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FINITE ELEMENT ANALYSIS OF END FIXITY
IN STUD WALL PANELS

I, INTRODUCTION

Present light-frame structures, made of wood and wood based

materials, may be overbuilt because the existing structural design

requirements are based on tradition and simplified analysis.

Increased competition from other building materials, such as steel

studs and joists, has spurred efforts to improve the analysis and

design of light-frame structures. The recent project "Theoretical

Analysis and Rational Design Procedure for Stud Wall Systems" at the

Forest Research Laboratory, Oregon State University, is aimed at

including into the stud wall design factors that contribute to the

strength and stiffness of stud walls but are not considered by existing

procedures. The application of computers in structural design has

enhanced the use of matrix methods in structural analysis and pro-

duced the finite element method (5,36). These developments have

made it practical to attempt the revision of the existing method for

the structural design of wood-stud walls.

The wood-stud wall consists of a series of equally spaced studs

with interior and exterior coverings. The exterior wall covering or

sheathing may be fiberboard, plywood, particleboard or non-wood

materials. The interior wall covering usually is gypsum board. The
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wall is normally supported by the floor. A typical wood-stud wall

support is shown in Figure 1.1. The floor is composed of a series

of equally spaced joists and a subfloor with or without an underlay-

ment. The wall and floor components are usually connected with nails

but staples or glue may be used instead.

Sheathing

Nail

Header
joist

Stud

Interior covering

Sole plate

Subfloor

1111;- -IM Sill plate

Joist

Figure 1.1. Wood-stud wall and wall support.

;0...01 1 0:

*O. Foundation wall
D. no a



Lateral wind load, acting on the wall, forces studs to rotate

with respect to joists at supports. The attachment of the exterior

wall sheathing to the wall supports may restrain this support or end

rotation of the stud and produce a partial end fixity, measured by the

coefficient of end fixity, defined as

where

M - end moment

and 0 - angular rotation because of M

Coefficient a is zero for a simply supported beam and infinity for

a beam with fixed ends. For wood-stud walls, a should be between

these two extremes.

1.1. Previous and Present Outlook

Requirements for stud wall design are stated in standards and

building codes, such as the Minimum Property Standards of the United

States Department of Housing and Urban Development (29) and the

Uniform Building Code of the International Conference of Building

Officials (9). Requirements for wall framing in light-frame construc-

tion are given in Sec. 2518(f) of the Uniform Building Code. Require-

ments for stud walls specify design features, such as the size,

3



spacing, bracing and height of studs. Stud spacing, size and grade

are based upon wall types. Standards and codes provide requirements

for exterior and interior bearing walls and interior nonbearing parti-

tions for one, two and three-story buildings. The grades of lumber

are as determined by the rules of an approved lumber grading agency.

Some codes restrict the use of Utility grade studs which is the lowest

structural grade. The stud nominal size ranges from two in. by

three in. to two in. by six in. and three in. by four in. Maximum

height, without lateral supports, ranges from 8 ft to 20 ft. Stud

spacing is either 12, 16, or 24 in. on center. Various methods are

given to brace the ends of all exterior walls and main cross stud

partitions against the wall collapse as a diaphragm. Innovative con-

struction or excessive design loads may require that a specific design

be furnished.

Conventional analysis of stud walls involves the simple beam-

column analysis of a single stud with an uniform lateral load and an

axial load. The design loads are specified in the building codes.

Stresses and deflections are determined and compared to the allowable

values. Allowable stresses are given in the codes (9) and specifica-

tions, such as the National Design Specification for Stress-Grade

Lumber and Its Fastenings of the National Forest Products Associa-

tion (19).
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Attempts to evaluate the partial end fixity and include it in the

analysis and design procedures have been made since the 1930's.

The analysis of members with elastically restrained ends has been

discussed in textbooks (2, 28). The theoretical or experimental

determination of the coefficient of end fixity for steel frame construc-

tions is discussed in a number of articles (3, 11, 14, 18, 22). Early

design methods which account for the partial end fixity were either

manageable and approximate or very complicated and time-consuming

for all but simple structures (10, 11, 13, 26). However, the digital

computer and matrix analysis have allowed the use of methods which

were previously forbidden because of their complexity (15, 24).

Rodda (23) has developed a theoretical analysis of trusses with

semi-rigid joints. His Ph. D. thesis includes an extensive review of

the literature on elastic joints in steel structures and nailed timber

connections. The ultimate strength design of reinforced timber rigid

frames with semi-rigid joints was investigated by Krueger (12).

Glenn Schroeder (25) experimentally obtained coefficients of end

fixity of five types of wood-stud wall panels.

1. 2. Future Outlook

Improvements can be made in the design procedure for

wood-stud walls. Tradition, rigid building codes, inadequate grading

methods and over-simplified methods of structural analysis have



resulted in walls that are usually overbuilt. Better methods o

analysis and more precisely defined properties of wall components

and connections can justify less conservative designs.

Stud wall design can be made more economical by reducing the

size and grade of the wall components and by increasing the stud

spacings. The conventional 16 in. spacing of two in. by four in. studs

in walls could be increased to 24 in. spacing. The Uniform Building

Code (9) presently allows 24 in. stud spacing for single story dwellings

and top stories of multi-story dwellings. Another possible improve-

ment is the use of one in. by four in. studs on 16 in. centers, glued to

3/8 in. plywood sheathing (21). Finally improved design procedures

can justify more extensive use of Utility grade studs for structural

members.

Improvements in the structural use of wood involve the

consideration of the following three factors: establishment of the

properties of the structural wood products, precise definition of the

actual loads a structure must support, and accurate method of deter-

mining the strength and stiffness of wood structures (21).

The establishment of the properties of the structural materials

involves experimental determination of strength and stiffness proper-

ties for most important types of wood products and connections. As

the design of wooden structures becomes more precise, the wide

variation of wood properties within a grade will become less



acceptable. Improved lumber grading methods should be developed

and applied to reduce the in-grade variation of lumber properties.

The use of the machine stress-rated lumber is perhaps a practical

way to define lumber stiffness and strength more precisely and to

segregate the lumber into grades with greater uniformity in their

properties.

Assumptions and approximations used for the design loads

acting on walls present another problem in structural design. Poorly

defined loads often result in overbuilt structures. Therefore, a

precise definition of the external loads is also required for an

accurate analysis and design procedure for wood-stud walls.

Improved values for material properties and loads are of

limited value if accurate design methods are not available. The

design method should include as many significant factors of the

behavior of the structure as practical. The dynamic, thermal,

acoustic, durability and moisture properties of the structure should

be considered in addition to the strength and stiffness (27). Improve-

ments in the stud wall design method can be made by including

factors that contribute to the strength and stiffness of the wall, but are

not included in the current procedure. Provisions could be made to

consider the ability of the stronger studs to support the weaker studs

due to load distribution through the wall coverings. The stiffness

contribution of the composite action between studs and wall coverings



should be accounted for. Stiffness and strength increase of walls

because of the partial end fixity should also be considered in the

improved design method of stud walls.

1.3. Justification and Objectives

Improvements in structural wall design should result in

material and perhaps labor savings. These savings should reduce the

cost of the structure, diminish the demand for our raw materials and

make wood more competitive with building materials made of steel and

aluminum.

Maximum deflections and stresses are the criteria for the

selection of wall components. Deflections and stresses of a beam

decrease with an increase in the coefficient of end fixity. Therefore,

a partial end fixity may provide an additional factor in making wood-

stud walls more economical.

In his Master of Science thesis, Glenn Schroeder obtained

empirical values for the coefficient of end fixity in a few selected

types of wood-stud walls (25). Because the end fixity changes with a

change in properties of the wall components and connections, it is

desirable to have a theoretical model and method to evaluate the

partial end fixity for any size and property of wall components and

connections. Once the theoretical model, method, and computer

program are developed and verified, it is less expensive to

8
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theoretically analyze the end fixity than to conduct a series of tests on

full-size wall panels. The main aim of this study is to develop such

a method.

The specific objectives of this study are:

1. To develop a theoretical method and computer program that

will predict the coefficient of the end fixity in wood-stud

walls due to the sheathing being connected to the wall

supports,

Z. To verify the method and computer program, and

3. To apply the method to investigate possible ways of

improving the partial end fixity in wood-stud walls.

To meet these objectives, a finite element method based on

plane stress elements was applied. The method was verified by

analyzing a solid beam with a known theoretical coefficient of the end

fixity and by analyzing some of the experimental wood-stud wall panels.

Several material properties of experimental wall panels were varied

to investigate possible ways of improving the partial end fixity.



II. METHOD OF ANALYSIS

The finite element method was used to evaluate the end fixity

of wood-stud walls. The method is ideal for structures with complex

boundary conditions and material properties. The results of the

analysis, the displacements and stresses within the structure, were

used to calculate the coefficient of end fixity which was then applied

in the calculation of the midspan deflection of a semi-fixed beam-

column. The finite element analysis and the calculation of the coeffi-

cient of end fixity and midspan deflection of the beam-column wall

panels were done by a computer program.

2.1. Finite Element Method

The finite element method involves separating the continuum of

a structure into geometric subdivisions called finite elements. Each

element has a discrete number of nodal points. The elements are

assumed to be connected only at the nodal points. The nodal displace-

ments are the basic parameters of the finite element analysis and the

external loads are applied at the nodal points. The relationship

between the nodal displacements and the applied forces is defined by a

stiffness matrix derived from the material and geometric properties

of the wall components and connections. A stiffness matrix is deter-

mined for each element. All the element stiffness matrices are

10
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combined to obtain a system stiffness matrix for the entire structure.

The effect of the boundary conditions of allowable displacements is

included in the system stiffness matrix. External loads and nodal

displacements are related by conventional matrix equation (7).

[K]{d} = {Q} 2. 1)

where

[K] - system stiffness matrix

{d} - system nodal displacement vector

and {Q} - system external load vector

Equation (2.1) is solved for the unknown displacement vector.

With the nodal displacements known, the element stresses are

determined by

T1
12

Cr
1

{ge} = 0-2
= [13]{d } (2. 2)

where

[13] - element stress-displacement matrix

{0-} - element stress vector

'0-l
0-2 - normal stresses

T12 - shear stress

1,2 - local coordinates denoting the direction of stresses

and {de} - element nodal displacement vector



2.2. The Finite Elements and Their Stiffness Matrices

Three types of plane stress elements were used to subdivide the

stud wall-wall support structure into a finite element model. The

mathematical expressions for the stiffness and stress-displacement

matrices of these elements are discussed in this section.

The main element is Cook's modified assumed stress hybrid

rectangular element (4). The element yields exact displacements and

stresses under pure bending. The stresses within the element are

given by an assumed field which satisfies the differential equations of

equilibrium. The element, shown in Figure 2.1 with its local

coordinate system and differential element, has its nodal points i,

j, k and oriented counter-clockwise. The size and location of

finite elements are defined in terms of the global Cartesian coordi-

nates x and y. The nodal displacements are u and v in

directions of the x and y axis, respectively. The stress in a

direction perpendicular to the x-y plane is assumed to be zero in a

plane stress element.

Cook (4) defines the element stiffness matrix as

[kei = [
]T[}1].".1[T] (2.3)

where the non-zero elements of the five by eight matrix [11,

expressed in terms of the nodal coordinates, are:

12
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Figure 2.1. Rectangular plane stress element.
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and

T11 = T52 -
1

T = T
13 5

T = T = - = -T57 = (xi -xk )/2
34 53 38

T36 = T55 = -T32 = -T51 = (xj -x1 )/2

)T21

= (y.(y.+y.)-y (y .) /6

T23 = (yk (yk +yj )-yi (yi +yj
))/6

T2 = (Y)2 (Yi +yk) -yi(n+yk)) /6

T27 (y.(y +y )-i

= -

17 = -T58 (yk -yi
)/2

T =42

(Yk+Y1))/6

(x (x +x.)-.(x ,+x.))/6
1 1 j

T44 = (x.(x.+x.)-xk (xkj+x))/6

T46 = (x.(x.+x )-xi (x +xk ))/633k f

(x +x )-x (x +x ))/6

5
(y.-y )/2

3

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

The five by five matrix [I-I] is defined as

[H] = t[P]T[C][P]dxdy (2.16)

where integration is performed over the entire element area. In

Equation (2.16), the symbols are defined as follows:



where

1'E2 - modulus of elasticity in direction indicated by

subs cript

v12, v21 - Poisson's ratio relating the strain in the direction of

the second subscript due to the stress in the direction

of the first subscript

G12 - shear modulus in the 1-2 plane

and t - thickness of the element

Finally,

[c] =

0 0 1/G

15

(2.18)

Equations (2.3) through (2.18) are valid for any quadrilateral.

Since only rectangles were used in this study, the matrix [H] was

simplified and inverted resulting in the matrix [F]. Further simpli-

fication was made by assuming the identity

was true. The non-zeros terms of the five by five matrix [F] for a

1/E1

-v21/E2

-v12
/E

1

1/E2

0

0 (2.17)

[P]

1v21 = Ev12 2.19)



rectangular element shown in Figure 2.1 are

and

F11 -
(E 1E2-(E 2v 12)2)abt

F21 = F12 = 2abt

12E1F =
22 3ab t

2 2

4E1E2-3E1(E2v 12)

-6E1

F31 = F13 - 2
( E

2 -(E2v12) )abt

2
4E1E2-3E2(E2v 12)

F33 - 2

(E1 E2 -(E2 v12 ))abt

-6E2
F =F =

34 43 a2bt

12E2F44=
3a bt

F =
12

55 abt

1 2(E1v21)

16

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

The matrix multiplication of [F] and [T] to obtain the

element stiffness matrix is done by the computer. The stress vector

of the differential element is computed by Equation (2.2) where the

stress-displacement matrix is



and

[SD] - strain-displacement matrix

[SS] - stress-strain matrix

A - area of triangle

Sr 2

vi

[SD]TISS][SD]tA

where

Figure 2.2. Triangular plane stress element.
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[B] = [P][FIri (2.28)

The stress variation within the element in one direction is linear with

respect to the perpendicular direction.

