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THE DIRECT INTERPRETATION

Professor Gunnar Bodvarsson

Direct interpretation methods for determination of source rock

magnetization on the basis of n observed magnetic field values are

developed and applied to marine magnetic data. A two-dimensional

source body of specified geometry is assumed to consist of n uni-.

formly magnetized volume elements. The equations to be solved are

Fredhoim integral equations of the first kind. These are numerically

approximated by an n x n system of linear algebraic equations

which is solved by the method of iteration. The overdetermined prob-

lem, where the number of field input points (m) is greater than the

number of magnetic volume elements (n), has also been investigated.

This is done on the basis of the three approximation norms L1, L2,

and L . The L norm is best suited to the problem under con-
2

sideration here.

Application of the direct method to the two-dimensional magnetic
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anomalies associated with ocean floor spreading indicates that the

magnetization values at the ridge crest are only slightly greater than

those away from the crest. This, together with the evidence for nar-

row transition zones between sections of normal and reverse polarity,

lends support to the so called dike injection mechanism for bringing

mantle material to the surface at the ridge crest.

Ocean floor spreading rate curves based on the usual associa-

tions of magnetic anomalies with the paleomagnetic time scale have

been constructed. Two different interpretations appear possible:

(1) Spreading rates have been non-uniform along the whole mid-ocean

ridge system, and have changed in the same way and at the same time

during the past 3. 32 my. (2) Spreading rates have been nearly uni-

form; under this hypothesis, the anomaly usually associated with the

Olduvai event should be associated with the Gilsa event, and another

anomaly, called W, should be associated with the Olduvai event.

The latter interpretation is more acceptable.
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NUMERICAL METHODS IN THE DIRECT INTERPRETATION
OF MARINE MAGNETIC ANOMALIES

INTRODUCTION

For both economic and scientific reasons one of the most im-

portant geophysical parameters is the earth's magnetic field. How-

ever, until only recently extensive magnetic surveys were not feasible

because of the technological difficulties involved in performing such

projects. Now, with the development of reliable, easy to operate

magnetometers and precise navigation systems the surveyed portion

of the earth's surface is increasing rapidly, especially over the world

ocean. The need for efficient, easy to apply methods of interpreta-

tion of these measurements is a direct product of the increased

amount of data. We hope to serve this need by presentation of some

methods for the direct determination of magnetization distributions

across two dimensional magnetic bodies.

The total magnetic field observed at the surface of the earth

represents a combination of the main geomagnetic field, which is be-

lieved to originate in the earth's core, and the more localized fields

due to magnetic bodies located within the earth's crust. These latter

fields, called magnetic anomaly fields, or just magnetic anomalies,

are of interest here. Throughout this paper the main geomagnetic

field will not be explicitly considered.
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Marine Magnetic Anomalies

Of all the magnetic anomalies that exist over the world ocean

the most interesting and important, in a megageophysical sense, are

those found over the mid-ocean ridge system. In almost every region

where this approximately 70, 000 km long system has been surveyed

the magnetic anomalies have similar characteristics. They trend

parallel to the ridge crest for thousands of kilometers and are nearly

symmetrical about that crest for hundreds of kilometers on either

side; the largest anomalies are usually found over the ridge crest.

The first evidence that this type of anomaly existed over the ocean

was presented by Mason (1958), Vacquier, Raff, and Warren (1961),

Mason and Raff (1961), and Raff and Mason (1961).

A recent series of papers from the Lamont Geological Observa-

tory (Pitman, Herron and Heirtzler, 1968; Dickson, Pitman, and

Heirtzler, 1968; Le Pichon and Heirtzler, 1968; Heirtzler, etal.

1968) has further demonstrated the symmetric and parallel nature of

the anomaly pattern. These authors conclude that this pattern may

be simulated in each region by the same sequence of two-dimensional

source blocks which comprise a series of alternate strips of normally

and reversely magnetized material, presumably basalt.
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Geological and Geophysical Significance

World wide similarity of the magnetic anomaly pattern over the

mid-ocean ridge system suggests that knowledge of the causes of

these anomalies may be a very useful aid inreconstruction of the

earth's geologic history. With this in mind various authors have pre-

sented quite different theories as to the origin of the pattern. Mason

and Raff (1961) interpreted the linear pattern off the west coast of the

United States in terms of three geological possibilities: (1) isolated

bodies of magnetically anomalous material imbedded in non_magnetic

material; (2) elevated folds or fault blocks of the main crustal layer;

and (3) zones of intrusion of highly magnetic material from the man-

tle, extending from top to bottom of the crust. Objections have been

raised to all three of these possibilities on the grounds of lack of

topographic and seismic expression.

Vine and Matthews (1963) have suggested that the regular mag-

netic anomaly pattern may be due to systematic polarity changes of

the remanent magnetization of rocks in the ocean crust. Their inter-

pretation is based on the concept of ocean floor spreading and its pos-.

sible genetic relation to the anomaly pattern suggested by Dietz (1961).

They hypothesize that as the ocean floor is forced apart at the ridge

axis by a rising, large-scale, thermal convection current new basaltic

material rises nearer to the surface, cools through its Curie temper-

ature, and acquires a thermoremanent magnetization in the direction
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of the ambient magnetic field. As the earthts field reverses polarity

and the older material moves away from the axis, alternate bands of

normally and reversely magnetized material are produced. This in

turn leads to alternate bands of positive and negative magnetic anom-

alies; if the rate of spreading varies in the same manner on both sides

of the ridge axis then the anomaly pattern will be parallel to, and

symmetric about, that axis. This is in good accordance with the re-

cent discovery of almost periodical polarity changes of the geomag_

netic field using radiometric dating in conjunction with paleomagnetic

data (Doell, Dalrymple, and Cox, 1966; Doell and Dalrymple, 1966).

Serious objections to the feasibility of the type of currents nec-

essary to cause ocean floor spreading have been raised. Knopoff

(1964) concludes that the inhomogeneity in Bullen's region C is

amply strong enough to prevent large-scale (mantle-wide) convection

from occurring, whether the inhomogeneity involves a phase transi-

tion or represents a chemical inhomogeneity. MacDonald (1965) em-V

phasized that large-scale (mantle-wide) convection cells could not

maintain the deep structure of continents suggested by heat flow and

gravity data.

In contrast to the large-scale convection current mechanism of

Dietz for ocean floor spreading, Morgan (1968) and Le Pichon (1968)

consider the earth's surface to be made of a number of rigid litho-

sphere blocks, each bounded by rises, trenches or young fold



mountains, and great faults. These blocks move with respect to one

another, thus causing new material to be brought to the surface (at

the rises) and older material to be submerged and/or deformed at the

trenches or young fold mountains. The source bodies causing the

magnetic lineations are formed when dikes are injected into the space

left when two blocks spread apart. The mechanism of ocean floor

spreading at the mid-ocean ridges, then, corresponds to the breaking

apart along lines of weakness of a thick plate in response to some un-

denying stress pattern. Isacks, Oliver and Sykes (1968) present

seismic evidence in favor of the above block tectonic' theory. They

also speculate that the basic driving mechanism for this process is

gravitational instability resulting from surface cooling and hence a

relatively high density of nearsurface mantle materials. Thus, con-

vective circulation in the upper mantle might occur when thin blocks

of lithosphere (0 100 km) slide laterally over large distances as they

descend; a compensating return flow then takes place in the astheno-

sphere (l00700 km). Alternatively, they suggest that the surface

movement might be taken as the response of the strong lithosphere to

relatively simple convection patterns within the weak asthenosphere.

The reader is referred to Elsasser (1967) for a discussion of theoret-

ical points pertinent to this problem.

The above mechanisms of Dietz (1961) and Morgan (1968) are

dynamic and require large scale earth movement. Other authors



have suggested in situ formation of the magnetic lineations. Ozima,

Ozima, and Kaneoka (1968) concluded that the ages of submarine rocks

taken from seamounts along magnetic lineations in the western Pacific

do not seem to resemble the values expected from the ocean floor

spreading hypothesis. However, because of the ambiguity in assign-

ing K-Ar ages of seamounts to the ocean floor and some experimental

uncertainties due to the alteration of samples, they do not rule out the

possibility of ocean floor spreading. An alternate explanation of the

magnetic anomaly lineation pattern can be based on a peculiar prop-

erty of oceanic basalts which they report to have observed. If one

assumes that original oceanic crust consisted of these ocean type ba-

salts and that parts of this original crust were later heated above a

certain limit of temperature, then these crustal sections will become

more magnetic than continental basaltic sections undergoing the same

process. Thus, if hot vapor or lava emanates along regular nets of

fissures or ocean ridge fractures, then regular magnetic anomaly

patterns would be formed. The density and seismic velocity of the

basalts would not be affected by this process and therefore, seismic

and gravity measurements would not indicate any difference between

the original crust and the heated area. The basalts may be more

magnetic along the ridge axis, where the highest temperature is

reached, and roughly bilaterally symmetrical magnetic anomaly pat-

terns may be obtained.
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In another recent paper van Andel (1968) presents a mechanism

for the in situ formation of the magnetic lineations which assumes

arching of a pre-existing crust, and which satisfies various geologic

conditions. This arching, possibly due to thermal expansion or hy-

dration of the underlying mantle, could result in a broad zone of ten-

sional fracturing with dike formation and outflow of plateau basalts.

Progressive consolidation of the crust, following upwarping, would

proceed inward from the margins of the arch, leaving behind a sym-

metric pattern of positive and negative magnetic anomalies and lead-

ing to a gradual narrowing of the volcanic belt.

