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STIFFNESS MATRIX ANALYSIS OF STRUCTURES 
BY ELECTRONIC DIGITAL COMPUTER 

Part i 

INTRODUCTION 

Many numerical methods have been developed in recent years 

in an attempt to eliminate the labor involved in the analysis of corn- 

plex structures. The advent of electronic computers in particular 

has presented new horizons to the structural engineer. A new era 

has thus been marked with the faster than thought electronic giants. 

Although these computers have been successfully used in the aircraft 

industry, their use to civil engineering structures has been some- 

what less familiar. The high cost of such computers has been the 

main reason for their non-availability to consulting firms specializ- 

ing in Civil Engineering structures. In the last few years, however, 

this situation has changed considerably with the development of the 

Computer Program Exchange (7) which makes available to almost 

anyone warranting the use of a particular program. 

Relaxation methods have been used successfully in the past to 

calculate complex elastic systems. The first application of the me- 

thod to structural and other physical systems was made in 1935 by 

Southwell (31) inspired by the techniques of Hardy Cross (10) for 

rigid jointed frameworks. The basic computational process of the 

relaxation method when applied to frameworks can most easily be 
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described in relation to the solution of equations which may also be 

solved by the more standard structural methods. Today, with the 

advent of electronic computers the iteration techniques of solution of 

simultaneous equations is becoming less desirable. The electronic 

digital computer of today is not employed merely for the solution of 

equations but also for the complete process of structural analysis. 

Matrix methods of structural analysis are today the greatest 

tool in the numerical analysis of engineering structures. For clari- 

fication it may be emphasized here that speaking of matrix methods of 

analysis it is not meant merely the solution of a set of equations for 

the unknown coefficients by applying matrix algebra. What is meant 

and what is in fact essential here is the formulation and consistent 

development of structural analysis in matrix language, starting with 

the compilation of the initial data to the final stress distribution. 

This approach allows systematization and simplification of the calcu- 

lations which otherwise would be impossible. Once the initial mat- 

rices are formulated and assembled, the operations that follow in- 

volve elementary matrix algebra. Besides, the matrix formulation 

is the ideal language for the electronic computer. 

Several authors have shown the matrix formulation of struc- 

turai theory and its application to structural problems. The stiffness 

matrix type of structural analysis was discussed in a paper by 
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G. Kron (19) in 1944. Papers by Langefors (21) and others followed. 

Argyris (2, 3) has given a thorough treatment of energy methods in 

matrix form. Lang and Bisplinghoff (20) have presented Levyt s (23) 

application of the strain energy theory to a complex aircraft struc- 

ture. Notable contributions were also made by Benscoter (5), Denke 

(11), Lansing and Wehie (22), Clough (8, 9), Turner (32), Martin 

(24), Klein (18), and many others. 

1. 1 General Assumptions 

This thesis will be concerned only with structures composed 

of straight uniform members joined at their ends. The problems to 

be analyzed hereinafter will be limited only to those in which exter- 

nal loads consist of forces and couples applied at the joints. The 

justification of this assumption is based on the principle that any 

loading of a member at points between its ends may be replaced by 

equivalent fixed end forces and moments at the joints without causing 

any change of stresses in the rest of the structure (28, p. 236). The 

actual stresses in the loaded member may be determined by simple 

Superposition after having evaluated the displacements and 

stresses due to the equivalent loading. All stresses, joint rota- 

tions and displacements are assumed to be linear functions of the 

applied loads. This implies that all displacements and rotations are 
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small as compared with the dimensions of the framework. lt is fur- 

ther implied that the joint loads and joint displacements and rotations 

are interrelated by a set of linear simultaneous algebraic equations. 

1.2 Purpose of Thesis 

The purpose of this thesis is to present a matrix method for 

analyzing civil engineering structures. lt is of particular interest 

where automatic digital computing equipment is available to solve 

large numbers of simultaneous equations in matrix array. Empha- 

sis has been given to the use of stiffness influence coefficients. 

This method will yield structural data of sufficient accuracy to be 

adequate for analyses of complex structures. Basic conditions of 

continuity and equilibrium requirements can be satisfied by use of 

a tabular procedure for writing the stiffness matrix of the entire 

structure. The method is illustrated by its application to a simple 

rigid frame bent and to a Vierendeel truss. 
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Part Z 

MATRIX ALGEBRA APPLIED TO STRUCTURAL ANALYSIS 

2. 1. Definitions and Terminology 

This section is intended to point out some of the high-lights 

which will illustrate the advantages of the use of matrices. The 

matrix algebra approach presents the most convenient method of 

systematizing structural calculations for computer solution. Con- 

venientl.y, all manufacturers of electronic digital computers have 

the basic operations of matrix algebra, such as matrix inversion, 

multiplication, addition and subtraction, already programmed (4, 

p. 73). These machine programs of matrix operations can be in- 

corporated into the solution, thus reducing the amount of program- 

ming required for a solution. 

The matric terminology used in this thesis is limited to 

those portions of matrix algebra which have been used to clarify 

their use in the subsequent discussion. 

A matrix is defined as a rectangular array of elements ar- 

ranged in rows and columns. lt should be noted at the beginning that 

a matrix has no numerical value. It is simply a convenient way of 

representing arrays of numbers. 



The order of a matrix refers to its size. A matrix contain- 

ing rn rows and n columns is said to be of order (m x n). 

A row matrix is one containing a single row. Consider the 

equation 

2.x + 3y - 4z = O 

The coefficients of the unknowns; x, y, and z may be writ- 

ten as an array of numbers appearing in a row. 

[z 3 -41 

This is defined as a row matrix. Its order is (1 x n), the 

square brackets denoting the fact that this is a matrix. 

A column matrix is one containing a sirg le column. The un- 

knowns x, y, and z of the above equation may be written as an 

array of numbers appearing in a column. 

Ix 

Lz 

This is defined as a column matrix and may also be written in the 

form 

{x y z} 

where 
{ } 

denotes the fact that this is a column matrix appearing as 

a row for the sake of convenience or for conserving space. 

A square matrix is one that has the same number of rows as 

columns. 
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A unit matrix is one which has unit elements on the diagonal 

and zeros all other elements. The unit matrix is denoted by I and 

serves the same function in matrix algebra as unity does in ordinary 

algebra. 

i o o 

O 1 0 =1 

O O i 

This is a unit matrix of order (3 x 3) 

A symmetrical matrix is a square matrix which is symmetri- 

cal about its diagonal. 

2 3 -4 

3 5 6 
This is a symmetrical matrix 
of order (3 x 3) 

-4 6 8 

Z. Z. Addition and Subtraction of Matrices 

If the elements of one matrix are added or subtracted from 

the corresponding elements of another, the resulting elements form 

a third matrix, which is the sum or the difference of the first two. 

An example of matrix addition would be: 

6 81 rz -1 r8 4 

1+1 1=1 
L4 -3i L3 L7 4 



2. 3 Matrix Multiplication 

Consider the matrices 

ra1i a12 b11 b12 

A = B= 
[a21 a22 b21 b22 

[A] [B] = [C] 

c c a b +a b a b +a b.,1 
11 12 11 11 12 21 11 12 12 2. 

[C] 

= [21 22] [a2ibii+a22b21 a21b12+a22b22 j 

lt may be noted that each element of the product matrix "C" 

is the inner product of its corresponding row and column. This 

process is known as matrix multiplication. 

Consider the three simultaneous equations 

3x1 + 2x2 - 4x3 = C1 

2x1 - 3x2 - 5x3 = C2 

X1 + ¿x3 = C3 

Putting these equations in matrix form 

[K]{x} = {C} 



where 

3 2 -4 x1) C1 

[K] = ¿ -3 -5 {x} = x {c} = 

1 0 +2 x3J C3 

a square matrix of coefficients, a column matrix of unknowns, and 

column matrix of numbers. Multiplying each row of the square 

matrix by the elements of the column matrix of unknowns will re- 

store the equations to their original algebraic form. 

In order to obtain the solution for the unknowns x1, x2, 

and x3 both sides of the matrix equation would be multiplied by the 

inverse of the square matrix of coefficients. 

[K] [K] {x} = [K]{c 
or {x} = [K]'{c 

There are several methods for obtaining the inverse of a 

matrix. One method is described briefly in the following pages as 

will be used later to illustrate the solution of a structural problem 

by the matrix method of analysis. 

z. 4. Matrix Inversion (15, p. ¿9-34) 

Consider a square matrix of order n (let n3 for simplicity) 



a11 a12 

a21 a22 

a31 a32 

Place a unit matrix to the right 

10 

a13 

a23 (2.4.1) 

a33 

of the original matrix 

a11 a12 a13 1 0 0 

a21 a22 a23 O 1 0 (2. 4. 2) 

a31 a32 a33 0 0 1 

Next we perform algebraic processes on the rows and columns 

of the composite matrix in such a manner as to reduce the original 

matrix to a unit matrix. When this has been accomplished, the ori- 

ginal unit matrix portion has been converted to a reciprocal matrix, 

thus completing the matrix inversion as follows: 

1) Divide each element of the first row by its leading 
element (a11), thus obtaining: 

o 
a11 a11 a11 

a21 a22 a23 O i 0 (2.4.3) 

a31 a a33 O 0 1 

2) Subtract a21 times the first row from the respective 
elements of the succeeding rows (i = 2, 3): 
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a12 a13 
i i __ __ - o 01 

a11 a11 a11 

O aZzazlk_) a23a2i_) zi) 
i 

(a12\ (a13\ 
O - a 1 

1 0 (2.4.4) 

o - a o i a32a31_) 31a11) 
J 

The reduced matrix of (2. 4. 4) may be written in the form 

ra' a' b' i O 
22 23 ¿4 

(2.4.5) 
a' at b' O i 

32 33 34 

Applying to (2. 4. 5) the sanie transformations as in steps 1 

and 2, we obtain 

aZ3 

[o 

fa 3\ 

1 

34 32\J 0-aÇ±lj 
(2.4.6) 

b' - a 

The reduced matrix of (2. 4. 6) may be written 

[a3 b4 b5 i] (2.4.7) 

Step i need by aj 

b" 
I 

34 

L 
a33 

Dplied to (2. 4. 7) to obtain 

b" 1 1 - 
I 

(2.4.8) 
's a33j 
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The transformations outlined leave the original matrix in a 

triangular form: 

a12 a13 i - - o o a11 a11 a11 

a3 b4 1 

o i - - o a' at a2 22 22 

bt' bt' i 

34 35 
o o i - - - a" a" a!' 

33 33 33 

which may be written: 

(2.4. 

1 ai2 a13 bi4 O O 

o i a23 b24 b25 O (2.4.iO) 

o o i b34 b35 b36 

3) In order to reduce (2. 4. iO) to the unit matrix the follow- 
ing transformations are performed on rows i, 2 of (2.4. 10) 
Multiply an element of the fourth column by the elements 
of the last row and subtract the products from the res- 
pective row thus yielding (2. 4. il) (i.e. aj3 
i = 1,2; j = 1,2, . .6). This transformation leaves columns 
1,2 unchanged: 

a12 O b1413b34 bi5i3b35 b1613b36 

(2.4 11) 

L0 
O b24-a23b34 25-a23b35 b26a23b36j 
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Rewriting (2. 4. 11) with14 = element of fpurth column, and 

= i.., we have 
13 13 

1 a12 O b14 b15 b16 

(2.4.12) 
0 1 0 b24 b25 b26 

To obtain the next matrix a transformation similar to step 3 

is applied to (2.4. 12) 

[i o O b14-a12b24 b1512b25 b16 12b261(2.4.13) 

Rewriting (2. 4. 13) as before we obtain 

[i o o b14 b15 b16] (2.4.14) 

Rewriting the entire matrix as before, the inverse results: 

1 0 O b14 b15 b16 

o i 1)24 b25 
Z6 

o o 1 1)34 b35 b36 
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Part 3 

THE STIFFNESS MATRIX ANALYSIS OF STRUCTURES 

3. 1 Matrix Force and Deformation Methods 

The matrix method of analysis of structures is generally 

formulated around three basic conditions which must be satisfied 

(32, p. 807): 

(1) The applied forces must be in equilibrium with the inter- 

nal forces 

(Z) The deformations of the members must be compatible 

(i. e. consistent with each other and with the boundary conditions) 

(3) The forces and deflections in each member must be re- 

lated in accordance with the stress-strain relationship assumed for 

the material. 

