AN ABSTRACT OF THE DISSERTATIONOF

Martin Uranga Priorefor the degree oDoctor of Philosophyin Sustainable Forest
Managemenpresented ohNovemberl9, 2020

Title: Modeling Tree Size Distribution in Young Dougifss Plantations to Facilitate Tree
List Generation for Growth Model Initiation at Different Ages and under Differing
Silvicultural Regimes

Abstract approved:

Douglas A. Maguire

Two key challenges emerge when initiating individiraegrowth models for bare
ground or very young plantations. Both involve the need for a list of individual trees with
known or predicted size and known expansion factor (number of treempeaf ara
represented by each tree). In the case of bare graupouog plantations with no tree
measurements, the tree list must be generated based on some assumptions about the size
distribution. Even when a measured tree list is available, simulations rg<ubim input
of the very young tree lists do not proddature stands with observed levels of tree size
diversity because initial tree lists do have not differentiated to a degree that allows
deterministic growth predictions to drive observed growth difiees Tree growth,
particularly in the presence of i@t size differences and competition, is a deviation
amplifying process. Therefore, initial height and DBH distributions are critical for
accurately simulating tree size differentiation. The maireatbjes of this work i@ to
understand and model halifferentiation emerges and evolves in relatively homogeneous
newly planted seedlings, how early silvicultural practices affect tree size distributions, how
well our current growth models can represéet process of size differentiation, and how
to identify features of simulation models to improve simulation of young stand

development under varying site conditions and silvicultural practices.



Estimatingtheprogressiorf tree size differentiation durgrthe first decade or two
of Douglasfir plantation devedpment ischallengingdue to the multiplicity of factors that
influence seedling growth and are not typically measured or knowable in forest operations.
From a modeling perspective, these factordrdaute an important stochastic component
to deterministt growth estimates during the first years after planting. The increased
variability in growth that results from the addition of these stochastic components drives
size differentiation among trees. Wever, as trees grow and start competing with each
other,a greater portion of the growth variability among trees in the stand can be accounted
for by predictors such as its initial size, crown ratio, and relative social position. Thus, at
these older stap, the deterministic component of the models can amtidy size
differentiation to produce realistic future structure with less need for introducing
stochasticity.

The overall goal of this dissertation research was to develop and compare
methodologiesa generate tree lists for young plantations and to projexvth of both
generated and measured tree lsftDouglasfir newly planted forestn a manner that
produces stand structures or size distributions that resemble observed stands of later ages
that started with similar initial conditions.

Weibull distibutions were first fitted to height distributions of trees on individual
plots in a large dataset compiled from research plots designed to test growth responses to
early silvicultural treatments. Berent approaches to introducing varying degrees of
variability on fitted smooth Weibull distributions were explored with the objective of
representing as closely as possible the variation of the observed tree heights around the
smoothed distributions. Ehhypothesis tested was that different degrees of irsital
variations can cause a significant impact on simulated stand structu2@sy#ars later.
Simulations demonstrated that the CIPSANON growth model for intensively managed
Douglasfir plantatiors was quite unresponsive to different initial size vemmain out
planted nursery seedlings that had not been through their first growing season. However,
initiating CIPSANON with tree lists from older plantations (>5 years), the simulations
produced stad structure at plantation ages-2Gyrs that representiethe observed tree

size differentiation with sufficient accuracy. The poorest performance of the model resulted



from initiating the model with generated or measured trees lists for plantationsgeith

5yrs, suggesting that additional stochastic vammatvas required in annual height growth
predictions during the first five years of plantation developm&htee alternatives
variancecovariance structuragsere used to represent the residual varglaround fitted
height growth equation. The paramstefor these alternative variancevariance
structures were useid incorporatestochastic variatiorinto deterministic CIPSANON
heightgrowth predictions during thinitial five-yearperiodafter ganting The alternatives
included 1) white noise (base@dn a random component with constant variaac®ind
predicted heighgrowth), 2) proportion noise based on a random component proportional
to initial tree height and 3) noise proportional to heighas in alternative 2 plus
autocorrelated noiswith 1-yr lag (AR(1)) based orthe observedcovarianceamong
successive residuals on the same tré@ée three alternativesimulation approaches
producedsignificantly more accurate tree lists féryr-old plantatiors than purely
deterministic simulations. The whiteise approacproducedinrealistially greater height
differentiationthan the observed iny-old plantations, leading to overprediction of height
variability in 15yr-old plantationsResults from the other two approaches were similar.
The inclusion © stochasticity during these first five years also reproduced observed
patterns in height rank changes over time, in DBH size structures, and in amelioration of
multimodality identified a an artifact of the DBH assignment procedure (each tree
assigned a BH in the year that each tree exceeded breast height or 1.37 m). Other model
impacts included reductions of 6.8 to 5.1% in cumulative net volume growth at plantation
age 30 years compartm purely deterministic predictions.

Finally, the effects of differ vegetation regimes on tree size distributions during
the first two decades after planting were analyzed. Vegetation regimes were grouped by
the number of spring releases received. thneat regimes impacted DBH proportionally
more than height size digiutions, and the effects of different treatment regimes on the
size distributions of both variables were not the same. Spring releases produced an upward
shift in the whole DBH distribithn, but with respect to height the shorter trees were more
positively affected than taller trees. This differential effect on different portions of the

height distribution lasted for the first decade, but gradually disappeared over the second



decade, regmses to SRs treatments tending to converge with the untreated @ontro

absolute cumulative height growth.
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1. Chapter 1: General Introduction

Douglasfir (Pseudotsuganenziesiivar. menziesii[Mirb.] Franco) is the most
important timber species in the U.S. Pacific Northwest (PNW). Effective commercial
management of the vast area covered by this productive species requires that both current
and futue stand conditions awell as the growth response to different management
practices must be considered.

The development of treegithin a given standlepend to a large extent tmeir
initial size distribution, growth distribution among ied¢rees,early densityindependent
seedling survival patterns and later dendigpendent mortality. Forestayvth models
have been developed as a quantitative tool to conceptualize and forecast stand dynamics
and individual tree development through a rotation, allgvéncurate represenitats of
future stand conditions managed under different silvicultural treatments or regimes
(Weiskittel et al.2011)

Growth models foiDouglasfir have been under developméat more tlan 70
years first in the form of yield tables followed by stand growth equations, and more
recently based on more sophisticated computer simulation models based eorstaed
level equationgHann & Riitters, 1982; Ritchie, 1999Most of the early forest growth
models were focused on stand drek ages older tharD2/ears, probably due to long
rotations ages, primary focus on rotation age yield effects ofrotadion silvicultural
treatments, and the large number of stands that were either naturally regenerated or planted
at high initial standdensities that necatsted numerous thinning removals. In addition,
guantity and quality of data required for modeling early stand dynamics of both naturally
regenerated and planted forests have only recently become available.

