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CYCLOrOMY IN THE GALOIS FIELDS 

INTRODUCTION 

The cyclotomic polynomial gn(x)=li.f (xd- l)~(n/d) is the 
d in 

polynomial whose roots are the primitive nth roots of unity. Gauss 

(6, pp.412-436) showed the remarkable connection between this 

polynomial and the celebrated problem of constructing the regular 

polygons by straight edge and compass. Since the time of Gauss 

other writers have discovered many interesting and important 

properties of gn(x). The properties to be considered here relate to 

its decomposition into prime factors and to the magnitude of its 

coefficients; two aspects which have been studied in some detail in 

the rational number field and its extensions. Kronecker ( 8, pp. 7.5­

92) was the first to prove that ~(x) is irreducible in the rational 

number field. The magnitude of its coefficients in this field has 

been discussed by Schur, E. Lehmer (ll, pp.389-392), Erdos (.5, pp.l79­

l84), and Bateman (l, pp.ll8(}-ll8l) . Here, these properties will be 

discussed in the Galois fields. 

Schonemann (16, pp.269-32.5), Pellet (14, pp.l.56-l67), Dickson 

(3, pp.l-312), and others have considered certain aspects of the 

decomposition of gn(x) in the Galois fields, but all of these results, 

with one exception to be noted later, appeared prior to Steinitz• 

(17, pp.l-176) famous paper of 1910 on the algebraic theory of fields 

which gave such impetus to the present abstract field theory. It 

seems worthwhile therefore to recast and extend these results on 
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the decomposition of ~(x) in the light of the modern theory of 

Galois fields. We obtain thereby several new proofs of well known 

theorems and some results which are apparentzy new. In particular, 

our results concerning the llmagnituden of the coefficients modulo p 

do not seem to appear in the literature. 
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CHAPTER I 

FACTORIZATION 

1. Factorization of the cyclotomic polynomial. As mentioned 

above, the cyclotomic polynomial gn(x) is irreducible in the rational 

number field, but in the Galois (finite) fields this is not always 

the case. In 1826 Schonemann (16, p.324) proved that the cyclotomic 

polynomial ~(x) where q is prime, q rf p, factors modulo p (i.e., in 

the Galois field GF (p] ) into (q-1)/e irreducible factors each of 

degree e where p belongs to e modulo q. A century later Rauter 

(15, p.225) generalized this in a theorem which completely describes 

the situation for any io(x) and any Galois field GF[pm), subject of 

course to the restriction that (n,p) = 1. Rauter•s proof was based 

on the theory of symmetric functions, but the somewhat simpler proof 

included here uses only field theory and properties of the cyclotomic 

polynomial. In this and following proofs, results of elementary 

group theory, number theory and field theory as given in MacDuffee, 

"Introduction to Abstract Algebra," or van der Waerden, "Modern 

Algebra," will be assumed. The t heorem follows. 

THEOREM 1. The cyclotomic polynomial gn(x) factors in 

GF[pm] , (n,p) = 1, into cp (n)/e irreducible factors each of degree e 

where pm belongs to e modulo n. 
r 

PROOF. Let gn(x) = lT fi(x) in GF[pm] , where fi(x) is an 
i=l 

irreducible polynomial of degree c;( i, i = 1, 2 , ••• , r. Then the 

root field of fi(x) over GF[pmJ is GF [p~] . Thus GF [pmlii] contains 
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-Dl"". 

nth root of unity, this implies that p l. 1 :: 0 (mod n), and this 

a primitive nth root of unity f , and f> .1:-' J.-l = 1, a condition 

met by every non-zero element of GF [p m~] • Since f is a primitive 

miX,· 
-

in turn implies that el~i' since by hypothesis pm belongs to e 

modulo n. 

On the other hand, the non-zero elements of GF [pme] form a 

cyclic group of order pme - 1 with respect to multiplication, every 

element (r satisfying Grpme-l =1, and since by hypothesis 

pme - 1 :: 0 (mod n), this group contains a cyclic subgroup of order n. 

But this subgroup contains at least one elezoont of period n, a 

primitive nth root of unity, so that included among the elements of 

the subgroup are all the primitive nth roots of unity, of which 

Cii are roots of fi(x) by definition. Therefore GF[pm~J ~ GF[ pme] 

and dle. 
Hence cX.1 =e. Since f 1 (x) was any one of the irreducible 

factors of ~(x), Ol l = o<..2 = ••• = <i..r = e , and consequently 

r = ~ (n)/e. 
With the aid of the following lemma, this theorem may be 

restated in another useful form. 

~ m dLEMMA 1. If d = ( ~ (n),m) and (n,p) = 1, p and p belong to 

the same exponent modulo n. 

PROOF. Let pm belong to e1 and pd belong to e2 modulo n. The 

assumption d = ( 4> (n) ,m) may be written m = k1 d, 4(n) = k2d, where 

(kl,k2) = 1. Substitution in the known congruences pmel :: 1 and 

p~(n) : 1 (mod n) yields the congruences pkldel s 1 and pk2d :: 1 
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(mod n), which imply that e2 l kl~ and e2 lk2• Since (k1 ,k2) = 1, 

then (kue2) =1 and e2le1• Further; pme2 =plqde2 E 1 (mod n), so 

that e1l e2• Hence e1 = e2. 

Thus theorem 1 may be restated: The cyclotomic polynomial 

gn(x) factors in GF[ pm] , (n,p) =1, into ~ (n)/e irreducible factors 

each of degree e, where pd belongs to e modulo n, and d = ( cp (n) ,m). 