The force-deformation relations are divided into two me- 

thods: (a) the force method in which forces or stress resultants 

(or generalized forces) are taken as unknowns and (b) the deformation 

method in which deflections or slopes (or generalized displacements) 

are taken as unknowns (3, p. 5). 

When using the force method a flexibility matrix is first 

formulated by applying a unit force to each node (joint), one node at 



15 

a tine, and computing the deformations due to the unit force. The 

resulting matrix is then multiplied by a column matrix of known 

forces to produce the desired displacements in a column matrix. 

Using matrix notation 

where 

{u} = [f]{P} 

{ u]. is the displacement matrix of the structure units 

[f ] is the flexibility matrix 

{ p) is the matrix of forces and moments on the units of 

the structure 

When using the deformation method a stiffness matrix is 

formulated by displacing a node of the structure, one node at a 

time, while restraining all other nodes, and computing the result- 

ing moments and shears. In matrix form 

= [K]{u 

where [K] is the stiffness matrix 

Elastic Spring 

Perhaps the simplest example that can be used to illustrate 

the method is the elastic spring. According to Hooke' s Law the 
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Figure 3. 1. 1. Elastic Spring. 

16 

relationship between force and 

displacement is 

P = k6 (3.1.1) 

where P is the axial load, ô is 

the spring deflection, and k is the 

force required to produce a unit 

deflection. Since k is a measure 

of the stiffness of the spring, it can 

be considered to be a stiffness influence coefficient. Equation (3.1.1) 

can also be written 

ô = k1P = fP (3. 1. 2) 

where f is the deflection due to a unit force. As such, f is a 

measure of the flexibility of the spring; therefore it can be consid- 

ered to be a flexibility influence coefficient. lt is useful to interpret 

k1 as the deflection due to a unit load. 

The dual relations described briefly above are easily seen 

from the following relationships: 

Force Method 

Force (stress) 

Displacement (strain) 

= 
Displacement Flexibility Force 

Deformation Method 

Displacement (strain) 

Force (stress) 

Fo r c e Stiffness Displacement 
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The duality of these two relationships has been treated in 

detail by Argyris (Z, p. 176). 

In this paper we will be concerned with the stiffness matrix 

method of analysis. 

3. 2 Stiffness Matrix Method 

The Stiffness Matrix Method is based essentially on the as- 

sumption that a complex structure can be analyzed as an assemblage 

of elements whose elastic behavior is known (25, p. 537). lt is fur- 

ther assumed that the loads acting on the structure are represented 

by discrete concentrated loads acting only at the nodal points of the 

structure. These loads are referred to as generalized forces al- 

though they may actually be forces, moments, or both. Consequently, 

when the elastic behavior of a structural element is known the gen- 

eralized forces acting on it may be written as linear functions of the 

generalized nodal displacements. Thus: 

p =k u +k u +k u +k u 
1 11 1 12 2 13 3 in n 

p =k u +k u+k u ........... +k u 
2 211 222 233 Znn 

(3.2.1) 

p =k u+k u+k u ........... +k u 
n nil n22 n33 nn 
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where u' s are the generalized displacements which may be either 

displacements or rotations acting in the same directions as the cor- 

responding generalized forces. The k' s are the stiffness coefficients; 

that is, k.. is the force p. produced by a unit displacement u = 1. 

Once the stiffness coefficients of the individual elements of the struc- 

ture are determined, the stiffness coefficients of the entire structure 

may be obtained by merely adding together at each node the stiffness 

coefficients of the adjacent elements. These may be written for 

simplicity in matrix form 

{} [K]{u} (3.2.2) 

where P} is a column matrix of the generalized forces, [K] is a 

symmetrical square matrix of the stiffness coefficients and {u} is 

a column matrix of the generalized displacements. 

By inverting the stiffness matrix one obtains an influence 

matrix which gives the nodal displacements as a function of the exter- 

nal forces or loads acting on the structure 

{u} = [K] 1 

{ P). (3 . Z . 3) 

It is believed that the conceptual basis for the stiffness me- 

thod can be easily understood by developing this technique for a typi- 

cal beam structure by utilizing the strain energy method (see Appen.- 

dix B) for determining the stiffness influence coefficients. The nodal 

displacements and the forces acting on the element of the beam are 
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Figure 3.2. 1. Assumed Elastic Curve 
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SubstiLuting appropriate values in place of the u' s and p's in Equation 

3.2. 1, we cbtain 

= k1181 + k12e1L + k1362 + k14e2L 

m 
= k2161 +k22e1L + k23o2+k24e2L 

= k1ô1 +k3281L + k3382+k34e2L 

m 
= k4161 + k42e1L + k4362 + k4482L 

Writing these equations in matrix form, we obtain 

= [k] { 

(3.2.4) 

(3. 2. 5) 
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In order to make the generalized forces and displacements dimen- 

sionally consistent, the moments and rotations have been divided and 

multiplied respectively by L, the length of the beam segment. Thus, 

the stiffness coefficients become dimensionally consistent as well. 

Having made certain simplifying assumptions in regards to 

the elastic curve and the permissible strain patterns it has been 

shown (see Appendix B3) that a stiffness matrix for the beam seg- 

ment of equations (3. 2. 4) and(3. 2. 5) is as follows: 

12 6 -12 6 

6 4 -6 2 
K01 = 

L J -iz - 12 -6 

6 2 -6 4 

where K° represents non-dimensional parts of K. 

Figure 3.2.2 shows the Individual Element Stiffness Matrix of 

a beam segment, whereas Figure 3.2.3 summarizes the deflection con- 

dAtions for a restrained beam segment. Shown in Figure 3.2.3 are also 

the values of the bending moments and shearing forces at the fixed- 

end beams, when a unit rotation is applied at each end or a unit 

translation at one end with respect to the other. 

3. 2. 1 . Study of a Cantilever Beam 

From Equation (3. 2. 4) and in conjunction with Figure 3. 2. 3 
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Deflection Conditions for Restrained Beam Segment with no Axial Load 
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the forces and deflections for the beam shown in Figure 3.2.1 are re- 

lated by the following equation: 

e' rj 
_L ±_J 

p1 k11 k12 k13 k14 

k21 k22 k23 k24 e1 

= 

p2 k31 k32 k33 k34 
(3.2.7) 

m2 k41 k42 k43 k44 e2 

Suppose a cantilever beam is to be studied; this can be ob- 

tamed by requiring joint ¿ be fixed. Hence 
= 

= O, and we 

may eliminate third and fourth columns as well as third and fourth 

rows of [K] of Equation (3. 2. 7). The following rule may be stated: 

Strike out the row and the column in the stiffness 
matrix corresponding to any rotation (or displace- 
ment) which is completely restrained by a support. 
(28, p. ¿34). 

For our problem at hand, after having complied with the above rule, 

the stiffness matrix is contracted to 

1p11 
i I 

(5 ' 

miLI I 

I 

eli 
Ikil 

i 

ki1 i 

--- 

I 

i 2I i I 

I O I 

---- = --.- (3.2.8) 
I I i 

I i I 

[m2j o 
J 

k221 
I 

I 
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where p2 and m2 have become reactions, p1 and m1 become 

applied loads, and and are unknown deflections. 

Expanding Equation (3. 2. 8) leads to the two equations: 

= [kllJ (3.2.9) 

i 
(3.2.10) 

v'i 
Equation (3. 2. 9) relates all possible applied loads to all possible 

displacements for the cantilever under study. 

3. 2. 2. Study of Plane Rectangular Framed Structures 

The stiffness method of analysis is especially suited to the 

study of rectangular structures since, rotations of the joints and pos- 

sible translations normal to the axes of the beams being locked, the 

structure becomes a system of fixed-end beams, the behavior of 

which is well-known. The number of fixations is consequently equal 

to the number of joints that can rotate plus the number of possible 

translations (6, p. 1 97). 

In a framework of beams such as a simple portal frame or a 

Vierendeel truss, the rotations and translations of the ends of the 



respective beam elements will describe the entire deformation be- 

havior of the structure, provided elementary beam theory is consi- 

dered for each beam and the given external loads consist of a set of 

concentrated loads applied at the nodal points. In this manner, the 

entire stress pattern may be determined. If on the other hand, the 

given external loads are distributed along the beams, the end point 

slopes and deflections of the beam elements are not sufficient in de- 

termining precisely the entire stress and deformation pattern of the 

structure. Under these circumstances the distributed loading may 

be replaced with a statically equivalent set of concentrated genera- 

lized forces applied to the node points (Z8, p. 236). Thus, the stress 

condition of the framework may be adequately approximated from the 

end loads and the end moments due to these concentrated loads. 

3.2.3. Procedure 

A systematic procedure for the analysis of structures using 

the stiffness matrix method is outlined below: 

(1) Assign consecutive numbers 1, 2, 3 . . . to each unknown 

displacement (linear or angular). 

(2) Compute the stiffness matrix for the individual structural 

elements 

(3) Merge matrices into a stiffness matrix for the composite 
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structure by adding corresponding stiffness coefficients for adjacent 

sections 

(4) Invert the stiffness matrix to obtain the flexibility matrix 

for the structure 

(5) Calculate the deflections by determining the matrix pro- 

duct of the inverted matrix and the applied load vector 

{o}= [K] [] 

(6) Calculate the forces or moments in the individual ele- 

ments using the stiffness matrices obtained in step 2. This would 

be given as the product of the deflections obtained in step 5 and the 

matrices of step 2. 

The foregoing procedure is satisfactory as long as the de- 

formations due to axial load effects are negligible. 



Part 4 

RIGID FRAME BENT 

An illustrative example worked through by means of a desk 

calculator will be presented in this section. Thus a working know- 

ledge of matrix theory will be gained as a necessary prerequisite or 

basis on which to formulate the use of high speed computer. 

In Figure 4. 1 a simple rigid frame bent is shown. A lateral 

load is applied at B. The dimensions and moment of inertia for 

each member are as indicated in structure. The effect of axial for- 

ces will be neglected. 

3cV 
sj 

j 
D 

Figure 4. 1. Rigid Frame Bent 



Step i. - Coordinate identification numbers are assigned in corn- 

pliance with outlined procedure as follows: 

i 

.1 D 

Figure 4. 2. Assigned Coordinate Numbers 

There are therefore three loads assumed to be acting on the 

structure. All of these loads are known. Note that we do not assume 

deflections at points that cannot deflect. Thus,a constrained end can 

have neither an angular deflection nor a linear one. 

Step Z. - Compute the stiffness matrices for the individual struc- 

turai elements 



MEMBER AB 
I L____-L-___-_' ' 

Z 

12E l 6E11 i 
+ I t'i 1+ 

L3 L2 I 

I 

6Er1 4E11 
2i + i 

L__i L2 L J 

r--I 
IVAI 

'- lZEI1 
I 

6Er1 

I 
i 

I L3 
I 

L2 I 

i 

Ii I 6Er 2E1 I 

MAI 
1± 1 

+ 'i 
I i 

I L2 L 
L I 

29 

(4.1) 

(4. 2) 

Evaluate coefficients shown above to obtain numerical values 

12 El1 12 El1 

L3 = (240) 
= 0.868x106 EI1 

6 El1 6 El1 
= 1.0417 x 10 EI 

L2 (240)2 

4EI1 4E11 
= 1.6667x 102 EI1 

L 240 

Z EI1 Z EI1 
= 0.8334 1O EI1 

L 240 
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Hence, Equations (1) and (Z) become 

N LIT±IIIJ I11ï1I 
r' r + 0.8680 + 1.0417 x io1 

i 

Z I 

I 

+ 1.0417x l0 + l.6667x l0 
El (4.la) 

L 

[ - 0.8680x io6 
- l.0417x 10 I-1 

I 
lEI (4.2a) 

L"AJ L 
+ 1.0417x 10 + 0.8334x 102J 

Note that VA and MA represent the shear and Moment at 

the constrained end A respectively 

MEMBER BC 

All terms are caused by rotational displacements only O = 1. 

No linear displacement ( = 0). 

Iç 
I__-1 [ 4EI2 2E12 
'Zi + 
i 

L2 + L2 

L 
I (4.3) 

i 
l 

Z ¿I 
I 31 

i 
L2 L2 

L J 

Evaluate coefficients shown above to obtain numerical values 

4E 1 4 E (3 
1i 

12 EI1 
I L2 360 = 3.3334 x 102E 360 

¿ El2 2E 6 EI1 
= 1.6667 x 102E11 L2 360 360 
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Hence, Equation becomes 

LIi1Ii_iIiiii 
r 

12 
i 

+3.334x10 +l.6667x10 
I--i EI (4.3a) 
j 3 I +1.6667x 10 + .3334x 
L_J 

MEMBER CD 

The stiffness influence coefficients as computed for Member 

AB. Hence, 
--- 

-1 
i I 3 I 

EI 
L1.0417 10 + 1.6667 io2 

r--i 
I V - 0.8680x io6 - 1.0417x 10 

EI 
I M + 1.0417 x 10 + 0.8334 x 10 1 

(4. 4) 

(4. 5) 

The Shear and Moment at the constrained end D are repre- 

sented by VD and MD respectively. 

