5105 E55 NO.614 COP.2

Construction Aggregates Available Along the Oregon Coast

Oregon State University Extension Marine Advisory Program A Land Grant / Sea Grant Cooperative Special Report 614 October 1981

CONSTRUCTION AGGREGATES AVAILABLE ALONG THE OREGON COAST

by

Robert M. Burchfield Research Assistant Oregon State University

and

R. G. Hicks Professor of Civil Engineering Oregon State University

Special Report 614 / October 1981 Oregon State University Extension Service Sea Grant/Marine Advisory Program

Corvallis, OR 97331

TABLE OF CONTENTS

Pag	e
ntroduction	
valuation of Aggregates	
pes of Aggregates Available	
Basalts3Sands4Gravels4Sandstone5Dredged Materials5Extent of Aggregate Resources5	•
coblems With Use of Marginal Aggregates	
Basalts10Sandstone (or Siltstone)10Sands11Dredged Materials11	
ummary	
eferences	
opendix	

INTRODUCTION

The natural reserves of high quality construction aggregates found along the Oregon coast are being depleted. The impending shortages are compounded by restrictions being placed on existing aggregate sources because of energy, economic, and environmental considerations, and zoning regulations. A current solution for the shortage is to import quality aggregate from areas that have more abundant reserves, such as the Willamette Valley. Figure 1 shows the amounts of aggregate imported to the Oregon coast from various sources, usually by truck. As this practice is both costly and energy-intensive, alternative sources of aggregate must be identified. As abundant supplies of lower-quality aggregates can be found near the Oregon coast, one alternative is to use these lower-quality, or "marginal," aggregates for construction purposes, particularly for road building materials.

The purpose of this paper is to identify the general types and extent of aggregates available along the Oregon coast. An evaluation of the important characteristics of the aggregates and the problems associated with their use in construction is also provided.

EVALUATION OF AGGREGATES

Evaluation of an aggregate can be accomplished in many ways depending on the material properties being characterized. Of interest to the road builder is the sample gradation and the mechanical and chemical durability of the aggregate.

A grain-size analysis is used to determine the gradation of an aggregate. Aggregate gradation affects the density and stability of the material.

Various durability tests for construction aggregates are in use in the Northwest today. These tests and typical minimum requirements for each are shown in Table 1. A good-quality aggregate will pass the minimum durability test requirements for any or all of these methods. Good-quality aggregates are often used for purposes where low-quality aggregates would be sufficient. When high-quality rock is not available, aggregate specifications can be written to allow acceptance of lower-quality, "marginal" aggregates. The use of the term <u>marginal</u> implies a range in acceptable values for durability falling below the normal minimum specification. Classification of an aggregate as marginal would indicate that special design considerations would be required for use on road construction. (See <u>Upgrading Marginal Aggregates for Road Construction Along the Oregon Coast</u>, Oregon State University Extension Service Special Report 615, hereafter Upgrading.)

3

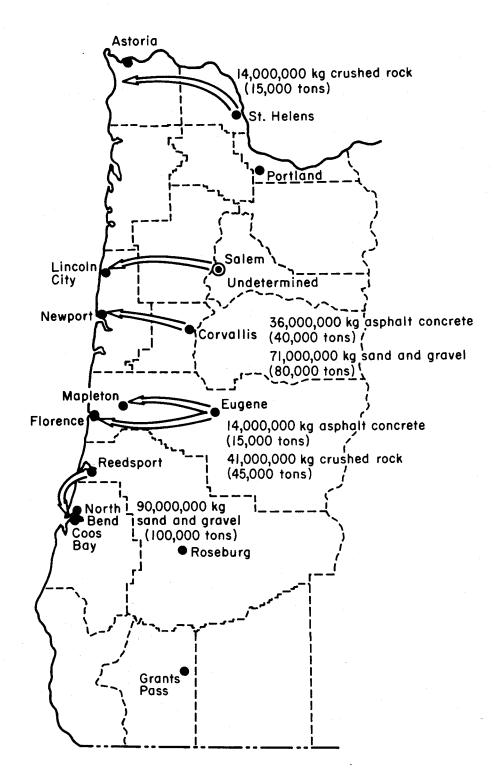


Figure 1. Annual Aggregate Importation to Coastal Oregon. (Source: Reference 1)

Property	Test method	Typical specification
Mechanical degradation	(1) Los Angeles Abrasion (LAA) AASHTO T-96	35% maximum
Chemical degradation	(1) California Durability AASHTO T-210	35% minimum
	(2) Oregon Aggregate Degradation (OAD)	3.5 in. maximum sediment height 35% maximum passing the
	(3) Accelerated Weathering(Dimethyl sulfoxide or ethylene glycol)	No. 20 sieve Maximum of 4 failures out of 10 specimens

Table 1. Durability tests

TYPES OF AGGREGATES AVAILABLE

The principal types of aggregate available to the Oregon coast include basalts, sandstones, dredged materials, and sands or gravels.

Basalts

Basalts are igneous rocks. Physical properties of basalts are largely determined by the location of the deposit of the parent magma, or lava. Basalts are classified on this basis as marine, aerial, and intrusive. Marine basalts were deposited in water, with subsequent rapid cooling. Aerial basalts were deposited over land, with slower cooling. Intrusives were deposited within the earth, with variable cooling rates. The rate of cooling determines the grain size that developed--and the quality of the rock, to some extent.