2. Factorization of any polynomial. A theorem about the 

factorization of any polynomial irreducible in a particular Galois 

field in finite extensions of that field can be proved as a result 

of theorem 1. This theorem was given by Dickson (3, p.33) who 

noted that the case for f(x) irreducible in GF(p] was stated without 

proof by Pellet in 1870. 

THEOREM 2. A polynomial f(x) of degree u irreducible in 

GF[pmJ factors in GF[pmv:J into S irreducible factors each of 

degree u/ S , where o = ( u ,v). 

The proof given here is again much shorter than Dickson's 

proof. One lemma makes this theorem a direct result of theorem 1. 

LEMMA 2. If p m belongs to e modulo n, then p ms belongs to 

e/~ modulo n, where 5 = ( e,s). 

PROOF. Assume (pms)r E 1 (mod n), where r < e/ 6 . Then e lsr, 

since pm belongs to e modulo n. Since e lsr and sl sr, [e,s] Isr by 

definition of least common multiple. But [ e,s] = es/(e,s) = es/6 . 

Therefore es/sj sr and e/S I r' contrary to the hypothesis that 

r ( e/6 • Obviously (pms)e/6:: 1 (mod n). Hence pms belongs to e/o 

modulo n. 
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PROOF OF THEOREM 2. Now f(x) is an irreducible factor of some 

~(x) in GF[ pm] , since every non-null element of a Galois field is a 

root of unity. By theorem 1, pm belongs to u modulo n, and by 

lemma 2, pmv belongs to u/6 modulo n. Then again by theorem 1, 

gn(x) factors in GF[ pmv] into irreducible factors each of degree 

u I f> • But these must include the irreducible factors of f(x). Thus 

f(x) factors into 6 irreducible factors each of degree u I 6 • 

3. The irreducible case. It is evident from theorem 1 that a 

necessary and sufficient condition for gn(x) to be irreducible in 

GF[pm] is that pm belong to ~ (n) modulo n, i.e., that pm be a 

primitive root modulo n. Some facts about the number of fields in 

which gn(x) is irreducible or reducible m~ be discovered by examining 

this condition more closely. It is lmom that n has a primitive 

root if and only if it is of the form 2, 4, qr, or 2qr, where q is an 

odd prime (4, p.J3). Thus unless n has one of these forms, gn(x) is 

reducible in every GF[ pm] . Consider now ann which has at least one 

primitive root. It remains to be shown that such an n has at least 

one prime or prime power primitive root. Let r be a primitive root 

of n. Then (r,n) =1 and the numbers s a r (mod n) are also 

primitive roots. But by Dirichlet's theorem (9, p.96) there is an 

infinite number of primes among the numbers congruent to r modulo n, 

and thus an infinite number of GF [p} in which ~(x) is irreducible. 

Obviously g2(x) is always irreducible. For n of the other three 

types there is also an infinite number of GF[ p] in which gn(x) is 
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reducible, since among the numbers s .: 1 (mod n) there is an infinite 

number of primes which are not primitive roots of n. If p belongs 

e+l ( od ) d e+l . . tto e m odu1o n, then p .: p m n an p 1s or 1s no a 

primitive root of n according as p is or is not a primitive root. 

Thus there is an infinite number of GF[pm] in which Sn(x) is 

irreducible and an infinite number in which Sn(x) is reducible for 

m> 1 as well a:s for m = 1. These results may be summarized in a 

theorem. 

THEOREM 3. If n is 4, qr, or 2qr, where q is an odd prime, 

gn(x) is irreducible in an infinite number of GF[ pm] and reducible 

in an infinite number of GF[pm] . The g2(x) is always irreducible. 

All other ~(x) are reducible in every GF[ pm] . 

4. Distribution of roots. Another question of interest 

regarding the factorization of the cyclotomic polynomial is that of 

the distribution of the roots among the factors. If f is a 

primitive nth root of unity, it is well known that the other 

primitive nth roots are p~, f r 2 , ••• , f r i>(n)-1, where 

1 <. ri <n, (ri,n) =1 for i =1, 2, ••• , ~ (n)-1. Now if gn(x) 

factors in GF[ pm] into ~ (n)/e irreducible factors, i.e., 
~we 

gn(x) = i~:l. fi(x), and p is one root of f 1(x), which of the 

powers of f will be included among the roots of r1(x), which will be 

included among those of f2(x), etc.! The answer to this question is 

contained in the following theorem. 

THEOREM 4. If Sn(x) = <Kpfie fi(x) where fi(x) is irreducible 
i=l 
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of degree ~ in GF tpm], and if all the roots of gn(x) are expressed 

as powers of a single root p , then the roots are distributed 

among the factors in sets of e roots each such that set-wise, the 

exponents of the powers to which f is raised are the t (n)/e cosets 

of the group of reduced residues modulo n relative to the cyclic 

group generated by pd, where d = ( <P (n), m). 

