL jargon,

behavior) of designs using familiar programming language forms.

(3) It allows a design to be simulated before being manufactured. It allows

evaluation of the alternatives without expensive hardware prototyping.

4.2 Describing Structure

A digital electronic system can be described as a module with inputs and/or

outputs. The electrical values on the outputs are some function of the values on the

inputs. Fig. 4.1 shows a gate/flip-flop level circuit diagram of a double-edge triggered

D flip-flop (DETDFF). Fig 4.2 shows the corresponding VHDL structural description.

The module DETDFF has three inputs - D, CLK, RESET and two outputs Q, QB.

Note that the outputs have been specified also as inputs because of the structure of the

flip-flop. Using VHDL terminology, we call the module DETDFF a design entity,

and the inputs and outputs are called ports.

One way of describing the function of a module is to describe how it is

composed of sub-modules. Each of the sub-modules is an instance of some entity,

such as PETDFF (positive-edge triggered flip-flop), NAND2 (2-input NAND gate),

etc. The ports of the instances are connected using signals. This kind of a description

is called a structural description. Note that each of the entities might also have a
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structural description, as can be seen in the next chapter. On the other hand, the

entities can all be behavioral descriptions (as discussed in the next section). A mix of

both types of descriptions is also possible.

D

0

CLK

PETDFF

PETDFF
0

RESET
0

Q

Figure 4.1 Gate level schematic of a double-edge triggered flip-flop.
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VHDL structural model for a double-edge triggered D-FF with clear /reset

entity DSTRUCT is
generic (DELAY : time := 5 ns);
port (D, CLK, RESET: in vlbit;

Q, QB: inout vlbit);
end DSTRUCT;

architecture STRUCTURAL of DSTRUCT is
signal Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8: vlbit; internal signals
signal DUMMY: vlbit;

component declaration for model NOT1
matches NOT1 entity declaration

component NOT1
generic ( TPLH: time := 1 ns;

TPHL: time := 1 ns);
port ( signal QN: out vlbit;

signal A: in vlbit);
end component;

component NAND2
generic (TPLH: time := 1 ns;

TPHL: time := 1 ns);
port (QN: out vlbit;

A, B: in vlbit);
end component;

component PETDFF
generic (DELAY : time := 2 ns);
port -(D, CLK, nCLR: in vlbit;

Q, QN: inout vlbit);
end component;

-- 8 component instantiations define the model "structural".

begin

U1: NOT1
port map (Z1, CLK);

U2: PETDFF
port map (D, CLK, RESET, Z2, DUMMY);

U3: PETDFF
port map (D, Z1, RESET, Z3, Z4);

U4: NAND2
port map (Z5, CLK, Z4);

U5: NAND2
port map (Z6, Z2, Z5);

U6: NAND2
port map (Z7, Z3, CLK);

U7: NAND2
port map (Z8, Z6, Z7);

U8: NOT1
port map (QB, Z8);

Q <= Z8;

end STRUCTURAL;

Figure 4.2 Structural description of a double-edge triggered flip-flop.
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4.3 Describing function

In many cases, it is not appropriate to describe a module structurally. One such

case is a module that is at the bottom of the hierarchy of some other structural

description. For example, if you are designing a system using IC packages bought from

a shop, you do not need to specify them structurally. In such cases, a description of the

function performed by the module is required, without reference to its actual internal

VHDL behavioral model for a double-edge triggered D-FF with clear/reset

entity DETDFF is
generic (DELAY : time := 2 ns);
port(D, CLK, nCLR: in vlbit;

Q, QN: out vlbit);
end DETDFF;

architecture BEHAVIOURAL of DETDFF is

begin

P1: process
begin

if nCLR = '0' then
Q <= '0' after 1 ns;
QN <= '1' after 2 ns;

end if;
wait until pchanging(nCLR) or pchanging(CLK);
if nCLR = '0' then

Q <= '0' after 1 ns;
QN <= '1' after 2 ns;

else
if nCLR = '1' then

if pchanging(CLK) then
Q <= D after 1 ns;
QN <= not(D) after 2 ns;

end if;
else

end if;
end if;

end process;

end BEHAVIOURAL;

Q <= 'X' after 1 ns;
QN <= 'X' after 2 ns;

Figure 4.3 Behavioral description of a double-edge triggered flip-flop
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structure. Such a description is called a functional or behavioral description. Fig. 4.3

shows such a description of a double-edge triggered flip-flop.

It seems appropriate at this time to mention that all the gates (i.e. inverters,

buffers, multi-input AND, NAND, OR, NOR, EX-OR, EX-NOR gates) have been

described behaviorally. They are usually at the bottom of the hierarchy in any digital

system design. Also, relatively complicated blocks like positive-edge triggered D flip-

flop (PETDFF) and the Muller-C elements have been specified behaviorally.

In Chapter 6, we will see that complex data flow actors like ADDER

PREDICATE have also been specified behaviorally. It is not important to have a

structural description of an ADDER PREDICATE to effectively demonstrate the

functional correctness and performance of the event control data flow LINKs and

actors.

Note that the event control data flow links and actors have been described

structurally. Although structural descriptions would suffice, schematic diagrams of

the different circuits, save a few, have been presented in the next chapter for the

uninitiated reader.

4.4 Discrete Event Time Model

Once the structure and behavior of a module have been specified, it is possible

to simulate the module. This is done by simulating the passage of time in discrete

time steps. At some simulation time, a module may be stimulated by the changing of

the value at one of its input ports. The module reacts by executing the code and

responding by changing the values on the output ports, if required, at a later

simulation time. A transaction has been scheduled on the module. If the new value on

the output port is different from the previous value, an event is said to have occurred.
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This will result in other modules, whose inputs are connected to this output port to

execute their respective codes.

The simulation starts with an initialization phase in which all the signals are

given initial values, simulation time is set to zero, and each module's program is

executed. This usually results in transactions being scheduled on the output ports at

some later time.

This is followed by a simulation cycle. It is a two-stage cycle. In the first

stage, the simulation time is advanced to the earliest transaction that has been

scheduled. This transaction is executed, which may result in events occurring on

some signals.

