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Abstract. In western conifer-dominated forests where the abundance of old-growth stands is decreasing, spe-
cies such as the Brown Creeper (Certhia americana) may be useful as indicator species for monitoring the health 
of old-growth systems because they are strongly associated with habitat characteristics associated with old growth 
and are especially sensitive to forest management. Light detection and ranging (lidar) is useful for acquiring 
fine-resolution, three-dimensional data on vegetation structure across broad areas. We evaluated Brown Creeper 
occupancy of forested landscapes by using lidar-derived canopy metrics in two coniferous forests in Idaho. Den-
sity of the upper canopy was the most important variable for predicting Brown Creeper occupancy, although mean 
height and height variability were also included in the top models. The upper canopy was twice as dense and the 
mean height was almost 50% higher at occupied than at unoccupied sites. Previous studies have found indicators of 
canopy density to be important factors for Brown Creeper habitat; however, this represents the first time that lidar 
data have been used to examine this relationship empirically through the mapping of the upper canopy density that 
cannot be continuously quantified by field-based methods or passive remote sensing. Our model’s performance 
was classified as “good” by multiple criteria. We were able to map probabilities of Brown Creeper occupancy in 
~50 000 ha of forest, probabilities that can be used at the local, forest-stand, and landscape scales, and illustrate the 
potential utility of lidar-derived data for studies of avian distributions in forested landscapes.
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La Arquitectura del Dosel Derivada de Lidar Predice la Ocupación de Certhia americana de Dos 
Bosques de Coníferas del Oeste

Resumen. En los bosques dominados por coníferas del oeste, donde está disminuyendo la abundancia de 
rodales maduros, las especies como Certhia americana pueden ser útiles como especies indicadoras para monito-
rear la salud de los sistemas maduros debido a que están fuertemente asociadas con las características del hábitat 
vinculadas con el bosque maduro y son especialmente sensibles al manejo del bosque. El sistema de detección 
y alcance de luz (denominado lidar, un acrónimo del inglés “light detection and ranging”) es útil para adquirir 
datos tridimensionales de alta resolución de la estructura de la vegetación a través de grandes áreas. Evaluamos 
la ocupación de C. americana de paisajes boscosos usando métricas del dosel derivadas de lidar en dos bosques 
de coníferas en Idaho. La densidad del dosel alto fue la variable más importante para predecir la ocupación de 
C. americana, aunque la altura media y la variabilidad de la altura también fueron incluidas en los mejores mode-
los. El dosel alto fue dos veces más denso y la altura media fue casi 50% más alta en los sitios ocupados que en 
los sitios desocupados. Estudios previos han encontrado que los indicadores de densidad del dosel son factores 
importantes del hábitat de C. americana; sin embargo, esto representa la primera vez que datos de lidar han sido 
usados para examinar esta relación de modo empírico a través del mapeo de la densidad del dosel alto, de un modo 
continuo que no puede ser cuantificado por métodos basados en trabajo de campo o muestreo remoto pasivo. El 
desempeño de nuestro modelo fue clasificado como “bueno” por múltiples criterios. Fuimos capaces de mapear las 
probabilidades de ocupación de C. americana en ~50 000 ha de bosque, probabilidades que pueden ser usadas a 
las escalas local, de rodal de bosque y de paisaje, y que ilustran la utilidad potencial de los datos derivados de lidar 
para estudios de distribución de aves en paisajes boscosos.
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INTRODUCTION

Wildlife-habitat models are important tools in understand-
ing and depicting species’ distributions for conservation 
and management purposes (Pearce and Ferrier 2000, Wintle 
et al. 2005). In particular, habitat models for species of con-
cern can be used to identify areas of the landscape critical to 
conservation (Bradbury et al. 2005, Graf et al. 2009). For ex-
ample, habitat-suitability models for the Western Capercaillie 
(Tetrao urogallus), an endangered forest grouse in the Swiss 
Alps, aided in conservation efforts by assisting in the identi-
fication and designation of a forest reserve of suitable habitat 
(Graf et al. 2004, 2009). Further studies were then able to 
refine the scale of habitat-suitability analyses to predict the 
Western Capercaillie’s habitat use within the forest reserve to 
better guide management (Graf et al. 2009).

In forested settings, predictive models can help to assess a 
species’ response to forestry practices and can be used to im-
plement appropriate land-use plans (Mason et al. 2003, Hyde  
et al. 2005, Sallabanks et al. 2006). Poulin et al. (2008) modeled 
habitat selection by the Brown Creeper (Certhia americana) to 
identify thresholds of forest structure important to the species 
in order to determine if forest logged at low intensity provided 
suitable habitat. The reliance of the Brown Creeper on specific 
forest structures characteristic of mature forest suggests that 
low-intensity harvest does not provide suitable habitat and re-
serves of unharvested forest should be maintained for Brown 
Creeper conservation (Poulin et al. 2008).

Many wildlife-habitat models use a combination of field-
based vegetation surveys and remote sensing. Field-based 
data often are expensive and labor intensive (Hyde et al. 2005, 
Clawges et al. 2008), but many techniques of remote sensing are 
unable to map the vertical and horizontal arrangement of veg-
etation, or canopy architecture, important to a wide range of 
wildlife (Vierling et al. 2008). An increasing number of wildlife 
studies have begun to use a newer form of remote sensing, light 
detection and ranging (lidar), which has emerged as a solution 
for acquiring accurate, three-dimensional data on vegetation 
structure data at a fine resolution with fewer limitations on spa-
tial extent and intensity of sampling than field-based efforts have 
(Hyde et al. 2005, Vierling et al. 2008). The accuracy of derived 
lidar products has been tested and validated in forests on rugged 
terrain, in areas of disturbance, and in areas of varying canopy 
architecture; lidar is thus appropriate for measuring vegetation-
structure data in montane forests (Hyde et al. 2005). Lidar is also 
becoming more available and accessible (Vierling et al. 2011) 
through efforts such as the Open Topography initiative (www.
opentopography.org), facilitating the expansion of habitat types 
and geographic regions where researchers and managers may 
use lidar to explore wildlife–habitat relationships and guide 
forest management. 