PROOF. By theorem 1, pd belongs to e modulo n. Then f 1(x) 

[ 
mel

factors in GF p J 
pd p2d

into (x - p )(x ­ p )(x ­ p ) ..• 
p(e-l)d 

(x - fJ ) ' 

where f is any root of f 1(x) (7, p.l36). As noted above, the 

2other roots of ~(x) are f TI, pr , ••• , p r 4>( n)-l. Pick a.ny one of 

these, say p s 2 , which does not appear in f 1(x), and call the factor 

of which it is a root f 2(x). Then r (x) factors in GF[pme] thus:2
s s2pd s2p(e-l)d

f 2(x) = (x - p 2)(x - p ) ••• (x - p ). Similarly choose 
8

another p 3 'Which does not appear in r1(x) or f 2(x) and call the 

factor of which it is a root r 3(x). Then 
s a pd SJP( e-l)d 

f 3(x) = (x - p 3)(x - p 3 ) • • • (x - p ) • The process may 

be continued until all ~(n)/e of the factors have been accounted 

for. Now the exponents 1, r 1., r 2 , • ••, r <f>(n)-l form a reduced set 

of residues modulo n, and thus an Abelian group G4>C n) with respect to 

multiplication and reduction modulo n. The exponents 1, pd, ••• , 

p(e-l)d are a subset of G4(n)' and this subset is in fact a cyclic 

subgroup, Ge, since pd belongs to e modUlo n. The sets of 

exponents: 
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1 , pd, p2d, ••• , P(e-l)d 

d 2d (e-l)d
s2, s2p ' s2p ' ••• s2p 

. . . . . 
(e-l)d

• • •' sq( n)/eP 

thus are the cp (n)/e cosets of G« n) relative to Ge• 

Since the factorization of gq(x), for q an odd prime, into two 

irreducible factors modulo p will be investigated in same detail in 

the next chapter, it is of interest to apply theorem 4 to this case. 

By theorem 1, ~(x) factors in GF[ p) into two irreducible factors 

if and only if p belongs to ~ (q)/2 which equals ( q-1)/2, since q 

is prime. This implies that p must be a quadratic residue of q. By 

. 2 (q-3)/2
theorem 4 the roots of one factor are p , p P, p P , ••• , p P . 

s sp sp2 (q-3)/2
and the roots of the other are p , p , p , ••• , p sp • 

2But since pis a quadratic residue of q, the numbers 1, p, p , ••• , 

p(q-3)/2 are the quadratic residues, and the exponents of the powers 

of p in the other factor are the quadratic non-residues of q. This 

result may be stated as a corollary to theorem 4. 

COROLLARY 1. If the cyclotomic polynomial gq(x), with q 

prime, factors in GF[p] into two irreducible factors of equal degree, 

and if all the roots of ~(x) are expressed as powers of a single 

root f , then the exponents of the powers to which p is raised are 

divided between the factors so that the quadratic residues of q 

appear as exponents in one factor, the quadratic non-residues in the 

other. 



10 

CHAPI'ER II 

COEFFICIENTS 

5. The coefficients of gn(x). As noted in the introduction, 

the magnitude of the coefficients of the cyclotomic polynomial 

gn(x) in the rational number field has been studied by several 

writers. It was first shown by Schur in a letter to Landau that 

there exist cyclotomic polynomials 'With coefficients arbitrarily 

large in absolute value. The proof for this theorem together with 

another theorem restricting n to the product of three distinct primes 

was published by E. Lehmer in 1936 (11, pp.389-392). More recently 

Erdos (5, pp.l79-184) and Bateman (1, pp.llBo-1181) have extended 

these results. 

Of course, magnitude is meaningless in the Galois fields. But 

we may ask under what conditi ons gn(x) and its irreducible factors 

will have coefficients different from 0 or ± 1 modulo p, and this 

problem will be considered here. 

We first ask the following question: For a given prime p, is 

there a ~(x) with some coefficient which is not congruent to 0 or 

± 1 modulo p? This question can be answered in the affirmative, and 

fortunately the above-mentioned proof of Schur's theorem needs to be 

modified only slightly to serve as a proof for this theorem. 

THEOREM 5. Given any prime p >3, there exists a gn(x) with 

at least one coefficient ai i 0 or ± 1 (mod p). 

First a statement used by E. Lehmer without proof 'Will here 
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be proved as a lemma. 

LEMMA 3. For any odd number t, there exists a set of odd primes 

PROOF. The proof of this lemma depends on the following theorem 

from number theory. "For any positive € > 0, there exists a positive 

integer N such that for x ~ N there is at least one prime between 

x and (1 + ~ )x (2, p.436). Choose € = 2l/(t-l)- 1. This determines 

an N such that for x ~ N, there is at least one prime betvreen x and 

2l/(t-l)x. Let P1 be the first prime greater than or equal to N. 

There exists at least one prime between p1 and i!l(t-l)Pl, and call 

one of these P2. Similarly there exists at least one prime between 

1/(t-1) 2/(t-1)
2 P:l. and 2 PJ.. Let one of these be p3• If this process 

is continued, a set of primes P:l.' p2, ••• , Pt is obtained such that 

<21/(t-1) < <22/(t-1) < < < 2(t-2)/(t-l)PI< P2 PJ. PJ P:l. P4 • • • PI 
< Pt <2(t-l)/(t-l)PJ. = 2P:J.. These primes satisfy the first 

condition. Furthermore P:l. + P2 > 2P]_ / Pt, so this is a set of primes 

with the desired properties. 

Note: The above proof will not be affected i:f P:l. is chosen 

greater than p, so that such a set of primes which does not include 

p can always be found. 