Vine and Tuzo Wilson (1965) compared the measured anomaly

field across the Juan de Fuca Ridge with the fields of various two-

dimensional magnetization distributions that may result from the

dynamic process of ocean floor spreading. They found that the higher

frequencies of the measured anomaly could not be generated by a

simple block model extending from the top to the bottom of the crust

(3-11 km), but the assumption of such a model located within the sec-

ond oceanic layer (3,35km) significantly improved the fit. For the

same profile Bott (1967) directly calculated the two-dimensional mag-

netization distribution of bodies similar to those considered by Vine

and Tuzo Wilson. He concluded that excessively strong magnetization

contrasts are required by a body located within the third oceanic layer

(5-11 1cm) and that the measured anomaly can be reasonably explained



by a body within, or partly within, the second layer.

The conclusions of Vine and Tuzo Wilson and Bott are in good

accord with the theory of Hess (1965) that basalt accounts for only a

thin veneer one or two kilometers thick on top of a main crustal layer

of serpentinite which is virtually non-magnetic. Hess postulates that

the generation of this basalt may result from some pressure-.

sensitive separation process being applied to a rising column of hot-

mantle peridotite; this basalt reaches the surface through fissure

eruptions. Hydration of remaining mantle material then leads to the

serpentinite layer comprising the largest portion of the oceanic crust

(layer 3).

There is a large amount of observational evidence support-

ing the theory that all linear magnetic anomalies parallel to the mid-

ocean ridge axis are due to ocean floor spreading occurring contem-

poraneouslywith geomagnetic field reversals. This view will be adopted

here and our ultimate conclusions are based on its validity. If, how-

ever, this theory is at some time completely disproved and! or some

other theory is shown to be more feasible, then the conclusions in

this paper may not be applicable.

From the above discussion then, the following working model is

to be used in the interpretation of these anomalies: The source body

is two-dimensional and lies parallel to the trend of the magnetic

anomaly pattern, It is two kilometers thick with the upper surface
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located just under the ocean bottom and both the upper and lower sur-

faces slope away from the ridge crest in the same manner as the gen-

eral topography. The average configuration of the paleo-geomagnetic

field is assumed to be that of an axially symmetric dipole, and there-

fore the direction of magnetization in the source body is chosen to be

as if the magnetization was induced by such a field.

Methods of Interpretation

The problem of magnetic field interpretation in geophysics con-

sists of finding the distribution of magnetic material whose magnetic

field is given on a plane surface. Unfortunately, this problem has a

unique solution only when the field is given throughout the body. This

is evident from Poisson!s equation which gives the relation of the

magnetic field over all space to the source distribution of magnetiza-

tion:

2 -*
v A -47r7. M

-vA,

where A is the scalar magnetic potential throughout all space,

tH is the complete magnetic anomaly field throughout all space, and

M is the vector magnetization distribution in the source body. The

solution of A in terms of M is given below by Equation (1), and

the reader is referred there and to Grant and West (1965) for a more
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complete discussion of the potential theory.

The lack of uniqueness, or the ambiguity of the problem of mag-

netic field interpretation can also be seen from the fact that a finite

number of parameter functions are involved in describing a source

distribution, and an infinite number of combinations of these can pro_

duce the same field configuration in the limited region under consid-

eration. However, even though no unique solution is possible, the

range of acceptable solutions is limited by physical considerations.

For example, the Curie temperature puts an upper limit on the depth

in the earth at which a body can lie (usually around 25 km), the mag-

nitude of the computed magnetization should not greatly exceed any

directly measured values, and the magnetization should be a reason-

ably smooth function of position.

Specific factors which contribute to the ambiguity of the mag-

netic problem are errors in measurements due to time variations of

the geomagnetic field, navigational errors, data reduction errors,

and instrument error. Interference from neighboring bodies can

greatly alter the true form of the subject anomaly, and disparity be-.

tween model and reality can be a serious source of ambiguity for both

qualitative and quantitative interpretation. In practice, then, only a

limited amount of information can be obtained about the true source

body; some of the body parameters must be assumed, and the remain-

ing parameters must be either directly or indirectly estimated to
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within the accuracy of the observed anomaly.

Various methods of magnetic interpretation have been developed

for different purposes. Peters (1949) derives approximate methods

for the direct determination of basement structure. Vacquier, et al.

(1951) interpret total intensity maps with the help of three-dimensional

(prismatic) bodies and computed second derivatives. Smellie (1956)

gives total intensity depth factors for point and line configurations of

poles and dipoles, and Smith (1959, 1961) derives inequalities which

can be used to estimate the depth and intensity of magnetization for

arbitrary bodies. Heirtzler, etal. (1962) give sets of model anom-

alies with rules for depth determinations. Bott, Smith, and Stacey

(1966) describe a method for determining the direction of magnetiza-

tion of a body causing a magnetic anomaly, and Bott (1967) gives a

method for direct determination of the magnetization distribution in a

two-dimensional body of rectangular cross section. There are, of

course, many other pertinent papers that could be mentioned here and

the reader is referred to Heirtzler, et al. (1962) for an extensive

bibliography on magnetic interpretation methods prior to that time.
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THE DIRECT METHOD OF INTERPRETATION

In the previous section some direct methods of interpretation of

magnetic anomalies were mentioned. By definition, this implies di-.

rect use of the measured anomaly field to determine some physical

parameter pertaining to the anomaly source. In the indirect method

of interpretation anomalies are computed for trial bodies and these

are compared to the observed anomalies; on the basis of this compari-

son the physical distribution under consideration is then adjusted so

that the fit of the computed anomaly to the observed anomaly is im-

proved.

Comparison with the Indirect Method

Both the direct and indirect methods have their advantages and

disadvantages, and some of these will be listed here. Let it first be

noted, however, that throughout the remainder of this paper discus-

sion will be confined to determination of the magnetization distribution

of a source body given the size, shape, and location of the body and

the direction of magnetization.

Advantages of the indirect method: The fields due to very exten-

sive horizontal and vertical distributions of magnetization and corn-

plex source configurations can be calculated handily on existing corn-

puters. Mathematical analysis is quite straightforward; computer
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programs that are relatively easy to apply are available in the liter-

ature (Heirtzler, etal. , 1962; Taiwani and Heirtzler, 1964).

Disadvantages of the indirect method: A complete magnetiza-

tion distribution must be assumed, thus adding to the already long

list of assumptions. This distribution must be adjusted after each

trial calculation so that the computed anomaly will give a better fit

to the observed anomaly; no formal criterion exists for adjustment of

the subsequent magnetization distributions, and formal criteria are

very seldom used for determining how well the computed anomaly fits

the observed anomaly. This can be very important in detailed work.

Also, because of the necessity of assuming the magnetization distri-

bution, much of the detail of large problems may tend to be neglected.

Advantages of the direct method: The magnetization distribu-

tion is calculated explicitly and no subsequent arbitrary adjustments

need be made. The detail of the analysis depends on the number of

input points (observed anomaly in digitized form) and on the number

and size of the intervals over which the magnetization is calculated.

Thus one does not have to make complex assumptions in order to ob-

tam details. Direct solution by the method of iteration, or other ap-

proximate methods, allows the magnetization to be estimated to just

within the accuracy warranted by the measurement accuracy of the

anomaly field. Direct solution by linear programming allows investi-

gation of the response of the system to slight changes in the assumed
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parameters without having to re-run the entire problem. With linear

programming it is also possible to take into consideration any statis-

tical fluctuations of the system parameters when the probability dis-

tributions of these fluctuations areknown (Garvin, 1960).

Disadvantages of the direct method: The observed anomaly

must be digitized. A vertical distribution of magnetization can be

treated only in a limited sense. Mathematical (numerical) analysis

can be quite involved and problems take more computer time than

with the indirect method (assuming only a few distribution adjustments

in the latter are necessary). For relatively large problems the linear

programming method of direct solution is possible only on large corn-

puters; complete linear programming packages are very difficult to

write and are not readily available.

Analytical and Numerical Discussion of the Direct Problem

Let us now consider more rigorously the problem of determin-

ing the magnetization distribution when the size, shape, and location

of the source body and the direction of magnetization are known.

The scalar magnetic potential at an external point due to a vol-

ume of material which is magnetized with a magnetization 1 is

dr(1) A(p)=S(7Q)0 VQ rrQI Q
V
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Hence the vector describes the position of the point of observa-

tion with respect to the origin and the vector describes the p0-

sition of a point in the body under consideration (Figure 1).

The intensity of the magnetic field at the point is given by

the negative gradient of A(). Since this is an anomalous mag-

netic field superimposed on the regional geomagnetic field the corn-

plete anomaly field iI is written

Lp) -vA(r).

Now assume that the anomaly field is much less than the regional geo-

magnetic field (as is almost always the case). Then the component of

the anomaly field measured by a total-field magnetometer is that

which lies in the direction of the regional geomagnetic field (Grant

and West, 1965). This component, called tT(r) is written

(2) - A(r)

where signifies the direction of the regional geomagnetic field

(Figure Za).

Let the direction of M(r0) be defined by the unit vector

(Figure 2b). Then the vector operation (Q) in Equation (1)

can be written as M( rQ) ?
From the above discussion the expression for a total-field
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Figure 1. Coordinate system used in this paper. rp describes the point of
observation and rQ describes a point in the body under consideration.
Only bodies infinite along the x- axis are considered.
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Figure 2(a). Parameters describing the direction of the regional
geomagnetic field.
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MAGNETIZATION INCLINATION
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MAGNETIZATION

a a+ COS I Sfl
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+ sinT
a ZQ

(b)

Figure 2(b). Parameters describing the direction of the magnetization.
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magnetic anomaly is

a CM_)4(3) T(r)=j
Q as IrPrQI drQ.

V

The anomalies associated with ocean floor spreading can be consid-.

ered to be caused by two-dimensional bodies of finite depth extent. In

this paper each anomaly of this type is treated as a profile along the

axis, perpendicular to the strike of the body. The z 0

plane is the surface of observation and the z coordinate is positive

downwards (Figure 1).