In the second stage of the simulation cycle, all modules that were affected by

the events that happened in the first stage execute their respective program codes.

Further transactions will be scheduled by these programs that will result in more

events, and the cycle repeats until there are no more scheduled transactions. The

simulation is then complete.

I This command file simulates a double edge-triggered D flip-flop using VHDL.

wave dstruct.wfm RESET CLK D Q QB

wfm RESET (0=0 50=0 50=1)

clock CLK 0 1 0 1 0 1 0 1

clock D 0 0 1 1 0 0 1 0

t RESET D CLK Q QB

stepsize 100

cycle 2

exit

Figure 4.4 A View logic® VHDL Command File.
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Figure 4.5 Waveforms generated by the simulation of a double-edge triggered

flip-flop.

The simulation has gathered information about the changes in the system over the

period of time. This is done by running the simulation under a simulation monitor.
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The information can be stored in a trace file for later viewing and analysis. It could

have an interactive feature.

The VHDL programs in this project were written using Viewlogic® VHDL.

For the large part it is similar to the IEEE standard except for some minor variations.

The simulation monitor in the View logic® VHDL is called a command file. An

example of the command file used to execute the structural and behavioral

descriptions of the double-edge triggered flip-flop is shown in Fig. 4.4. Fig. 4.5 has

the waveform that is a result of the simulation.

4.5 Summary

After identifying the need for a simulation tool that would let us concentrate

on the design of the self-timed control circuits without getting mired in the details of

implementation of the data path, we showed how VHDL provided a very good

solution for this problem. In the next chapter the actual self-timed digital circuit

designs of the various data flow links and actors (for both 2-cycle and 4-cycle

request-acknowledge protocols) will be presented.
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Chapter 5. 2-CYCLE AND 4-CYCLE SELF-TIMED IMPLEMENTATIONS

OF THE DATA FLOW ACTORS

5.0 Introduction

Up until now, we presented the advantages of self-timed design and the two

common request-acknowledge protocols that are used to design self-timed control

circuits, which can be efficiently used for event-controlled pipelines. We then

discussed the reasons why a data flow program graph provided a very good method

for a high level specification of self-timed circuits. In particular, data flow graphs

adapted for DSP applications were discussed in considerable detail.

In the last chapter, we discussed the advantages of VHDL as a modeling and

simulation tool. In this chapter, we will present the self-timed digital circuit

implementations of the various data flow links and actors for both the 2-cycle and 4-

cycle request-acknowledge protocols.

As has been said before, the circuits that we will present are concerned with

designing the distributed control path. We will concentrate on the issues related to the

design of the control path. The data path has been characterized and discussed very

well for quite some time now. But before we proceed to the design of the control

path, we will briefly discuss the issues involved in the design of the data path.

5.1 Design of the Data Path

Before the actual designs are presented, the author feels that the uninitiated

reader might find it interesting and rewarding to review some of the basic principles
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of digital circuit design and the associated problems. There exist many good books. In

the bibliography we suggest a few [43, 44, 45].

The reader will gauge from a brief perusal of the above literature that two

main problems with asynchronous design are mentioned. The first one is said to have

occurred when the output of a combinational network is in error due to the changing

of signal values on more than one line in the network, more commonly known as a

hazard. This behavior is transient in a feedback-free network. In [46, 47] the reader

will find a very good discussion on the design of asynchronous circuits with bounded

gate delays. Assuming bounded gate delays, allowing only one of the primary inputs

to change at a time and including all the prime implicants (i.e. in the fundamental

mode), guarantees that temporarily erroneous outputs will not occur. In sequential

circuits, race conditions can lead to steady-state errors. Under the assumption of

bounded gate delays, this problem can be solved by including redundant states and

making the delay elements long enough for all transients to settle down before

transmitting a change of state.

D. B. Armstrong et. al. [48] published one of the first works on design of

asynchronous circuits assuming unbounded gate delays. More recently, C. H. Lau et.

al. [49] discussed the design of asynchronous circuits using a data flow approach.

Both used data detectors or spacers. This method reduces the hardware efficiency to

less than 50%.

Another difficulty often mentioned of asynchronous design is the performance

uncertainty due to the problem of metastability. An example is arbiters that grant

mutually exclusive access to a particular resource. Simultaneous requests can drive

the arbiter into metastability, where the output is nondeterministic for an undefined

period of time. In fact, any cross-coupled inverter pair has the potential to exhibit

metastability. In synchronous systems, the problem of metastabilty is solved by
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designing the clock period such that the latching signal always falls behind the data

transition. There exists a large body of work that has discussed this problem as related

to asynchronous system design. The solution is to derive the latching signal from the

data signal so that latching will definitely take place after the data is valid.

At this point, we would like to draw the reader's attention to the micropipeline

discussed in Chapter 2. We mentioned then that the 'delay' element in the path of the

request signal is to restrict the latching signal (i.e. the request signal) from arriving at

the next stage before the data is valid. When designing systems in VLSI, it is

impossible to guarantee with any degree of uncertainty that such delay would hold

within tolerable limits even after process variations are accounted for.

This leads us to a discussion on the transistor level topologies that are

employed. A logic family that is used quite often is Dynamic Cascode Voltage Switch

Logic (DCVSL)[50]. Theresa Meng uses this logic family. She suggests that to

generate a completion signal from the data that could be tied into the request signal,

we use a level of OR gates, one for each data pair. We now have the completion

signal of each data pair. To generate the completion signal for the entire data bus, a

two level AND gate implementation would suffice, provided the precharge delay is

approximately the same for all data bits. If this prerequisite cannot be guaranteed,

then a tree of C-elements will be required an expensive solution !!

S. L. Lu et. al. [51, 52, 53] discusses a novel topology. This topology is called

Enable/Disable CMOS Differential Logic (ECDL). Sutherland uses static CMOS for

the implementation of the data path. ECDL avoids the disadvantage of charge sharing

of DCVSL. It also automatically generates a completion signal avoiding delay

calculations required for static CMOS implementations. It also lends itself very

naturally to mapping from a high-level specification.
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We will leave this discussion at this point, except for a brief mention later, as

research is currently being undertaken to automatically synthesize Boolean equations

into ECDL circuits.