Only during the last 280 years, driven by theoncept financial analysis of
industrial forest plantations, investment in forest land by large financial institutions
(Kuusela & Lintunen, 2019and the effort to keep the PNampetitive in the world wood
market (Adams, 2005) commercial management of plantations has explored and
implemented intensive silvicultural practices that have resuitetorter rotation lengths
(i.e. genetically improved trees, new nursery technology to produce target seedlings better

matched for gravth and survival on specific site types, site preparation, planting at lower
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initial stand densities, competing vegetatemntrol after planting, and fewer or no thinning
removals before final harvest, among othéialbert & Marshall, 2005) Large
investments irgenetic improvement, nursery technology, site preparation and competing
vegetation control has motivated more accurate economic anafytbie increase in yields
produced by each of these practices. Therefore, refining the ability of forest managers to
simulate stand development under intensive silvicultural practices during the f2&x 15
years after planting has become increasinglyartant to maximizing economic return.

Growth models can be classified as stand, size class, or indiidaainodels,
depending on the resolution of forest attributes retained and projected by the models. Most
current efforts in model development aim to amplify the signal and reduce theimjse
maximize the deterministic component and minimize the stochastic cont{Buekhart
& Tomé, 2012) Model estimates relgn deterministic understanding of stand dynamics
and corresponding deterministic predictions frongression equations to estimate
expected growth rates based on initial tree, stand site conditions and ignoring the
random variability around the regression mean, although this residual error or random
Aunexpl ainabl ed var i adbthd efficacy of the dgterminidtia f i e d
prediction equations

In traditional individualtree growth modelgpitial tree lists represent the initial
size distribution, and these tree lists #re starting point to predict future growthhe
initial stand coditions represented in these initial tree lists therefore have a significant
impact on early growth distribution and thus on future stand strudiufact, Maruyama
(1963)recognized the relevance of the initial conditions in determining futureures
the lawlike principle which appliednto forest dynamics states thadriation among the
individual trees within a and is a key element in stand dynamics because growth in the
presence of competition is a deviation amplifying process

An idealtree list includes the following informatidar each tree: spe@ediameter,
total height, height to crown base, and expamdactor (number of trees per unit area
represented by the sample tree). These lists generally come from traditionaligasedd

inventories, or more recently from LIDARsssted forest inventorigdvlauro et al., 209).
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Current inventories that yield tree ligtmgether with growth model projections of
these tree lists are essential to:fdgilitate the analysis oftree and stand responses to
different silvicultural options including the response of final stand lglie2) develop
harvest schedulasith long-termsustairdyieldswhich, ultimately, allows theestimation
of reasonable economic value of total forest exghips This last use is fundamentar
acquisitionappraisalssustainable certification schemegy(&SC SFI), andvariousother
planning activities.

Forest managers commonly must make quick and important decisions, particularly
when considering fastland acquisitions, without benefit of tree lists for bare ground
(recent cleacut harvests) or foroungstandswith no formal measurements this regard,
many algorithms for tree list imputation such as most similar nearest neigfibeur &
Stage, 1995have been used successfully in various other types of ftaedscape
analyses, and others have been developed by expanding on similar cBebptgger &
Turnblom, 2014) However, generation of tree lists representing planted seedlings from
years 015 and snulating their growth under intensive forest management are challenging
due to the relative uniformity of newly planted seedlings and the variable gajwth
individual trees over the first decad# plantation development.

In some caseszompletetree lists are available, for example, when inventory
protocols call for measuring every height on trees sampled from plots in young plantations,
or all diametes at breast height (DBH) on trees from plots sampledlightly older
plantationsthat have reached exceeded breast height (Z.3). However, subsampling
of DBH in young plantationghen total height (HT) is measured on all trees within sample
plots, or subsamplinddT and height to crown base (HCB) in older plantatwhsn DBH
is measured on all treesgithin sample plotsminimizes time andtost of obtaining an
inventory, but introduces some inaccuracy and potential bias during the process of
imputing DBH, HT or HCB. In extreme caseparticularly for 83-yr-old plantationsa
complete tree list muskhgenerated from stafevel attributes such astimated average
heightand number of trees per hectaralbr tree nursery specifications.

Differentiation is a process driven by differential growth rates superimposed on

initial size structure (size drdbution) within a stand. Accurately representing future stand
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structures should be a key objetive for modelsiace it can determine total stand
productivity through variability in individuatree resource acquisitigiPretzsch & Biber,
2010; Schwinning & Weiner, 199@ndresource usefficiency (Binkley et al., 2013)

For the firstyears after planting the following factors play an important nole
seedling growth and differentiation: @ijviculturaloperations including site preparation,
harvest debris management, type of seedling container, seedling handling, planting quality,
planter experience, competing vegetationtcdnand initial stand density?) sitetype
including soilattributesand implications for wier holding capacity and root penetration,
temperature and precipitation regime, evapotranspiration, andafopaspectand plant
community type and (3) tree attributesifcluding genetics, health and nutrient status,
hardening time, anseedling darage among others.

Unfortunately, it is virtually impossible to model the effects of the factors
enumerated irthe previous paragraph as deterministic mechanisms, in part because it is
not feasible to measure them all and in part because current undeggsi@intheir effects
and interactions are poorly understood. Instead, the effects of all these intrackalnte fact
contributed to the error term from the regression models. One consequence is that growth
models will always return the same outpies a given set of measurable predictor
variables that are input to modélrom the modeler point of view, the naturetbé
differentiation process has a large stochastic component through early stages of stand
development, although the portion of the variaticat tan be predicted from initial tree,
stand, and site conditions increases as the trees nistiima & Heinonen, 2008; Stage,
1973) Regardless, if the stochastic component of growth is ignored when snmdldtre
development, particularly from early stand stages, unrealistic stand structures, as
represented byize class distribution, will ensue.

The earliest method developed to represent the observed variability around
regression equations that conesuto be applied in many individuimée growth models
was tripling(Stage, 1973)Although the details vary among models and different versions
of a given model, tripling involves splittyy each single tree record into three new records
with the same initial conditions, but different expansiotdiecwhose sum is constrained

to be equal to the original expansion factor of the tripled (tfemnet al, 2011 Stage,
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1973. Each of these tree recordghenassociated witborresponding portions of a normal
distribution with mean zero arstandard deviation defined bHye error distributiomround
growth predictionequatios. The representation of the empirical error around the growth
prediction equation (tree basal area growth in the case of Prognosis, and DBH and height
in CIPSANON) enstes thathe weighted average of the thiessociatedecordsremains
unbiased.

These tipling approaches essentially increase size variability by adding a pseudo
random component to the deterministic prediction, where the psandom component
is basean the weighted averages of different portions of the residual distribution obtained
from the fitted growth equation®ne of the main disadvantages of these tripling methods
is the computational time required to carry the expanded tree lists from avid gyale
to the next.