With the above restrictions, and after some manipulation, Equa-

tion (3) becomes

b
(4) T(y) M(yQ)G(y-yQ, Zl &' z2(yQ))dyQ

a

where:

a and b define the limits of the source body in the y direction,

Z1(YQ) and Z2(YQ) are its upper and lower surfaces respec-

tively,

' 2

(5) G = (z2-z1)
S 2 2 2 2(YQ+Zi )(y0+z2)
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c1 = 2(sin T Sin I - COS T sin i4i cos I sin pt),

c2 = 2(sin T COS I sin ' + COS T Sin LjJ Sifl I),

YpQ = Yp YQ.

The kernal is represented as G because it is a function, of the get-

ometry of the body.

Thus, the problem of direct determination of the magnetization

distribution reduces in this case to the problem of solving the above

integral equation for M(YQ). The kernal G is square integrable

and bounded, and Equation (4) is called a Fredholm integral equation

of the fizst kind.

Formal solution of Equation (4) can be obtained in terms of the

eigenfunctions and eigenvalues (K 0) of the kernal

G(y y0). More explicitly, suppose that T(y) can be expanded

as a linear combination of f(y); then

T(y) = af(y),

and the solution of Equation (4) is (Fox, 1962)

a
(6) M(y)

rr

Solution in this manner is impractical because of the difficulty of
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finding the elgenvalues and the necessarily complete set of eigenfunc_

tions. It is also clear from Equation (6) that the formal method

breaks down not only when certain eigenvalues are identically zero,

but when X 0 much faster than ar r
Since Equation (4) will eventually have to be solved numerically

the above considerations must be stated in the language of numerical

analysis. Numerical representation of Equation (4) yields the matrix

equation

(7) GM=T

where G is the square (nxn) matrix, is the vector whose

n components are the measured values of iT(y), and i is the

vector whose n components are the unknown values of M(yQ)

over specified intervals. We therefore wish to discuss the relations

of the eigenvalues (I.l 'n and the eigenvectors (g1, .. .

of G to the solution i. That is, can now be expanded in

terms of the eigenvectors g.

= b1

and the equation

(u.0)
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is the numerical equivalent to Equation (6).

This expansion is only an approximation to Equation (6) and it is

obvious that small errors in b., corresponding to small i., have

big effect on the solution. The problem of solving Equation (7) may

then be ill-conditioned (unstable) in the sense that slight perturbations

to the left side (G) and/or the right side (AT) may result in

large perturbations to the solution (M). In practical applications

these slight perturbations usually take the form of computer roundoff

errors, and in terms of Equation (7) their possible effect can be vis-

ualized by the relations

or

(G+6G)(i+6i) T + 5tT

= (G+6G)(6f+6G)

where 6 represents a perturbation.

Initially suppose that G is treated exactly (6G=O), but that

T is subject to roundoff uncertainty. Then

6i G'6T

where G' is the matrix inverse to G. In terms of vector and

matrix norms, as defined in Forsythe and Moler (1967), the last

equation is



-1
116M11 :. hG II

lloTIi.

Multiply this by IkT uGh IlM and rearrange to get

Il8v1hl i 1

i-ii <uGh. hG ii.
lloli

II M II ii 1.1u

That is, for any nonsingular matrix G the condition number, de-

fined as

cond (G) = Ii Gil G' 1,

22

bounds the relative uncertainty of the solution M to that of the given

T (Forsythe and Moler, 1967). The condition number is invariant

when G is multiplied by a constant, and various authors (Turing,

1948; Faddeev and Faddeeva, 1963; Forsythe and Moler, 1967) point

out that it is a reasonably good measure of the instability of a system.

If indeed cond (G) is large, then small perturbations in iT may
greatly alter M. This alteration usually takes the form of high

amplitude, high frequency noise superimposed on the desired solution.

Much has been written in the literature (Bullard and Cooper, 1948;

Kreisel, 1949; Phillips, 1962; Baker, etaL, 1964) concerning ways

to separate out this noise. All methods involve a smoothing process

of one form or another applied either to the input data or the output

data.

The possible high sensitivity of M to slight perturbations of
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the elements of G is quite evident if it is realized that although the

analytical form of G is known (Equation (5)), the numerical values

of its elements are not known exactly and obviously must be rounded

off in the computer. In discussing the effect of this characteristic of

G on the final solution we refer to the excellent section on condi-

tioned matrices of Faddeev and Faddeeva (1963).

Formal solution of Equation (7) is given by the expression

-1--M=G T

This expression suggests that the sensitivity of M to small changes

in the elements of G may ultimately be discussed in terms of the

sensitivity of the elements of G 1 to small changes in the elements

of G. It is well known that exists if, and only if, the deter-

minant of G is non-zero. For cases where the exact determinant

is only slightly different from zero, the computer roundoff can suffi-

ciently change the elements to lead to a matrix with determinant equal

to zero! That is, small perturbations in the elements of a matrix

may equivalently lead to very large changes in the elements of its in-

verse. If this happens, the matrix is said to be unstable or ill-

conditioned.

However, it is not to be concluded from the above discussion

that the determinant of a matrix is an indication of the stability of its

inverse, and that a small determinant means an unstable system. In
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many cases the determinant is not a reliable indication of the stability

of a system; for example, it is obvious that the matrices G and

(const) G should be considered equally stable, but their corres-

ponding determinants will be different. Matrix stability must there-

fore be characterized by a quantity independent of constant factors in

the matrix and, it might be added, independent of the dimensions of

the matrix. Forsythe and Moler (1967) point out that this quantity is

the condition number of the matrix G in the sense that

i1i11ii < cond (G) 1II (for small IIIclI ).

It is then clear that cond (G) is generally a reliable indication of

the stability of M with respect to changes in the elements of G

and Cond (G) greater than about 100 indicates a relatively

unstable system (J. Davis, personal communication, 1968). A corn-

monly used condition number is

111 -cond (G) II°l hG l'n> 1

where and n are the largest and smallest eigenvalues of the

matrix G (Faddeev and Faddeeva, 1963). This expression supports

the previous conclusions that relatively small eigenvalues of G

could very likely yield an unstable system. In all the cases (four)

tested for anomalies and models associated with ocean floor spreading
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the condition numbers of G were less than 10. Thus no corrective

measures had to be applied to overcome any effects of ill-conditioned

matrices.

It might be asked, however, under what circumstances will ma-

trices of the type under discussion become unstable. The answer

lies in a consideration of the physical requirements placed on a sys-

tern. For example, in every case associated with ocean floor spread-

ing treated here the source body was chosen to have nearly the same

dimensions as the magnetic profile, and the position of the center of

each magnetic volume element was chosen to correspond closely to

the position of a field point. Thus the system was not 'forced" to

reach a solution. That is, a physically reasonable magnetization dis-

tribution was sufficient, and the magnetization values were not sensi-

tive to small changes in the field values. If, however, a source body

had been chosen to be much smaller in extent than the profile under

consideration, then a solution would be forced, Therefore, small

changes in the more distant field values would greatly affect the mag-

netization values and the system would be highly unstable. This situ-

ation is to be avoided by a judicious choice of the relations between

model and field parameters.

Methods of Solution

In component form Equation (7) is written
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(8) T. = GjkMk (j-1, , n),

and the problem of finding Mk from T. is that of solving an

n x n system of linear algebraic equations. Many methods of solving

such a system are available and the reader is referred to Faddeev

and Faddeeva (1963) and Fox (1965) for very comprehensive treat-

ments of this subject. Two methods for determining Mk from

Equation (8) will be discussed in this paper; one yields an exact solu-

tion (Gaussian reduction) and the other yields an approximate solution

(ite ration).

Gaussian reduction (or elimination) consists of a chain of suc-

cessive eliminations which transform the given system of equations

into a system with a triangular matrix; the solution of this system is

then quite straightforward. A detailed description of the processes

involved in this method is given by Fox (1965).

Approximate solution of Equation (8) is obtained by the method

of iteration. This approximate solution is the limit of a sequence of

certain vectors constructed by a uniform process called the iteration

process. For discussion of solution by iteration, Equation (7) is re-

duced to the form

(9) (I-LU)M=S
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where L and U are lower and upper triangular matrices with

zero elements along their diagonals, and I is the unit matrix. This

form is obtained by dividing each equation in Equation (8) by its diag-

onal coefficient and expressing the result in matrix form.

In the simplest iteration process, called the process of succes-

sive approximations byFaddeev and Faddeeva (1963), sequence vectors

are constructed according to the formula

(10) = (L+U)i +

where 0) is the initial approximation to . Obviously, if the
-

sequence M ,.. , M , ... can converge to M then this limit

will be the solution of Equation (9). In this paper, however, we

choose to use the Seidel iteration process (Faddeeva, 1959) whereby

computation of the sequence vectors is performed by the formula

('1) (i) LM(1) + (C = L + U)

or, in component form

k-.1 n

(12) M = + C + Sk.kj j kj j
j=1 j=k

The difference between the Seidel method and the method of succes-

sive approximations is that in the latter the complete ith sequence

vector is computed before the (i+l)th vector is considered, while



in the former, all the previously computed elements of the ith vec-

tor are considered when computing the remaining components of that

vector. The Seidel method thus makes maximum use of all available

information.

Choice of the initial approximation vector is quite arbitrary,

but it is reasonable to choose one as close to the desired solution as

possible in order to reduce computation time. From a physical point

of view the magnetization along a profile is expected to vary in much

the same way as the field; in other words, M and S in Equation

(9) should have similar shapes; this suggests that a physically good

-(0)choice for M is S. From a computational point of view the

choice is also good, because from Equation (10) it is already one

iteration step further along than if M° = 0 had been chosen. Here

we have looked to the method of successive approximations for help

in choosing a computationally reasonable initial sequence vector, but

it is evident from Equation (11) that this vector is also reasonable for

use with the Seidel method. Of course, for each specific problem a

much better explicit choice (0) (0)of M than M S can be made,

but the personal time and effort involved in repeatedly doing this

overcomes any computational time saved.