A triangular element was added to increase the possible ways of

subdividing the structure. The plane stress triangular element is

based on a linear displacement function and an anisotropic stress-

strain matrix (36, pp. 48-56, 447-450). The element, shown in

Figure 2.2, has its nodal points j, and k oriented counter-

clockwise and a 1-2 local coordinate system. The element stiffness

matrix is defined by

(2.29)



The strain-displacement matrix of triangular element is

[SS] =
1

-v v )
12 21

The area of triangle is given by

A = (a.b - a b.)/2jkk j

E v
1 21

Ev212 0

1-v v
12 21)G12

18

(2. 35)

(2. 36)

defined in terms of the nodal coordinates x and y as

b.- b
k

0 b 0 -b.

1
0 a-a.

k
-a 0 a. (2. 30)[SD] =

2A

where

a-aj_k bj -b -ak b
k

-b

a. x. - x. (2. 31)

ak
=

xk
- x (2. 32)

and

b. = - Yi (2. 33)

- Y. (2. 34)

The stress-strain matrix is

E2
0



The stress-displacement matrix for Equation (2.2) is

[B] = [ss][sD] (2.37)

The stresses are considered constant throughout the element.

The third type of finite element used in this study, the two-

dimensional spring element (20), was introduced to represent the

connections between the wall and floor components, such as the

sheathing and sole plate. The element and local coordinate system

1-2 are shown in Figure 2.3. The element has two nodal point

and j that have the same x and y coordinates, i.e., the length

and height of the spring are zero. The location of the two nodal points

and springs coincide and can belong to two or more elements. The

spring constants in the 1 and 2-directions, denoted as ki and kz,

respectively, define the four by four element stiffness matrix as

.0~

For a nail, the spring constants are given by the withdrawal and

lateral connector moduli.

Equation (2.2) is used to compute the nodal forces of the element.

The force-displacement matrix [B] is equivalent to the element

19

k
1

0

-k1

0

0

Ic2

0

-k2

-k
1

0

k1

-k2

0

k2

(2.38)



0 in.

0 in.

2

Figure 2.3. Two-dimensional spring element.

2.3. Coefficient of End Fixity

The computation of the end fixity coefficient by Equation (1.1)

requires the determination of the moment and corresponding angular

rotation at the wall support. To calculate the moment, a series of

spring elements is inserted at the cross-section where the end fixity

20

stiffness matrix.

The rectangular, triangular, and spring elements are well

suited to describe the various material, geometry, and boundary

conditions that influence the end fixity of stud wall panels. The finite

element analysis gives the element stresses or forces and nodal dis-

placements which are used to compute the coefficient of end fixity.



is being determined, as shown in Figure 2.4. A very large spring

constant is assigned to the spring element which is part of a continu-

ous member, such as continuum within the wall components or where

the spring is in compression, such as on the boundary between wall

components that are compressed together. A very small spring con-

stant is used at locations where there is no connection between

structural components that are free to separate and the spring is in

tension. The connector modulus defines the spring representing a

nailed or glued connection that is in tension or shear. The moment

caused by the spring forces Fn is

M = F hn n
n=1

where

hn - distance from the spring n to axis A (Figure 2.4)

and i - number of springs in the cross-section

A
Figure 2.4. Springs for calculation of end moment.

21

(2.39)



d.-d.
0 = Tan 0

Y.-Y.
1 3

where

d.,dj - displacements in the x-direction of nodal points

i and j of Figure 2.5

and y., y. - y-coordinates of nodal points i and j
1 j

Finally, the coefficient of end fixity is computed by substituting

Equation (2.39) and (2.40) into Equation (1.1).

22

If the forces in the springs represent only a bending moment

couple, the moment can be computed with the axis A having any

arbitrary coordinate. However, if the springs are all in compres-

sion, the axis A must correspond to the neutral axis of the

structural member to calculate the moment. The springs are in

compression if a compressive axial load acts on the beam-column in

addition to the bending load.

The angular rotation of the cross-section at the wall support,

shown in Figure 2.5, is assumed to be equal to the slope of the elastic

curve. For elastic deformation, the angular rotation can be deter-

mined from the relative linear displacement of the top and bottom

nodal points at the cross-section. Since the angle is very small, the

angular rotation can be approximated by

(2.40)



Figure 2. 5. Elastic deformation of the cross-section at the stud
support.

Z. 4. Midspan Deflection of Beam-Column

To compare deflections computed on the basis of the theoretical

'coefficient of end fixity with the corresponding experimental values,

the midspan deflections of a beam-column are needed. The beam-

column model of the experimental wall panel is shown in Figure 2.6.

Because of the symmetry with respect to the mid span, rotation

and restraining moment M are the same at both supports.

Figure 2. 6. Beam-column with partial end fixities and eccentric
axial load.

23



kL
u = 2

2
k =

P
El

and El - flexural rigidity of beam-column

The angle of rotation at the supports is (28)

ML ML
= 0 - 4)(u) - 6EI 4)(u)

o 3E1

where

- angle of rotation at supports of beam-column with

hinged ends

24

Using the differential equations given by Timoshenko (28, pp.

1 - 19 ) , the midspan deflection of the beam-column can be shown to be

M ,
y = k 1-sec( u) ) -e( 1 -sec(u)) +tan(u)-u) (2.41)

where

-sec(u)) - deflection due to restraining moment and axial

load P

e(1-sec(u)) - deflection due to moment caused by the

eccentricity of the axial load

2Pk(tan(u)-u) - deflection due to lateral load Q and axial load P

(2.42)

(2.43)

(2.44)



the angles of rotation, equal

3 1 1
4)(u) = ( -

2u 2u tan(2u)

3 1
((u) - u sin(2u) 2u

and

The end rotation can be expressed in terms of Equation 1.1 as

The angle of rotation
Oo

is

PeL tan(u) QL2
2E1 u

+ 16E1 (u)
eo

Equating Equations (2.47) and (2.44) and solving for M gives

M =
1

a + 3EI 4i(u) + 1:1)(u)
6E1

25

ML - rotation at the support of the hinged beam-column because
3E1

of support fixity moment M externally applied to the same

support

ML
and - rotation at support caused by moment M applied to the

6E1

opposite support

Expressions tli(u) and (I)(u), defining the influence of axial load on

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)



where

and

rotation due to moment (Pe)

rotation due to lateral load Q
16EI

tan(u)k(u), - influence of axial load P

2(1-cos(u))
7

ll''COS(U)

26

The mid span deflection of the beam-column with partial end fixity is

computed by Equations (2.41), (2.48) and (2.49). Values for 4)(u),

4)(u) and k(u) are tabulated in reference 28.

2.5. The Computer Program

Using Equations (2.3) through (2.50) and an existing finite

element program, a special FORTRAN IV computer program was

prepared for this study. Subroutines were added to Zienkiewicz (36,

pp. 435-471) computer program to generate the element stiffness and

stress-displacement matrices, to compute the coefficient of end

fixity and to compute the midspan deflection of the beam-column.

The computer program is listed in Appendix A.

The computer program was designed for the Oregon State

University Control Data Corporation 3300 computer system which has

a usable memory capacity of 32,000 words. In its present form,the

(2.50)

PeL
2EI

QL2
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computer program has sufficient storage for 100 nodal points, 200

elements, 25 nodal boundary conditions and 25 different materials.

The maximum half-band width of the stiffness matrix is set at 55.

About 60 seconds of computer time is required for the example given

in Appendices B and C. Additional information on the computer program

is given in the commentary within the program and in reference 36.

The first step in the use of the computer program is to create a

finite element model of the wall panel consisting of the rectangular,

triangular and spring elements. The material and geometric proper-

ties of the wall panel components are assigned to the corresponding

elements. The nodal points and the elements are numbered for

identification purposes. The nodes are defined in terms of the system

x-y coordinates. The boundary conditions are inserted by limiting

the allowable nodal displacements. The external loads are applied at

the appropriate nodal points.

The data on the finite element model is listed in an input file as

in Appendix B. The input file in Appendix B is for the problem in

Section 3.2. The nodal points and elements for computing the coeffi-

cient of end fixity are also listed. The axial load, the eccentricity of

the axial load, the midspan lateral load, the length and the factor

of the beam-column are required if the midspan deflection is to be

computed. The computer analysis results in the printed output given

in Appendix C.



III. VERIFICATION

The verification of the method and computer program consisted

of comparing the finite element solutions to known theoretical and

experimental solutions. Preliminary verification involved the

analysis of solid beams with known theoretical deflections and coeffi-

cients of end fixity. Glenn Schroeder's (25) experimental results

were used in the final verification.

3.1. Comparisons with Known Theoretical Solutions

A rectangular element based on a linear displacement function

(17) was initially used in this study. A simply supported beam with a

height of 4.25 in., width of 1.5 in., and a span of 96 in. was evaluated

using this initial element. The beam had a modulus of elasticity of

1,990 ksi and a midspan load of 300 lbs. Because of symmetry with

respect to midspan, only half of the beam was analyzed. The number

of elements was varied from 8 to 48. The deviation between the

finite element and classical beam solution for mid span deflection and

moment varied from 58 percent to 14 percent with the deviation

decreasing with an increase in the number of elements. The substitu-

tion of Cook's (4) assumed stress hybrid rectangular element did not

improve the results. The accuracy of the results could have been

improved by increasing the number of elements, but this number was
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limited by the memory capacity of the computer.

A semi-fixed beam-column was analyzed to investigate the

ability to predict the coefficient of end fixity. The finite element

model of half of the beam is shown in Figure 3.1. The partial end

fixity was produced by two translational springs at the beam end.

The spring constants were 100 kips per in. The beam-column had a

modulus of elasticity of 1,990 ksi and a thickness of 1.5 in. The

beam-column had an eccentric axial load P and a mid span lateral

load Q.

15.25 in.

4

Figure 3. 1. Finite element model of a solid semi-fixed beam-
column.

A theoretical value for the coefficient of end fixity was

determined by equating the work of the two translational springs with

the work done by an assumed angular spring. The total work of the
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two translational springs because of the deformation due to the

external loads equals

W = 2( -FLY )
2

where

F - force in the spring due to external loads

and y - translational displacement of the spring

An equivalent angular spring is assumed to replace the set of

translational springs at each support. The work of an angular spring

because of the deformation due to the external loads equals

where

M - moment or force in spring due to external load

and 0 - angular displacement of the spring

The force in a translational spring can be written as

F = ksy
(3.3)

where ks - translational spring constant

and the force in an angular spring can be written as

M = a0 (3.4)

MO
W =

2
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Inserting Equation (3.3) into Equation (3.1) and Equation (3.4)

into Equation (3.2), equating the resulting Equations (3. 1) and (3. 2)

and simplifying give s

2ksy2a=
2

(3.5)
0

The moment caused by the translational springs equals

M = Fh (3.6)

or

M = ksyh
(3.7)

where h - distance between the springs

Because the moment in the assumed angular spring is equal to the

moment produced by the translational springs, Equation (3.7) is

equated to Equation (3. 4) to obtain

a (3.8)
ksh

Substituting Equation (3. 8) into Equation 3.5) and simplifying gives

2k h
a =

2
(3. 9)

Substituting the properties of the partially fixed beam-column into
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Equation (3,9) results in a coefficient of end fixity of 903 kips-in. per

radian.

The finite element analysis was performed for the element

distribution shown in Figure 3.1. The loads and the results are given

in Table 3.1. The moment was calculated from Equation (2.39) and the

nodal forces in the spring elements. The displacements of the top and

bottom nodal points at the end of the beam-column and Equation (2.40)

were used to compute the angular rotation. The results indicate that

the method will give reasonable accurate values for the coefficient of

end fixity, even though the element distribution is too coarse to give

accurate values for moment and deflection.

Table 3.1. Coefficient of support fixity for partially fixed solid
beam-column.

Coefficient of Support Fixity
Finite Element

Equation (3.9) Analysis Difference
- - (kips) - - - - - (kips-in. per radian) - - (percentage)

3.2. Comparison with Experimental Wall Panels

The final verification consisted of the finite element analysis of

experimental wall panels tested by Glenn Schroeder (25). Three wall

panels, identified as wall types no. 1, 2 and 3, with different exterior

.442 .15 903 903 0

0 .15 903 876 3



covering were analyzed and the results compared with the corres-

ponding test results.

3.2.1. Panel Construction and Testing

The test specimens consisted of a wall panel with a 16 in. by

16 in. square floor section at each end as illustrated in Figure 3.2.

The floor and wall sections were constructed according to specifica-

tions of the Federal Housing Administration of the Department of

Housing and Urban Development (29). Wall panels were 16 in. wide

and 95.5 in. long. Each wall panel consisted of a clear Douglas-fir

nominal two in. by four in. stud, an interior covering of 3/8-in.

gypsum board, an exterior covering with three possible choices of

sheathing, and a two in. by four in. sole plate at both ends. The

exterior sheathing for wall types 1, 2, and 3 were 3/8-in. CD exterior

plywood, 5/8-in. CD exterior plywood and 1/2-in, structural

particleboard, respectively. The exterior covering was fastened to

the stud with 6d box nails spaced 12 in. on center and to the sole

plate with three 8d box nails spaced eight in. on center. The gypsum

board was fastened to the stud and sole plate with 3d box nails spaced

eight in. on center. Two 16d box nails were driven through the sole

plate and into the end of the stud.