Other truly stochastimethod have beertommonly used to intragte variability
into projectedtreelists and consequesize distributionsand appeartheoreticadly sound
andcapable of rerodudng observed variability in individudiee growth andtandlevel
tree size distributiongMiina, 1993; Miina & Heinonen, 2008; Stage \&ykoff, 1993)

These methodsnvolve incorporating unexplained variability into the individual tree
growth models predictionsy drawing random numbers from an assd distribution of

the residuals around the fitted growth equatidiese approachear be combined with

an expanded tree list generated by tripling to allow simulation of the natural variability in
size differentiation that may not be present in th&aintree list or be simulated by
subsequent deterministic growth predictiddswever,someauthors havesuggestedhat
morerigorousattentionmust be paido genera¢ and assesaethodologies to incorporate
stochastic structures inforest growthmodds (Burkhart & Tomé, 2012; Fox et al., 2001)

The most common approach to preserve observed variation when predicting
deterministic componesthas been to incorporate unstructured variation by drawing
random deviations from an appropriate distribution and adding them to each deterministic
prediction(Miina, 1993; Stage & Wykoff, 1993)This approach has beamplemented,
for exampé, to impute heights from traditionatBl curves, a method that if not assisted

by adding stochasticity will produce unrealistically narrow height variation for trees of a
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given diamete(Zhang etl., 2020) One variéion onthis approach is to base variability in
predictions on the observed distribution of residuals around the fiti2dddression curve
(Mainwaring et al., 2019)n a similar manner to introducing noise around tree basal area
growth when the tree lidiecomes too large for triplingtage, 1973)he only assumption
required for introducing this stochasticity is the distributional assumption for the observed
residwals (e.g., a standamtid normal distribution rscaled to the observed M§Elean
Squared Error) (Mainwaring et al., 2019; t8ge & Wykoff, 1993). However, this
assumption is often assumed and not rigorously tested.

Overall, w published papers address alternative ways to generate accurate tree
lists in young plantations andomparetheir relative efficacy. Probably, the most
commonly known is thavork by Van Deusen (1984). Little research applies rigorous
statistical methods to simulat@riability around recently planted initial tree lists and to
incorporate a combination of stochastic and deterministic growth estimatdsatace the
simulated Duglasfir stand structures to attain generated distributions resembling those
observed during the first decades after planting.

Finally, intensive management &ouglasfir for timber production involves
clearcuting of evenaged stads followed by estaldhment of plantations and control of
completing vegetation.The Oregon Forest Practices A(DFRI, 2018) requires
regeneration otlearcuts within six years after harvesting, with a specified minimum
number of trees per uioigtr o.avandowners hclte thisr e d e «
regeneration requirement by planting an adequate number of trees and ensuring their ability
to grow above competing vegetationamed seedlingsnust contend with not only
naturally regenerated conifers and hardwdmatsalsowoody and herbaceouspecieghat
rapidly colonize the site and compete with the seedlings for water, nutrients, and light
(Harringtonet al, 1995)

To ensure growth and survival of Douglaisseedlings, competing vegetation is
commonly controlled by postplanting spring releases (SR) treatments often in
combination with chemical and/or mechaniqaie-planting site preparation. Spring
releases have shown to significantly increase seedling su(eigaRoseet al.,2006)and
growth rate(e.g. Newton and Prees1988; Wagner et al2006; Roseet al.,2006) The
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effects of vegetation managememttbe development of tre@BH, height, and/olume

have largely focusedn the shortterm (-7 yearsafter planting, although some studies

have tracked plantation development to older ages where experimental units (plots) are
suf ficient | yHarriagtogeeal, {995IFamened @trals 209

The general appoach used to analyze most experiments impdéangrditypes,
intensities and timing of vegetation control treatment has been conventional ANOVA and
regression models in whianly the mena responses toovariatesvere assessed, i.e., the
effects ononly the locationparameterof the conditionalsize distribution assuming
indepenent and identical distributiond] of the error terms. Howeverno inherent
biological mechanisms justify treessumption or simplificatiothat treatments and other
covariatesnfluenceonly the location of the response dilstrition, with no effects on other
aspects such as shape or scale parameters or different per¢iénlgdser & Zhijie, 20Q@).

In assessment of forest growth, the response of other features of the distribution are
apparent (e.gknoweet al.,1992; Maguiregt al.,2009)and have important implications
for stand dynanais, stand structural objectives, and economic performance with respect to
tree and log sizdistribution. In this egard, quantile regression (QR) offers an attractive
alternative for assessindié response of the entire size distribution to silvicultural
treatments. Quantile regressisnan extension of classical regression predicéoiables
(in this case, a class of silvicultural treatmethidt has potentially varying effects on
different segrants of the responsevariable distribution. Identification of these
heterogemous effectsby QR canprovide additional information beyond caventional
(normatbased)mean regression techniquepecifically, QR canapproximatethe entire
conditional distribution of the response variahpeoviding additional infomation of
significant utility in many applicationdoenker & Zhijie, 2002)

Some of the most important questions adsdsin this work involve the
development of tree size variability over the first 20 years of the plantediorarelative
homogeneousstand of seedlings at age Ojhé predictability of growth and size
differentiationfrom deterministic models under difent initial conditionsthe degree of
stochastic variatiom initial tree lists and in subsequent growth simulaticetired to

transformdistributionsotherwiseresulting from average growth predictidosnoisier and



8

more realisticobserved sizelistributions and the effecbf different vegetation release
management regimes on different portions of the DBH and height size distributions at
different ages during the first 20 yeardauglasfir stand development.

Chapter 2 of this dissertation focgsen assessing alternaiapproaches to initial
tree list generation. This objective entailed investigation of the potential for smooth
distributions to represent observed tree size distributions of plBateglasfir seedlings
in O- to 20yr-old plantaions. Different methodsot incorporate different degrees of
variability around these smoothed size distributions are then explored for their relative
performance in representing observed distributions. A final analysis explores if different
container typeproduce different seedig distributions.

Chapter 3 applies an individutbe, spatiallyimplicit deterministic growth
simulator, CIPSANON, to project forward the initi@louglasfir size distributions
generated in Chapter 2, and compares the resusltamgl structures with thabserved size
distributions for the same set of plots and for an independent dataset collected in the PNW
region from plots on field trials with the same initial planting density. In addition, different
variancecovariance structes are used to characrer the variability around the height
growth equation for the modelling dataset. These structures were later used to reintroduce
stochasticity around the deterministic predictions following two approaches. Stand size
structures simlated by the model wenalidated against observed stand structures and
compared to the performance of purely deterministic predictions for both height and DBH
distributions, individual tree size trajectories, and future volumes, among other attributes.

Chapter 4 addresses thmpact of different regimes for competing vegetation
control on different portions of height and DBH size distributions, as well as how these

treatment regimes effect change over time using a linear quantile mixed model approach.

1.1 Dissertation Objectives

The overarching goal of this study was to develop methodologies to generate

realistic tree lists that represent observed size structures of intensively managed-Douglas
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fir during the first 1520 years after planting. The specifiojectives of his dissertation
research were to: (1) explore alternative methodologies to generate initial tree lists that
represents the initial total height size variation; (2) evaluate the relative performance of
deterministic growth model predictionsitlv respect totree size differentiation when
compared with observed differentiation, starting from different initial conditions (tree lists)

at difference plantation ages; (3) develop and compare different approaches to incorporate
stochasticity around avage expectedrowth basedn regression equationwith the
objective of enhancing model capability to represent the observed size structures, evaluated
in part by quantifying the emergence and development of waiiaind tree size variability

over time; and (4) asses how different regimes of competing vegetation control
differentially affect DBH and height distributions at a given age, and how these effects
changed over the first decaddter planting, so that past competing vegetation control can

be onsidered inhe tree list generation process.
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2. Chapter 2: Douglasfir seedling size distributions at time of plantation
estabdishment
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Abstract