Step 3. - Merge Stiffness Matrices 

Three unknown displacements are indicated in Figure 4-2; 

specifically, O. and 03 Hence, the stiffness matrices cb- 

tamed in step 2 must merge in order to formulate three simultane- 

ous equations, as there are only three unknowns. The combined 

matrix must include the effects which result from the redundant 
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deflections in question. Hence, 

k11 = L+0.8680x o6 + 0. 8680x 106]EI1 +1.7360x 106E11 

k12 +1.0417x 1O El1 

K13 = +l.0417x 10 EI1 

k21 = +1.0417x 1O El1 

k22 = [+i. 6667 x 1O + 3.3333 x ioj E 1 = +5. 0000 x 102E 

k23 = + 1.6667 x i0 El1 

k31 = +1.0417x 10 EI 

k32 = + 0. 6667 , 10 El1 

k33 = [+3.3337x 10+ 1.667x 10_2] E11+5.0000x 1O2EI 

which ma be written cornct1 asfoflows: 

L___ !__.i.____2___i____3 ----I 
E 

l +173 . 60x iø6 +1.0417x104 +1.0417101 
h---1 
t 2 I +1 0417x10 +5.0000x102 +1.6667x102EI1 (4.6) 
'----J 
I 3 1.0417x lO4 +1.6667x10 2 +5.0000xlO 2] 
L_J 

Step 4. - Invert Stiffness Matrix 

The procedure outlined in Part 2. 4 has been used for the in- 

version of the composite matrix (4.6) of the structure. The results 

representing the step-by-step procedure are shown in Table 4.lforthe 

sake of clarity and for conserving space. 
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Table 4. 1. Matrix Inversion 

l.7360x106 +1.0417x104 +1.0417x104 I O O 

1.0417x104 -t-S.0000x102 +1.6667x102 O i O 

1.0417x104 +1.6667x102 +5.0000xi02 o o i 

i +60.0058 +60.0058 576040. 0 0 

o : + 0.043749 + 0.010416 -60.0061 1 0 

o + 0.010416 + 0.043749 -60.0061 0 1 

i + 0.2381 -1371.5990 + 22.8572 0 

o + 0.041269 - 45.7195 - 0.2381 1 

i 1107.8410 

+576040. 

- 5.7695 

0 

+ 24.2313 

0 i +60.0058 +60.0058 
O i + 0.2381 - 1371.5990 + 22.8572 0 

O O I - 1107.8410 - 5.7695 + 24.2313 

i +60.0058 0 +642516.8855 + 346.2035 -1454.0185 

O i O - 1107.8410 

+708993.7710 

+ 24,2313 

-1107.8410 

- 5.7695 

-1107.8410 i O 0 

i 0 0 +708993.7710 -1107.8410 -1107.8410 

O i O - 1107.8410 + 24.2313 - 5.7695 

O O i - 1107. 8410 - 5.7695 + 24. 2313 
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The inverse of the matrix may now be written in its complete form 

r708,993.771 

[K]'= -1,107.841 

-1,107.841 

-1107.841 

+ 24.2313 

- 5.7695 

-1107.841 

- 5.7695 

+ 24.2313 

(4. 7) 

Step 5. - Compute the deflections 

Equation 3. 2. 3 may now be written in expanded forms as 

below 

708,993.771 -1107.841 

e2 -1,107.841 + 24.2313 

ej - 1,107.841 - 5. 7 

lows 

-1107.841 -8,000 

- 5.7695 0 

+ 24.2313 0 (4. 8) 

From Equation (4. 8) the deflections are determined as fol- 

A 708, 993. 771(-8, OdO) 
EI 

-1107. 841 (-8000) 
EI 

e 
-1107. 841 (-8000) 

3 EI 

-5,671,950,168 inches = 
EI 

8, 862, 728 radians = Et 

8, 862, 728 radians = El 

Step 6. - Calculate member forces and moments 

MEMBER AB 

From Equations (4. la)and(4. ¿a) the forces and moments 
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are found to be 

VA = -0.8680 x 106E1 (-5,671,95o,168 
EI 1-1.0417x 104E1 :'8,862,728 

EI 

= 4000 lb. 

M = 1.O4l710EI 
A 12; Ç El 

J 
EI 

= 43, 082 ft. lb. = 0. 516984 x 106 in. lb. 

(-s,671,95o,16' 
VB= +0.8680 x 106E1 

Ç EI 
)+l.o417x1o4EI86272 

EI 

= 4000 lb. 

_____________ -2 78 862 
MB= EI' EI) EI 

= -36, 928 ft. lb. = -0. 443136 x 106 in. lb. 

MEMBER BC 

FrDrn Equation (4. 3a) we obtain 

M = ---+3.3334x lO2Ej8,862,728'\ 8,862,7z8' 
B 12 EI ) 

+ 1.6667 x 1« El El L 

= 36, 928 ft. lb. 0. 443136 x 106 lb. 

M = L +1.6667 x 102E1 (8,86z,7z8 
3. 3334 x i0 E1(886728 

C 12. \ EI ) 
= 36,928 ft. lb. = 0.443136x io6 lb. 

MEÌ'BER CD 

From Equations (4. 4) and (4. 5) we obtain 

/5,571, 950, 168 ______________ 18, 862, 728"\ 
VC= +0.8680x 106EI EI )+ 1.0417x 104E1 EI I 

= - 4000 lb. 
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¡8,862,72 8' 
Mc = -j4 

[+1.0417x 104EI(5671950l68)+ 1.6667k l02EI Et El 
= -36928 ft. lb. = -0. 443136 106 in. lb. 

VD = .-0. 8680 x 10_6 EI -5,671,950,168 -1.0417x104E1 8,862,728 
EI EI 

= 4000 lb. 

8, 862,72 81 
MD = 

El 
Jj 

EI 

= -43, 082 ft. lb. = -0. 516984 x io6 in. lb. 

The final moments and reactions are shown in Figure 4. 3, (a) and 

(b) respectively. The moments in parentheses are expressed in ft.kips. 

36928 

(36.S 

6928' -lb 

6.9) 

43082' -lb 43082' -lb 

(43.1) (43.1) 

(a) 

43O82'1, 
4000# 

2462# 

(b) 

Figure 4. 3. Final Moments and Reactions 

43O82' 

k4000# 

2462# 

Note: The results of this problem agree with those obtained 

by conventional methods. For comparison, the numbers in paren- 

theses are those obtained by Moment Distribution(27, p. 295, Example Z). 
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Part 5 

ANALYSIS OF A VIERENDEEL TRUSS 

5. 1. By Stiffness Matrix Method 

In this section the case of a Vierendeel truss will be consid- 

ered for analysis by the stiffness matrix method. The computed 

answers in this analysis will include the rotation and translation of 

each end of the chords and verticals as well as the bending moments 

and shears in these members. 

Figure 5. 1. 1. shows the center line dimensions of the truss, 

the assumed loading and moments of inertia. Also, assume 

E = 30 x o6 

j I H G F 

I = 240 in.4 I = 360 I = 360 I = 240 

o N a 
o N - 

o N a 
o o N N a a 

II 

I = 240 

II 

I = 360 

II 

- I = 360 

II II 

I = 240 

B] Cl DI 
lok 

@ lo' = 40' 

-J 

Figure 5. 1. 1. Symmetrically Loaded Vierendeel Truss 



The procedure outlined preceeding the analysis of the simple 

frame bent will also be used for the analysis of the Vierendeel truss. 

Hence, 

Step 1. - Assign stiffness matrix coordinates as shown in 

Figure 5.1.2. 

1 2 4 5 

Figure 5. 1. 2. Assigned Coordinate Numbers 

Step 2. - Stiffness Matrix for Individual Members 

LS 

For convenience, the stiffness influence coefficients will be 

determined prior to investigating its individual members 

For all vertical Members 

k 
4E1 4 (30x 106) 120 8 

= = +1.2x10 
11 L - 120 

ll = k22 = k33 = k44 = k55) 
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¿ El 2 (30 x 106) 120 
+ 0. 6 x lo8 k16= L 120 - 

(k16 = k27 = k38 = k49 = k5 ) 

¿El ¿ (30x 106) 120 
+ 0.6 x io8 k61= L = 120 - 

(k61 = k72 = k83 = k94 = k10 5) 

4E1 4(30x106)120 
+ 1. 2 x i o8 

L = 120 - 

(k66 = k77 = k88 = k99 = k10 

For Members AB, DE, JI, and GF 

12 El 12 (30 x 106) 240 
k11 = + = + + 5.0 x 

L3 (12o) - 

6 E I 6 (30 106) 240 
= + 3. 0 x 106 k116 = + 

L2 - (120)2 

12E1 12 (30x 106) 240 
- 5.Ox lO4 k11 

12 
= L3 - - (120) 

6 EI 6 (30 x 1o6 240 +3 Ox o6 k11 = + 

L2 
= + 

(120)2 - 

6 E 1 6 (30 x 106) 240 
k6 

11 
= + 

L2 
= + 

(120)2 
- + 3.0 x o6 



40 

k66 
4E I 

= + = 
4 (30 x 106) 240 

- 
+ + 2. 4 x io8 

L 120 

k6 
6E I 

= 

6 (30x 106) 240 
12 

- L2 = - (120)2 - 
- 3.0 x io6 

k6 
2E1 

= + 
= 

2(30x106)240 
- + 1.2 x io8 

L 120 

12 EI 12 (30 106) ¿4Ø 
k12 il = 

- L3 = (120) = 

- 5.0 x lO4 

6 EI 6 (30 106) 240 
K12 

6 = 
- L2 = 

- 3. 0 106 
(120)2 - 

12E1 +12(30d106)240= +5.0x104 k12 
12 

= + 

L3 = (120) 

k 
6E1 

12.7 - 
- L2 

6 (30 X 106) 240 

(12 0)2 
- 3.0 X 10 

6Er 
+ 

6 (30 X 1o6 240 
+ 3.0 X 106 k711 = + 

L2 = (120)2 

2 Et ____________ k76 = + L 
= +2(30X106)240 = 120 

4 EI 4 (30 106) 240 k77 = + L = + 
120 = +2.4x10 
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For Members BC, CD, 1H, and HG 

12E1 +12(30x106)360 = +7.5x104 k12 
12 = 

+ L3 (12O) 

6E I 6 (30 106) 360 
+ +4.5x106 k12 

= 
+ L2 = (120)2 - 

1ZEI 12 (30x106)360 k12 
13 = 

- L3 = - (120) - 
- 7.5 x 1O 

6E I 
+ 

6 (30 x 106) 360 
= + 4.5 1o6 k128 = + 

L2 = (120)2 

6E1 6(30x106)360 
= +4.5x106 k7 

12 
= + 

L2 = (120)2 

4E1 4(30x106)36Q 
= +3.6x108 k77 = + L - 120 

k 
6E1 

7.13 - 
- L2 - 

6 (30 x 106) 360 

(12 0)2 
- 4.5 X 10 

2 E 1 2 (30 x 106) 360 
+ 1. 8 x i o8 k78 = + L = + 

120 - 

12 E I 12 (30 106) 360 k13 
12 

- L3 = - (120) - 
- 7.5 x lO4 
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6E1 k137 - 
- L2 

6 (30 x 106) 360 
(120)2 

- 4.5 X lo 

12E1 12 (30x106) 360 
k13 13= + = + = +7.5x104 

L3 (120) 

6E1 6(30x106)360 
= 45106 k138 = 

- L2 - - (120)2 

6E1 6(30xl06)360 - +4.5x106 = + k812 = 

+ L2 (120)2 

2 E 1 2 (30 106) 360 k87 = + L = + 120 = +1.8x108 

6E 1 6 (30 106) 360 
k8 

13 = 
- L2 = - (120)2 - 

- 4.5 x 

4E 1 4 (30x 106) 360 
k8 

8 
= + L = + 

120 - + 3.6 x io8 

5. 1. 1.. Stiffness Influence Coefficients for Individual Elements 

MEMBER AJ 

All terms caused by rotational displacements only, e = i. 