Marine basalts cool too quickly to form a distinguishable grain pattern. The substance formed under these conditions is termed glass. This glass is susceptible to breakdown and will alter to clay minerals through weathering action. If the clay minerals are expanding clays, degradation of the aggregate will occur. Marine basalts are normally considered poor materials for road construction purposes. However, this conclusion is not a general one. Certain quarry sites labeled as marine exhibit a wide range of durability values, from poor to good.

Recognition of the different types of basalts can sometimes be made at the quarry. A marine basalt is indicated by a spherical shaped mass, termed a pillow. These pillow basalts or pillow lavas result from rapid cooling of the flow when exposed to water. Pillows are composed largely of unstable glass on the perimeter. Columnar formations usually indicate an aerial-flow basalt. Aerial flows are variable in thickness. They usually exhibit a porous broken top grading down into a more dense, coherent body. Columnar jointing is present, with joints perpendicular to the cooling surface. Glass is present chiefly in the broken porous top of the flow. The absence of any significant amount of glass indicates an aggregate of better quality.

Intrusive basalts result from solidification of the lava beneath an insulating rock cover. Such intrusive bodies may be lens-shaped masses of approximately uniform thickness. These are termed <u>sills</u>. They may also be tubular bodies that cut across the bedding of the intruded rocks, which are then called <u>dikes</u>. Vertical, pipelike conduits, or intrusive breccias form when intruding lava encounters water-saturated rock, causing rapid chilling and steam explosions that tear it apart. The breccias are much less common than flows, dikes, or sills.

Sands

Dune sands and beach sands are relatively abundant on the Oregon coast. These sands generally have a uniform gradation; consequently, they do not provide good stability when used for road construction.

Gravels

Some gravel is dredged from many of the coastal rivers. However, the only major sources of river gravel capable of providing a high-quality construction aggregate at the present time are the Umpqua and Rogue Rivers. Enough material could be mined from these sources to provide some export to other counties. Table 2 lists the amount of gravel removed from the Umpqua River for the years 1974 through 1979.

Table 2. Amounts of gravel dredged from the Umpqua River.

Year	Amount in tons
1974	441,399
1975	421,716
1976	310,702
1977	356,219
1978	476,219
1979	562,818

Source: Reference 7

Sandstone

The Coast Range and coastal areas of Oregon exhibit abundant quantities of sandstone interspersed with small amounts of siltstone.

Sandstone is composed of cemented sand grains. These grains are no different from the sand found on beaches or in dunes. The precipitation of mineral matter in the pores of the sandstone produces this cementation. The cementing material may be added from outside the rock by migrating solutions or may possibly result from the reorganization of mineral matter already present within the rock by solution from grains and precipitation within pores. The strength of the cementing agent determines the strength of sandstone. Unfortunately, this is not adequate for most road construction purposes.

Dredged Materials

Aside from the Umpqua River, dredged materials are relatively unused on the Oregon coast. Table 3 lists the material dredged from the major coastal rivers. Like dune and beach sands, these water-deposited materials exhibit relatively uniform grading. The material deposited by relatively slow moving water tends to be smaller; faster moving waters will tend to deposit largersized aggregates. As rocks are transported downriver, the weaker rocks erode more, leaving durable aggregates. Therefore, dredged aggregates can be expected to exhibit high durability.

Extent of Aggregate Resources

Figure 2 shows the availability of the various aggregates described above. Figure 3 depicts sources of river aggregate available in Oregon's coastal counties. Table 4 provides a summary of field interviews with county engineers to determine the extent of quality-aggregate shortages being experienced presently and future expectations for the respective counties.

			То	Туре		
County	Location	Amount Cubic yards	Cubic yards	Cubic meters	of materials	
	At the mouth of the Columbia River Oregon and Washington	5,878,624				
	Skipanon Channel, Oregon	50,050				
Clatsop	Tongue Point, Piers 7 & 8, Oregon	40,900	6,665,000	5,095,600	Sand & silt	
	Columbia Slough (Operation Fore- sight)	26,310				
	Astoria Turning Basin	669,102			. <u>.</u>	
	Tillamook Bay and Bar, Oregon	24,701	133,000	101,700	Sand	
Tillamook -	Wilson-Trask River, Oregon	108,163	155,000	101,700		
	Depoe Bay, Oregon	12,437	652,000	498,500	Sand	
Lincoln	Yaquina Bay and Harbor, Oregon	639,165	032,000	450,500		
Lane	Siuslaw River, Oregon	237,654	238,000	182,000	Sand	
	Umpqua River, Oregon	323,812	499,000	381,500	Sand	
Douglas	Smith River, Oregon	174,941	455,000	361,300		
	Coos Bay, Oregon	2,666,273		-		
Coos	Coos and Millicoma Rivers, Oregon	35,851	2,754,500	2,105,900	Sand & silt	
	Coquille River, Oregon	52,314				
- <u>-</u>	Chetco River, Oregon	43,370				
Curry	Rogue River Harbor at Gold Beach, Oregon	106,282	187,200	143,200	Sand	
	Port Orford, Oregon	37,514				

Table 3. Location, type and average annual amount of dredged materials from coastal Oregon from the years 1973 to 1977 (dredging operations of the U. S. Army Corps of Engineers).

