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We provide several examples of the use of geometric reasoning with three-dimensional spacetime
diagrams, rather than algebraic manipulations using three-dimensional Lorentz transformations, to

analyze problems in special relativity.

I. INTRODUCTION

Spacetime diagrams are a standard tool for under-
standing the implications of special relativity. A space-
time diagram displays invariant physical content geomet-
rically, making it straightforward to determine what is
happening in each reference frame, not merely the one in
which the diagram is drawn.

Not surprisingly, most such diagrams are two-
dimensional, showing one dimension of space, and one of
time. Such two-dimensional spacetime diagrams are suf-
ficient to describe most elementary applications, such as
length contraction or time dilation, and even some more
advanced applications, such as many of the standard
paradoxes. However, some physical situations are inher-
ently three-dimensional. Such situations can of course
be represented using two-dimensional diagrams, captur-
ing the appropriate information as needed using different
views. Each such view is however nothing more than a
projection of a single, three-dimensional spacetime dia-
gram, either “horizontally” into a two-dimensional space-
time, or “vertically” into a purely spatial diagram.

We argue here by example that the starting point
when representing three-dimensional configurations in
special relativity should be a three-dimensional space-
time diagram. The essential physics can often be de-
termined directly from such diagrams, or they can be
used to construct more detailed (and easier to draw) two-
dimensional diagrams, ensuring that they are correctly
and consistently drawn.

Three-dimensional spacetime diagrams are not new, al-
though we are not aware of any systematic treatments
in the physics literature. An early insightful example of
such diagrams is their use in the Annenberg video'. How-
ever, such diagrams have been discussed from the point
of view of computer graphics; for a recent survey, see’
and references cited there.

We adopt throughout a geometric view of special rela-
tivity in terms of “hyperbola geometry”, using hyperbolic
trigonometry rather than algebraic manipulations involv-
ing v~ = /1 —v2/c2, although we avoid setting ¢ = 1.
This point of view, discussed in the first edition® of Tay-
lor and Wheeler but removed from the second edition?,
is extensively discussed (in two dimensions) in our recent
book”, a (prepublication) version of which is available
online®.

FIG. 1. The meter stick, (a) as observed in the laboratory
frame, and (b) according to the stick.'!

II. THE RISING MANHOLE

A meter stick lies along the x-axis of the lab-
oratory frame and approaches the origin with
constant velocity. A very thin metal plate par-
allel to the xz-plane in the laboratory frame
moves upward in the y-direction with constant
velocity. The plate has a circular hole with a
diameter of one meter centered on the y-axis.
The center of the meter stick arrives at the
laboratory origin at the same time in the lab-
oratory frame as the rising plate arrives at
the plane y = 0. Does the meter stick pass
through the hole?

This problem appears in Taylor and Wheeler® as “The
meter-stick paradox”, but is originally due to Shaw?, sim-
plifying a problem previously posed by Rindler'®. Tay-
lor and Wheeler? later dubbed this problem “The rising
manhole” for obvious reasons.

From the point of view of the metal plate (represent-
ing the manhole), the meter stick (representing the man-
hole cover) is very short, and should therefore easily fit
through the hole. However, from the point of view of
the stick, the hole in the plate is very short, so the plate
should bump into the stick. Which of these scenarios is
correct?

We draw a three-dimensional spacetime diagram, as
shown in Figure la in the laboratory frame. The z-
direction is suppressed; only one spatial dimension of the
plate is shown. The plate is therefore represented in two
pieces, with a hole in the middle; world sheets are shown
for each of the two line segments in the plate along the -
axis that connect the hole to the edge of the plate. This



FIG. 2. A lightray traveling along the mast of a moving boat,
observed in the reference frame of the boat. The worldsheet
of the mast is represented by the vertical rectangle, and the
heavy line along the lightcone represents the lightray. Hori-
zontal lines represent the mast at several different instants of
time.

two-part worldsheet is tilted backward, indicating motion
upward (in space, that is, in the y-direction). The stick
is moving toward the right, and clearly does fit through
the hole, as shown by the heavy lines indicating the po-
sitions of the stick and the plate at ¢t = 0. So what is
observed in the stick’s frame? A plane of constant time
according to the stick is not horizontal in the laboratory
frame; since this plane is tilted, so is the plate! Redraw
the spacetime diagram in the reference frame of the stick,
as shown in Figure 1b. The worldsheet of the stick is now
vertical, and the worldsheet of the plate is tilted both to
the left and back. Considering the heavy lines indicating
the positions of the stick and the plate at ¢ = 0, yields
the traditional “snapshot” of the situation in the stick’s
frame; the stick is indeed longer than the hole, but passes
through it at an angle.

