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AN ANALYSIS OF ACCURACY OF FINITE DIFFERENCE AND

FINITE ELEMENT METHODS FOR THE WAVE EQUATION

1. INTRODUCTION

We will use the following methods to approximate the

spatial derivatives in both the one- and two-dimensional

wave equations.

1. The second order centered finite difference method

2. The linear finite element method

3. The quadratic finite element method

4. The fourth order centered finite difference method

(obtained through Richardson extrapolation).

This will yield four different time continuous approx-

imation schemes. Although they cannot be used to compute

numerical approximations, their general solutions will be

studied to determine the degree of accuracy methods 1

through 4 will yield in the approximation of the spatial

derivatives.

For each of the schemes, we obtain a form for its ge-

neral solution using Fourier analysis. The group veloci-

ties of these general solutions will then be compared to

the group velocity of the solution to the wave
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equation. It is in this fashion that we will determine a

level of accuracy each method will provide.

Numerical computing schemes will be obtained by imple-

menting the second order centered finite difference method

in time to each of the four time continuous schemes.

Again, we will determine the accuracy levels of each numer-

ical computing scheme by comparing the group velocities of

their general solutions to the group velocity of the solu-

tion to the wave equation. The accuracy of each scheme

will depend on the value of the Courant number chosen.

It should be noted that using a different approxima-

tion method in time would result in different numerical

computing schemes and different levels of accuracy.

The remainder of this paper is divided into fifteen

sections. Sections 4 through 9 deal with approximation me-

thods applied to the 1-D wave equation, and sections 10

through 16 are on approximation methods applied to the 2-D

wave equation. Section 2 introduces the idea of group and

phase velocity for a one- dimensional propagating wave.

Section 3 discusses the solutions to the wave equation in

1-D. Sections 4 through 8 present the following approxima-

tion methods (in order of their appearance): the second

order centered finite difference method, the linear finite

element method, the quadratic finite element method, the

revised linear finite element method, and the fourth order
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centered finite difference method. Section 9 gives a brief

conclusion of the results from sections 4 to 8. Section 10

introduces the idea of group and phase velocity for a two-

dimensional propagating wave. Section 11 is a discussion

on the wave equation in 2-D. Sections 12 through 15 are on

the second order centered finite difference method, the li-

near finite element method, the revised linear finite ele-

ment method, and the fourth order centered finite differ-

ence method, respectively. Section 16 is a conclusion on

the findings on sections 12 to 15.



2. GROUP AND PHASE VELOCITY IN ONE DIMENSION

Consider a propagating wave of the form

u(x,t) = fb f ( k) e
i (kx-wt)

dk,
a

4

(2.1)

where f is a bounded real-valued amplitude function and

w=w(k). We will define and discuss the group and phase ve-

locity functions of u. In a physical setting, only the

real part of u would be used, but complex exponential nota-

tion is used here for convenience.

Choose ko between a and b. We will require that

(ba) be small compared to lkol. Define wo=w(ko) and consi-

der

i (kax-cdot) fb
f (k) e

i [(k-ko)x- (w-wo)t)
u (x,t) = e dk.

a

By Taylor's theorem,

w(k)w(ko) = (kko)wf(ko) + 0(kk0)2

and so

u(x,t) ei(kox-wot) 1
b
f (k) e

i (k-ko) [x-wf(ko)t]
.ti... dk.

a

Consider the real part of this equation,

b
cos(koxwot)1 f(k)cos(kk0) [x w' (ko) t] dk

a

b
sin (koxwot) J. f (k)sin (kko) [x---wi(ko)t] dk.

a
(2.2)
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Define F(x-c,./(ko)t) to be the first integral in 2.2).

For fixed t, consider

F (x- w'(kot) = f (k) (kko) s in (kk0) [x w'(ko)t] dk.
a

Thus, for M an upper bound for Ifl on [a , , we get

8--axF(xca/(k0)01 < M.1 lkkoi dk
a

< M.max lkkol.(ba).

Therefore, for (b-a) small enough, we can make

F(x_wf(kot)1

while

max
ax

cos (koxwot) I = 11(01.

(2.3)

(2.4)

We interpret this as follows. Consider the first term

in (2.2),

Fix t. By

AF(x_wi(ko)t)

cos (koxwot ) F(xwi(ko)t) . (2.5)

(2.3) and (2.4), the maximum value of

is always small compared to the maximum val-

with respect to x of the cosine term.ue of the derivative

Thus, we expect the graph of F to be a slowly varying one

relative to the graph of the cosine term. The graph of

(2.5) then is the graph of the cosine term embedded in a

wave envelope of the form from the graph of F. The veloci-
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ty of this envelope, i.e., the velocity of F, is what we

will define to be the group velocity Cg, of (2.5). Since

the velocity of F is wf(ko) , Cg=wi(ko). The velocity of the

wave in the envelope will be defined as the phase velocity

Cp, of (2.5). Since the velocity of this wave is the velo-

city of the cosine term in (2.5), we have Cp=wo/ko.

Similar arguments can be applied to the second part

of (2.2). The real part of u (and the imaginary part,also)

then has a group velocity Cg=wf(ko) .

As an example, consider u(x,t) with f(k)=1 on [a,b]

and zero elsewhere. Then, (2.2) becomes

1cos(koxwot) [ sin(bko)(xwf(ko)t) sin(ako)(xwf(ko)t) ] +
xwiOccOt

sin(koxwot) If [cos(bko)(xwf(ko)t) cos(a ko)(x wf(ko)t)].
xw,(1c()t

(2.6)

We write (2.6) in a simpler form that can be easily

sketched. Define

A = (ako) (x w'(ko)t)

B = (bko) (x w'(ko)t)

B+A
a =

2

/3 = BA
2

Then, (2.6) becomes

1cos (kox wot) [ sin(a+0) sin(a-0) 1

xwi(ko)t

+ sin(koxwot) [ cos (a+0) cos (a-0) ]

xwi
1

(ko) t



or

1 sing. 2cos(kox--wot+a) .

xwi(ko)-t

7

(2.7)

It is easy to check that sing has wave number 1(b-a) and

the cosine term has wave number i(b+a). The first two fac-

tors of (2.7) will make up the wave envelope that travels

with a velocity w'(ko).

At x= wi(ko)t, (2.7) appears to have a singularity

but it is easy to see that

lim
x_owl(ko)t

exists. Using the fact that

lira

and that

sing
X--wf(ko)t

sing
x--wl(ko)t

sin°
9 -0 0

= 1

sin-;(b-a)(x--wf(ko))t

x--wi(k o)t

(b -a) . s (b -a) (x-wf(ko)t)

(b -a) (x- w'(ko)t)

we see that the limit is 1(b-a). Figure 2.1 is a graph of

(2.7) where a=20, b=25, ko=22.5, and t=0. The velocity of

the envelope is wf(ko) and the velocity of the wave in the

w(k0)
k0

zero, it is possible that the envelope will travel in one

envelope is we observe (2.7) as t increases from

direction while the wave in the envelope will travel in

the opposite direction.
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Figure 2.1. Graph of a propagating wave. The graph of

(2.7) where a=20, b=25, k0=22.5, and t=0.

Next, consider a more general form for (2.1), viz.,

where the size of (ba) is arbitrary. We will deal with u

in the following manner. Divide [a,b] into tiny intervals

by

a=ceo < al < az< < am-i< b=am

and consider

am

u(x,t) =

al
ei(kx-wt)

dk . f f(k). e
i(kx-wt)

dk

ao
(2.8)

Each integral represents a travelling wave, with the
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jth integral having the group velocity w/(ki), aj_l < ki <

aj. Thus, u can be thought of as a superposition of these

waves, each travelling with a particular group velocity.

Over time, the slower superposed waves will fall behind

the others while the faster waves will move ahead. Because

of this, we expect u to be a travelling wave which will

change in appearance as t increases from zero. In an intui-

tive sense, we say that u is dispersing over time and it

is for this reason that the equation relating w and k is

called the dispersion relation for u. If w is a linear

function of k, wf(k) will be constant and in such a case

we expect u never to disperse since all the superposed

waves of (2.8) will have equal group velocities.
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3. SOLUTIONS TO THE ONE-DIMENSIONAL WAVE EQUATION

When we begin the analysis of the various approxima-

tion methods in one and two dimensions, it will be impor-

tant to know some general behavior of solutions to the

wave equation.

Consider the one-dimensional wave equation for some

given initial conditions

u
tt

= c2
.11XX

We will consider only initial value problems and not initi-

al boundary value problems for the wave equation because

it will simplify our later analysis quite a bit. According

to D'Alembert, there exist functions A and B, their exact

forms depending on initial conditions, such that

u(x,t) = A(x+ct) + B(x-ct).

We can think of u(x,t) as made up of two waves, one

travelling with velocity c and the other travelling with

velocity -c. The solution to an initial-value problem can

also be represented in an integral form with the disper-

sion relation

w2 = k2 .

Since w/(k) = ±c , no dispersion will occur.

In the next sections, we begin looking at various nu-

merical schemes where dispersion will occur. The extent

that dispersion occurs is the extent that the scheme is im-
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perfect (this being in the cases where the scheme is non-

dissipative). For more information on this subject, see

[Trefethen]. For a general discussion of dispersion in

physical systems, see [Lighthill] and [Whitham]. The two-

dimensional case will be considered later.
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4. THE SECOND ORDER CENTERED FINITE

DIFFERENCE METHOD IN 1D

We are now ready to begin our analysis in one dimen-

sion. The first approximation method to be considered is

the second order centered finite difference method. In

this section, we will be considering the initial value

problem involving the wave equation instead of the initial

boundary value problem. In practice, we could compute solu-

tions only to IBVP's but IVP's are considered in order to

eliminate the need to incorporate effects of boundedness

into the analysis.

Let u(x,t) represent a solution to the 1-D wave.equa-

tion. We will approximate u at the points x.=.jax where j

is an integer.

So,

Let uj(t) approximate u(j4x,t) and define

Dxuj(t) 1
4.1x

( uj+1(t) uj(t) )

Kuj(t) = 1 ( uj(t) uj_1(t) ).AX

DxD)7u .(t) = 2.0 .(t) + u
J. -1

(t)).

The second order centered finite difference approxima-

tion scheme is

(R)2.( uj+i(t) 2uj(t) + uj_1(t) ) uij(t) = 0. (4.1)

We call this a second order scheme because of the fol-

lowing reason. Consider a function f(x). By Taylor's theo-
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rem, for xo fixed,

f(x).4xo) + (x x0)-e(x0)+(x-2x°)2 fu(co)+(x-3x1°)3 f(3)(x0)+ (x-4;')4 f(4)(a)

where a is between x and xo. First set x equal to (x+x0)

and then (x-x0). Add the two equations to get

f" (xo)
f(x0+Ax) 2.f(x0) + f(X0AX)

AX2

42x:
(f

(4)(a)
±f

(4)

(13) )

where a is between xo and (x0+Ax); 0 between (xoAx) and

x0. Since f and xo are both arbitrary,

u(x+Ax,t) 2.u(x,t) + u(xAx,t)
uxx (x t) = + 0(Ax)2

AX 2

Therefore,

1

axe
( 1.1j4.1(t) 2.1.1j(t) )

approximates uxx(jAx,t) with an error of order two .

We will determine an integral form for uj(t), the so-

lution to (4.1). This integral will be used to determine

the accuracy level of (4.1) as an approximation scheme to

the wave equation.