Source: References 15, 16

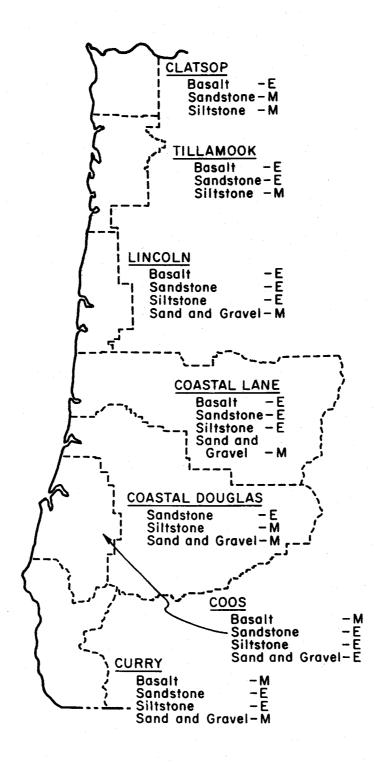


Figure 2. Availability of Land-Based Marginal Aggregate in Oregon's Coastal Counties. (Source: References 2,3,4,5,6,7)

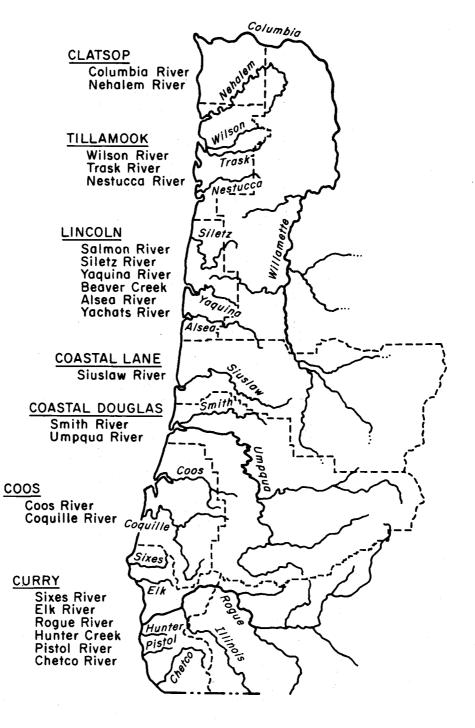


Figure 3. Availability of River Aggregate in Oregon's Coastal Counties. (Source: References 2,3,4,5,6,7)

Table 4. Summary of counties with quality aggregate shortages.

County	Field interview with county engineers	Evaluation from the interview
Clatsop	The main sources of aggregate used by Clatsop County are obtained from a rock quarry in Seaside, crushed gravel barged down the Columbia River (from Gable or St. Helens, Columbia County), and material taken from a gravel pit near the Big Creek River. In 1978, about 10,000 cubic yards of crushed gravel were imported from the Columbia River. Aggregate is also being purchased from a pit man- aged by the State Board of Forestry. The county owns two quality quarries; however, these are located in remote areas and cannot be economically used for most projects. Legislation currently prevents other quarries, such as Tongue Point and those owned by logging companies from being used in the county.	There is a trend to a shortage of quality aggregate in the county.
Tillamook	State Highway reports provided by the county engineer in- dicate that all of the materials in production are top quality. The county does not foresee any problems in ob- taining aggregates for the next 20 years.	No problems with shortage of quality aggregate in this county.
Lincoln	The north part of the county uses rock from the Neskowin Pit (in Tillamook County), Ocean Lake Sand and Gravel (which consistently produces good quality rock), and a Forest Service pit on Widow Creek Road, called the Post Pit. The Post Pit material is marginal. The southern part of the county uses Siletz River run gravel, aggre- gate hauled from the Willamette Valley, good-quality ag- gregate from Yaquina Head, marginal aggregate from Eckman Creek and Berry Creek Quarry (in Lane County), the Alsea Lumber Company Pit in Benton County, and aggregate im- ported from the Umpqua River. The county expects to con- tinue current trends such as importing from the Willa- mette Valley and the Umpqua River.	There is a shortage or quality aggregate in this county.
Western Lane	For the next 20 years, three main aggregate sources will be used: (1) marginal quarry rock located in Lane County, (2) aggregate trucked from the Umpqua River, and (3) aggregate from the Willamette Valley. It is sus- pected that more aggregate will be barged from the Umpqua River and the Willamette Valley in the future.	There is a trend to a shortage of quality aggregate in this part of the county.
Douglas	next 20 years will be continued usage of the Umpqua River dredgings.	
Coos	Aggregates come from rock quarries (namely Hervey, Sher- ets, Reed Bar, Broadbent, Eckley), and the Umpqua River. Of these sites, the Hervey Quarry is the only site that produces a substandard quality rock, and it is used ex- tensively. Its usage is beneficiated by blending with other quality aggregates.	There is a shortage of quality aggregate in this county.
Curry	Curry County does not need to import aggregates. How- ever, prospects for the next 20 years are poor. Local citizens groups have recently initiated a petition to close down sand and gravel operations by Tidewater Con- struction Company on the Chetco River. This petition failed to gain enough support for consideration, but it indicates future trends that will limit the availability of construction aggregate. Development in the Brookings area and the establishment of the Rogue River Wilderness Area near Agness have also restricted quality aggregate availability.	Currently, there is no shortage of qual- ity aggregate in the county, but shortages of quality aggregate are expected in the future.

Source: Reference 1

PROBLEMS WITH USE OF MARGINAL AGGREGATES

Numerous problems result from the use of marginal aggregates in road construction. Table 5 summarizes the deficiencies of the various types of marginal aggregates available.

Basalts

Basalts, especially marine basalts, are high in mechanical strength but are susceptible to chemical weathering. Numerous accounts are available of road failures attributed to degrading basalts (9-13). It is generally concluded that the production of plastic fines in altered basalts is the principal cause of these failures. The presence of water will greatly accelerate the degradation process. Poor drainage conditions will cause a much more rapid failure of a road section made of marine basalt than a road section constructed of high quality aggregate.