The wall panels were initially tested without the floor sections

as simply supported beams. Each panel was loaded with the axial
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plate

(b) Section a-a (c) Section b-b

Figure 3.2. Experimental wall panel.
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load P of 442 lbs which was kept constant while a lateral load Q

was gradually applied at the midspan until it reached 300 lbs. The

headspeed was 0.34 in. per minute. The same sequence was then

repeated for a 1002 lbs axial load. During the load application, curves

relating the lateral load and midspan deflection were recorded on an

x-y recorder.

After the free-end test the floor sections were attached to both

ends of the wall panel. The floor section consisted of two joists

spaced 16 in. on center, a header nailed to each of the joists with two

16d box nails, a two in. by four in. sill plate toe-nailed to each of the

joists with a 10d box nail, a 3/8-in. particleboard underlayment and a

1/2-in, plywood subfloor. Joists and headers were made of No. 2 and

Better grade Douglas-fir lumber of nominal size two in. by eight in.

The floor sections were attached to the wall panels by fastening the

sole plate to the subfloor with two 16d box nails spaced 16 in. on

center and the exterior sheathing to the sill plate with three 8d box

nails spaced eight in. on center.

The experimental wall panels were mounted in a test apparatus

that restricted the rotation of the floor joists during testing. The

testing procedure was the same as in the free-end tests of wall panels

alone.



3.2.2. Evaluation of Load-Deflection Curves

Because Schroeder's experimental results were expressed in a

form not suitable for comparison with the theoretical results of this

study, his raw experimental data was re-evaluated. The mid span

deflections of the wall panel at a lateral load of 300 lbs were scaled

from the experimental load-deflection curves. The initial deflection,

because of eccentrically applied axial load only, was not recorded by

the x-y recorder. To overcome this lack of information, the

eccentricity of the axial load was assumed to be zero. The experi-

mental free-end midspan deflection vfree and fixed-end midspan
'

deflection yfixed were processed by Schroeder's computer program

(25) for no eccentricity to obtain the values of the factor u, defined

by Equation (2.42), and the experimental coefficients of end fixity.

The results are given in Table 3.2.

3.2.3. Finite Element Model

The first step in a theoretical analysis of end fixity, consisting

of a formulation of a finite element model for the wall panel,

encountered two major difficulties. The difficulties were the limited

capacity of the Oregon State University Control Data Corporation 3300

computer system and the determination of the location of the neutral

axis for the wall panel under compression and bending loads. The
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Table 3.2. Experimental wall panel results.

Wall
Type (lbs) Replication Yfree

(in.)
Yfixed

(in.)
u a

(kips -in. /radian)

442 .435 .387 .279 33
2 .385 .381 .263 4
3 .410 .433 .271 -22

1 1002 1 .387 .382 .390 5

2 .360 .368 .377 -10
3 .402 .438 .398 -38

2 442 1 .384 .372 .263 12
2 .388 .332 .264 47
3 .428 .371 .277 40

1002 1 .363 .356 .379 8
2 .359 .321 .377 39
3 .381 .380 .388 1

3 442 1 .364 .431 .256 -101
2 .449 .438 .284 8
3 .357 .411 .254 -80

3 1002 1 .339 .432 .367 -191
2 .371 .444 .383 -108
3 .332 .425 .363 -202
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number of nodal points was limited by the computer memory capacity.

If the axial load was large in comparison to bending loads, the exact

location of the neutral axis could not be determined, because only

compressive stresses acted in the cross-section at which the end

fixity was evaluated.

The effect of axial load on the end fixity is questionable.

Schroeder 's experimental results suggest a decrease in the end

fixity with an increase in the axial load. However, the results of

Table 3.1 indicate that the axial load has little or no influence on the

end fixity. Because of this indication and uncertainty in the location

of the neutral axis that would have induced an unknown error, the axial

load was not included in the finite element analysis. The wall panels

were analyzed for a lateral load at the midspan only, which did not

require the location of the neutral axis.

Because the experimental wall panels were approximately

symmetrical with respect to midspan, only half of the wall panel was

included in the model to reduce the size of the elements. Since the

end fixity depends on the properties of components and connectors at

supports only, the span of the panel had no effect on the end fixity and

less than half of the panel needed to be analyzed. The panel was kept

long enough to have the effect of shear on the mid span deflection

limited to about five percent of the total deflection. Because the

influence of the axial load on deflections was related to the panel span,



39

the reduction of the span was another reason for excluding the axial

load from the model.

The finite element subdivision of the wall panel is shown in

Figure 3.3. Pairs of nodal points were required where the wall com-

ponents were not rigidly connected. To reduce the size of the finite

element system and the number of nodal points, the header, sill

plate, joist and subfloor were assumed to be rigidly connected to each

other. Because the underlayment as the second layer of the floor

covering had no or little effect on the end fixity, it was eliminated

from the model. The sole plate was considered to be part of the

beam-column and not a part of the supporting system. Therefore,

the springs used in calculating the coefficient of end fixity were

inserted between the subfloor and the sole plate and in the exterior

sheathing. The top and bottom nodal points, connecting the sole plate

and subfloor, were used to compute the angular rotation for the

evaluation of the coefficient of end fixity.

3.2.4. Properties of Wall Panel Components

Most of the material properties of the beam components were

obtained from the literature (16, 25,30,31,32-35). A special test was

conducted to determine the connector modulus for the 16d nail in

withdrawal. The properties of the finite elements shown in Figure

3.3 and the corresponding wall components and connectors are
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listed in Tables 3.3 and 3.4.

Table 3.3. Material properties of wall components.

Stud 1990 150 54 .990 141 1 5

Joist 150 1990 54 .990 141 3

Plates and Header 150 150 61 .834 14 16

Subfloor 161 742 44 .985 54 16

Gypsum Board 112 27 17 .938 45 16
3 /8-in Plywood 1209 161 47 .989 81 16
5/8-in. Plywood 1092 161 46 .988 74 16

1/2-in. Particleboard 369 32 50 .938 44 16

Table 3.4. Spring constants.

Connection

Subfloor -Sole Plate 16d 2 3.6 16.8
Stud-Sole Plate 16d 1 1.5 8.4
Stud-Gypsum Board 3d 1 2.6 99,999
Stud-3/8-in. Plywood 6d 1 5.2 99,999
Plates -3 /8-in. Plywood 8d 3 16.2 99,999
Stud-5/8-in. Plywood 6d 1 6.3 99,999
Plates -5 /8-in. Plywood 8d 3 20.1 99,999
Stud-1/2-in. Particleboard 6d 1 5.7 99,999
Plates -1/2-in. Particleboard 8d 3 16.5 99,999
Sole Plate-Gypsum Board 3d 3 7.7 99,999

Number
kl k2Nail of

Size Nails (kips /in.) (kips /i

Schroeder's thesis (25) and the Wood Handbook (30) provided the

properties of the solid wood components. The mean modulus of

elasticity in the longitudinal direction denoted as E in
1
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and

3

E4 = (ELt1+ E 2-t2))/t3
2 1 2

3 3 3 3
E8 = (E t1+ EL(t2-t1))/t2
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Table 3.3, of Schroeder's 45 studs was 1,990 ksi with a standard

deviation of 84 ksi. The EL
of the studs used in the wall panels of

types 1, 2 and 3 range from 1,890 ksi to 2, 170 ksi. This difference

in EL has little if any affect on end fixity. The mean moisture

content of the studs was 7.3 percent The Wood Handbook ratios (30,

p. 79) were used to obtain the modulus of elasticity in the radial-

tangential direction E2, shear modulus G, and Poisson's ratios

v12
and

v21. The values for E2 were obtained by averaging the

modulus of elasticity in the radial R and tangential T directions.

The elastic properties for headers, joists and the plates were

assumed to be the same as those for the studs.

The plywood properties were derived from the experimental

investigation of stud walls by White et al. (31). For C-D 3/8-in.

sheathing plywood (PS1.66, 24/0), this investigation gives the value

of 1,727 ksi for E8' the modulus of elasticity in the eight foot

direction of the plywood sheet, and 107 ksi for E4, the modulus of

elasticity in the four foot direction. The equations for modulus of

elasticity in bending of three ply plywood, in terms of the moduli of

elasticity of the plys, are (8)

(3. 10)

(3.11)



where

EL ELR 0

ply

1-vLRvRL [ELvRL
0

ER

0 (1-v vLR RL LR

0

R

N - internal forces per unit length

h - thickness of cross-section

EL, ER - normal strains

"YLR - shear strain

and other symbols are defined earlier in the text. Total force vector,

acting on the cross-section of the 3/8-in, plywood, is obtained by

(3.12)
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where

2f1 - thickness of the inner ply

and 2t2 - total thickness of the plywood

Solving Equation (3.10) and Equation (3.11) for EL and ET,

using the experimental E8 and E4, gives 1792 ksi for EL and

42 ksi for ET.

The elastic properties of the 3/8-in, plywood sheathing acting

as a membrane were obtained from the conventional expression relat-

ing membrane forces and strains for the cross-section of a ply. This

expression, given in a matrix form by Dong et al. (6), is
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summing forces acting on individual plies, which results in summing

the corresponding moduli of elasticity for individual plies. The sums

of the moduli of elasticity are the desired moduli for the plywood

cross-section. If all the plies are of equal thickness, the values for

3/8-in, plywood sheathing are

and

2E +EL T
-El 3

2ELvRL+ETvRT
V21 - 2EL+ET

2v +vLR TR
v -

12 3

2G +GLR TR
G12 - 3

(3. 13)

(3. 14)

(3.15)

(3. 16)

(3.17)

The values for V, v GVTR, vLR' RT' LR' GTR and ER theand

elastic constants for Douglas-fir, were taken from the Wood Handbook

(30). The elastic properties of the C-D exterior 5/8-in, plywood

sheathing and the 1/2-in, plywood subfloor were obtained by deter-

mining equations similar to Equations (3.13) through (3.17) and

assuming the veneer plies were of the same quality as in the 3/8-in.

plywood.
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The 1/2-in. particleboard exterior wall covering was Humboldt

structural exterior flakeboard. Because no specific values were

available, the elastic properties used in this study were obtained by

averaging McNatt's (16) experimental results for nine commercial

particleboards of various thicknesses and compositions. No data was

available for the modulus of elasticity in the y-direction, i.e.,

perpendicular to the surface. Since the average internal bond

strength or tensile strength in the y-direction was nine percent of the

tensile strength parallel to the surface, the modulus of elasticity

perpendicular to the surface was taken as nine percent of the modulus

of elasticity parallel to the surface. Because no values could be found

for the Poisson's ratios, the theoretical ratio for isotropic materials

of .25 was used.

Experimental results of White et al. (31) were used for the

moduli of elasticity of the 3/8-in, gypsum wall board. Like for the

particleboard, the Poisson's ratios were taken as .25. The shear

modulus was approximated by

which is a well known relationship for homogeneous isotropic

materials.

G - 2(1+v)
(3.18)
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Theoretical-experimental procedure by Wilkinson (32-35) was

used to obtain the lateral connector modulus ka of nail connections.

The modulus ka depends upon the elastic bearing constants of the

connecting components, diameter of the nail and the depth of the nail

penetration. The elastic bearing constants, determined from

Wilkinson (34,35), depend upon the type of material, direction of

loading with respect to the wood grain, type of nail, prebored lead

hole and the specific gravity of the wood. Moduli ka and the

elastic bearing constants for the connecting members 1 and 2, 0

and k02, respectively, of specific connections used in this

investigation are listed in Table 3.5. The nails were smooth shank

box nails driven with no lead holes and the specific gravity of

Douglas-fir was taken as 0.5.

The connector moduli of a nail in withdrawal were not available

in the literature. For the 6d and 8d box nails, the withdrawal con-

nector moduli were taken as 99,999 kips per in. The use of such a

large value was justified since the connections were in compression

or negligible tension. A small number of 16d box nails were tested

in withdrawal to determine a more precise value for the connector

modulus between the sole plate and subfloor which was an influential

factor in the end fixity.

Twelve samples, consisting of a nail driven two in. deep into a

block of Douglas-fir, were tested in an Instron testing machine. The



Table 3.5. Lateral connector moduli.

Component 1 Component 2
Nail
Size

01
(kips /in. ")

02
(kips /in. 3)

ka
(kips /in. )

3/8-in. Plywood Stud 6d 800 1072 5.2

3/8-in. Plywood Plates 8d 800 640 5.4
5/8-in. Plywood Stud 6d 800 1072 6.3

5/8-in. Plywood Plates 8d 800 640 6.7

1/2-in. Particleboard Stud 6d 750 1072 5.7

1/2-in. Particleboard Plates 8d 750 640 5.5

Gypsum Board Stud 3c1 410 1072 2.6

Gypsum Board Sole Plate 3d 410 640 2.5

Sole Plate Stud or Subfloor 16d 640 640 8.4



testing apparatus, shown in Figure 3.4, pulled the nail at a rate of 

.3 cm per minute. The pulling load and extraction slip between the 

nail and wood were drawn on an x-y recorder. The slope of the 

recorder traces is the desired connector modulus. The slope was 

computed from the linear part of the trace which was just before the 

peak load. The re suIts are given in Table 3. 6. 

Figure 3.4. Nail withdrawal testing apparatus. 
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Table 3.6. Connector modulus of 16d box nail in with-
drawal.

3. 2. 5. Computer Analysis

The finite element analysis was performed to obtain a

theoretical coefficient of end fixity for each of the three types of wall

panels. The theoretical midspan deflections of the wall panels were

computed using the beam-column of Section 2.4, the average

experimental values for the factor u and the theoretical coefficient

of end fixity. The beam-columns had a span of 95.5 in., lateral mid-

span load of 300 lbs and a concentric axial load of either 442 lbs or

1002 lbs. In addition, the effective flexural rigidity El was com-

puted from the average factor u. The input file and printed output

for wall type 1 are given in Appendices B and C.
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Sample

Side Grain
Connector Modulus

(kips per in. )

End Grain
Connector Modulus

(kips per in.)