5.2 Pipeline and Non-Pipeline Interconnections

Pipelining increases system throughput by introducing sample delays (i.e.

registers in the data path). This directly translates into greater hardware cost. Also

there are situations when the two computation blocks operate sequentially. No

intermediate sample delay is now required. This gives rise to the need of a non-

pipeline interconnection, which will allow only one block to be active at time, and not

half the blocks. It can later be observed that a non-pipelined interconnection does not

require a register.

5.2.1 2-cycle interconnections

The basic 2-cycle pipeline interconnection is similar to the Muller-C element

used in the 2-cycle micropipeline. The non-pipeline interconnection used to connect

two sequential blocks can be accomplished by connecting Rin to Rom and Am to Aout.

This is possible because ECDL does not require a specific precharge phase as

compared to DCVSL. As we will see in the next sub-section, the above fact will

affect the design of the 4-cycle non-pipelined interconnection.

We do not present either specific circuit schematics or simulations of the

above two circuits, as their performance can be intuitively understood.
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Figure 5.1 4-cycle pipeline interconnection.
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Figure 5.2 4-cycle non-pipeline interconnection
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Figure 5.3 Simulation result of the 4-cycle pipeline interconnection.
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Figure 5.4 Simulation result of the non-pipeline interconnection circuit.
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5.2.2 4-cycle interconnections

The 4-cycle pipelined interconnection circuit is similar to the event control of

the 4-cycle micropipeline. It was first shown in Figure 2.4 and has been reproduced in

Figure 5.1 for purposes of continuity. The non-pipelined interconnection is illustrated

in Figure 5.2. A simpler circuit would have been created by connecting Rut to Rout

and At to Aout. However, the circuit in Figure 5.2 allows a form of concurrency by

allowing block A to start computing the next datum (i.e. precharge) while block B is

being reset. In all designs of 4-cycle non-pipelined interconnections, we will choose

the option that offers greater concurrency.

The simulation results of the 4-cycle pipelined and non-pipelined

interconnections are shown in Figure 5.3 and Figure 5.4, respectively. Notice in

Figure 5.3 that the Aout signal follows Rin before Rout does, allowing for Riu to

reset. This leads to concurrency. The non-pipelined interconnection does not allow

Aout to change until Ain has changed, leading to the fact that only one block can be

active at a time.

It can then be concluded that a pipeline interconnection requires a register (of

the type discussed in Chapter 2) to latch the next datum. Note that, in all future

pipelined interconnection circuits, the registers have not been included, but are

implicit in their presence. On the other hand, the non-pipelined interconnection does

not allow another datum to be operated upon until the next stage is free to accept the

result. Hence, no register is required.

In the next section, we begin our discussion on the 2-cycle and 4-cycle

implementations of the various data flow links and actors.
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5.3 The Data Flow Links and Actors

The complete set of data flow links and actors have been designed for both 2-

cycle and 4-cycle implementations. For each of the protocols, both pipelined and non-

pipelined interconnections have been designed. This results in an impressive array of

designs, which for the purposes of brevity can not all be included in this document. In

the following sections, we present the pipelined implementations for the two

protocols. For additional details about the non-pipelined interconnections, the

interested reader is requested to contact the author.

At the end of this chapter, we tabulate the approximate transistor counts and

approximate delays for all the different implementations of all the actors.

To be concise actors that show the same properties have been grouped

together because their event control circuits do not differ significantly. Example are

the TRUE actor and the FALSE actor. The only difference is the presence or absence

of an inverter in the path of the controlling Boolean signal. Another case is the

REPEAT and SHIFT actors. Here the data path changes complexion. In the case of

the REPEAT actor, the output data is parallel. On the other hand, for the SHIFT actor

the output data becomes serial.

Both the control and data LINK have been grouped as a single LINK entity

since their control path is similar. Also, in the case of the OPERATOR actor and the

PREDICATE actor, since the control resembles that of a JOIN, we have a single

entity called a PREDICATE actor. The INIT actor and the basic DELAY actor (or the

IDENTITY actor) have been grouped together as an INIT actor. The only difference

is whether one of the active elements was SET or not at the time of system reset.



53

We thus have the following links and actors (i) LINK. (ii) PREDICATE, (iii)

TRUE actor, (iv) MERGE actor, (v) SELECT actor, (vi) MUX actor, (vii) INIT

actor, (viii) COUNTER actor, and (ix) REPEAT actor.

Also in the context of the 2-cycle actors, since the basic protocol does not

differentiate between a rising transition and a falling transition, some interesting

design considerations arise. We introduce two new terms - in-sync and out-of-sync.

In-sync signifies that the transitions are of the same type: rising or falling. Out-of-

sync denotes that the transitions are of opposite types. These impose different criteria

on the designs, as will be clarified in subsequent sections.

In fact, the assumption that the request inputs are in-sync eases the design

complexity. But is this assumption valid? On study ofmany general data flow graphs,

it was concluded that if the actor follows the basic static firing rule fire only when

ALL input tokens are available and NO output token is available - then ALL input

tokens are consumed and ONE output token is produced. The exceptions are the

TRUE, FALSE and MERGE actors. As a result, it can be observed later that these

two actors have the most complex designs.

Also the COUNTER and REPEAT actors do not strictly adhere to the static

firing rule. But since there is only one request input, the problem is not as complex as

it seems. This places different restrictions. The reader will find the solutions

interesting. In [54, 55, 56], the reader has access to some quick references to the

material that will be presented in the rest of this chapter.

5.3.1 Self-timed implementation of the data flow LINK

An simple 2-cycle implementation of the LINK is provided in Figure 5.5. The

assumption that the two acknowledge input signals are in-sync is valid since



RESET

AOUT

A IN1

A IN2

RIN

ROUT 1

ROUT 2

Aout

Rout 1

Rout2

Ain 1

Ain2
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the outgoing request signals are always in-sync. Thus, by using a Muller-C element,

we ensure that only when the two output tokens have been acknowledged will the

next token, which may have already arrived (remember &mt. followed Rin

immediately), be consumed. This avoids the run-away condition. The simulation

result is illustrated in Figure 5.6.