Because of the relatively strong mechanical characteristics of basalts, efforts to improve their performance are warranted. Measures to reduce the potential for chemical degradation would require isolating the aggregate from water (see Upgrading).

Sandstone (or Siltstone)

Sandstones have a low resistance to mechanical degradation. Significant reduction in the grain sizes of a sandstone occurs during manipulation or loading. Field compaction and traffic loading result in dense gradations and a subsequent loss of permeability. The presence of water will then cause instability and failure.

Table 5. Marginal coastal aggregates and associated problems.

Type of aggregate	Problem
Marine basalt	Low resistance to chemical degradation
Sandstone and Siltstone	Low resistance to mechanical degradation
Sand, beach, and dune	Low stability because of poor gradation environmental restrictions
Dredged materials	Poor gradation Possibility of high organic content

12

Efforts to improve the performance of sandstones requires increasing the strength of the cemented sand particles. This can be achieved by adding portland cement or asphalt (see Upgrading).

Sands

Poorly-graded beach and dune sands lack the grain interlock required to provide good stability when untreated. The addition of portland cement or asphalt can increase the stability of sands (see Upgrading).

Another factor restricting the use of dune and beach sands is the effect large-scale mining would have on the Oregon coast's scenic beauty.

Dredged Materials

Dredged materials exhibit relatively uniform grading. The problem of uniform grain-size distribution can be solved by blending with materials of a different grain size. Dredged materials will vary in grain size depending on the flow velocity of the water in the river section from which they were taken. A well-graded aggregate of high durability can be achieved by blending dredged material from different sectors of a river. Admixture stabilization can also be used to upgrade dredged materials (see Upgrading).

SUMMARY

Several types of "marginal" aggregates available on the Oregon coast could be used for construction. They offer a feasible alternative to the importation of quality aggregate. These aggregates include basalts, which are high in mechanical strength but susceptible to chemical weathering; sandstones, which exhibit poor mechanical strength characteristics; and sands and dredged materials, which require stabilization or blending to provide sufficient stability because of poor gradation. Special design considerations can help avoid the problems normally associated with the use of these aggregates. <u>Upgrading Marginal Aggregates for Road Construction Along the</u> <u>Oregon Coast</u> discusses procedures and considerations for the use of marginal aggregates.

REFERENCES

- 1. Chintakovid, V., "Evaluation of Aggregate Needs and Problems Along the Oregon Coast," Transportation Engineering Report 79-3, Department of Civil Engineering, Oregon State University, April 1979.
- Ramp, Lee, Herbert G. Schicker, Jerry J. Gray, "Geology, Mineral Resources, and Rock Material of Curry County, Oregon," Bulletin 93, Oregon Department of Geology and Mineral Industries, 1977, 79 pp.
- 3. Loy, William G., Stuart Allan, Clyde P. Patton, and Robert D. Plank, Atlas of Oregon, University of Oregon, 1976, 215 pp.
- Beaulieu, John D., "Environmental Geology of Inland Tillamook and Clatsop Counties, Oregon," Oregon Department of Geology and Mineral Industries, Bulletin No. 79, Portland, Oregon, July 1973, 65 pp.
- Schlicker, H.G. and R.J. Deacon, "Environmental Geology of Lincoln County, Oregon," Oregon Department of Geology and Mineral Industries, Bulletin No. 81, Portland, Oregon, 1973, 171 pp.
- Schlicker, H.G., R.J. Deacon, R.C. Newcomb, and R.L. Jackson, "Environmental Geology of Coastal Lane County, Oregon," Oregon Department of Geology and Mineral Industries, Bulletin No. 85, Portland, Oregon, 1974, 116 pp.
- Beaulieu, John D., and Paul W. Highes," Environmental Geology of Western Coos and Douglas Counties, Oregon," Oregon Department of Geology and Mineral Industries, Bulletin No. 87, Portland, Oregon, 1975, 148 pp.
- 8. Personal communication with Paul Triem of Bohemia, Inc., July 24, 1980.
- 9. Ekse, M. and H.C. Morris, "A Test for Production of Plastic Fines in the Process of Degradation of Minerals," ASTM Special Technical Publication No. 277, pp. 122-126, 1960.
- 10. Minor, C.E., "Degradation of the Mineral Aggregates," ASTM Special Technical Publication No. 277, pp. 109-121, 1960.
- 11. Collins, C.M., "Degradation of Aggregates by Air Dispersion in Water," unpublished report for the Oregon Department of Highways, 1961.
- 12. Cole, W.F. and C.J. Lancuchi, "Formation of Clay Minerals in Basalts," paper given at the Sixth Conference of the Australian Clay Minerals Society, University of Sydney, Sydney, Australia, August 1976.
- 13. Wylde, L.J., "Literature Review: Crushed Rock and Aggregate for Road Construction--Some Aspects of Performance, Test Methods and Research Needs," Australian Road Research Board, Report No. 43, January 1976.

- 14. Clemmons, Gregory H., "An Evaluation of Coastal Oregon's Marginal Aggregates," Transportation Engineering Report 79-5, Department of Civil Engineering, Oregon State University, June 1979.
- 15. U.S. Army Corps of Engineers, Portland District, "Fiscal Years all Projects Average Cubic Yards and Costs of Dredging," March 1978, 4 pp.
- 16. U.S. Army Corps of Engineers, Navigation Division, Portland District, "Atlas of Oregon Coastal Navigation Project, Hopper Dredge Operation Areas," January 1978, 83 pp.