To determine a form for u.(t), we use Fourier analy-

sis. Define a Fourier transform of the grid function by
co

Ax- u.(t). e
-ikAxj

ii(kAx,t)=
i=-00
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( ax u j(t) )- e-
ikAx j

:1=-00

Think of this as a Fourier

in kAx. Since u has a period

<H.IfuieregardAx. uj (t)

ries, then

x u ( t ) = 2H

or

1
uj(t) 2H

To determine the form of a,

sume the second time derivative

switched. Then

ri

series expansion for a(kAx,t)

of 2H, we restrict -H < kAX

as the coefficients in the se-

u(kAx,t). e d(kAx)
-H

fri/Ax
ii(kAx,t). e

ikAxj
dk .(4.2)

-H/Ax

put (4.2) into (4.1) and as-

and integral signs can be

(L)2 eikAx
11 1- ejahx)k dk .0 = f - 2 + ) ft(kAx,t) -

2H tt

-H/Ax

We write the term in brackets as [...] . Rewrite the equa-

tion as

0= 2H
AX

f.1_11

eijkAx
d(kAx).

Think of the right side as the coefficients for the

Fourier series to [...] . But if each coefficient is zero,

the series sums up to zero, i.e.,

(R)2. (eikAx - 2 + e-ikAx)(1(kAx,t)

Solving for a gives

il(kAx,t) = A(k) -e-iwt+ B(k)eiwt

tt
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= w (k) = (*() 42 (1 c o sk4x) .

Define w1 and w2 as follows,

wl

"12

wl (k)

w2 ( k )

(a-05-c) - 42 (1cosicax) for 0 < kzix <

(1-5(-) 42 ( 1coskax) for n < Icax < 0 (4 .3)

t(*(aS--().,12 ( 1cosicax) for 0 <1,cax<il

(). (1coskAx) for 17 <ICAX <0 . (4.4)

Thus, we can write u j(t) as

j(t) = 1 fll/Ax
A(k).ei(k4x)jiw1t

2 rr
dk + 1 j17/4xu B(k).ei(kAx)jica2t dk.2H j

-1114x -n/°x

The equation (4.3) is the dispersion relation for the

first integral in uj(t) and (4.4) is the dispersion rela-

tion for the second integral.

Here is how we will determine the behavior of uj(t).

Divide

points

[-11><541X] into really tiny intervals using the

= ao < al < . . . < a < 0 < < . . . < am-1 < = amvx

and divide uj(t) into a sum of integrals using these

points. So,
ai . .i(kax)j icait et(kax)jtw2t

dkuj(t) = -L [ A(k).e dk + B(k)
2/7 ao ao

J
i(k4x)jitait am i(k4x)jiu2t+ + A(k)e dk + B(k)e dk 1. (4 .5)

am -1 am_i
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By previous work, if [ap,a134.1] [a,0],

a ,

A (k) -el
(k.ax) j

dk B(k)ei(kax)jiw2t dk
Jap ap

is a superposition of two wave trains, one with group velo-

city wi1(k0), the other with group velocity 4(k0), ap < ko

< a
13+1.

But consider the integrals

(4 . 6)
J

A(k) ei("xliiwit dk f B(k) ei(icAx)i tiw2 dk.

a

We cannot reference section 2 to conclude that they are

both travelling with group velocities 4(ko) and w21(k0) re-

spectively, with a<ko<g. (Recall that section 2 required

that (ga) be small compared to p4) However,

wi(k);.-..wif(0)-k and w2(k),-e,w21(0).k. Thus, ei
[kxwi(k)t]

e
ik [x-4 (0) t]

and ei[kxw2(k)t] e
ik [xw2/ (0) t]

. So, we

can approximate (4.6) by

113 A(k) ei
k[Axj wif(0) t]

dk

13

B(k) ei
k(Axj iw2f(0) t]

dk.

These two integrals are complex sinusoidal waves moving

with velocities 4(0) = c and w2/(0) = c, respectively. In

this case, the group and phase velocities are equal.

We interpret our findings. If we think of uj(t) as a

sum of 2m integrals as in (4.5) (the number of integrals

depending on how accurate an interpretation of ui(t) is

needed) then ui(t) is a superposition of 2m waves where in-

dex j corresponds to both a rightgoing wave and a leftgo-
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ing wave. The integrals with limits of integration span-

ning over zero will have group velocities very close to c

and -c.

Consider Figure 4.1, the graph of (4.3). Keeping in

mind that the value for m in (4.5) can be made as large as

we want, we see that the superposing waves corresponding

to k close to zero will have group velocities approximate-

ly equal to each other and in fact, approximately equal to

c. But the superposing waves corresponding to k close to

either dX AXor --IL will travel at a group velocity less

than c. Thus, if we observe the first integral of u.(t)

over time, the superposing waves with lower group veloci-

ties (i.e., shorter wavelengths) will lag behind and

cause the integral to be dispersive in nature.
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Figure 4.1. Dispersion relation for the first inte-

gral of uj(t). This is the graph of (4.3). It is plotted

in the (k.ax,AP)-space where -ll<kax<ri. The slope of the

curve at a point (kax,x) will give the group velocity

(up to a multiplicative constant) for the superposed wave

with wave number k. Near the origin, the curve is linear.

Thus, waves with wave number k where ski. 0 will travel

with .a group velocity about equal to c.

A similar argument can be applied to the second inte-

gral of uj(t) because the graph of (4.4) is just the nega-

tive of (4.3). We expect the second integral to be disper-

sive also, but travel in the opposite direction of the

first integral. Thus, uj(t) is composed of two dispersive



19

waves that travel in opposite directions. Had the graphs

of (4.3) and (4.4) been two straight lines each of slope

±c, uj(t) would have been a perfect trace of u(x,t).

Another way of investigating the rate of dispersion

of uj(t) is to explicitly determine a relative group velo-

city error function for each of its integrals and observe

the rate it goes to zero as k tends to zero. Consider the

first integral of uj(t). The wave with wave number k has a

group velocity

4(k) csink.ax for 0<kAx<rr
,12 (1cosk4x)

csink.ax for <k4x < 0 .

42(1cosk.ax)

For 0<k4x<H, the relative error in group velocity is

w11(k)
- sink,ax

,12(1cosk.ax)
1

Similarly, the relative group velocity error for the se-

cond integral is

c,././(k)+cc sinkAx
,12(1coskAx)

1

where 0<kvx<fi. The case for -11<k.a>c<0 can be analyzed in

a similar fashion.

Therefore, the relative group velocity error for

uj.(t), which we will abbreviate as Egv, is

Egv
sinIklax

42(1cosk4x)
1 (4.8)



where -ff<k.ax<rr.

Define N as follows:

N

20

wavelength of wave with wave number k
grid spacing

A
zix

where A =
iki

. Therefore ,

N = 217 .

IklAx

N is the number of'grid intervals/ wavelength.

When N = 2, IkI = R. As N --+ m, 0. We graph

(4.8) as a function of N where N=2,3,4,...,25. See Figure

4.2. For N=2, the superposed waves with wave number Ikl=j4(

have relative group velocity errors of 1. For N=3 (i.e.,

IkW3oX ), the error is about 0.5. Figure 4.3 is the graph

of (4.8) with N=6,...,25. Using this graph, we can see

that for N>23, the curve falls below 1%. This means all

waves being superposed to construct uj(t) that have

2-17IkI >23ax
will travel with group velocity within 1% of ±c.

The size N has to be for 1% accuracy gives us an intuitive

idea of how accurate an approximation scheme (4.1) is.
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Figure 4.2. Egv for uj(t) , N=2,...,25. The graph of

(4.8) as a function N where N=2,...,25.
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Figure 4.3. Egv for uj(t) , N=6,...,25. The graph of

(4.8) as a function of N where N=6,...,25. For N>23, the

curve drops below the 1% level. This value gives us an
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intuitive idea of how accurate an approximation scheme we

have and gives us a way of comparing this scheme to those

looked at later.

We now obtain our numerical computing scheme from

(4.1) using the second order centered finite difference me-

thod in time.

Let ur! approximate u .(nAt) for n a positive integer.

Define

Thus,

D+un 1 ( n+1
t j at j

ur,l)

Dun (n un-1)
t j At ;

o = (1c02. ( u 1.1 2 111.1 + u
( un. +1 2ur.1 u11-1 ) (4 . 9)

J+1 J-1 J J

is our numerical computing scheme.

We determine a form for un . Define
J

As before,

oo
e

n
(k.ax) uAx. n

(Ax. un ) e

AX un = 1
2ri

( k.ax) e

J -!I

i(kAx)j
d(kAx)



or

To

(4.9),

n = 1

determine a

using the same

r1 /ax

f an(kax). e
i(k4x)j

dk.

-11/4x

form for an(k4x), put (4.10)

reasoning as before, we get

23

(4.10)

into

0
v2. [ eikax 2 e-ikax ]

fin(kax)

un+i(kax) 2iin(kax)
fin-1(k°4

(4.11)

with v = (cat/4x). Thus, we need u(k4x) that solves

(4.11). Let us assume that (4.11) has a solution of the

form

A(k)- zn

for some complex function z= z(k). Put this into (4.11)

to get

2 -1
2

sin2k.ftx (4.12)

Notice that if z is a solution to (4.12), its inverse z-1,

will also be a solution. Therefore, if A(k)zn solves

(4.11), then so does

B(k) z-n .

Thus,

an(k4x) = A(k)zn B(k)z-n

is a general solution to (4.11). So, from (4.10), we get

that
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ur?. A(k). zn. dk

ll/iix

-n /ax

/7/Ax

B(k). z-n.
ei(kAx)j

dk. (4.13)
177. J

is a general solution to (4.9) where z solves (4.12).

Later, it will be shown that:

Claim (1): (4.12) does not have solutions that have

both a nonzero imaginary part and absolute value different

from 1.

Claim (2): If (4.12) has a solution that is both real

and has an absolute value different from 1 then (4.9) will

admit solutions that are unstable, a situation we will

avoid by requiring v<1. So, by a simple process of elimi-

nation, restricting v<1 in (4.12) means the only solu-

tions to (4.12) will be complex functions with an absolute

value of 1.

For now, let us assume we have shown why claims (1)

and (2) are true. Thus, if z is a solution to (4.12), then

z has the form

z=z(k)=e-i"t

for some real w=w(k) . Our problem now is to determine w.

To do so, put (4.13), along with the substitution

z=e-iwAt into (4.9) to eventually get



0 v2 (eikAx 2 e-ikAx) (eiwAt 2 e-iwAt).

Solving for w, we get

1 n2kAx( 1 2v2= c IDSAt 2 )

Define wi and w2 as follows:

(1_22.sin2kAx)wi = 1 cos-1At 2
on 0<kAx<17

1
2(1-2v2-sinkAx)At

and ca2 =

Therefore,
H/Ax

uj
-f

A(k). e
i(kAx)ji(wiat)n

dkL
_11/,.

on -11 < kdX <0

H/Ax

2n f
B(k) e

-H/Ax

i(kAx)ji(w2At)n
dk

25

is an integral representation for a general solution to

(4.9). We recognize that un is made up of two travelling

waves going in opposite directions. The group velocity er-

ror function E gv for un will tell us how accurate a numeri-

cal computing scheme (4.9) is. We have

Egv =
cos

2

\11-1,2, n2k2..Ax
1 (4.14)

for -H<kAx<H, where we now require v<1 to avoid division

by zero in (4.14). We call v the Courant number.

Once again, we can graph (4.14) as a function of N
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(kAx = 2a) for different values of v. We will study the

case with v=0.5. (Later, when we study the other approxi-

mation schemes, their Courant number restrictions will be

less than one. We will want to compare numerical approxima-

tions from each scheme using a common value for v. Thus, v

must be chosen small enough so it does not exceed any res-

trictions). Figure 4.4 is a graph of (4.14) for

N=6,...,25, v= 0.5. In this case, N must be larger than

20 before the superposed waves travel with an error less

than 1%. It should be noted that if v is chosen very close

to 1, the curve of (4.14) drops below the 1% at a much

smaller value for N. For example, for v=0.999, (4.14) will

be less than 0.01 for N>3. Thus, as a numerical computing

scheme, (4.9) is very accurate for v close to 1.