We turn our attention to the 4-cycle pipelined implementation of the LINK

illustrated in Figure 5.7. The reader can observe that its design is a logical extension

of the 4-cycle pipeline control primitive of Figure 5.1. The only addition is the

Muller-C element in the feedback path. Figure 5.8 shows the simulation result.

5.3.2 Self-timed implementation of the data flow PREDICATE

Figure 5.9 illustrates the 2-cycle implementation of the data flow

PREDICATE actor. The design is logical and should be clear to the reader. The

assumption that the two request inputs are in-sync is valid because of the static firing

rule and because on system reset all signals start in a common state (either low or

high, although in our simulations they start low). The corresponding simulation result

is illustrated in Figure 5.10.

The 4-cycle implementation and the corresponding simulation result are

depicted in Figure 5.11 and Figure 5.12, respectively. Again the design is similar to

that of the 2-cycle implementation except for the additional Muller-C element and a

difference in the feedback path. This change allows all the signals to return to a zero

state.
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5.3.3 Self-timed implementation of the data flow TRUE actor

In the previous two sections, we discussed the 2-cycle and 4-cycle

implementations of the LINK and PREDICATE actor. The similarity between the 2-

cycle and 4-cycle implementations was interesting. We now discuss a more complex

actor. Because the TRUE gate has a different firing rule, we will see a marked

difference between the 2-cycle and 4-cycle implementations.

The firing rule says that once both the input tokens the data token and the

control token have arrived and no output token is present, an output token will be

created, depending on the Boolean value of the control input after consuming the

input tokens. As a result, although we can assume that the two input requests will

arrive in-sync (as they are both consumed each time), the same assumption is not true

on the request input and the acknowledge input.

Let us first discuss the schematic of the 2-cycle implementation illustrated in

Figure 5.13. Here the initial Muller-C structure is similar to that of the LINK. The

double-edge triggered flip-flop together with the EX-OR gate is a structure that is

used to allow us to control the generation of Rout, depending on the Boolean value of

T. Another such structure is used to create Aout even if no Ain is available (because

Rout was not generated).

An interesting property of an EX-OR gate, is that if one of the inputs is held at

logic '0', then the other input (in our case the QB output of the double-edge triggered

flip-flop) is passed without any change to the output of the EX-OR gate, which is

connected to the D input of the flip-flop (i.e. a toggle configuration has been created).

On the other hand, if one of the inputs of a 2-input EX-OR gate is held at logic

`1', then the output is the inverted logic of the other input. This results in the QB

output of the flip-flop being inverted. The logical equivalent of the output Q of the
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flip-flop is connected to the D input of the same flip-flop. The output Q will hold its

current state. This can be observed in the simulation result presented in Figure 5.14

Now we turn our attention to the 4-cycle pipelined implementation of a TRUE

actor, shown in Figure 5.15. The corresponding simulation result is shown in Figure

5.16. Once the two request inputs have arrived and the circuit has accounted for no

continual-feeding and run-away conditions, the Boolean value of T comes into play.

If the value is true, then the reader will find the schematic self-explanatory. There is

the interesting feature that output acknowledge for the control token Aout2 is derived

from Rout. As a result, we need an additional AND gate and OR gate to generate

Aout2 when Rout has not been generated (because T=0).

As stated before, the FALSE actor is similar to the above implementations of

the TRUE actor except for an additional inverter in the path of the controlling

Boolean signal.

5.3.4 Self-timed implementations of the data flow MERGE actor

This is the most complex actor. Because of its intricate firing rule, the event

control request and acknowledge signals for a 2-cycle implementation can all be out-

of-sync. The schematic is presented in Figure 5.17, and the simulation result is

presented in Figure 5.18. We thus have initial Muller-C elements to avoid run-away

and continual-feeding conditions. There are also AND gates in the path of Aout_T and

AouLF controlled by the Boolean signal C, allowing either the token on the T input

arc, or the token on the F input arc to be consumed (if both are present).

Because of the many possible combinations, we use a 2-cycle to 4-cycle

converter for the request inputs. This converter is basically a double-edge triggered

flip-flop that has its D input connected to logic '1'. Once the valid condition is
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Figure 5.20 Simulation result of a 4-cycle Data Flow MERGE actor.
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attained, denoted by the output of the corresponding NAND gate going high, the flip-

flop is reset. At the output, a toggle flip-flop is used to act as a 4-cycle to 2-cycle

converter.

The feedback path has two FF/EX-OR gate structures (discussed in the

previous section), one for each of the two data input arcs. The functionality should be

clear to the reader.

The 4-cycle pipelined implementation of the MERGE data flow actor is

illustrated in Figure 5.19. It can be observed that the MERGE actor extends very

nicely from the TRUE actor implementation in the previous section. Notice the AND

gates in the paths of the acknowledge outputs. The simulation result is illustrated in

Figure 5.20.

5.3.5 Self-timed implementation of the data flow SELECT actor

Unlike the 2-cycle MERGE actor, the 2-cycle SELECT actor will have its two

request inputs - data and control in-sync. Thus, the 2-cycle to 4-cycle and 4-cycle to

2-cycle converters can be dispensed with. Note that the request and acknowledge

inputs can become out-of sync, resulting in the need of the { FF/EX-OR gate}

structure to remember the sense of the previous transition on that particular output

arc. Figure 5.21 and Figure 5.22 illustrate the schematic of the 2-cycle pipelined

implementation and the simulation results of the SELECT actor, respectively.

As will be seen later, the SELECT actor has the opposite functionality of the

MUX actor. In fact, the 4-cycle pipelined implementation is similar to Meng's

demultiplexer, as shown in Figure 5.23. The simulation result of the corresponding

circuit is shown in Figure 5.24.
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Figure 5.24 Simulation result of a 4-cycle Data Flow SELECT actor.
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5.3.6 Self-timed implementation of the data flow MUX actor

From Chapter 3, we know that the MUX actor fires only when all 3 input

tokens are available and no output token is present. This results in the production of

an output token after the consumption of the input tokens. Thus, it can be viewed as a

slightly complex PREDICATE actor. Since all the inputs (i.e. both request and

acknowledge) will be in-sync, the circuit should be intuitively simple.