Tables A-1 through A-7 identify some of the aggregates presently available to the Oregon Coast and selected properties for these aggregates. Much of this information was obtained from the Federal Highway Administration, Region 10.

	Pit	Type of Rock
Clatsop	No record of rock pit use in this county	
	Neskowin	?
Tillamook Lincoln Lane Douglas	Bible Creek	Basalt
	East Line Quarry	Basalt
	Government Owned	Vesicular marine basalt
Tillamook	Dovre Peak Quarry	Basalt dike
TITTAMOOK	Government Owned	Quarry rock
		Gabbro/basalt
	Kostic Quarry	Intrusive, diorite
·	Dovre Peak West Sand Dune	Dune sand
	Yaquina Head Siletz Quarry	Basalt Basalt
	Ocean Lake Sand and Gravel	Basalt
	Morris	Basalt
		Basalt
	Ocean Lake	Marine basalt
	Post Pit	
Lincoln	Kaufman	Weathered basalt
	Willamette Industries	Gabbro
	Bureau of Land Management	Quartz diorite
	Bureau of Land Management	Andesite
	Gleneden Beach	Beach sand
	Eckman Creek	Basalt
	Siletz River	Gravel
	Hill Top and Roads End	Basalt
	Berry Creek	Basalt
_	Green Leaf Creek	Gabbro
Lane	Nelson Ridge Quarry	Gabbro (diabase)
	Deadwood Quarry	Gabbro ledge rock
+	Beckley Thomas Quarry (Tenmile Quarry)	Metamorphased volume
		Gabbro
	East Roman Nose	
	Wooley (Owner)	Gabbro
Develop	Esmond Creek Quarry	Gabbro sill
Dougras	Little Wolf Creek Quarry	Sandstone
	Old Wolley Quarry	Sandstone
	Manasha (Owner)	Sandstone
	Bridge Creek Quarry	Sandstone and conglomerate
		River gravel
	Eckley Quarry	?
		9
	Hervey Quarry	1
	Hervey Quarry Sherets	Bar run sand
Lincoln		Bar run gravel
	Sherets	Bar run gravel
	Sherets Reed Bar	
	Sherets Reed Bar Broadbent Kenstone Quarry	Bar run gravel Bar run gravel
	Sherets Reed Bar Broadbent Kenstone Quarry "County Pit"	Bar run gravel Bar run gravel Basalt Basalt
	Sherets Reed Bar Broadbent Kenstone Quarry "County Pit" Kinchloe Quarry	Bar run gravel Bar run gravel Basalt Basalt Marine basalt
	Sherets Reed Bar Broadbent Kenstone Quarry "County Pit" Kinchloe Quarry Kasper Quarry	Bar run gravel Bar run gravel Basalt Basalt Marine basalt Marine basalt
Coos	Sherets Reed Bar Broadbent Kenstone Quarry "County Pit" Kinchloe Quarry Kasper Quarry Indian Creek Quarry	Bar run gravel Bar run gravel Basalt Basalt Marine basalt Marine basalt Marine basalt
Coos	Sherets Reed Bar Broadbent Kenstone Quarry "County Pit" Kinchloe Quarry Kasper Quarry Indian Creek Quarry Gray Quarry	Bar run gravel Bar run gravel Basalt Basalt Marine basalt Marine basalt Marine basalt Basalt flow (marine)
Сооз	Sherets Reed Bar Broadbent Kenstone Quarry "County Pit" Kinchloe Quarry Kasper Quarry Indian Creek Quarry Gray Quarry Ansley Ranch Quarry	Bar run gravel Bar run gravel Basalt Basalt Marine basalt Marine basalt Marine basalt Basalt flow (marine) Columnar over marine basalt
Coos	Sherets Reed Bar Broadbent Kenstone Quarry "County Pit" Kinchloe Quarry Kasper Quarry Indian Creek Quarry Gray Quarry Ansley Ranch Quarry Boekelman Quarry	Bar run gravel Bar run gravel Basalt Basalt Marine basalt Marine basalt Marine basalt Basalt flow (marine) Columnar over marine basalt Columnar over marine basalt
Coos	Sherets Reed Bar Broadbent Kenstone Quarry "County Pit" Kinchloe Quarry Indian Creek Quarry Gray Quarry Ansley Ranch Quarry Boekelman Quarry Woodward No. 2	Bar run gravel Bar run gravel Basalt Basalt Marine basalt Marine basalt Marine basalt Basalt flow (marine) Columnar over marine basalt Altered marine basalt
Coos	Sherets Reed Bar Broadbent Kenstone Quarry "County Pit" Kinchloe Quarry Indian Creek Quarry Gray Quarry Ansley Ranch Quarry Boekelman Quarry Woodward No. 2 Norway Rock Products	Bar run gravel Bar run gravel Basalt Basalt Marine basalt Marine basalt Marine basalt Basalt flow (marine) Columnar over marine basalt Altered marine basalt Submarine basalt
Coos	Sherets Reed Bar Broadbent Kenstone Quarry "County Pit" Kinchloe Quarry Kasper Quarry Indian Creek Quarry Gray Quarry Ansley Ranch Quarry Boekelman Quarry Woodward No. 2 Norway Rock Products Highway 42 Quarry	Bar run gravel Bar run gravel Basalt Basalt Marine basalt Marine basalt Marine basalt Basalt flow (marine) Columnar over marine basalt Altered marine basalt Submarine basalt
Coos	Sherets Reed Bar Broadbent Kenstone Quarry ''County Pit" Kinchloe Quarry Kasper Quarry Indian Creek Quarry Gray Quarry Ansley Ranch Quarry Boekelman Quarry Woodward No. 2 Norway Rock Products Highway 42 Quarry Waterman Quarry	Bar run gravel Bar run gravel Basalt Basalt Marine basalt Marine basalt Marine basalt Basalt flow (marine) Columnar over marine basalt Columnar over marine basalt Altered marine basalt Submarine basalt Metamorphic basalt
Coos	Sherets Reed Bar Broadbent Kenstone Quarry ''County Pit" Kinchloe Quarry Kasper Quarry Indian Creek Quarry Gray Quarry Ansley Ranch Quarry Boekelman Quarry Woodward No. 2 Norway Rock Products Highway 42 Quarry Waterman Quarry Moon Creek	Bar run gravel Bar run gravel Basalt Basalt Marine basalt Marine basalt Marine basalt Basalt flow (marine) Columnar over marine basalt Columnar over marine basalt Altered marine basalt Submarine basalt Submarine basalt Metamorphic basalt Sandstone
Coos	Sherets Reed Bar Broadbent Kenstone Quarry "County Pit" Kinchloe Quarry Indian Creek Quarry Gray Quarry Ansley Ranch Quarry Boekelman Quarry Woodward No. 2 Norway Rock Products Highway 42 Quarry Waterman Quarry Moon Creek Buck Peak	Bar run gravel Bar run gravel Basalt Basalt Marine basalt Marine basalt Marine basalt Basalt flow (marine) Columnar over marine basalt Columnar over marine basalt Altered marine basalt Submarine basalt Metamorphic basalt
Coos	Sherets Reed Bar Broadbent Kenstone Quarry ''County Pit" Kinchloe Quarry Kasper Quarry Indian Creek Quarry Gray Quarry Ansley Ranch Quarry Boekelman Quarry Woodward No. 2 Norway Rock Products Highway 42 Quarry Waterman Quarry Moon Creek	Bar run gravel Bar run gravel Basalt Basalt Marine basalt Marine basalt Marine basalt Basalt flow (marine) Columnar over marine basalt Columnar over marine basalt Altered marine basalt Submarine basalt Submarine basalt Metamorphic basalt Sandstone
Coos	Sherets Reed Bar Broadbent Kenstone Quarry "County Pit" Kinchloe Quarry Indian Creek Quarry Gray Quarry Ansley Ranch Quarry Boekelman Quarry Woodward No. 2 Norway Rock Products Highway 42 Quarry Waterman Quarry Moon Creek Buck Peak	Bar run gravel Bar run gravel Basalt Basalt Marine basalt Marine basalt Marine basalt Basalt flow (marine) Columnar over marine basalt Columnar over marine basalt Altered marine basalt Submarine basalt Submarine basalt Metamorphic basalt Sandstone Sandstone
Coos	Sherets Reed Bar Broadbent Kenstone Quarry "County Pit" Kinchloe Quarry Indian Creek Quarry Gray Quarry Ansley Ranch Quarry Boekelman Quarry Woodward No. 2 Norway Rock Products Highway 42 Quarry Waterman Quarry Moon Creek Buck Peak North Fork Coquille	Bar run gravel Bar run gravel Basalt Basalt Marine basalt Marine basalt Marine basalt Basalt flow (marine) Columnar over marine basalt Columnar over marine basalt Altered marine basalt Submarine basalt Submarine basalt Metamorphic basalt Sandstone Sandstone Sandstone