1 1.82 1.72
2 1.72 1.17
3 1.68 1.04
4 1.87 1.23
5 2.02
6 1.76

Average 1.8 1.5



3. 2. 6. Comparison of Results

The experimental and theoretical results are listed in Table

3.7. The experimental results are the average of three test replica-

tions. Three of the six experimental coefficients of end fixity listed in

Table 3.7, are negative. Because the coefficient of end fixity is posi-

tive by definition, these experimental results must be considered

unreliable. The remaining three experimental coefficients are posi-

tive and perhaps more reliable.

The percentage differences between the experimental and

theoretical coefficient of end fixity are substantial. But the actual

differences are reasonable since the coefficient of end fixity can range

from zero to infinity. This wide variation is illustrated in the experi-

mental results for each wall panel which are given in Table 3.2. It is

best illustrated in the coefficients for wall type 2 and P equal to

1002 lbs which are 1, 8 and 39 kips-in. per radian. The average of

these experimental results gives the best agreement with the theoreti-

cal coefficient of 19 kips-in. per radian.

The percentage difference is reduced by converting the results

to their respective midspan deflections. The percentage difference

between the experimental and theoretical midspan deflections are

within the 10 percent usually considered reasonable.
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No comparison made because of unreliable experimental results.

Table 3.7. Theoretical and experimental results for wall panels.

Units Wall Panel 1 Wall Panel 2 Wall Panel 3

P kips .442 1.002 .442 1.002 .442 1.002

Experimental v'free in. .410 .383 .400 .368 .390 .347

u .271 .388 .268 .381 .265 .371

El kips-in.2 13,700 15,200 14,000 15,700 14,400 16,600

Experimental a kips-in. per radian 5 -14 33 16 -58 -167

Theoretical a kips-in. per radian 18 18 19 19 18 18

Difference percentage 260 * -42 19 * *

Experimental v in. .400 .396 .358 .352 .427 .434'fixed
Theoretical v in. .390 .365 .381 .352 .373 .334'fixed
Difference percentage -2.5 * 6.4 0 * *



IV. DISCUSSION

Topics included in this discussion are the limitations and

applications of the finite element method used in this investigation and

the behavior of the semi-fixed supports of the wood-stud walls.

Theoretical and experimental results of investigated wall panels are

examined in detail. A parameter study is included to demonstrate the

method application.

4.1. Method Limitations

The finite element method with plane stress elements used in

this study is able to predict the coefficient of end fixity with sufficient

accuracy, but there are some limits on how the method should be

used. The material properties are assumed to be elastic and constant

even though nailed connections and some wall components display

inelastic behavior. The number of nodal points, having a pronounced

effect on the precision of results, is limited by the memory capacity

of the computer being utilized. Finally, compromises have to be

made in describing a three-dimensional structure by two-dimensional

finite element model.

For most materials, it is reasonable to assume the elastic

material properties are similar for tension and compression. The

major exception is the behavior of the spring elements connecting
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components that are not rigidly connected. When the components are

being compressed together as a result of the load application, the

spring constant or the connector modulus should be infinity. However,

the spring constant should be equal to zero or the connector modulus

when the components are being pulled apart. Because the method

allows only one value of the spring constant for each spring element

the finite element analysis has to be repeated several times before the

desired conditions in the springs are met. The resulting trial and

error procedure is used until all the spring elements, describing the

contacts among components, have the proper spring constants. Some

materials, such as particleboard, have a different modulus of elastic-

ity for compression and tension. A trial and error procedure similar

to that for connections or the average of the two moduli can be used in

these cases, depending upon how much the two values differ. For

loads resulting in stresses above the elastic limit, a more advanced

finite element computer program should be developed to account for

the non-linearity of the material properties such as the repeated

analysis of the structure by a linear step by step analysis. In this

study, the coefficient of end fixity and the material properties were

assumed to be independent of the lateral load.

The size of the system stiffness matrix, limited by the memory

capacity of the computer, depends on the total number of nodal dis-

placements. The maximum number of nodal displacements can be
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increased by using a finite element computer program that forms and

solves a part of the system stiffness matrix at a time. However the

computer program utilized in this study does not have this capacity.

A larger number of nodal points than that used in this study would

require a larger computer memory capacity than that of the CDC

3300.

Material and geometry variations in the wall panel in the

direction perpendicular to the x-y plane are not accounted for and the

actual three-dimensional wall panel can not truly be represented by a

two-dimensional model. The stress in the wall coverings of the stud

wall panel vary from a minimum at the midpoint between two studs to

a maximum above the stud. For an I-beam, the actual flange width

with a non-uniform stress distribution across the flanges can be

represented by an effective width which, if uniformly stressed, would

contribute the same amount to the flexural resistance of the beam as

the actual flange (1). Several construction features, such as the

effect of nail position across the span are not accounted for in the

finite element analysis. Two nails connecting the sole plate to the

subfloor eight in. from the stud are considered to be located at the

stud. Similarly, the nails connecting the wall coverings to the plates,

located eight in. away from the stud, are also assumed to be at the

stud.
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Testing of the experimental wall panels according to the

procedures employed by Schroeder suggests that the third dimension

can be significant. In the testings, the axial load was applied at the

sill plate with an eccentricity. The two joists are eight in. on each

side of the stud which is in the center of the wall panel. Because of

this separation, more stress was transferred through the header and

sheathing than if both the joists and the stud were in the center of the

panel. This disproportional stress transfer resulted in an effective

eccentricity on the stud that was different than the applied eccentricity.

4.2. Behavior of the Support

The influence of the axial load and the exterior sheathing on end

fixity are discussed in this section. The axial load probably does not

affect the end fixity substantially. Schroeder's free-end tests illus-

trate that an increase in the axial load causes a minor increase in the

flexural rigidity of the experimental wall panels. Statistical analysis

of Schroeder 's experimental data resulted in a conclusion that for the

plywood coverings an increase in axial loading caused a decrease in

the coefficient of end fixity (25). However, the scatter and the large

number of negative coefficients of end fixity raises questions about

the complete validity of his testing procedures and results. The wall

panel model, shown in Figure 3.4, was analyzed with the axial load and

the resulting coefficient of end fixity was substantially higher than the
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values for no axial load. The results of the finite element analysis of

the solid wood beam, shown in Table 3.1, suggest a higher end fixity

coefficient for a beam with an axial load than for the same beam with

no axial load. The acceptable agreement between the results, given in

Table 3.7, of the wall panel finite element model analyzed without the

axial load and the experimental wall panels tested with the axial load

suggests that the axial load does not significantly influence the end

fixity. Because neither Schroeder's nor this study gives convincing

evidence on the effect of the axial load, there is a need to further

investigate the effect of the axial load on end fixity.

Schroeder (25) concluded on the basis of the statistical analysis

of the experimental results that the 5/8-in. plywood, 3/8-in, plywood,

and 1/2-in. particleboard coverings resulted in the highest, inter-

mediates, and lowest coefficient of end fixity, respectively. The

corresponding finite element analysis showed that the difference in

exterior sheathing properties does not significantly affect the end

fixity (Table 3.7). The stress results from the finite element analysis

of the wall panel indicated that the exterior sheathing was subjected

to bending instead of the expected tension that would occur if the

sheathing was contributing to the end fixity of the wall panel. This

suggests that the end fixity occurred because of the connections

between the sole plate and subfloor rather than any attachment of the

sheathing to the wall support.



4.3. Parameter Study

The number, location, and the size of connectors can be easily

implemented into the construction specifications and techniques.

Therefore, the connectors may be the key to achieve an end fixity that

is worth considering in the wall design. To find out the degree that

the nails influence the coefficient of end fixity, a parameter study was

performed. The results are given in Table 4.1. The materials were

those associated with the wall panel having 3/8-in. sheathing (panel

type 1), as listed in Tables 3.3 and 3.4.

Table 4.1. The influence of connection moduli on end fixity.
a

k k
l 2 (kips -in. /)

Modification Connection (kips /in.) (kips /in.) radian

1 Sheathing - Sill Plate 32.4 99,000 18

2 Stud - Sole Plate 3.0 16.8 26
3 Subfloor - Sole Plate 7.2 33.6 21

Sheathing - Sill Plate 0 0
4 20

Subfloor - Sole Plate 5.4 25.2
5 Sheathing - Header 32.4 99,999 181

Standard 18

The first four modifications displayed little effect on the

coefficient of end fixity. Modification 1 consisted of doubling the

connector modulus
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k of the nails between the sheathing and the sill
1

plate. Modification 2 was to double the connector moduli, k1
and

k2' of the nails between the stud and sole plate. Modification 3 was
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obtained by doubling the connector moduli of the nails between the

sole plate and subfloor. In modification 4, the connector moduli of

the nails connecting the subfloor to the sole plate were increased by

50 percent and the nails between the sheathing and sill plate were

eliminated. Results for modifications 2, 3, and 4 in Table 4.1 sug-

gest that an improvement in the connection of the subfloor or stud to

the sole plate only slightly improves the end fixity.

To obtain a larger increase in end fixity, two additional sets of

three 8d nails, connecting the sheathing to the header, were added at

coordinates (5,5.5) and (7,5.5) (Figure 3.4) as modification 5.

The finite element analysis showed that the additional nails

improved the end fixity from 18 kips-in. per radian for the original

experimental panel to 181 kips-in. per radian for the modified panel.

In the original panel the sheathing was predominately subject to

bending stress. Additional nails put the sheathing in tension which

increased the coefficient of end fixity.

4.4. Application of Method

The primary application of the method consists of parameter

studies, aimed at identifying possible ways of improving the end

fixity. Two questions will have to be answered before the end fixity

can be included in the structural design of wood-stud walls. The first

question deals with the end fixity required to justify its inclusion in
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the design procedure. The second question is associated with the

variability in the end fixity of actual wood-stud walls. The results

of this and Schroeder's study suggest that glue or additional nails

between the sheathing and the components of the wall support will

provide coefficient of end fixity of magnitudes worth including into the

design procedure. Schroeder's results indicate that the variability of

the end fixity coefficient, because of non-uniformity in the properties

of wall components, is considerable.

The experimental and theoretical end fixity coefficients given in

Table 3.7 may be slightly higher than the values for an actual wood-

stud wall. The wall panels tested and analyzed had the sheathing

attached to the plates with three nails along the 16 in. width of the test

panels. However, if the nails in the actual wall are spaced eight in.

on center, the net number of nails per 16 in. of wall is two.

The application of the method will require additional information

on material properties of the components and connections. For the

finite element method, the properties of the sheathing need to be

defined in terms of the perpendicular axes of the plane of the cross -

section. In the literature, most property values for the sheathing

were in terms of the perpendicular axes of the plane of the face.

Toe-nailing the stud to the sole plate, not included in this investigation,

may have an effect on the end fixity. To consider the toe-nailing,

proper connector moduli would have to be determined.
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The method developed in this study provides an efficient tool to

investigate the behavior of the stud wall-wall support and the possible

modification of the wall construction to improve the end fixity.

Additional experimental work is needed to define the accuracy of the

theoretical method more precisely and develop the necessary material

properties.



V. CONCLUSIONS

The conclusions of this study are:

Using the method and computer program, the coefficient of

end fixity of a stud wall can probably be computed with

sufficient accuracy.

A thorough theoretical-experimental investigation of the end

fixity in stud walls is recommended to define the accuracy of

the method more precisely.

The coefficient of end fixity is 18 kips-in. per radian, which

results in a very small reduction of wall deflections, for the

wood-stud wall with the plywood or particleboard sheathing

nailed to the sill plate with 8d box nails spaced eight in. on

center.

The end fixity of wood-stud wall can be increased by

improving the connection between the exterior covering and

the floor system and the connection between the sole plate and

subfloor. .

The method has applications in future investigations of how to

improve the end fixity and justify the inclusion of the partial

end fixity in stud wall design.
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APPENDIX A: COMPUTER PROGRAM

PLANE STRESS FINITE ELEMENT PROGRAM
FOR END FIXITY IN STUD WALL PANELS

TAKEN FROM THE FINITE ELEMENT METHOD IN EN GIN EERING
SCI EN CE ( 1971) BY I FNKERWI CZ WITH MOD! FI CAT! ON S.
SUBROUTINES WERE ADDED FOR ADDITIONAL ELEMENTS,
END FIXITY, AND MI D.- SPAN DEFLECTION OF BEAM COLUMN

PROGRAM MAIN
COMMON /DATA/TI TLE( 12) ,NP,N EsNB,NMATA SZ F, Ll,NER, X, Y.,N ET,N EBR
COMMON CORD( 100, 2) I TS( 12) ,N OP( 200) 4), MAT( 200), ORT( 25) 6

1) 'NBC( 26),NFIX( 25),R1 (200) ,SK(200, 55)

C READ INPUT GEOMETRY AND PROP.