O

IJ

0

a
J
0

0
c c

0.2
0.19

0.18
0.17

0.16
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0.14
0.13
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070.91 1;\
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0.07

0.06
0.05
0.04

0.03

0
0.01 11 ;I 1 1 1 I 1

6 8 10 12 14 16 18 20 22 24

N (Num Der of grid in terve Is/wave I en g th)

Figure 4.4. Egv for u3, v=0.5, N=6,...,25. The graph

of (4.14) as a function of N where N=6,...,25, v=0.5. As
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the graph indicates, N must be greater than 20 before the

curve falls below the 1% level.

We now show why claims (1) and (2) are true.

To show why claim (1) is true, suppose (4.12) had a

solution of the form z=a(k) -1-ib(k) where iz101 and b(k) 00.

Choose a k such that k(001. On a complex plane, we plot

z(k) and z-1(k). See Figure 4.5.

Figure 4.5. The points z(k) and z-1(k) in the complex

plane.

Thus, z(k) 2-1-z-1(k) has a nonzero imaginary part. Re-

call (4.12). We are assuming that z solves (4.12) yet for

our chosen k, the left side (4.12) has a nonzero imaginary

part while the right side will always be real for any k.

Since this leads us to a contradiction, we conclude that
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(4.12) cannot have a solution that has both a nonzero ima-

ginary part and absolute value different from 1.

For claim (2), suppose that z was a solution to

(4.12) where z was both real and with absolute value diffe-

rent from 1. From (4.12), we can determine a form for z by

using the quadratic formula.

We get

4Z = 21/2- Sin2-2k°' 4vsin1141C
2

v2. n2k2X_i

From this form for z, we see that z is a continuous real

function. We are assuming that the norm of z is not equal

to 1, so there exists k0 such that lz(k0)101. We assume

that lz(k0)1>1 (if lz(ko)I<1, then replace z with z-1) . By

the continuity of z, there exists a and 0 such that z > 1

on (a,6). Consider

g
z
n
.e
i(kAx)1

dk.
2/7

a

(4.15)

This is a solution to (4.9) (perhaps, think of this

integral as a solution to (4.9) for some particular IVP).

Imagine (4.15) as a superposition of waves where each wave

has an amplitude Izni oo as n co. This means (4.15) is

a travelling wave that has an amplitude increasing to infi-

nity as time goes on. Thus, (4.15) is an unstable solution

to (4.9), something we do not want to allow. We will avoid

this problem by not allowing (4.12) to have real solutions

with absolute value different from one. This can be en-
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sured by restricting v<1. To see why this is a sufficient

restriction, consider an arbitrary real function z with

lz101 For any value of k , z 2 + z-1 will be a real num-

ber in (-oo, 4) U (0 ,00) We can see this by drawing the

graph of f(z)=z-2+z-1 for z real. See Figure 4.6.

Figure 4.6. The graph of f(z)=z-2+z-1- for z real.

Therefore, to ensure that z will not solve (4.12), we will

bound v such that

_4 < _4v2.sin2k2x < 0
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i.e., v<1.

Consider the test problem

Litt = uxx

11

N2

e
-500 (X-0.5)

(X 0) =

ut(x,0) = 0

u(0,t) = u(4,t) = 0

for 0 < x < 4, t > 0. We will determine numerical solu-

tions for this problem using (4.9). Since c=1, (4.9) be-

comes

u1:14-1 = (°V. ( - 12111:1 + uluj+1 j-1 uj )

We let Ax= 0.02 and At= 0.01, thus v= 0.5. Because of the

given initial and boundary conditions, we choose

e-500(jdx-0.5)
2

uo.

n -n n
"200

Our numerical scheme will not give values for uj, so

instead we will use Taylor's Theorem to estimate For u

the solution to our test problem, fix x and consider

2
u(x,At)= u(x,0)

utt(x' q)

for some II between 0 and At. Since u
t
(x,0)= 0,

u(x,Lit)= u(x,0) + 0(at)2.

Thus, we let

-500(jdx-0.5)2
u
J

e
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Figure 4.7 is a graph of the approximations for n=199. In

the exact solution to the wave equation, we would see two

pulses centered at x=3 and x=3, each of height 0.5 (the

pulse at x=3 is the result of reflection at x=0 and the

negative reflection is due to the Direchlet boundary condi-

tion). In the numerical solution, we see two pulses with

heights a little less than 0.5. Neither of the pulses are

exactly at the points x=3 and x=3 and shorter waves trail

behind each of them. This illustrates the idea of disper-

sion.

It should be noted that in a more realistic setting,

we would not have picked ax so large in comparison to the

width of the pulse at t=0. (For this ax, the pulse at t=0

is about 18 grid intervals wide. This is determined by

looking at a computer printout of the values of the pulse

when t=0 and rounding each value to six decimal places.)

We picked ax as above so that dispersion will occur as

quickly as possible.
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Figure 4.7. Test problem for ur!, v=0.5. The graph of

(4.9) for the test problem where v=0.5, n=199. Dispersion

is occurrng at both pulses. Higher wave number have lower

group velocities and so these waves lag behind the main

pulse.
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5. THE LINEAR FINITE ELEMENT METHOD IN 1D

The next method we will use to approximate the spa-

tial derivative in the wave equation is the linear finite

element method.

Some general references on the finite element methods

are [Fletcher], [Strang and Fix], and [Lapidus and

Pinder].

Define

L [u] = c 2 uxx utt

We want to solve

L[u] = 0

for 0 < x < L, t > 0 with initial conditions

u(x,0) = f(x)

ut(x,0) = g(x)

For convenience, we will consider the boundary conditions

u ( 0 , t ) =0

u ( L , t ) =0

for t > 0.

If L [u] = 0 , then
L

0 = f L [Li] w(x) dx
0

for any function w(x) . If w E C1 [0, L] , then
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0 = J
(c2.0

xx u
tt

).w(x) dx

0

2c -ux (L,t).w(L) c2ux(0,t)w(0)

c2 ux dx.S.Lw dx u
tt

.w dx. (5.1)

0 0

If (5.1) is satisfied for all w E Cl[O,L] , then we can re-

verse the above argument to show that L[u]=0 (provided

that uxx exists). We call (5.1) the weak form of the par-

tial differential equation 1. [u] =0.

Divide [0,L] into R equal parts of size AX, and sup-

pose that we approximate u with the piecewise linear func-

tion
R

11(x,t) = E u(t)or(x)
r=0

where {fir} is the linear finite element basis defined by

(ko(x) yx

1[1

x 0 < x < xi

X > Xi

X -X
r -1

LIX

1
X X r

x
r -1

< x < xr

xr < x 5 xr+1

lP'
otherwise

0 < x xR -1

< x < x-R
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We will set u0(t) and uR(t) equal to zero, so that

Eur(t)0r(x) is zero at x=0 and x=L, in agreement with

the boundary conditions. For different boundary condi-

tions, u0(t) and uR(t) might be nonzero. Therefore, we are

approximating u by
R-1

= Ur(t)0r(x).
r =1

We will replace u with a in (5.1) and try to deter-

mine a form for u r (t). This poses a problem for us because

(5.1) will require an to exist for all x in [0,1,] , i.e.,
ax"

for to exist for all x in [0,L], r=1,...,R-1.

Since has corners at xr , and x
r+1 ' dx'

dA
r

will not

exist there. It turns out that this dilemma will not af-

fect our analysis in any way. Therefore, we will simply

proceed forwards. In (5.1), replace u with the summand re-

presentation for a. We then obtain an equation with R-1

unknowns, these unknowns being ur(t), 1< r< R-1. Define

w(x) as Oj(x) for 1 <j <R-1 and obtain a system of R-1

equations with R-1 unknowns. Thus, (5.1) yields

0 c2.
R -1E ur(t) d Or(L)

r=1

¢i(L) c
2. E ur(t) 0,(0)

r=1
q5j(0)

R-1 L LR-1
dc2 E ur(t)f aid

dx
dx E urff(t)f or dx

r=1
0

r=i
0

for 1 < j < R -1 , with

(5.2)



This

dxWj

is called the distribution

Since Oi(L)= Oj (0)

for x.kl < x < x.ax

1 for x. < x < +1 .
JAX

undefined at x.kv x. and >
`j.'

0 elsewhere.

derivative of Oi.

=0 if 1 < j < R-1, the first

37

two

terms of (5.2) are zero. Equation (5.2) reduces to

R-1
d d

R-1 L

0 = c2- E ur(t). cuor.
dx + E uruco

0

Or dx.

r=i
0

r=1
(5.3)

By considering the size of the support for each basis ele-

ment, (5.3) becomes

L

0= c2. [ ui_1(t). O_i Ofi dx

0

_x + u(t) (0i)2 cix. + ui+/(t) f

0

Oj+idx

L L L

+ [ ll.1 (t). 0.
J-I

j
J

dx + uf.

0

f(t) (0.)2 dx +
J-Er

0
(t). j+1

dx I
J

for j =1, . . . , (R-1) .

and

We evaluate a few integrals.

Consider

j+1

dx. Figure 5.3 is a drawing of 13j
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Figure 5.3. The graphs of 0j and 0 for 15 j < (R-1) .

Relabel 0j and 0j+1 as 00 and 01, respectively and relocate

them both towards the origin by translating xj to 0. Thus,

ax

f
00

j
- j+1 dx c dx

0 0
o

ffax

(1 A)(k) dx
0

1

Cix f ( 1 ) e dx, =

0

AX
6

x
ax

Next, we evaluate f 0 2(x) dx. Recall Figure 5.2. Re-

0

label Oj as 00 and relocate this towards the origin by

translating xj to 0. Thus,



L ,,ax

J
.2(x) dx = 2..IO (1

J0 0

2= 8--.ax

X
4X )2 dx

In similar fashion, we evaluate the following:

L
dcbj d041

j dx dx dx

0

and

IL "jdxj dx
0

dx

dOg dqii
dxdx dx

(-711-x-)(17) dx

4X
2. I (,,L)2 dx

0

2
4X
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Evaluation of the remaining integrals is obtained by

symmetry. Substitution and simplification gives

2
0 cX

A2
( uj_1(t) 2uj(t) Uj+1(t) )

//
( 28. u/j_1(t) 2.uq (t) 1 ui+i (t) ). (5.4)

We call this equation the linear finite element approxima-

tion scheme. Compare (5.4) to (4.1). The second term of

(5.4) contains a weighted average of u/f(t) whereas the se-

cond term of (4.1) is just ui,l(t).

Proceeding as before, we end up with a group velocity

equation,

Egv = 9 siniklAx 1

(2+cosk4x)
3/2

(1-cosk.3x)
1/2

1 (5.5)



40

for - n<kax<n.

Figure 5.4 is the graph of (5.5) for N=6,...,25.

Compare this graph to that of (4.8). There is very little

difference between them. This means that approximating the

spatial derivative in the wave equation with the linear fi-

nite element method is comparable to using the second or-

der centered finite difference method.
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0
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Figure 5.4. Egv for uj(t) , N=6,...,25. The graph of

(5.5) as a function of N where N=6,...,25. There is

little difference between this graph and the graph for

(4.8).

We now obtain a numerical computing scheme from (5.4)
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n+1 2.0 + nu-1 ) for r =by replacing ufil(t) with j. ( u r
n

mAt r r

j-1, j, and j+1. Thus, we get

0 = v2.( u3+1 2.113 + 113_1 ) k ( u3V. 211344 + 1132 )

2. ."'141-2.11 1-1)-1 (t:41-2'u -L-1 )
'

(5.6)3 3 J J 6 J-1 j-1 j-1

where v= cAt/Ax.

We are interested in obtaining Egg from (5.6). We pro-

ceed as before to get (after much manipulation)

(2 + coskAx )z 4 + ( 2+ coskAx )z-1 =

12- v2. s in21-<-42C+ 2coskAx . (5 .7)
2

As in section 4, we need a restriction on v so that

(5.7) does not admit real solutions with an absolute value

different from one. Assume z is real and define

f(z) = ( 2 + coskAx )z 4 + ( 2 + coskAx ) z-1 .