Till now the question of how to terminate the iteration process

has not been discussed. One is free to choose any suitable relation

between the kth sequence vector and either the (k-1)th vector,
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or the vector or even the vector as the point in the corn-

putation which, when reached, requires the process to be stopped.

This criterion may be purely mathematical, or it may have a physical

basis. Of the many possible mathematical criteria the easiest and
(k-i)quickest to apply relates M and M ; that is, the process

(k) (k-i)is stopped when the Euclidean norm of the vector M - M

is less than some specified constant times the Euclidean norm of

(13) 1(k) - (kl)lle < const II(kl)Ile

The constant factor is to be chosen in view of the particular problem

under consideration. As the problem has a physical basis, it is rea-

sonable to want a physical criterion for stopping the iteration process.

Obviously, something that gives an approximate solution of only the

accuracy warranted by the experimental accuracy of the input field

(ST.) is ideal. A stopping norm of the L type (see the section,

The Overdetermined Problem) is found to be best suited to this pur_

pose, and computation is required to stop when

n

(14) max T. G M(i)J < E (j=l,...,n),jk k3j kzl

where E represents the error from measurement and data
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reduction. That is, computation is stopped when the absolute value of

the maximum component of the residual vector is less than the esti-

mated error in the input field. Equation (14) is computationally un-

wieldy and, of course, if the model is poorly chosen it may never be

satisfied. In view of these facts, a combination of Equations (13) and

(14) should be used in the following manner as a stopping criterion.

Both are applied, Equation (14) is tested every second iteration (to

reduce computation time), and if Equation (13) is satisfied first the

process is stopped; otherwise, the process is stopped when Equation

(14) is satisfied.
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APPLICATIONS AND DISCUSSION

Up to this point an introduction has been given to the type of

magnetic anomaly fields under consideration and possible direct

methods to derive the magnetization distributions associated with

these anomalies have been derived. In this section we present the

working equations by which these methods are to be applied, and the

iteration method will be applied to the interpretation of important

magnetic anomalies associated with ocean floor spreading.

The Working Equations

We have given Equation (8)

(8) T. = G.kMk (j=1,. . . , n)

as a numerical approximation to Equation (4)

(4) T(y) = z1(yQ), z2(yQ))M(yQ)dyQ

The working equations are derived from Equation (4) as follows:

In approximate form Equation (4) is written

n b

T(y) Mk
k

k=1 ak
G(y- YQkZlk z2)dyQ;



32

that is, the field along a profile is the superposition of the fields due

to n two-dimensional rectangular volume elements lying side by

side perpendicular to that profile, each of preassigned width and uni-

form magnetization. Upon evaluation of the above integral (see Equa-

tion (5) for G) the working equation takes the form

1O5T. =MkG.k (j=1,...,n)

where (at this point the reader should refer to Figure 3)

T. is the anomaly at the jth field point in gammas (one gamma

equals lO oersteds),

Mk is the magnetization of the kth volume element in emu/cm3,

ak and bk define the YQdimens1ons in cm of the kth two-

dimensional volume element,

zik and ZZk are the constant depths in cm to the upper and

lower surfaces respectively of the kth volume element,

and Gik is the anomaly at the jth field point caused by the kth volume

element with Mk =

G.k is then expressed by
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Figure 3. Parameters used in the working equations.
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-1 akyP.l
0jk c1 [tan1 bkpj - tan

ap
tan + tan

Zik Zik ZZk Z2k j

where

c2 [(akyp.)2+zl][(bkyp.)2+z2]+ log
2 e 2 2 2 2'

[(bk_yp.) +Zlk }[(ak +Z2kJ

c1 and c2 are given in Equation (5),

y. = the dimension in cm describing the position of the jth field

point [L+ I] lOs,

-L3 is the position in km of the first field point to be considered

(all other field points are to its right in the direction of

increasing

I is the distance in km from the (p_l)th to the pth field point in

the direction of increasing y,

ak_yQkZlO. bk=ak+Wk105,

= the dimension in cm describing the position of the center of

the kth volume element

k 1

= (Wl+Wk+2

_LK is the location in km of the midpoint of the first volume ele-

ment under consideration (all other volume elements are
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to its right in the direction of increasing YQ)

10, k 1

1 otherwise,

W is the width in km of the pth volume element.
p

In all applications here the upper and lower surfaces of the two-dimen-

sional source body (described as a function of the midpoints of the

volume elements) are required to have constant, but not necessarily

equal, slopes on either side of the origin; then Zlk and ZZk are

of the form

Zlk = 105R1 + S1YQk

Qk> 0

= l05R2 + SZYQk J

Zlk = 105R1 +S3YQk

Zzk = l05R2 +S4YQk
Qk< o

where and R2 are the depths to the upper and lower surfaces

respectively at the origin, and S1, S2, S3, S4, are the slopes of

the pertinent surfaces.

For each particular problem, then, the following parameters

must be specified:



36

(1cm), R2 (km), S1, S2, S, S4 4i, 1', I, T, fl,

W . . . W (1cm), I . . .1 (km), L (1cm), LK (km),
1 n 2 n

T (gammas).
1 n

The number of field values, and therefore the digitization inter-

val, used in the working equations must be chosen judiciously. There

must be a sufficient density of points to properly describe the desired

field information. On the other hand, most magnetic field measure-

ments are made at discrete points, so any digitization interval small-

er than the measurement interval would usually be unwarranted.

One of the purposes of the applications in the next section is to

distinguish sections of normal and reverse polarity. Therefore, the

digitization intervals and widths of the magnetic volume elements

must be chosen small enough to allow the smallest section of interest

to be identified. In the cases considered, the smallest section of in-

terest was associated with the Jaramillo normal event; digitization

intervals and magnetic block widths of about the same size as the

measurement interval allowed this smallest section to be identified

because it was described by at least two magnetic volume elements.

Equivalent to a discussion of the digitization interval y is

a discussion of the digitization frequency w (radians/km). Ac-

cording to the Theorem of Interpolation (Arsac, 1966), also known as

the sampling theorem (Bendat and Piersol, 1966), these two quantities
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are related by the expression = The information content

of a field can then be discussed in terms of its frequency content. A

quantitative expression of this frequency content is the energy density

spectrum E() (Lee, 1960):

where

2E() = It()

L
I urn r

yp
= I2ir L-oo *L

)e dy

is the Fourier transform of the field (ZL = magnetic profile length).

The energy density spectrum defines the energy content of the field in

the frequency band dw to be E(w)d. Therefore, if E(w) is

known for the measured field, then E(w)d will give an indica-
0

tion of the energy content of the field that will be represented by

choice of a particular digitization frequency

The complete energy density spectrum of the measured field is

not known, and it cannot be determined in practice. However, the

fields considered here are assumed to be generated by a two-dimen-

sional sequence of source blocks. Therefore, a proportional indica-

tion of the measured field energy represented by a particular

can be obtained by determination of the amount of field energy of a

single block that is represented by The energy density spec-

trum of the field due to an individual two-dimensional magnetic block



of half-width a and uniform magnetization M, is (Gudmundsson,

1966)

2 -Z10) -Z2(A)
2E() = sin CA)a (e -e

2
(A)

where we find

C2 = 8irM2[(_cos T sin j cos I sin 3' + sin 7 sin 1)2

+ (sin T cos I sin 3' + cos T sin i sin 1)2].

The angle parameters are shown in Figure 2.

This function is 0 at = 0, increases rapidly to a maxi.-

mum (call at this maximum), and then decreases rapidly to a

very small value (call at this small value). For > the

values of E() remain very small. Therefore, choice of c m
would be a poor representation of the information contained in the

field, and choice of u so large that y is smaller than the

measurement interval is unwarranted. We feel that choice of c

on the order of will insure a reasonable representation of the

information content of the measured magnetic field.

A test to determine whether a particular block width, and there-

fore digitization interval, will allow a particular range of field gradi-

ents is based on Bernstein's Theorem (Arsac, 1966). This states that

the gradient of a function (tT'(y)) with a band-limited frequency
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content (0-u) and maximum amplitude (A) is constrained such

that

IT'(y)I cA

For a typical case = 1.51km, A = 500 ', and

JTt(y)l < 1500 y/km. Thus, a wide range of field gradients is pos-

sible with these parameters, to the extent that the maximum gradient

is much greater than the majority of gradients found in nature.

Application of the Iteration Process to
Marine Magnetic Anomalies

Introduction

The importance of marine magnetic anorralies associated with

ocean floor spreading has been stressed, and various methods by

which the magnetization distributions of source bodies causing these

anomalies might be found were presented. In this section the method

of iteration is applied to two marine magnetic profiles, one from the

South Atlantic Ocean (V2OSA, Figures 4, 6, 7) and one of the South

Pacific Ocean (EL19N, Figures 5, 6, 7), For each profile the center

of each magnetic volume element is chosen to correspond to the post-

tion of a digitized field value. This arrangement, together with a

digitization interval that allows normal and reverse sections of the

source body associated with the shortest paleomagnetic events to be



V2flA

60 40 20 0 20 40 60km

GAUSS NORM MATUYAMA REV BRUNHES NORM MATUYAMA REV GAUSS NORM
I I

I I I

M 0 J 0

I=I km E=507 R1= 3km S1S2=.004 1=307.10 1=312.6°
Wk=Ikm n=141 R2=5km S3S4.004 11=0° /3'-3333°

Figure 4. From top to bottom: Digitized version of the VZOSA magnetic anomaly profile. Magneti-
zation distribution in the source body. Outline of the source body with sections of normal
magnetization (see text) in black; J, 0, and M represent the Jaramillo, Olduvai, and
Mammoth events respectively. Parameters used in the iteration-process working
equations. C
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Figure 5. From top to bottom: Digitized version of the EL19N magnetic anomaly profile.
Magnetization distribution in the source body. Outline of the source body with
sections of normal magnetization in black. Parameters used in the iteration-
process working equations.
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Figure 7. Magnetic anomaly profiles for which spreading rate curves are
constructed. Appropriate gamma and kilometer scales are found
in the corresponding references: (1) Heirtzler, etal. (1968).
(2) Pitman, Herron, Heirtzler (1968). (3) Le Piehon, Heirtzler
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(6) Herron, Heirtzler (1967). (7) Larson, Menard, Smith (1968).
The minor anomalies W and X are discussed in the text.



identified, defines the basic physical model to be treated.