CALL GDATA
NSZ F=NP*2
REWIND 11

C READ LOAD

CALL LOAD

C FORM, THEN SOLVE SIMULTANEOUS EQUATIONS

CALL FORMIC
CALL SOLVE

CALCULATE FORCES AND STRESSES"

CALL STRESS

C CALCULATE END FIXITY
C I F NF.NE. 1

NF=FFIN( 5)
F(NF. EQ 1) GO TO 200

CALL FIXITY
200 CONTINUE

STOP
END

SUBROUTINE G DATA
COMMON /DATA/ TI TLE( 12) ,NP,N E,NR,NMAT,NSZ F, L AN ER,X, Y,N ET,N ERR
COMMON CORD( 100, 2), LN I TS( 12 ) OP ( 200, 4), IMAT( 200) , °RT( 25, 6

1) ,NBC( 25),N FI X( 25), R1 ( 200), SK( 200,55)



C READ TITLE AND CONTROL

READ( 5, 7) TI TLE
READ( 5/ 1 MIPANEAT EF3R,NER,N ET,N BANAT, I 1,X,Y

C NP= NUMBER OF NODAL. POINTS
C ELEMENTS 1 TO NEBR ARE BEN DING RECTANGLES.
C ELEMENTS N EBR+ 1 TO N ER ARE TENSIONCOMPRESSION RECTANGLES.
C ELEMENTS NER+1 TO NET ARE TRIANGLES.
C ELEMEN TSN ET+ 1 TO NE ARE SPRINGS.,
C NB= NUMBER OF BOLNDARY POINTS.
C NMAT= NUMBER OF DIFFERENT MATERIALS.
C 11= 0 IF PRINT INPUT DATA.
C Xs Y = LOCAL COORDINATES OF STRESS RESULTS FOR

RECTANGULAR ELEMENTS.TS

READ( 5, 7 ) UN I TS

C READ MATERIAL DATA

C MATERIAL PROPERTIES ARE E( 1 ), E( 2) E( 1 )*P( 2, 1),
C 1,2)*P(2,1), Gs AND

OR K(1), K(2)

READ( 5/8) (N, ( OEIT(N I ) , I =1 6) /1.= 1,NMAT)

C READ NODAL POINT DATA

READ( 54 2)CN, CORDCNiM),M0 Is 2)L=1,NP)

C READ ELEMENT DATA

READ( 513) (No (NORN,M)..Mid I a 10, IMAM )..L=1,NE)

C READ BOUNDARY CONDITIONS

01 = FIXED IN YD/R. ONLY
10 = FIXED IN DI R. ONLY
11 = FIXED IN BOTH X&Y DI R

READ(5, 4) (NBC( I ),NFIX( / ), I= /..NB)
IF( I 1.1\1E. 0)G0 TO 500

C PRINT INPUT DATA

N EBR1=N EBR+ 1
N ET1=NET+ 1
N ER1=N ER+ 1
WRI TE( 6. 100) TI TLE
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C ZERO LOAD ARRAY

DO 160 ,I=1,NSZE
160 R1 ( J)=0.

WRITE( 6 100)TZTLE
WRI TE( 6, 101) UN I TS
WRI TE( 6,109)

C READ -.PRINT AND STORE LOAD CARD

165 CONTINUE
READ(5,9)N0,(R(K),K=1,2)
WRITE( 6,9 )NQ,(R(K),K=1,2)
DO 170 K=1,2
IC=(N0-1)*2+K

170 R1(10=R(K)+111(10)

C IF NODE NUMBER NOT MAX. NODE PT. GO BACK AND READ MORE

I F(NQLT.NP)G0 TO 165
9 FORD'IAT( 110)3E10. II)

100 FORMAT( '1 12A6//)
101 FORMAT( //12A6//)
109 FORMAT( '0 'LOADS' /5X, 'NODE' ,8X, ',8X, 'Y )

RETURN
END

SUBROUTINE FORMK

C FORMS STIFFNESS MATRIX IN UPPER TRIANGULAR FORM

COMMON /DATA/TI TLE( 12) ,NP,N E,NB,NMATANSZ F, L 1 ,NER, X, st,N ET,NEBR
COMMON CORD( 100, 2) , UN I TS( 12) 'NOP( 200,14), IMAT( 200) ORT( 25, 6

1)*NBC(25),NFIX( 25), R1( 200), SK( 200, 55)
2.0 ESTI FM( 12,12)

C SET BAN DMAX AND NO. OF EQUAT I ON c

C NBAND=(D+1)F WHERE NBAND= HALFPANDWIDTH
NUMBER OF DEGREE OF FREEDOM AT
EACH NODE.

D= MAX. LARGEST DIFFERENCE OF NODAL NUMBERS
OCCURING FOR ALL ELEMENTS.

N BAN D=55

C ZERO STIFFNESS MATRIX
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DO 300 N=1,NSZF
DO 300 M=1,NBAND

300 SK(N,M)=0.

C SCAN ELEMENTS

DO 400 N=1,NE
I F(N LE.NEBR) CALL STI FT5(N )
I F(N GTNEI3R.AND.N.LE,'N ER) CALI. STI FT2(N)
I F(N GT.NER AND.N LE.N ET) CALL STI FT3(N )
I F(N. GT.NET) CALL STI FT4(N)
N CN=3
I F(NLE.NER)NCN=4
I F(N. GT.N ET)NCN=2

C RETURNS ESTIFM AS STIFFNESS MATRIX, STORE ESTIFM IN SK
FIRST ROWS

DO 350 JJ=1,NCN
NROWB= (NOP(N, JJ) -1 )*2
DO 350 J=1,2
NROWB=NROWB+1
I =7( JJ-1)*2+J

THEN COLUMNS

DO 330 KEC=1,Nal
NCOLB= (NOP(N,KK)-1 )*2
DO 320 K=1,2
L=(KK-1)*2+K
NCOL=NCOLB+K+ I -NROW13

C SKIP STORING IF BELOW BAND

I F(N COL ) 320. 320,310
310 SK(NROWBANCOL)=SK(NROWB,NCOL) +ESTI FM( 1L)
320 CCNTINUE
330 CONTINUE
350 CONTINUE
400 CONTINUE

C INSERT BOINDARY CONDI TI ONS

DO 500 N=1,NE)
IX=10
I =NBC(N )

NROWB=( I- 1)*2

C EXAMINE EACH DEGREE OF FREEDOM
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DO 490 M=1)2
N ROWB=N ROWB+ 1
I CON=NFIX(N) /14X
I F( I Co:1)450,450a 420

420 SK(NROWBs 1)=1
DO 430 J=2)NDAND
SK(NROWB J)=0.

1111=1\I ROWF3+ 1 J
I F(NR) 430) 430) 425

425 SK(NR, J)=0.
430 CONTINUE

NFIX(N )=NFIX(N)...NX*I CON
450 NX=NX/10
490 CONTINUE
500 CONTINUE

RETURN
END

SUBROUTINE STI FT2(N)
C

C TENS' O('J...COMPRESSI ON RECTANGULAR ELEMENTS
C ELEMENT TAPCD,1 FROM COMPUTERIZED AN ALYSI S OF NONISOTROPIC
C STRUCTURES BY P. T. MI KHELSON IN PROCEEDING OF THE
C SYMPOSIUM ON APPLICATION OF FINITE ELEMENT METHODS
C IN CIVIL ENGINEERING) NOV. 13...14, 1969.
C

COMMON /DATA/TI TLE( 12) )NPA EAB,MMAT)NSZ L 1 AT ER) X,Y,NET,NEBR
COMMON CORD( 100,2)) UN I TS( 12 ) ,NOP( 200)4)) IMAT( 200)) ORT( 25) 6

,NBC( 25),N FIX < 25), RI ( 200)) SK( 200) 55)
ESTI FM( 12)12)

C DETERMINE ELEMENT CONNECTIONS

LIST NODES CLOCKWISE

I=NOP(N)1)
J=NOP(N)2)
K=NOP(N)3)
M=NOP(N)4)
LmIMAT(N)

C SET UP LOCAL COORDINATE SYSTEM

AJ=ABS( CORN I so 1 ) ...CORD(K) 1) )
BJ=ABS( CORD( I s 2) -.CORD(K) 2) )

C FORM ELEMENT STIFFNESS MATRIX

A=BJ*ORT( Lio 1 ) /( 3. *AJ)
B= ORT( Ls 3) /4.
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C=AJ*ORT(L,B)/(3.*BJ)
D=AJ/(3.*BJ)
E=BJ/(3.*AJ)
COM1=ORT(L,6)/ORT(L,4)
CO42=ORT(L,6)*ORT(L,5)
ESTIFM(1,1)=COM1*A+COM2*D
ESTIFMC1,2)=COM1*B+COM2/4.
ESTIFMC1,3)=COMI*A/2.+COM2*C-1.)*D
ESTI FilIC 4)=COM1*C- 1. )*B+COM2/4.
ESTIFM(1,5)=COM1*A/C-2.)+COM2*D/(-.2.)
ESTIFM(1,6)=COM1*(*10)*B+COM2/(-.4.).
ESTIFM(1,7)=COM1*(-1.)*A+C0Z12*D/2.
ESTIFM(2,2)=COM1*C+COM2*E
ESTIFMC2,3)=COM1*B+COM2/C-4.)
ESTIF4(2,4)=CO41*C*(-1.)+COM2*E/2.
ESTIFMC2,7)=COM1*C-1.)*B+COM2/4.
ESTIFM(2,6)=COM1*C/(.-2.)+COM2*E/(-.2.)
ESTIFMC2,8)=COM1*C/2.+COM2*E*C-1.)
ESTIFMC4,6)=COM1*C/2.+COM2*C-1.)*E
ESTIFMC4,8)=COM1*C/C-2.)+COM2*E/C-2.)
ESTIFN(5,8)=COM1*B*(-1.)+COM2/4.
ESTIF1C6,8)=COMI*C*(-1.)+COM2*E/2.
ESTIFM(7,8)=ESTIFM(3,4)=ESTIFM(2,5)=ESTIFM(1,6)
ESTIFM(7,7)=ESTIFM(5,5)=ESTIFM(3,3)=ESTIFM(1,1)
ESTIFMC6,7)=ESTIFM(4,5)=ESTIFM(V.8)=ESTIFMC2,3)
ESTIF4(5,7)=ESTIFM(1,3)
ESTIFMCS,6)=ESTIFM(4,7)=ESTIFM(3,8)=ESTIFMC1,2)
ESTIFM(3,7)=ESTIFMC1,5)
ESTIFM(3,6)=ESTIFM(2,7)
ESTIFM(3,5)=ESTIFMC1,7)
ESTIFMCS,8)=ESTIFM(6,6)=ESTIFM(4,4)=ESTIFM(2,2)
DO 10 L=1,8
DO 10 M=L,6

10 ESTIFM(M,L)=ESTIFM(L,M)
RETURN
END

SUBROUTINE STIFT4(N)

TWO-DIMENSIONAL SPRING ELEMENT TAKEN FROM
FINITE ELEMENT ANALYSIS OF METAL DECK SHEAR
DIAPHRAGMS BY NILSON AND AMMAR IN JOUR. OF STRUCT.
DIV., ASCE, APRIL 1974.

COMMON/DATA/T/TLE(12),NP,NE,NB,NMAT,NSZFAL1,NER,X,Y,NET,NEBR
COMMON CORD(100,2),UNITS(12),NOP(200,4),IMAT(200),ORT(25,6
1),NBCC25),NFIX(25),R1C200),SK(200,55)
3,ESTIFMC12,18)

C FORM SPRING ELEMENTS STIFFNESS MATRIX



DO 10 I=1,4
DO 10 J=1,4

10 ESTIFM(I,J)=0.0
L=IMAT(N)
ESTIFM(1/1)=ESTIFM(3,3)=ORT(L/1)
ESTIFM(2.2)=ESTIFM(4,4)=ORT(LA2)
ESTIFM(1,3)=ESTIFM(3,1)=(-1.)*ORT(L,1)
ESTIFM(2,4)=ESTIFM(4,2)=(.-1.)*ORT(L,2)
WRITE(11,100)N,C(ESTIFM(I,J),J=1,4),1=1,4)

100 FORMAT(I4,(4E15.4))
RETURN
DID

SUBROUTINE STIFT3(N)

TRIANGULAR ELEMENTS PLANE STRESS

COMMON/DATA/TITLE(12),NP,NEAB,NMAT,NSZF,L1,NER,X,Y,NETJNEBR
COMMON CORD(100,2),UNITS(12)JNOP(200,4),IMAT(200),0RT(25,6)

1iNBC(25),NFIX(25),R1(200),SK(200,55)
2,ESTIFM(12,12),A(306),13(3,9)

DETERMINE ELEMENTS CONNECTIONS

I=NOP(N,1)
J=NOP(Nr2)
K=NOP(No3)
L=IMAT(N)

NUMBER THE NODES COUNTER-CLOCKWISE

SET UP LOCAL COORDINATE SYSTEM

AJ=CORD(Jo1)-CORD(IP1)
A1{=CORD(Ks1)-CORD(I/1)
BJ=CORD(.1,2)-CORD(I..2)
BK=CORD(Ks2).CORD(I.02)
AREA=(AJ*B1{-.AK*BJ)/2.
IF(AREA.LE.0.)G0 TO 220

FORM STRAIN DISE'. MATRIX

A(1,1)=A(3,2)=BJ-BK
A( 1.2)=A( 1,4)=A( 1,6)=A( 211)=0.
A(2s3)=A(2,5)=0.
A(1..3)=A(3,4)=BK
A(1,5)=A(3,6)=."BJ
A(2,2)=A(3,1)=AKAJ
A(2,4)=A(3,3)=^AK
A(2,6)=A(3,5)=AJ
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05

100

FORM STRESS STRAIN MATRIX

COMM=1/C ORT(L, 41) *AREA)
ESTI FM( 1, 1 ) ORTC L, 1 )*COMM
ESTI FM(11 2) = ESTI FM( 2, 1) = ORT(L, 3)*COMM
ESTI FIN( 2, 2) = ORT(L, 2)*COMM
ESTI FM( 3, 3) = ORT( L, 5) /AREA
ESTI FN( 1, 3) = ESTI FMC 2, 3) =ESTI FM( 3, 1)= ESTI Fv1( 3, 2)=0.