Linear displacement = 0. TL1 
- 

I__1 8 ill I+1.2x10 +0.6x10 
[k] 

= 
[+ 

0. 6 x io8 + 1.2 x 108 



MEMBER AB 

All terms due to unit displacements ( = 1, A= 1) 

ELI I I1I1 J1Ii_Lli1II 
111 + 5. Ox1O + 3.9x106 - 5.9x104 + 3.0x106 

161 + 3.Ox 106 + 2.4x 108 
- 3.Ox 106 + 1.Zx 102 

l 12 
I-- - 

- 5.Ox 10 - 3.Ox 106 + 5.Ox 10 - 3.Ox 106 

+ 3.Ox 106 + 1.2x 108 
- 3.Ox 106 + 2.4x 10 

Since the end at coordinate 11 is constrained, cross-out 

first column and first row in compliance with the rule stated in 

part 3.2. 1. 

MEMBER JI 

11 

12 

2I 
I-_J 

above. 

All terms due to unit displacements (9 1, A 1) 
r ------ 

i 

___± --------- i__:2_ 
+ 5.Ox + 3.Ox JO6 5.0x104 + 3.Ox io6 

+ 3.0x106 + 2.4x108 - 3.0x106 + 12x108 

- 5.0x104 - 3.Ox 106 + 5.Ox 10 - 3.0x106 

+ 3.0x106 + 1.2x108 - 3.0x106 + 2.4x108 

Cross-out first column and first row as in Member AB, 

43 
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MEMBER BI 

All terms due to rotational displacements only, e = 1. 

Linear displacement = O 

+ 1.Zx 108 + O.6x 108 

[kIBI = 

I 71 + O.6x10 8 
+ 

8 1.ZxlO 
L _I 

MEMBER BC 

All terms due to unit displacements ( 8 = 1, = 1) I--- - L____J____L 
I ------- 

_J__J__.__i 
1 

+ 7.5x104 + 4.5x106 7.5x104 + 4.5x106 

i 

7 
6 

+ 4.5x10 + 3.6x10 8 6 
- 4.5x10 8 

+ l.8x10 

13I - 7.5x104 - 4.5x106 + 7.5x104 - 4.5x106 

[8 + 4.5x 106 + 1.8x 108 
- 4.5x 106 + 3.6x 108 

MEMBER 1H 

All terms due to unit displacements (O 1, A= 1) 

I----- - 

L --------- 

TizI + 7.5x104 + 4.5x106 - 7.5xlO4 + 4.5x106 

+ 4.5x1O6 + 3.6x1O8 - 4.5x106 + 1.8x108 

'131 - 7.5x104 - 4.5x 106 + 7.5x 10 - 4.Sx 106 

H' 

+ 4.5x106 + 1.8x108 - 4.5x 106 + 3.6x108 
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MEMBER CH 

All terms caused by rotational displacement only, e = i. 

Linear displacement O. 

1 - - - 1 

I ----- 
131 

+ l.Zx 108 + O.6x10 
[kICH 

8j [+ O.6x 108 + i.zxio81 

MEMBER CD 

All terms due to unit displacements (8 = 1, 1) 

:"i3 ------- 

I: : :.:' 
18 +4.5x106 +3.6x108 - 4.5x106 + l.8x108 

1141 - 7.5x104 + 4.5x106 + 7.5x104 - 4.5x106 

+ 4.5x106 + l.8x108 - 4.5x106 + 3.6x108 

MEMBER HG 

All terms due to unit displacements (8 1 , = i) 

I---- --------- -- 

I__-1 
i13 + 7.5x10 4 6 

+ 4.5x10 - 7.5x10 4 6 
+ 4.5xlO 

'3 I + 4.5x1O6 + 3.6x108 - 4.5x106 + 1.8x108 

1141 - 7.5x104 - 4.5x106 + 7.5x104 4.5x1O6 Ii 
4I +4.5xlO 6 8 +1.8x].0 -4.5x10 6 8 +3.6x10 L1 



MEMBER DG 

All terms caused by rotational displacement only. 
-------- _I_ ---t ------- 

[41 + 1.2x108 + O.6x 108 

[k]DG 
= L9 + O.6x 108 + 1.2x 108 

MEMBER DE 

All terms due to unit displacements (9 = 1, 1) 

14 i 9 15 10 

:; 

L3.0x106 - 2.4x108 - 3.0x106 + 

L5.0x104 - 3.0x106 + 5.0x104 - 

iO + 3.0x106 + l.2x108 - 3.0x106 + Z.4x108 

Since the end at coordinate 15 is constrained, cross-out third 

column and third row in accordance with the rule stated in part 

3. 2.1. 

MEMBER GF 

All terms due to unit displacements (O 1, 1) 
i- - -- - -- -T ---- - -- - - -I- 
L_i4__ --i- __4__i__ 15__L_____J 

ri1 [+ 5.0x104 + 3.0x106 - 5.0x104 + 3.Ox 106 

_4J + 3.0x106 + Z.4x108 - 3.0x106 + 

t 5 .- 5.Ox 10 - 3.Ox ÌO6 + 5.Ox 10 - 3.Ox 106 
I---1 

15 3.Ox io6 + l.2x io8 - 3.Ox io6 + 2.4x io8 

Cross-out third column and third row as in Member DE, above. 
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MEMBER EF 

All terms due to rotational displacement only. 

J- ____1Q_j 
r1 + l.Zx 108 + O.6x 108 

[kIEF = I---1 8 8 
I 

+ O.6x10 + l.ZxlO 

5. 1. 2. Deflections and Rotations 

Once the stiffness matrix Equation for the composite struc- 

ture has been established, Table 5.1.1, the next step would be 

[Kj 

Ê 

i = 

- 6,000 

13 
-10,000 
- 6,000 

14 

or 

[K]{} = {} 
to determine the joint deflections and rotations of the truss members 

by the use of the IBM 1620 computer. 

The [K] matrix of stiffness coefficients are punched onto 

control data cards. The computer is then instructed to invert the 



Table 5.1. 1. Combined Stiffness Matrix for Entire Structure 

1 2 3 4 5 

i +3.6x108 +1. 2x108 O 0 0 

2 +1.2x108 +7.2x108 +1.8x108 O O 

3 0 4-1.8x108 --8.4x108 .4-1.8x108 O 

4 0 0 +1.8x108 +7. 2x108 +1.2x108 

5 0 0 0 +1.2x108 +3.6x108 

6 +0.6x108 O O O O 

7 0 +0.6x108 O O O 

8 0 0 +0.6x108 O O 

9 0 0 0 +0.6x108 O 

10 0 0 0 0 +0.6x108 

12 -3.0x106 +1.5x106 4.5x106 O O 

13 0 -4. 5x106 0 +4. 5x106 O 

14 0 0 -4.5x106 -1.5x106 +3. 0x106 

6 7 8 9 10 12 13 14 

+O.6x108 O O O O -3.0x106 o o 

O +O.6x108 O O O +1.5x106 -4.5x106 O 

O O +O.6x108 O O +4.5x106 O -45x106 

O O O +O.6x108 O O +4.5x1O6 -1.5x1O6 

O O O O +O.6x1O8 O O +3.0x106 

+3.6x1O8 +1.2x1O8 O O O -3.Ox106 o o 

+1.2x1O8 +7.2x108+1.8x108 O O +1.5x1O6 -4.5x106 O 

O +1.8x108+8.4x1O8 +1.8x108 O 4-4.Sx106 O -4.5x106 

O O +1.8x1O8 +7.2x108 +i.2x1O8 O i-4.5x106 -1.5x106 

O O O 4-1.2x108 +3.6x1O8 O O +3.0x106 

-3.OxlO6 +1.5x106+4.5x106 O O +25.0x104 -15.Ox1O4 O 

O -4. 5x106 0 +4. 5x106 O -15.Ox104 +30.Ox104 -15.0x104 

O O -4.5x1O6 -1,5x106 +3.Ox106 0 -15.Ox104+25.OxlO4 



Table 5. 1. 2. Flexibility Matrix 

Row i Row 2 Row 3 Row 4 Row 5 

o. 37587090x108 -O. 28632452x109 -O. 17729004x109 -.0. 35635246x109 -O. 22l2l566xl&9 
35635265x109 -o. 28632458x1O9 

-o. 17729002x109 
O. 20488247x108 

-O. 33218023x109 
-O. 

O. 

33218021x109 
17588598x108 

-O. 

-O. 

35546965x109 
33218047x109 

-O. 

-O. 17729027x109 
-o. 35635246x109 -O. 35546966x109 -O. 33218045x109 O. 20488250x108 -O. 28632437x109 
-o. 22121567x109 -O. 35635266x109 -O. 17729027x109 -O. 28632440x109 O. 37587093x108 
o. 14340643x109 O. 41859955x109 -O. 35180998x109 -O. 30502301x109 -O. 24174740x109 
o. 41859959x109 O. 28651492x109 O. 10411984x109 -O. 48379323x109 -O. 30502324x109 

-O.35181004x109 o. 10411987x109 O.27543972x109 O. 10411967x109 -O. 35181028x109 
-O. 30502305x109 -O. 48379321x109 O. 1041 1965x109 O. 28651486x109 O. 41859972xlO9 
-O. 24174744x109 -O. 30502324x109 -O. 35181025x109 O. 41859977x109 O. 14340688x109 

O. 1O912694x1O6 O. 55966058x107 -O. 41S982O8x1O7 -O. 63081542x107 -O. 45634934xl07 
O. 89285493x107 O. lO714286xlO6 O. 31OOOOOOx1O3 -O. 10714296x106 -O. 89285740x107 
O. 45634927x107 O. 63081570x107 O. 41598253x107 -O. 55966O8Ox1O7 -O. 10912700x106 

Row 6 Row 7 Row 8 Row 9 Row 10 
O. 1434O643x1O9 O. 41859961x109 -O. 35181004x109 -0. 30502305x109 -0. 24174744x109 
0. 41859952x109 0. 28651491x109 O. 1041 1990x109 -O. 48379322x109 -O. 30502326x109 

-O. 35180998x109 0. 10411987x109 0. 27543972x109 0. 10411964x109 -0. 35181028x109 
-0. 30502302x109 -0. 48379324x109 0. 10411966x109 0. 28651488x109 O. 41859977x109 
-O. 24174741x109 -0. 30502327x1O9 -0. 35l81026xl09 O. 41859974x109 0. 1434069 1x1O9 

O. 37587085x108 -0. 28632427x109 -O. 17729004x109 -0. 35635243x109 -0. 22121566x109 
-O. 28632428x109 O. 20488249x108 -0. 33218021x109 -0. 35546972x109 -O. 35635267x109 
-O. 17729006x109 -0. 33218021x109 O. 17588600x108 -0. 33218042x1O9 -0. 17729025x109 
-0. 35635242x109 -0. 35546972x109 -0. 32218041x109 0. 20488250x108 -0. 28632427x109 
-0. 22121564x109 -0. 35635267x109 -0. 17729023x109 -0. 28632426x10 0. 37587093x108 
0. 10912692x106 0. 55966068xl0 -O. 41598209x10 -O. 63081544x10 -0. 45634937x107 
0. 89285683x107 0. 10714287x106 0. 290O0000xl03 -O. 10714286x106 -O. 89285750x107 
0. 4563492lx10 O. 63081575x10 0. 4159825lx1O' -0. 55966O82x10 0. 1O9127OOx1O 

'o 



Table S. 1.2. Flexibility Matrix (Continued) 

Row 11 Row 12 Row 13 
o. 10912694x106 O. 89285695x107 O. 45634926x107 
o. 55966052x107 O. 10714285x106 O. 63081568x107 

-0. 41598206x107 0. 3500O000xlO3 0. 4l598255x1O 
-0. 63081S4Ox1O -0. 10714286x106 -0. SS966O79x1O 
-0. 4563493SxlO -0. 89285750x107 -0. 109 12700x106 
0. 109 12692x106 0. 8928S689x1O7 0. 45634922x107 
0. 5S966064x10' 0. 10714287x106 0. 63O8lS7Ox107 

-0. 4159821 1x107 0. 30000000xl03 0. 41598252x107 
-0. 63O81541x1O -0. 10714286x106 -0. 55966079x107 
-0. 4S634934x10 -0. 8928S750x107 -0. 109 12699x10 
0. 17516412x104 0. 16785712x10 0. 89121525xl05 
0. 16785711x104 0. 2654762lx10 0. l678S718x10 
0. 89121525x105 0. 16785719x10"1 0. 17516423x10 

u, 
o 
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[K] matrix and multiply the result of this inversion with the 

matrix. The deflections and rotations are thus determined as the 

product of the flexibility matrix and the applied load vector 

LK1<) = {} 

{} = [K]'{P} 

When the structure is subjected to a different loading condi- 

tion the stiffness matrix remains unchanged because it is a function 

only of the geometric and elastic properties of the structure. The 

different loading condition only changes the values of fixed-end 

forces and moments. Consequently, only the values of matrix 

need be changed in the input data if an analysis of the structure is 

desired under any number of loading conditions. Hence, the inver- 

sion process of the stiffness matrix of the structure would be by- 

passed because the stiffness matrix would remain unchanged. 