III. THE MOVING SPOTLIGHT

A sailboat is manufactured so that the mast
leans at an angle 6 with respect to the deck.
A spotlight is mounted on the boat so that its
beam makes an angle 8 with the deck. If this
boat is then set in motion at speed v, what
angle ' does an observer on the dock say the
beam makes with the deck? What angle 0"
does this observer say the mast makes with
the deck?

This problem appears in Griffiths'?; an alternate ver-

sion” replaces the boat with a spaceship, and the mast
with an antenna.

A three-dimensional spacetime diagram in the refer-
ence frame of the boat is shown in Figure 2. The heavy
line represents the lightray, and lies along the lightcone
as shown. The worldsheet of the mast is also shown; it
is vertical, since the boat is at rest. Since the spotlight
is pointed along the mast, the lightray must lie within
this worldsheet, as shown. As in Griffiths'?, the mast is
tilted toward the back of the boat, so that € is measured
in the direction opposite to the motion of the boat.

Projecting this diagram vertically yields the spatial di-
agram shown at the top of Figure 2, with the lightray
superimposed on the mast — which both clearly make
the same angle with the deck. The triangle shown in this
projection represents the displacements Az and Ay trav-
eled by the lightray in moving from one end of the mast
to the other.

Projecting the diagram horizontally, as shown at the
front of Figure 2, yields a traditional, two-dimensional
spacetime description, in which we have indicated the
(projection of the) mast at several times by horizontal
lines. Since the worldsheet is not parallel to the z-axis,
the lightray does not travel at the speed of light in the
direction the boat is moving! (Of course not, since the
spotlight was not pointed directly forward.) How fast is it
moving? Using the projected lightray as the hypotenuse
of a right triangle, we have

— = —— =tanha (1)

But Az is the same as before, and, since the (unpro-
jected) lightray really does travel at the speed of light,
we also have

(Az)?
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so that
tanh oo = cos 6 (3)

What is the situation in the dock’s frame? As shown
in Figure 3, the primary difference is that the worldsheet
of the mast is no longer vertical, since it is moving. But
the rest of the argument is the same, with Az’, Ay,
and At’ again denoting the displacements of the lightray
(which do not correspond to the sides of any triangles in
Figure 3). The apparent speed of the light ray parallel
to the boat is given by the Einstein addition law, which
takes the form
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FIG. 3. A lightray traveling along the mast of a moving boat,
according to an external observer. The worldsheet of the mast
is represented by the tilted rectangle, and the heavy line along
the lightcone represents the lightray. Horizontal lines repre-
sent the mast at several different instants of time.

or in more familiar language

ccosf —v
costf = ——— 6
c—vcosf (6)
Determining the angle of the mast is much easier. If
the mast is at an angle 6 to the horizontal in the rest
frame of the boat, as shown in Figure 4a, then
Ay
tanf = — 7
Ax (7)
In the dock frame, y is unchanged, but x is length-
contracted, so

n_ AY Ay
tan@” = Ar ~ AwjcoshB tanfcoshf  (8)
Did we really need to refer to the upper, spatial projec-
tion in Figure 3 to help visualize this argument? Proba-
bly not.

But wait a minute. How can the lightray move along
the mast if the angles are different? Now the spatial pro-
jection at the top of Figure 3, reproduced in Figure 4b,
comes in handy, as it shows a “movie” of the lightray
propagating along the (moving) mast despite the fact
that the angles between the deck and the lightray and
mast are clearly different. The same question could be
raised in the Newtonian version of the problem, in which
a ball is thrown along the mast. The resolution of this
apparent paradox is the same in both contexts: Posi-
tion and velocity transform differently between reference
frames, and therefore so do “position angles” and “veloc-
ity angles”.

A)

(a) (b)

FIG. 4. The horizontal projections of the spacetime diagrams
in Figures 2 and 3. In the boat’s frame (a), the mast is at
rest, but in the dock’s frame (b) the boat moves to the left;
the mast is shown at four discrete instants of time. The beam
of light moves along the mast in both cases, as shown by the
diagonal line in (b) (and not shown separately in (a)).