Table A-1. Summary of pit name and type of rock in Oregon coastal counties.

Source: Reference 14

Table A-2. Key to terminology used in Tables A-3 through A-7.

1.

The pit numbering system as developed by the FHWA is described as follows:

35	-	29	_ 1	(0008
State	C	County		Pit	Number
(Oregon)	(Til	lamook)			
<u>C</u>	ounty	N	umber		
	11amook		29		
Ya	mhill		36		
Ро	1k		27		
Bei	nton		02		

Doncon	02
Lincoln	21
Lane	20
Douglas	10
Coos	06
Curry	08

2. Abbreviations

Sp. Gr.	Specific gravity
F	Fines
С	Coarse
D	Durability of coarse-sized aggregate
	Durability of fine-sized aggregate
LAA	Los Angeles Abrasion
DMSO	Dimethyl sulfoxide
E.G.	Ethylene glycol
OAD	Oregon Aggregate Degradation
S.S.	Sodium sulfate soundness
ΡI	Plastic index
LL	Liquid limit
N.P.	Nonplastic
Man,mfg	Manufactured by laboratory crushing
A.R.	As received

3. Typical specification values for durability tests

Sand equivalent	35% minimum
California durability	35% minimum
LAA	35% maximum
OAD	3.5 in. maximum sediment height
	35% maximum passing the No. 20 sieve

