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Two key challenges emerge when initiating individual-tree growth models for bare 

ground or very young plantations. Both involve the need for a list of individual trees with 

known or predicted size and known expansion factor (number of trees per unit of area 

represented by each tree). In the case of bare ground or young plantations with no tree 

measurements, the tree list must be generated based on some assumptions about the size 

distribution. Even when a measured tree list is available, simulations resulting from input 

of the very young tree lists do not produce future stands with observed levels of tree size 

diversity because initial tree lists do have not differentiated to a degree that allows 

deterministic growth predictions to drive observed growth differences. Tree growth, 

particularly in the presence of initial size differences and competition, is a deviation 

amplifying process. Therefore, initial height and DBH distributions are critical for 

accurately simulating tree size differentiation. The main objectives of this work are to 

understand and model how differentiation emerges and evolves in relatively homogeneous 

newly planted seedlings, how early silvicultural practices affect tree size distributions, how 

well our current growth models can represent the process of size differentiation, and how 

to identify features of simulation models to improve simulation of young stand 

development under varying site conditions and silvicultural practices. 

 



 

 

 

Estimating the progression of tree size differentiation during the first decade or two 

of Douglas-fir plantation development is challenging due to the multiplicity of factors that 

influence seedling growth and are not typically measured or knowable in forest operations. 

From a modeling perspective, these factors contribute an important stochastic component 

to deterministic growth estimates during the first years after planting. The increased 

variability in growth that results from the addition of these stochastic components drives 

size differentiation among trees. However, as trees grow and start competing with each 

other, a greater portion of the growth variability among trees in the stand can be accounted 

for by predictors such as its initial size, crown ratio, and relative social position. Thus, at 

these older stages, the deterministic component of the models can amplify the size 

differentiation to produce realistic future structure with less need for introducing 

stochasticity. 

The overall goal of this dissertation research was to develop and compare 

methodologies to generate tree lists for young plantations and to project growth of both 

generated and measured tree lists of Douglas-fir newly planted forest in a manner that 

produces stand structures or size distributions that resemble observed stands of later ages 

that started with similar initial conditions.  

Weibull distributions were first fitted to height distributions of trees on individual 

plots in a large dataset compiled from research plots designed to test growth responses to 

early silvicultural treatments. Different approaches to introducing varying degrees of 

variability on fitted smooth Weibull distributions were explored with the objective of 

representing as closely as possible the variation of the observed tree heights around the 

smoothed distributions. The hypothesis tested was that different degrees of initial size 

variations can cause a significant impact on simulated stand structures 15-20 years later. 

Simulations demonstrated that the CIPSANON growth model for intensively managed 

Douglas-fir plantations was quite unresponsive to different initial size variation in out 

planted nursery seedlings that had not been through their first growing season. However, 

initiating CIPSANON with tree lists from older plantations (>5 years), the simulations 

produced stand structure at plantation ages 15-20-yrs that represented the observed tree 

size differentiation with sufficient accuracy. The poorest performance of the model resulted 



 

 

 

from initiating the model with generated or measured trees lists for plantations with age < 

5yrs, suggesting that additional stochastic variation was required in annual height growth 

predictions during the first five years of plantation development. Three alternatives 

variance-covariance structures were used to represent the residual variability around fitted 

height growth equation. The parameters for these alternative variance-covariance 

structures were used to incorporate stochastic variation into deterministic CIPSANON 

height growth predictions during this initial five-year period after planting. The alternatives 

included: 1) white noise (based on a random component with constant variance around 

predicted height growth); 2) proportion noise based on a random component proportional 

to initial tree height; and 3) noise proportional to height as in alternative 2 plus 

autocorrelated noise with 1-yr lag (AR(1)) based on the observed covariance among 

successive residuals on the same tree). The three alternative simulation approaches 

produced significantly more accurate tree lists for 5-yr-old plantations than purely 

deterministic simulations. The white noise approach produced unrealistically greater height 

differentiation than the observed in 2-yr-old plantations, leading to overprediction of height 

variability in 15-yr-old plantations. Results from the other two approaches were similar. 

The inclusion of stochasticity during these first five years also reproduced observed 

patterns in height rank changes over time, in DBH size structures, and in amelioration of 

multimodality identified as an artifact of the DBH assignment procedure (each tree 

assigned a DBH in the year that each tree exceeded breast height or 1.37 m). Other model 

impacts included reductions of 6.8 to 5.1% in cumulative net volume growth at plantation 

age 30 years compared to purely deterministic predictions. 

Finally, the effects of different vegetation regimes on tree size distributions during 

the first two decades after planting were analyzed. Vegetation regimes were grouped by 

the number of spring releases received. Treatment regimes impacted DBH proportionally 

more than height size distributions, and the effects of different treatment regimes on the 

size distributions of both variables were not the same. Spring releases produced an upward 

shift in the whole DBH distribution, but with respect to height the shorter trees were more 

positively affected than taller trees. This differential effect on different portions of the 

height distribution lasted for the first decade, but gradually disappeared over the second 



 

 

 

decade, responses to SRs treatments tending to converge with the untreated control in 

absolute cumulative height growth.  
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1. Chapter 1: General Introduction 

Douglas-fir (Pseudotsuga menziesii var. menziesii [Mirb.] Franco) is the most 

important timber species in the U.S. Pacific Northwest (PNW). Effective commercial 

management of the vast area covered by this productive species requires that both current 

and future stand conditions as well as the growth response to different management 

practices must be considered.  

The development of trees within a given stand depend to a large extent on their 

initial size distribution, growth distribution among these trees, early density-independent 

seedling survival patterns and later density-dependent mortality. Forest growth models 

have been developed as a quantitative tool to conceptualize and forecast stand dynamics 

and individual tree development through a rotation, allowing accurate representations of 

future stand conditions managed under different silvicultural treatments or regimes 

(Weiskittel et al., 2011).  

Growth models for Douglas-fir have been under development for more than 70 

years, first in the form of yield tables followed by stand growth equations, and more 

recently based on more sophisticated computer simulation models based on stand- or tree-

level equations (Hann & Riitters, 1982; Ritchie, 1999). Most of the early forest growth 

models were focused on stand and tree ages older than 20 years, probably due to long 

rotations ages, primary focus on rotation age yield effects of mid-rotation silvicultural 

treatments, and the large number of stands that were either naturally regenerated or planted 

at high initial stand densities that necessitated numerous thinning removals. In addition, 

quantity and quality of data required for modeling early stand dynamics of both naturally 

regenerated and planted forests have only recently become available.  

 Only during the last 25-30 years, driven by the concept financial analysis of 

industrial forest plantations, investment in forest land by large financial institutions 

(Kuusela & Lintunen, 2019), and the effort to keep the PNW competitive in the world wood 

market (Adams, 2005), commercial management of plantations has explored and 

implemented intensive silvicultural practices that have resulted in shorter rotation lengths 

(i.e. genetically improved trees, new nursery technology to produce target seedlings better 

matched for growth and survival on specific site types, site preparation, planting at lower 
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initial stand densities, competing vegetation control after planting, and fewer or no thinning 

removals before final harvest, among others (Talbert & Marshall, 2005)). Large 

investments in genetic improvement, nursery technology, site preparation and competing 

vegetation control has motivated more accurate economic analysis of the increase in yields 

produced by each of these practices. Therefore, refining the ability of forest managers to 

simulate stand development under intensive silvicultural practices during the first 15-20 

years after planting has become increasingly important to maximizing economic return.  