The physical stopping norm has been used for the two cases con-

side red here, that is, the iteration process is stopped when the mag-

nitude of the largest component of the residual field vector is less

than 50 y. Since the system is well-conditioned and therefore has a

unique solution, the iteration process will always converge. Because

the very large number of equations involved for each profile (141 and

161) exceeded the computer storage capacity, each profile was run in

three overlapping sections and the solutions given here were obtained

by visually comparing and matching results in the regions of overlap.

Thus, the regenerated field may differ from the input field by as much

as 100 y in the neighborhood of the points where sections were matched

(in regions of low gradient). This is not considered detrimental to

the following interpretation.

It is obvious from Figures 4 and 5 that the detail of the magnet-

ization distribution obtained here would be extremely difficult to de-

rive using the indirect method of interpretation. It is also quite evi-

dent that the plot of the magnetization values is similar to that of the

field values (as the former increase so do the latter).

Moreover, it should be pointed out that negative (positive) field

values do not necessarily yield negative (positive) magnetization val-

ues. This possible lack of correlation between the algebraic signs of

the magnetization values and the field values is due to the dipole
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character of the field; it is usually overlooked in applications of the

indirect method because of the difficulty involved in incorporating it

into the assumptions about the magnetization. Of course, the alge-

braic sign of the anomaly field depends on the definition of the region-.

al field that was removed from the total field (excellent discussions

on the ambiguities of regional field removal are in Grant and West,

1965 and Nettleton, 1954). Also, the relative magnitudes of magnet-

ization values of similar bodies formed at different times depends on

the strength of the field at the times of formation. These last two

facts require that negative (positive) magnetization values are not nec-

essarily to be identified with reverse (normal) values in the interpre-.

tation of a particular magnetization distribution. For this reason,

sections of normal and reverse polarity should be chosen by consid-

eration of magnetization contrasts only, with no regard for the alge-

braic sign of the magnetization values. Sections of normal and re-

verse polarity resulting from our calculations are shown in Figures

4 and 5.

The Dike Injection Hypothesis

The magnetization distributions presented in Figures 4 and 5

can be interpreted in terms of the ocean floor spreading hypothesis.

Dike injection is currently the most widely accepted mechanism

(Loncarevic, Mason, and Matthews, 1966; Harrison, 1968) for
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bringing mantle material to the surface at the ridge crest. Most of

the material causing the magnetic anomalies is believed to have been

dike-injected into the crust within a band about 12 km wide. The dike

material moves away from the ridge crest as more material is in-

jected to take its place. When geomagnetic field reversals occur,

material already in the injection band may become contaminated with

oppositely polarized material. A zone of mixed polarities (transition

zone between oppositely polarized material) would then be formed

which would tend to reduce the effective magnetization of relatively

narrow sections of normal or reverse polarity. Dickson, Pitman,

and Heirtzler (1968) and Pitman and Heirtzler (1966) have found it

necessary to give material under the ridge crest twice the magnetiza-

tion of the neighboring material in order to approximately reproduce

the crestal anomaly. Loncarevic, etal. (1966) suggest that this is

physically reasonable because the crestal material which has not yet

gone through a field reversal, would not be contaminated by opposite-

ly polarized material and therefore should have a larger effective

magnetization. However, the explanation of Loncarevic, et al. (1966)

is not acceptable under the hypothesis of a narrow injection band be-

cause the contamination zone must also be small, and therefore inef-

fective in contaminating wide sections of normal and reverse polarity.

In contrast to the indirect-method conclusions of Dickson, et al.

(1968) and Pitman and Heirtzler (1966) there is little evidence in
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Figures 4 and 5 for abnormally large values of magnetization under

the central anomaly, and the crestal section is on the average only

slightly more magnetic than its neighboring sections. This result is

in agreement with the direct-method findings of Bott (1967), and shows

that the neighboring sections are very likely not highly contaminated

with oppositely polarized material. This is consistent with the nar-

row transition zones noted above and in the next paragraph. Slight

differences between magnetizations of the older flank material and the

relatively new crestal material are to be expected because of the pos-

sible decay with time of the older magnetizations (Harrison, 1968).

The magnetization distributions for V2OSA and EL19N explicitly

demonstrate the narrowness (< 5km) of the transition zones between

sections of normal and reverse polarity. This transition is charac-

terized by gradually changing values of magnetization, but in some

cases it could be approximated by a simple discontinuity in the direc-

tion of polarization. Therefore, if the dike injection hypothesis of

Loncarevic, etal. (1966) and Harrison (1968) is to be accepted, then

the dike injection band must in some cases be much narrower than

12 km.

The Paleomagnetic Time Scale

Let us now interpret the magnetization distributions of Figures

4 and 5 in terms of their relation to the experimentally determined



paleomagnetic time scale (Cox and Dairymple, l967a). Heirtzler,

etal. (1968) demonstrate the world-wide similarity of magnetic pro-

files across the axial portion of the mid-ocean ridge system; they

conclude that each profile may have been generated by the same se-

quence of two-dimensional source blocks. These authors associate

magnetic highs with normally magnetized blocks formed during per-

iods of normal magnetic field, and magnetic lows are associated with

reversely magnetized blocks formed during periods of reverse mag-

netic field. Particular anomalies are named after the events with

which they are associated; for example the anomaly usually associat-

ed with the Olduvai normal event is called the Olduvai anomaly, and

so on. The normal-reverse boundaries (centers of transition zones)

of the source bodies in Figures 4 and 5 have been chosen to conform

with the model presented by Heirtzler, etal. (1968). This implies

that some of the minor normal and reverse sections have not been

pictured. Thus, in EL19N the reversed section associated with the

Mammoth event is defined (Figure 5) without regard for the suggested

normal section within that event (Cox,l968b). The proposed Gilsa

event (Watkins and Goodell, 1967) between the Jaramillo and Olduvai

events will be discussed later in relation to the anomaly associated

with the Olduvai event.

The normal-reverse boundaries of VZOSA and EL19N resulting

from the calculations are plotted against the paleomagnetic time scale
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in Figure 8. It should be remarked that the distance of each normal-.

reverse boundary from the ridge axis is known with much more confi-

dence than the corresponding paleomagnetic dates. Therefore, in this

analysis the former are assumed to be known exactly, but uncertain-

ties in the latter are considered explicitly. That is, in Figure 8 the

ordinate is plotted as a point and the abscissa is plotted as a line seg-

ment (the age uncertainty obtained from Cox and Dalrymple, Table 2,

1967b). Straight lines are then drawn between the line segments rep-

resenting individual magnetic boundaries such that the resulting

curves in Figure 8 are as close as possible to straight lines. The

slopes of these curves represent the spreading rates for the particu-

lar ridge sections.

It is quite evident from Figure 8 that curves representing both

left and right sides of VZOSA and EL19N are similar; furthermore,

the two different profiles result in similar curves. That is, the

slopes vary such that the 'argest slope changes occur with similar

characteristics at the Jaramillo and Olduvai events. This is indeed

an interesting phenomenon since these profiles are separated by over

one thousand kilometers (Figure 6).

In order to investigate the extent of these similarities, spreading-

rate curves were constructed for all available profiles where the

anomalies usually associated with the pale omagnetic epochs and events

could be identified. Locations of these profiles are shown in Figure
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6, their axial sections are shown in Figure 7, and the spreading-Orate

curves are presented in Figures 8, 9 and 10.

Complete magnetization calculations were not made for profiles

other than VZOSA and EL19N. Figures 4 and 5 indicate that for these

profiles the distances of normal and reverse sections of the source

body from the ridge axis can be approximated by the distances of their

corresponding anomalies from the center of the anomaly over the

ridge axis. Therefore, the remaining curves in Figures 8, 9, and 10

were constructed in this approximate manner. The anomalies along

a particular profile chosen to represent particular geomagnetic events

or epochs are the same as those chosen for that purpose in the origin-

al papers (see caption to Figure 7).

The similarity of plots from every profile in Figures 8, 9, and

10 is striking. Only the right side of S16 (Figure 9) can be fitted by a

nearly straight line; all other profiles, including the left side of S16,

have the same characteristic form, even with the large amount of

smoothing introduced by consideration of time scale uncertainties.

Vine (1966) constructed similar curves for various profiles (without

consideration of time scale uncertainties), and fit them with a straight

line to determine constant spreading rates since the start of the Gauss

epoch. He too noted similar deviations from linearity for two cases,

but did not give further discussion. We feel that this phenomenon is

important, and that it may have far reaching consequences concerning
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mechanisms for ocean floor spreading and/or the validity of accepted

relations of certain anomalies to the present paleomagnetic time

scale.

Figures 8, 9, and 10 may be interpreted in two ways. First,

the postulated relations between the magnetic anomalies and the paleo-.

magnetic time scale are assumed correct and hence, the graphs ac-fl

curately represent spreading rates of the mid-ocean ridge system for

the past 3. 32 my (million years). Second, the spreading rates of the

ridge system are assumed to have been nearly constant for the past

3. 32 my and hence, some of the accepted relations between the anom-

alies and the paleomagnetic time scale are incorrect.