Pit Name	Thurse of Deals	Sand	C CD		ornia		DMSO	E.G.	CAD	Other
and Number	Type of Rock	Equiv.	Sp. GR.	Dc	Df	LAA	DMSU	E.G.		
Tobe Creek	Basalt	55		58	37	23		9		
35-02-0001		44		74	34	26		7		
		56 44		68	47 45	24		5		
		22(A.R.)		63	43	23				PI = 4
		27(moist)	7 00	00	-1	20				LL = 26
			$\frac{3.09}{7.07}$	60	42					
		36	3.03	65	37	21				
		30	2.95	55	23	22	8	1		PI = 6
		00		••			-	-		LL = 27
										Wt. Ave.:
										DMSO 36.5 E.G. 6.6
South Fork Alsea	Basalt	87	2.84	93	95	16		0		
Quarry		85		93	94	17		0		
35-02-0002		79		90	92	16		. 0		
Mary's Peak	Marine basalt		2.83		67	20				
Quarry		50	2.86	44	27	45	10	~		
35-02-0026		59	2.96F 2.83C	31	30	67	10	0		
		51	2.85C 2.86F	37	27	25	10	3		
		.	2.690	5.	~,	20	10	Ũ		
		45			21					
		28(A.R.)								
		57 (Man)			-					
		23(A.R.)								
		55 (Man)								<u></u>
Siletz Quarry	Basalt	37(Man)	2.60F	36	30	26		1		
35-21-0016		·	2.69C		2					
Kaufmann	Weathered basalt	68(Man)	2.84F	80	78	18		0		S.S. 8
35-21-0019			2.87C							Strip < 95
Ocean Lake S & G	Basalt	66	2.85F	85	91	13		0		S.S. 5%
35-21-0027			2.89App			10		Ũ		Strip < 95
See pg. 14 for			11							
more										
Hill Top & Roads	Basalt	70	2.73F	74	64	19				S.S. 9%
End										
35-21-0028			2.70App							
Morris	Basalt	75	2.74F	58	43	16				S.S. 14%
35-21-0029			2.73App							
Kinchloe Quarry	Marine basalt	<u> </u>		52	33	15		0		
35-06-0003	Juli inter Bubulte			49	32	13	0	Ő		
Kasper Quarry	Marine basalt	68mfg	2.97F	62	60	26		2		
35-06-0011		77mfg	2.97F 2.98F	70	48	23		0		S.S. = 12
		71mfg	2.99F	63	56	29		2		5.5 12
		32(A.R.)		61	45			ō		S.S. = 14
				52	26	29				PI = 7
										LL = 24
Gray Quarry	Basalt flow	31(A.R.)		45	40					S.S. = 32
35-06-0016	(marine)	(52	48	19				LL = 21
		38(A.R.)		48	46	17				S.S. = 8%
·				58	47	15				
Indian Creek	Marine basalt) OET:	71	70	. 27	10	7		
Quarry	marine Dasalt		2.85F	34	30	23	10	3		

Table A-3. Summary of aggregate tests - basalt.

Source: Reference 14

										1
Pit Name and Number	Type of Rock	Sand Equiv.	Sp. GR.	Cali: D _c	fornia ^D f	LAA	DMSO	E.G.	CAD	Other
Berry Creek (Ray Wells)	Basalt	38 (A.R.) 43 (A.R.) 50 (A.R.)		36 36 50	33 22 30	22 22 25				
		55 40 39(A.R.) 47		44 50 33 49	31 31 25 42	27				PI = 7 LL = 16
Ocean Lake	Basalt		Bulk=2.85 SSD =2.87			12.14			16.78%/ 0.6 in.	
			Bulk=2.85 SSD =2.87			11.70			13.17/ 0.3	
			Bulk=2.85 SSD =2.88			12.32			14.69/ 0.6	
			Bulk=2.85 SSD =2.87			13.30			14.01/ 0.4	
			Bulk=2.85 SSD =2.87			13.74			16.04/ 0.6	
			Bulk=2.86 SSD =2.88			11.96			16.90/ 0.3	
·			Bulk=2.87 SSD =2.87							
Ansley Ranch Quarry Boekelman Quarry 35-06-0021	Columnar over marine basalt	50mfg 65mfg 64mfg 65mfg	2.98F 2.86F 2.93F 2.96F	66 56 58 70	40 40 47 58	26 21 22 26	4 6 5 2	0 1 0 0		
		69mfg 55mfg 49mfg	2.98F 2.99F 2.86F	78 61 35	80 42 30	19 25 21	4 4 4	0 0 0		PI = 4
				27	20		8	7		LL = 28 PI = 13 LL = 38
· · · · · · · · · · · · · · · · · · ·				63 54		18	6 2	0		,
Kenstone Quarry 35-06-0041	Basalt	41mfg 49(A.R.)	2.88F	4 34	22 34	37	7 7	2 5	:	Strip < 95% PI = 7 LL = 29
"County" Pit 35-06-0052	Basalt			51	26	.24			1	N.D. = 13
Woodward #2 35-06-0060	Altered marine basalt	38mfg 44mfg 43mfg 44mfg	2.75F 2.83F	46 27 25 30	32 25 26 26	24 29 32 30			5	Strip < 95%
Waterman Quarry 35-06-0064	Metamorphic (basalt?)		2.77F	58 43	33 28	21 29		0		Strip < 95%
Norway Rock Products 35-06-0079	Sub-basalt (submarine)		· · · · · · · · · · · · · · · · · · ·	24	26	19	10	10		- <u></u>
Highway 42 Quarry 35-06-0095	Submarine basalt	53mfg	2.97F	62 54	48	22 20	10 9	0 5		