PROOF OF THEOREM 5. Let n = PIp2 • • • Pt, where t is odd with 

PJ.. < P2 < ... <Pt being odd primes such that P:l. + p2 >Pt and 

p1 ) p as in the lemma. Since the coefficient of x~ in ~(x) is to 
pt+l

be considered, ~{x) will be reduced modulo x • The cyclotomic 

polynomial can be expanded by the formula ~(x) = Jir<xd-l)p(n/d) 
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where f" (k) is the Mobius function defined as follows: 

0 , if p 2\ k for any p 

;t (k) = (-1) 
~ 

, if k =PlP2 ••• p~ (i.e., if pis square-free) 

1 , ifk=1 

The divisors of n besides 1 are numbers of the form Pi1 Pi2 ••• Pik' 

where the subscripts are some k of the numbers 1, 2, ••• , t, and 
Tic d-1)~(n/d)

k = 1, 2, ••• , t. Thus the product may be written: din x = 

1 f(n)-A Pi ,u.(n/Pi) TI Pi1Pi2· ..Pik ;..t(n/Pir ..Pik)
(x -1) I I (x -1) _.~~(x -1) • 

i=l r-"1! 

Since n = PlP2 ••• Pt' n/Pi1Pi2•••Pik is the product of an even or 

odd number of primes according as k is odd or even, and 

fL (n/Pi1Pi2 • • • Pik) = ± 1 according as k is odd or even. Therefore 

we may write 

k even 

- ~(n)~ Pi r(n/Pi)] Pi1Pi2•••Pik 
- (x-1) I I (x -1 (x - 1). 

i=1 ­
k odd 

Now by hypothesis, Pl + P2 >Pt, and P:L <p2 < ••• <Pt• Thus 

d = Pi1Pi2• • • Pik > Pt for all k ~ 2. Furthermore there i-s an 

even number of such divisors of n, and the above identity reduces 

Pt+1
modulo x to the following: 

gn(x) s (x-1f<n>-(r(xp1-1f(n/Pi) (mod xpt+1 ) 
i=:l. 

Since n is the product of an odd nwnber of primes, f'- (n) =-1 and 
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~eYPi) = 1. Thus 

gn(x) :: -fr {{~iJ) {mod xpt+l).
i=l .A-

Division of {xPt-1) by (x-1) gives: 

Pt-1 pt-2 t-1 Pi Pt+l 
gn(x) : (x + x + ••• + x+l) llf (x -1) (mod x ). 

i=l 

~ P·
Then if the product I I (x 1 -1) is expanded, all terms 

i=l 

Pil+Pi2+•••+pik ~ Pt+l 
x , where k - 2, are divisible by x since by 

definition Pil + Pi
2 

+ • • • + Pik > pt for k ~ 2. Therefore the 

congruence may be written: 

pt-1 pt-2 Pl P2 Pt-1 pt+l
gn(x):: (x + x +•••+ x+l)(l- x - x - •••-x ) (mod x ). 

It is n<nv evident that if this product is expanded, the coefficient 

of xpt will be -(t - 1) = 1 - t. Since gn(x) is to be considered 

modulo p, it remains to be shown that for every prime p > 3 there 

exists an odd number t such that 1 - t ~ 0 or ± 1 (mod p). It 

suffices to take t = p - 2, for certainly p - 2 is odd if p is an odd 

prime, and 1 - (p - 2) = 3 - p ~ 0 or :1: 1 (mod p) for p > 3. Thus 

gPlP2 •••pt(x) is the desired polynomial. The condition (n,p) = 1 

was satisfied at the outset since P! was taken greater than p. 

An extension of lemma 3 leads to the following corollar,y. 

COROLLARY 2. For aey prime p >3 there is an infinite number 

of cyclotomic polynomials with at least one coefficient ai i 0 or ± 1 

(mod p). 
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PROOF. In lemma 3, P]. could have been chosen as any one of the 

infinite number of primes equal to or greater than N1 and p, rather 

than the first such prime. Then a set of t primes could be generated 

from each PJ. as in the lemma, the sets being distinct since their 

smallest elements are distinct. Thus for any odd number t, there 

exists not just one, but an infinite number of distinct sets of odd 

primes P]. <p2<... <Pt• Hence for each t there is an infinite 

number of n, defined as above from the sets of primes, such that the 

coefficient of xPt in gn(x) is l - t, which can be chosen ~ 0 or : 1 

modulo p as shown in the theorem. 

It is interesting to note that any ~(x) which does contain 

such a coefficient is reducible modulo p, for every p. The following 

theorem establishes this fact. 

THEOREM 6. If gn(x) is irreducible modulo p, every coefficient 

is 0 or ± 1. 

PROOF. As noted before, gn(x) can be irreducible modulo p only 

if n is 2, 4, qr, or 2qr, where q is an odd prime. The theorem is 

2satisfied for n = 2 and n = 4, since g2(x) = x + 1, and g4(x) = x + 1. 

Furthermore, gqr(x) = 1 + xqr-l + x2qr-l + ••• + x(q-l)qr-l (18, 

p.ll5). From the fact that g2n(x) = ~(-x) for odd n (10, p.73) it 

follows that 

a_ r(x) =g r(-x) =1 + (-x)qr-1 + (-x)2qr-l +•••+ (-x)(q-l)qr-1.
"'2q q 

Thus in every case the coefficients are 0 or ± 1. 
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6. The coefficients in the irreducible factors of gn(x). Let 

now ~(x), n >2, be irreducible in GF[P] • Then all the coefficients 

of gn(x) are 0 or ± 1. HOYmver, according to theorem 3, ~(x) will 

be reducible in GF [qJ for a certain infinite set of qi (i =1, 2, ••• ). 