Growth models can be classified as stand, size class, or individual-tree models, 

depending on the resolution of forest attributes retained and projected by the models. Most 

current efforts in model development aim to amplify the signal and reduce the noise, i.e., 

maximize the deterministic component and minimize the stochastic component (Burkhart 

& Tomé, 2012). Model estimates rely on deterministic understanding of stand dynamics 

and corresponding deterministic predictions from regression equations to estimate 

expected growth rates based on initial tree, stand, and site conditions and ignoring the 

random variability around the regression mean, although this residual error or random 

ñunexplainableò variability is quantified to assess the efficacy of the deterministic 

prediction equations.  

In traditional individual-tree growth models, initial tree lists represent the initial 

size distribution, and these tree lists are the starting point to predict future growth. The 

initial stand conditions represented in these initial tree lists therefore have a significant 

impact on early growth distribution and thus on future stand structure. In fact, Maruyama 

(1963) recognized the relevance of the initial conditions in determining future ones under 

the law-like principle which applied into forest dynamics states that variation among the 

individual trees within a stand is a key element in stand dynamics because growth in the 

presence of competition is a deviation amplifying process.  

An ideal tree list includes the following information for each tree: species, diameter, 

total height, height to crown base, and expansion factor (number of trees per unit area 

represented by the sample tree). These lists generally come from traditional ground-based 

inventories, or more recently from LIDAR-assisted forest inventories (Mauro et al., 2019). 
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Current inventories that yield tree lists together with growth model projections of 

these tree lists are essential to: 1) facilitate the analysis of tree and stand responses to 

different silvicultural options, including the response of final stand yield; 2) develop 

harvest schedules with long-term sustained yields which, ultimately, allows the estimation 

of reasonable economic value of total forest ownerships. This last use is fundamental for 

acquisition appraisals, sustainable certification schemes (e.g. FSC, SFI), and various other 

planning activities.  

Forest managers commonly must make quick and important decisions, particularly 

when considering forestland acquisitions, without benefit of tree lists for bare ground 

(recent clear-cut harvests) or for young stands with no formal measurements. In this regard, 

many algorithms for tree list imputation such as most similar nearest neighbor (Moeur & 

Stage, 1995) have been used successfully in various other types of forest landscape 

analyses, and others have been developed by expanding on similar concepts (Gehringer & 

Turnblom, 2014). However, generation of tree lists representing planted seedlings from 

years 0-15 and simulating their growth under intensive forest management are challenging 

due to the relative uniformity of newly planted seedlings and the variable growth of 

individual trees over the first decades of plantation development. 

In some cases, complete tree lists are available, for example, when inventory 

protocols call for measuring every height on trees sampled from plots in young plantations, 

or all diameters at breast height (DBH) on trees from plots sampled in slightly older 

plantations that have reached or exceeded breast height (1.37 m). However, subsampling 

of DBH in young plantations when total height (HT) is measured on all trees within sample 

plots, or subsampling HT and height to crown base (HCB) in older plantations when DBH 

is measured on all trees within sample plots, minimizes time and cost of obtaining an 

inventory, but introduces some inaccuracy and potential bias during the process of 

imputing DBH, HT or HCB. In extreme cases, particularly for 0-3-yr-old plantations, a 

complete tree list must be generated from stand-level attributes such as estimated average 

height and number of trees per hectare and/or tree nursery specifications.  

Differentiation is a process driven by differential growth rates superimposed on 

initial size structure (size distribution) within a stand. Accurately representing future stand 
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structures should be a key objetive for modelers, since it can determine total stand 

productivity through variability in individual-tree resource acquisition (Pretzsch & Biber, 

2010; Schwinning & Weiner, 1998) and resource use-efficiency (Binkley et al., 2013). 

For the first years after planting the following factors play an important role in 

seedling growth and differentiation: (1) silvicultural operations - including site preparation, 

harvest debris management, type of seedling container, seedling handling, planting quality, 

planter experience, competing vegetation control, and initial stand density; (2) site type  ╖  

including soil attributes and implications for water holding capacity and root penetration, 

temperature and precipitation regime, evapotranspiration, and slope and aspect, and plant 

community type; and (3) tree attributes  ╖ including genetics, health and nutrient status, 

hardening time, and seedling damage among others.  

Unfortunately, it is virtually impossible to model the effects of the factors 

enumerated in the previous paragraph as deterministic mechanisms, in part because it is 

not feasible to measure them all and in part because current understanding of their effects 

and interactions are poorly understood. Instead, the effects of all these intrackable factors 

contributed to the error term from the regression models. One consequence is that growth 

models will always return the same outputs for a given set of measurable predictor 

variables that are input to model. From the modeler point of view, the nature of the 

differentiation process has a large stochastic component through early stages of stand 

development, although the portion of the variation that can be predicted from initial tree, 

stand, and site conditions increases as the trees mature (Miina & Heinonen, 2008; Stage, 

1973). Regardless, if the stochastic component of growth is ignored when simulating future 

development, particularly from early stand stages, unrealistic stand structures, as 

represented by size class distribution, will ensue.  

The earliest method developed to represent the observed variability around 

regression equations that continues to be applied in many individual-tree growth models 

was tripling (Stage, 1973). Although the details vary among models and different versions 

of a given model, tripling involves splitting each single tree record into three new records 

with the same initial conditions, but different expansion factors whose sum is constrained 

to be equal to the original expansion factor of the tripled tree (Hann et al., 2011; Stage, 
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1973). Each of these tree records is then associated with corresponding portions of a normal 

distribution with mean zero and standard deviation defined by the error distribution around 

growth prediction equations. The representation of the empirical error around the growth 

prediction equation (tree basal area growth in the case of Prognosis, and DBH and height 

in CIPSANON) ensures that the weighted average of the three associated records remains 

unbiased.  

These tripling approaches essentially increase size variability by adding a pseudo-

random component to the deterministic prediction, where the pseudo-random component 

is based on the weighted averages of different portions of the residual distribution obtained 

from the fitted growth equations. One of the main disadvantages of these tripling methods 

is the computational time required to carry the expanded tree lists from one growth cycle 

to the next.  

Other truly stochastic methods have been commonly used to introduce variability 

into projected tree lists and consequent size distributions and appear theoretically sound 

and capable of reproducing observed variability in individual tree growth and stand-level 

tree size distributions (Miina, 1993; Miina & Heinonen, 2008; Stage & Wykoff, 1993). 

These methods involve incorporating unexplained variability into the individual tree 

growth models predictions by drawing random numbers from an assumed distribution of 

the residuals around the fitted growth equations. These approaches can be combined with 

an expanded tree list generated by tripling to allow simulation of the natural variability in 

size differentiation that may not be present in the initial tree list or be simulated by 

subsequent deterministic growth predictions. However, some authors have suggested that 

more rigorous attention must be paid to generate and assess methodologies to incorporate 

stochastic structures into forest growth models (Burkhart & Tomé, 2012; Fox et al., 2001). 

The most common approach to preserve observed variation when predicting 

deterministic components has been to incorporate unstructured variation by drawing 

random deviations from an appropriate distribution and adding them to each deterministic 

prediction (Miina, 1993; Stage & Wykoff, 1993). This approach has been implemented, 

for example, to impute heights from traditional H-D curves, a method that if not assisted 

by adding stochasticity will produce unrealistically narrow height variation for trees of a 
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given diameter (Zhang et al., 2020). One variation on this approach is to base variability in 

predictions on the observed distribution of residuals around the fitted H-D regression curve 

(Mainwaring et al., 2019), in a similar manner to introducing noise around tree basal area 

growth when the tree list becomes too large for tripling (Stage, 1973). The only assumption 

required for introducing this stochasticity is the distributional assumption for the observed 

residuals (e.g., a standardized normal distribution re-scaled to the observed MSE (Mean 

Squared Error); (Mainwaring et al., 2019; Stage & Wykoff, 1993)). However, this 

assumption is often assumed and not rigorously tested. 