We find the range of f. Since

f'(z) = ( 2 + coskAx ) ( 2 + coskAx )z-2,

we have that f'(z) = 0 if z=1,-1. Thus, f has a local min

of

2 ( 2 + coskvx ) 4 at z=1

and a local max of

2 ( 2 + coskAx ) 4 at z=-1.

Figure 5.5 is a general sketch of its graph.
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Figure 5.5. Sketch of f(z) = (2+coskax) z 4 + (2 +

coskax)z-1. Here, z is real and kax is fixed.

Thus, the range of f is

(co , 2 [2 + coskax] 4 ]

U [ 2 [2 + coskax] 4

Like before, we want to determine a bound on v such

that

kn2iax2. [2 + coskax] 4 < 12- v2. + 2. coskax
2

< 2 [2 + coskax] 4 (5.8)

for all values of kax. We break up (5.8) into two parts.
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The first inequality of (5.8) yields

u2 < 8 + 4-coskAx
12. s n2k42C2

This holds true for all k.ax if we require v <21:15.The second
3

inequality of (5.8) yields v>0, which is always true by

definition of v. Thus, we require that v<7r4i .

If we proceed as before, we eventually will end with

E9 =
6 [ (2 + coskax)-( cos P ) + (sin4) (sinliclax)]

,kx( 2 + coskax ) \l2( 2 + cosicax ) 36 v2,sin22
1

(5.9)

where, in addition, we require v < to avoid division by

zero.

The graph of (5.9) as a function of N where

N=6,...,25 and v=0.5 is given in Figure 5.6. We will

need N>26 for the relative velocity error to drop below

1%. Thus, as a numerical computing scheme, (5.6) is very

comparable to (4.9) for the reasonable v=0.5. The differ-

ence between (4.9) and (5.6) is that (4.9) is an explicit

scheme and easy to program into a computer while (5.6) is

an implicit scheme and programming it will require us to

convert it into a tridiagonal matrix equation first.
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Figure 5.6. Egv for u3, v=0.5, N=6,...,25. The graph

of (5.9) as a function of N where N=6,...,25 with v=0.5.

For N>26, the curve drops below the 1% level. On this

fact, we can predict that the numerical computing schemes

(5.6) and (4.9) will give comparable results.

To use (5.6) for our test problem from section 4, we

will have to solve the matrix equation AX=1; where A is a

199 x 199 tridiagonal (16A4) matrix, 5Z is the vector of nu-

merical approximations at time level n and b is a vector

we obtain by using the numerical values from previous time

levels. Figure 5.7 is a graph of the approximations for

v=0.5 and t=2. It looks quite similar to Figure 4.6. As

predicted, the amount of dispersion that has occurred here
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is about the same as the amount we saw in section 4. In

the case of Figure 5.7, the dispersion leads the main pul-

ses whereas the dispersion in Figure 4.7 follows the main

pulses. What is probably happening is that the higher wave

numbers have higher group velocities. Consider the solu-

tion ul? to (5.6). The superposing waves that have wave num-

bers with a large magnitude are travelling with a group

speed slightly greater than

0.5

0.4 -

0.3

0.2

0.1

-0.5
0 2 3 4

Figure 5.7. Test problem for 111.1, v=0.5. The graph of

(5.6) for the test problem where v=0.5, n=199. The

amount of dispersion occurring is similar to that found in

Figure 4.7. In the case of Figure 5.7, the dispersion

leads the main pulses whereas the dispersion in Figure 4.7

follows the main pulses.
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6. THE QUADRATIC FINITE ELEMENT METHOD IN 1-D

The next method we look at to approximate the spatial

derivative in the wave equation is called the quadratic fi-

nite element method. To implement this method, we replace

the linear basis from section 5 with a new basis called

the quadratic basis which we will still label as {01_}. The

elements of this set are

(x)

Or (x)

1X -1X
2 AX

[ X-AX
2 AX I

2
for 0 <x < x2

otherwise

=
L

K 2

ax
l

for xr_i < x < xr+i (r odd)Lx
x

O otherwise

-Xr-1.] 1

2
[X-X

ax2 °[NT for xr -2 x < xr ( rX
AX

even )

21

2 L ax
1 1

Lx

xr-+11

2
for xr < x < xr+i

O otherwise

lrx-xR1-1li-x-xR-0 4.
0R (x) 2 L 'x J 2L hix J

O elsewhere

2

for XR_2 < x < x-R
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where R is chosen to be even. Notice that for r odd, Or

has support EXr_i , Xr+ and for r even, Or has support

[ Xr-2 9 XH-2 We will present the graphs of the Or's later

on in this section.

For our new definition of Or, consider the function

0=Eur(t)Or(x) where u is the function we will use to ap-

proximate u. For t fixed, u is a linear combination of the

Or's. Since each Or is quadratic and continuous, a is a

continuous piecewise quadratic function on [O,L] . We will

show that on any interval of the form [xr_Fxr+1] with r

odd, every quadratic polynomial on that interval is a li-

near combination of 0 0 and 0r+1 Thus, if [09 L] is divi-

ded into an even number of subintervals, then every contin-

uous piecewise quadratic function on

as a linear combination of 00,

[ID
,
L] can be written

OR By defining a as

we do, we are thus considering all continuous piecewise

quadratic functions on our given grid of [0, L] for our

analysis.

Let f be some quadratic function defined on

Xr±i We will show that f can be written as a linear

combination of ON]: Or, and
,

Inr+1*

find constants a, 0, and y such that

other words, we will

f (x) = a Or_cx) + 0 Or (x) -yOr±(x)

for all xE [xr_pxr_f_i] . Define = f (xr_1) 9 0=f (xr) , and
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7=f (xr+1) By the definition of Or, it is equal to one at
-

xrand zero at all other gridpoints. So,
cr. (kr-i+ 0. Or+ 7.0r+i is

equal to f for x= xr_i, xr , and xr+i . At this point, we wi 11

claim that aCbr-.3.+13 kr+
4)r+i

and f are equal to each other"

for all xE [xr_i,xr+i] . To see why this is so, define

g (x) = f (x) a Or -Ix) + r (x) + 7- Or+cx)

We have that g is either a quadratic, linear, or constant

function on the interval xF
t. xr+ii We know that g has at

least three roots, viz. , at x= Xr_i, xr , and xr+1. Since nei-

ther a quadratic, linear, nor nonzero constant function

can have three roots, we conclude that e(x) is the zero

function. Thus, our claim is proven and we conclude that

f (x) = a- cbr-cx) + Or (x) + 7 Or±cx)

for all xE [xr_i,xr+i] with a, 0, and 7 defined as above.

From our previous work, we have

R-1 R-1 L

0 = c2. E urety or oti dx E u/rf(t)1 Orq5i dx
r=1 0 r=1 0

where in this case, the length of the support for 0i de-

pends on whether j is either odd or even. For j odd, we

have

L

0 = c2. ui_1(t)1 Ofi dx ui(t)1 qifj 2 dx ui+1(t)1 cdfi+i Ofi dx }

0 0 0



+ (t) J i dx + uc(t)1 (k 2 dx + uii+1i(t)-1 0j+1. dx }
J-1 J- J

0 0 0

and for

0 = C

J even
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(6.1)

ui _2 (t) cki_2 cki dx +
J-1(t)J 4/5_1 Oil dx + ui(t).1 (k 2 dx

0 0 0

+ u. (t).1 dx + u. (t)-f Of. dx }
J+1 J+1 J J+2 J+2 J

0 0

+ (t).f Oi_2 ckj dx + (kj_i dx + uljf f dx

0 0 0

+ u+1(t)f
0

J
0.+1 J J

0. dx + u/.1+2(t)f

0

J+20 0.
J
dx }.

J
(6.2)

Each integral from (6.1) and (6.2) must be evaluated.

Consider the integrals in (6.1). Figure 6.1 contains

graphs of Oi_i, 0j, and 0}4.1 over the support of 0i where j

odd.

Figure 6.1. The graphs of Oj_1, 0j, and Oj+1, j odd.

This is graphed over the support of Oi.
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We can integrate easily if we relocate these towards

the origin such that 0i is centered at the origin. We re-

label them as OL , Oc , and OR where

oc(x) = 1 (202

OL (x)
x

1241-X)2

0R (x) = 2' xzix

on -AX < X < ax Thus, for (6.1),

AX
f 0.

J
0. dx-1 j

Oc dx

0 -AX

(
_1

2ax
15

Also,

ox
(Axx)2 [ 1

2 e ( 1 - e )-ax df

ax
(4_1 dx f 0L- oic dx

0

[ _1. 1
2 aX"

4 1
3 AX

2x 1 dx
4X 2

I dx

=

In a similar fashion, we can evaluate the other integrals.
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Thus, for j odd, we have

0 = c2-(-3-43: uj_1(t) + uj(t) 4
3ax -j+1(t)

( 23=r ufj_1(t) +
2ax ). (6.3)

' 15 uj + 15 j+1

Consider (6.2). Figure 6.2 is a graph of 0}.2, 0}.1,

0J+1, and 1j+2
over the support of (kj for j even.

1

c1:34 -1 4)j-4-2

c:

X
J

xj+2

Figure 6.2. The graphs of j 00j_1 , 0j+1, and 0j+2,

j even. This is graphed over the support of 0.j.

To evaluate each integral, we do the same as we did for

(6.1). For example, to evaluate

L

to C5j-2 (?S
. dx

weshiftthegraphsof0j_2and.(see Figure 6.3) to-
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wards the origin.

Figure 6.3. The graphs of Oi_2 and 0j, j even.

Thus,

= f

AX

-4X
OL OR dx

J
f0. dx-2 0jd
0

4X

f L2

14- 1
.IX
X .4_

2.(4
X

)

\2

-4X
13Z dx

ax
15

where again, we use the substitution e=-:& .

To evaluate fOj2 dx ,we are looking at Figure 6.4.

0
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So,

'Figure 6.4. The graph of 0j, j even.

OR2 dx

-AX

82ix
15

Continuing in this manner, we get for j even

0
c2.( 1

6 box x 1-2(,
uj_1(t) + 3:x ui(t) 31x uj+i(t) +)

/

6Ax -j±2k-/
+

15
ui_2 (t) 2.Alc If (t)

84x

15 uj-1
)

J

24X ft 4X. u/I
15 ui+1" 15 .1+2"

(6.4)

To look for an integral form for u.(t) such that it

will solve both (6.3) and (6.4) is too difficult to do.

The best that we can do is to obtain a numerical computing

scheme from (6.3) and (6.4) and use it on our test problem

from section 4.

To obtain our computing scheme from (6.3) and (6.4),
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we approximate ut.1(t) in the usual way. Call these comput-

ing schemes (6.5) and (6.6), respectively. Since we will

have implicit schemes, we end up with a matrix equation

A5Z=C; where A is a five band matrix with altering lines

[r, 2 16
15 , 1752j 0 and [11-3. _ 5 2 1

5' 15'15J'

5-( is the numerical approximations at time level n, and 6

is a vector obtained by using the approximations from time

level (n-1).

Figure 6.5 is a graph of the results for our test

problem with v=0.5 and t=2. Notice how much less disper-

sion has occurred compared to Figures 5.7 and 4.6. Thus,

we see that the quadratic finite element method causes

less dispersion to occur than the second order centered fi-

nite difference method and the linear finite' element

method.
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0.4 -

0.3 -

0.2 -

0.1 -

-0. -

-9.5
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Figure 6.5. Test problem for ur.1, v=0.5. The graph of

(6.5) and (6.6) for the test problem with v=0.5, n=199.



56

7. THE REVISED LINEAR FINITE ELEMENT METHOD IN 1-D

We will now try an experiment that will give some un-

expected results.

In section 6, we came up with two equations, (6.3)

and (6.4), that made up the quadratic finite element ap-

proximation scheme. Consider (6.3). It is indexed in j

where j is an odd integer. Define

0 = (R)2-( ui±i (t) 2-uj(t) + uj_1(t) )

( ib- u__1(t) + g- +10- uf.14.1(t) ) (7.1)

for all values of j. This equation looks like the true li-

near finite element approximation scheme with different

constants. Therefore, we will call (7.1) the revised li-

near finite element approximation scheme. Although (7.1)

cannot be obtained in any usual finite element process, it

can still be analyzed using the methods developed in the

preceding sections.