If gn(x) is completely reducible in GF lqi] (qi> 3), each linear 

factor of gn(x) will contain a coefficient different from 0 or ± 1. 

Between the two extremes of irreducibility and factorization into 

linear factors one may ask if there can be a factorization of gn(x) 

into two or more irreducible factors in some GF LqJ (qi> 3) such 

that all of the coefficients in these factors are 0 or ± 1. EvidentlY 

no such factorization is possible for g (x). Some interesting4
results bearing on this question will be obtained for the case of 

factorization into two irreducible factors of equal degree, but a 

complete answer to the question will not be given. A lemma will 

first be proved. 

lEMMA 4. Let gn(x) be irreducible in GF[p] . Then there 

existsan infinite number of primes qi such that gn(x) factors into 

two irreducible factors of equal degree in GF[qJ • 

PROOF . Since gn(x) is irreducible in GF(p] , p belongs to <tCn) 

modulo n. Then p2 belongs to ~(n)/2 modulo n. But (p2 ,n) = 1, so 

among the numbers s : p2 (mod n) there is an infinite number of 

primes which belong to ~ (n)/2 modulo n by Dirichlet's theorem. Thus 

by theorem 1 there is an infinite number of qi such that gn(x) 

factors into two irreducible factors of equal degree in GF[qil . 

We may now prove the following theorem. 
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THEOREM 7. Let gn(x) be irreducible in GF[p] and let 

qi (i = 1, 2, ••• )be the set of primes such that gn(x) factors into 

two irreducible factors of equal degree in GF (qJ • Then for almost 

all qi; a coefficient different from 0 or ± 1 appears in at least 

one factor. 

PROOF. By lennna 4 the set of primes qi is infinite. Let qk 

be one of the qi' s such that ~> 2. + 4> (n)/2 and assume that all 

coefficients in the two irreducible factors of equal degree of 

gn(x) in m{ qJ are 0 or ± 1. Let the two factors be: 

fl (x) = x « n)/2 + clxt(n)/2-1 + • • • + c +(n)/2 

and 
= , (n)/2 + ' ~n)/2-1 + + ,f ( ) 2 x x c1x •• • c4( n)/2• 

Now by theorem 6, all coefficients in gn(x) are 0 or ± 1. Thus all 

the sums of products of the coefficients in f 1(x) and f 2(x) 

obtained by multiplying together these two factors and collecting the 

coefficients of each power of x, must be congruent to 0 or ± 1 

modulo qk. If every such sum were equal to 0 or ± 1 before reduction 

modulo ~' this would give a factorization in the rational number 

field as well as in GF[qk], But as noted previously ~(x) is 

irreducible in the rational number field, and hence this is not 

possible. Thus at least one sum of products must equal rqk or 

rqk ± 1, r "f: 0. The largest possible value for such a sum of 

products will be obtained when every coefficient is +1. In 

multiplying f1(x) f 2(x), the coefficient of x4{n)/2 in the product 

will be 
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~d this is the largest since any other contains fewer products. But 

1 + <\>(n)/2 cannot be of the form rqk or rqk ± 1 (r '#- 0), since qk was 

chosen greater than 2 + ~(n)/2. Since all but a finite number of the 

qi are greater than 2 + ~(n)/2, the theorem is proved. 

The case for prime n will now be examined more closely. 

Corollary 1, regarding distribution of roots in factors . suggests use 

of the quadratic period equation. The (q-1)/2 - nomial periods, YJ 

and l'J •, of the cyclotomic polynomial gq(x), for q an odd prime, are 

defined as: 1'j = ~fa, YJ ' = ~ f b, where f is a primitive qth root 

of unity and a ranges over the quadratic residues, b over the 

quadratic non-residues of q. Gauss showed that the (q-1)/2 - namial 

periods of gq(x) are the roots of the quadratic equation 

2x + x + (1- (-l lq)q)/4 = 0 (19, p.l28). 

According to the above-mentioned corollary, when gq(x) factors 

into two irreducible factors of equal degree, ~ is the sum of the 

roots of one factor, ~ ' is the sum of the roots of the other. 

Thus if gq(x) factors into two irreducible factors of equal degree 

in GF[P] , the relations between the roots and coefficients in a 

polynomial show that YJ and 7] ' are also elements of GF [P] . The 

complete connection between the factorization of ~(x) and of the 

quadratic period equation is established in the following theorem 

which is a special case of a theorem proved by Pellet (14, 

pp.l56-167). 
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THEOREM 8. The cyclotomic polynomial gq(x) with q an odd prime, 

q f p, factors into tYTO factors of equal degree in GF[p] if and only 

if the quadratic period equation x'2 + x + (1 - (-lfq)q)/4 = 0 is 

reducible in GF[p] . 

PROOF. Let p belong to e modulo q. Then ~ (x) factors into 

two factors of equal degree if and only if (q-1)/e is even, i.e., 

(q-1)/e = 2k. But (q-1)/e = 2k if and only if (plq) = 1. 

On the other hand, a necessary and sufficient condition for 

reducibility of the period equation x2 + x + (1- (-l(q)q)/4 = 0 in 

GF[ p] is that (-l lq)q be a quadratic residue of p, since by 
2hypothesis q ~ 0 (mod p). Now ((-llq)qlp) = ((-l)(q-l)/ q/ p) = 

(-l)(q-l)/2•(p-l)/2(q lp). But by the quadratic reciprocity law, 

(p (q) =(-l)(q-l)/2•(p-l)/2(q lp). Thus (p lq) =((-llq)ql p) which 

establishes the theorem. 