The development ahdividual treeswithin a stand can be characterized by their
initial size distribution, growth distribution among the treestly densityindependent
mortality patternsand hter densitydependent mortality. The initial size distribution can
have a significant impact on earyowth distribution and future stand structure. The
objective of this analysis was to develop a methodology to quantify initial tree size
distributions ® young Dougladir plantations under different initial conditions, including
seedling age and stockpy. Doubletruncated and standard Weibull distributions were
fitted to empirical distributions by parameter recovery using the method of statistical
momaents. The basic seedling data to which seedling distributions were fitted were collected
from Douglasfir plantations that had not yet been through their first growing season (0
yearold) and from older plantations ranging in age from five to 20 y&argpirical tree
height distributionsn 0-yr-old plantations showesubstantiadifferences indegree and
patern of initial variation within and between study sites, probadbiy to differences in
nursery specificationthat were an intentional part of thedgudesign, conscious decisions
to plant seedlings to match site conditions (target seedlings), otseftomrepresent
operational practice at that time and pla@aperimposed on these systematic sources of
variation was random variation in the size a@es selected for planting within a given
experimental unit. ¥riability around thesmoothedsize distributions was generatexthd
compared with empirical data using two methodstrajving differennumbers of random
trees from the theoretical probabilitembsity function (pdf) and; b) imposing different
degrees of Gaussian noise around implied proportidrees per hectare implied for the
guantiles of the fitted theoretical distributions. The goal was to generate the degree of
random noise around thesestiibutions using both approaches to match the empirical
variability in seedlings on a given plot. Tkfect of specifiecstocking type (container,
bareroot or a combination of bo)hon the location andscale parametersf the initial
seedling distributn did not affect the height distribution parameters of Dougfias
seedlingsn 0-yr-old plantationsHowever, seedlings that were deliberately sorted by size
class or grown in different container sizes and subsequently planted in separate

experimental ums did affect the scale and range of the height distribution.
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2.1 Introduction

The development of tre@gthin a given stand can be characterized by their initial
size distribution, growth distribution among the trees, and mortality patteross the size
distribution(Hara, 1993)The growth of different size classes dependsypartlinitial tree
size distribution. For instance, if a given initial tree size distribution is very narrow, the
variation in growth is likewise narrow relative to an initial tisewith a much wider range
in initial tree size. The patterns in initialke size and subsequent growth distribution
determines the future stand structure. Thus, the first step toward predicting a realistic stand
structure is to accurately representiah size distribution.

In this chapter, the focusason assessment afternativemethods t@enerate tree
size distributions under different conditions (péantationageandstock type)based on
information typically available in landowner recordsr Douglasfir plantation in the
Pacific Northwest region of the United &st(PNW) Given thatotal height is the most
common measurement on any trees that might be measured in young plantations before
reaching breast height (1.37 m), and the factaHawer stem diameter is rarely measured
on operational unitgptal heightdistributionwasthe primary focusf this research.

The most common approach fgenerating a tree list to represent the number of
seedlings per unit of area in various heighssks starts with fitting a probability density
functions (pdf) of one or mertheoretical distributions to plobr standlevel empirical
distributions. The selection of a suitable distribution is evaluatedsbyeral criteria,
including their relative flexibility to accommodate thelifferent shapesbserved in
empirical distribubns theiraccuracyo r A g cof-fd inamdhseaseby which they can
be integratel to estimate the number of trees in spedfie classeéBurkhat & Tomé,

2012)

Nursery specifications such as minimum and maximum seedling tree height play
an important role in determining the initia¢ightdistributionimmediatelyafter planting
(O-yr-old plantations) Otherless influential sourceef variation h measured seedling
height includedolanting practicesuchasdepthof planting The tree height variability
observedin the Qyr-old plantations for this analysis was therefore attributabla to

combination of botmurseryand plantingoractices.
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Becaus landowners typically request seedlings of a given average size or within a
given size range, and nurseries otherwise sort out cull seedlings before packing, selecting
theoretical pdfs witHeft and right truncation point&ere regarded asighly desirabé.
Furthermore, nursery specifications for seedliptanted on research plots forming the
basis of this analysis were probably more precise than has been typical of operational
planting units in order to minimize experimental error, represgperationalneeds
achieved by 0 braeagheatcomprenaise lbatweenshiese two conflicting
objectives.

The need to generate tree lists typically arises in situations wield
measurements of seedling heights are not available, or winevthgrredictiors are needed
for unplanted harvested units or units scheduled for harvest. In these cases tree list
generation can be achieved by imputation from other plots (&efpringer & Turnblom,

2014) or the parameters of a distribution (pdf) can be estimated based on as little or as
much information as might be available for the target stand or siteBgiqg & al., 1994;

Van Deusen, 1984)Two alternative methods are commonly used for estimating
parameters of a size distribution, i.e., parameter recovery (PRMk & Moser, 1983)

and parameter prediction (PPMlutter & Bennett,1965)

Initial tree size variability around a smooth distribution (defined by a pdf) edupl
with equations for predicting growth and moaitiaimay be an effective basis to project
future stand development. However, introducing some variability characteristic of the
empirical distribution may produce better results. Among many possible appsoiach
introducingrandom noise around the smoothdidtributions, two would seem to offer
strong potential for accurately simulating future stand structures. One would involve a set
of random draws from the smooth pdf and the other would require introduaftisome
level of variability in the number ofdes per unit area predicted by the pdf for various size
classes.

Among the first decisions that a forester must make in a reforestation project is the
selection of the stock type ¢ontainerized versus &oot; container typksize if
containerizedtotal age, i.e., number of years spent in sowing bed or container and number

of years in transplant bed if barerpothe impact of this selection on the growth and
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survival of seedlings has been well documerfeed.,Roseet al, 1997; Wightma et al,
2018) However, the impact on the initial size distributions has been restricted to
comparative averages among stock typasi(height, basal diameter, DBHbot volume);
therefore, further ssessment of stock types effectslocation and gread of the initial
seedling distributios deserves attention

The generagoal of this studywasto develop a methodology tgenerate realistic
initial tree size distributiomof planted seedlings O- to 20yr-old plantations Specific
objectives inalded: (1) identify the begirobability distribution to represembserved
distributions oftree height; (2) assess therformance of the PRM for achieving accurate
fits of the probability distribution tathe data (3) assessalternative methods for
incorporaing size variability into the smoothed distributiorand (4) quantify how

different stock types affect thmarameters of the selected distributions.

2.2  Materials and Methods
2.2.1 Studgites anddata

The current project utilizedata fromexperiments designed and established with
the commonobjective of testing tree and stand responses to differing silvicultural
treatmentsThese studiewere selected because they were measyeadrally every year
from plantationage 0 to §earsand every 23 years afterwards (Tab®l). Also, the sites
cover a large portion of the PNW region where Doufjlais plantedin pure plantations

and intensively managdéig. 2.1).