Overall, few published papers address alternative ways to generate accurate tree 

lists in young plantations and compare their relative efficacy. Probably, the most 

commonly known is the work by Van Deusen (1984). Little research applies rigorous 

statistical methods to simulate variability around recently planted initial tree lists and to 

incorporate a combination of stochastic and deterministic growth estimates to enhance the 

simulated Douglas-fir stand structures to attain generated distributions resembling those 

observed during the first decades after planting. 

Finally, intensive management of Douglas-fir  for timber production involves 

clearcutting of even-aged stands followed by establishment of plantations and control of 

completing vegetation. The Oregon Forest Practices Act (OFRI, 2018) requires 

regeneration of clear-cuts within six years after harvesting, with a specified minimum 

number of trees per unit area that are deemed ñfree-to-growò. Landowners achieve this 

regeneration requirement by planting an adequate number of trees and ensuring their ability 

to grow above competing vegetation. Planted seedlings must contend with not only 

naturally regenerated conifers and hardwoods but also woody and herbaceous species that 

rapidly colonize the site and compete with the seedlings for water, nutrients, and light 

(Harrington et al., 1995).  

To ensure growth and survival of Douglas-fir seedlings, competing vegetation is 

commonly controlled by post-planting spring releases (SR) treatments often in 

combination with chemical and/or mechanical pre-planting site preparation. Spring 

releases have shown to significantly increase seedling survival (e.g. Rose et al., 2006) and 

growth rate (e.g. Newton and Preest, 1988; Wagner et al., 2006; Rose et al., 2006). The 
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effects of vegetation management on the development of tree DBH, height, and volume, 

have largely focused on the short-term (3-7 years after planting), although some studies 

have tracked plantation development to older ages where experimental units (plots) are 

sufficiently large (Ó10 years; Harrington et al., 1995; Flamenco et al., 2019).  

The general appoach used to analyze most experiments imposing different types, 

intensities and timing of vegetation control treatment has been conventional ANOVA and 

regression models in which only the mean responses to covariates were assessed, i.e., the 

effects on only the location parameter of the conditional size distribution, assuming 

indepenent and identical distribution (iid) of the error terms. However, no inherent 

biological mechanisms justify the assumption or simplification that treatments and other 

covariates influence only the location of the response distribution, with no effects on other 

aspects such as shape or scale parameters or different percentiles (Koenker & Zhijie, 2002). 

In assessment of forest growth, the response of other features of the distribution are 

apparent (e.g., Knowe et al., 1992; Maguire, et al., 2009) and have important implications 

for stand dynamics, stand structural objectives, and economic performance with respect to 

tree and log size distribution. In this regard, quantile regression (QR) offers an attractive 

alternative for assessing the response of the entire size distribution to silvicultural 

treatments. Quantile regression is an extension of classical regression predictor variables 

(in this case, a class of silvicultural treatment) that has potentially varying effects on 

different segments of the response variable distribution. Identification of these 

heterogeneous effects by QR can provide additional information beyond conventional 

(normal-based) mean regression techniques; specifically, QR can approximate the entire 

conditional distribution of the response variable, providing additional information of 

significant utility in many applications (Koenker & Zhijie, 2002). 

Some of the most important questions addressed in this work involve: the 

development of tree size variability over the first 20 years of the plantation from a relative 

homogeneous stand of seedlings at age 0; the predictability of growth and size 

differentiation from deterministic models under different initial conditions; the degree of 

stochastic variation in initial tree lists and in subsequent growth simulations required to 

transform distributions otherwise resulting from average growth predictions to noisier and 
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more realistic observed size distributions; and the effect of different vegetation release 

management regimes on different portions of the DBH and height size distributions at 

different ages during the first 20 years of Douglas-fir stand development.  

Chapter 2 of this dissertation focuses on assessing alternative approaches to initial 

tree list generation. This objective entailed investigation of the potential for smooth 

distributions to represent observed tree size distributions of planted Douglas-fir seedlings 

in 0- to 20-yr-old plantations. Different methods to incorporate different degrees of 

variability around these smoothed size distributions are then explored for their relative 

performance in representing observed distributions. A final analysis explores if different 

container types produce different seedling distributions.  

Chapter 3 applies an individual-tree, spatially-implicit deterministic growth 

simulator, CIPSANON, to project forward the initial Douglas-fir size distributions 

generated in Chapter 2, and compares the resulting stand structures with the observed size 

distributions for the same set of plots and for an independent dataset collected in the PNW 

region from plots on field trials with the same initial planting density. In addition, different 

variance-covariance structures are used to characterize the variability around the height 

growth equation for the modelling dataset. These structures were later used to reintroduce 

stochasticity around the deterministic predictions following two approaches. Stand size 

structures simulated by the model were validated against observed stand structures and 

compared to the performance of purely deterministic predictions for both height and DBH 

distributions, individual tree size trajectories, and future volumes, among other attributes.  

Chapter 4 addresses the impact of different regimes for competing vegetation 

control on different portions of height and DBH size distributions, as well as how these 

treatment regimes effect change over time using a linear quantile mixed model approach. 

 

 

 

1.1 Dissertation Objectives 

The overarching goal of this study was to develop methodologies to generate 

realistic tree lists that represent observed size structures of intensively managed Douglas-
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fir during the first 15-20 years after planting. The specific objectives of this dissertation 

research were to: (1) explore alternative methodologies to generate initial tree lists that 

represents the initial total height size variation; (2) evaluate the relative performance of 

deterministic growth model predictions with respect to tree size differentiation when 

compared with observed differentiation, starting from different initial conditions (tree lists) 

at difference plantation ages; (3) develop and compare different approaches to incorporate 

stochasticity around average expected growth based on regression equations, with the 

objective of enhancing model capability to represent the observed size structures, evaluated 

in part by quantifying the emergence and development of within-stand tree size variability 

over time; and (4) assess how different regimes of competing vegetation control 

differentially affect DBH and height distributions at a given age, and how these effects 

changed over the first decades after planting, so that past competing vegetation control can 

be considered in the tree list generation process.  
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2. Chapter 2: Douglas-fir seedling size distributions at time of plantation 

establishment 
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Abstract 

The development of individual trees within a stand can be characterized by their 

initial size distribution, growth distribution among the trees, early density-independent 

mortality patterns and later density-dependent mortality. The initial size distribution can 

have a significant impact on early growth distribution and future stand structure. The 

objective of this analysis was to develop a methodology to quantify initial tree size 

distributions of young Douglas-fir plantations under different initial conditions, including 

seedling age and stock type. Double-truncated and standard Weibull distributions were 

fitted to empirical distributions by parameter recovery using the method of statistical 

moments. The basic seedling data to which seedling distributions were fitted were collected 

from Douglas-fi r plantations that had not yet been through their first growing season (0-

year-old) and from older plantations ranging in age from five to 20 years. Empirical tree 

height distributions in 0-yr-old plantations showed substantial differences in degree and 

pattern of initial variation within and between study sites, probably due to differences in 

nursery specifications that were an intentional part of the study design, conscious decisions 

to plant seedlings to match site conditions (target seedlings), or efforts to represent 

operational practice at that time and place. Superimposed on these systematic sources of 

variation was random variation in the size of trees selected for planting within a given 

experimental unit. Variability around the smoothed size distributions was generated and 

compared with empirical data using two methods: a) drawing different numbers of random 

trees from the theoretical probability density function (pdf) and; b) imposing different 

degrees of Gaussian noise around implied proportion of trees per hectare implied for the 

quantiles of the fitted theoretical distributions. The goal was to generate the degree of 

random noise around these distributions using both approaches to match the empirical 

variability in seedlings on a given plot. The effect of specified stocking type (container, 

bare-root or a combination of both) on the location and scale parameters of the initial 

seedling distribution did not affect the height distribution parameters of Douglas-fir 

seedlings in 0-yr-old plantations. However, seedlings that were deliberately sorted by size 

class or grown in different container sizes and subsequently planted in separate 

experimental units did affect the scale and range of the height distribution.  
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2.1 Introduction  