In the case gq(x) = f 1(x)f2(x) in GF[ p] , where f 1(x) and f 2(x) 

are irreducible, it is possible to find the coefficients in the 

factors by using Newton's identities. Since q is prime, 

2gq(x) = xq-l + xq- + ••• + x+l, and we have in GF[ p] ; 

- ( (q-1)/2 + (q-1)/2-1 +( ) gq x - x c1x ••• + c(q-l)/2) 

• (q-1)/2 1 (q-1)/2-1 I
(x + c1x + ••• + c(q-l)/2). 

n n-1 n-2
Now if f(x) = x + a1x + a2x + ••• + an-lx + 8n in GF (p) and 

has roots xl, X2' ••• , Xn, then Newton's identities are: 
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~ = -sl 

2~ = -(s2 + ~a1) 

3a3 = -(s3 + s2a1 + s1a2) 

. . . . . 
ia~ = -(si + si-lal + si-2a2 + ••• + slai-1) 

where sj = ~ ~ (j = 1, 2, ••• , n). 
k=l 

Thus in order to find the coefficients, it is necessary to find 

s1 , s2 , ••• , s(q-l)/2 for each factor. As noted above, 17 is the 

sum of the roots in one factor, while 1] ' is the sum of the roots in 

the other. Thus = 'Y/ and si = "7 ' • Furthermore, by definitions1 

sj = ~ pja, where p is a primitive qth root of unity and a ranges 

1over the quadratic residues of q. But ~fa = 7] or l'J according as 

(j lq) =: 1, since (ja lq) = (j lq)(a l q) = (j lq). Similarly 

sj = yt ' or lJ according as (j lq) =: 1. Solution of the quadratic 

period equation gives "l and YJ ', and therefore the sums of the 

powers of the roots for each factor. The values for these sums may 

then be substituted in the identities and the coefficients determined 

successively. An obvious defect · of this method appears when 

(q-1)/2 ) p, for the equation pep=- (sp + sp-lcl + ••• + s1cp-l) 

cannot be solved in GF[p) • In a particular case it seems possible 

to leave this coefficient undetermined until restrictions placed on 

it in finding other coefficients or in multiplying the two factors 

together define it. However, at :best the determining equations are 

complicated and the proof that cp can always be found in this way 
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is not evident. 

An identity due to Gauss, which is true in the rational number 

field R, makes it possible to circumvent this difficulty. The 

2identity states that for q an odd prime, 4gq(x) = ~2(x) -(-l \q)q t (x), 

where ' (x) and 'f (x) are polynomials with integral coefficients. 

More useful for the present purposes is another relationship used by 

Mathews (13, pp.215-219) in proving the above. That is, if 

~(x) =f1(x) f2(x) in R( (J ), where t 1(x) has roots p al, p ~, ... , 
p a(q-1)/2' f2(x) has roots (}1, p b2, ••• , f b(q-1)/2' with 

(ail q) =1 =-(b1 lq), then 

fl(x) = t l (x) + 1'J 4»2(x)' f2(x) = 4>1(x) + 11 r t 2(x), 

where 4>1(x) and 4> 2(x) are polynomials with integral coefficients. 

That is, the coefficients of f 1 and f 2 can be found by Newton's 

identities as polynomials in ~ and ~ · with integral coefficients 

independent of p. Then solving the period equation modulo p, 

substituting these values, and reducing the coefficients modulo p 

gives the coefficients of the factors in GF[ p] without the necessity 

for finding inverses which caused difficulty in the first method. 

An example may help to clarify these two methods. 

Consider g11(x) : 0 (mod 5). Since 5 belongs to (11-1)/2 = 5 

modulo 5, g11(x) factors in GF[5] into two irreducible factors each 

of degree 5. The quadratic period equation is x 2 + x + 
2(1 - (-1111)11)/4 =0 which reduces to x + x + 3 =0. Solving this 

equation modulo 5 gives Yf :: 1, ~ r :: 3 (mod 5). The numbers 1, 3, 

4, 5 are quadratic residues of 11 and 2 is a non-residue. 
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Following the procedure of the first method: 

I - 2sl =1 c1 .:: -1 s1 ·-=3 cl = 
s2 =3 c2 E -1 82 =1 c2 :: -1 

I - 3c :: 1 cj:: 1s3 =1 s3 = 3 

84 =1 c4 :: -2 s4 :: 3 c4:: 1 

85 =1 c5 =c5 s$ =3 c5 :: c$ {mod 5) 

where the values for the coefficients are determined successively 

from Newton's identities. Since gll(x) = x 10 + x9 + ••• + x+l, the 

two factors x5 - ~ - x3 + x2 - 2x + c
5 

and x5 + 2x4 - x3 + x2 + 

x + c$ can be multiplied together and the undetermined coefficients 

defined. The equations which result are c5 + c$ :: 3 and c5cs : 1 

(mod 5). Solving these gives c5 :: c$ :: -1 (mod 5). Therefore 

2gll(x) :;: (x5 - X4 - X3 + x - 2x - 1)(x' + 2x4 - X3 + x2 + X - 1) 

(mod 5). 