C B IS THE STRESS BACK SUBSTI TUTI 01 MATRIX AND IS SAVED 01 TAPE

DO 205 1=1,3
DO 205 J=1.6
BC I ,J)=0.
DO 205 =1,3
B(I,J)=B(I,J)+ES
WRI TE( 11,100)1 , (
FORMAT( 1 4, (41E1 5.

T1 1,K) /2.*A(K,J)
(13(1,§J),J=1, 6),I=1,3)
4) )

220 WRITE( 6,101)N
101 FORMAT( ' IZERO OR NEGATIVE AREA ELEMENT NO. ',I 4/ "EXECUTI ON',

1' TERMINATED' )
STOP
END

SUBROUTINE STI FT5(N)
c-
c BENDING RECTANGULAR ELEMENT TAKEN FROM IMPROVED

TWO-.DIMEN SI ONAL FINITE ELEMENT BY R. D. COOK IN
JOUR. OF STRUCT DIV. J SEPT. 1974.

COMMON /DATA/TI TLE( 12) ,NP,NE,NB,NMAT,NSZF,L1,NER,X,Y,N ET,NEI3R
COMMON CORD( 100, 2), UN TSC 12),NOP( 200,4), IMAT( 200), OAT( 25, 6)

1..NPC( 25),N FIX( 25), Rl( 200), SK( 200, 55), ESTI FM( 12,12)
2,T( 5,8),P( 3, 5),H( 5, 5),A(5, 5)/13(3, 5),C( 3,8).

C BENDING RECTANGULAR ELEMENTS STIFFNESS MATRIX

73

ESTI Pi IS ST/ FFNESS MATRIX

DO 210 *j,6
DO 210 Jot/ 6
ESTI ,J)=0.
DO 210 (=1,3

210 ESTI FIC ,J)= ESTI EMU ',DOI( Ks ) /2*A(K,J) ORT( , 6)
RETURN

ERROR EXI T FOR BAD CONNECTIONS



74

DETERMINE ELEMENTS CONNECTIONS (NODES NUMBERED COUNTER-CLOCKWISE).-
POSITIONS OF NODES:

I =NOP(N, 1)
J=N OP(N, 2)
K=NOP(N, 3)
L=NOP(N, 4)
M=IMATCN)

C FORM ( T) MATRIX

DO 101 IA=1,8
DO 101 I B=1,5

101 TCIB,IA)=040
IC 5,2) =T( 1, I ) =( CORD( J.. 2)-CORD(L, 2) ) /20 )
T( 5,4) =T( 1,3) = C ( CORD(K, 2)-CORD( 1,2) ) /2. )

IC 5,5)=T( 1,5)=(-1. )*T(1,1)
T( 5,8 )=T( 1,7)=( .1. )*T( 1,3)
G=CORD(J, 2) +CORD( I , 2)
D=CORD(L, 2)+CORD( 1,2)
E=CORD(K, 2) +CORD( J, 2)
F=CORD(L, 2)+CORDC Ka 2)
IC 2,I)=C ( CORD(J, 2)*G-CORD( LP 2)*D) /6. )
TC 2,3)=C ( CORD(}(, 2)*E-.CORD( I, 2)*G) /6. )
T( 2,5)=C C CORD(L, 2)*F-CORD( J02)*E) )

T( 2,7)=C C CORD( I, 2)*D+CORD(L, 2)*F)/5.)
TC 5, I )=TC 3,2)=C ( CORM, 1 ) -CORD( J.. 1) ) /2. )

T( 5,3)=T( 3,4)=( ( CORD( I s I )...CORD(K, 1) ) /2. )

IC 5,5)=TC 3,6)=(-1. )*T( 3,2)
IC 5,7)=T( 3,8) C -I. )*T( 3,4)
G=CORD(L, 1 )+CORD( I, 1)
D=CORD( J, 1 ) +CORD( Is 1)
E=CORD( Ja I ) +CORD( K, 1)
F=CORDCK, I )+CORD(L, 1)
T( 4,2)=C C CORD( La I )*G^-CORD( Jr 1)4,D) )

T( 4,4)=C C CORD( I , 1 )*D-.CORDCK, 1)*E) /6* )

T( 4,6) =( (CORD( ds I )*E-CORD(L, 1 )*F) /6. )
T( 4,3)=C(CORD( Ks I )4,F--CORD( I 1)*G) /6. )

FORM (F) MATRIX

DO 100 IA=1,3
DO 100 1R1,5



100 P(IAAI1)=0.0
P(1,1)=P(2,3)=P(3,5)=1.
P(2,4)=((CORD(J,1)CORD(I,1)) X)+CORD(I,1)
P(1,2)=((CORD(Ko2)CORD(J,2)) Y)+CORD(J,2)

C FORM (H)INVERSE MATRIX

AB=ABS(CORD(K,1)-.CORD(I,1))
BA=ABS(CORD(K,2)CORD(I,2))
DO 102 IA=1,5
DO 102 IB=1,5

102 H(IA,IB)=0.0
CA=AB**5
CB=BA**8
COMM=144./(CORT(M,1)*ORT(M,2)--(ORT(M,3)**2))*(BA*
1*6)*CAB**6)*ORT(M,6))
H(1,1)=COMM*(((ORT(M,1)**2)*ORT(M,2)*(CB)*CA/36.)-.
1(ORT(M,1)*(ORT(M,3)**2)*CA*C8/48.))
H(2,1)=H(1,2)=COMM*MORT(M,1)*(ORT(M,3)**2)*CA*CBA**4))
2(ORT(M,1)**2)*ORT(M,2)*CA*(BA**4))/24.)
H(3,1)=H(1,3)=CO4M*(ORT(M,1)*ORT(M,2)*ORT(M,3)*CA*C11/144.)
H(2,2)=COMM*MORT(M,1)**2)*ORT(M,2)*CA*(BA**3))-..ORT(M,1)*
1(ORT(M,3)**2)*CA*(BA**3))/12.
1-1(3,3)=COMM*(CORTCM,1)*CORT(M,2)**2)*CA*CB/36.)
1(ORT(M,2)*(ORT(M,3)**2)*(CA)*CB)/43.)
11(4,3)=H(3,4)=((ORT(M,2)*(ORT(M,3)**2)*(AB**4)*CBORT(Mol)*
I(ORT(M,2)**2)*(AB**4)*CB)/24.)*COMM
H(4,4)=CO14M*(ORT(M,1)*(ORT(M,2)**2)*CB*(AB**0).
1ORT(M,2)*(ORT(M,3)**2)*(AB**3)*CD)/12.
11(5,5)=COMM*(ORT(14,5)/144.)*(ORT(14,1)*0111(14,2)*CA*CS
1CORT01,0)**2)*CA*C13)

C FORM ELEMEN1T STIFFNESS MATRIX

DO 103 NA=1,8
DO 103 NC=1,5
A(NA,NC)=0.0
DO 103 JA=1,5

103 A(NA,NC)=T(JA,NA).*H(jA,NC)+A(NA,NC)
DO 104 NA=1,8
DO 104 NC=1,8
ESTIFM(NA,NC)=0.0
DO 104 JA=1,5

104 ESTIFM(NA,NC)=A(NA,JA)*T(JA,NC)+ESTIFM(NA,NC)

C. FORM STRESSDISPLACEMENT MATRIX AND SAVE ON FILE 11

DO 106 NA=1,3
DO 106 NC=1,5
B(NA,NC)=0.0



DO 105 JA=1...5
105 B(NA,NC)=P(NA,JA)*H(JA,NC)+B(NA.NC)
106 B(NA,NC)=B(NA,NC)/ORT(M,6)

DO 107 NA=1.3
Da 107 NC=1.8
C(NA,NC)=0.0
DO 107 JA=1,5

107 C(NA,NC)=B(NA,JA)*T(JAAC)+CCNA.NC)
WRITE(11.900)N,((C(I,J),J=1.8),I=1.3)

900 FORMAT(I4.(4E15.4))
RETURN
END

SUBROUTINE SOLVE

DIRECT SOLUTION By THE GAUSS ELIMINATION PROCEDURE
AND BAND MATRIX TECHNIQUE.

COMMON/DATA/TITLE(12).NPANEABAMATASZF.L1,NER.X,Y,NETAEBR
COMMON CORD(100,2),UNITS(12),NOP(200,4),IMAT(200),ORT(25.6)

1.N13C(25),NFIX(25),R1(200).SKC200,55)
NBAND=55

C REDUCE MATRIX

DO 300 N=1.NSZF
I=N
DO 290 L=2,NBAND
1=1+1
IF(SK(N,L))240,290.240

240 C=SK(N,L)/SK(N.1)
J=0
DO 270 K=LABAND
j=j+1
IF(SK(N,K))260,270,250

260 SK(I,J)=SK(I,J).-C*SK(N,K)
270 CONTINUE

SK(N,L)=C

C AND LOAD VECTOR FOR EACH EQUATION

111(I)=R1(I).-C*R1(N)
290 CONTINUE
300 R1(N)=R1(N)/SK(N..1)

C BACK-SUBSTITUTION

N=NSZF
350 N=N-1

IF(N)500.500,360



360 L=N
DO 400 K=2,NBAND
L=L+1
IFCSKCN,K))370,400,370

370 R1CN)=R1(N)SK(N,K)*R1(L)
400 CONTINUE

GO TO 350
500 RETURN

END

SUBROUTINE STRESS
DIMENSION DI SC 2,100), FORCE( 200, 3)
COMMON /DATA/TI TLE( 12) ,NP,N E.,NB,NMAToNSZ F,L1,NER, X,Y,NET,NERR
COMMON CORD( 100,2), WI TS( 12) ,NOP( 200,4), IMATC 200), CRT( 25,6

1) 'NBC( 25),N FI X( 25), R1 ( 200), SK( 200,55)
2, BC 4,8) RC 8)
EQUI VALENCE( DI SC 1 ), R1( 1)), C SKC 1), FORCEC 1))

PRINT DISPLACEMENTS

WRI TE( 6,100)
WRITE( 6,110)CM, ( DISCJ,M),J=1,2),M=1,NP)

100 FORMAT( ///, 15X, DISPLACEMENTS ' //5X, 'NODE', 10X, 'X '15X,15X, 'Y')
110 FORMAT( 110,2E15.4)

C CALCULATE RECTANGULAR ELEMENTS STRESSES

REWIND 11
DO 200 NC=1,NER
IF(NC.LE.NEBR)GO TO 238
N=NC

C STRESSDISPLACEMENT MATRIX

L=IMATCN)
A=ORT(L,1)/ORT(L,4)
BA=ORTCL,3)/ORT(L,4)
C=ORTCL,2)/ORT(L,4)
D=ORT(L,5)
E=ORTCL,3)/ORT(L,4)
I=NOP(N,1)
K=NOPCN,3)
AJ=ABSCCORD(I,1)CORD(K,1))
13J=ARS(CORDCI,2)CORD(K,2))
DC1,1)=((1.Y)/AJ)*A
BC2,1)=B(1,1)*E/A
BC3,1)=C.-1.*C1.X)/BJ)*D
BC1,2)=BC3,1)*BA/D
$(2,2)=BC3,1)*C/D
13(3,2)=BC1,1)*D/A
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BC1,3)=C-1.*(Y/AJ))*A
BC2s3)=B(1,3)*E/A
BC3,3)=(-1.*B(3,1))
BC1s4)=C-1.*BC1s2))
BC2s4)=(-1.*B(2,2))-
BC3,4)=CBC243)*D/E)
BC1s5)=(-1.*B(1,3))
B(2s5)=(-1.*BC2,3))
BC3s5)=(X/BJ)*D
BC Is 6)=F3(3,5)*BA/D
BC 2,6)=B(3s 5)*C/D
BC 3,6)=1 *B( 3,4)
BC1s7)=C-.1.)*BC1.91)
B(2,7)=C-j.)*B(2s1)
'BC3s7)=(-1.)*B(3,5)
BC1,8)=(-1.)*B(1s6)
BC2,8)=(.-j.)*B(2s6)
BC3,8)=(-1.)*B(3s2)
GO TO 239

238 CONTINUE
READC11,40I)N,CCBCI,J),J=1,8),I=1,3)

239 CONTINUE
DO 260 1=1,4
M=NOPCNA)
IFCM.E0.0)G0 TO 260
K=CI-.1)*2
DO 240 J=1,2
IJ=J+K

240 RCIJ)=DIS(J,M)
260 CONTINUE

IA=K+2
DO 300 I=1,3
FORCE(N,I)=0.0
DO 300 J=IsIA

300 FORCECN,I)=FORCE(NsI)+B(I,J)*RCJ)
200 CONTINUE

C CALCULATE TRIANGULAR ELEMENTS STRESSES

NT=NER+1
DO 400 NC=NT,NET
READC11,401)N,CCBCI,J),J=1,6),I=1,3)

401 FORMAT(I4sC4E15.4))
DO 460 1=1,3
M=NOP(NA)
IF(M.E0.0)G0 TO 460
K=CI-.1)*2
DO 440 J=1,2
IJ=J+K

440 RCIJ)=DIS(JsM)
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C CALCULATE PRINCIPAL STRESSES AND DIRECTIONS

460 CONTINUE
I A=K+2
DO 500 I=1,
FORCE(N, I )=0.
DO 500 J=1, IA

500 FORCE(N, I )=FORCE(N, I )+B( I ,J),NR(J)
400 CONTINUE

WRI TE( 6, 10 5)X,Y
WRI TE( 6a 101)

DO 600 N=1,NET
C= ( FORCE(N, 1 ) + FORCE(N, 2) ) /2.
A=SORTC ( ( FORCE(N, 2)*FORCE(N, 1) ) /2* )**2+ FORCE(N, 3)**2)
SMAX=C+A
SMIN=C..41
I F( FORCE(N, 2). EQ SMIN )G0 TO 700
ANG=57.29578*ATANCFORCE(N,3)/(FORCE(N,2)SMIN))
GO TO 210

700 ANG=904,
210 CONTINUE

C WRITE ALL STRESS COMPONENTSTS

CALCULATE FORCES ON SPRINGS

NNE=NET+1
I F(N E. GT.NET)WRI TE( 6, 103)
DO 201 NC=NNE,N E
READ( 11,401)N,C(B(I,J),J=1,4),I 1,43
DO 261 1=14 2
M=NOP(No I)
I F( M. EQ. 0) GO TO 261

)*2
DO 241 J=1,2
I J=J+K

241 R(IJ)=DIS(J,M)
261 CONTINUE

I A=K+2
DO 301 1=1,2
FORCE(N, I )0.0

WRI TEC 6,111)N, ( FORCE(N, I), 1=1/ 3), SMAX, SMIN, AN G
600 CONTINUE
105 FORMAT( // ' STRESS VALUES FOR RECTANGULAR ELEMENTS TS ARE '

1 ' AT POINT ( ° F5. 2, ' F5. 2') 1)
101 FORMAT( //6X4 ' ELEMENT°, 6X, 'X STRESS ',9X, STRESS', 8X,

1 'XY-.STRESS ', 7X, 'MAXSTRESS 1, 7X, 'MINSTRESS ', 7X, 'ANGLE')
111 FORMAT(110, 5F17.4, F12. 3)



DO 301 J=1,IA
301 FORCECN,I)=FORCE(N,I)+B(IsJ)*R(J)
103 FORMAT(//10X,'ELFMENT XFORCE Y-.FORCE

WRITEC60104)N,(FORCE(N,I),I=1,2)
201 CONTINUE
104 FORMAT(10X,I4,5X,(2F1003))

RETUPN
END

SUBROUTINE FIXITY

C CALCULATION OF THE PARTIAL END FIXITY IN THE
C STUD WALL PANEL.