As human activities continue to change the natural struc-
ture and processes of habitats and their size, shape, and distri-
bution in the landscape (Shinneman and Baker 1997, Morris 

2003), it is likely that maps of lidar-derived forest structure 
may improve wildlife-habitat models because wildlife is often 
sensitive to vertical vegetation structure (Vierling et al. 2008, 
Martinuzzi et al. 2009). Management may alter the natural 
structure of the forest by reducing the size and abundance 
of standing live and dead trees and downed woody debris, 
changing understory distributions, and altering overall vari-
ance in attributes of vertical structure (Halpern et al. 1999, 
Siitonen et al. 2000, Kroll and Haufler 2006). Many of these 
forest characteristics can be modeled with lidar data (Lefsky 
et al. 2002, Martinuzzi et al. 2009). 

Timber harvest, human development, and suppression of 
natural disturbance regimes have influenced western conifer-
ous forests greatly. As a result, the abundance and distribution 
of various stages of forest succession have been altered, and the 
representation of some stages in the landscape (e.g., old-growth 
forests; Shinneman and Baker 1997) has been greatly reduced. 
In a larger sense, characteristics of old-growth forests such as 
large trees and snags are less abundant in the western land-
scape because of overly frequent logging, removal of hazardous 
snags during timber removal, and altered vertical distribution 
of biomass in the forest strata (Siitonen et al. 2000). Therefore, 
the potential of lidar to understand old-growth forest habitats 
is two-fold: it can be used both to identify the distribution of 
patches of old-growth forest across entire landscapes (Lefsky 
et al. 1999, Falkowski et al. 2009) and to quantify the specific 
architecture of individual stands of old-growth forest (Hyde  
et al. 2005, Martinuzzi et al. 2009, Falkowski et al. 2009). 

In western coniferous forests where the abundance of 
old-growth stands is decreasing, animals strongly associ-
ated with old growth and especially sensitive to management 
may be useful as indicator species for monitoring the health 
of old growth (Lindenmayer et al. 2000, Poulin et al. 2008). 
The Brown Creeper is one such species that is strongly asso-
ciated with structural attributes characteristic of mature and 
old-growth forests (Imbeau et al. 1999, Holmes et al. 2004, 
Sallabanks et al. 2006). The creeper’s requirements for forag-
ing are linked to forest structure requiring low levels of an-
thropogenic disturbance and longer intervals between logging 
(Holmes et al. 2004, Venier et al. 2007, Poulin et al. 2008). 
Brown Creepers forage primarily on invertebrates found on 
the boles of standing trees, both live and dead (Weikel and 
Hayes 1999). Larger trees with deep bark furrows, snags with 
diverse decaying surfaces, and vertical diversity of a forest 
stand are all attributes of old growth stands and drivers of ar-
thropod abundance (Mariani and Manuwal 1990, Weikel and 
Hayes 1999, Halaj et al. 2009), therefore driving the prey base 
of the Brown Creeper. 

The Brown Creeper’s nesting habitat is also associated with 
mature and old-growth forests (Holmes et al. 2004, Venier et al. 
2007, Poulin et al. 2008). Snags and large trees with decaying 
bark are important for the creeper, which builds a hammock-
like nest under flaking bark of large standing trees, either live or 
dead (Poulin et al. 2008). As a result of its preferred habitat for 
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both nesting and foraging, the Brown Creeper is often identified 
as a species of closed-canopy forest (Anderson and Crompton 
2002, Sallabanks et al. 2006), preferring a high density of large 
trees that provide substrates for foraging and the recruitment  
of snags necessary for nesting (Poulin et al. 2008). Poulin  
et al. (2010) suggested that substrates for foraging may be a re-
source more limiting than are snags for nesting. The density of 
large-diameter trees important for the creeper’s foraging is sig-
nificantly lower even in forest logged selectively at low intensity 
(Poulin et al. 2010). The high sensitivity of the Brown Creeper 
to logging has raised concern about its population trends within 
the highly managed coniferous forests of the western U.S. (Hejl 
et al. 2002, Wiggins 2005). 

Avian occupancy models that include lidar-based forest-
structure data are relatively recent and limited (see Vier-
ling et al. 2008 for review, Hinsley et al. 2008, Bellamy et al. 
2009, Graf et al. 2009, Goetz et al. 2010). In particular, habitat-
specific occupancy models using lidar data have not been 
devised for birds of mature/old-growth coniferous forests. Be-
cause lidar can map canopy architecture at broad spatial scales, 
it has a great potential to contribute toward modeling of wildlife 
habitat and mapping across landscapes. Lidar may also be able 
to provide new structural variables at the local scale that cannot 
be quantified through field-based methods or passive remote 
sensing (Vierling et al. 2008). One such metric is the density of 
the upper canopy, which is often represented by overall canopy 
cover independent of the forest strata in which the foliage cover 
occurs or as the density of large trees sampled in smaller plots 
and extrapolated to larger areas (Guénette and Villard 2005). 
These previous methods may overlook important relationships 
between organisms and specific forest strata at the local scale. 
Therefore, lidar may present new opportunities to examine 
the habitat preferences of wildlife. The purpose of our study 
was to evaluate the Brown Creeper’s occupancy of forested 
landscapes by means of lidar-derived metrics. On the basis of 
literature specifying the Brown Creeper’s preference for forest 
with a dense canopy and large trees (Hejl et al. 2002, Poulin  
et al. 2008), we hypothesized that the density of the upper can-
opy, as measured through lidar, should be the most important 
factor influencing Brown Creeper occupancy. 

METHODS

STUDY AREAS

We surveyed two areas of north-central Idaho: Moscow Moun-
tain and the drainage basin of Slate Creek. Moscow Mountain 
is located about 20 km northeast of the city of Moscow, Idaho 
(46° 49′ N, 116° 50′ W) and is an approximately 20 000-ha 
landscape of mixed conifer forest surrounded by agricultural 
lands. The majority of Moscow Mountain forests are managed 
for timber production by private industrial logging companies; 
the remainder is divided among a variety of owners includ-
ing the University of Idaho Experimental Forest, the city of 

Troy, and private landowners. Forest trees include Douglas-fir 
(Pseudotsuga menziesii), grand fir (Abies grandis), western red 
cedar (Thuja plicata), ponderosa pine (Pinus ponderosa), west-
ern larch (Larix occidentalis), lodgepole pine (Pinus contorta), 
western hemlock (Tsuga heterophylla), Engelmann spruce 
(Picea engelmannii), western white pine (Pinus monticola), 
and subalpine fir (Abies lasiocarpa). The landscape contains 
many highly managed stands and therefore comprises a mosaic 
of successional stages ranging from recently logged to mature 
multi-story forest (Falkowski et al. 2009). Survey locations for 
this study ranged in elevation from 816 to 1242 m.