Table 21. Main attributes of studiesonstituting the data source for the seedling size

18

analysis Treatmentdnclude number of release treatments from competiegetation
(VR); harvest removalgdHR); fertilization (F); initial seedling size(SS; and soill
compacdin (COMP) For the ECR, DPS and CW studidata from only a subset of the
testedvegetation releasdreatmens were used in this workData SourcesVMRG
Vegetation Management s&archCoop., LTSPLong Term il Productivitynetwork

Data Study Sites | Blocks/trees | Treatments | Measurements| Seedling| Tree Reference
source Name per plot type records | Publication
VMRC CPT 4 4/36 8 VR 05, 8, 12 Styro15 | ~27k Rosner &

0:5 Rose, 2006

LTSP | Fall River 1 4/170 2VR, 3HR 0:8/0-3-5, 10, 1+1 ~68k Ares et al.,

(FR) 2COMP 15, 20 2007
LTSP Molalla 1 4/100 2VR,3HR | 05,8,10,15 | Plug+1| ~21k Harrington
&
Schoenholtz,
2010
VMRC 2m2yr 2 4-5/36 2VR, 2F, 0:6 2+0 ~26k Rose &
2SS Ketchum,
2003
VMRC | HERBL 2 24 plots/49 8VR 05, 8,12, 15, 1+1 ~23k Rose et al.,
20, 27224 1999
VMRC | Combired 4 2/36-64 3SS, 2VR 05, 8, 10 Styro-8- ~11k | Wightman et
(Cw) 1560/ al., 2018
1+1
VMRC | Delayed 2 2/25-36 2VR 05, 8, 10 1+1 ~2k Wightman
(DPS) & Gonzalez
Benecke,
2019
VMRC | Evaluating| 1 1/36 2VR 04, 7,10 1+1 ~0.5k Dinger &
Common Rose, 2009
R. (ECR)
VMRC | CoSInE 4 2/64 2VR 01 1+1/ ~1.5k Guevara et
Styro-20 al., 20D
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Figure 2.1. Location of the siteby studyname

All the studies haddifferent vegetation management regimes as a primartyrteea
of interest.The specifics of the vegetation management regimes were simplified in this
analysis to the number of releases applied. Sstomies specified a maximum allowable
cover of competing vegetation after release treatspeand many did not. ddvever,
preliminary analysis suggested little additional predictive power was gained from using
some form of competing vegetation cover as\adate, and operational relevance favored
the simplicity of using only the number of treatmefisr most of thestudies, the number
of releases represented the number of years of consecutive spring releases immediately
after planting.The only exceptiorto the abovewas two of the CPT (Critical Period
Threshold)treatmentsn which one entailed four years of releaafter a ongear delay

with no treatment (OTTTT) and another entailed three years of release aftetyaatwo
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delay with no treatment (OOTTTThe first case (OTTTT) wakereforepooledinto the
same category dsur years of release immediately aftéaring (with no delay) followed
by a fifth year with no treatment (T4), and the second case (OOTTT) was pooled into the
same category dhree years of release immediately after planting followed by two years
with no treatment (T3)Secondary treatmentadludel fertilization, debris management,
tillage ordiffering initial seedling size.

All 381 study plots of the study dataset were meaat plantation age O years,
i.e., immediately after planting and then annually after each ofirdtefive growing
seasonsAfter the plantations passed their fifth growing season, measurement schedules
differed among studies. Figure 2.2 shows the nunobglots measured by number of
applied spring releases and the most frequent plantation agesnefaseirement. The
figure also provides a good sense of the number of plots that each study contributed to the
analysis dataset at different plantation ages.

Plot sizes ranged from 0.02P% on the Boot site of the Delayed study to 0-085
at Fall River. All trees on aplots were measured for height at indicated plantations ages
(Table 2.1). Tree heights ranged from an average of 0.43ptarattion age 0 years to
18.14 m at 20 years, with initial densities of planted trees ranging @614 1680 tees
per hectare(Table 2.2). Plot site quality covered a relatively narrow and high range from
32 to 4 m (King, 1966; base age 50 years egdst height; Table 2.2).
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Figure 2.2. Number of plots in the analysis dataset by number of spring reled®gar{®
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of spring release ti@ments (SRs) are indicated on thaxes (ctrl= no SRs; T1=one SR;
T2=two SRs; T3=three SRs; T4=four SRs; T5=five SRS).

Table 22. Summary statistics ofree and plot level attributesat the most common
measurement ages. DC stands for basal diameter at approximately 15 cm from the ground.
Site index (SI) represents Kisgy19®) site index (m at 50 years last height age).

Variable Statistic Age (years)

0 5 8 12 15 20

Min 0.02 0.22 0.3 1.66 15 5.8

Height (m) Max 1.13 6.06 9.6 14.7 18.6 24
Mean 0.43 3.10 5.95 10.18 13.19 18.14
Min 0.00 0.00 0.00 0.50 0.40 4.50
DBH (cm) Max 0.00 9.80 16.90 24.10 28.20 35.00
Mean 0.00 3.36 8.09 14.15 16.62 19.58

Min 1.0 5.0 6.0 --- --- -

DC (mm) Max 19.0 155.0 226.0

Mean 5.8 57.6 128.7 --- --- -

SI (m) Min 32 32 32 37 36 37




22

Max 44 44 42 42 42 42
Mean | 39.7 39.7 39.9 | 405 | 407 413

Min 107 389 389 638 462 396
(tr[éggs_'% 3 Max 1680 1680 1651 | 1108 | 1641 | 1501
Mean | 1323 | 1236 1065 | 1020 | 1233 | 1243

Number of plots | N 381 370 189 110 111 95
Number of trees n 22424 20307 11439 4252 10981 9299

2.2.2 Selection of total height digitition model

Many authors refer tohe selection of therobability distribution as a critical

component of the process modelingtree size distributionge.g., Burkhart & Tomé,

2012) Numeroudunctions with twg three and four parameters have bgeposed, fitted

to data,and comparedor representingliameter distributions of differeribrest species

under different silvicultural regimes: lognorn{8liss & Reinker, 1964)gammaNelson,
1964) beta(Clutter & Bennett, 1965)Weibull (Bailey & Dell, 1973)
(Hafley & Schreuder, 1977)ogit-logistic (Wang & Rennolls, 2005andBurr XII (Wang
& Rennolls, 2005)

The Weibull probability distribution isree of the most frequentlysedmodelsto

JohfBsonobs

describe tree sizeigdribution in many parts of the world, includinthe western LS.
(Krurnland & Wensel, 1979; Little, 1988 palach1989. Several variants have been used,

but in plantationsone of the most popular forms has three paramatetshe followng

pdf:

~~ o~

QAT o U ATA

o —

[1]

where a, b, and c are the location, scale, and shape paramet=sectively.Shape

parameters <1 produce negative exponential revesissopd distributions typally found

in uneveraged stands. Shape values between 1 and 3.6 produce positively skewed

distributions, values about 3.6 produce symmetric distributions close to the normal

distribution, and shapes larger than 3.6 produce negatexged distributiongsenerally,

evenaged stands are characterized by shape parametéBurkhart & Tomé, 2012)

The location parameteris used talefine the minimum possible DBét height in

a given standbut because satimes it isnot easyto define, the twgarameter form is
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usedassuminga=0. This assumption has been reported to be beneficial in some forestry
applications because it forces the shape parameter to adopt wider range dMalkaaso
et al, 1995)

Forest inventoriesommonly designate a minimum DBHresholdato define the
smallest trees to be measur@urtis & Marshall, 2005) generating a left truncated
Weibull distribution:

QAT o WA Q T\l [2]
whereb andc are the scale and shape parametedefisedabove andais the arbitrary
left truncation point provided by the us&fan Deusen (1984)sed the truncated two
parameter drm since it is more convenient when modelling mixed species rgtural
regenerated stands where paramatzan be veryifficult to define.