After much work, we obtain Egv,

Egv
5 475 s niklax 1

2 1/2(4+coskvx) 3/2 (1cosk.ax)
1 (7.2)

Figure 7.1 is a graph of (7.2) for N=6,...,25. For N>10,

the graph of (7.2) will fall below the 1% level. A compari-

son of the graph of (7.2) with (5.5) and (4.8) shows that
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(7.2) goes to zero at a much quicker rate as N--.co. Thus,

the approximation method used to obtain (7.1) is superior

to the methods of the previous sections.

0.2
0.19

0.18
0.17

0.16

0.15

0.14

0.13

0.12
0.11

0.1

0.09

0.08
0.07
0.06
0.05
0.04
0.03
0.02

0.01

0 r

6 8 10 12
I 1

14 16 18

N (Number of grid Intervals/wavelength)

20 24

Figure 7.1. Egv for uj(t) , N=6,...,25. The graph of

(7.2) as a function of N where N=6,...,25. The results

from this graph indicate that (7.2) is a better

approximation scheme than any of the previous methods.

Replace u"(t) with the usual second order approxima-

tion and (7.1) becomes the numerical computing scheme

1 n+1 n-1,0 = v240 2. 0 + ull i ) ( ui..1 2.11+ u_i ),+1 J J-1

n n-1N 1 / n+1_9.n + un-1).4. ( ull+1 2- u:- + u. ) 0 luj+1 "j+1
' J4-11

(7 .3)
5 J J J

In order to analyze stability, we proceed as before.

We eventually end with



(coslczx + 4)z - 8 + (coskAx + 4)z-1 = -20- v2- sin2kA2x + 2° cosicAx.

Set
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(7.4)

f (z) = (coskAx + 4) z - 8 + ( coskAx + ) .

The range of f for z real is

( -oo , -2 (4+coskAx) - 8 ] U [ 2 ( 4+coskAx) - 8 , oo )

As before, we want to bound v such that

n2kr-2 (4+coskAx) - 8 v2. si-20- + 2 coskAx

2(4+coskAx) - 8. (7.5)

The first inequality of (7.5) yields

v2 < 16 + 4 coskAx
20- s n2 /141c2

This holds true for all kAx if we require that v

Next, consider the second inequality of (7.5) . It yields

v> 0, which will always be true by definition of v. There-

fore, we require v < .

Eventual ly, we end up with the group velocity error

equation

Egv = (7.6)

10

\120(coskvx+4) 100v2sin2k4"

Ik
cos-7-k-lx(coskvx+4) +

lvx sinikivx
coskvx + 4 1

We now require v<T2 to avoid division by zero. For v=0.5,

the graph of (7.6) drops below 1% if N> 15. See Figure 7.2

where we graph (7.6) for N=6 , . . . , 25 . Thus, we expect this

new numerical approximation scheme to give much better re-

sults than any of the previous schemes
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Figure 7.3 is a graph of the results for our test

problem using the scheme with v=0.5 and t=2. Notice how

much less unwanted oscillations occurs in this graph when

we compare it to Figures 6.5, 5.7, and 4.6.

0.2
0.19

0.18
0.17
0.16

0.13-
0.14
0.13
0.12
0.11

0.1

0.09

0.08
0.07
0.06
0.03
0.04
0.03
0.02

0.01

0
6 8 10 12 14 16 18 20

N (Number of grid intervals /wavelength)

22 24

Figure 7.2. Egv for 113, v=0.5, N=6,...,25. The graph

of (7.6) as a function of N where N=6,...,25, v=0.5. The

curve is below the 1% level for N>15. This fact tells us

that (7.6) will be a better numerical computing scheme

than the previous schemes.
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Figure 7.3. Test problem for 1.1, v=0.5. The graph of

(7.3) for the test problem where v=0.5 and n=199. The

amount of dispersion is significantly less if we compare

this figure to those from previous sections.



61

8. THE FOURTH ORDER CENTERED FINITE

DIFFERENCE METHOD IN 1-D

We will develop a fourth order approximation to the

spatial derivatives in the wave equation.

Let x. be a point in the domain of a function f and

suppose that f (6) exists in a neighborhood of xj.

Defining D f(xj) and Df(xj) as we did in section 4,

we get

_
D
+
D (ax) f(xj) =

J
[ f(x.+4x) 2.f(x.d f(xjA>c) ]

where the symbol (ax) has been inserted to explicitly show

the step size used. Also from section 4, we showed that

2
D
+
D f(xJ) = fit(xj) + f

(4)
(xj) 0(4x4) .(8.1)

Similarly, if we use the step size 24x, we obtain

D
+
D
_
(24x) f(xj) = flf(xj) ge f(4)(xj) 0(ax4) (8.2)

Since f(x) was arbitrary, we replace it with u(x,t), the

solution to the wave equation for t fixed. Multiply (8.1)

by 4 and subtract (8.2) from it. We get

uxx(xjlt)
4

u ) + u(xJ ,ax(x.+Ax,t)-2.u(x.
J

t . t)-

3
I zuc2

2u(xj,t) +
0(Ax4).

3 (nx)2
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Let u.J (t) approximate u(x.J ,t) and we obtain the fourth or-

der centered finite difference approximation scheme

uq(t) =
J

c2 "i 1

ruj+1(t) -2.ui(t) + uj_1(t)

L

-2.ui(t) + ui_2(t)

3 47(2 3 (2ax)2

_

with group velocity error equation

Egv = 1 8.siniklAx-sin2lklax
`f .\116sin2k-l-sin2kAx2

1

(8.3)

(8.4)

Consider the graph of (8.4) in Figure 8.1. A compari-

son of Figure 8.1 with Figures 7.1, 5.4, and 4.2 shows

that (8.4) and (7.2) go to zero (as N-.00) at about equal

rates while (5.5) and (4.8) go to zero at a slower rate.

0.2
0.19
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N (Number of grid intervals/wavelength)
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Figure 8.1. Egv for ui(t) , N=6,...,25. The graph of

(8.4) as a function of N where N=6,...,25.



From (8.3), we get the numerical computing scheme

0 = v2) 1 2.J+11111+ uji )-1 2 ( ur 2+ 2 ul l +12)1

(up+1 2

J J

From our stability analysis, we find

2 z-1 12. (sin2kA2 x
3

16.sin2k4x).
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(8.5)

We need a bound on v to ensure that there are no

roots outside the unit circle. Proceeding as before, we

set

f(z) = z 2 + z-1.

Since the range of f is (-a3,-4]U [0 ,co) , we want to bound

v such that
24 < fr.[16.sin2p s n2kAx] < 0

or v < 475--. For the group velocity error equation, obtain
2

ET/
2112.(16. sin sinsin2 Iccuc)

u2 24x.06,sink
2

sin2kax )2

8- sin licLix
1

where now we have v<7.F47j .

For more information

[Shubin and Bell].

on fourth order

(8.6)

methods, see

When v=0.5, we need N>4 for (8.6) to fall below the



64

1% level. Figure 8.2 is the graph of (8.6) for

N=6,...,25. Thus, we expect (8.5) to be the most accurate

of all the schemes we have studied.

Figure 8.3 is a graph of the numerical approximations

from (8.5) for the same test problem as before with v=0.5

and t=2. The amount of dispersion found in Figure 8.3 is

quite small compared to the previous figures.

0.2
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0.06 -
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0.01 -

0
----- m,

6

1111111
10 12 14 16 18

N (Number of grid intervale/wovelength)
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Figure 8.2. Egv for ur11, v=0.5, N=6,...,25. The graph
J

of (8.6) as a function of N where N=6,. . .,25, v=0.5. We

cannot determine from this figure but (8.6) is less than

0.01 for N>4.
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Figure 8.3. Test problem for un, v=0.5. The graph of

(8.5) for the test problem where v=0.5, n=199. Clearly,

the amount of dispersion occurring here is much less

compared to previous results.
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9. SUMMARY FOR THE 1-D CASE

Consider the graphs of the relative group velocity er-

ror equations for the time continuous approximation

schemes. Both the second order centered finite difference

method and the linear finite difference method are equally

effective because the graphs for equations (4.8) and (5.5)

are very similar to each other. Equations (7.2) and (8.4)

both have graphs quite similar to each other and so we can

conclude that the revised linear finite element method and

the fourth order centered finite difference method approxi-

mate the spatial derivative in the wave equation with

about the same degree of accuracy.

The fourth order centered finite difference method

has an error of order four and so even beginning our work,

we would expect it to be a superior method to the second

order centered finite difference method. The surprise of

this analysis is how much better the revised linear finite

element method did over the the true linear finite element

method.

Next, consider the numerical computing schemes. Choos-

ing the best scheme of the four is not difficult. For ease

in programming and accuracy in the numerical approxima-

tions, equation (8.5) is the best. Not only is it fourth

order accurate in space but is also an explicit scheme. Al-
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though equation (7.3) is of similar accuracy, it is not an

explicit scheme and so is harder to program. Equation

(4.9) would be a better choice over (5.6) (even if they

both have similar accuracy levels) because (4.9) is an ex-

plicit scheme.
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10. GROUP AND PHASE VELOCITY IN TWO DIMENSIONS

Consider a two-dimensional propagating wave of the

form

d

u(x,y,t) =
c

b i (x+ Tly wt)
f n) e

a
(10.1)

where f is a bounded, real-valued amplitude function and

w=w(,q). Call the function relating w with and 71 the

dispersion relation for u.

We will define the group and phase velocity vectors

for u . Let be a point between a and b, rio a point be-

tween c and d. We will assume IQ> (ba) and iriof > (dc) . De-

fine wo=w(e0,770) and consider

u(x,y,t) =

ei(ox+qoY wot)
d

f
b

f(e,7/)e
i[(eeo)x+ (77-770)y (wwo)tl gdg.

c a

Using Taylor's theorem in 2-D, we have

4,;(,77)w(e0,770) =

-A-w(0,770) (77-77) -cw(0,770) 0[ 177--,701 ]2.

So,

u(x,y,t)

(ox+7/0Ywot)
F [xwf( o 710)t 7 yw,i( (;) no)t] (10.2)
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where

fbfmo.ei(eCo)(xwe(0,7/0)ti i(1-7743)[Ycd,g0,770)ti gdg.
'c 'a

We define the group and phase velocity vectors for (10.2).

The observations on (10.2) are similar to those found in

section 2 and in most cases, their justifications will be

omitted. To define the group and phase velocity vectors

for (10.2), we will need the velocity vectors for its com-

plex exponential part and for F. For F, the velocity vec-

tor is (we(C),r70),wn(4.0,7/0)). To determine the velocity

vector for the complex exponential part of (10.2), we will

determine the velocity vector for its real and imaginary

parts. The complex exponent of (10.2) has real part

cos(ox+wcvot) = cos1(f),770)1[%(x,y)et] (10.3)

where

= (to , no) e wo

lUo , no)! 1(.3 no)l

Consider an arbitrary point (x,y). We look at 9, and

9t(x,y) on the xy-plane. See Figure 10.1. For every point

(x,y), there is a point on L that is %.(x,y) distance

away from the origin. The graph of (10.3) as a function of

91,.(x,y) is a cosine wave (t fixed). See Figure 10.2.
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Thus, (10.3) as function of x and y with t fixed looks

like a cosine wave in 3-D. See Figure 10.3.

Figure 10.3. The graph of cos 1(e0,q0)1 [9t (x,y)et] as

a function of x and y. The graph is a three dimensional

figure cutting back and forth through the xy-plane.

Thus, the graph for t fixed of

cos1(0,770)1[9t,(x,y)et]
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is just the graph of

cos10;0,77(01 [36(x,y)]

translated et units along the line L.