The Slate Creek study area is part of the Salmon River 
Ranger District of the Nez Perce National Forest (45° 39′ N, 
116° 3′ W) and covers approximately 30 000 ha. Elevations of 
survey locations ranged from 1125 to 2250 m, the higher el-
evations in the Gospel Hump Wilderness. The diverse mixed 
conifer forest consists of an assemblage of conifers similar to 
that on Moscow Mountain, although varying in proportions. 
The full range of successional stages from recently logged to 
old growth was represented at the site. Slate Creek differs from 
Moscow Mountain in that it has steeper topography and is less 
intensively managed, with a greater proportion of older succes-
sional stages. Perhaps most importantly, Moscow Mountain is 
situated along the ecotone between forest and agriculture at the 
western extreme of the coniferous forest belt of north-central 
Idaho, while Slate Creek is set well within a larger forest matrix.

BIRD SURVEYS

To ensure the range of forest structure was sampled, we first 
developed a lidar-derived map of canopy structure for both 
sites that encompassed both lidar-derived mean forest height 
and canopy density. We generated this nine-level map by com-
bining three classes of mean forest height with three classes 
of canopy density. We randomly stratified count points across 
these nine canopy-structure classes to ensure the range of 
structure present at each study area was sampled in the pro-
portion it occurred in the landscape. 

We surveyed birds with point counts at Moscow Moun-
tain in 2009 and at Slate Creek in 2010, during the breeding 
season from late May to early July. We visited each of the 151 
points on Moscow Mountain and 164 at Slate Creek twice dur-
ing the breeding season to increase the likelihood of detecting 
Brown Creepers if present. Under the forest canopy, the accu-
racy of hand-held GPS readers may be low, leading to errors 
in the georeferencing of point-count data with lidar-derived 
structure variables. Therefore, we located the points in the field 
with Garmin hand-held GPS units in conjunction with aerial 
photographs to minimize error in locating the points with the 
hand-held GPS only. Bird surveys began at sunrise and con-
tinued until 5 hr after sunrise to capture the period of active 
vocalization (Manuwal and Carey 1991). To minimize sam-
pling bias associated with time of morning, we varied the 
times of the two visits to each point. We delayed point counts 
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when heavy wind or rain inhibited the observer’s ability to de-
tect birds, and we also relocated or excluded points from loud 
stream noise to allow for the assumption of equal detectability 
among sites. Studies vary widely in their estimates of the size 
of a Brown Creeper’s territory, but we chose to focus on the 
results of Davis (1978), who found a mean of 4.26 ha (±0.59), 
which translates to a mean radius of 232.9 m if the territory 
is round. Therefore, to minimize the chance of sampling the 
same bird at multiple points, we established a minimum dis-
tance of 250 m between points (Wintle et al. 2005), although 
in actuality our points were often farther apart than the mini-
mum. A single observer (Vogeler) conducted the point counts at 
Moscow Mountain in 2009, while two observers (Vogeler plus 
one technician) conducted them at Slate Creek in 2010. For the 
2010 survey with two observers, we trained intensively before 
the season to calibrate the observers’ species identification and 
distance estimation. Each observer made one of the two counts 
at each point to further reduce detection bias due to multiple 
observers as well as provide complete replication. 

OCCUPANCY DATA

Following the guidelines for maximum detection set forth by 
the Boreal Avian Modelling Project (2011), we attempted to 
minimize variability in the probability of detecting Brown 
Creepers by including only data from within a 75-m radius 
of the point. Differences in detectability are important con-
siderations, and we attempted to minimize this potential 
error through using this smaller sampling scale and by elimi-
nating survey locations with loud streams or surveys during 
inclement weather. Although these efforts may minimize er-
rors associated with detectability, other sources of detection 
bias may still exist. We selected a random subset of “absent” 
survey locations from the total at which Brown Creepers 
were not detected by using the random-selection function in 
R (R Development Core Team 2005), to match the number of 
“present” survey locations at each site where creepers were de-
tected (n = 31 for Moscow Mountain; n = 35 for Slate Creek). 
We compiled data on Brown Creeper occupancy from both 
Moscow Mountain and Slate Creek (n = 132) and added study 
area as a factor to the statistical models to test for site specific-
ity in the Brown Creeper’s habitat selection (Table 1). 

LIDAR DATA

For all vegetation structure metrics, we used multiple-return 
discrete lidar data recorded from the air (Table 1) at Slate 
Creek in summer 2006 and at Moscow Mountain in summer 
2009. Both lidar surveys were conducted by Watershed Sci-
ences, Inc. (Corvallis, OR), with a Leica ALS50 system. We 
classified ground returns by the multiscale curvature classi-
fication algorithm (Evans and Hudak 2007), which were then 
subsequently interpolated into a 1-m digital terrain model. 
This model was subtracted from the all-return data for cal-
culation of canopy heights, which were then binned into 
20-m × 20-m grid cells for the calculation of height-based 
statistical metrics including the maximum, mean, and stan-
dard deviation. See Evans et al. (2009) for a complete list of 
canopy metrics that can be generated from height distribu-
tions recorded by lidar. To develop predictive models, we ap-
plied zonal statistics in ArcGIS to the 20-m output rasters 
to extract the mean and standard deviation of lidar-derived 
structure variables for the 75-m buffer surrounding bird sur-
vey points. Because the bird data and lidar data for the Slate 
Creek study area were recorded in different years, we re-
located or eliminated count points that fell in recently dis-
turbed stands.