Following the procedure of the second method, substitution for 

1'7 and l'} will not be made innnediately. Use will be made of the 

1fact that 'f) and YJ are the two roots of the equation x2 + x + 3 = 0, 

thus that 'YJ + YJ • =-1 and ~"1 ' =3. 

sl = ?J cl = - 17 

S2 = 'YJ I c2 = -(1/2)( ?J ' - 'Y/ 2) = -1 

s3 = 'l =-(1/3)( f1 - 1p1 • - 1J ) = 1c3 

s4 = 'tJ c4 = -(1/4)( l'J - 1'] 2 - Yf ~ + 71 ) = -( 71 + 1) 

ss = 17 cs = -(1/5)( l'f - , 2 - 't7 + .,., • - '1 2 - 77 ) =-1. 

1Substituting 1} for 17 throughout gives values for the coefficients 

in the other factor immediately. 
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si = "1 I ci = - 1] I 

I ­s~ = 1] c2--1 

sj = 'YJ 1 c 1 = 1 
3 

s4 = 'YJ I c4 = -( "1 ' + 1) 

I ­s$ = '} 1 c5--1 

Now substituting for Yf and 1} 1 their values modulo 5, and reducing 

the coefficients gives the following factors: 

2gll(x): (~- x4- x3+ x2- 2x- 1){~+ 2x4- x3+ x + x-1) (mod 5). 

These are exactly the same as those obtained by the first method. 

The following theorem shortens considerably the work involved 

in finding the coefficients. 

THEOREM 9. Let 

gq(x) = (x(q-1)/2 + clx(q-1)/2-1 + ••• + c(q-1)/2) 

• (x(q-1)/2 + c~x(q-1)/2-1 + ••• + c(q-1)/2) 

where the roots of one factor are f al, ••• ' f ac q-1)/2' and the 

roots of the other are p b1, ••• , f b(q-1)/2 with 

(aiJq) = 1 = -(bil q), (i = 1, 2, ••• , (q-1)/2). Then if q = 4k + 1, 

C(q-1)/2 = c(q-1)/2 = 1, cr = c(q-1)/2-r' and c~ = c(q-1)/2-r' 

(r = 1, 2, ••• , (q-3)/2). If q = 4k- 1, c(q-l)/2 = c(q-1)/2 = -1, 

and cr = -c(q-l)/2-r' (r =1, 2, ••• , (q-3)/2). 

PROOF. (a) Let q = 4k + 1. By the relations between roots 

and coefficients in a polynomial, 
~ ail ai2 ai "" ai +. • .+ai 

cs=(-l)sLP p ••• p s=(-l)s L-p l s, 

where i 1 , ~' ••• , is range over all possible combinations of the 
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integers 1, 2, ••• , (q-1)/2 taken s at a time. Similarly 

~ bi +•••+b.1 c~ = (-l)s Lf 1 S. 

Thus 

c )/ = (-l)(q-l)/2~pal+a2+•••+a(q-l)/2 = pal+~+•••+a(q-1)/2 
(q-~ 2 

since (q-1)/2 is even and the sum contains just one term. But 

(s=!)/2 ~/2 
z_ ai:: L_ bi:: 0 (mod q). 
i=J.. i=J.. 

0Therefore c(q-l)/2 =f =1. In the same manner c(q-l)/2 =1. 

Now consider 
r ~ ail+.· •+air (q-1)/2-r 

cr - c(q-1)/2-r = (-1) Lf -(-1) 

•Lp ail+. • .+ai(q-1)/2-r • 

Since (q-1)/2 is even, (-l)r = (-l)(q-l)/2-r, and therefore 

- r ~ ail+•••+air ~ ail+•••+ai( -1)/2­
cr - c(q-l)/2-r - (-1) (Lp . - Lp q r). 

Fran the. fact that (:~/2 ~ :: 0 (mod q), each exponent 
l.­

&j_l + • • • + ai(q-l)/2-r in the second sum may be replaced by the 

negative of the remaining r a 1 s. Thus 

r """ ail+. • .+ai ~ -(ail+. • .+ai ) 
cr- c(q-1)/2-r = (-1) (Lf r - Lf r ). 

Since (-l lq) = +1 for q = 4k + 1, 

f -(~l+•••+air) = p ail+•••+air. 
Hence 

"\ ail+...+ai " ail+. • .+air 
cr- c(q-1)/2-r =(-l)r( Lf r - Lp ) = o. 

The proof that c~ = c(q-l)/2-r follows directly from the above if b's 
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are everywhere substituted for a•s. 

(b) Let q = 4k - 1. As before 

= (-l)(q-1)/2 ' al+~+•••+a(q-1)/2 
c(q-1)/2 Lf . • 

But now (q-1)/2 is odd, so (-l)(q-l)/2 = -1. Hence 

c(q-1)/2 = c(q-1)/2 = -l. 

Consider 

' - r~ ail+•••+air 
cr + c(q-1)/2-r - (-l) Lf 

+ (-l)(q-1)/2-rLfbil+•••-tbi(q-1)/2-r. 

Since (q-1)/2 is odd, (-l)r = -(-l)(q-l)/2-r, so that 

r _ r "") ail+. • .+air ~ bil+. • .-tbi(q-1)/2-r 
cr + c(q-1)/2-r - C-l) (Lf - Lf ) • 

. (~)/2
Usl.Ilg the fact that 2._ bi :: o (mod q) as in part (a), 

i=l. 
' ~ ail+. • .+ai ~ -(bil+. • .-tbir) 

cr + c(q-1)/2-r = (-l)r(Lf r -Lf ). 
-(bil+• ••+bir) ~1+•••+~ 

Then since (-1/ q) = -1, f = P r. ~hus 

. " ail+. • .+ai ~ ~1+•••+~ 
cr + c(q-1)/2-r = (-l)r(Lf r -Lf r) =o. 