The development of trees within a given stand can be characterized by their initial 

size distribution, growth distribution among the trees, and mortality patterns across the size 

distribution (Hara, 1993). The growth of different size classes depends partly on initial tree 

size distribution. For instance, if a given initial tree size distribution is very narrow, the 

variation in growth is likewise narrow relative to an initial tree list with a much wider range 

in initial tree size. The patterns in initial tree size and subsequent growth distribution 

determines the future stand structure. Thus, the first step toward predicting a realistic stand 

structure is to accurately represent initial size distribution.  

In this chapter, the focus was on assessment of alternative methods to generate tree 

size distributions under different conditions (i.e. plantation age and stock type) based on 

information typically available in landowner records for Douglas-fir  plantation in the 

Pacific Northwest region of the United States (PNW). Given that total height is the most 

common measurement on any trees that might be measured in young plantations before 

reaching breast height (1.37 m), and the fact that a lower stem diameter is rarely measured 

on operational units, total height distribution was the primary focus of this research. 

The most common approach for generating a tree list to represent the number of 

seedlings per unit of area in various height classes starts with fitting a probability density 

functions (pdf) of one or more theoretical distributions to plot- or stand-level empirical 

distributions. The selection of a suitable distribution is evaluated by several criteria, 

including their relative flexibility to accommodate the different shapes observed in 

empirical distributions, their accuracy or ñgoodness-of-fitò, and the ease by which they can 

be integrated to estimate the number of trees in specific size classes (Burkhart & Tomé, 

2012). 

Nursery specifications such as minimum and maximum seedling tree height play 

an important role in determining the initial height distribution immediately after planting 

(0-yr-old plantations). Other less influential sources of variation in measured seedling 

height included planting practices such as depth of planting. The tree height variability 

observed in the 0-yr-old plantations for this analysis was therefore attributable to a 

combination of both nursery and planting practices.  
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Because landowners typically request seedlings of a given average size or within a 

given size range, and nurseries otherwise sort out cull seedlings before packing, selecting 

theoretical pdfs with left and right truncation points were regarded as highly desirable. 

Furthermore, nursery specifications for seedlings planted on research plots forming the 

basis of this analysis were probably more precise than has been typical of operational 

planting units in order to minimize experimental error, represent operational needs 

achieved by ñtarget seedlingsò, or reach a compromise between these two conflicting 

objectives.  

The need to generate tree lists typically arises in situations where field 

measurements of seedling heights are not available, or where growth predictions are needed 

for unplanted harvested units or units scheduled for harvest. In these cases tree list 

generation can be achieved by imputation from other plots (e.g., Gehringer & Turnblom, 

2014), or the parameters of a distribution (pdf) can be estimated based on as little or as 

much information as might be available for the target stand or site (e.g., Biging et al., 1994; 

Van Deusen, 1984). Two alternative methods are commonly used for estimating 

parameters of a size distribution, i.e., parameter recovery (PRM; Hyink & Moser, 1983) 

and parameter prediction (PPM; Clutter & Bennett, 1965).   

Initial tree size variability around a smooth distribution (defined by a pdf) coupled 

with equations for predicting growth and mortality may be an effective basis to project 

future stand development. However, introducing some variability characteristic of the 

empirical distribution may produce better results. Among many possible approaches to 

introducing random noise around the smoothed distributions, two would seem to offer 

strong potential for accurately simulating future stand structures. One would involve a set 

of random draws from the smooth pdf and the other would require introduction of some 

level of variability in the number of trees per unit area predicted by the pdf for various size 

classes.  

Among the first decisions that a forester must make in a reforestation project is the 

selection of the stock type (containerized versus bareroot; container type/size if 

containerized; total age, i.e., number of years spent in sowing bed or container and number 

of years in transplant bed if bareroot). The impact of this selection on the growth and 
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survival of seedlings has been well documented (e.g., Rose et al., 1997; Wightman et al., 

2018). However, the impact on the initial size distributions has been restricted to 

comparative averages among stock types (total height, basal diameter, DBH, root volume); 

therefore, further assessment of stock types effects on location and spread of the initial 

seedling distributions deserves attention.  

The general goal of this study was to develop a methodology to generate realistic 

initial tree size distributions of planted seedlings in 0- to 20-yr-old plantations. Specific 

objectives included: (1) identify the best probability distribution to represent observed 

distributions of tree height; (2) assess the performance of the PRM for achieving accurate 

fits of the probability distribution to the data; (3) assess alternative methods for  

incorporating size variability into the smoothed distributions; and (4) quantify how 

different stock types affect the parameters of the selected distributions.  

2.2 Materials and Methods 

2.2.1 Study sites and data  

The current project utilized data from experiments designed and established with 

the common objective of testing tree and stand responses to differing silvicultural 

treatments. These studies were selected because they were measured generally every year 

from plantation age 0 to 5 years and every 2-3 years afterwards (Table 2.1). Also, the sites 

cover a large portion of the PNW region where Douglas-fir is planted in pure plantations 

and intensively managed (Fig. 2.1).  
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Table 2.1. Main attributes of studies constituting the data source for the seedling size 

analysis. Treatments include number of release treatments from competing vegetation 

(VR); harvest removals (HR); fertilization (F); initial seedling size (SS); and soil 

compaction (COMP). For the ECR, DPS and CW studies, data from only a subset of the 

tested vegetation release treatments were used in this work. Data Sources: VMRC- 

Vegetation Management Research Coop., LTSP- Long-Term Soil Productivity network. 
Data 

source 

Study 

Name 

Sites Blocks/trees 

per plot 

Treatments Measurements Seedling 

type 

Tree 

records 

Reference 

Publication 

VMRC CPT 4 4/36 8 VR 0:5, 8, 12 

0:5 

Styro-15 ~27k Rosner & 

Rose, 2006 

LTSP Fall River 

(FR) 

1 4/170 2VR, 3HR, 

2COMP 

0:8/0-3-5, 10, 

15, 20 

1 + 1 

 

~68k Ares et al., 

2007 

LTSP Molalla 1 4/100 2VR, 3HR 0:5, 8, 10, 15 Plug + 1 

 

~21k Harrington 

& 

Schoenholtz, 

2010 

VMRC 2m2yr 2 4-5/36 2VR, 2F, 

2SS 

0:6 2 + 0 ~26k Rose & 

Ketchum, 

2003 

VMRC HERB1 2 24 plots/49 8VR 0:5, 8, 12, 15, 

20, 22/24 

1 + 1 

 