An important result is that the Boolean value C is not required in the design of

the control path of this actor. It can be used along with the request signals to control

the actual multiplexer in the data path. The 2-cycle pipelined and the 4-cycle

pipelined implementations are shown in Figure 5.25 and Figure 5.27, respectively.

The corresponding simulation results are shown in Figure 5.26 and Figure 5.28,

respectively.

5.3.7 Self-timed implementation of the data flow INIT actor

The INIT actor is the only actor that does not have all of its signals in the

same state on system reset. In fact, the Rout signal is logic '1' on system reset which,

on abstracting up to the data flow graph level denotes the existence of an initial token.

As can be seen from Figure 5.29, a 2-cycle pipelined version of it can be

easily implemented using a Muller-C element that gets 'set' on system reset. An

inverter in the output acknowledge path guarantees that the rest of the pipeline will

work correctly. The simulation result is illustrated in Figure 5.30.

A similar principle is followed in designing the 4-cycle pipelined INIT actor.

An additional Muller-C element of the type discussed above is used. Figure 5.31 and

Figure 5.32 illustrate the schematic and simulation result of this circuit.
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Figure 5.26 Simulation result of a 2-cycle Data Flow MUX actor.
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5.3.8 Self-timed implementation of the data flow IDENTITY actor

This is a simple sample delay actor, usually used in the feedback path of DSP

algorithms. Therefore, it is exactly like the basic pipeline event control circuits

discussed at the beginning of this chapter.

5.3.9 Self-timed implementation of the data flow COUNTER actor

This is a very interesting actor. As discussed in Chapter 3, this actor consumes

N input tokens before producing an output token. This at the circuit level requires N

input request transitions in the 2-cycle protocol and 2N-1 input transitions in the 4-

cycle protocol before a transition is produced on the output.

We began by using a conventional ripple COUNTER. Note that any counter

design methodology can be used, since all we are interested in is the signal that

indicates that the count has been reached. Of course, the same trade-offs of hardware

cost versus speed that apply to counter designs are applicable here. Therefore, for the

purposes of clarity in the schematics, we will denote this counter as a block with an

input and an output. The extra control circuitry that is required to enable this counter

to act as a COUNTER actor is also shown.

The reader should by this time be familiar with the circuit schematics. In fact,

the solutions proved to be very elegant and minimal. The schematic and simulation

results of the pipelined 2-cycle COUNTER actor are shown in Figure 5.33 and Figure

5.34, respectively. The 4-cycle counterparts are illustrated in Figure 5.35 and Figure

5.36, respectively.
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Figure 5.33 2-cycle implementation of the Data Flow COUNTER actor.
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Figure 5.34 Simulation result of a 2-cycle Data Flow COUNTER actor.
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Figure 5.36 Simulation result of a 4-cycle Data Flow COUNTER actor.
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5.3.10 Self-timed implementation of the data flow REPEAT actor.

This actor is in essence the exact opposite of the COUNTER actor. Here, on

the consumption of one input token, N output tokens have to be created. This actor

was probably the most difficult to visualize. The solution is surprisingly simple. By

using the COUNTER actor that was designed in the previous section and with some

additional control circuitry, we could design a REPEAT actor.

It can be observed in the schematic of the 2-cycle version that the COUNTER

actor is represented by a block with the four basic request and acknowledge signals. A

double-edge triggered flip-flop, which is 'set' on system reset, is used along with two

2-input AND gates and a 2-input EX-OR gate to channel the generation of the output

request signal. The first output transition is generated using the input request signal.

Since the input acknowledge signal of the REPEAT actor is fed into the input request

signal of the COUNTER actor, the rest of the N-1 transitions are generated using the

output acknowledge signal of the COUNTER actor.

The Nth output transition causes the COUNTER actor to produce a transition

at its request output. This output is connected to the acknowledge input of the

COUNTER actor and also to the clock input of the D flip-flop. The D input of the D

flip-flop holds a logic '0', which on the arrival of the clock is passed to the Q output

and then into the SET input of the same flip-flop. The circuit is now ready to proceed

with the next transaction.

This might seem confusing to the reader. It is recommended to trace the

operation using the schematic in Figure 5.37 and the simulation result in Figure 5.38.

The corresponding 4-cycle circuit schematic is very similar in principle and is

represented in Figure 5.39. The simulation result is in Figure 5.40.
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Note that a shift actor can use exactly the same control. Only the data path changes

complexion. Instead of an one n-bit register in the case of the REPEAT actor, the shift

actor requires n 1-bit registers.

5.4 Comparison of the Two Protocols

After presenting the various implementations, the next logical step was to

compare the two protocols based on the various implementations of the different data

flow actors. A very simple benchmark for comparison has been used. This benchmark

is based on a few assumptions.

We assume that the circuits will be implemented using static CMOS.

Secondly, we calculated the transistor count of all types of gates, flip-

flops, and Muller C-elements used. The transistor count is representative

of the silicon area that will be required by that particular primitive.

Then we calculated the intrinsic delay of each gate in terms of inverter

delays. This assumption makes the calculations independent of the

technology used to implement the gates. Worst case conditions have

been considered.

Table I contains the transistor counts and the intrinsic gate delays of the

various 2-input gates, a Muller-C element with reset, a Muller-C element

with one inverted input and reset, a positive-edge triggered flip-flop and

a double-edge triggered flip-flop. For every additional input to a logic

gate, we considered an additional two transistors and half a gate delay.
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Table I. Transistor count and intrinsic gate delay of the basic logic elements for a
static CMOS implementation. Worst case conditions are considered. Note that every
additional input to a logic gate adds 2 transistors and 0.5 gate delay.

Logic element Transistor count Gate Delay

Inverter 2 1

Buffer 4 2

2-input NAND gate 4 1.5

2-input AND gate 6 2.5

2-input NOR gate 4 2

2-input OR gate 6 3

2-input XOR gate 10 2.5

Muller-C element 13 2.5

Positive-edge
triggered D FF

9 3

Double-edge
triggered D FF

26 3

While calculating the intrinsic delay of the 4-cycle implementation of

the data flow actors, we multiplied the delay by 2. Note that the same

circuit is used to make all the control signalsreturn to zero.