Previous studies in which vegetation was sampled in the 
field have identified the importance of tree size, forest age, 
and overall canopy density to Brown Creeper occurrence 
(Sallabanks et al. 2006, Poulin et al. 2008). Lidar is able to 
quantify aspects of canopy structure that are difficult or im-
possible to measure through field-based sampling, such as 
the density of the vegetation in multiple forest strata, met-
rics mapped continuously across the landscape as opposed to 
small field-sampled plots that are extrapolated to character-
ize the landscape, local and stand-level vertical and horizontal 
forest structure, and the closure of the upper canopy as seen 
from above (Dubayah and Drake 2000). We included the lidar- 
derived mean forest height (m), the variability of forest height, 
and the density of the upper canopy in our predictive models 
to test for relationships similar to those observed in previous 
field-based studies of Brown Creeper occupancy (Table 1). 
Tree height is highly and positively correlated with diameter 
at breast height (Bresnan et al. 1994). Therefore, forest height 

TABLE 1. Descriptions of lidar-derived predictor variables used in models predicting Brown Creeper occupancy in two 
coniferous forests in Idaho.

Predictor variablea Abbreviation Metric description

Lidar-derived
Mean canopy height (m) Height Mean canopy height
Variability in canopy height (m) Heightσ Standard deviation of canopy height
Density of upper canopy (%) UpperC Percent of lidar returns in stratum 5 (20–30 m)
Variability in density of upper canopy (%) UpperCσ Standard deviation of % returns from 20–30m

Study area Site Study area 1 (Moscow Mountain) or 2 (Slate Creek)

aScale of radius 75 m.



618 JODY C. VOGELER ET AL.

is a robust indicator of tree diameter and, to a lesser extent 
depending on site conditions, tree age. The percent of returns 
of lidar data from the forest stratum between 20 and 30 m 
(lidar stratum 5), which correlates to the upper canopy at our 
study areas, was included in the model to represent the density 
of large trees included in the upper canopy, which is important 
to the Brown Creeper’s habitat needs (Poulin et al. 2010).

STATISTICAL ANALYSES

From the total data set (n = 132), we used a random selection 
of 75% of the data in model creation (n = 100), withholding 
25% for validation of the model (n = 32), with approximately 
half of both data sets coming from each study area. We used 
logistic regression (binomial error distribution and logit-link 
function) to evaluate the relationship between Brown Creeper 
occupancy and the lidar-derived variables predicting forest 
structure. We ensured that highly correlated variables were 
not included in the modeling process by using a threshold of 
5 for the variance-inflation factor (Haan 2002). We calculated 
values of the Akaike (1973) information criterion (AIC) for a 
set of 20 candidate models including a null model (Table 2). 
We chose candidate models to test ecologically meaningful 
combinations of predictor variables as well as single-variable 
models in order to test our hypothesis that the density of the 
upper canopy should be the most important factor influencing 
Brown Creeper occupancy. We ranked AIC values to iden-
tify the model with the lowest AIC value and considered any 
model within 2 of the lowest value a competing model (Burn-
ham and Anderson 2002). In addition to AIC model selection, 
we also compared the models’ performance by calculating 
Akaike weights of each model and individual parameters 
for explaining the variance of the data (Johnson and Omland 
2004).

We evaluated the performance of the models with compet-
ing AIC values by following the methods of Fielding and Bell 
(1997). Using weighted parameter estimates, we applied the 
top models to the training and validation data sets to calculate 

logit (P), with which we then estimated the probability of oc-
currence (see Fielding and Bell 1997 for details of the equa-
tion). We used receiver operating curves (ROC) to calculate 
the optimal probability of the occurrence threshold where sen-
sitivity and specificity were balanced (Fielding and Bell 1997). 
This optimal probability was ≥0.5, from which we then created 
a 2 × 2 classification table of correct and incorrect predictions 
of presence and absence. Using the four values in the classifi-
cation table (sites where the creeper was correctly and incor-
rectly predicted as present and absent), we calculated a set of 
model-performance statistics that included sensitivity, speci-
ficity, positive predictive power, negative predictive power, 
correct classification rate, and kappa (Fielding and Bell 1997). 
Sensitivity and specificity represent the ability of the model to 
correctly predict sites of presence and absence, respectively. 
The correct classification rate combines these measures to 
reflect the model’s overall ability to predict sites of both pres-
ence and absence correctly. Positive and negative predictive 
power are the proportion of sites where the creeper was cor-
rectly classified as present or absent, respectively. Kappa (κ) 
expresses how well the model predicts the data set over what is 
expected by chance alone. Models with κ < 0.4 are considered 
“poor,” those with 0.4 < κ < 0.75 are classified as “good,” and 
those with κ ≥ 0.75 are “excellent” (Luck 2002). 

To create ROCs, we plotted cases of true and false posi-
tive predictions (sensitivity vs. [1 – specificity]) across a range 
of probability of occurrence thresholds against each other in 
R (R Development Core Team 2005). To assess model perfor-
mance for the training and validation data sets, we calculated 
the area under the curve (AUC) for the ROCs by the methods 
of Luck et al. (2002). AUC values range from 0.5 (no model 
discrimination) to 1.0 (perfect model performance; Fielding 
and Bell 1997). Values between 0.5 and 0.7 denote poor dis-
crimination, values between 0.7 and 0.9 reflect a model with 
reasonably good discrimination, and a model with excellent 
discrimination capabilities has AUC values >0.9 (Pearce and 
Ferrier 2000). In addition to examining model performance 
for the training and validation datasets, we also conducted a 
leave-one-out cross-validation (LOOCV) analysis on the un-
divided dataset in R (R Development Core Team 2005).

We mapped the variables selected by the predictive mod-
els at a 20-m × 20-m resolution across the full extent of the 
lidar surveys, then applied the models to generate predictive 
maps at the same resolution, using the AsciiGridPredict func-
tion in the yaImpute package of R. All data reported in the 
results are presented as means ± SE.

RESULTS

Lidar-derived metrics of canopy height and density were 
important predictors of Brown Creeper occupancy (Table 
3). Density of the upper canopy was the most important 
structure variable for predicting Brown Creeper occupancy 

TABLE 2. List of the 20 candidate models used for predicting 
Brown Creeper occupancy in two western coniferous forests.  All runs 
included the intercept.