~23k Rose et al., 

1999 

VMRC Combined 

(CW) 

4 2/36-64 3SS, 2VR 0:5, 8, 10 Styro-8-

15-60/ 

1 + 1 

~11k Wightman et 

al., 2018 

VMRC Delayed 

(DPS) 

2 2/25-36 2VR 0:5, 8, 10 1 + 1 ~2k Wightman 

& Gonzalez-

Benecke, 

2019 

VMRC Evaluating 

Common 

R. (ECR) 

1 1/36 2VR 0:4, 7, 10 1 + 1 ~0.5k Dinger & 

Rose, 2009 

VMRC CoSInE 4 2/64 2VR 0:1 1+1/ 

Styro-20 

~1.5k Guevara et 

al., 2019 
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Figure 2.1. Location of the sites by study name 

 

All the studies had different vegetation management regimes as a primary treatment 

of interest. The specifics of the vegetation management regimes were simplified in this 

analysis to the number of releases applied. Some studies specified a maximum allowable 

cover of competing vegetation after release treatments, and many did not. However, 

preliminary analysis suggested little additional predictive power was gained from using 

some form of competing vegetation cover as a covariate, and operational relevance favored 

the simplicity of using only the number of treatments. For most of the studies, the number 

of releases represented the number of years of consecutive spring releases immediately 

after planting. The only exception to the above was two of the CPT (Critical Period 

Threshold) treatments in which one entailed four years of release after a one-year delay 

with no treatment (OTTTT) and another entailed three years of release after a two-year 
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delay with no treatment (OOTTT). The first case (OTTTT) was therefore pooled into the 

same category as four years of release immediately after planting (with no delay) followed 

by a fifth year with no treatment (T4), and the second case (OOTTT) was pooled into the 

same category as three years of release immediately after planting followed by two years 

with no treatment (T3). Secondary treatments included fertilization, debris management, 

tillage or differing initial seedling size. 

All 381 study plots of the study dataset were measured at plantation age 0 years, 

i.e., immediately after planting and then annually after each of the first five growing 

seasons. After the plantations passed their fifth growing season, measurement schedules 

differed among studies. Figure 2.2 shows the number of plots measured by number of 

applied spring releases and the most frequent plantation ages of re-measurement. The 

figure also provides a good sense of the number of plots that each study contributed to the 

analysis dataset at different plantation ages.   

Plot sizes ranged from 0.0225-ha on the Boot site of the Delayed study to 0.105-ha 

at Fall River. All trees on all plots were measured for height at indicated plantations ages 

(Table 2.1). Tree heights ranged from an average of 0.43 m at plantation age 0 years to 

18.14 m at 20 years, with initial densities of planted trees ranging from 1076 to 1680 trees 

per hectare (Table 2.2). Plot site quality covered a relatively narrow and high range from 

32 to 44 m (King, 1966; base age 50 years at breast height; Table 2.2).  
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Figure 2.2. Number of plots in the analysis dataset by number of spring releases (SR) and 

plantation age as labelled at the top of each panel (0, 5, 8, 10, 12, 15 and 20 years). Number 

of spring release treatments (SRs) are indicated on the x-axes (ctrl= no SRs; T1=one SR; 

T2=two SRs; T3=three SRs; T4=four SRs; T5=five SRs).    

 

Table 2.2. Summary statistics of tree and plot level attributes at the most common 

measurement ages. DC stands for basal diameter at approximately 15 cm from the ground. 

Site index (SI) represents Kingôs (1966) site index (m at 50 years breast height age).   

Variable Statistic 
Age (years) 

0 5 8 12 15 20 

Height (m) 

Min 0.02 0.22 0.3 1.66 1.5 5.8 

Max 1.13 6.06 9.6 14.7 18.6 24 

Mean 0.43 3.10 5.95 10.18 13.19 18.14 

DBH (cm) 

Min 0.00 0.00 0.00 0.50 0.40 4.50 

Max 0.00 9.80 16.90 24.10 28.20 35.00 

Mean 0.00 3.36 8.09 14.15 16.62 19.58 

DC (mm) 

Min 1.0 5.0 6.0 --- --- --- 

Max 19.0 155.0 226.0 --- --- --- 

Mean 5.8 57.6 128.7 --- --- --- 

SI (m) Min 32 32 32 37 36 37 
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Max 44 44 42 42 42 42 

Mean 39.7 39.7 39.9 40.5 40.7 41.3 

Density 

 (trees · ha-1) 

Min 1076 389 389 638 462 396 

Max 1680 1680 1651 1108 1641 1591 

Mean 1323 1236 1065 1020 1233 1243 

Number of plots N 381 370 189 110 111 95 

Number of trees n 22424 20307 11439 4252 10981 9299 

 

 

2.2.2 Selection of total height distribution model 

Many authors refer to the selection of the probability distribution as a critical 

component of the process of modeling tree size distributions (e.g., Burkhart & Tomé, 

2012). Numerous functions with two, three and four parameters have been proposed, fitted 

to data, and compared for representing diameter distributions of different forest species 

under different silvicultural regimes: lognormal (Bliss & Reinker, 1964), gamma (Nelson, 

1964), beta (Clutter & Bennett, 1965), Weibull (Bailey & Dell, 1973), Johnsonôs SB 

(Hafley & Schreuder, 1977), logit-logistic (Wang & Rennolls, 2005), and Burr XII (Wang 

& Rennolls, 2005).   

The Weibull probability distribution is one of the most frequently used models to 

describe tree size distribution in many parts of the world, including the western U.S. 

(Krurnland & Wensel, 1979; Little, 1983; Opalach, 1989). Several variants have been used, 

but in plantations, one of the most popular forms has three parameters and the following 

pdf: 

ὪώȠὧȟὦȟὥ ὧȾὦ Ù ÁȾÂ Ὡ                                         [1] 

where a, b, and c are the location, scale, and shape parameters respectively. Shape 

parameters <1 produce negative exponential reverse j-shaped distributions typically found 

in uneven-aged stands. Shape values between 1 and 3.6 produce positively skewed 

distributions, values about 3.6 produce symmetric distributions close to the normal 

distribution, and shapes larger than 3.6 produce negative skewed distributions. Generally, 

even-aged stands are characterized by shape parameters > 1 (Burkhart & Tomé, 2012). 

The location parameter a is used to define the minimum possible DBH or height in 

a given stand, but because sometimes it is not easy to define, the two-parameter form is 
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used assuming a=0. This assumption has been reported to be beneficial in some forestry 

applications because it forces the shape parameter to adopt wider range of values (Maltamo 

et al., 1995). 

Forest inventories commonly designate a minimum DBH threshold ὰ to define the 

smallest trees to be measured (Curtis & Marshall, 2005), generating a left truncated 

Weibull distribution: 

ὪώȠὧȟὦ ὧȾὦ ÙȾÂ Ὡ                                         [2] 

where b and c are the scale and shape parameters as defined above, and ὰ is the arbitrary 

left truncation point provided by the user. Van Deusen (1984) used the truncated two 

parameter form since it is more convenient when modelling mixed species naturally 

regenerated stands where parameter a can be very difficult to define.   

Young plantations develop very irregular diameter distributions and, to a lesser 

degree, height distributions due to the variety of factors that affect the initial growth stages. 