In Table II, we present the transistor counts and intrinsic gate delays of the

various implementations of the data flow links and actors. As stated earlier, to be

concise we have not presented the circuit schematics of the non-pipelined

implementations. As these have been designed and simulated, we will present the
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Table II. Comparison of 2-cycle and 4-cycle pipelined implementations of the
data flow links and actors. Note that the transistor count, intrinsic delay and
performance measure are symbolized as A, T and P, respectively.

Data Flow
Actor

2-cycle protocol 4-cycle protocol Difference
(%)

A T P=A*T A T P=A*T

PRIMITIVE 17 4.5 76.5 30 14 420 449

LINK 28 8 224 58 19 1102 392

PREDICATE 43 6 258 58 19 1102 327

TRUE 116 17 1972 83 32 2656 35

MERGE 258 21.5 5547 132 28 3696 -33

SELECT 188 22 4136 92 39 3588 -13

MUX 56 8.5 476 71 24 1704 258

INIT 17 4.5 76.5 45 21 945 1135

COUNTER 59 10.5 619.5 54 27 1458 135

REPEAT 122 24.5 2989 128 94 12032 303

above numbers for them also. The transistor count is symbolically represented as 'A'

and the intrinsic delay of the actor as 'T'.

For an effective comparison, we calculate the area-delay product, P (= A*T).

The resulting numbers are presented in the same table. This number is compared for

the two protocols and presented as a percentage. A positive number means the 2-cycle

implementation is better and vice versa.

Similarly, Table III contains the corresponding figures for non-pipelined

implementations for both the protocols. Note that non-pipelined implementations for
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Table III. Comparison of 2-cycle and 4-cycle non-pipelined implementations of
the data flow links and actors. Note that the transistor count, intrinsic delay and
performance measure are symbolized as A, T and P, respectively.

Data Flow
Actor

2-cycle protocol 4-cycle protocol Difference
(%)

A T P=A*T A T P=A*T

PRIMITIVE 8 4 32 49 24 1176 3575

LINK 21 6.5 136.5 50 29 1450 962

PREDICATE 21 6.5 136.5 67 26 1742 1176

TRUE 101 13.5 1363.5 118 40 4720 246

MERGE 201 18 3618 149 44 6556 81

SELECT 173 19 3287 97 34 3298 0.33

MUX 34 9 306 88 28 2464 705

the INIT, COUNTER and REPEAT actors were not designed. Since the INIT actor is

usually in the feedback path in DSP algorithms and a self-loop should have one

sample delay, it was felt that only a pipelined version was required. Another reason

was that an INIT actor signified that an initial token is being held in a register (i.e. a

pipelined implementation is required).

As far as the COUNTER and REPEAT actors were concerned, they were

large grain actors, in which case a non-pipelined implementation would result in their

latency greatly affecting the performance of the system.

Comparing the simple benchmark numbers presented in the last column of

Table II and Table III, it is very easy to see that the 2-cycle protocol is by far the

better alternative. Only the pipelined 2-cycle implementation of the MERGE and
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SELECT actors are worse than their 4-cycle counterparts. The main cause of this is

the relatively expensive double-edge triggered flip-flop that was used in the 2-cycle

implementations.

5.5 Summary

The circuit schematics and the results presented in this chapter are the main

contribution of this thesis. This should conclusively prove that the 2-cycle protocol

offers greater potential than the 4-cycle protocol in the design of the distributed

control path of a computation algorithm - application-specific or general purpose.

In the next chapter, we will investigate these conclusions further in the context

of an application-specific DSP algorithm.
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Chapter 6. SIMULATION OF A SELF-TIMED DECIMATION FILTER

6.0 Introduction

In the last chapter, we discussed the 2-cycle and 4-cycle self-timed

implementations of the data flow actors. After a comparison of the transistor counts

(related to cost in terms of silicon real-estate), and knowing that the intrinsic delays of

the actors were comparable, it was time to simulate an actual example to determine

which of the two protocols offered greater system level performance. Intuitively, it

seemed that the 2-cycle philosophy should be able to offer at least a 100% system

performance improvement. But does this intuition translate to reality? The

determination of this fact is the focus of this chapter.

We needed an example that would be a good benchmark for the event-control

circuits and not a commentary on the actual implementation of the computation

blocks. We decided on a multistage multirate comb filter that would be used for the

purpose of decimation. The example does not have any decision making, which is not

true of all DSP applications. Also, the transistor counts of the 2-cycle decision actors

is greater than that of the 4-cycle decision actors. So although the transistor count

might seem unfairly in the favor of the 2-cycle protocol, the issue here is

performance. We will discuss this issue once we have the actual numbers.

6.1 A Multistage Multirate Combs Filter Design Method

In [57], Chu and Burrus presented a new multistage multirate digital filter

design method. Multirate filters are members of a class that has different sampling

rates in various stages of the filtering operation. This class of filters includes
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decimators, interpolators, and narrow-band low-pass filters implemented with

decimation, low-pass filtering, and interpolation. One of its most famous applications

is band-pass delta-sigma modulators.

If H(z) and D are the transfer function and decimation ratio respectively, then

we need to design H(z) such that

H(z) = f(z)g(zD).

By the commutative rule, the transfer function g(zD) can be implemented at

the lower rate (after decimation) as g(z). This implementation reduces the filter order,

storage requirement, and the arithmetic. Further requirements on H(z) allow only

simple integer coefficients. This is feasible because there are no passband

specifications on the frequency response.

A comb filter of length D is an FIR filter with all D coefficients equal to one:

H(z) = f(z)g(zD)
D-1

Z-n = 1- z-D
n=0 1 z-1

A single comb filter generally does not give enough stopband attenuation. However,

cascaded comb filters can often meet the requirements. Cascading M length-D comb

filters will give us the following transfer function:

H(z) =

M
-D

1 z

1 - z -1

Thus a comb decimator has M length-D comb filters in cascade, where all the

accumulators are cascaded before the sampler and all the (1 z-1) sections are
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cascaded after the sampler. The comb filter structure has a recursive stage with a pole

at z=1, which is not asymptotically stable, and therefore may overflow. The filter

operation depends on a "wrap around" number system similar to the 2's-complement

number system.