Table 5. 1. 3. Deflections 
Coordinate Defle ction Coordinate De fie Ct iOfl 

i -O.l8214281x102rad 8 -O.57750000x109rac 

z -O.17857143x1O2rad 9 O.17857142x109ra 

3 -O.57750000x109rad 10 O.18214Z91x109ra 

4 O.17857142x102rad 12 - 0.32642849 inches 

5 O.18Zl4290x102rad 13 - 0.46690479 inches 

6 -O.l8214279x102rad 14 - 0.32642863 inches 

7 -O.17857l45x102rad 
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5. 1. 3. End Moments and Shears 

Having determined the values of rotations and deflections as 

outlined previously, the end shears and moments are determined by 

multiplying the original stiffness matrices of the individual members 

with the appropriate deflections. Appendix A shows the input and 

output data of the computer used for these operations. For clarity, 

the computed end shears and moments have been conveniently con- 

verted to kips and ft. kips respectively and tabulated in Table 5. 1.4. 

Table 5. 1.4. Comouted End Shears and Moments 

Member 
Moment (1. e.) 

ft. - kp. 
Shear 
kp. 

Moment (r. e.) 
ft. - kp. 

AJ - 27.324 --- - 27. 324 
AB + 27. 324 ± 5. 500 + 27. 678 
li -4- 27. 678 ± 5. 500 + 27. 324 
BI - 26. 786 - - - - 26. 786 
BC - O. 893 ± 2. 500 + 25. 893 
HI - O. 893 ± 2. 500 + 25. 893 
CH - 0.008 --- - 0.008 
CD - 25. 893 ± 2. 500 + 0. 893 
GR - 25. 893 ± 2. 500 + 0. 893 
DG + 26. 786 - - - + 26. 786 
DE - 27. 324 ± 5. 500 - 27. 678 
FG - 27.324 ± 5.500 - 27. 678 
EF + 27. 324 - - - + 27. 324 
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27.324 27.324 

(a) 

'I 

-r - - - - T - - - - 1- - 
L- - - - t - 

L 
(b) 

Figure 5. 1.3. (a) Moment diagram, and (b) Deflected 
structure 
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5. 2. By Moment Distribution 

The Vierendeel truss that has been analyzed in part 5. 1 by 

the stiffness method will now be analyzed by the moment distribution 

method. 

J k=(2) I k(3) I-i k=(3) G k=(2) F 

i-!! 

II I' II 

- 

k=(2) k=(3). k=(3) k=(2) 

7 A B 6k C 10k D, E r 

4(ô10'=40' 

Figure 5.2.1. Symmetrically loaded Vierendeel Truss 

DISTRIBUTION FACTORS, r = -- 

Joints A, E, F, and J 

1 2 rAJ=rJA=rEF=rFE=, rAB=rED=rFG=rJI= 

Joints B,D,G, and I 

i i 

rBA=rDE=rGF=rIJ_ rBI=rIB=rDG_rJ.D= 

i 

rBC=rDC=rIH=rGH= 2 

Joints C and H 

3 i 
rCB=rCD=rHI=rHG= ., rCH=rHC= . 
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CASE I - Let Joint B deflect AB E = 10 

A 

¡ I H ¡ F 

L L) 

¿ BE lo 

Figure 5. 2. 2. Allowing Joint B to Deflect 

Fixed End Moments 

F 6EK 6 (lO)(2) - k MXß=MA=M=MIJ= L - 10 

F 6EK 6(lO)(3) 
M'C = M'B = M'H= MHI= L 10 = 

CASE It - Let Joint C deflect 1 E = 10 

J I H G F 

AC 
- :C1E= 10 

Figure 5. 2. 3. Allowing Joint C to Deflect 
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Fixed End Moments 

Mc M'B = M1 = MF 6E zK 6 (10) (3) 
= 18 

k 
1H - L - 10 

F F 6E.K 6 (10) 3 MD= Mc = MHG MGH = L - 10 

CASE III - Let Joint D Deflect ¿DJE = 10 

J I H F 

A B 
lo 

Figure 5. 2. 4. Allowing Joint D to Deflect 

Since structure is symmetrically loaded, the deflections at 

jomes B and D are equal. Hence, Moment Distribution of Case I 

may be applied in Case Ill provided proper consideration is given to 

sign changes of deflected structure. 



JA JI 
1/3 2/3 

0 +12.00 
-4.00 - 8.00 
-2.00 + 1.00 
4-0.33 + 0.67 
-0.17 -0.06 
-0.04 - 0.07 
-0.02 - 0.05 
-0.01 - 0.02 
-5.57 + 5.57 

>< 
>< 
>< 

>< 
>< 
>< 

U IB IM 

1/3 1/6 1/2 

-12.00 0 -18.0( 
- 2.00 +1.00 + 3.00 
- 4.00 +0.50 - 3.86 
- 0.12 -0.06 - 0.18 

0.34 -0.03 - 0.60 
0.10 +0.05 + 0.14 

- 0.04 +0.02 + 0.27 
- 0.08 -0.04 -0.13 

+1.44 -10.20 -11.64 

______ 
BA__ BI BC 

1/3 1/6 1/2 

+12.00 0 -18.00 
+ 2.00 +1.00 + 3.00 
- 4.00 0.50 + 3.86 
- 0.12 -0.06 - 0.18 

1- 0.34 -0.03 - 0.60 
+ 0.10 +0.05 + 0.14 
- 0.04 +0.02 + 0.27 
- 0.08 -0.04 - 0.13 
10.20 +1.44 -11.64 

Table 5.2. 1. Moment Distribution - Case I 

>< 
>< 
>< 

H 

HI HC HG 
3/7 1/7 3/7 

-18.00 0 0 
- 7. 71 +2. 58 +7.71 

4- 1.50 +1.29 0 
- 1.20 -0.40 -1.19 
- 0.09 -0.20 -0.96 
- 0.54 +0.18 +0.53 
- 0.07 0.09 0.23 
- 0.17 -0.06 -0.16 
- 9.64 +3.48 6.16 

G 

1/2 j 1/6 

o lo 
><1+386 I 

><H 
-1.93 I -0.64 
-0. 60 I -O. 32 

>< +0.46 
+0.26 

I +o. is 
I +0.08 

C 

CB cH CD 

3/7 1/7 3/7 

-18.00 0 0 

>< +7.71>< 
-1--. ii 

>< - 
1.20 -0.40 -1.19 

- 0.09 -0.20 -0.96 

- 

0.54 0.18 +0.53 >< - 0.07 +0.09 +0.23 
- 0.17 -0.06 -0.16 

+3.48 +6.16 - 9.64 

F_______ 

CF 
_______ 

FG 

2/3 
FE 

1/3 1/3 

=1°29><J 

+0.31 >< +0.43 0.22 
-i-0. 22 0. 16 0. 11 

-0.19 -018 -0.09 

L7L82L:9. ±. 

D ________ 
DG DE 

1/2 

o 
o 

1/6 

o 
o 

1/3 

o 
o 

+3.86 
-1.93 

0 
-0.64 

0 
-1.29 

-0.60 
+0.46 

-0.32 
+0.15 

0 
+0.31 

+0.26 
-0.28 

0.O8 
-0.09 

+0.22 
-0.19 

+1.77 -0.82 -0.95 

E 

2/3 1/3 

>< [±2:4L +0.22 
+0.16 +0.11 
-0.18 -0.09 
-0.24 I 0.24 

(JI 
-4 



- 
1/3 2/3 

o 0 
0 0 
0 -3.00 

+1.00 +2.00 
+0.50 *0.25 
-0. 25 -0.50 
-0 13 -0.19 
+0.11 +0.21 

+1.23 -1.23 

>< 

>< 

Table 5. 2. 2. Moment Distribution - Case II 

'J -- J .JtL 
1/3 1/6 1/2 

o O a-18.00 
-6.00 -3.00 - 9.00 

0 -1.50 0 
i-0.50 i-0.25 + 0.75 

O +1.00 0.13 
-0. 37 -0. 19 - 0. 57 
-0. 2.5 -0. 10 0 
+0.12 +0.06 -- 0.17 
-5.00 -4. 35 i. 9. 35 

__ 
1/3 

AJ ___i__ 
1/6 1/3 2/3 

o o o o 

o o -6.00 -3.00 
-1.50 o -3.00 0 

-i-1.00 +2.00 0.50 +0.25 
+0.50 0.25 >< +1.00 +0.13 
-o. 25 -0. 50 >< -0. 37 -0. 19 

-o. 13 -0. 19 -0. 25 -0. 10 

+0.11 +0.21 0.12 i-0.06 
+1. 23 -1. 23 -5.00 -4.3S 

H G F 

FG FE HI MC HG CH GD GF 

1/6 1/3 2/3 1/3 3/7 1/7 3/7 1/2 

p18.00 O -18.00 -18.00 0 0 0 0 

>< - 4.50 
o 
0 

o 
+ 4.50 

+ 9.00 
0 

-3.00 
+1.50 

+6.00 
0 

>< 0 
'-3.00 

0 
0 

>< o o 

0 

o 

- 0.38 
- 0.75 

0 
-0.25 
-0.13 

-0.50 
-1.00 

-2.00 
-0.25 

-1.00 
-0.56 1 0.38 

>< - 0. 23 

o 
0 

o . o. .57 +0. 19 O. 37 +0. 50 
+0. 19 

0. 25 
+0. 13 + 0. 28 0 +0. 10 +0. 25 

o o o - 0.17 -0.06 -0.12 -0.21 -0.11 
+13.60 -13.60 9.35 4.35 +5.00 -1.23 1. 23 

- 
CD DC 

D 

DG DE ED 

E 

EF BC CB CH 
1/6 1/3 1/2 3/7 1/7 3/7 1/2 2/3 1/3 

+18.00 O -18.00 -13.00 0 O -18.O0 O O 

- 9.00 0 0 0 + 9.00 3.00 --6.00 0 0 

o - 4.50 0 + 4.50 0 i-1.50 O 43.00 0 
+ 0.75 0 0 0 

>< 
- 0.75 -0.25 -0.50 -2.00 -1.00 

o o. 38 0 - 0. 38 O -0. 13 -1. 00 -0. 25 -0. 50 
- o. 57 >< o o o ,_ 

' 

+ o. 57 +0. 19 +0. 37 0. 50 *0. 25 
o - o. 28 0 + 0. 28 O +0. 10 +0. 25 -0. 19 i-0. 13 

+ 0.17 0 

+13.60 
0 0 - 0.17 

- 9.35 
-0.06 
4.35 

-0.12 
+5.00 

-0.21 
+1.23 

-0.11 
-1.23 + 9.35 O -13.60 
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Solve For Correction Factors 

The following equations may be formed 

EFb 7.410k1 - 5.836 k2 + J.. 824 k3 = 6 (1) 

-5.842k + 9.180k - 5.842k = 10 (2) 
c 1 2 3 

1.824k1 - 5.836 k2 + 7.410k3 6 (3) 

k1 - 0.788 k2+ 0. ¿46 k3 = 0.810 (la) 

-k1 + 1. 571 k2 - k3 = 1. 712 (Za) 

+ 0. 783 k3 -0. 754 k3 = 2. 522 (4) 

-k1 + 1.571 k2 - k3 = 1. 712 (Za) 

k1 - 3.200 k2 +4. 063 k3 z 3.290 (3a) 

- 1. 629 k2+ 3. 063k3 = 5. 002 (5) 

k2 - 0. 963 k3 = 3. 221 (4a) 

-k2 + 1.880k3 = 3.071 (5a) 

0.917k3 z 6.292 (5a) 

H3 = 6.8421 

k2 - 0. 963 (6. 862) = 3. 221 (4a) 

k2 - 6. 576 = 3.221 

1k2 = 9.797 

k1 - 0. 788 (9. 829) + 0. 246 (6. 862) = 0.810 (la) 

k1 - 7. 723 + 1. 691 = 0. 810 

k1 = 6.842 
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I H 

Tab1 S. 2. 3. 