We summarize. Equation (10.3) has a graph that moves

in the direction eo with speed lel. Therefore, it has a
fo 9 lo

velocity vector

(fo 'go)
no)! l(Ca 9 7/0)12

( Flo) (10.4)

The complex exponent of (10.2) has imaginary part

s in ( egx-Frigy-cagt ) . It will have a velocity vector of the

form (10.4). We conclude that the complex exponential part

of (10.2) has a velocity vector (10.4).

Next, consider the graphs of F and the complex expo-

nential term in (10.2) for t fixed. It can be shown that

the graph of F is a slow varying one compared to the graph

of the complex exponential. Thus, the graph of u is made

up of a complex exponential wave embedded in an envelope

of the form of F. The group velocity vector for u, Cg,

will be defined to be the velocity vector of the envelope.

Thus,

Cg = ( 1:,) 9 C4/T1 ( C3 7/0 ) ) (10.5)

The phase velocity vector, Up, for u will be defined to be

the velocity vector for the wave in the envelope. Thus,
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Cp = 0
2 ( 710 )

110 )I

Consider a more general form for (10.1) where (ba)

and (dc) are both of arbitrary size. We deal with u as

follows. Divide [a,b] and [c,d] into tiny intervals by

and

a=a0 < a1 < a2 < . .

c =

. < < am= b

< Q1 < < fiN= d

where M and N are both arbitrary integers. We can thus

write (10.1) as

aq
u(x,y,t) = f(,77).e

i(ex+77ywt)

J
J (177.

r=1 q=1 or-1

Each integral represents a travelling wave with the

(qth,rth) integral having a group velocity vector of the

form (10.5) where aq_1<e0<aq and /3r_1 <770</3r. We think of u

as a superposition of many waves, each wave having a parti-

cular group velocity vector. These waves may travel at va-

rious speeds and directions.
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11. SOLUTIONS TO THE TWODIMENSIONAL WAVE EQUATION

Consider the two-dimensional wave equation

u
tt

= c2.(uxx u )
YY

for given initial conditions. Its solution can be repre-

sented in an integral form using the dispersion relation

w2 c2. e 772 )

Since the vector

C11

17.7_772
, ±14.2+7721

is both the group and phase velocity vector, the solution

to the wave equation will not disperse. The angle

0=tan-1
tvn

=tan-117

is the smaller angle made between the group velocity vec-

tor for the wave with wave number vector (,77) and the x-

axis. We will call this the group propagation angle. It

gives us an idea of what directions the waves with wave

number vectors (±£,±q) are travelling. Like before, we

will compare the group velocity vectors for different nume-

rical schemes with the group velocity vector for a general

solution to the wave equation.
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12. THE SECOND ORDER CENTERED FINITE

DIFFERENCE METHOD IN 2-D

We now begin analyzing various approximation methods

applied to the 2-D wave equation starting with the second

order centered finite difference method in 2-D. Let

u(x,y,t) be the solution to the wave equation for given in-

itial conditions. As in the one dimensional sections, we

will consider only the IVP for the wave equation in order

to eliminate the need to incorporate boundary effects. Let

u.
m
(t) approximate u(jAx,mAy,t). Since

and

u (x,y,t) = 43[
-1

2 I-r u(x+4x,y,t)-2.u(x,y,t)+u(x-Ax,y,t)]+ 0(4x2)
xx

uyy (x,y,t)= py21 ru(x,y+ay,t) 2.u(x,y,t) +u(x,y-Ay,t)] +0(43,2),

we have the second order centered finite difference approx-

imation scheme

0 = c2
X

,2M(t)
uJ.-1,rn(t) J,M+1

(t)

413,2

d2
dt2 11-1,M (t)*

(12.1)

We need a form for u. (t) . Define a Fourier transform
mm

of a grid function by
co co

( rizly , t) = dX 4ty.E E u. (t)e
m=-00i=_00

oo oo

= E E ( LIX dy (t) ) e
-

mnm.-c0j=
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Think of this as a Fourier series expansion for a in

eAx and 7pdy. Since 11 has a period of 2H in both eAx and

71Ay, we restrict -II <.1)(<17 and IT < 774y < II . If we regard

(AxAyu. (t)) as the coefficients in the series, then
J,m

17/4y II/ °x

u. (t) = ii ( ..:DC , 7/Ay ,t) ei(e4x. j±"Y m) de dri. (12.2)
Lm 412 f f

-11/4y ..,,.

We need a form for II. To get it, put (12.2) into (12.1)

and using ideas from section 4, we obtain

e-ieax) (10 (e2 i"Y 2 + ei1143r )1 att.

Solving for a, we get

where

a = A(e,q)e-iwt B(e,q)eiwt

w = , 17) = 2c ,1(,71-137)2sin2E--X )

2-
sin2'1-Ay 2

Define wi=w and 4,)2=-4,. Then,

u. m(t)

II/Ay II/ °x

412,2 f
-H/Ax

J4/7 f
-H/Ay -H/Ax

A ( e , ri) e 1
(ex+0y--w1t)

ded,7

B(e,g).e
i(ex+ww2t)

dedq.

To determine an accuracy level for the scheme (12.1),
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we will consider ci, (t) as a superposition of travelling

waves. For each wave with wave number vector (0), we

will determine its group speed AI, and its group propaga-

tion angle e, i.e., the smaller angle made between its

group velocity vector and the x-axis. Thus, for

-ll < edx < rr and -17 < bay <

8 = tan-1
Ax sinqAy
AY sinax

c 1 I
Ay2 s i n2e.dX dx2- s i n.277 dy

4XAY 2 1I (L)2. sin2f-2-4 (102. si n2 n4t2Y

where 0 = tan-lp

set dX= Ay = h. So,

(12.3)

and lUgHl cal + 4. To simplify things,

8 = tan-1

ICgI =

sinqh
sinO

sin2th + sin2qh

sin2C-t2 sin2r22
2 2

Recall section 11 where we discussed the solution

u(x,y,t). to the wave equation. If we considered u in an in-

tegral form, then u is a superposition of waves each with

a wave number vector (e,q). Each superposed wave will

have a group speed lc' and group propagation angle

= tan -Ti t We will use these facts to quantitatively
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look at e and Ak

First, we will consider e. Define N as follows. For a

wave travelling in either the x or y direction, let

N = =A 2H/lki 217

h h

where A is the wavelength of the wave and k is its wave

number in the x or y direction. Therefore, N has the units

of number of grid intervals per wavelength for waves mo-

ving in the x or y direction. Let N be an integer greater

than 1. Consider the eh-qh plane with a circle of radius

2H Let 0 be anN

Figure

angle between 0° and 90°. See Figure 12.1.

12.1. A circle of radius 2H in the eh -qh

plane. We have N fixed and 0 between 0° and 90°.



We have that

= 2H-cos0

rih = agsin0.
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The superposed wave of the true solution u with wave num-

ber vector (4.,q) will travel with a group propagation an-

gle of 0. The superposed wave of u. (t) with wave number
1m

vector (e,77) will have a group propagation angle of e.

Thus, 10ei is the group propagation angle error, i.e., the

amount of degrees off from the correct angle the super-

posed wave of u.
1m

(t) should have travelled. We will let

N=2,3,... and for each N, look at 10-01 for

0=0°4'4°,3*, ,90% Figure 12.2 is a graph for a few

values of N. For each value of N, the superposed waves of

u. (t) travel in the correct directions at 0*, 45°, and 90°
i,111

and has its worst error at 22*and 671% Notice that as N2

gets bigger, the errors gets smaller. This means that as

we let 4.---0 and 77-+0, waves with wave number vectors (e, q)

travel with less and less error. Consider the graph corres-

ponding to N=12 in Figure 12.2. We have that 10el is at

most 0.67* (We will always choose N=12 as a representa-

tive case in the comparison of different methods).
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Figure 12.2. I-®I for u. (t), N=10,...,13. The

graph of 10-01 for (12.1) for N=10,...,13; 0 is

represented on the horizontal line. Each curve represents

the group propagation angle error for waves with wave

number vector (,77), eh = 2N-cos0, qh = if.sin0.

Next, we look at Pgl. Once again, let 0 be between 0*

and 90° with eh and i7h determined as above. The superposed

wave of

with a

error E5 is

E5

u. (t) with wave number vector (,71) will travel

speed of Al. Therefore, its relative group speed

icl

1

2 \

sin2eh + sin2qh

sing 2 + sin2 '7112 2

1
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Figure 12.3 are graphs of Es as a function of 0 for differ-

ent values of N. As N increases, i.e., as and 770,

the waves travel with less and less error in their group

speed. For N=12, the curve lies within a 1.7 to 3.4% error

span.

0.05

0,045

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0
i 1 i 1

20 40 W 80

Degrees

Figure 12.3. E5 for u.
J011

(t), N=10,...,13. The graph

of E5 for (12.1) for N=10,...,13. The horizontal axis is

0. Each curve represents the relative group speed error

for the waves with wave number vector (e,77), eh = 2Vcos0,

i7h = 2g .sin0.

We now obtain our numerical computing scheme by ap-
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proximating (t) using the second order centered fi-
dt J.111

nite difference method in time. Thus, using the notation

uJn. u
j , m

(n At) , we get

0

un 2.un. + un un 2-un. + un

= c2 J-1-1,m j,m j-1,m j,m+1 j,m j,m-1

dX2 Ay2

n+1
u. 2.1.1!1 ±un-1

.1,111 .bm .1,111

dt2
(12.4)

Let us find a Fourier representation for 111- . Define
J ,m

00 cc -i(ctxj+rj..y.m)
fin(eAx,77,ay) = axAyE I: un e

m=-00j,0, i ,m

where we think of the right side as the Fourier expansion

for Q. Then,
IT/Ay 11 /ax

1 f
f

i (4...Ax. j +rjAy.m )

un = lan(ax,77AY)*e (gel?)

..i,m 4/12
-17./ay -11/4x

where we need to find Ü. Put this integral into (12.4)

and use ideas from previous sections to obtain

c 2 iedx -iedx c 2 iti,sy 2 +0 jv--)(') (e 2 + e ) (TO (e ) un

n+1 u un -1

dt2
(12.5)

Assume (12.5) has a solution of the form A(E,q).zn for
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some complex function z=z(4,q). Putting this into the

above equation, we get

1z 2 + z

If z solves

(12.5) then

2
[cat]

4-

cat
'-
4.sin).

Thus,

an

(12.6)

solves

B.z-n

(-4-sin2eAx)AX 2 '

(12.6), then so does z-1.

so does B(e,71)z-n. Thus,

2

if Azn

= A-zn +

is a general solution to (12.5) and

H/4y H/4x

u. A(4,77)-zn.ei(4'Ax.i+77431.1n) d4d77
j,m 412 f f

_11/Ay -if/Ax

fflay Hlax
1_ f f

4H2 J
-f /ay

(12.7)

B(4,q). z nem) cl4dri.

is a general solution to (12.4).

Claims 1 and 2 from section 4 must hold true for

(12.6), except that we will require

[c 2
.4_ [c

x + ay < 1.

This will lead us to conclude that Izi=1. To see why the

above is a sufficient requirement, we look first at

(12.6). Recall from claim 2 of section 4 that for the sake

of stability, we want to make sure (12.6) does not admit

real solutions with absolute value different from 1. This

amounted to making sure that the right side of (12.6) is

always bounded below by -4 and above by 0. So, we have

-4 < [c4°12(_4.sin 2 ed2-( ) -r [C ]2 4.sin2 2 ) < 0x k 2
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rcAt. [cal
Lax j Ay < 1.

Thus, if z is a solution to (12.6), then z has the form

where

z = z(e,17) e-iwAt

To determine w, replace this exponential

form for z in (12.7) and put this integral form into

(12.4) to get

1
W = At

Define wl

1 2
L

(cAt)2 2 e Ax (cAts2)sin22.411 I
k Ax / " 2 kAy

to be the positive value of w and w2 to be the

negative value of w. Thus,

Hlay HIAx

1.1.11

1
Ari)ei" "Axi±YmwlAt.n)gdii

Jim 4/,2 f
-H/Ay -m/ax

irlAy 1r /ax

.1_ 1_
J
f

f41-12
-H/Ay -H/AX

@loc j + Ay m w2At n )
B(e271)e dedi7

is a general solution to (12.4).