In our case, M=3 and D=32 and the data bus width is 20 bits. Fig. 6.1 has the

C program that simulates the mathematical operations of the decimator. This program

was provided to us by Richard Schreier of OSU [58]. The corresponding data flow

graph is shown in Fig. 6.2.

6.2 A Self-timed Implementation of the Decimation Filter

The data flow graph of the decimation filter of Fig. 6.2 is mapped to the block

diagram schematic of a self-timed implementation of it, as shown in Fig. 6.3. The

reader should notice how the arcs of the data flow graph map very elegantly to the

request-acknowledge control path and implicitly to the data path of the self-timed

implementation.

The computation blocks have been modeled behaviorally since their design

does not affect the performance of the event-control logic. The behavioral model of

the 2-cycle adder is shown in Fig. 6.4. Note the modeling of the storage registers in

the VHDL program. Fig. 6.5 illustrates the schematic of the 2-cycle ADDER

PREDICATE. Remember that the ADDER PREDICATE has been modeled

structurally. In fact, it is possible to observe the similarity of the structure to the

micropipeline discussed in Chapter 2 and the 2-cycle PREDICATE actor discussed in

Chapter 5. Also notice that the register is modeled as a latch-buffer combination. This

is based on the "pass" and "capture" philosophy of the micropipeline.
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/*

decimate.c
Simulates the mathematical operations carried out by a sinc-3 decimator
with a decimation factor of 32. The decimator uses modulo 2-20 arithmetic
to do its calculations.

*

R. Schreier of OSU, 1993.
*

*/

/**
*** Slight modifications have been made by us to reflect the functionality that
*** is shown in the data flow graph.
***
**/

#define R 32
*define N 20

static
static
static

int Modulus = l«N;
int Signbit = 1«(N-1);
int Mask = (1«N) 1;

int mod( int x ){
return x&Mask;

main()
{

/* Declarations */
int al=0, a2=0, a3=0, s1=0, s2=0, s3=0;
int t, x, yl, y2, y3;

/* Get the input and go through the equations. */

for (t=o; scanf("%d',&x) > 0 ; )

al = mod( al + x );
a2 = mod( a2 + al );
a3 = mod( a3 + a2 );

if ( ++t == 32)

t = 0;
yl
sl

= mod(
= a4;

a4 sl );

y2
s2

= mod(
= yl;

yl s2 );

y3
s3

= mod(
= y2;

y2 s3 );

exit(0);

Figure 6.1 A C program which simulates the operation of the decimator.
Courtesy: R. Schreier of OSU. The original program has been modified by us.
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VHDL behavioral model for a 2 -cycle 20-bit parallel adder with a register.
entity ADDER_20_2 is

generic (cout_delay: time := 3500 ps; reg_delay: time := 2 ns;
done_delay: time := 5500 ps);

port (signal dout: out vlbit_vector(0 to 19); signal cost: out vlbit;
signal done: out vlbit; signal a, b: in vlbit_vector(0 tc 19);
signal bin: in vlbit; signal clk: in vlbit; signal RESET: in vlbit);

end ADDER_20_2;

architecture BEHAVIOR of ADDER_20_2 is
signal ADDER_20out: vlbit_vector(0 to 20); ADDER output: cout & dout
signal ResReg: vlbit_vector(0 to 19); Result Register
signal over: vlbit;

begin
addprocess: process(a, b, cin)

variable res_22: vlbit_ld(-1 to 20); 22 bit temporary result
begin

res_22 := add2c (add2c (a,b), '0' & cin);
ADDER_20out <= res_22(0 to 20);

end process;

Concurrent register process statement:
Load up the register on both the rising and falling edges of the clock.

register_process: process
constant XOUT: vlbit_ld(0 to 19) :=

('X','X','X','X','X','X','X','X''X','X','X','X','X','X','X','X','X','X','X','X');
constant ZERO: vlbit_ld(0 to 19) :=

('0','0','0','0' ' 0','0','0','0','0','0','0','0', '0','0','0','0','0','0','0','0'
begin

if RESET = '0' then
ResReg <= ZERO;
over <= '0';

end if;
wait until pchanging(RESET) or pchanging(clk);

if RESET = '0' then
ResReg <= ZERO; over <= '0';

else if RESET = '1' then
if pchanging(clk) and over = '0' then

ResReg <= ADDER_20out(1 to 20);
over <= '1';
else if pchanging(clk) and over = '1'

then ResReg <= ADDER_20out(1 to 20;
over <= '0';

end if;
end if;
else ResReg <= XOUT;

end if;
end if;

end process;

);

Concurrent signal assignments
cout <= ADDER_20out(0) after cout_delay; dout <= ResReg after cout_delay; done <=
over after cout_delay;

end BEHAVIOR;

Figure 6.4 Behavioral description of a 2-cycle ADDER
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Intuitively, the corresponding program for the 4-cycle implementation of an

adder is also the same, except that the register loads only on the rising edge.

Similarly, for the 4-cycle ADDER PREDICATE the structural definition is much like

the structural definition of the 2-cycle adder PREDICATE, with only one difference -

the Muller-C elements used to latch data into the registers are replaced by the basic 4-

cycle handshake structure shown in Fig. 2.4.

This step-by-step natural and elegant mapping of the links and actors of a data

flow graph into the self-timed digital circuits of these same links and actors, resulting

in a very simple pipelined structure, is the main strength of this philosophy.

6.3 Simulation Results

The final programs for the decimation filter were also written in a hierarchical

fashion. In Fig. 6.3, we can see the existence of three basic modules, which act as

building blocks for the whole graph. The three modules are:

Module 1 - consists of the adder PREDICATE, the LINK actor and the INIT

actor

Module 2 - consists of the COUNTER actor with N = 32, and

Module 3 - consists of the subtracter PREDICATE, the LINK actor and the

DELAY(IDENTITY) actor.