Model Variables

Intercept-only (null model) Height, site
Height UpperC, site
Heightσ Height, heightσ, upperC
UpperC Height, heightσ, site
UpperCσ Height, upperC, site
Site UpperC, upperCσ, site
Height, heightσ Height, heightσ, upperC, upperCσ
UpperC, upperCσ Height, heightσ, upperC, site
Height, upperC Heightσ, upperC, upperCσ, site
Heightσ, upperC Global
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at our study sites, although mean height and height vari-
ability were also included in the top models (Table 3). The 
upper canopy was twice as dense at occupied sites as at 
unoccupied sites, and mean height (m) was almost 50% 
greater at occupied sites than at unoccupied sites (Table 4). 
Study area was not a significant factor influencing occu-
pancy (Table 5). 

Multiple statistical measures found the two competitive 
models to have “good” predictive performance, although at 
the lower end of this range (Table 6). Both competing models 
had κ values specifying “good” performance for the sets of 
training data (Table 6). AUC values calculated from the ROCs 
classified both of the competing models performing well for 
both the training and validation data, although values for the 
validation data were slightly lower (Table 7). The two compet-
ing predictive models performed similarly, with equal AUC 
values of 0.83 and validation AUC values of 0.76 and 0.77 
(Table 7). The bias for not using LOOCV in the predictive 
model was <0.001 and therefore negligible. The maps that we 
generated on the basis of the models’ results (Fig. 1) identify 

TABLE 3. Top models predicting Brown Creeper presence/
absence in two western coniferous forests, reduced from the 
original candidate set of 20 models.  Models ranked by AIC val-
ues; models ΔAIC < 2 considered to be competing. 

Confidence set of models ΔAIC wi

UpperC, heightσ 0.00a 0.33
UpperC, height, heightσ 1.30 0.17
UpperC, upperCσ, height, heightσ 2.49 0.09
UpperC, height, height, site 2.78 0.08
UpperC, upperCσ, heightσ, site 3.00 0.07
UpperC, upperCσ 3.76 0.05
UpperC, height 4.00 0.04
Global 4.25 0.04
UpperC 4.35 0.04
UpperC, height, site 4.59 0.03

aLowest value of AIC = 111.51.

TABLE 4. Summary statistics of lidar-derived predictor variables 
for Brown Creeper presence and absence in two coniferous forests 
in Idaho. Metrics include the mean and standard deviation of canopy 
height (height and height σ) and the percent of lidar returns from 
stratum 5 (20–30 m), representing the density of the upper canopy 
(upperC and upperC σ).  Means of variables are given with confi-
dence intervals based on the standard error in parentheses. 

Mean (95% confidence interval)

Occupancy Height (m) Height σ

UpperC (% 
density of 
lidar hits) UpperC σ

Present 12.17 
(11.05, 13.29)

3.79 
(3.45, 4.13)

26.38 
(23.82, 28.94)

10.53 
(9.67, 11.39)

Absent 8.20 
(7.01, 9.39)

3.05 
(2.72, 3.38)

13.78 
(11.08, 16.48)

7.93 
(6.99, 8.87)

TABLE 5. Weighted parameter estimates and standard errors for 
modeled predictor variables. Akaike weights denote relative impor-
tance of variables.

 
Parameter 
estimate

Standard 
error

95% con-
fidence 
interval wi P-value 

Intercept –3.19 0.91 (–4.99, –1.40) – <0.001
UpperC 0.09 0.02 (0.04, 0.14) 0.95 <0.01
UpperCσ 0.08 0.08 (–0.08, 0.24) 0.28 0.47
Height 0.05 0.06 (–0.06, 0.17) 0.46 0.39
Heightσ 0.38 0.18 (0.02, 0.75) 0.79 0.09
Site –0.34 0.50 (–1.33, 0.64) 0.27 0.63

TABLE 6. Measures of predictive performance at a threshold for 
probability of occurrence of 0.5 for competing models applied to the 
training and validation datasets.  Model 1 was the best model, and model 
2 was within 2 ΔAIC of model 1.  Sensitivity and specificity depict the 
ability of the model to correctly predict sites of presence and absence, 
respectively.  The rate of correct classification reflects the model’s over-
all ability to predict both presence and absence correctly.  The propor-
tion of sites correctly classified as “present” or “absent” are represented 
by positive and negative predictive power, respectively.  Kappa (κ) is a 
model-performance statistic where performance at values <0.4 is con-
sidered poor, 0.4< κ <0.75 good, and κ ≥ 0.75 excellent.

Model 1: heightσ, 
upperC

Model 2: height, 
heightσ, upperC

Training Validation Training Validation

Sensitivity 0.74 0.75 0.88 0.81
Specificity 0.76 0.69 0.66 0.56
Correct  

classification rate 0.75 0.72 0.77 0.69
Positive  

predictive power 0.76 0.71 0.72 0.65
Negative predictive 

power 0.75 0.73 0.85 0.75
κ 0.50 0.44 0.54 0.38

spatially explicit patterns of occupancy across the two study 
areas.

DISCUSSION

Our results support our hypothesis that the density of the up-
per canopy should be the most important factor in predict-
ing Brown Creeper occupancy in our study areas. Previous 
studies have found factors implying a dense upper canopy, 
such as overall canopy cover and density of large-diam-
eter trees, to be factors important to Brown Creeper habi-
tat (Anderson and Crompton 2002, Sallabanks et al. 2006), 
but ours is the first empirical examination of the relationship 
between Brown Creeper occupancy and the density of the 
upper canopy through the use of lidar data. Anderson and 
Crompton (2002) classified the Brown Creeper as a part of a 



620 JODY C. VOGELER ET AL.

closed-canopy-forest community, choosing the densest for-
est that included a dense middle stratum and abundant large 
trees (Anderson and Crompton 2002). These dense stands 
with abundant large live trees may provide important forag-
ing substrates for the Brown Creeper. Larger trees often have 
deeper bark furrows, which support more bark-dwelling in-
vertebrates, an important food source for the Brown Creeper 
(Mariani and Manuwal 1990, Weikel and Hayes 1999). A 
high density of large trees also ensures the recruitment of 
snags, the Brown Creeper’s preferred nesting habitat (Pou-
lin et al. 2008). The inclusion of the mean canopy height in 
one of the competing models we devised may also reflect this 
preference by the Brown Creeper for an abundance of large 
trees. Although the metric for mean height may reflect the 
presence of large trees in the study plot, the density of the 
upper canopy may better represent the abundance of this co-
hort of large trees, leading to a predictive strength for Brown 
Creeper occupancy greater than mean height alone. 