Thus, distributions that can accommodate a wide variety of conditions are mandatory for 

this type of modeling. Hafley & Schreuder (1977) and Wang & Rennolls (2005) used the 

skewness and kurtosis coefficients as a criteria to predefine candidate distribution forms, 

understanding that if the data yield combined skewness and kurtosis levels outside the 

range that can be characterized by a given distribution, the distribution does not have the 

flexibility to fit the data well. Skewness measures symmetry; negative values mean a long 

tail to the left and positive values a long tail to the right. Meanwhile, kurtosis is a relative 

measure of ñtailednessò many times confounded with ñpeakednessò by authors (Westfall, 

2014), where small values are associated with heavy tails and vice versa. Thus, kurtosis is 

related to the propensity of the distribution to generate outliers relative to expectations from 

a normal distribution. Mathematically, the skewness coefficient, , is defined as: 

 ‘ ‘Ȣϳ   

and the kurtosis coefficient, , as: 

 ‘ ‘ϳ  

where ‘ represent the kth central moment. 
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To illustrate, consider the plot-level distribution of total seedling heights in 0-yr-

old plantations, i.e., seedlings fresh from the nursery, planted into bare ground, and not yet 

through their first growing season. Left and right truncation points must be imposed on any 

smooth distribution characterized by a pdf with an inherently wider domain, preferably 

consistent with nursery specifications designed to meet experimental and/or operational 

needs.  

Mathematically, a random variable ὼ is said to be truncated from below if, for some 

threshold value ὦ, the exact value of ὼ ὦ is known for all cases, but, unknown for all 

cases ὼ ὦ. Likewise, truncation from above indicates that the exact value of ὼ ὦ is 

known for all cases, but, unknown for all cases ὼ ὦ (Breen, 1996). 

Both the pdf and cdf (cumulative distribution function) of the double-truncated 

Weibull distribution provide helpful insights into the nature of the distribution. Let Ø 

denote a double-truncated two-parameter Weibull random variable, with 

Øᴂὼ ȿ π ὰ ὼ ὶ,  

where ὼ Ḑ Weibull (b, c), b > 0 and c > 0, and l and r are left and right truncation points, 

respectively. The cdf and pdf of Ø, ὊØȭ and ὪØȭ, respectively, are defined as: 

ὊØȭ
 

 

                                                  [3] 

ὪØȭ
 

 

                                                   [4] 

 The following figures exemplify the effect of different truncation points on the pdf 

and cdf of a double-truncated Weibull distribution with the same shape and scale 

parameters (Fig. 2.3). 
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Figure 2.3. Example of how different truncation points ([30,60], [30]50], and [40,60] for 

rows 1,2 and 3, respectively) change the pdf (Ὢὼ , first column) and cdf (Ὂὼ , second 

column) of a double-truncated Weibull height distribution with the same shape and scale 

parameters for describing seedling height distribution.  

 

For trees of older ages, a standard Weibull distribution with two parameters 

(location assumed fixed at 0) could be used, understanding that as trees get older the 

truncation points imposed by nursery sorting practices trend to disappear, generating 

smooth declines on mass probability at the extremes.   

 

2.2.3 Parameter prediction methods  

Field measurements are often not available to construct a tree list that can be 

projected to estimate the future stand for various purposes like harvest scheduling, 

allowable cut levels, and many other aspects of forest planning. One common remedy to 

this lack of a tree list it to predict parameters of a diameter distribution from stand 

characteristics that can be associated with the distribution, e.g., site quality, number of trees 

planted, age, and vegetation control. As mentioned above, two techniques have been long 

used in forestry, i.e., parameter prediction methods (PPM) introduced by Clutter & Bennett 

Ὢὼ  Ὂὼ  
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(1965), and parameter recovery methods (PRM) introduced by Hyink & Moser (1983). A 

combination of both methods also has been applied to produce a growth and yield model 

for yellow-poplar (Knoebel et al., 1986). 

2.2.3.1 PPM 

The PPM uses the relationship between available stand and site attributes and the 

parameters of a given distribution function. Each parameter of the distribution is regressed 

on the stand covariates to obtain the locally adjusted distribution.   

In order to apply PPM, a database must be assembled by measuring the size variable 

of interest across stands covering the relevant range of management conditions that the 

foresters expect to encounter. The stand or plot should have enough trees to allow an 

accurate estimation of the specified parameters of the preferred distribution. The first step 

is to fit the selected distribution to the data for a large number of sampling units, typically 

individual fixed area plots. The most common method for estimating the parameters for 

each of these plots or stands is maximum likelihood estimation because Maximum 

Likelihood Estimates (MLEs) offer robust statistical properties for making inferences (e.g., 

asymptotic minimum variance) (Royle & Dorazio, 2008; Zhou & McTague, 1996). 

However, the Method of Moments (MM) or percentile methods also offer appealing 

alternatives.  

The second step requires regressing each of the obtained parameters for each 

sampling unit against the set of stand and site covariates that are available and expected to 

influence tree size distribution. Standard variable selection methods are applied to find the 

most important covariates to explain as much of the variation in a given parameter estimate 

among plots as possible. Examples of covariates that are easy to obtain with sufficient 

accuracy and that are often known in advance or estimable with sufficient accuracy include 

number of trees per hectare, age, site index, and vegetation control for bare ground or young 

stands, and for older stands basal area and quadratic mean diameter (Mehtätalo, 2014).  

An important consideration when fitting a distribution to data is the fact that the 

parameters to be estimated are correlated. Due to this correlation, various combinations of 

parameters estimates can lead to very similar distributions. Furthermore, this correlation 

carries over to the error terms between parameter prediction equations, leading to biased 
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and inconsistent estimates if the cross-equation correlation is not accounted for (Kmenta, 

1986). Seemingly unrelated regression (SUR) is a relatively simple system-of-equations 

approach that can be applied to account cross-equation correlations (Kmenta, 1986). Most 

statistical software packages have routines that facilitate parameter estimation with this and 

other systems-of-equations techniques (e.g., Henningsen & Hamann, 2015). 

One disadvantage of the above method is that each step of modeling produces 

errors. Cao (2004) combined fitting of the theoretical distribution to the data from each plot 

with estimation of parameter prediction equations into one likelihood function. This 

likelihood function simultaneously summed the plot-specific likelihoods and maximized 

the comprehensive likelihood function and thereby optimized the fit of predicted 

parameters and associated distribution to the data. This approach eliminated the initial step 

of estimating plot specific parameters, but most important, the combination of fitting and 

prediction errors is minimized by simultaneous estimation. Mehtätalo (2013) compared 

Caoôs approach with the traditional PPM model on DBH distribution of 59 plots of Scots 

pine, reporting fewer rejection rates for the former approach using Kolmogorov-Smirnov 

(K-S) test (Daniel, 1978). However, a larger root mean square error (RMSE) for stand 

volume also resulted due to heavier tails to the right of the distributions produced by Caoôs 

method. 

Alternative approaches minimizing the sum of squared differences between 

observed and expected cumulative probabilities have also proposed and evaluated, yielding 

better results than the general PPM and the SUR estimation method (Poudel & Cao, 2013). 

          

2.2.3.2 PRM 

Directly modeling the parameter estimates that result from fitting distributions to a 

set of data (PPM) can be difficult for biological interpretation and sometimes may lead to 

unrealistic outcomes, particularly if the prediction equations are extrapolated. An 

alternative method predicts aggregated stand attributes such as mean diameter, basal area 

or dominant height, and then solves for parameters that constrain the distribution to 

produce the predicted stand aggregated attributes (Hyink & Moser, 1983). The cited 

advantage of this method relies on the fact that stands attributes, such as various moments, 
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are better understood and easier to justify and interpret than the distribution of parameters 

from a theoretical distribution (Burkhart & Tomé, 2012; Mehtätalo & Lappi, 2020).  