REAL NA
COMMON/DATA/TITLEC12),NP,NE,NB,NMAT,NSZF,X,Y,NETsNEBR
COMMON CORDC100,2),UNITS(12),NOPC200,4),IMATC200),ORT(25,6)
1,NBC(25),NFIX(25),R1C200),SK(200,55)
DIMENSION FORCE(200,3),DIS(2,100)
EQUIVALENCE (51C(1),FORCE(I)),(DIS(1),RIC1))

C.
C CALCULATE ROTATION

NU=FFIN(5)
NA= 1.

NL=FFIN(S)
ROT=(DISC1,NU)-.DISC1,NL))/CCORD(NU,2)-CORD(NL,2))

C CALCULATE MOMENT

EMOM=0.0
M=FFIN(5)
DO 100 NC=1,111
W=FFIN(5)
K=IMATCN)
I=NOPCNsI)
J=NOP(N,3)
ND=M/2
IFCCORD(JA2).LE.NA)FORCE(N,1)=(-1.)*FORCE(N,1)
AM=ABSCCCCORD(I,2)NA)+(CORD(J,2)NA))/20)
HT=ABS(CORD(I,2)CORDCJs2))

100 EMOM=FORCE(Ns1)*HT*ORT(K,6)*AM+EMOM
M=FFINC5)
DO 101 NC=1,M
N=FFINC5)

80



I=NOP(N,1)

IFCCORDCI,2)LENA)FORCE(N,1)=FORCE(N,1)*C-'14.)
AM=ABS(CORDCI,2)NA)

101 EMOM=EMOM+FORCE(N,1)*AM

C CALCULATE END FIXITY

SLTBROUTINE DEFLEC( EFI X )

EFIX=ABS( EMOM/ROT)
WRITE( 6,901)

901 FORMAT( ///6X, DETERMINATI ON OF PARTIAL END FI XI TY )WRI TE( 6,900) ROT, &MOM, EFIX
CALL DEFLEC( EFI X)

900 FORMAT( ///1X, ROTATION AT END = 'F15 7 , ' RADIANS
MOMENT AT END = 11) F15. KIPS--INCH'/2//1X, END FIXITY = F15. HIPS-INCH PER RADIAN )RETURN

END

C MI D- SPAN DEFLECTION OF A BEAM-.COLUD'ENT WITH PARTIAL ENDC FIXITY IS CALCULATED. EQUATIONS FROM THEORY OF ELASTICC STABILITY 13? TIMOSHENKO.

REAL KOS, L
N=FFIN( 5)
DO 100 I=1,N
WRI TE( 6,900)1

900 FORMAT( //6X, 'ANALYSIS
1' FIXITY')
READ( 5,903)P, Ea Q.,L,U

903 FORMAT( 6F6. 3)
Ii=U*2. /L.

El =P*L**2/( *U**2)
U2=2*U
TANU2=S/N ( U2) /COSC U2)
TP-NU=SIN(U) /COS(U)
OU=( 3. /U)*C1 /SIN ( U2)-1. /112)
YU= ( /U2)*( /U2-1. /TANU2)
AU=2.*C 1. -COSC U) ) /C U**2*COSCU) )
ANG=P*E*L*TANU/(2e*EI*U)+0*L**2*AU/(16.*EI)
WRI TE( 6,902) EFI X, Pr Es Q,L, Us EI 00, YU, AU, ANG902 FORMAT( //6X, EFIX= Fll 4/6X, 'P.= ' F7. 3, 2X, ECC= F7. 31,2X, Q= ", F6. 3/6X, L= F601, U= FS. ET= F8. 02/6X, OU= F6. 4, YU= ' F6.4, AU= ', F6. 4/



36X.. "ANG=',F8. 4)
TAN=SIN ( U) /COS( U)
A= / /EFIX
B=L/( 3. *Et)
C=B/2.
M=ANG/C A+(B*YU)+( C*OU) )
Y=( (M/P)-E)*((-1.*COS(U))-(TAN*SIN(U))+1 )

s 1+C Q/C 2. *P*10 )*C TAN-In
WRITE( 6,901 )MY

901 FORMAT( //' FIXITY MOMENT = F704.. ' KIPS-INCH
1 // ' DEFLECTION OF WALL PAN EL = F7. INCHES')

100 CONTINUE
RETURN
END



1 26. 1.625
2 26. 2.
3 26.
4 26.
5 26. 5.5
6 26. 5.875
7 22. 1.625
8 22. 2.
9 22. 2.
o 220 3.

11 22. 4.5
12 22. 5.5
13 22. 5.5
14 22. 5.875
15 18. 1.625
16 18.
17 18. 2.
18 18. 3.
19 18. 4.5
20 18. 5.5
21 18. 5.5
22 18. 5.875
23 14. 1.625
24 14. 2.
25 14.
26 14. 3.
27 14. 4.5
28 14. 5.5

APPENDIX B: INPUT FILE

3/8 PLYWOOD-NAILED WALL PANEL
98 80 49 . 49 57 13 19 0 .5 .50

WITS TS FOR INPUT AND OUTPUT ARE KIPS AND INCHES.

83

1 1209. 161. 47. .989 81. 16.
2 1990. 150. 54. .990 141. 1.5
3 112. 270 17. .938 45. 16.
4 150. 1990. 54. .990 141. 3.0
5 150. 150. 610 .834 14. 16.
6 161.

. 7
742. 44., .985 54. 16.

8 2.6 99999.
9 7.7 99999.

10 5.2 99999.
11 16.2 99999.
12 1.5 8.4
13 .00001 .00001
14 99999. 99999.
15 3.6 16.8
16 99999. .00001
17 .00001 99999.
18 99999. 8.4
19



8429 14. 5.5
30 14. 5.875
31 12.5 1.625
32 12.5 2.
33 12.5 2.
34 12.5 3.
35 12.5 4.5
36 12.5 5.5
37 12.5 5.5
38 12.5 5.875
39 10.75 2.
40 10.75 3.
41 10.75 4.5
42 10.75 5.5
43 10.75 2.
44 10.75 3.
45 10.75 4.5
46 10.75 5.5
47 10. 1.625
48 10. 20
49 10. 2.
50 10. 3.
51 10. 4.5
52 10. 5.5
53 10. 5.5
54 10. 5.875
55 9.25 1.625
56 9.25 2.
57 9.25 2.
58 9.25 3.
59 9.25 4.5
60 9.25 5.5
61 9.25 5.5
62 9.25 '5.875
63 9.25 0.
64 9.25 2.
65 9.25 3.
66 9.25 4.5
67 9.25 5.5
68 9.25 5.5
69 9.25 5.875
70 8.75 0.
71 8.75 2.
72 8.75 4.
73 8.75 5.5
747. 0.
757. 2.
767.
77 7. 5.5
78 7. 5.5



65 IS OS BS IC 
99 OG 617 LS OE 

C 99 917 L 17 GS 6U 
US 917 917 IS 2E 
IS S T7 /717 OS La 

G OS f717 C /7 6f7 ga 
I VS BC LC CS Sa 
a aIi 9C SC IV 178 
8 SC VC 017 CU 
8 077 17C CC 6C aa 
C 917 8C IC 17 Ia 
I 9C en 6a LC Oa 
a 9C Ba La SC 61 
a GC LJ ga In 91 
8 in ga sa CC LI 

8C Ii a Ca IC 91 
en azI 68 s 

a 98 oa 61 La 171 
8 La 61 91 ga CT 
8 98 EH LI ga 
C 17a 91 91 Ca TI 

88 171 CT Ta 01 
3 08 81 II 61 6 
8 61 IT OT 91 9 

91 01 6 L I L 
C 91 9 L G T 9 
I 171 9 S CT S 
8 a t s 17 II 17 

II T7 C 01 C 
a01 C 8 6 8 
9 21 L 

SL S '0 96 
5'S 0 L6 
S .0 96 

/iv '096 
176 

0 '006 SL S SL 6 
S SL' T6 
S'S SG 06 
S'S S I 69 

S *1 99 
S'I L9 

*0 S *I 99 
5L2 'S S S9 

S'S S 179 
S'S S C9 

S9 .s 19 
0 08 

SL 9 S L 6L 



32 59 51 52 60 5
33 61 53 54 62 1

34 70 63 64 71 6
35 74 70 71 75 4.
36 75 71 72 76 4
37 76 72 73 77 5
38 78 68 69 79 1

39 80 74 75 81 4
40 81 75 76 82 4
41 82 76 77 83 5
42 84 78 79 85 1

43 86 80 81 87 4
44 87 81 82 88 4
45 88 82 83 89 5
46 91 84 85 92 1

47 93 86 87 94 5
48 94 87 88 95 5
49 97 91 92 98 1

50 95 90 96 5
51 95 88 90 5
52 88 89 90 5
53 66 67 73 6
54 72 66 73 6
55 65 66 72 6
56 71 65 72 6
57 71 64 .65 6
58 91 90 11
59 53 52 11
60 13 12 10
61 17 16 8
62 49 48 9
63 42 46 16
64 41 45 12
65 40 44 12
66 39 43 13
67 57 64 16
68 58 65 16
69 59 66 15
70 60 67 13
71 61 68 14
72 62 69 14
73 84 83 13
74 78 77 13
75 68 67 17
76 61 60 13
77 33 32 17
78 25 24 13
79 21 20 13
80 9 8 17



2

1 10
2 10
3 10
4 10
5 10
6 10

63 01
70 01
74 01
80 01
86 01
94 01
95 01

6
98

60 57

.15

442 0. 95.5 271
1.002 0s .3 95.5 .388

67 68 69 70 71 72



APPENDIX C: COMPUTER OUTPUT

3/8 PLYWOOD-NAILED WALL PANEL

UNITS FOR INPUT AND OUTPUT ARE KIPS AND INCHES.

NUMBER OF NODAL POINTS = 98
TOTAL NUMBER OF ELEMENTS = 80
ELEMENTS 1 TO 49 ARE BENDING RECTANGLES.
ELEMENTS 50 TO 49 ARE T...0 RECTANGLES.
ELEMENTS 50 TO 57 ARE TRIANGLES.
ELEMENTS 58 TO 60 ARE SPRINGS.
NUMBER OF RESTRAINED BOUNDARY NODES
NUMBER OF ELEMENT MATERIAL TYPES =

MATERIAL PROPERTIES

= 13
19

TYPES EX EY EY*PRXY 1...PRXY*PRYX G THICKNESS
1 1209.000 161.000 - 47.000 .989 81.000 16.000
2 1990.000 150.000 54.000 .990 141.000 1.5003 112.000 27.000 17.000 +938 45.000 16.000
4 150.000 1990.000 54.000 '.990 141.000 3.000

150.000 150.000 61.000 +834 14.000 16.000
6 161.000
7 0

742.000
0

44.000
0

.985
0

54+000
.0

16.000
0

8 2.600 99999.000 0 0 0 0
9 7.700 99999.000 0 .0 0 0
10 5.200 99999.000 0 0 0 . 0
11 16.200 99999+000 . 0 0 0 0
12 1.500 8.400 0 0 0 0
13 .000 . .000 0 0 0 , 0
14 99999.000 99999.000 0 0 0 .0
15 3.600 16.800 0 0 0 0
16 99999.000 , .003 0 0 0 0
17 .000, 99999.000 0 0 0 0
18 99999.000 8.400 0 ' 0 0 0
19 0 0 0 0 0 0



NODAL POINTS COORDINATES
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NODE NUMBER X Y
1 26.000 1.625
2 26.000 2.000
3 26.000 3.000
A 26.000 4.500
5 26.000 5.500
6 26.000 5.875
7 22..000 1.625
8 22.000 2.000
9 22.000 2.000