The variability in canopy height also appeared in both of 
the competing models, although it was not quite significant at 
the 0.05 level, the 95% confidence interval estimated for this 
parameter included zero. Adams and Morrison (1993) found 
the Brown Creeper to prefer greater complexity of vertical 
structure. Variability in vertical forest structure may reflect the 
presence of a variety of forest strata and features that are im-
portant components of Brown Creeper habitat, such as an un-
derstory layer for arthropod production (Adams and Morrison 
1993) and an abundance of large trees in the upper strata for 
foraging and nesting substrates (Poulin et al. 2010). Although 
multiple forest layers may be necessary to the Brown Creeper, 
our results suggest that the abundance of large trees creating 
a dense upper canopy may be the limiting resource for occu-
pancy at our study sites. 

The scale at which variables are quantified can affect a 
model’s results significantly (Karl et al. 2000). The scale of 
our analysis, a radius of 75 m, identified the density of the 
upper canopy as an important predictor of Brown Creeper 

occupancy. Landscape-level variables not evaluated in our 
study also affect the suitability of habitat for the Brown 
Creeper; these include core stand size, distance to edge, and 
the stand’s disturbance history (Poulin et al. 2008, 2010). To 
help inform forest management at the local and landscape 
levels, future research should explore the Brown Creeper’s 
habitat relationships over a range of spatial scales, to identify 
thresholds or changes in drivers of occupancy, as well as ex-
amine the importance of lidar-derived landscape variables. 

To address specific management and conservation goals, 
the threshold for probability of occurrence used in predictive 
mapping can be adjusted from the 0.5 optimal threshold we 
used. For conservation purposes where the intent is to concen-
trate efforts and resources on high-quality habitat, the thresh-
old can be increased for a more conservative prediction of the 
Brown Creeper’s occupancy. The more conservative prediction 
may be useful for the designation of conservation reserves or to 
concentrate habitat-restoration efforts. For research whose goal 
is to identify a range of areas where Brown Creepers may be 
present, so that field surveys for nesting or habitat-quality as-
sessments may be prioritized, applying a lower probability of 
occurrence may be beneficial so that the survey area is widened 
across a gradient of habitat of “moderate” to “excellent” quality. 

TABLE 7. Area under the curve (AUC) results cal-
culated from ROCs for competing models.  AUC val-
ues range from 0.5 (no model discrimination) to 1.0 
(perfect model performance), where values between 
0.5 and 0.7 denote poor discrimination, those between 
0.7 and 0.9 reflect reasonably good discrimination, 
and those >0.9 specify excellent discrimination. 

Data set and model AUC P-value

Training
UpperC, heightσ 0.83 <0.001
UpperC, height, heightσ 0.83 <0.001

Validation
UpperC, heightσ 0.77 0.004
UpperC, height, heightσ 0.76 0.006

FIGURE 1. Maps depicting the probability of Brown Creeper oc-
cupancy on Moscow Mountain and in the drainage basin of Slate 
Creek, Idaho.  The variables selected by the predictive models were 
mapped at a 20-m × 20-m resolution across the full extent of the lidar 
surveys. The AsciiGridPredict function in the yaImpute package of 
R was then applied to the models to generate predictive maps at the 
same resolution.
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Many of the previous studies modeling avian habitat with 
lidar have examined relationships within a single study site 
(Graf et al. 2009, Goetz et al. 2010). The two areas of conifer-
ous forest in which we modeled Brown Creeper occupancy, 
although both within Idaho, differ significantly in topo-
graphic gradient, land ownership and management goals such 
as intensity of timber harvest, proportion of late-seral stands, 
surrounding landscape (i.e., agricultural vs. forested), prox-
imity to well-populated areas and high recreation pressures, 
and dissection by roads and thus accessibility. The inclusion 
of a study-area factor in our models did not disclose significant 
differences between the areas in the Brown Creeper’s habi-
tat preference. Habitat models that perform well across such 
gradients of landscape characteristics and land use should be 
more robust than those tested in one study area. Future studies 
should test for similar occupancy relationships across other 
parts of the Brown Creeper’s range. We acknowledge that oc-
cupancy data, while informative, does not truly reflect habitat 
quality. Therefore, future studies might address relationships 
between lidar-derived canopy architecture and the Brown 
Creeper’s density and demographic variables. 

Our results add to the growing number of studies showing 
an association between the Brown Creeper and forest-structure 
attributes that are characteristic of mature and old-growth for-
est. Importantly, we were able to use lidar-derived metrics in our 
analysis and map probability of occupancy across ~50 000 ha of 
forest, representing, to our knowledge, the first time that spatially 
explicit maps of Brown Creeper occupancy have been pub-
lished. The fine-scale metrics of vegetation height and density 
that can be mapped with lidar provide data for habitat models at 
the local, stand, and forest-wide scales. Forest-structure metrics 
that can be mapped over a landscape with remote sensing and 
that predict wildlife needs may be important for conservation 
and management. As timber harvest continues to reduce large 
tracts of older forest stands in western North America, monitor-
ing of species such as the Brown Creeper, strongly associated 
with structural attributes of these older seral stages and sensitive 
to habitat disturbance, may become of increasing importance in 
management and conservation. 

ACKNOWLEDGMENTS

We thank the U.S. Geological Survey (grant number 08HQAG0123), 
the U.S. Forest Service, and the Palouse Audubon Society for fund-
ing. We thank Pat Greene and Jeff Evans for their initial efforts to 
establish lidar research at the Slate Creek site, and Jeff Evans, Pat-
rick Adam, and Eva Strand for initial assistance in processing lidar 
data. We also thank three anonymous reviewers for their valuable 
comments. This is contribution 1075 of the University of Idaho For-
est, Wildlife and Range Experiment Station.

LITERATURE CITED

ADAMS, E. M., AND M. L. MORRISON. 1993. Effects of forest stand 
structure and composition on Red-breasted Nuthatches and 
Brown Creepers. Journal of Wildlife Management 57:616–629.

AKAIKE, H. 1973. Information theory as an extension of the max-
imum likelihood principle, p. 267–281. In B. N. Petrov and 
F. Csaki [EDS.], Second international symposium on information 
theory, Akadémiai Kiadó, Budapest.