Three types of recovery models are available depending on statistics used in the 

recovery algorithm. These statistics can be moments, percentiles, or a mixture of the two. 

Weiskittel et al. (2011) recognized PRM based on moments as the primary method to link 

stand with size-class models because it ensures numerical compatibility, simplicity, 

interpretability and unique solutions. 

Opalach (1989) described the conceptual model of PRM as follows: 

ὠ Ὤ ὸȟὑȟὣ ‐                                                     [5] 

  Ὤ ὠȟὣ 

where: 

V= vector of observed time-varying stand attributes that must be estimated and forms the 

basis for parameter recovery 

t = stand age 

K = vector of time-invariant stand attributes 

Y = vector of time-varying stand attributes 

Ὤ  system of k regression equations  

‐ = k × 1 error vector  

  = estimated parameter vector  

Ὤ  mathematical relationship between   and estimated stand attributes 

ὠ= estimate of V 

If available, the logical truncation points for the expected stand height distribution 

of seedlings in 0-yr-old plantations would generally be the minimum and maximum 

seedling heights requested from the nursery. Statistics for central tendency (average) and 

dispersion (variance) of seedling heights at each plot were needed to recover the shape and 

scale of the distribution by simultaneously solving the following system of equations 

numerically using the Newton-Raphson algorithm: 

Ὤὸ ᷿ Ὤὸ ὪὬὸ ‰  ὨὬὸ                                                    [6] 

Ὤὸ ᷿ Ὤὸ ὪὬὸ ‰  ὨὬὸ                                                    [7] 
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where: 

Ὤὸ = mean tree height for plot i 

Ὤὸ = total height of tree j on plot i 

Ὢὼȿ‰  = chosen distribution with vector ‰ of 2 parameters for plot i  

Ὤὸ  = mean of total height squared for tree j on plot i 

ὶ, ὰ = right and left truncation points for plot i 

Nursery specifications were not available for most of the field trials, so the 

truncation points and the aggregated stand attributes were calculated at the plot level from 

the trees measured immediately after planting (no predictions of aggregated attributes were 

involved). 

The collection of all the moments of a Weibull distribution uniquely define the 

distribution. In this study, just the first two moments were used to recover the whole 

distribution because only two unknowns (scale and shape parameters) required prediction 

after assuming conformity to the truncated Weibull distribution. In order to assess how 

well the PRM performed, the resulting parameter estimates were compared with the 

maximum likelihood estimates (MLEs) for the same set of plots. Under regularity 

conditions, the MLEs have two desirable statistical properties that provided a robust 

comparison with PRMs: 1) consistency, i.e., the estimator converges on the unknown 

population parameter, —, as the sample size (n) approaches infinity; and 2) asymptotic 

efficiency, i.e., the following function of the estimator converges at a rate of 1/Ѝὲ on the 

normal distribution: 

 Ѝὲ— —Ḑὔπȟὺ—                                                      [8] 

where, ὺ— is the Cramer-Rao lower bound (theorem 10.1.12 of Casella & Berger (2002)).  

Finally, the Kolmogorov-Smirnov test was also used to check if the empirical data 

were well represented by the distributions implied in these recovered parameters. The 

statistic Ὀ  is computed as follows (Eq. [9]), and under the null hypothesis that the 

empirical cdf (Ὂὼ  equals the theoretical distribution Ὂὼ ȟ where Ѝὲ Ὀ  is distributed 

according to the Kolmogorov distribution.  

Ὀ ίόὴὊὼ Ὂὼ                                                             [9]  
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 2.2.4 Introducing random variability into fitted Weibull height distributions 

Once the smoothed tree height distributions were obtained as fitted pdfs, variability 

around the size distributions was generated by the following two alternative approaches: 

a) drawing different numbers of random trees from the theoretical pdf, and b) dividing the 

smoothed distribution into [1/30]th quantiles, computing the corresponding height for each 

quantile, determining the proportion of total trees per ha (tph) in each respective quantile 

based on the fitted distribution, and imposing three different degrees of random noise on 

the tph of each quantile based on random draws from a normal distribution with four 

different standard deviations. 

For the first approach the inverse transformation method (Devroye, 1986) was used 

to generate independent random sample draws from the theoretical distribution. Considering 

the Weibull distribution with ὰ and ὶ left and right truncation points respectively, the random 

number generator based on the inverse transformation method is constructed as follows:  

Ὂ ὴ Ὃ Ὃὰ ὴϽὋὶ Ὃὰ                                                           [10] 

ὼ Ὂ ό                                                                              [11] 

where: 

Ὂὴ  =  the quantile function of the double truncated Weibull distribution evaluated 

in p  

Ὃ   = the quantile function of the Weibull distribution 

ὋȢ  = the cumulative distribution function (cdf) of the Weibull distribution 

ὴ  = any number between 0 and 1 

ὼ =  random draws from the smooth double-truncated Weibull distribution, with 

k = 1, 2, . . . , ni   

uk =  kth random draw from a uniform (0,1) distribution, with k = 1, 2, . . . , ni 

ni = number of trees in plot i 
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In both approaches, an index was needed to measure the number and magnitude of 

deviations in tph by size class typically observed in an empirical distribution relative to 

expectations from a smooth theoretical distribution. This index would measure the amount 

of noise required to reproduce observed degrees of departure from smooth theoretical 

height distributions. The measure selected in this analysis was the Reynolds error index 

(Reynolds et al., 1988). The Reynolds index computes the sum of the absolute differences 

of frequencies (relative or absolute) across all tree size classes between the distributions 

being compared, in this case between the simulated distribution and the observed 

distribution, as follows: 

 

Ὡ В Ὢ Ὢ                                                                         [12] 

where: 

Ὡ= Reynolds error index for plot i 

Ὢ = simulated or ñtheoreticalò proportion of tph in height class j  

Ὢ = observed or ñempiricalò proportion of tph in height class j  

k = number of height classes  

 

The magnitude of the index depends on the width of the size classes and the sample 

size. For this study, the number of classes was fixed at 30 and the widths of the size classes 

were kept constant for a given plot and age. Sample size was varied to explore its effect on 

average and standard deviation of the Reynolds index among plots. 

Reference values for the Reynolds index were first generated based on comparison 

of the empirical height distributions on each plot to the unaltered Weibull distributions 

fitted to the same data by the PRM. These reference values then allowed evaluation of both 

the first and second approaches described above for introducing variability around the 

smooth Weibull distributions. The specific purpose of comparing the Reynolds indices was 

to identify the most promising approach to creating a realistic pattern of noise, defined by 

either a specific number of random draws to represent a plot in the first approach, or by a 

specific number of standard deviations to characterize the Gaussian distribution from 
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which random noise is drawn and added to the expected tph of each height class in the 

second approach. 

 

2.2.5 Effect of stock type on main distribution characteristics 

Stock type is generally but not necessarily correlated with size distribution, 

particularly when the seedlings for the various studies have come from different nurseries 

and/or different years. In order to assess if the stock type affected the distribution 

parameters at planting time, linear mixed-effects regression models were fitted with shape, 

scale and range of the distribution treated as response variables regressed on stock type, 

study, and site within study. Study and site nested within study were considered as random 

effects, as show in the following model:    

ώ ‘    ‐                                                [13] 

where: 

ώ   = response variable (shape, scale or range of the MLEôs estimates) for i th stock 

type in j th study, kth site within j th study, and l th plot 

‘ =  overall average 

 =   fixed effect of i th stock type  

 =  random effect of j th study, where Ḑὔπȟ„  

  =  random effect of kth site within j th study, where  Ḑὔπȟ„  

‐  =  random error, where ‐ Ḑὔπȟ„  

and ȟ ȟ‐  are assumed to be independent.  