For the first case, Figures 8, 9, and 10 indicate that spreading

rates all along the whole mid-ocean ridge system have changed in the

same way, and at the same time during the past 3. 32 my. That is,

these rates decreased about 2 my before present and then increased

at about 0. 9 my before present. This would indicate a remarkable

world-wide interrelation of movements along the ridge system and

would place severe restrictions on any postulates concerning the

mechanism for this pattern of movements. Additional evidence of

non-uniform movement along the ridge system has recently been re-

ported by Fleischer, etal. (1968). On the basis of radiometric dating

of basalt samples they propose the possibility of small, relatively

rapid movements for the crestal region of the Mid-Atlantic Ridge at
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450 30' N.

The phenomenon of non-uniform, world-wide movements dis-

cussed here would be different than that of episodic spreading, as

cussed by Le Pichon (1968) and by Ewing and Ewing (1967), where

spreading from midocean ridges is postulated to have stopped corn-

pletely at various times in geologic history. In this paper the type of

spreading indicated by the relatively short time scale, world-wide

variation of spreading rates shown in Figures 8, 9, and 1 0 is referred

to as "variable-rate spreading. " Le Pichon (1968) proposes that the

postulated episodic spreading is strong evidence in favor of the block

tectonic theory of ocean floor spreading and against the convection

current theory (see the Introduction for a discussion of these theo.-

ries). He feels that if spreading corresponds to the response of a

thick rigid lithosphere to an underlying stress pattern, then all source

regions where new material is brought to the surface are interrelated;

the dynamic characteristics of these source regions should persist

until one or several of the lithosphere blocks become so poorly ad-

justed.to the stress pattern that a readjustment in the world-wide

spreading pattern is necessary.

We conclude that if variable-rate spreading exists, it could a,c

be interpreted in favor of the block-tectonic theory. That is, the

character of this readjustment of the lithosphere blocks will deter

mine whether episodic or variable-rate spreading takes place. J or



56

example, a system poorly adjusted to the stress pattern may undergo

minor readjustments. These minor readjustments would not serve to

completely overcome the poor adjustment of the block system to the

stress pattern, but would possibly result in the observed variable-

rate spreading. On the other hand, if a system undergoes a major

readjustment, then eposodic spreading could result.

Let us now take the second approach to the interpretation of

Figures 8, 9, and 10, and investigate the possibility that the spread-

ing rates have been more or less constant for the past 3. 32 my. This

would imply errors in the postulated relations between the magnetic

anomalies and the paleomagnetic time scale, although it is well known

that some of the relations are regarded as highly reliable (for exam-

ple, the start of the Brunhes and Gauss epochs). The interpretation

of Figures 8, 9, and 10 should therefore be in accord with the most

reliable relations between the anomalies and the time scale.

Constant, or nearly constant, spreading can be represented in

three ways: (1) by a least-square (fixed_origin) straight line fit of

the curves (a straight line fit was used by Vine (1966) but he did not

mention if a least-square criterion was used, ) (2) By a straight line

extrapolation of the straight line connecting the origin and the start of

the Brunhes epoch; that is the timing interval representing the start

of the Brunhes is assumed to be fixed. (3) By a broken line (fixed

origin) drawn under the assumption that the timing intervals
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representing the start of the Brunhes, the center of the Jaramillo,

and the start of the Gauss are fixed. It is shown below that (3) is the

most likely way of accounting for nearly constant spreading for the

past 3. 3 my.

If constant spreading is assumed and represented for all graphs

by a least-square fit as described in (1) then many of the plotted in-

tervals for the timing of paleomagnetic events would deviate from

(that is, would not intersect) the least-square lines. As these lines

are required to be accurate indications of spreading rates for the

past 3. 32 my, it must be concluded that the paleomagnetic time scale

is incorrect for all time intervals deviating from them. These devia-

tions are inconsistent from one graph to another, thus indicating that

the time scale is correct for some profiles and not others, that is, it

is correct in some parts of the ridge system and not in others. This

result cannot be accepted because of evidence for simultaneous world.-

wide occurrence of paleomagnetic epochs and events.

The assumption made in adopting procedure (2) to represent

constant spreading for the past 3. 32 my is quite reasonable. That is,

the start of the Brunhes epoch has been dated with a high degree of

confidence, and it is readily associated with the central magnetic

anomaly. However, many of the plotted time intervals do not con-

sistently intersect the resulting straight lines and the objections

raised to the validity of procedure (1) can also be applied here.



Procedures (1) and (2) will, therefore, not be considered further.

The plot of the timing interval representing the start of the

Gauss epoch is known with some confidence, and the assumptions nec-

essary for application of procedure (3) are therefore acceptable.

Examination of Figures 8, 9, and 10 shows that application of proce-

dure (3) is equivalent to constant spreading rates from 3. 32 to 0. 9 my

followed by changes in the spreading rates. These changes are such

that for some profiles the spreading rate increased slightly, and for

other profiles it decreased slightly at about 0.9 my. In Figure 11

profile EL19N is used as an example of application of procedure (3).

Unlike the undesirable situation encountered from applications of pro-

cedures (1) and (2), where many plotted timing intervals did not con-

sistently intersect the resulting lines, only one timing interval con-

sistently does not intersect the lines from application of procedure

(3). This interval represents the Olduvai event and it always lies on

the positive time-axis side of the line representing constant spreading

from 3. 32-0.9 my. The implication would be that under the hypothe

sis of constant spreading from 3. 32-0. 9 my the anomaly usually as-

sociated with the Olduvai event should be associated with some young-

er normal event. The approximate age of such an event can be de-

rived from the curves in Figures 8, 9, and 10. All curves except

TR15 are considered in the derivation; this curve is not considered

because it is the only one where a timing interval, other than the



59
160 km

Left
140

//

/
205 2.275

/1/
120

:
100

80
/

/
/ 725 96

60 /

ELI9N

20/

"I'NHES

MATUYAMA GAUSS
2 3 3.5my

G 0

.69 92 1.7 .96 2.43 3.06 3.32

N. ±041 ±076 ±097

20

2.05 2.25

120

140 Right

L160

Figure 11.Application of procedure (3) (see text) to EL19N.
G represents the Gilsa normal event.



"Olduvai interval, " does not intersect the line representing constant

spreading from 3. 32 to 0. 9 my. Therefore, if procedure (3) is car-.

ned out for all profiles except TR15, and if the center of the "Olduvai

interval, " originally at 1. 96 my, is required to lie on the resulting

line, then the average age of this younger normal event should be

about 1. 66 my (s. d. = 0. 88 my). This derivation is shown explicitly

in Figure 11 for EL19N where the age of the younger event turns out

to be 1.725 my.

A younger normal event, the Gilsa event, shown in Figure 11,

exists (McDougall and Wensink, 1966; Watkins and Goodell, 1967;

Cox and Dalry-mple, 1967a) and is dated at about 1. 7 my (A. Cox,

personal communication, 1968a). No particular magnetic anomaly has

been associated with the Gilsa event because no obvious anomaly con-

sistently appears between the ones usually associated with the Olduvai

event (1. 96 my) and the Jaramillo event (0, 92 my). Application of

procedure (3) therefore implies that the Gilsa anomaly, till now unde-

fined, may be the anomaly usually associated with the Olduvai event.

Similar ideas have been expressed by A. Cox (personal communica-

tion, 1968a).

There is extensive evidence for the existence of the Olduvai

normal event at 1. 96 my and it is reasonable to expect an anomaly

associated with this event. That is, if the anomaly usually associat'd

with the Olduvai event is associated with the Gilsa event, then there.
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should be some other consistently appearing anomaly which may be

associated with the Olduvai event.

Heirtzler etal. (1968) discuss a minor anomaly, called X,

which occurs with some consistency between the anomalies associated

with the Olduvai event and the end of the Gauss epoch. This anomaly

X and a neighboring anomaly W which also consistently appears,

are labeled in Figure 5. Amomalies X and W sometimes occur

as a doublet and sometimes only one or the other appears. In the lat-

ter case it cannot be determined by simple examination of the profiles

which anomaly is present. In order to overcome this difficulty the

age of each pertinent anomaly was determined for all the profiles

from the assumed constant spreading rates from 3. 32 to 0. 9 my.

Using only the profiles containing both anomalies the average age of

W turns out to be 2 my (s. d. = 0. 06 my) and the average age of X

is 2. 3 my (s. d. = 0. 1 my). The ages for X and W in EL19N are

shown explicitly in Figure 11. When a single anomaly occurred it was

subsequently labeled W or X depending on its relation to the

previously determined average ages for W and X. All singly

appearing anomalies corresponded to W, and no ambiguities were

encountered. The resulting average age of W (1. 99 my) corres

ponds very closely to the measured age of the Olduvai event (1. 96 my)

and we postulate that under the assumption of constant spreading frun

3. 32 to 0. 9 my, W is the true Olduvai anomaly.



The question now arises as to which of the two interpretations

of Figures 8, 9, and 10, variable rate spreading or case (3) of nearly

constant spreading, is more acceptable. If the variable-rate spread-

ing interpretation is accepted then there is no anomaly that can be

easily related to the Gilsa event. If a constant spreadIng rate from

3. 32 to 0. 9 my is accepted then both the Gilsa and the Olduvai events

can be associated with consistently appearing anomalies. We tend to

regard the latter case as more acceptable than the former because of

the quite natural way it allows all the well known paleomagnetic events

to be associated with consistently appearing magnetic anomalies.