Young plantationglevelopvery irregular diametedistributionsand,to a lesser
degree, height distributions dteethe variety of factors that affect the initial growth stages.
Thus, distributions that can accommodateide variety otonditionsaremandatory for
this type of modelingHafley & Schreuder (1977) and Wang & Rennolls (200&9d the
skewness and kurtosi®efficients as a criteria to predefine candidate distribution forms,
understanding that if the daygeld combined skewnessé kurtosis leveloutside the
rangethat can be characterized aygiven distribution, the distributiashoesnot have the
flexibility to fit the data well. Skewness measures symmetry; negative \raksss dong
tail to the left and positive valuedongtail to the right. Meanwhile, kurtosis is a relative
measureofit ai |l ednesso many ti mes oc dryf(\ieatfalcheod swi |
2014) where small values are associated with heavy tailsviardrersaThus, kurtosis is

relatedto the propensity of the distribution to generate outlielative to epectations from

a normal distributionMathematicallythe skewness coefficient,| , is defined as

andthekurtosiscoefficient] , as
T
where' represent th&" central moment.
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To illustrate, consider thplot-level distribution of total seedling heights iryf
old plantations, i.eseedling fresh from the nurserplanted into bare groundnd not yet
through their first growing seasorett and right truncation pointaust be imposed cany
smooth digibution characterizedy a pdf with an inherently wider dmain, preferably
consistent withursery specificationdesignedo meet experimental and/or operational
needs.

Mathematically, a random varialdés said to be truncated from below if, for some
threshold valugy the exact value ab  Gis known for all cases, but, unknown for all
cases « Likewise, truncation from above indicates that the exact value ofois
known for all cases, butnknown for all case® @ (Breen, 1996)

Both the pdf and cdf (cumulative thiution function) of the doublguncated
Weibull distribution provide helpful insights into the nature of the distributlcet. @
denote a doubleruncated tweparameter Weibull random variable, with
Jewnsnt a o 1,
wherewD Weibull (b, ¢), b> 0 and ¢ > 0, andandr areleft and right truncation points,

respectively. The cdf and pdf @f, "'O@ dand" Q@ ¢ respectively, are defined as:

0@ § 3]

QD6 [4]

Thefollowing figures exemplify the effect of different truncationigde on the pdf
and cdf of a doubkruncated Weibull distribution with the same shape and scale
parameters (Fig. 2.3).
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Figure 2.3. Example of how different truncatigoints ([30,60], [30]50], and [40,60] for
rows 1,2 and 3, respectively) change the f@déy , first column and cdf Ow , second
columr) of a doubletruncated Weibull height distribution with the same shape and scale
parameters for describing seedling height distribution.

For trees of oldelages, a standard Weibull distributiavith two parameters
(location assumed fixed at 0) could be used, understanding that as trees get older the
truncation points imposed by nursery sorting practices trend to disagesearating

smooth declines on mapsobability at the extremes.

2.2.3Parameter prediction methods

Field measurements are often not available to construct a tree list that can be
projected to estimate the future stand for various purposes like harvest scheduling,
allowable cut levels,ral many other aspects of forest plargniOnecommonremedy to
this lack of a tree list it to predict parameters of a diameter distribfitton stand
characteristics that can be associated with the distribution, e.g., site quality, number of trees
planted age, and vegetation contréls menioned abovetwo techniquesave been long

used in forestry, i.eparameter prediction methofl®PM) introduced bZlutter & Bennett
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(1965) and parameter recovery methd®RkM) introduced byHyink & Moser (L983) A
combinatia of both methods also has been applied to produce a growth and yield model

for yellow-poplar(Knoebelet al, 1986)

2.2.3.1PPM

The PPM uses the relationship betwewailablestandand siteattributes and the
parameters of a given distribution function. Each parameter of the distributionassedr
onthe stand covariates to obtain the Itcaldjusted distribution.

In orderto apply PPM, a database must be assembled aguriag the size variable
of interestacross standsovering the relevant range nfanagement conditiorthat the
forestes expect to encountemhe stand or plot should have enough trees to alow
accurateestimation of thespecified parameters of thegferred distributionThe first step
is to fit the selected distribution to the data for a large number of samplingtypitslly
individual fixed area plotsThe most common methddr estimaing the parameterfor
each of theseplots or stang is maxmum likelihood estimation becauddaximum
Likelihood Estimates (MLE) offer robuststatistical propertiefr making infeencege.g,
asymptotic minimum variance)Royle & Dorazio, 2008; Zhou & MEague, 1996)
However, theMethod of Moments (MM) or percentile methodtso offer appealing
alternatives

The second step requires reging each of theobtainedparameterdor each
sampling unitagainstthe set oktandand sitecovariates that ar@vailable anaxpected to
influencetree sizaistribution.Standard ariable selection methods are applied to find the
most important covariasto explan as much of the variation in a givearameter estimate
among plos as possibleExamples of ovariatesthat areeasyto obtain with sufficient
accuracy anthat are oftefknown in advancer estimable with sufficient accuracy include
numberof trees per hectare, age, site indadvegetation contrdbr bare ground or young
stands, and for older stands basal areagaadratic mean diametéviehtatalo, 2014)

An important consideration when fitting a distribution to data is the fact that the
parameters to be estimated are correlddeeto this correlationvarious combinations of
parametergstimatesanlead tovery similar distributions Furthermore, this correian

carries over to the error terms between parameter prediction equations, leading to biased
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and inconsistent estimatesthie crossequation correlation is not accounted fidmenta,
1986) Seemingly unrelatecegression (SUR) ia relatively simplesystemof-equations
approach that can lagpliedto accountrossequationcorrelationgKmenta, 1986)Most
statistical software packages have routines that facilitate parameter estimation with this and
othersystemsof-equations techniquée.g.,Henningsen & Hamann, 2015)

One disadvantage of éhabovemethod isthat each stepf modeling produces
errors.Cao (2004xombineditting of the theoreticatlistributionto the data froneach plot
with estimation ofparamegr prediction equationsnto one likelihood function This
likelihood functionsimultaneouslysummed the plotspecific likelihoods and maximized
the comprehensive likelihood functioand theeby optimized the fit of predicted
parameters and associatedritsttion to the datarhis approach eliminated the initial step
of estimaing plot specific parameters, but most important,dgbmbination of fitting and
predictionerrors is minimized bymultaneousestimation.Mehtatalo (2013ompared
C a oapmoach with the traditional RPmodel on DBHdistribution of 59 plots of Scots
pine, reporting fewer rejection ratés the former approach using Kolmogof8wmirnov
(K-S) test(Daniel, 1978) However, darge root mean square erroRKSE) for stand
volume also resultedue to hearer tails to the right of the distributiopsr oduced by Ca
method

Alternative approaches minimizing ehsum of squared differences between
obsenred and expected cumulative probabilities have also proposed and evaluated, yielding
better results than the general PPM and the SUR estimation niEthatt & Cao, 2013)

2.2.3.2PRM

Directly modeling the parametestimats that result from fitting distributions to a
set of datgdPPM) can be difficult for biological interpretation and sometimey lead to
unrealistic outcomesparticularly if the prediction equations are extrapolatéh
alternativemethod predicaggregated stand attributes such as mean diameter, basal area
or dominant height, and then seb/for parameterdhat constrain thelistribution to
produce tle predictedstand aggregated attributédyink & Moser, 1983) The cited
advantage of this methadlieson the fact that stands attributesch as variousioments
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are better understood and eastejustify and interpret than the distribution ofrpmeters
from a theoretical disibution (Burkhart & Tomé, 2012Mehtatalo & Lappi, 2020

Three types of recovery modedse availabledepending on statisgcused in the
recovery algorithmThese statistickanbe momentspercentiles, oa mixture of the two.
Weiskittel et al. (2011)ecognized PRM based on momeggghe primary method to link
stand with sizeclass models because ensure numerical compatibility, simplicity,
interpretdility and unique solutions.