ANDERSON, S. H., AND B. J. CROMPTON. 2002. The effects of shelter-
wood logging on bird community composition in the Black Hills, 
Wyoming. Forest Science 48:365–372.

BELLAMY, P. E., R. A. HILL, P. ROTHERY, S. A. HINSLEY, R. J. FULLER, 
AND R. K. BROUGHTON. 2009. Willow Warbler (Phylloscopus 
trochilus) habitat in woods with different structure and manage-
ment in southern England. Bird Study 56:338–348.

BOREAL AVIAN MODELLING PROJECT [ONLINE]. 2011. Brown Creeper 
(Certhia americana). <http://www.borealbirds.ca/avian_db/
accounts.php/Certhia+americana> (15 February 2012).

BRADBURY, R. B., R. A. HILL, D. C. MASON, S. A. HINSLEY, J. D. 
WILSON, H. BALZTER, G. Q. ANDERSON, M. J. WHITTINGHAM, I. J. 
DAVENPORT, AND P. E. BELLAMY. 2005. Modelling relationships 
between birds and vegetation structure using airborne LiDAR 
data: a review with case studies from agricultural and woodland 
environments. Ibis 147:443–452.

BRESNAN, D. F., G. RINK, K. E. DIEBEL, AND W. A. GEYER. 1994. 
Black walnut provenance performance in seven 22-year-old plan-
tations. Silvae Genetica 43:246–252. 

BURNHAM, K. P., AND D. R. ANDERSON. 2002. Model selection 
and multi-model inference: a practical information-theoretic 
approach. Springer-Verlag, New York.

CLAWGES, R., K. VIERLING, L. VIERLING, AND E. ROWELL. 2008. The 
use of airborne lidar to assess avian species diversity, density, 
and occurrence in a pin/aspen forest. Remote Sensing of the 
Environment 112:2064–2073.

DAVIS, C. M. 1978. A nesting study of the Brown Creeper. Living 
Bird 17:237–263.

DUBAYAH, R. O., AND J. B. DRAKE. 2000. Lidar remote sensing for 
forestry. Journal of Forestry 98:44–46.

EVANS, J. S., AND A. T. HUDAK. 2007. A multiscale curvature algo-
rithm for classifying discrete return LiDAR in forested environ-
ments. IEEE Transactions on Geoscience and Remote Sensing 
45:1029–1038. 

EVANS, J. S., A. T. HUDAK, R. FAUX, AND A. M. S. SMITH. 2009. Discrete 
return lidar in natural resources: recommendations for project plan-
ning, data processing, and deliverables. Remote Sensing 1:776–794.

FALKOWSKI, M. J., J. S. EVANS, S. MARTINUZZI, P. E. GESSLER, AND 
A. T. HUDAK. 2009. Characterizing forest succession with lidar 
data: an evaluation for the inland Northwest, USA. Remote Sens-
ing of the Environment 113:946–956.

FIELDING, A. H., AND J. F. BELL. 1997. A review of methods for the 
assessment of prediction errors in conservation presence/absence 
models. Environmental Conservation 24:38–49. 

GOETZ, S. J., D. STEINBERG, M. G. BETTS, R. T. HOLMES, P. J. DORAN, 
R. DUBAYAH, AND M. HOFTON. 2010. Lidar remote sensing vari-
ables predict breeding habitat of a neotropical migrant bird. Ecol-
ogy 91:1569–1576.

GRAF, R. F., K. BOLLMANN, W. SUTER, AND H. BUGMANN. 2004. 
Using a multi-scale model for identifying priority areas in Cap-
ercaillie (Tetrao urogallus) conservation, p. 84–90. Proceedings 
of the 12th annual IALE (UK) conference “Landscape ecology of 
trees and forests,” Cirencester, UK.

GRAF, R. F., L. MATHYS, AND K. BOLLMANN. 2009. Habitat assess-
ment for forest dwelling species using LiDAR remote sens-
ing: Capercaillie in the Alps. Forest Ecology and Management 
257:160–167.

GUÉNETTE, J. S., AND M. A. VILLARD. 2005. Thresholds in forest bird 
response to habitat alteration as quantitative targets for conserva-
tion. Conservation Biology 19:1168–1180.



622 JODY C. VOGELER ET AL.

HAAN, C. T. 2002. Statistical methods in hydrology. Iowa State Uni-
versity Press, Ames, IA. 

HALAJ, J., C. B. HALPERN, AND H. YI. 2009. Effects of green-tree 
retention on abundance and guild composition of corticolous 
arthropods. Forest Ecology and Management 258:850–859.

HALPERN, C. B., S. A. EVANS, C. R. NELSON, D. MCKENZIE, D. A. 
LIGUORI, D. E. HIBBS, AND M. G. HALAJ. 1999. Response of for-
est vegetation to varying levels and patterns of green-tree reten-
tion: an overview of a long-term experiment. Northwest Science 
74 (special issue).

HEJL, S., K. NEWLON, M. MCFADZEN, J. YOUNG, AND C. GHALAMBOR. 
2002. Brown Creeper (Certhia americana), no. 669. In A. Poole 
and F. Gill [EDS.], The birds of North America. Birds of North 
America, Inc., Philadelphia.

HINSLEY, S. A., R. A. HILL, P. E. BELLAMY, N. M. HARRISON, J. R. 
SPEAKMAN, A. K. WILSON, AND P. N. FERNS. 2008. Effects of 
structural and functional habitat gaps on breeding woodland 
birds: working harder for less. Landscape Ecology 23:615–626.

HOLMES, S. B., D. M. BURKE, K. A. ELLIOT, M. D. CADMAN, AND 
L. FRIESEN. 2004. Partial cutting of woodlots in an agriculture-
dominated landscape: effects on forest bird communities. Cana-
dian Journal of Forest Resources 34:2467–2476.

HYDE, P., R. DUBAYAH, B. PETERSON, J. B. BLAIR, M. HOFTON, 
C. HUNSAKER, R. KNOX, AND W. WALKER. 2005. Mapping forest 
structure for wildlife habitat analysis using waveform lidar: vali-
dation of montane ecosystems. Remote Sensing and the Environ-
ment 96:427–437.