III 

Final Moments 

IV 

- 
V VI Fina) Moments 

Member ivVr1 
JA - 5.57 + 1.23 - 0.24 -38.ltO * 12.050 - 1.642 -27. 702 

JI f 5.57 - 1.23 + 0.24 +38.110 - 12.050 + 1.642 f27.702 
Ii +10.20 - 5.00 + 0.95 +69.788 - 48.985 + 6.500 +27.303 
IB .4- 1.44 - 4.35 + 0.82 + 9.852 - 42.617 + 5.610 -27. 155 

fl-I -11.64 + 9.35 - 1.77 -79.641 + 91.602 -12.110 - 0.149 
HI - 9.64 13.60 - 6.16 -65.957 +133.239 -42.147 +25. 135 

HC + 3. 48 0 - 3. 48 +23. 810 0 -23. 810 0 

HG + 6. 16 -13. 60 + 9. 64 42. 147 -133. 239 +65. 957 -25. 135 

a-i + 1.77 - 9.35 +11.64 12.110 - 91.602 +79.641 0.149 

GD - 0. 82 f 4. 35 - 1. 44 - 5. 610 + 42. 617 - 9. 852 +27. 155 

GF - 0.95 + 5.00 -10.20 - 6.500 + 48.985 -69.788 -27.303 
FG - 0.24 1.23 - 5.57 - 1.642 - 12.050 -38.110 -27.702 
FE + 0.24 - 1.23 -i- 5.57 + 1.642 - 12.050 +38.110 427.702 

AJ - 5.57 + 1. 23 - 0. 24 -38. 110 + 12.050 - 1.642 -27. 702 

AB + 5.57 - 1.23 4- 0.24 +38.110 - 12.050 + 1.642 +27. 702 

BA +10.20 - 5.00 + 0.95 +69.788 - 48.985 + 6.500 27. 303 

BI + 1. 44 - 4. 35 i- 0. 82 + 9. 852 - 42. 617 ± 5. 610 -27. 155 

BC -11.64 + 9. 35 - 1.77 -79.641 + 91.602 -12. 110 - 0. 149 

CB - 9. 64 +13. 60 - 6. 16 -65. 957 +133. 239 -42. 147 +25. 135 

cH + 3.48 0 - 3.48 +23. 810 0 -23.810 0 

CD + 6. 16 -13.60 + 9.69 +42. 147 -133. 239 +65. 957 -25. 135 

DC + 1.77 -9.35 +11.64 +12. 110 - 91.602 f79.641 + 0.149 
DG - 0.82 + 4. 35 - 1.44 - 5.610 + 42. 617 - 9.852 +27. 155 

DE - 0.95 5.00 -10.20 - 6.500 + 48.985 -69.788 -27.303 
ED - 0.24 + 1.23 - 5.57 - 1.642 + 12.050 -38.110 -27. 702 

EF + 0.24 - 1.23 + 5.57 + 1.642 - 12.050 -38.1[0 -27.702 

Comparison of Methods 

To facilitate comparison of methods, Table 5. 2. 4 has been 

prepared showing the computed end shears and moments of the 

Vierendeel truss, (a) by the stiffness matrix method, and (b) by 

the moment distribution method. 



Table 5.2.4. 
STIFFNESS METHOD 

)ment (l.e)* Shear Moment (r. 
ft. - kp kp. ft. -s-- kp 

Stresse s 
MOMENT DISTRIBUTION METHOD 

Moment (l.e.)I Shear Moment (r.e.) 
ft. -'- kp kp. ft. - kp 

AJ - 27.324 --- - 27.324 - 27.702 --- - 27. 702 

AB + 27. 324 ± 5. 500 + 27. 678 + 27. 702 ± 5. 500 + 27. 303 

IJ + 27. 678 ± 5. 500 + 27. 324 + 27. 702 ± 5. 500 + 27. 303 

BI - 26. 786 --- - 26. 786 - ¿7. 155 --- 27. 155 

BC - 0. 893 ± 2. 500 + 25. 893 - 0. 149 ± 2. 499 + 25. 135 

HI - 0. 893 ± 2. 500 + 25. 893 - 0. 149 ± 2. 499 + 25. 135 

CH - 0.008 --- - 0.008 0 --- O 

CD - 25. 893 ± 2. 500 + O. 893 - ¿5. 135 ± Z. 499 + O. 149 

GH - 25. 893 ± 2. 500 + O. 893 - 25. 135 ± 2. 499 + O. 149 

DG + 26. 786 --- + 26. 786 + 27. 155 --- + 27. 155 

DE - 27. 324 ± 5. 500 - 27. 678 - 27. 303 ± 5. 500 - 27. 702 

FG - ¿7. 324 ± 5.500 - 27. 678 - 27. 303 ± 5.500 - 27. 702 

EF + 27. 324 --- + 27. 324 + ¿7. 702 -- - + 27. 702 

* 1. e. and r. e. refer to "left end" and "right end" respectively. 

a' 



C ONG LUSIONS 

It has been demonstrated how complex structures can be 

analyzed by taking advantage of the capabilities of electronic corn- 

puters. Great care must, however, be given to the preparation of 

data and punching of cards because the computer cannot check whe- 

ther the data is right or wrong. A wrong data may lead to correct 

solution of a wrong problem. 

For plane structures the stiffness matrix of a beam is a 

4 x 4 matrix defined by Figure 3.2.3. From this, the analysis of 

structures with side-sways, i. e. Vierendeel trusses and tall build- 

ings, become s straight forward,, and requirè sino supplementary equation. 

Once the basic elastic and geometric properties of the struc- 

ture and the loading patterns have been specified in matrix form, 

the complete solution of stresses and deflections may be obtained 

from strictly numerical matrix operations. 

The economy of the matrix method of analysis will depend 

entirely on the availability of a high speed digital computer, and 

then only when a repetitive solution is required. 

Any set of loading conditions can be inserted as the last step 

in the computations. Here is where the biggest advantage of the 

stiffness method occurs; it enables a complex structure 
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subjected to any desired pattern of loading to be analyzed with a 

minimum of effort. 

Further, changes in design are accounted for by locally cor- 

recting the stiffness matrix. As a result, several design configura- 

tions can be investigated without undue effort. 

In concluding this paper, it may be said that electronic corn- 

puters have great future for solving the problems of structural analy- 

sis and design. The ability, and skill, and experience of the en- 

gineer is in every way as essential when an electronic computer is 

used as when it is not used; but that skill and ability and experience 

has to be applied in a new way, enabling him to undertake analyses 

that would have been prohibitive in the past. 
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APPENDICES 



APPENDIX A 

A-l. IBM 1620 FORTRAN Programming 

The word "FORTRAN" is a contraction of "Formula Trans- 

lation". It is an algebraic language compiler which has become 

available on the IBM 1620, 704, 709, and 650 as well as other ma- 

chines of various manufacturers. It is, in a sense, a language de- 

signed for the description of algebraic problems and their solutions. 

Or, it may be said to be a language that is a compromise between 

the language of the computer and the language of the engineer (17, p. 5). 

A FORTRAN program as prepared by the programmer is 

just another way of saying "series of instructions and fixed data. 

The program must be thorough, and every conceivable combination 

of circumstances must be explicitly stated as to what the computer 

is to do with the input data. Some of these instructions may be 

algebraic formulas, whereas others may be English language state- 

ments. There may be informative statements, informing the com- 

piler what meaning is intended by the programmer, or there may 

be imperative statement, ordering the computer to execute a parti- 

cular statement next in line, or read cards, or print out desired 

information, etc. This sequence of statements defining the ultimate 

operations of the computer is called the " source program, " which 

is key-punched onto standard IBM cards. 



In this thesis, FOR-TO-GO was used to compile the subse- 

quent matrix multiplication and matrix inversion programs. FOR- 

TO-GO compiles the required object program directly into memory 

until the END card is processed or an error is found. Detection 

of an error terminates compilation, but the remainder of the pro- 

gram is still checkedfor errors. A message is typed out when the 

END statement is read to indicate whether or not the program is 

acceptable. 

If the program is not acceptable, an error deck will have 

been produced. It will start with a copy of the control card found at 

the beginning of the program, and will contain two error cards for 

each error. One of these cards will give an error code and the state- 

ment number of the statement in error; the other card will be a copy 

of the statement in error. 

If the program is accepted, the object program is executed 

immediately. When the program terminates because of a STOP or 

END statement or because of an error, a message is typed on the 

console typewriter. 
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A-Z. Digital Programs 

A-2. 1. Matrix Multiplication 

C C MATRIX MULTIPLICATION 
DIMENSION A(N, N ), B( N), R( N) 

101 READ1,N 
i FORMAT (13) 

READ 102, ((A(I, J),I=l,N), J=l,N) 
102 FORMAT (E15.8) 

READ 102, (B(I),I=l,N) 
DO 1041 =l,N 
R (I) = 0. 
DO 103 J = 1,N 

103 R (T) = R(I) + A (I, J)* ß(J) 
104 CONTINUE 

PUNCH 102, (R(I), I = 1,N) 
GO TO 101 
END 

A-Z. Z. Matrix Inversion 

C C MATRIX INVERSION 
DIMENSIONA(N, N) 
READ i,N 

1 FORMAT (13) 
READ 101, ((A(I, J),I=i,N), J=1,N) 

101 FORMAT (E1Z.5) 
DO 105K = 1,N 
COM=AK,K) 
A (K,K) = i 

DO 102 J = 1,N 
102 A K, J) = AcK, J)/COM 

DO 105 I = 1,N 
IF (I-K)103, 105, 103 

103 COM=A(t,K) 
A(I,K) = . O 

DO 104 J = 1,N 
104 A (I, J) = A(I, J) - COM* AK, J) 
105 CONTINUE 

PUNCH 106, ((A (I, J), 1=1, N), J=1, N) 
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106 FORMAT (EiS. 8) 
STOP 
END 

A-3. Rigid Frame Bent 

Input Data for Matrix Inver sion 

+ 1. 73600E-06 + 0. 104170E-04 + 1.04170E-04 
+ 1. 04170E-04 + 5.000000E-02 + 1. 66670E-02 
+ 1. 04170E-04 + 1. 666700E-02 + 5. 00000E-02 

0. 70899E+06 
- 0. 11078E+04 
- 0. 11078E+04 

INVERTED MATRIX 

- 0. 11078E+04 
0. 2423 1E+02 

- 0. 57692E+01 

LOADING DATA (INPUT) 

- 8. 000 OOE+03 
0. 00000E+00 
0. 00000E+00 

- 0. 11078E+04 
- 0. 57692E+01 

0. 2423 1E+02 

DEFLEC TIONS 
= PRODUCT OF INVERTED MATRIX AND LOADING) 

- 0.56719E+10 
0. 88624E+07 
0. 88624E+07 
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Table A-3. 1. Computing End Shears and Moments 

MATRIX MULTIPLICATION MATRIX MULTIPLICATION 
INPUT DATA RESULTS (OUTPUT) 

Z 

+0. 86800E-06 
+1. 04170E-04 
+1. 04170E-04 
+1.66670E-02 0.40000E+04 VA 
-0.56719E+10 -0.51698E+06 MA 
+0. 88624E+07 -0. 40000E+04 VB 

2 0.44313E+06 MB 
-0.86800E-06 0.44313E+06 MB 
+1.04170E-04 0.44313E+06 Mc 
-1.04170E-04 -0.40000E+04 v 

+0. 83340E-02 -0. 44313E+06 Mc 
-0.56719E+10 0.40000E+04 
+0. 88624E+07 -0. 51698E+06 MD 

2 
+3. 33340E-02 
+1. 66670E-02 
+1. 66670E-02 Shears - lb. 
+3. 33340E-02 Moments - in. lb. 
+0. 88624E+07 
+0. 88624E+07 

2 

+0. 86800E-06 
+1.04170E-04 
+1.04170E-04 
+1. 66670E-02 
-0. 56719E+10 
+0. 88624E+07 

2 

-0. 86800E-06 
+1.4170E-04 
-1. 04170E-04 
+0. 83340E-02 
-0.56719E+10 
+0. 88624E+07 



-- 
(1) (2) (3) (4) 