Opalach(1989)described the conceptual model of PRM as follows:

w Qovhd - [5]
Q ohd
where:
V= vector ofobservedime-varying stand attributethat must be estimated and forms the
basis for parameter recovery
t = stand age
K = vector of timeinvariant stand attributes
Y =vector of timevarying stand attribute
"Q system ok regressiorequations
- =k x 1 error vector
= estimated parameter vector

"Q mathematical relationship betweenandestimatedstand attributes
w= estimag of V

If available,the logical truncation points for tlexpecedstand height distribution
of seedlingsin O-yr-old plantationswould generally beghe minimum and maximum
seedling heights requested from the nursery. Statistics for central tendency (average) and
dispersionvariance) of seedling heighas each plot wreneeded to recover the shape and
scale of the distributioty simultaneously solving the following system of equations
numerically using the NewteRaphson algorithm

DD QB % QD [6]
DB QD % QD [7]
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where:

"® = mean tree height for plot

" = total height of tre¢on ploti

"Qu®bo = chosen distribution with vecté of 2 parameters for plat

"® = mean of total height squared for tjam ploti
i, 0 = right and lefttruncation poird for ploti

Nursery specifications were not available for most of the field trials, so the
truncation point&nd the aggregated stand attribwiese calculated at the plot level from
thetrees measured immedibtafter planting (no predictions of aggregated atteBwere
involved).

The collection of all the moments ofVdeibull distribution uniquely define the
distribution. In this study, just the first twvo moments were used to recover the whole
distribution kecause only two unknowns (scale and shape parameitgugeceprediction
after assuming conformity to the truncated Weibull distribution. In order to assess how
well the PRM performed, the resulting parameter estimates e@rgpared with the
maximum likelhood estimags (MLEs) for the same set of plot&Jnder regularity
conditions, the MLEs have two desirable statistical properties that provided a robust
comparison with PRMs: 1) consistency, i.e., the estimator converges on the unknown
population parameter as the sample size (n) approaches infinity; ands@jnptotic
efficiency, i.e., the following function of the estimator converges at a rate¢/éfdi the
normal distribution:

e — —DO i — [8]
where,b — is the CrameRao lower bound (theem 10.1.12 o€asella & Bergef2002).

Finally, theKolmogorow+Smirnov test was also used to checthdempirical data
were well represented by the distributions implisdthese recovered parametefhe
statisticO is computed as follows (Eq. [9]), and under the null hypothesis that the
empirical cd ("(Ow equals the theoretical distributiofDc hwherel€ O is distributed
according to the Kolmogorov distribution.

O i 606 O [9]
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2.2.4Introducing random variabilit into fitted Weibull height distributions

Oncethe smoothed tree height distributions were obtaassfitted pdfs, variability
around thesizedistributions was generated by the @olling two alternative approaches:
a) drawing differenbhumbers of random trees from the theoretical pdf, and b) dividing the
smoothed distributiomto [1/30™ quantiles computng the corresporidg height for each
guantile, determiningthe proportion of total trees per halt) in each respective quantile
based on the fitted distribution, and impositngeedifferentdegrees of random noisa
the tph of eachlguantile based on random draws framormal distribution wh four
different standard deviations.

For the first approach the inverse transformationhimd{Devroye, 1986wasused
to generate independent random sample draws from the theoretical distribution. Considering
the Weibull distribution witthandi left and right truncatiopoints respectively, the random

number generator based on the inverse transformation methodstructed as follows:

O 'O "0a Qo0 "Oa [10]
& O 0 [11]

where

"On = _the quatile function of the double truncated Weibull distribution evaluated
inp

O = the quantile function aheWeibull distribution

‘08 = thecumulative distributiorfunction (cdf)of the Weibull dstribution

n = any number between 0 and 1

W = random draws fronthe smoottdoubletruncated Weibull distributigrwith
k=1,2,...n

Uk = k" random draw from a uniform (0,1) distribution, witk 1, 2, . . . ni

n; = number of trees in plot
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In both approaches, an index was needed to measure the number and magnitude of
deviations in tph by size class typically observed in an empiricalldison relative to
expectations from a smooth theoretical distribution. This index would measure thetamo
of noise required to reproduce observed degrees of departure from smooth theoretical
height distributions. The measure selected in this analyssiveaReynolds error index
(Reynolds et al.1988) The Reynolds index computes the sum of the absolute differences
of frequencies (relative or absté) across all tree size classes between the distributions
being compared, in this case between the khited distribution and the observed

distribution, as follows:

Q B QQ [12]

where:

Q= Reynolds error index for plot

Q= simulated or At hlioheightdasgsal 06 proporti on
Q= observed or fAempiricaljo proportion of

k = number of height classes

Themagnitude of the index depends on the width of the size classes and the sample
size. For this study, the number of classesfixad at 30 and the widths of the size classes
were kept constant for a given plot and age. Sample size was varied to exméfertton
average and standard deviation of the Reynolds index among plots.

Reference values for the Reynolds index were diesterated based on comparison
of the empirical height distributions on each plot to the unaltered Weibull distributions
fitted to the same data by the PRM. These reference values then allowed evaluation of both
the first and second approaches describexalfor introducing variability around the
smooth Weibull distributions. The specific purpose of comparing the Reynolds indises
to identify the most promising approach to creating a realistic pattern of noise, defined by
either a specific number of rdom draws to represent a plot in the first approach, or by a

specific number of standard deviations to characterize the Gaudistabution from
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which random noise is drawn and added to the expected tph of each height class in the

second approach.

2.2 .5Effect ofstocktype on main distribution characteristics

Stock type is generally but not necessarily correlated with sizebdisbn,
particularly when the seedlings for the various studies have come from different nurseries
and/or different yearsln order to assess if the stock type aféecthe distribution
parameters at plantirigne, inear mixedeffectsregressionmmodelswere fittedwith shape,
scale and range of the distributitieated as response variables regressestamk type,
study, and $e within study Studyand #e nested within studwere considereds andom

effects, as show in the following model:

") SR S - [13]
where:
() =response ari abl e (shape, scal e oi"stocenge
type inj™ study, k™" site withinj" study, and™ plot
‘ = overall average
| = fixed effect ofistock type
i = random effect of" study, wherd D ( T,
P = random effect ok sitewithin j™ study, where' DO mh,
- = random error, where DO mh,
andd B h are assumed to be independent.