Then,

and

Define [...] to be

(cAt)2 i n2 fax (cAt 2) s i n2 n4Y\Az/ 2 \LI)/ 2

1;1

= tan-1 AX sinqAy
4IY

c4. At2 sin2Ax c4 At
2 sinnAy

AX
2

4([...]--L.12 ) AY
2

4([--]--[...]

2
)
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Notice that e here is the same equation as (12.3). In

fact, throughout the rest of this investigation, the ap-

proximation scheme continuous in time and the numerical'

computing scheme we get from it will always have the same

group propagation angle equation. To simplify the analy-

sis, we will let h=.ax=,Ay.Thus, define [...] as

and v= we get

and

10-el =

Es = 1
2

20.1 2nh
sin -T. + sin 2

tan-1171 tan-1

sin2th+sin2qh

singh
sinO

1

where v<7y. Figure 12.4 is the graph of Es for different

values of N where v=0.5. At N=12, the curve lies within a

0.8 to 2.6% error span.
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Figure 12.4. Es for u7 , v=0.5, N=10,...,13. Thej ,m
graph of Es for (12.4) for N=10,...,13 with v=0.5.

We will consider the test problem

u
tt uxx + u

YY

e-500
i(x-2) 2 ±(y-2) 2 }

u (x,y, 0) =

ut(x,y,O= 0

u(0,y,t) = u(4,y,t) = u (x,0,t) = u(x,4,t) = 0

for 0<x<4, 0<y<4, and t>0.

Define Ax=vy=0.02, Llt=0.01 and use (12.4) to approxi-

mate the solution to the test problem at t=2. Figure 12.5

is a graph of the numerical approximations at y=2 and
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t=1.5. The shaded area of Figure 12.6 is the values for x

and y where the numerical approximations are greater than

0.0001. Dispersion is occurring the most along the 0°, 90.,

180°, and 270° directions since this is where the shaded

area of Figure 12.6 is thickest.

0.06

0.05 -

0.04 -

0.03 -

0.02 -

0.01

- 0.01 -

- 0.02 -

-0.03 -

-0.04

- 0.05

-0.06
0 2 4 6

Figure 12.5. Test problem for un , v=0.5, y=2. The
JOI

graph of (12.4) for the test problem where v=0.5, y=2,

and n=149.
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Figure 12.6. Domain of un where un >0.0001. The
i'm j,m

shaded area indicates where the numerical approximations

from (12.4) are greater than 0.0001.
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13. THE LINEAR FINITE ELEMENT METHOD IN 2D

We will now use the linear finite element method in

2-D to approximate the spatial derivatives in the wave

equation.

Define

.E. [ u ] = c2. ( uxx + u
YY

) ut
t

.\

We want to find u such that

1,[u] = 0

for the initial conditions

u(x,y,0) = f(x,y)

ut(x,y,0) = g(x,y)

where 0<x< X, 0<y<Y, and t>0. As in the 1-D case, we

will consider the convenient boundary conditions

u(0,y,t) = u(X,y,t) = u(x,0,t) = u(x,Y,t) = 0

for t>0.

If 2, [u]=0 , then
Y X

0 = f I

0 0

L[u].w(x,y) dxdy

for any w. We can rewrite this as

Y X Y X
0 = c2. I i uxx w(x,y) dxdy + c2. i f u

YY
.w(x,y) dxdy

0 0 0 0

Y X

f-f utt w(x,y) dxdy.

0 0
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If w is continuously differeniable then use integration by

parts on the inner integrals of the first two terms to get

0 = c2.f [ux(X,y,t)w(X,y) ux(0,y,t)-w(0,y) dy

0

Y X

c24 J
ux ax

a w dx dy

0 0

c2
X

f
0

[ uy(x,Y,t) w(x,Y) uy(x,0,t) w(x,0) dx

X Y
c2. J J uy w dy dx

0 0

Y X
c2..1" utt. w dxdy.

0 0

(13.1)

If (13.1) is satisfied for all w, then we can reverse the

above argument to show that L[u] =0 (provided uxx and uyy

both exist). Equation (13.1) is called the weak form of

the PDE L[u] =O.

Divide [0,X] into R intervals of size Ax and [0,Y]

into Q intervals of size Ay, and suppose that we approxi-

mate u with the piecewise linear function

Q`

11(x,y,t) = 1: 1: u rq (t). rA(x,y)
q=0 r=0

where IkrV,y) = Or(x).1(y), and fOrI and {0} the linear

finite element bases in x and y, respectively. We will set

u
0 q

(t) , uR (t), u
r 0

(t) , and UrQ (t) equal to zero so that CI

satisfies the boundary conditions. (For different boundary
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conditions, these functions would not be set equal to ze-

ro.) Therefore, we approximate u by

Q-1 R-1
11(x,y,t) = E E ur,q (t) r,q

(x,y).
q=1 r=1

Replace this representation for 0 into (13.1) and de-

fine w(x,y) as 01m, 1 < j < R-1 and 1 < m< Q-1. Apply si-

milar arguments from section 5 to get
Y X

c2. (t) 2-0 dxdy
oX r,q oX 0.

q,r 0 0

+ C2 E U (t)
q,r

X

f

Y

f
0 0

a
'r

a ,,,
ay ,q ay -.Lni

Y X
/2 U"rq (t) tkr,qlkini dxdy.

,
q,r 0 0

dxdy

(13.2)

Consider the basis element 01,11. Since 0i = 0ax,y)

=0i(x)0m(y) where 0i and Om are linear 1-D basis functions

in x and y, respectively, the support for 0.J m is the sha-

ded region of Figure 13.1.

Ym-1

x.
J

Figure 13.1. The support for 01m.



92

Thus, the only nonzero integrals of (13.2) are for

j-1<r<j+1 and m-1<q<m+1 . We evaluate a few of them. Con-

sider the last term of (13.2). For r=j-1 and q=m-1, we

have the

rY

integral

r"K

tki,m dx dy =
rX

0. (x). 0. (x) dx (y) Om(y) dy

0 0 0 j- 0 M-1

ax AY
6 6

AX ay
36

When r=j and q=m-1, we have

Y X X

JO
0

01n1.1.0Lm dxdy = JO 0.(0.0.(x) dx.f

0

Om(1/)Oncy) dy
J

2ax AY
3 6

dx ay
9

When r=j+1 and q=m-1, we have

rY rX
0Ln, dx dy = t4(f) (x) dx

0m
-(!Y) OnV) dy

0 0 0 0

dx Ay
6 6

41X ay
36

Evaluate all the integrals in this fashion. Substitution
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into (13.2) will give the 2-D linear finite element approx-

imation scheme (we wri.te
J

(t) as . for convenience)
m

2-u +c2.
uj-1,m-1 j,m-1

4
2. uj,m + uj+i,m

COE
2 4)(2

+ uJ.
+

2 uj
c2

uj-1,m-1 -1,m -1,m+1
dy2

J-1,m+1 2 ui,m+1 ui+i,m+1

AX2

+ 4 ui'm-1 2. ui,m +uj,m+i
dy2

2 uj+i,m

dy2

= 1 ( luif( 2 11 1 if ) + 4- ( lun + 2uir + luit )
2 6 j-1,m-1 +

3-uj,m-1-1- guj+1,m-1 6 j_Lm 3 ion 6 j+i,m

1 2 11-U. 1 f
j -U.6 -1,m+1 3 J,m+1 6 J-}-1,m+1

1 (i
L I . 1uu + 2it lif

2 k 6-j_m-i 3 u j-f + 1u1,m6 j-1,m+1 ) + 4 ( 6 j ,m-1 3
u +j,m 6

uj-I-m1 )

1
( -WI 1 f

-u.6 j+i,m-1 J-1-1,m 6 J+1,m+1

(13.3)

It looks as though we obtained (13.3) in the following

way. First, we fix the y variable in the 2-D wave equation

at the point y=ym_i and apply the 1-D linear finite ele-

ment method in x to it. Do the same thing for y fixed at
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3,==ym and ym44. Next, fix the x variable in the wave equa-

tion at the points x=x x
J-1 J

and > i and at each fixed

point, apply the 1-D linear finite element method in y to

it. We now have six different equations. Take a weighted

average of these six and we get (13.3). We define (13.3)

as a 1-4-1 averaging of the 1-D linear finite element ap-

proximation. The graphs of 10-01 for (13.3) looks very simi-

lar to the graph of le-01 for (12.1). For the sake of

brevity, the graphs are not shown here. At N=12, the

graphs are within 0.29° of each other, both having an er-

ror of no more than 0.69% For Es for (13.3), the graph cor-

responding to N=12 lies within a 1.7 to 3.4% error region.

This is the same result we got from the graph of Es for

(12.1). The graphs for Es for (13.3) and (12.1) overlap

for N greater than or equal to 12.

To use (13.3) to obtain a numerical computing scheme

would be difficult. To simplify things, we will replace

the entire right side of (13.3) with 0 (i.e., we will

mass lump the right side of (13.3) by replacing it with

ufm). Label this new scheme (13.4) and call it the 2-D

unweighted linear finite element approximation scheme. The

graphs of K9-01 for (13.4) looks very much like the graphs

for (13.3) and (12.1). At N=12, the graph of 10-01 for

(13.4) never exceeds 0.70% The graphs of Es for (13.4)

looks much worse than the graph of E5 for (13.3) and
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(12.1). The graph of E5 for (13.4) with N=12 lies within a

3.5 to 5.0% error region.

Approximate u1.1,mof (13.4) in the usual way to get the

numerical computing scheme. Label this scheme (13.5). For

v =cht
'

where h= AX = Ay , we require v <1 . This is deter-

mined by experimentation and not analysis because (13.5)

is too difficult to deal with. Consider E5 for (13.5) with

v=0.5. The curve for N=12 lies within a 2.6 to 4.4% error

range. This result is much worse than E, for (12.4) with

the same value for v. Thus, on the basis of their relative

group speed error results, (13.5) will not be as accurate

a numerical computing scheme as (12.4) when v=0.5.
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14. THE REVISED LINEAR FINITE ELEMENT METHOD IN 2-D

Consider (13.2) where ikrq=0r(x)0q(y) and Olm

0i(x).0m(y). We define, in this case, {Or}, {0}, {0i}, and

{0m} as the 1-D quadratic finite element bases in x or y,

appropriately. Recall from section 6 that the graph of 0i

depend on if j is odd or even. Because of this, the quadra-

tic finite element approximation scheme will be a multiple

equation scheme, each scheme being indexed in (j,m); j

even m even, j odd m even, j even m even, and j even m

even. In the 1-D case, we ended up with a quadratic finite

element approximation scheme composed of two equations. We

were forced to skip all analysis and had to settle with

just looking at a graph of its numerical approximations at

a fixed time point. In this case, we are in the same predi-

cament except we will not even attempt to get numerical

approximations using the quadratic finite element method.

The difficulty involved in programming any computing

scheme we obtain would be too great.

In the 1-D quadratic finite element approximation

scheme, we had two equations subscripted in j, one for j

odd and the other for j even. We defined the revised li-

near finite element approximation scheme by considering

the equation for j odd and redefining it for all integer

values of j. We will do something similar to develop the
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revised linear finite element approximation in 2-D. Once

again, consider (13.2) where 0rq=0r4x,y)=0r(x)0g(y) and

0im=01(x,y)=0,i(x)-0m(y) . Define Or, 0q, j 0m as the 1-D qua-

dratic finite element bases in x and y, appropriately. In

this case, we will fix j and m as odd integers. Evaluate

each integral and the equation we end up with will be one

of the equations that make up the quadratic finite element

approximation scheme in 2-D. At this point, define this

equation for all integers j and m and define it as the re-

vised linear finite element approximation scheme in 2-D.