+3. 60000E-t-08 +0. 00000E+OO +0. 00000E+OO +0. 00000Ef 00 
+120000E+08 +0.00000E+00 fO.60000E+08 +0.00000E+00 
+0 . 00000E+00 + i . 80000E+08 +0. 00000E+O0 +0. 00000E+00 
±0. 00000E-i-00 +7. 20000E+08 +0. 00000E00 0. 00000E+00 
+0. 00000E+00 +1 . 20000E+08 +0. 00000E+00 +0. 60000E+08 
+0. 60000E+08 +0. 00000E+O0 +1. 20000E+08 +0. 00000E+00 
+0. 00000E+00 +0. 00000E+00 +7. 20000E±08 +0. 00000E+00 
+0. 00000E+00 +0. 00000E+00 1. 80000E+08 0. 00000E+00 
+0. 00000E+00 +0. 60000E08 +0. 00000E+00 +1. 20000E+08 
+0. 00000E+00 +0. 00000E-i-00 +0. 00000E00 +3. 60000E+08 
-3. 00000E+06 +0. 00000E±00 +1. 50000E06 +0. 00000E+oo 

+0. 00000E+00 +4. S0000E+06 -4. 50000E-i-06 +0. 00000E+00 
+0. 00000E00 -1. 50000E+06 +0. 00000E+00 3. 00000Ei-06 

+1 20000E08 +0. 00000E±00 +0. 00000E+00 -3. 00000E+06 
+7. 20000E+08 +0. 00000E±00 0. 00000E+00 4-1. 50000E-06 
+1 . 80000E+08 +0. 00000E+0o +0. 60000E+08 +4. S0000E+06 
+0. 00000E+00 +1. 20000E+08 +0. 00000E+00 +0. 00000E+00 
+0.00000E+00 3.60000E08 +Q.00000E+00 0.00000E+00 
+0. 00000E+00 +0. 00000E00 +0. 00000E+00 -3. 00000E+06 
+0. 60000E+08 +0. 00000E+00 + i . 80000E+08 +1 . 50000E±06 
+0. 00000E-i-00 +0. 00000E00 -i-8. 40000E+-08 +4. S0000E+06 

+0. 00000E±00 +0. 00000E+00 +1. 80000E+08 +0. 00000E+00 
40 00000E+00 +0. 60000E±08 +0. 00000E+00 +0. 00000E+00 

+1. 50000E-i-06 fO.00000E+00 +4. S0000E+06 i-2. 50000E+05 
-4. S0000E+06 +0. 00000E+00 +0. 00000E±00 +1 . S0000E05 
±0. 00000E+00 +3. 00000E+06 -4. 50000E+06 +0. 00000E+00 

+0.00000E+00 +0.60000E+0S 0.00000E+00 +0.00000E±00 
+1 . 80000E+08 +0. 00000E+00 +0. 00000E+00 -4. 50000E06 
+8. 40000E+08 +0. 00000E+00 0. 00000E+00 +0. 00000E00 
+1.80000E+08 +0.00000E+00 +0.60000E+08 4.S0000E+06 
±0. 00000E+00 +0. 00000E+00 0. 00000E1-00 +0. 00000E+-00 

+0.00000E+00 +3.60000E+08 0.00000E00 +0.00000E+00 
0. 00000Ei-0D +1. 20000E+08 ±0. 00000E+00 -4. 50000E06 

4-0. 60000E+08 +0. 00000E+00 +1. 80000E+08 +0. 00000Ef 00 

+0. 00000E00 4-0. 00000E+00 +7. 20000E+08 +4. 50000E-06 
+0. 00000E+00 +0. 00000E+00 +1. 20000E+08 +0. 00000E-00 
4-4. 50000E+06 -3. 00000E+06 ±0. 00000E+00 -1 . S0000E+05 

+0. 00000E+00 +0. 00000E+-00 +4. S0000E+06 +3. 00000E+05 
-4. 50000E+06 +0. 00000E+00 -1. 50000E+06 -1 50000E-+-05 

(2) (3) (4) (5) 
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(5) 
+0. 00000E+00 
+0. 00000E+00 
-4. S0000E+06 
-1. S0000E+06 
4-3. 00000E+06 
+0 . 00000E00 
+0. 00000E+00 

-4. S0000E+06 
-1. S0000E+06 
+3. 00000E+06 
+0. 00000E±00 
-1 . 50000E+05 
4-2. 50000Ef 05 

Last 

Card 



(1) 

0. 37587090E-08 

-0. 28632458E-09 

-0. 17729002E-09 

-0. 35635246E-09 

-0. 2212 1567E=09 

0. 14340643E-09 

0. 41859959E-09 

-0. 35181005E-09 

-0. 3050230SE-09 

-0. 24174744E-09 

0. 10912594E-06 

0. 89285693E-07 

0. 45634927E-07 

-0. 28632452E-09 

0. 20488247E-08 

-0. 33218023E-09 

-0. 35546965E-09 

-0. 35635266E-09 

0. 41859955E-09 

0. 28651492E-09 

0. 10411987E-09 

-0. 48379321E-09 

-0. 30502324E-09 

0. 55966058E-07 

0. 10714286E-06 

0. 63081570E-07 

-0. 17729004E-09 

-0. 33218021E-09 

0. 17588598E-08 

-0. 33218045E-09 

-0. 17729027E-09 

-0. 35183993E-09 

0. 10411984E-09 

0. 27543972E-09 

0. 10411965E-09 

-0. 35181025E-09 

-0. 41598208E-07 

0. 31000000E-13 

0.41398253E-07 

- - _j 
(2) (3) 

-0. 35635246E-09 0. 41859961E-09 

-0. 35546965E-09 0. 28651491E-09 

-0. 33218047E-09 0. 10411987E-09 

0. 20488250E-08 -0. 48379324E-09 

-0. 28632440E-09 -0. 30502327E-09 

-0. 30502301E-09 -0. 28632427E-09 

-0. 48379323E-09 0. 20488249E-08 

0. 10411967E-09 -0. 33218021E-09 

0. 28651486E-09 -0. 35546972E-09 

0. 41859977E-09 -0. 35635267E-09 

-0. 63081542E-07 0. 55966068E-07 

-0. 10714286E-06 0. 10714287E-06 

-0. 55966080E-07 0. 63081575E-07 

-0. 22121566E-09 

-0. 35635265E-09 

-0. 17729027E-09 

-0. 28632437E-09 

0. 37587093E-08 

-0. 24174740E-09 

-0. 35181028E-09 

0. 41859972E-09 

0. 14340688E-09 

-0. 45634934E-07 

-0. 89285740E-07 

-0. 10912700E-06 

0. 14340643E-09 

0. 41859952E-09 

-0. 35180998E-09 

-0. 30502302E-09 

-0. 24174741E-09 

0. 37587085E-08 

-0. 28632428E-09 

-0. 17729006E-09 

-0. 35635242E-09 

-0. 22121564E-09 

0. 10912692E-06 

0. 89285683E-07 

0. 45634921E-07 

-0. 35181004E-09 

0. 10411990E-09 

0. 27543972E-09 

0. 10411966E-09 

-0. 35181026E-09 

-0. 17729004E-09 

-0. 

0. 17588600E-08 

-0. 33218041E-09 

-0. 17729023E-09 

-0. 41598209E-07 

0. 29000000E-13 

0. 41598251E-07 

-0. 30502305E-09 

-0. 48379322E-09 

0. 10411964E-09 

0. 28651488E-09 

0. 41859974E-09 

-0. 35635243E-09 

-0. 35546972E-09 

-0. 33218042E-09 

0. 20488250E-08 

-0. 28632426E-09 

-0. 63081544E-07 

-0. 10714286E-06 

-0. 55966082E-07 

(2) (3) (4) 

Output) 

(4) 

-0. 24174744E-09 

-0. 30502326E-09 

-0. 35181028E-09 

0. 41859977E-09 

0. 14340691E-09 

-0. 22121566E-09 

-0. 35635267E-09 

-0. 17729025E-09 

-0. 28632427E-09 

0. 37587093E-08 

-0. 45634937E-07 

-0. 89285750E-07 

-0. 10912700E-06 

(5) 

0. 45634926E-07 

0. 63081568E-07 

0. 41598255E-07 

-0. 55966079E-07 

-0. 10912700E-06 

0. 45634922E-07 

0. 63081570E-07 

0. 41598252E-07 

-0. 55966079E-07 

-0. 10912699E-06 

0. 89 121525E-05 

0. 16785718E-04 

0. 17516423E-04 

Last 
0. 10912694E-06 

Card 
0. 55966052E-07 

-0. 41598206E-07 

-0. 63081540E-07 

-0. 45634935E-07 

0. 10912692E-06 

-0. 41598211E-07 

-0. 63081541E-07 

-0. 45634934E-07 

0. 17516412E-04 

0. 16785711E-04 

0. 89121525E05 

0. 89285695E-07 

0. 10714286E-06 

0. 35000000E-13 

-0. 10714286E-06 

-0. 89285750E-07 

0. 89285689E-07 

0. 10714287E-06 

0. 30000000E-13 

-0. 1071.4286E-06 

-0. 89285750E-07 

0. 16785712E-04 

0. 26547621E-04 

0. 16785719E-04 

(5) 
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Table A-4. 3. Computing Deflections for Vie rendeel Truss 

INPUT DATA OUTPUT 
(Matrix Multiplication) (C omputed Deflections) 

13 x 13 
Inverted 
Matrix 

(Table A-4. 
C C Matrix Multiplication 

+ 

. 00000000E+OO -O. 18214281E-02 ( 
1) 

. 00000000E+OO -O. 17857143E-02 
( 

2) 

. 00000000E+OO -O. 57750000E-09 
( 

3) 

. 00000000E+00 0. 17857142E-OZ 
( 

4) 

00000000E+00 0. 18214290E-02 ( 
5) 

00000000E+00 -0. 18214279E-02 ( 
6) 

00000000E+00 -0. 17857145E-02 ( 
7) 

00000000E+00 -0. 57750000E-09 
( 

8) 

00000000E+00 0. 17857142E-02 
( 

9) 

00000000E+00 0. 18214291E-02 (10) 

-. 60000000E+04 -0. 32642849 (12) 

-. 10000000E+05 -0. 46690479 (13) 

-. 60000000E+04 -0. 32642863 (14) 



Table A-4. 4. Input datato compute end shears and moments 
2 2 2 2 2 

+1. 20000EiO8 +1. 20000E+08 +1. 20000E+O8 +1. 20000E-i-OS +1. 20000E+08 

+0. 60000E+08 +0. 60000E08 0. 60000E3-08 ±0. 60000E08 +0. 60000E+08 

+0. 60000E+38 +0. 60000E+08 +0. 60000E+08 i-O. 60000E+O8 +0. 60000E+O8 

+1. 20000E08 +1. 20000E+08 +1. 20000Ei-08 ±1. 20000E08 +1. 20000E08 
-o. 18214281E-02 -0. 17857142E-02 -0. 57750000E-09 0. 17857142E-02 0. 18214290E-02 

-0. 18214279E-02 -0. 17857145E-02 -0.57750000E-09 0. 17857142E-02 0. 18214291E-02 

4 4 4 4 

+5. 00000E04 +7. 50000E-i-04 +7. 50000E+04 i-5. 00000E04 
3.00000E-:-06 +4.50000E+06 +4. 50000E06 +3.00000E+06 
-5. 00000E+04 - 7. 50000E+04 -7. S0000E+04 -5. 00000E-i-34 

*3. 00000E+05 +4. 50000Ef06 -4. S0000Ei-06 +3. 00000E+06 
+3. 00000E06 +4. 50000E-i-06 +4. 50000E-i-06 -i-3. 00000E-i-06 

+2. 40000E-i-08 -4-3. 60000E-i-08 3. 60000E08 +2. 40000E-i-08 

-3. 00000E-i-06 -4. 50000E-i-06 -4. 50000E-i-06 -3. 00000E-i-06 

1. 20000E-i-08 +1. 80000E-i-08 -i-l. 80000E+08 -i-1. 20000E-i-08 

-5. 00000E-i-04 -7. 50000E-i-04 -7. 50000E-i-04 -5. 00000E-i-04 

-3. 00000Ei-05 -4. 50000E-i-06 -4. S0000E+06 -3. 00000E06 
+5. 00000E-i-04 +7. 50000E-i-04 +7. S0000E04 5. 00000E-i-04 

-3. 00000E-i-06 -4. 50000E-i-06 -4. 50000E-i-06 -3. 00000E-i-06 

3. 00000E-i-06 +4. 50000E-i-06 +4. 50000E-i-06 +3. 00000E06 
+ i . 20000E-i-08 + i . 80000E-i-08 - i . 80000E-i-08 +1 . 20000Ei-08 