The stock types in this studyere placed into one tifiree broad categoriégpical
of Douglasfir plantatiors: 1) barerootj.e.,seedlinggrown in sowingoedsfor one or more
years, or started in sowing beds and finished with one or more years in transplant beds
(e.q., 10, 20, and 11 designate seedlings grown only in sowing beds for one year, only
in sowingbeds for two years, and one year in the sowingpbesione year in a transplant

bed, respectively); 2) plug+1 (i.e., seedlings started in greenhouse containers and then

O |
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finished with one year of growth in a transplant bed); gnzbBtaineized (i.e, seedlings
grown incontaineronly and then plantedirectly on sitg. For this study the most popular
container type waa styro-15. This container hag51 cm® of root volume capacityThe

two othercontainer typesleployedon the Combine&tudy (CW in Tabk 2.1)were styre

8 andstyro-60, havingl30and1000 cm? of rootvolume capacity, respective{Wightman

et al., 2018) Plug+1 seedlings have become popular because,hgbra stock type
growers can achieve thmapid growth of containeredseedlingsn greenhouse conditions

and therput on rapid growth and acclimate (at least partially) in transplant beds. This stock
type has been shown to offeotablylargerroot collar diameter and more fibrous root
systemghan containerized stock typgeumroese & Owston, 2003)

2.3 Results andDiscussion
2.3.1Initial variation of measured tree fghts by study and site

Height distribuions of Dougladir seedlings in §r-old plantations were quite
heterogeneous both between and within study sites (Big.Fbr some cases, the within
site heterogeneity matches the treatment specificafmnexample the experimental
design in the CmbinedStudy (CW101, CW102, CW103 and CW201) called for a factorial
with three container seedling sizevident in thewo clusters of empirical cumulative
distribution functiors per site, one cluster representihg Styro 8 and 15, and the other
represating Styro 60 (eCDFgFig. 24). Other studies showed very homogeneous initial
conditions in seedling heighfior examplepoth LongTerm Ste Productivitystudies(FR
and Molallawerenotable in their seedling gt uniformity, intentionally imposed teelp
minimize experimental error in these highly manipulative studies. On the other hand,
seedlingheightvariability was quite largen some studiedue to a conscious decisitm
representhe level ofvariability that is more characteristic ourserystock planted on
operational unit¢i.e., HERB1 and CoSInE).
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Figure 2.4. Empirical Cumulative Distribution Functien(eCDFs) for Douglasfir
seedlingheightsat plantation age 0 year&ach @mnel contains the pldevel eCDFs for
one site within a study, except for ieSInEstudy in which alkites were groupeihto a
single panel

2.3.2 Choice of smooth distribution

The eCDF and the bivariate distribution of kurtesiewness cosdffients of the
experimental plotsAppendixA.1) made a compelling cager the ability ofthe Weibull
distributionto accommodat¢he observedariety of shapegHafley & Schreuder, 1977)
Furthermore, one of several advantages of Weibull is its ability to represent negative
skewness, which is a developmentalrelsgeristic of the young stand height distributions
(Fig. 2.5).
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Figure 2.5. Frequency histograms ofqi-level skewness coefficients of tbleserved tree
heightsat different ages @0 years asndicated at the head of each pan@&pashed lines
represent the skewness of symmetric distributions as a reference point (0 value of skewness
coefficient).

During the process of parameter recovenyfitting the Weibull distribution to the
datg the bllowing two types of problems wecenfronted a) for some plots the numegic
algorithm was not able to find a feasible solution, specifidaliy2.9%, 00%, 4.4% and
11.0% of the plotsn plantations ofages 0, 5, 8, and I&ars respectively; and bthe
recovered distribution was not alio represent the data accurately based on 184dst,
probably because the Weibull distribution or perhaps any smooth distribution, was too
restrictive fortheirregular distribution of the observed data. Thislakhck of fit was found
on5plotsotiof 372( at U all®of @hich were measured im@-old plantationgFig.

2.6).

If the truncation points were not considered and the two parameter Weibull
distribution was chosen to represent the distribution of seedlingg@afbld plantations,

the number of plots where the smoothed distribution was not able to represent {(Ke data
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Stestat U =irMereades Yo 16. These results support the inclusion of truncation points
to represent the nursery specificatioesisumng that a) zero probabilitydensity is
estimatedunderthe low and above the high truncation pointsheight speifications; b)

the cumulative sum of densitibetween the limitequas exactly 1 The use of truncation
points in forestry research has been increasing since itsluction to represent DBH
distributions at the plot levéNepal & Somers, 1992)generally demonstrating as good or
better results as unconstrained distributi@shmidtet al., 2020)

It is important to highlight the calibration problem of ugsithe K-S testswhen the
parameters of the distributioassumed irnthe null hypothesis are estimatsdmples
(Conover, 1998). In these situations, theatues of the test tend to conform to exponential
ratherthan uniformhistogramsand yieldrejection rate of the null hypothesishat are
lower than the nominal rejectiorate therefore,it is harder to reject the null hypothesis
whenthis hypothesistself wasbased on the sample. Thequency histograms ofyalues
from the K-S teststill indicate the relative degree of stdital evidence against the null
hypothesisbut the pvalues are somewhat inflatadd need to bimterpretedvith caution

in these situations
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Figure 2.6. Frequency histograms ofqgi-level pvalues fromKolmogorovSmirnov test

of the nullhypothesis that the eCDF was not significantly different from the Weibull CDF
fitted to the data byparameter recoveryThe four panels contain the distribution of p
values for all plots measured in plantations of age 0, 5, 8 and 12 years, respectively.

Rewmveredparametershowedcloseagreement with MLEs for a given plot (Fig.
2.7). Generally, the scale parameter, which is associated with the spread of the Weibull

distribution, was in better agreement between estimation methods than the shape
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parameterTwo exceptionsvere observed in whicthe scale parameter of the double
truncated Weibull distributiorestimated by the PRMt plantationage Oyearswere
significantly larger than the MLEs. However, both cases had lavgéues (0.61 and 0.98)

from the K-Stess, indicating that the recovered distributssiill represeredthe datao a
statistically acceptable degre& possible explanatiofor probability distributions that

were so similar (left panels of Fig. 2.8) while having quite differealiesgaranetersmay

be thatthe relatively high proportion of taller heights had a strong influence on the first
two moments of the distributions and hence on parameter estimates from the PRM relative
to MLEs (note the slightly higher predicted frequencieller trees implied by the PRM
distribution in the left panels of Fig. 2.8). This strong influence of taller trees apparently
was accommodated by a more radical shift in the scale parameter in the PRM and implied
upward shift in the peak of the undenlg two-parameter Weibull distribution (right panels

in Fig. 2.8) Figure 2.8 also demonstrated the relevance and efficacy of using truncated

functions to represent the height distributions fgr-@ld plantations.
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Figure 2.7. Comparisorof parameter estimates using maximum likelihood (MLE) versus
moment parameter recovery (PRM) at the four different plantation ages.











































































































































































































































































































































































































































