These modules were simulated separately and then integrated to implement

the full graph. The simulation results of both the 2-cycle and 4-cycle self-timed

implementations of a 20-bit 3-stage length-32 decimation filter are presented in

Figures 6.6 and 6.7, respectively.
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Comparing the results, it can be computed that the 2-cycle implementation

performed better than the 4-cycle implementation by a factor of 2. Intuition translates

to reality. We have answered the question we posed to ourselves at the beginning of

this chapter. Also the approximate transistor count was much less (the values were

computed but have not been presented). Although the decimation filter was a good

benchmark to compare performance, it was not a good basis for a cost estimate. This

is largely due to the lack of any decision blocks. The 2-cycle decision blocks are more

expensive than their 4-cycle counterparts.

6.4 Summary

The results of this chapter allow us to safely conclude that the 2-cycle protocol

offers greater performance than the 4-cycle request-acknowledge protocol. The cost

might be greater hardware cost. This is dependent on the algorithm. But for most DSP

applications the cost would not be considerably larger for a 2-cycle implementation

than a 4-cycle implementation, if larger at all. So the cost-to-performance ratio works

out be in the favor of the 2-cycle protocol.

Another important factor worth consideration is power consumption. A 2-

cycle protocol is inherently more energy efficient than a corresponding 4-cycle

implementation. In the next chapter, we will discuss the importance of this in greater

depth.
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Chapter 7. CONCLUSIONS AND FUTURE WORK

7.0 Conclusions

This thesis was an attempt to understand the issues involved in the mapping of

data flow graphs adapted for DSP onto self-timed digital circuit design of the required

event-control modules to generate a very elegant and natural pipeline structure.

We started by understanding the advantages of self-timed design and how, by

using very simple pipeline structures we could exploit a greater degree of parallelism.

The 2-cycle and 4-cycle request-acknowledge protocols were explained and

compared. The use of data flow graphs adapted for DSP applications as a high level

specification was discussed. The natural ease with which a data flow graph lends to

the specification of self-timed circuits was demonstrated.

After designing self-timed circuits for the data flow links and actors to

perform event control of the resulting pipeline, we presented an implementation of a

20-bit, 3-stage, length-32 decimation filter. The results strengthened our initial

intuition that the 2-cycle protocol provided a very good way of designing self-timed

digital circuits, especially in the above context.

7.1 Future Work

As with research of new ideas, there exists a plethora of problems that need to

be studied, to gain a better understanding of the many issues involved. I will attempt

to break these problems down into a few categories. None of these problems are

trivial, but all are not equally important. By this we mean that a certain degree of
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prioritizing needs to be enforced, so that the research can progress with focus and

speed.

7.1.1 DSP applications

An issue of importance is to look at a larger set of DSP applications to

determine what kind of graphs arise. This could help in understanding in greater

depth the issues concerning automatic scheduling of data flow actors.

An example worth studying would be a common Finite Impulse Response

(FIR) filter. An FIR filter computes the inner product of a vector of coefficients and a

vector with the last N input tokens, where N is the order of the filter. It is assumed

that it repeats forever. It fires each time a new token arrives.

Many different implementations are possible. We can have large grain

approaches where the details are hidden within one actor, or a fine grain approach

with multiple adders and multipliers (dependent on the order of the filter). Yet another

approach is to use iteration and a single adder and multiplier.

Also we need to determine what class of algorithms (DSP or otherwise, for

example floating point computations) could exploit the advantages of self-timed

design. Another example is the use of self-timed circuit design principles for

implementing high-rate linear adaptive filters. A vectorized version of the same will

be able to handle arbitrarily high-rates, for the same hardware speed, at the cost of

parallel hardware. Meng has devoted a lot of effort in studying this for a 4-cycle

implementation. It would be interesting to see how a 2-cycle implementation would

perform against it.

This would entail some transistor level implementations, and the design,

layout, fabrication and testing of some chips/chip sets. Use of Enable/Disable CMOS
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Differential Logic (ECDL) for the design of computation blocks could be an active

area of study.

7.1.2 General-purpose computing

As stated above, a study of the characteristics of data flow graphs could help

in understanding the complex issues involved in adapting this philosophy for general-

purpose computing applications. Of course, this involves a lot of research at an

architectural and systems level. Immediate applications could be floating point

computation.

A very promising area of application is the design of RISC microprocessors

for portable computers whose main selling point is not performance but power

consumption. In [59], Dick Pountain talks about Steve Furber's research in this highly

promising application. He uses the 2-cycle protocol of Sutherland.

In [60], Chang discusses the issues involved in designing a data flow

microprocessor using the 2-cycle protocol. Here, he also looks at the issue of using

many such processors in a multiprocessor environment.

7.1.3 CAD tool design

Finally, as in all research efforts, some customized CAD tools are required.

An immediate requirement would be the development of a high-level data flow

simulator to use the expanded basic data flow set as a toolkit. This will permit the

designer to determine the existence of any deadlocks in the graph. It will allow him to

have an initial estimate of the performance. It will allow him architecturally to revise
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the graph to improve performance. Once approved, the graph could then be mapped

to an automatic generation of VHDL behavioral/structural code.

Summarizing, we would like to automate the design process in the future.

Design tools will be developed. These tools can be classified into four categories:

User Interface Tools
* Schematic entry tool: A schematic capture tool for graphic entry

of data flow specification (structural description).
* Compiler: A tool to convert high-level data flow description

(behavior) in to structure description.

II Simulation Tools
* Simulator: A structure (logic) level simulator for data flow

graph.
* Timing simulator: A tool to simulate DFG with timing.

III Analysis Tools
* Performance estimator: A static tool to predict worst case

performance.
* Cost estimator: A static tool to predict and estimate the area and

power for a DFG.

IV Implementation Tools
* Place and Route: Modification for DFG mapping to

micropipelines.
* Logic synthesis: Auto-synthesis tool converting logic equation

to ECDL.

With these tools, we will be in a position to address some important issues that

have not been investigated. For example, we can then compose more complex

examples for performance evaluation purposes.
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