FIG. 5. A bouncing lightray on a moving train. One “tick” of
the lightray is represented by the diagonal line along the light-
cone. The vertical projection (top) yields the usual analysis
of time dilation in terms of a Fuclidean triangle; the corre-
sponding hyperbolic triangle is obtained from the horizontal
projection (right).

IV. THE LORENTZIAN INNER PRODUCT

Perhaps the most famous thought experiment ever is
Einstein’s argument that the constancy of the speed of
light leads to time dilation: A beam of light bouncing
vertically in a (horizontally!) moving train travels dif-
ferent distances, and therefore takes different amounts
of time, in the moving reference frame than in the rest
frame. Thus, the “ticks” of a clock measure different time
intervals in the two reference frames.
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FIG. 6. The (a) ordinary and (b) spacetime Pythagorean
theorem for a bouncing light beam on a moving train.

This scenario is usually drawn as a purely spatial
“movie”, but is inherently three-dimensional. Figure 5,'3
shows the worldlines of a lightray (along the lightcone),
an observer at rest (vertical), and the lightsource on the
floor of the moving train (tilted to the right).

The projection into a horizontal plane t = constant, as
shown at the top of Figure 5, is precisely the standard
spatial “movie”, shown in Figure 6a. This triangle shows
the distance v At traveled by the train (base), the dis-
tance ¢ At traveled by the beam of light according to the
observer on the platform (hypotenuse), and the height of
the train (side), that is, the distance ¢ A’ traveled by the
beam of light according to the observer on the train. Pro-
jecting instead into the vertical plane y = 0, as shown on
the right of Figure 5, one obtains the spacetime diagram
shown in Figure 6b.

Remarkably, the edges of the two triangles formed by
the horizontal and vertical projections have the same
lengths. It is apparent from Figure 5 that they share
one edge. The four remaining legs consist of two pairs,
each of which forms a right triangle whose hypotenuse is
the lightray. So long as one measures time and distance
in the same units (thus setting ¢ = 1), each such triangle
is isosceles; the legs have the same length. This argument
justifies the labeling used in Figure 6b, and can in fact
be used to derive the hyperbolic Pythagorean theorem,
which says that

(cAt)? = (cAt)? — (v At)?, (9)
or equivalently, that

t
cosh 3’

A

(10)

where tanh 8 = v/c is the speed of the train. Moving
clocks therefore run slow, by a factor of precisely cosh 3.

Figures 6a and 6b thus present the same content, but
in quite different ways; two of the sides appear to have

been interchanged. In Figure 6a, the vertical distance
traveled by the lightray was cAt’, whereas in Figure 6b,
the time taken by the beam to reach the top of the train
is cAt'.

V. CONCLUSION

We have considered three scenarios in special rela-
tivity that lend themselves to an analysis using three-
dimensional spacetime diagrams. In the first sce-
nario, the qualitative aspects of the diagram immedi-
ately yielded insight into the counterintuitive effects of
transforming velocities between reference frames, and
projections of the three-dimensional diagram were used
to recover more familiar, two-dimensional diagrams of
the same scenario. In the second scenario, the two-
dimensional diagrams played a more fundamental role,
and the three-dimensional spacetime diagram was used
primarily to ensure that the two-dimensional diagrams
were consistent. Finally, in the third scenario, well-
known two-dimensional diagrams were combined into a
single three-dimensional diagram, providing new insight
into a standard thought experiment about the Lorentzian
inner product of special relativity. Each of these some-
what different uses of three-dimensional spacetime dia-
grams demonstrates the usefulness of such diagrams.

So when are three-dimensional spacetime diagrams
useful? Diepstraten et al.® list some of the features of
such diagrams, including the presence of motion in more
than one spatial direction, as in the rising manhole ex-
ample, and the ability to present spatial angles, as in
the moving spotlight example. We would add to this
list the ability to interpolate between traditional spatial
“movies”, and (two-dimensional) spacetime diagrams, as
in our last example. However, our goal here has not been
to present general criteria for determining when to (or
not to) use such diagrams, but rather to demonstrate by
example that they are appropriate in some situations. A
more systematic treatment would also address the differ-
ences between seeing (using light) and observing (using
an army of observers), thus describing what things look
like, not merely what they do.
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