The constant spreading interpretation gives support to the as-

sumption of many authors that the ocean floor has been spreading at a

nearly constant rate for the past 10 my. For example, if the usual

Olduvai event-anomaly association, and therefore the variable-rate

spreading hypothesis, is accepted, then obviously the assumption of

constant spreading over this period becomes quite tenuous. This evi-

dence tending to support the assumption of constant spreading for the

past 10 my is, however, somewhat weakened by the evidence for slight

spreading changes around 0. 9 my.
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THE OVERDETERMINED PROBLEM

Introduction

In the previous discussion on methods of solution of the direct

problem, the number of magnetic volume elements was taken to be

equal to the number of field input points. This allows us to obtain a

unique solution to a well-conditioned problem involving an assumed

model geometry. In other words, there is exact agreement at the in-

put points between the observed field and the field generated by the

solution distribution. However, the two fields will deviate in the In..

tervals between these points. For a given number of field points the

present method does not provide a means of estimating the magnitude

of this deviation.

There now appear to be two options for improving the overall

agreement between the observed and the computed fields. First, the

number of input points (in) and the number of magnetic volume ele-

ments (n) can be increased, still keeping n m. This will re-

suit in an exact agreement of the observed and the computed fields at

a greater number of field points, at the expense of a greater computa-

tionai effort. Second, in the case of a given number of magnetic vol-

ume elements, the number of input points can be increased. An

exact agreement can no longer be attained at the input points. This

procedure therefore requires the minimization of some norm-function
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of the deviations between the observed and the computed fields at the

input points. This leads to an overdetermined problem in computing

the magnetization distribution.

Moreover, once a solution has been obtained for Uie well-

conditioned problem with n = m, it is often desirable to test the

sufficiency of simpler physical models; that is, models with a smail-

er number of magnetic volume elements but where the number of in-

put points is unchanged. This third case, involving n < m, will

naturally lead to the same type of computational problem as the sec-

ond option above. That is, to an overdetermined problem where some

norm-function of the deviations is to be minimized.

In discussing the merits of these three variations to the direct

problem, it is to be realized that imposition of an exact agreement

between the observed and computed fields at a given number of input

points is an unwarranted accuracy. All input data contain measure-

ment and data reduction errors and, furthermore, the above proce-.

dure is based on an assumed model geometry which will deviate from

the real geometry of the magnetized material.

No further discussion is necessary in the case of the first option

involving n = m. On the other hand, the two latter cases lead to a

different kind of computational problem which will be discussed here.

For practical reasons, the discussion of the overdetermined problem

will be based on the third case where the number of input points is
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fixed.

In order to state the practical overdetermined problem in its

full generality a further physical constraint should be taken into ac-

count. The possible values of the magnetization are bounded from

above, and a direct sampling of the magnetization of natural rocks

in a particular region (see for example Tarling, 1966) may supply an

upper limit to the acceptable values of Mk.

Formal Statement of the Overdetermined Problem

Introducing the slack variables s, the general problem of

determining the Mk can be stated in the following way:

(15) T. G.kMk + s. (j=l, . . . , n)

f(s.) mm,

IM I<Mk max

This is, given the m field values EXT., determine the n values

M such that some suitable norm-function f(s.) of the differences
k

between T. and G. M is minimum. The M thus ob-
L jkk k
k= 1

tamed are then taken as estimates (in the sense of the norm-function

used) of the magnetization distribution.

The most important and frequently used norm-functions (norms
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are members of the class of L norms (Rice, 1964) defined as fol-
p

lows:

m i/p
f(s ) L (s.) (5

IP1 = mmp3 L='J

with L (s.) > 0, and L (s.) 0 if and only if s. = 0. Rice andp3 p3 j

White (1964) discuss the criteria for choosing different values of p;

in particular, they compare results for the L1, L2, and L

norms for a given example. These are the three norms considered

in this paper. In a more familiar representation they are

(16) p = 1, s. ( mm;

p 2 (least squares), (s.)2 = mm;

p = 0° (minimax or Tchebycheff), max s.( = mm.
3 3

Rice and White (1964) conclude that for approximation purposes the

L1 norm is best suited to situations where large residual values

(the error at a particular point) are not uncommon; that is, the sta-

tistical distribution of the residuals has a long tail which allows "wild

points." On the other hand, the L norm is best suited to systems
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where the residual distribution has sharply defined limits and the

L2 norm is best suited to residual distributions lying between these

extremes.

We must now ask what assumptions or characteristics of the

problem under consideration here will affect the values of the slack

variables s. Essentially, a model (G.kMk) is being fitted
to reality LT.. Model disparity (the difference between model and

reality) in well-conditioned problems can result in both a physical and

a numerical way; the former results from the choice of a basic model

that is not truly representative of the source body causing the anomaly

field, and the latter results when the number of unknowns (n) dif-

fers from the number of field points (m). Numerical model dispar-

ity is a direct function of the difference between m and n and is

absent when m n; physical model disparity is unavoidable be-

cause of the very nature of geophysical interpretation. Of course,

when m = n and the system is well-conditioned any effect of physi-

cal model disparity is masked because the system then has a unique

mathematical solution.

The character of the deviations between the observed field and

the field calculated on the basis of the Mk solutions obtained from

Equation (15) using L type norms will depend on the index number

p. The distribution of the magnitude of the deviations at individual

points will become increasingly uniform with increasing p. The
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norm will give a relatively heterogeneous distribution with pos-

sibly a number of large deviations, whereas the L norm will give

a very uniform distribution.

In choosing the most suitable norm the computational effort has

to be taken into consideration. In this respect the L2 norm is su-

perior.

The effects of the three norms L , L , and L will be
1 2 oc

displayed below through the use of examples.

Methods of Treatment of the Overdetermined Problem

Methods of treatment of Equation (15) using the above norms

will now be presented. The L and L norms will be treated

first, and then the L2 norm will be treated in both an exact and an

approximate manner. No constraint on the magnitude of Mk will

be considered explicitly.

The most readily available method of estimating the magnetiza-

tion distribution from Equation (15) using the and L norms

of Equation (16) is that of linear programming (LP). A brief out-

line of the LP method along with pertinent theorems and definitions

is given in the Appendix.

The L Norm

The variables of the LP primal problem are required to be



non-negative. The variables Mk and s. are not necessarily

non-negative, but they can be expressed in terms of other variables

which are always non-negative. The slack s. is written as the dif-

ference between two non-negative slacks (u., v.); according to

Equations (4) in the Appendix, Mk can be written

Mk = Nk - C, 0, C = const.

The first of Equations (15) then tales the form

(17) G.kNk + u. - v. = T.

whe re n

T. = T. + C G.
3 3 jk

k= 1

u.>0, v.>0.3 3
These equations are identical in form to the constraints and non-

negativity conditions of the standard LP problem. The L1 norm

defines the objective function; that is (Equation (16))

m m
L1(s.) = Iu.-v.I = (u.+v.) = mm

since for each value of j only one of the slack variables can be



non-zero. The standard LP formulation (see Equations (1), (2),

(3), in the Appendix) for the L1 norm is then

(18) GjkNk + u. - v. T. (j1, . . .,

where

Nk>O u.>O, v.>0,3 3

=min

Mk = Nk - C, C = const,

n

T. = T. + C G.
3 3 Li

k= I
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It is mentioned in the Appendix that an upper bound (IMkf <Mmax)

on the magnitude of and therefore Mk can be explicitly in-

corporated into the LP formulation. The constraint expressing

this upper bound

-C<N <M -Ck max

will not be considered further.

The dual LP formulation will shorten the computations when

m> n. The dual is obtained by first expressing the primal problem
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as follows:

k=l
+ u. - v. = T. (j=l, .,

Mk unrestricted in sign,

U.> 0, v.> 0,3 3
= mm.

According to the rules presented in the Appendix the dual problem i

then

X. = 0 (k=1, . . . , n),

-1 < x. < 1,3
= max.

To express this in terms of non-negative variables let x = y. - 1.

Then the reduced dual formulation for the problem is



m m
(19) G.ky. G.k (k1, . ,n),

o-yj-2,

T.y. = max
j=1

where the constant term - has been deleted from the objet

tive function because it adds nothing to the problem.

The L Norm
00

Application of the L norm involves the minimization of the

maximum component of the residual vector. That is, from Equation

(16)

L(s.) = max sI = max kT GikMk = mm (j=l ,.,,m),

If the unknown maximum value is represented by the new variable

E, then the L norm can be represented as
00

JT. G.kMkI <E,

E = mm.



73

Upon removal of the absolute value sign and rearrangement, this ex-

pression becomes

n

E + G M > T (j=l, .. . , m),jk k j
k=l

E

E = mm.

If we neglect for the moment that Mk is unconstrained in sign, then

these equations are the constraints and objective function of the LP

problem. But, in comparison with the L1 primal formulation

(Equations (18)) there are here twice as many constraints (2m), and

hence the computation time is increased considerably. To eliminate

this unwanted condition we express the above L equations in their

dual form with the help of Theorem (c) in the Appendix:

m 2m

(20) GjkYj Gjm kj = o (k=l, . . . , n),

j=l j=m+l

= 1,

m 2m

LT.y.- T. y.=max.tj 33 L
j=1 j=m+l
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Equations (19) and (20) constitute the formal basis for estima-

tion of the magnetization distribution using the L1 and L norms.

The L2 Norm

Discussion of the L2 norm has been saved till last because it

turns out to be the norm best suited to the problem considered in this

paper, from both a computational and a physical standpoint.

Tanner (1967) gives the following formal procedure for express-

ing Equation (15) in a form suitable for treatment using the L2

norm when m > n: Determination of Mk from

T. G.kMk (j=1,.. . ,m>n),

subject to the condition

m n

L2(s) GjkMk)2 = mm,

requires that
m n8L2(s.)

= -2 G (T -aM jr j GjkMk) = 0 (r=1,... , n)
r j=1 k=1

or, equivalently

(21) GjrTj = GjrGjkMk (r=1,.. .,n).
j=1 j=1 k=1

Equation (21) is a system of n equations in n unknowns. In
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G T=G GM
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where GT represents the transpose of G. At this point it should

be noted that when no restrictions are placed on the relation between

m and n the L2 norm can be treated using the method of quad-

ratic programming (Hadley, 1964), but this is not considered further.