With the results thus far established it is possible to prove 

several theorems about the coefficients in the two irreducible factors. 

Since the object is to find coefficients different from 0 or ± 1, 

p and q will be taken greater than 3 in what follows. 

THEOREM 10. Let q be a prime of the form We± 1 where pf k. 

If the cyclotomic polynomial ~(x) factors in GF[P] (p >3) into 
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two irreducible factors of equal degree, then a coefficient different 

from 0 or ± 1 appears in at least one of the factors. 

PROOF. By hypothesis, gq(x) = f 1 (x) f 2(x) in GF[ p] where 

f 1 (x) and f 2(x) are irreducible and of the same degree. By theorem 8, 

1the quadratic period equation of gq(x) has roots t'j and 1J in 

GF [p] , and by definition and corollary 1, these are the sums of the 

roots of f 1(x) and f 2(x) respectively. If either ~ or TJ • is 

different from 0 or ± 1 the theorem is true since c1 = - 'Y) , 

c~ = - YJ • by Newton• s identities as shown previously. Suppose then 

that both 71 and YJ • are 0 or ± 1. The condition -ry + 71 • = -1 

imposed by the fact that Y} and YJ 1 are roots of the equation 

x2 + x + (1 - (-11q)q)/4 =0 restricts these values to 'tJ =-1, 

11 1 = 0 (or vice-versa) • However, this implies that 

11J"l = (1 - (-1 \q)q)/4 = 0 in GF [p] . But since q = 4k ± 1, 

(1- (-lfq)q)/4 = k, this means that k: 0 (mod p) contrary to 

hypothesis. Therefore in every case a coefficient different from 0 

or ± 1 appears in at least one factor. 

COROLLARY 3. Let q be a Fermat prime greater than 3. If the 

cyclotomic polynomial gq(x) factors in GF[p] (p> 3) into two 

irreducible factors of equal degree then a coefficient different from 

0 or ± 1 appears in at least one factor. 

PROOF. This is an immediate consequence of theorem 10 since 

a Fermat prime is a prime of the form 2n + 1 and no prime greater 

than 3 divides 2n. 
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A slightly stronger result can be obtained for primes of the 

form Lk- 1. 

COROLLARY 4. Let q be a prime of the form Lk - 1 where p { k. 

If the cyclotomic polynomial gq(x) factors in GF [P] (p >3) into 

two irreducible factors of equal degree, then a coefficient 

different from 0 or ± 1 appears in each factor. 

PROOF . BY theorem 10, a coefficient cr different from 0 or± 1 

appears in at least one factor. But by theorem 9, Cr = -c(q-1)/2-r' 

for q of the type Lk - 1. Thus a coefficient different from 0 or ± 1 

appears in both factors. 

Results for two other special types of primes follow immediately. 

COROLLARY 5. tat q be a Mersenne prime or a prime of the form 

2s3t - 1 (s ~ 2). If the cyclotomic polynomial gq(x) factors in 

GF[p] (p >3) into two irreducible factors of equal degree then a 

coefficient different from 0 or ± 1 appears in each factor. 

PROOF. This follows immediately from corollary 4, since a 

Mersenne prime is a prime of the form 2n - 1 and no prime greater 

than 3 divides 2n or 2s3t. 

THEOREM 11. Let q be a prime of the form 8k ± 3. If the 

cyclotomic polynomial gq(x) factors in GF [P] (p >3) into two 

irreducible factors of equal degree, a coefficient different from 0 

or ± 1 appears in each factor. 

PROOF. By hypothesis, ~(x) = t 1(x) f 2(x) in GF[P] , where 

f 1(x) and f 2(x) are irreducible and of the same degree. The quadratic 
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1 

period equation has roots ? and 1] I in GF[P] which are the sums of 

the roots of f 1(x) and f 2(x) respectively. These are three cases to 

consider. 

Case 1. '¥] and 7J • both different from 0 or ± 1. As before c1 

and c~ are the desired ~oefficients. 

Case 2. One and only one of ry and YJ 1 different from 0 or 

± 1. The condition YJ + 1] 1 = -1 here restricts YJ and yt 1 to 1] :::: 1, 

ry ::::-2. Since c~:::: - ry •, a coefficient different from 0 or± 1 

appears in one factor. In the other factor s1 = 1, s2 :::: -2 since 

q =8k ± 3 implies that (2!q) =-1. Applying Newton's identities we 

see that c1 =-1, c2 =2-l + 1 =1 + (p + 1)/2. For p >5, 

1 + (p+l)/2 , 0 or :1:: 1. In case p = 5, there are two possibilities, 

(3 lq) = :1:: 1. Solving Newton's identities for c3 and c4 in the case 

(3 lq) =+ 1 gives c3 =1, c4 = 2. Solving these identities when 

(3 lq) =- 1 gives c3 =2. Thus in every case a coefficient different 

from 0 or ± 1 appears among the first four coefficients in both 

factors. 

Case 3. Both 7] and 1} ' equal to 0 or ± 1. As in theorem 10 

the only possibility is '] = 0, 1] ' =-1. Then s1 = 0, =-1,s2 

sl = -1 and s~ = 0, since (2 lq) = -1. By Newton's identities 

cl = ci = 2-l = (p+l)/2. But (p+l)/2 , 0 or :1:: 1 for p >3. Hence 

the theorem is true in all three cases. 
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