We proceed as discussed. For (13.2), define

or,a = or (x) oq (Y) and = 15; (x) Om (Y) where (kg and 0m

are the 1-D quadratic finite element bases in x and y, ap-

propriately. Fix j and m as odd integers. Thus, 0jm has

the same support of the form drawn in section 13 when we

were discussing the linear finite element basis. Thus, the

only nonzero integrals in (13.2) are found when j-1<r<j+1

and m-1 <q<m+1. We evaluate the integral of the first term

of (13.2), r=j-1 and q=m-1,

Y rX

j j j_i, m_i dx dy cbj_1(x). (x) dx m_1(y) Ogy) dy

0 0 0 0

2-dx

15 15

4225 '

For r=j and q=m-1, we have
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Y XfdxdY = fx Oi(x)qx) dx J Orn_1(Y).04Y) dY

0 0 0 0

164x 243,
15 15

32
= M".4y.

The rest of the integrals are evaluated in a similar fa-

shion. Replace these values into (13.2), define it for all

values of j and call this equation the revised linear fi-

nite element approximation scheme in 2-D. Label it as

(14.1). We end up with a scheme that is a 1-8-1 averaging

of the 1-D revised linear finite element approximation at

the points y=yrn_1, ym+1 and x=xj_i, xj xii./.At N=12,

the propagation angle error never exceeds 0.12° and the re-

lative speed error curve lies within a 0.3 to 0.6% inter-

val.

To obtain a numerical computing scheme from (14.1),

we convert it to an unweighted scheme as we did in the

true 2-D linear finite element approximation scheme. Call

this the 2-D unweighted revised linear finite element ap-

proximation scheme and label it (14.2). The propagation

angle for (14.2) is at about the same level of accuracy as

(14.1) but the relative speed is much worse. At N=12, 10-01

for (14.2) never exceeds 0.13% . At N=12, Es has risen
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between a 3.5 to 3.7% region. A very important observation

of the relative group speed error graphs is that the

curves are almost flat, i.e., (14.2) is a near isotropic

scheme. We interpret what this means. Consider the solu-

tion to the wave equation, u and the solution to (14.2),

u1m(t). We can imagine u to be a superposition of tra-

yelling waves, all of which have group speed lc' no matter

what its group propagation angle is. Now, consider u.
IT

(t).
JJ

By its relative group speed error graphs, it is composed

of a superposition of travelling waves that all travel at

about the same speed. Although the error in speed is

relatively high, it is at least a uniform error no matter

what the angle is.

Convert (14.2) into a numerical computing scheme and

call it (14.3). Some experimenting shows that we must re-

quire v<1 . The graphs of Es for (14.3) when v=0.5 are

about as good as for previous sections but the near isotro-

pic behavior from (14.3) is still quite obvious. At N=12,

the graph for Es for (14.3) lies in a 2.55 to 2.9% range.
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15. THE FOURTH ORDER CENTERED FINITE

DIFFERENCE METHOD IN 2-D

Consider the 2-D wave equation. Approximate umc using

the fourth order centered finite difference method by ex-

panding along the line y=ym. Similarly, approximate uyy

using the fourth order method on the line x=xj. Thus, we

get the fourth order centered finite difference approxima-

tion scheme

c2 [4 1.1.i

4-1,m
(0-2.11. (t)±u.

1

11.1.-1-2,m(t) 2-11. (0+ -2,m(t)J(t) j-1,m .1,111

3 dX2 12 Ax2

U.
2 ,m
(t) 2- u. (t u. (t)

c 2 [4
ui,m+1(t) 2. ui,,m(t) uj,m-1(t) JM i,M-2

3
aye 1 J,+

12 43,2

d
2

=
dt2 -I

u.
'

(t)
m

(15.1)

Figures 15.1 and 15.2 give the graphs of ®- and Es

for (15.1). The results are a great deal better than for

previous schemes. At N=12, the curve for the propagation

angle error does not exceed 0.035° and at N=12, the curve

for the relative speed error is at most 0.2%.
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Figure 15.1. le-01 for uj,m(t), N=10,...,13. The

graph of P-01 for (15.1) for N=10,...,13.
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Figure 15.2. Es for uj,m(t), N=10,...,13. The graph

of E5 for (15.1) for N=10,...,13.
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Obtain the numerical computing scheme from (15.1) in

the usual way and call this new scheme (15.2). In this

case, we find experimentally that v<a. When v=0.5, the

graph of the relative speed error for N=12 lies in the re-

gion 0.66 to 0.82%. This is the best result we have seen

so far for a fully discretized scheme. See Figure 15.3.
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0.001

Degrees

Figure 15.3. E8 for un , v=0.5, N=10,...,13. The

graph of E5 for (15.2) for N=10, ... ,13 with v=0.5.

The final two approximation methods are studied in

the hope of finding a near isotropic approximation scheme.

They will both be variations on (15.1).

We start by developing a diagonal fourth order cen-
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tered finite difference approximation scheme. To obtain

this scheme, we will use the fact that the Laplacian is in-

variant under rotated coordinates. This means that if we

consider the rotated coordinates x/ and y' at the point

(x,y) (in this case, we will rotate it by 45') then

U ±ll = U 11xX YY xx 1+
YY

y

see Figure 15.4.

Y x'

(x,y)

Figure 15.4. The x1 -y' coordinate axis. We obtain them

by rotating the x-y coordinate axis 45'at the point (x,y).

To approximate uff at the point (xpYm), we will expand
xx

along the xl axis using the fourth order centered finite

difference method and the points indicated in Figure 15.5.

To approximate u1, at the point (x.ym ), we will expand
Y Y

along the y/ axis using the fourth order centered finite

difference method and the points indicated in Figure 15.6.



The step size we are now using is ,I4x2+Ay2 .

v
m+2

Y -m+1

Ym

Ym-1

Yrn-2

xj-2 xj-1
xj +2
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Figure 15.5. The points on the xi-axis used to approx-

imate u
x

fat (x,J ym ).

m+2-

ym4.1

Ym

Ym_1-

Ym-2

x . xixj-2
x .3+2

Figure 15.6. The points on the y' -axis used to approx-

imate U
Y

lat (x,J ym).
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Thus, the 2-D diagonal fourth order centered finite

difference approximation scheme is

c
dx2+ ny2

2 4
u+1,m-1-1 (t) 2 u

,m
(t) + uj.

-1,m-1 (t)

+ c
3 dx21-y 2

1

ui.+2,m+2(t) 2 u. (t) uj-2m-2(t)
12 dx2 +ay2

2 rn( 4
ui+1,m-1(t) 2 u.

J
(t) + uj-

,
1,m-1-1( 0

_12

= u. .

dt2 Lm
(t)

1 u -1-2,m-2(t)
2. u.

rn
(t)

J, uj-2,m-1-2(t)
12 Ax2 ay2

(15.3)

The graphs of 10-0I and Es for (15.3) indicate that (15.3)

is not quite as good a scheme as (15.1) but much better

than all the previous ones. In any case, the graphs for Es

indicate that we do not have an isotropic scheme. The fact

that (15.3) does not yield as good results as (15.1)

should not be too surprising. This is because in the case

of (15.3), we are using a step size of .1-11 instead of

just h where h=_Ix=ay. The bigger step size is the prob-

able reason for (15.3) not being as accurate as (15.1).

Call (15.4) the numerical computing scheme for

(15.3). In this case, we find that v<TT4-3 . The graphs of Es

for various values of N with v=0.5 look better than the
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results from all previous schemes except (15.2). Once

again, no isotropic behavior is observed.

Finally, let us consider taking an average of (15.1)

and (15.3). Call this scheme the combined fourth order cen-

tered finite difference approximation scheme. Label it

(15.5). A bit of experimentation shows that we must re-

strict v<-1--. The results for its group propagation angle

and group speed is an averaging of the results from (15.1)

and (15.3), which is not surprising. Obtaining and analyz-

ing the numerical computing scheme gotten from (15.5)

would be very difficult and since (15.5) does not appear

to be more accurate nor isotropic an approximation scheme

than (15.1), we will not go any further with this.

Recall the test problem from section 12. Figures 15.7

and 15.8 are the numerical results using (15.2). Figure

15.7 is a graph of the numerical results when y=2 and

t=1.5. The shaded area in Figure 15.8 indicates where the

numerical approximations of (15.2) are greater than

0.0001. Notice how much more circular the shaded region is

compared to Figure 12.6. This tells us that there is less

dispersion occurring when (15.2) is used than when (12.4)

is used.



0.06

0.05 -

0.04 -

0.03 -

0.02

0.01

-0.01

-0.02 -

-0.03 -

- 0.04 -

- 0.05 -

o.o6

0 2 4 6

107

Figure 15.7.. Test problem for ul." , v=0.5, y=2. The
J/m

graph of the numerical approximations for y=2, t=1.5. The

graph shows how much less dis-persion is occurring when

compared to Figure 12.5.
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Figure 15.8. Domain of un where un >0.0001. The
i'm ilm

shaded area indicates where the numerical approximations

of (15.2) are greater than 0.0001. The circular, thin re-

gion indicates that (15.2) is a less dispersive computing

scheme than scheme (12.4).
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16. SUMMARY FOR THE 2-D CASE

Consider the time continuous approximation schemes ob-

tained by implementing the following approximation me-

thods.

1. The second order centered finite difference

method (label this scheme as FD2)

2. The linear finite element method (LFEM)

3. The revised linear finite element method

(RLFEM)

4. The unweighted linear finite element method

(ULFEM)

5. The unweighted revised linear finite element

method (URLFEM)

6. The fourth order centered finite difference

method (FD4)

7. The diagonal fourth order centered finite

difference method (DFD4)

Label the scheme obtained by averaging FD4 and DFD4

as CFD4.

We can divide these eight schemes into two groups ac-

cording to their degree of accuracy.

1. FD2

2. LFEM

3. ULFEM



and

4. URLFEM

1. RLFEM

2. FD4

3. DFD4

4. CFD4
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Consider the first group. The LFEM was a disappoint-

ment because it gave such a complicated formula with an ac-

curacy no better than FD2, whereas FD2 was a much simpler

one. Mass lumping was used to obtain the schemes ULFEM and

URLFEM. They came about because of the complications in-

volved in trying to obtain numerical computing schemes

from LFEM and the RLFEM. Much of the accuracy of RLFEM was

lost when we obtained URLFEM but the appealing thing about

URLFEM was its near isotropic behavior. Less isotropic be-

havior was observed in ULFEM and its accuracy level com-

pared to URLFEM was much worse.

The accuracy level of the second group is far better

than the accuracy level of the first group with FD4 being

the best of them. As in the 1-D case, RLFEM was a sur-

prise; although a very complicated scheme, its accuracy le-

vel puts it in the same level as the schemes with fourth

order accuracy. Scheme DFD4 had an accuracy level compara-

ble to FD4 but DFD4 does not seem to offer any advantage

that FD4 already has. The scheme CFD4 is not worth using
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because of its complexity and because its accuracy level

is merely an averaging of the accuracy levels of FD4 and

DFD4.

Next, consider the numerical computing schemes obtain-

ed from the above time continuous approximation schemes.

We will keep the same labels. We group them by their de-

gree of accuracy.

1. FD2

2. URLFEM

3. ULFEM

and

1. FD4

2. DFD4

Approximating u"m (t) with
.L

n+1
u. 2. u7 + 1111-1

1,111 J,m j,m

4t2
will have an overall effect on the degree of accuracy in

the numerical computing scheme obtained. Using another ap-

proximation form for u. "(t) could change our results
J,M

quite a bit. The advantage in using the above approxima-

tion for u. "(t) is that all five of the numerical compu-
J,m

ting schemes are explicit schemes. Of the five, FD4 is the

most accurate scheme but if only rough estimates are need-

ed, URLFEM should be used because of its simpler nature

and its near isotropic behavior.
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