10 22.000 3.000
11 22.000 4.500
12 22.000 5.500
13 22.000 5.500
14 22.000 5.875
15 18.000 1.625
16 18.000 2.000
17 18.000 2.000
18 18.000 3.000
19 18.000. 4.500
20 18.000 5.500
21 18.000 5.500
22 18.000 5.875
23 14.000 1.625
24 14.000 2.000
25 14.000 2.000
26 14.000 3.000.
27 14.000 4.500
28 14.000 5.500
29 14.000 5.500
30 14.000 5.875
31 12.500 1.625
32 12.500 2.000
33 12.500 2.000
34 12.500 3.000
35 12.500 4.500
36 12.500 5.500
37 12.500 5.500
38 12.500 5.875
39 10.750 2.000
40 10.750 3.000
41 10.750 4.500
42 10.750 5.500
43 10.750 2.000
44 10.750 3.000
45 10.750 4.500
46 10.750 5.500
47 10.000 1.625
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48 10.000 2.000
49 10.000 2.000
50 10.000 3.000
51 10.000 4.500
52 10.000 5.500
53 10.000 5.500
54 10.000 5.875
55 9.250 1.625
56 9.250 2.000
57 9.250 2.000
58 9.250 3.000
59 9.250 4.500
60 9.250 5.500
61 9.250 5.500
62 9.250 5.875
63 9.250
64 9.250 2.000
65 9.250 3.000
66 9.250 4.500
67 9.250 5.500
68 9.250 5.500
69 9.250 5.875
70 8.750 0
71 8.750 2.000
72 8.750 4.000
73 8.750 5.500
74 7.000 0
75 7.000 2.000
76 7.000 4.000
77 7. 000 5.500.
78 7.000 5.500
79 7.000 5.875
80 5.000 0
81 5.000 2.000
82 5.000 4.000
83 5.000 5.500

5.000 5.500
85 5.000 5.875
86 1.500 0
87 1.500 2.000
88 1.500 4.000
89 1.500 5.500
90 750 5.500
91 750 5.500

750 5.875
93 0 0
94 0 2.000
95 0 4.000
96 0 5.500
97 0 5.500
98 0 5.875
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5
5
5
6
6
6
6
6

11
11
10
8
9

16
-12
12
13
16
16
15
13
14
14
13
13
17
13
17
13
13
17

BOW DARY CONDI TI ON S

9250 95 90 96 0
51 95 88 90 0
52 88 89 90 0
53 66 67 73 0
54 72 66 73 0
55 65 66 72 0
56 71 65 72 0
57 71 64 65 0
58 91 90 0 0
59 53 52 0 0
60 13 12 0 0
61 17 16 0 0
62 49 48 0 0
63 42 46 0 0
64 41 45 0 0
65 40 44 0 0
66 39 43 0 0
67 57 64 0 0
68 58 65 0 0
69 59 66 0 0
70 60 67 0 0
71 61 68 0 0
72 62 69 0 0
73 84 83 0 0
74 78 77 0 0
75 68 67 0 0
76 61 60 0 0
77 33 32 0 0
78 25 24 0 0
79 21 20 0 0
80 9 8 0 0

NODE

01 = FIXED IN Y- DI R. ONLY
-10 FIXED IN X- DI ONLY
11 FIXED IN BOTH DIRECTIONS

CONDITION
1 10
2 10
3 10
4 10
5 10
6 10

63 1

70 1

74 1

80 1

86 1

94 1

95



3/8 PLYWOOD-NAILED WALL PAN EL

WITS TS FOR INPUT AND OUTPUT ARE .}CI PS AND INCHES.

LOADS
NODE

6 0 -0.1500
98 0 0

DISPLACEMENTS

NODE X Y
1 0 70.1316
2 0 -0.1356
3 0 -0.1300
4 0 -.0.1349

' 6 0 -0.133
7 -0.0004 -0.1317
8 .0003 0.1275
9 .0.0004 -0.1275

10 .0002 ..0.1334
11 .0.0002 ...0.1282
12 .0002 -.0.1322
13 .0000 ..0.1322
14 .....0.0000 '.0.1309
15 0003 0.1272
16 ...0.0003 -.0.1317
17 .0001 ..0.1317
18 ..0.0002 0.1253

,19 0001 -0.1310
20 ...0.0001 0.1266
21 - -0.0072 -.0.0546
22 .0071 -.0.0560
23 0158 .0.2980
24 0.0147 -0.2931
25 -0.0006 -.0.1225
26 0004 .-0.1295
27 .0.0004 0.1233
28 0004 .-0.1281
29 .43.0034 .0558
30 .0033 .0573
31 ..0.0597 ..0.1240
32 .0553 0.1291
33 0005 -.0.1291
34 70.0006 -.0.1219



9435 .0004 *45.1233
36 -.0.0004 -.0.1233
37 .0014 .0649
38 .0.0014 .0634
39 -.0.0014 ...0.1203
40 .0010 -0.1280
41 ...0.0009 -0.1212
42 .0009 -0.1264
43 ...0.0263 -061048
44 -.0.0219 -.0.1284
45 -0.0092 ..0.1029
46 .0009 -.0.1299
47 .0531 -0.0866
48 -0.0492 ...0.0810
49 ..0.0492 .0.0810
50 -0.0023 -0.0569
51 ...0.0260 -.0.0830
52 .0166 -0.0554
53 .0166 -0.0554
54 -.0.0162 -0.0538
55 .0524 -0.2842
56 -0.0486 -0.2899
57 -0.0241 0.0112
58 -.0.0234 .47.0360
59 -.0.0082 -0.0092
60 .0001 ...0.0375
61 .04,0436 .0.0002
62 0426 0.0019
63 .0.0233 0
64 ...0.0241 .0.0001
65 ...0.0234 -.0.0002
66 -0.0223 -0.0002
67 ...0.0217 -.0.0002
68 -0.0436 -.0.0002
69 .0426 -0.0018
70 ...0.0232 0
71 -0.0241 .0001
72 ...0.0227 .0001
73 -0.0217 .0001
74 -0.0235 0
75 -0.0231 -0.0001
76 -0.0233 -.0.0001
77 -.0.0212 -0.0001
78 .0098 .1988
79 -0.0096 .2006
80 -.0.0232 0
81 -0.0232 .0001
82 -.0.0232 .0001
83 -0.0214 .0001
84 .0237 .0240
85 ...0.0232 .0221
86 -0.0231 0
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87 -.0.0233 -.0.0002
88 -0.0230 -.0.0001

. 89 ...0.0217 ..0.0001
90 0.0217 -0.0001
91 -.0.0217 -0.0001
92 0212 .0016
93 -.0.0232 0.0001
94 ..0.0233 0
95 0.0230 0
96 -.0.0217 .0000
97 .-0.0189 .0815
98 .0185 .0807



45
47
48
41
53
515'
03
54
55
56 =
57

..1.0032
.1010

0.00000.3011
.0029

..3.0055
.0147

0.0301
-608320.0244
.00090.0927

"0.0013
.0000
.0007
.01180.0000

-0.6599 -

-0.0314
.0003

..0.60810.17010.6292

.0000
"1).0030

.GCM
-3.0030

.0059

.0119

.0059

.0003

.0007

.0022

.0049

.0036

0000
.0030
.0007

0147
.0083
.01610.0001
.0832

"0.0244
.00100.0926

MIN-STRESS0.00000.0069
0.02960.84850.0045

.0036
0.00440.47910.0006

.00000.00630.01040.3G97
..0.00390.0000
".0.00030.03610.1886

.0001

.0000
0.0021

.01930.13856.00550.0043
0.0136

0.0047
.0000
.0028

*0.0041.0005
'.0.0389
-0.0032

0.0054
3.0203

.0.0056
.0000
.0005

.0.0001
*0.0000

-0. 00130.0000
.".0.0000

.0000
.-0.0170
.0.0015

.0003
0.8081
.0.1702

0.6292

ANCLE

*88.011
76.101

14.0E4
"016.695
"57.140
"1.529

.001
88.60484.909
6.30589.999
88.201.68.92366.864

.275
-0.001
45. 768

58,69318.6°6
..10.1E1.,70.652

.00714.20319.784
-.54.1660.11889.757

22.886
87.715
89.901
87.34120.737
87.175

.006
3.277

30.180
07.064

89.97065.972
8.5440.000

25.565
35.072
77.222
77.873
89.523
89.780
88.343
89.612

ELEMENT 85TRESS YSTRE55 -- XTSTRESS EIAXSTRESS
li-

0.6000
.4795

0.0000
..0.0063

0.0000
..0.0169

.000C

.4801
3 .1125 0.0209 0.0352 1212
4 ..0.6470 8.0426 ..0.0302 0.0411
5 ..0.0633 ..0.2045 ...0.0000 0.0033
5 ..0.1001 0.0500 .0000 .00M
7 .3254 .0047 0.1186 .3264
8
9

.10270.4748 .0140
.0353

0.0452-0.013r .1217
.0357

11 0.0016 .0042 .0000 .0042
11 .1011 .0000 .0000 .0001
12 .1740 -r.3049 0.0158 .1753
13 .1012 f.0077 0.0355 .0999
14 0.3053 0.0292 0.0310 0.0258
15 .0301 0.0030 0.0130 .0001
15 .0001 ...0.0001 .0001
17 .0659 .0097 "0.0250 .0769
10 .0814 0.0145 0.0502 .1028
19 -0.,.a0s .6545 .0012 .0545
21 .0011 0097 ."0.6000 .00-97
21 .0001 .0600 0.0000 .0001

.0335 .003? 0.1155 .0009
73 .0816 .043'3 0.0373 .1033
24 0.1234 ...0.0225 ..0.0335 .0.1096
25 ..0.0033 ..0.0655 -0.0100 0.0003
?6 ..0.0118 ..0.0026 -1.002.1 0.0001
27 .0141 .."0.0129 ..0.0035 .0047
24
29

....0.1042
.0000

.8023

.0003
-0.8020

.0300
.0033
.0000

33 0.0048 .0025 "0.0020 .0031
31 .8041 .0129 0.0036 .0142
32 0.0014 ..E.0627------ - 0.0019 - 0.0000
33 .0015 .0173 ..0.0000 .3173
34 "0.0012 ..0.0389 0.3001 ..0.000C
35 0.0032 .0449 0.0010 .0449
35 -.1.0330 .0097 .0055 .0124
37
33

.0315

.0116
0.0111
0.0054

.0001

.1030 .0016
39 ..0.0009 0.0203 .0007 0.0099
43 -0.0047 .0807 --."0.0024 .0008.
41 .3014 .6000 .9001 .0014
42 .0005 .0154 .0000 .0054
43 .1.0001 .0032 .0002 .0132
44 0.0146 0.0020 .0023
45 .0312 0.0000 ..0001 .0012

STRESS V3LJE3 FOR RECTANGULAR ELEMENTS ARE AT POINT t .50, .50)



ELEMENT X.- FORCE Y..- FORCE 97
58 .000 .000
59 0.001 .000
60 ....0.001 -0.000
61 001 -.0.000
62 0.001 .000
63 .000
64 .012 ....0.153
65 .034 003
66 000 -.43.000
67 -0.000
68
69 051 0.150
70 .000 ...0.000
71 -0.000 102
72 000
73 000 .000
74 .000 .000
75
76 .000
77 -.0000 0000
78 .000 .000
79 .000
80 000

DETERMINATION OF PARTIAL END FIXITY

ROTATION AT END = 0069293 RADIANS

MOMENT AT END = 12442 KIPS-INCH

END FIXITY = 17.956 KIPS-INCH PER RADIAN

ANALYSIS OF BEAM-COLUMN # 1 WITH END FIXITY

EFIX= 17.9555
P= .442 FCC= 0 0.=. .300
L= 95.5 U= .271 Et= 13722
OU= 1.0354 YU= 1.0201 AU= 1.0315
ANG= .0129

FIXITY MOMENT = 2169 KIPS INCH

DEFLECTION OF WALL PANEL = 3901 INCHES



ANALYSI S OF t3EAM-COLUIS1 # 2 WITH END FIXITY

EFIX= 17.9555
P= 1.002 ECC= 0 Q= 300
L= 95.5 11= 388 EI = 15176
011= 1.0750 YU= 1.0426 AU= 1.0668
ANG= 0120

FIXITY MOMENT = .2037 HIPS-INCH

DEFLECTION OF WALL PANEL = *3654 INCHES

END OF FORTRAN EXECUTION

98



APPENDIX D: NOTATION

The following symbols are used in this paper:

a - length of rectangular element, in.

- height of rectangular element, in.

[B] - element stress-displacement matrix

E,E1 - modulus of elasticity in direction of subscript, kips per in.2

El - flexural rigidity, kips-in.

G, G12 - shear modulus in the 1-2 plane, kips per in. 2

- moment of inertia, in.4

j, k, i - nodal points, as subscripts they denote the location of
displacement

ka - lateral connector modulus, kips per in.

[k e]- element stiffness matrix

kOr k02 - elastic bearing constants for components 1 and 2,
respectively, kips per in. 3

k2 - spring constants in direction of subscript, kips per in.

- beam length, in., as subscript it denotes longitudinal
direction

- end moment, kips-in.

- axial load, kips or lbs

midspan lateral load, kips or lbs

- radial direction

- element thickness, in.

- tangential direction

99



u, v - displacements in the coordinate directions, in.

- parameter defined in Equation (2.42)

x, y - global cartesian coordinates

Xd, Yd

100

- global coordinates of differential element and the point where
stresses are computed, in.

- midspan deflection of beam-column, in.

yfixed - midspan deflection of wall panel with partially fixed ends, i

-free midspan deflection of simply supported wall panel, in.y

- coefficient of end fixity, kips-in. per radian

- angular rotation, radian

v,
v12 - Poisson's ratio relating the strain in the direction of the

second subscript due to the stress in the direction of the
first subscript

1, 2 - local coordinates, as subscripts they denote direction