Determination of the magnetization distribution using the L2

norm then reduces to the problem of solving an n x n system of

linear equations. Methods of doing this were discussed earlier where

only the n = m case was considered. In that discussion it was

pointed out that the method of iteration makes it possible to explicitly

consider the sufficiency of a magnetic model. Through solution of the

overdetermined problem the physical model sufficiency can be expli-

citly considered. Therefore, if the method of iteration is used to

solve Equation (21) then magnetic model sufficiency can be considered

in conjunction with physical model sufficiency. This cannot be done

when either the L norm or the L norm is used to treat the
1 00

overdetermined problem. Difficulties do arise, however, when both

magnetic and physical sufficiency are considered. That is, there is

no unique solution and the possibility of the iteration process reaching

a physical and not a mathematical termination is surely diminished.

From a computational point of view the determination of the
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magnetization distribution using the L2 norm, through Gaussian

reduction or iteration, is much simpler and less expensive in terms

of computer time than if the L norm or the L norm is used.
00

However, as the LP system at Oregon State improves it will be-

come much more versatile and easier to use (L. Scheurman, per-

sonal communication, 1968). It will then be possible to take better

advantage of its special properties when using the L1 and L

norms.

Application of Exact Methods and a Comparison of Results
Using the L1,L2, and L Norms

As an aid to understanding the behavior of all three norms, let

us now use them to interpret one magnetic anomaly profile in terms

of three different physical models.

Figure 12 shows a digitized version of the central segment of

Profile 40 from the Reykjanes Ridge (Heirtzler, Le Pichon, and

Baron, 1966), the three physical models to be considered, and the

parameters to be used in the working equations. Differences in the

models lie solely in the number and widths of their component blocks.

The same field input points are used for each model. It is obvious

from this figure that the n = 17 model will be significantly poorer

than the n = 25 model, which in turn will be significantly poorer

than the n = 37 model.
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Figure 13 shows the magnetization distribution for the n = 37

model which, of course, generates the input field exactly. For the

n 25 model Figures 14, 15, and 16 show the L1, L2 and L

magnetizations respectively along with their residual fields. The

residual field is defined as the input anomaly field minus the field

recalculated from the particular magnetization distribution. Figures

17, 18, and 19 show the same quantities for the n = 17 model. No

requirement on the maximum value of Mk was incorporated into

these calculations.

It is evident from Figures 14 through 19 that for each model a

choice of a suitable norm reduces to a decision on what behavior is

desired for a residual field. As expected, the L1 norm gives a

residual field with many small values and some very large values,

the L norm gives a residual field with many intermediate values,

and the L2 norm gives a field between these extremes. However,

when the positions of large residual field values are compared to the

position of the pertinent input points (Figure 12) an interesting rela-

tionship becomes apparent; the largest residual field values of the

L1 and L2 norms correspond to regions of very high gradient in

the input field, while the largest values for the L norm are spread

throughout the input profile. In many applications of the magnetic

interpretation method the largest interpretation errors are to be ex-

pected and accepted in regions of high gradient, because of the
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increased measurement error there. We then feel that either the L

or the L2 norm is well suited to most real situations and that the

L norm introduces too much error in regions of low gradient where

it is not to be expected. Ultimate choice, nevertheless, depends on

the purposes and characteristics of a particular investigation and on

the computational properties of the various norms. As mentioned

earlier, from a computational point of view the norm is found

to be much more convenient than the others since it merely involves

solution of a n x n system of equations.

Figure 13 presents what might be called the exact magnetiza-

tion distribution, in the sense that it exactly generates the input field.

But any one of the other magnetization distributions presented in Fig-

ures 14 through 19 could be considered acceptable, depending on the

purposes of a particular investigation and the amount of slack that can

be tolerated. This exemplifies the freedom of interpretation made

possible by being able to solve the overdetermined system of equa-

tions.



CONG LUSIONS

The direct determination of the magnetization distribution in a

two-dimensional source body is reduced to the problem of solving m

linear algebraic equations in n unknowns:

=G.kMk (j=l,...,m)

where m is the number of magnetic field input points and n is

the number of unknown magnetization values of n magnetic volume

elements.

The case where n m can be solved uniquely provided that

the system is well-conditioned (stable). That is, the dimensions of a

source body should be nearly equal to the dimensions of the magnetic

profile. If this is not the case the system will be ill-conditioned, and

will result in a solution which will be very sensitive to slight changes

in either the input field values or the matrix coefficients.

Solutionof the casewhere n =m bythe iterationprocess is physi

cally reas onable because with it one can obtain an approximate solution to

within the experimental accuracy war ranted by the experimental accuracy

of the input field. That is, a sufficient magnetic model can be de-

rived.

Magnetization distributions were obtained for two source bodies



of assumed geometry associated with ocean floor spreading. Results

of the computations show that the crestal sections of the source bod-

ies are only slightly more magnetic than their neighboring sections,

and therefore these neighboring sections are very likely not extensive-

ly contaminated with material of opposite polarity. Transition zones

between source-body sections of normal and reverse polarity are

found to be very narrow. Therefore, they would be ineffective as

sources of contamination for wide sections of normal and reverse

polarity. The narrowness of the transition zones also indicates that

if the dike injection hypothesis is to be accepted, then the dike injec-

tion band must be in some cases much narrower than 12 km.

Ocean floor spreading rate curves based on the usual associa-

tions of magnetic anomalies with the paleomagnetic time scale have

been constructed. Two different interpretations appear possible:

(1) Spreading rates have been non-uniform along the whole mid-ocean

ridge system during the past 3. 32 my.. (2) Spreading rates have been

nearly uniform; under this hypothesis, the anomaly usually associated

with the Olduvai event should be associated with the Gilsa event, and

another anomaly, called W, should be associated with the Olduvai

event. The latter interpretation is more acceptable.

The overdetermined problem (m > n) has been investigated

for two reasons. First, for a given number of magnetic volume ele-

ments (n) it allows improvement of the overall agreement between



the input and computed fields by an increase in the number of input

points (m). Second, for a fixed number of field input points it al-

lows the sufficiency of simpler physical models (smaller n) to be

tested.

The overdetermined problem can be treated through the use of

norm..functions of the deviations between the observed and computed

fields. Three L norms were investigated: L , L , and L
p 1 2 oo

Of these three, the L2 seems best suited to the problem under con-

side ration here.

Computationally, treatment of the overdetermined problem us-

ing the L2 norm involves the relatively simple process of solving

an n x n system of linear algebraic equations. Treatment using

the L1 and L norms involves application of the complicated

linear programming technique. Physically, either the L1 norm or

the L norm is well suited to most real situations, while the L
2 00

norm introduces too much error in regions of low gradient where

only small errors are to be expected. Moreover, treatment of the

overdetermined problem using the L2 norm and the method of iter-

ation allows the sufficiency of both the physical and the magnetic

models to be considered.
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Linear Programming

In this appendix a brief survey of the general linear program-

ming (LP) formulation is presented along with some pertinent the-

orems and definitions. Excellent sources of information on LP

are Garvin (1960), Gass (1964), and Vajda (1961).

Linear programming is a method of solving an indeterminate

system of linear equations in which the variables must be non-negative

and must conform to an additional linear extremal condition. More

precisely, it solves the system

(1)

k=l
= b. (j=l,. . . , m)

with

(2) Xk> 0,

(3) ckxk = mm,

and where a. , b., and c are known constants for all values ofjk j k

j and k. Equations (1) are called the constraints of the problem

and the left side of Equation (3) is called the objective function. The

above system is the standard LP problem where the constraints

are represented as equations, all the variables are required to be



non-negative, and where the objective function is to be minimized.

If some variables in the physical problem are not required to be

non-negative, then the variables can be expressed in two different

ways; that is

(4) or

Xk = x - x with x> 0, x> 0

Xk Zk - C with Zk> 0, C constant.

The first of these has the rather distinct disadvantage of changing one

variable into two variables, thus greatly increasing the size of prob-

lems where many of the original variables may be positive or nega-

tive (this is the case in problems considered here where all the

original magnetization variables are unconstrained in sign). On the

other hand, the second form does not increase the number of van-
able s.

In some cases the computations may be shortened through use

of the dual of the original or primal problem. If the primal problem

is denoted as

a.kxk>b. (j=l,...,m),

ckxk = z = mm, x> 0



then the dual problem is obtained by transposing the rows and columns

of these equations, including the right hand side and the objective

function, reversing the inequalities, and maximizing instead of mini-

mizing. Thus

m
a. y. < c (k 1,. ,n),jkj k

j =1

b.y. = v max,

0

is the dual problem and the are the dual variables If the

solution to this dual problem is known, then the solution to the primal

problem follows; these solutions are usually given together. Use of

the dual may be helpful in reducing computation time when m > n

because the primal problem has m constraints whereas the dual

has n constraints (the number of constraints is much more impor-

tant than the number of variables in determining computation time,

(Rabinowitz, 1968).

Important theorems concerning the dual (Garvin, 1960, Chapter

17) follow:

(a) The dual of the dual is the primal.

(b) If the kth constraint of the primal is an equality, then the
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dual variable is unrestricted in sign.

(c) If the pth variable of the primal is unrestricted in sign,

the pth constraint of the dual is an equality.

It should be mentioned here that the LP method allows place-

ment of an upper bound on the variables. Equation (Z) would then be-

come 0 < Xk U. B., where U. B. means upper bound. For the

case where Xk is unrestricted in sign, and both upper and lower

bounds are to be considered, the second of Equations (4) is more ver--

satile. It can be written

XkZk C, O<zk<U.B.

which means that for the original problem

C<xk<U.B. - C,

that is, the lower bound does not have to equal the upper bound.