-3. 00000E05 -4. 50000E+06 -4. 50000E-i-06 -3. 00000E-i-06 

-i-2. 40000E-i-33 +3. 60000E-i-08 3. 60000E-i-08 +2. 40000E-i-08 

0. 00000000E00 -0. 32642849 -0. 46690479 -0. 32642863 

.-0_ 18214279E-02 -0. 17857145E=02 -0. 57750000E-09 0. 17857142E-02 
-0.32642349 -0.46690479 -0.32642863 0.00000000E+00 

-0. 17857145E-02 -0. 57750000E-09 0. 17857142E-02 0. 18214291E-02 

4 4 4 4 

+5.00000E04 +7.50000E-i-04 +7.50000E+04 +5.00000E-i-04 

-i-3. 00000E+06 +4. 50000E-i-06 +4. 50000E+06 3. 00000E+06 

-5. 00000E-i-04 -7. 50000E+04 -7. S0000E+04 -5. 00000E+04 

+3. 00000E-i-06 +4. 50000Ei-06 +4. 50000E-i-06 +3. 00000Ei-06 
+3. 00000E-i-06 +4_ 50000E-i-06 +4. S0000E+06 +3. 00000E06 
+2.40000E-i-08 +3.60000E+08 +3.60000E-i-08 i-2 40000E+08 

-3. 00000E06 -4. 50000E-i-06 -4. S0000E+06 -3. 00000E-i-06 

+1. 20000E-i-38 +1. 80000E-i-08 +1. 80000E08 -i-l. 20000E-i-08 

-5. 00000E-i-04 -7. S0000E04 -7. 50000E-i-04 -5. 00000E-i-04 

-3. 00000E06 -4. 50000E-i-06 =4. 50000E-i-06 -3. 00000E06 
+5. 00000E-i-04 +7. S0000E+04 +7. 50000E-i-04 +5. 00000E-i-04 

-3. 00000E-i-06 -4. 50000E-i-06 -4. 50000E-i-06 -3. 00000E06 
+3_ 00000E+06 +4. 50000E+06 +4. 50000E+06 +3. 00000E06 
+1. 20000E+08 +1. 80000E+08 +1. 80000E-i-08 +1. 20000E-i-08 

-3. 00000E-i-06 -4. 50000E-i-06 -4. 50000E+06 -3. 00000E-i-06 

+2. 40000E-i-08 +3. 60000E+08 -i-3. 60000E-i-08 2. 40000Ei-08 

0. 00000000E-i-00 -0. 32642849 -0. 46690479 =0.32642863 
-0. 18214231E-02 -0. 17857143E-02 -O. 57750000E-09 0. 17857142E-02 
-0. 32642849 -0. 46690479 -0. 32642863 0. 00000000E+00 

-0. 17857143E-02 -0. 57750000E-09 0. 17857142E-02 0. 18214290E-02 



Table A-4. 5. Computed End Shears and Moments (Output of 
Table A-4. 4. 

-0. 32785704E+06 M 
AJ 

-0. 32784704E+06 M 
0. 54999990E-f04 V 

0. 32785703E-i-06 M 
-0. 54999990E+04 y 

O. 33214264E+06 M 
O. 54999990E+04 y 

0. 32785 701E-i-06 M 
-O. 54999990E+04 y 

O. 33214267E+06 M 
-O. 32142859E-i-06 M 

BI 
-O. 32142860E+06 M 

O. 25000045E+04 y 
-0. 10713903E+O5 M 
-O. 25000045E+04 y 

' BC 

0. 31071460E-i-06 M 

O. 25000055E+04 y 

-0. 10713803E+05 M 
-0. 25000055E+04 y 

O. 31071470E+06 M 
-0. 10395000 M 

CH 
-0. 10395000 M J 
-0. 250000 1OE+04 y 

-0. 31071444E+06 M 
0. 250000 1OE+04 y 

CD 

0. 10714210E+05 M 

-0. 250000 1OE+04 V 

-O. 31O71444E+06 M 
0. Z500001OE+04 HG 

O. 1071421OE+05 M 
O. 32142855E+O6 M - 

O. 32142855E+06 M J DG 

-0. 5500003OE+04 y 

-0. 33214299E+06 M 
0. 5500003OE+04 y 

DE 

-O. 32785721E+O6 M 
-0. 55000030E+04 y 

-0. 33214300E+O6 M 
0. 55000030E+04 V 

CF 

-O. 32785723E+06 M 
O. 32785723E+O6 M 

EF 
O. 32785723E+06 M J 



APPENDIX B 

B-].. Stiffness Coefficients as a Function 
of Strain Energy 

M M 
Let F1, F2, F3, and F4 represent P2, and 

respectively eference Figure B. 2. 1). Then the stiffness equation 

for the beam segment (13, p. 6) is 

1F. 1K.] fu. 
1J L'JJ1.3 

(B 1.1) 

The element K.. of the stiffness matrix is then a stiffness in- 
13 

fluence coefficient, or more explicitly the force F. caused by a 

unit displacement, u.. The general Equation for K.. may be de- 

termined by applying a deflection u. and then computing the internal 

moment due to u.. Next in sequence, a virtual deflection EU. is 
J J 

applied and the variation in the internal energy, ÔU, is computed 

as well as the external work, 6W, done by F.. Since the first 

variation of the total potential, 6 (U - W), must vanish at equili- 

briurn, it will suffice to compute 6U 5W which gives us 

F. = k.. u. (B 1.2) 
i 1J J 

Internal moment due to u. 
J 

d2y. d2. 
1 1 M.(x) -EI ___ -EI u - (B.1.3) 

3 dx2 i L2 d4i2 
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Variation in internal energy due to uj: 

L d2y. 
6U = M (x)[E dxZl dx 

'-"o 

1 d d2 
El _____ i i - - u - (Eu)- L d4i 

- £ L2 d2 L2 d2 

i d2. d2'. EI 
(Eu ) 

Ç 
1 

d4i (B 1.4) -u 
L3 "10 d42 d4i 

Variation in external work: 

8W = F. (Eu.) 
1 I 

Then, since 6W ÖU 

1 d2 d2 
d4i (B1.5) F. (Eu.)-u (eu.) 

£ d2 d2 1 1 L3 

As the limit of e - O Equation (B 1.5) becomes 

1 d2. d2' 
F = Í.! C 

1 
di4il u. (B 1.6) 

LL 4 dqi2 dii -J 

The term in brackets in Equation (B 1. 6) is the stiffness co- 

efficient as dictated by Equation (B 1. 2). 

For simplicity, the stiffness coefficient may be written 

El o k.. = - k .. (B 1. 7) 
13 L3 



whe r e 
i d' d2' 

k° r 
dP (B1.8) 

o dqi2 d4i2 

B. Z Particular Solutions of Elastic Curve Equation 

Considering the beam shown in Figure B 2. 1, it is implied 

the usual assumptions of beam theory hold (small deflections, corn- 

plete recovery in the elastic range after the load has been removed, 

P 
i 

m1 

y 

m24% 

"2 

Y1 

___ __i_____ 
114 L 

Figure B 2. 1. Deflected Beam Element. 

a plane before bending remains a plane after bending, etc. ). lt is 

further assumed that the elastic curve of the beam element is given 

by a cubic equation 

yL)) = aq3 + bq2 + cp + d (B2.l) 



in which 4' is a function of x; '4' 

The constants a, b, c, and d arc evaluated by the use of 

proper boundary conditions of the beam. Thus 

(1 ) When the beam is given a unit deflection at the left or 

near the end of the beam as shown in 

Figure BZ. 2, the boundary conditions 

are: L 

Figure B 2.2. Unit de- 
flection at near end of 

1) y (0) = 1 3) y (1) = O 
beam 

2) y'(0) =0 4) y'(l) = O 

The first derivative of Equation B Z. i is 

yt() 3aiji2 + Zb4i + c (B2.2) 

Appropriate applications of the conditior above to Equations 

(B 2. i) and (B 2. 2) yields: 

When y (0) = 1 then d = i 

y'(0) = O then c = i 

y(l)=O then a+b+10] 
a = 2, b = -3. 

y' (i) = O then 3a + Zb = oj 

Sub stituting these values into Equations (B 2. 1) we obtain 

y1 = 24i3 32 
+ (B 2.3) 
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(2) When the beam is given a unit rotation at the near end 

as shown in Figure B 2. 3, the 

values of the constants a, b, c, k L 

Figure B 2. 3. Unit Rotation 
and d are obtained by applying at Near End of Beam 

the new boundary conditions as outlined in (1) above. Thus, 

Hence, 

When y (0) = O then d = O 

y'(0) = 1 then c = i 

y (1) = O then a + b + i = O 

a1, b=-2 

y'(l) = O then 3a + ¿b + i = oJ 

y2 q3 ¿4j2 
q (B2.4) 

(3) Unit deflection at the far end of beam. Same procedural 

sequence is followed as in (1) and (2) above. 

When y (0) O then d O 

y'(0) = O then c = O Figure B2.4. Unit de- 
-\ flection at far end of 

y (1 ) = i then a + b = i beam 
? 

a -2, b 3 

yt(i) = O then 3a + ¿b OJ 

Hence, 

y3 = 
3,4,2 43 (B2.5) 

(4) Unit rotation at the far end of beam. Proceeding as 



before we obtain 

Hence, 

When y (0) = O then d = O 

y'(0)O then c0 
ti921 

Figure BZ. 5. Unit rotation at 
far end of beam 

y (1) = O then a + b = ol a1, b=-1 
y'(l) i then 3a + Zb 

= 

1J 

(BZ.6) 

B. 3. Computing the Stiffness Influence Coefficients 

The second derivatives of Equations (B 2. 3), 

(B Z. 4), (B Z. 5), and (B Z. 6) are respectively 

= lZ4- 6 (B 3.1) 

y = 6i- 4 (B 3.2) 

y 6 - lZ4s (B3.3) 

y't = -Z + 64' (B 3.4) 

Then the Stiffness Influence Coefficients are determined as 

shown below in compliance with Equation (B 1. 8): 

k1 
1 

- - 

o 
V" 
'1 

Vtt d4' 
'1 

1 

= Ç (1444'2 1444' + 36)d4' = + 12 
o 

k1 
1 

= 

5 
V't 'Z Vt1 '1 d4' 

1 

= ( 
724'2 844' +Z4)d4' = + 6 

50 o 

o k22= 
i 

y Y; d4' 
i 

= (364'2 484'+16)d4' = +4 
so o 



= 

1 

5 
Vtt Vtt 

, 

di 
j 

= 5 
(-144 i2 + 144qi - 36)dqi = -12 

o o 

- k2- i 

S 
it y3 y2 d 

i 

= 
Ç 72 + 84 i - 24) dqi = - 6 

o I_Io 

k3 
= 

1 

5 o 
y y d 

i 

= 

£ 
( 36 -144+ 144)d4i = +12 

- k1-$ 
o 

ti y4 it y1 d 
1 

= 5 o 
( 72IJ - 60L1J+ 12) d = + 6 

k 
5 

y y' d 
= 5 

( 36 - 36 + 8) d = + 2 

- k3- 1 

S o 

il y4 it y3 dqi 
1 

= 
Ç 72LIJ2 + 604i- 12) dq = - 6 

k4= 
1 

o 

,, y4 y4 d = 
Ç 

'Io 

36 + 24+ 4) d = + 4 

From Betti' s Law or the generlized Maxwellt s Law of Recipro- 

cal Deflections (16, P. 376) the relation (B 3. 5) was obtained 

k.. = k.. 
1J 

J]. 

Hence, the stiffness matrix for the beam segment may be 

written 

12 6 -12 6 

6 4 -6 2 
[K01= 
L 13j -12 -6 12 -6 

6 2 -6 4 

where [Ko] represents non-dimensional parts of [Kl 

(B 3.5) 



APPENDIX C 

NOTATION 

Symbols are defined where they are first introduced in the 
paper, and the most important ones are also listed here for con- 
venience. 

E modulus of elasticity 

Pi generalized force acting on structural element 

I moment of inertia 

k. . stiffness coefficient (= force produced by a unit 
'J displacement Ui = i) 

L length of beam 

moments at left and right ends of beam element 

P1, P2 lateral forces at left and right ends of beam ele- 
ment 

e, e2 rotations at left and right ends of beam element 

ô, ô deflections at left and right ends of beam element 

u. generalized displacement of structure or structural 
element at a node 

f.. flexibility coefficient 

[] stiffness matrix for structure 

K non-dimensional parts of K 

f} generalized forces acting on structure 