IMBEAU, L., J. L. SAVARD, AND R. GAGNON. 1999. Comparing bird 
assemblages in successional black spruce stands originating from 
fire and logging. Canadian Journal of Zoology 77:1850–1859.

JOHNSON, J. B., AND K. S. OMLAND. 2004. Model selection in ecol-
ogy and evolution. Trends in Ecology and Evolution 19:101–108.

KARL, J. W., P. J. HEGLUND, E. O. GARTON, J. M. SCOTT, N. M. 
WRIGHT, AND R. L. HUTTO. 2000. Sensitivity of species habitat–
relationship model performance to factors of scale. Ecological 
Applications 10:1690–1705.

KROLL, A. J., AND J. B. HAUFLER. 2006. Development and evaluation 
of habitat models at multiple spatial scales: a case study with the 
Dusky Flycatcher. Forest Ecology and Management 229:161–169.

LEFSKY, M. A., W. B. COHEN, S. A. ACKER, G. G. PARKER, T. A. SPIES, 
AND D. HARDING. 1999. Lidar remote sensing of the canopy struc-
ture and biophysical properties of Douglas-fir western hemlock 
forests. Remote Sensing of Environment 70:339–361.

LEFSKY, M. A., W. B. COHEN, G. G. PARKER, AND D. J. HARDING. 
2002. Lidar remote sensing for ecosystem studies. BioScience 
52:19–30.

LINDENMAYER, D. B., C. R. MARGULES, AND D. B. BOTKIN. 2000. 
Indicators of biodiversity for ecologically sustainable forest man-
agement. Conservation Biology 14:941–950.

LUCK, G. W. 2002. The habitat requirements of the Rufous 
Treecreeper (Climacteris rufa). 2. Validating predictive habitat 
models. Biological Conservation 105:395–403.

MANUWAL, D. A., AND A. B. CAREY. 1991. Methods for measuring 
populations of small diurnal forest birds. USDA Forest Service 
General Technical Report PNW-GTR-278.

MARIANI, J. M., AND D. A. MANUWAL. 1990. Factors influencing 
Brown Creeper (Certhia americana) abundance patterns in the 
southern Washington Cascade Range. Studies in Avian Biology 
13:53–57.

MARTINUZZI, S., L. A. VIERLING, W. A. GOULD, M. J. FALKOWSKI, 
J. S. EVANS, A. T. HUDAK, AND K. T. VIERLING. 2009. Mapping 
snags and understory shrubs for a LiDAR-based assessment of 
wildlife habitat suitability. Remote Sensing of the Environment 
113:2533–2546.

MASON, D. C., G. Q. A. ANDERSON, R. B. BRADBURY, D. M. COBBY, 
I. J. DAVENPORT, M. VANDEPOLL, AND J. D. WILSON. 2003. Mea-
surement of habitat predictor variables for organism–habitat 
models using remote sensing and image segmentation. Interna-
tional Journal of Remote Sensing 24:2515–2532. 

MORRIS, D. W. 2003. How can we apply theories of habitat selection 
to wildlife conservation and management. Wildlife Research 
30:303–319.

PEARCE, J., AND S. FERRIER. 2000. Evaluating the predictive per-
formance of habitat models developed using logistic regression. 
Ecological Modelling 133:225–245.

POULIN, J. F., M. A. VILLARD, M. EDMAN, P. J. GOULET, AND A. M. 
ERIKSSON. 2008. Thresholds in nesting habitat requirements of 
an old forest specialist, the Brown Creeper (Certhia americana), 
as conservation targets. Biological Conservation 141:1129–1137.

POULIN, J. F., M. A. VILLARD, AND S. HACHE. 2010. Short-term demo-
graphic response of an old forest specialist to experimental selec-
tion harvesting. Écoscience 14:20–27.

R DEVELOPMENT CORE TEAM. 2005. R: a language and environment 
for statistical computing, reference index version 2.2.1. R Foun-
dation for Statistical Computing, Vienna, Austria. 

SALLABANKS, R., J. B. HAUFLER, AND C. A. MEHL. 2006. Influence 
of forest vegetation structure on avian community composition 
in west-central Idaho. Wildlife Society Bulletin 34:1079–1093.

SHINNEMAN, D. J., AND W. L. BAKER. 1997. Nonequilibrium dynam-
ics between catastrophic disturbances and old-growth forests in 
ponderosa pine landscapes of the Black Hills. Conservation Biol-
ogy 11:1276–1288.

SIITONEN, J., P. MARTIKAINEN, P. PUNTTILA, AND J. RAUH. 2000. 
Coarse woody debris and stand characteristics in mature man-
aged and old-growth boreal mesic forests in southern Finland. 
Forest Ecology and Management 128:211–225.

VENIER, L. A., J. L. PEARCE, B. A. WINTLE, AND S. A. BEKESSY. 2007. 
Future forests and indicator-species population models. Forestry 
Chronicle 83:36–40.

VIERLING, K. T., L. A. VIERLING, W. A. GOULD, S. MARTINUZZI, AND 
R. M. CLAWGES. 2008. Lidar: shedding new light on habitat char-
acterization and modeling. Frontiers in Ecology and Environ-
ment 6:90–98.

VIERLING, L. A., S. MARTINUZZI, G. P. ASNER, J. STOKER, AND B. R. 
JOHNSON. 2011. Lidar: providing structure. Frontiers in Ecology 
and the Environment 9:261–262.

WEIKEL, J. M., AND J. P. HAYES. 1999. The foraging ecology of 
 cavity-nesting birds in young forests of the northern Coast Range 
of Oregon. Condor 101:58–66.

WINTLE, B. A., S. A. BEKESSY, L. A. VENIER, J. L. PEARCE, AND R. A. 
CHISHOLM. 2005. Utility of dynamic-landscape metapopulation 
models for sustainable forest managements. Conservation Biol-
ogy 19:1930–1943.

WIGGINS, D. A. [ONLINE]. 2005. USDA Forest Service, Rocky 
Mountain Region Brown Creeper (Certhia americana): a tech-
nical conservation assessment. <http://www.yumpu.com/en/
document/view/11994359/brown-creeper-certhia-americana-
usda-forest-service> (19 June 2013).