 

 The stock types in this study were placed into one of three broad categories typical 

of Douglas-fir  plantations: 1) bareroot, i.e., seedlings grown in sowing beds for one or more 

years, or started in sowing beds and finished with one or more years in transplant beds 

(e.g., 1-0, 2-0, and 1-1 designate seedlings grown only in sowing beds for one year, only 

in sowing beds for two years, and one year in the sowing bed plus one year in a transplant 

bed, respectively); 2) plug+1 (i.e., seedlings started in greenhouse containers and then 
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finished with one year of growth in a transplant bed); and 3) containerized (i.e., seedlings 

grown in containers only and then planted directly on site). For this study the most popular 

container type was a styro-15. This container has 251 cm3 of root volume capacity. The 

two other container types deployed on the Combined Study (CW in Table 2.1) were styro-

8 and styro-60, having 130 and 1000 cm3 of root volume capacity, respectively (Wightman 

et al., 2018). Plug+1 seedlings have become popular because, as a hybrid stock type, 

growers can achieve the rapid growth of containerized seedlings in greenhouse conditions 

and then put on rapid growth and acclimate (at least partially) in transplant beds. This stock 

type has been shown to offer notably larger root collar diameter and more fibrous root 

systems than containerized stock type (Dumroese & Owston, 2003). 

  

2.3 Results and Discussion 

2.3.1 Initial variation of measured tree heights by study and site  

Height distributions of Douglas-fir seedlings in 0-yr-old plantations were quite 

heterogeneous both between and within study sites (Fig. 2.4). For some cases, the within-

site heterogeneity matches the treatment specification; for example, the experimental 

design in the Combined Study (CW101, CW102, CW103 and CW201) called for a factorial 

with three container seedling sizes, evident in the two clusters of empirical cumulative 

distribution functions per site, one cluster representing the Styro 8 and 15, and the other 

representing Styro 60 (eCDFs; Fig. 2.4). Other studies showed very homogeneous initial 

conditions in seedling height; for example, both Long-Term Site Productivity studies (FR 

and Molalla) were notable in their seedling height uniformity, intentionally imposed to help 

minimize experimental error in these highly manipulative studies. On the other hand, 

seedling height variability was quite large in some studies due to a conscious decision to 

represent the level of variability that is more characteristic of nursery stock planted on 

operational units (i.e., HERB1 and CoSInE).  
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Figure 2.4. Empirical Cumulative Distribution Functions (eCDFs) for Douglas-fir 

seedling heights at plantation age 0 years. Each panel contains the plot-level eCDFs for 

one site within a study, except for the CoSInE study in which all sites were grouped into a 

single panel. 

 
 

2.3.2 Choice of smooth distribution  

The eCDF and the bivariate distribution of kurtosis-skewness coefficients of the 

experimental plots (Appendix A.1) made a compelling case for the ability of the Weibull 

distribution to accommodate the observed variety of shapes (Hafley & Schreuder, 1977). 

Furthermore, one of several advantages of Weibull is its ability to represent negative 

skewness, which is a developmental characteristic of the young stand height distributions 

(Fig. 2.5).  
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Figure 2.5. Frequency histograms of plot-level skewness coefficients of the observed tree 

heights at different ages (0-20 years as indicated at the head of each panel). Dashed lines 

represent the skewness of symmetric distributions as a reference point (0 value of skewness 

coefficient). 

  

During the process of parameter recovery for fitting the Weibull distribution to the 

data, the following two types of problems were confronted: a) for some plots the numerical 

algorithm was not able to find a feasible solution, specifically for 2.9%, 0.0%, 4.4% and 

11.0% of the plots in plantations of ages 0, 5, 8, and 12 years, respectively; and b) the 

recovered distribution was not able to represent the data accurately based on the K-S test, 

probably because the Weibull distribution or perhaps any smooth distribution, was too 

restrictive for the irregular distribution of the observed data. This latter lack of fit was found 

on 5 plots out of 372 (at Ŭ=0.05), all 5 of which were measured in 0-yr-old plantations (Fig. 

2.6). 

If the truncation points were not considered and the two parameter Weibull 

distribution was chosen to represent the distribution of seedling in 0-year-old plantations, 

the number of plots where the smoothed distribution was not able to represent the data (K-
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S test at Ŭ=0.05) increased to 16. These results support the inclusion of truncation points 

to represent the nursery specifications, ensuring that: a) zero probability density is 

estimated under the low and above the high truncation points or height specifications; b) 

the cumulative sum of densities between the limits equals exactly 1. The use of truncation 

points in forestry research has been increasing since its introduction to represent DBH 

distributions at the plot level (Nepal & Somers, 1992), generally demonstrating as good or 

better results as unconstrained distributions (Schmidt et al., 2020). 

It is important to highlight the calibration problem of using the K-S tests when the 

parameters of the distribution assumed in the null hypothesis are estimated samples 

(Conover, 1998). In these situations, the p-values of the test tend to conform to exponential 

rather than uniform histograms and yield rejection rates of the null hypothesis that are 

lower than the nominal rejection rate; therefore, it is harder to reject the null hypothesis 

when this hypothesis itself was based on the sample. The frequency histograms of p-values 

from the K-S test still indicate the relative degree of statistical evidence against the null 

hypothesis, but the p-values are somewhat inflated and need to be interpreted with caution 

in these situations. 

 
Figure 2.6. Frequency histograms of plot-level p-values from Kolmogorov-Smirnov tests 

of the null hypothesis that the eCDF was not significantly different from the Weibull CDF 

fitted to the data by parameter recovery. The four panels contain the distribution of p-

values for all plots measured in plantations of age 0, 5, 8 and 12 years, respectively. 
 

Recovered parameters showed close agreement with MLEs for a given plot (Fig. 

2.7). Generally, the scale parameter, which is associated with the spread of the Weibull 

distribution, was in better agreement between estimation methods than the shape 
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parameter. Two exceptions were observed in which the scale parameter of the double-

truncated Weibull distribution estimated by the PRM at plantation age 0 years were 

significantly larger than the MLEs. However, both cases had large p-values (0.61 and 0.98) 

from the K-S tests, indicating that the recovered distributions still represented the data to a 

statistically acceptable degree. A possible explanation for probability distributions that 

were so similar (left panels of Fig. 2.8) while having quite different scale parameters, may 

be that the relatively high proportion of taller heights had a strong influence on the first 

two moments of the distributions and hence on parameter estimates from the PRM relative 

to MLEs (note the slightly higher predicted frequencies of taller trees implied by the PRM 

distribution in the left panels of Fig. 2.8). This strong influence of taller trees apparently 

was accommodated by a more radical shift in the scale parameter in the PRM and implied 

upward shift in the peak of the underlying two-parameter Weibull distribution (right panels 

in Fig. 2.8). Figure 2.8 also demonstrated the relevance and efficacy of using truncated 

functions to represent the height distributions for 0-yr-old plantations. 
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Figure 2.7. Comparison of parameter estimates using maximum likelihood (MLE) versus 

moment parameter recovery (PRM) at the four different plantation ages. 
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