Pit Name		Sand			ornia					
and Number	Type of Rock	Equiv.	Sp. GR.	Dc	$^{\rm D}{ m f}$	LAA	DMSO	E.G.	OAD	Other
Little Wolf Creek	Sandstone	29	2.64F	65	40	32				S.S. = 30
Quarry		35	2.63F	70	40	40				S.S. = 21
35-10-0044		21	2.66F	54	30	36				S.S. = 83
Old Wolley Quarry	Sandstone	27 (Man)	2.64F	38	26	62	0	0		
35-10-0127		34(Man)	2.77F	52	28	56	0	0		
Manasha (Owner)	Sandstone	58(Man)	2.59F	70	42	43				
35-10-0151		49mfg	2.68F	74	37	44				
		50mfg	2.67F	74	42	39				
		37(A.R.)		67	39	41				
N. Fork Coquille	Sandstone	21	2.67F			96				
35-06-0049			2.66F			77				
		17				95				
				28	29	85		0		
BLM Pit	Sandstone	38mfg	2.63F	65	31	49				S.S. = 73%
35-06-0054		46mfg	2.63F	51	34	48				S.S. = 92% Strip < 95
		49mfg	2.63F	54	31	49				S.S. = 63
		50mfg	2.63F	45	33	59				S.S. = 92%
		51mfg	2.61F	59	33	58				S.S. = 90
Buck Peak	Sandstone			48	35	15		0		PI = 4 $LL = 22$
		31mfg	2.61F	46	28	47	0	0		
		30mfg	2,62F	50	29	49	ō	õ		
		28mfg	2.64F	36	27	52	ō	Ō		
		33mfg	2.60F	54	28	47	Ō	Ō		
Moon Creek	Sandstone	27mfg	2.67F	27	29	71	1	1		· · · · · · · · · · · · ·
35-06-0079		27mfg	2.70F	38	29	58				
		32mfg	2.62F	47	30	71				

Table A-4. Summary of aggregate tests - sandstone.

Pit Name		Sand		California					
and Number	Type of Rock	Equiv.	Sp. GR.	D _c	$^{D}\mathbf{f}$	LAA	DMSO	E.G.	OAD Other
Will. Ind. 35-21-0030	Gabbro		2.71F	82	60	22		0	Strip < 95
Greenleaf Creek	Gabbro	65	2.76F	67	46	30		9	Strip < 95
35-20-0063		73	2.74F	76	58	24		1	Strip < 95
		71	2.67F	78	58	23		0	Strip < 95
		74	2.75F	74	54	25		3 of 8 (4)	Strip < 95
		70	2.67F	80	67	24		3	
		58	2.72	80	50	29	6	2	
Deadwood Quarry 35-20-0048	Gabbro ledge rock	74	2.86F	85	64	17		0	Thin Sectio S.S. = 2% Strip < 95
		70	2.74F	82	65	16	0	0	ourp voo
		73	2.77F	85	68	15	Õ	õ	
		41	2.67F	67	39	33	2	Ō	
East Roman Nose 35-10-0055	Gabbro	80(Man) 49(A.R.)	2.78F	74	65	18		0	
		88(Man) 41(A.R.)	2.71F	78	74	18		0	
		40(A.R.) 80(Man)	2.79F	76	73	18		0	S.S. = 1%
Bridge Creek	Sandstone and	50(A.R.)		26	30	66		1 ·	····
Quarry	conglomerate	63mfg		19	27	82		0	
35-10-0187		72mfg		19	29	85		0	
Wooley (Owner)	Gabbro			80	60	19		0	
35-10-0208		63mfg	2.79F	87	68	17	0	0	

Table A-5. Summary of aggregate tests - gabbro

Pit Name		Sand		Calif	ornia					
and Number	Type of Rock	Equiv.	Sp. GR.	D _c	D_{f}	LAA	DMSO	E.G.	OAD	Other
Timmons Quarry	Gravel	37		74	48	13				
35-36-0044		52		76	68	13				
33-30-0044		59		76	57	12				
				78	91	14	2	0		Wt. Ave.:
										DMSO 3.3 E.G. 0.1
Gooseneck R.Q.	Gravel		2.94	78	73	15				Sodium Sul- fate 6
35-27-0004		82 (Man)	2.94	76	77	16				Sodium Sul- fate 8 S.E. = 12 as received
		42(A.R.)			54	18		0		a3 10001700
Morse Bros. 35-02-0028	Gravel	68(Man)	2.75	78	82	17	1	0		Wt. Ave.: DMSO 9.03 E.G. 0.5
Umpqua River 35-10-0024	River gravel	78(A.R.) 80(Man)	2.70F	71	78	14				
Govt. Owned 35-29-0027	Quarry rock	65	2.82	70	46	28	10	3		
Sand Dune 35-29-0051	Dune sand	R @ 300 ps	i = 782.	67Den	sity =	100 F	°CF%	w.c. 3	L7AA	SHO A-3(0)
Slide Creek	Diabase dike	69	2.90	76	68	20	0	0		Strip < 95
Quarry	or sill	81	2.97	76	72	13	0	0		
35-02-0025		61	2.81	63	55	35	3	0		
		69	2.85	85	67	24	0	0		
Flat Mtn. Quarry	Igneous	58(Man)	2.78	66	43	26	0	0		
35-02-0029	intrusion	56 (Man)	2.75	78	53	18	0	0		
			2.77F 2.71C							Report give
Dovre Peak West 35-29-0047	Intrusive; diorite?	58	2.72	68	41	21	2	2		

Table A-6. Summary of aggregate tests - sand and gravel

Pit Name		Sand	Calif	ornia						
and Number	Type of Rock	Equiv.	Sp. GR.	D _c	Df	LAA	DMSO	E.G.	OAD	Other
BLM 35-21-0025	Andesite	а.		70	40	22		3		PI = 4 $LL = 36$
BLM 35-21-0026	Quartz diorite			63	47	28		1		
Beckley Thomas	Metamorphased	58		71	52	22		0		
Quarry (Ten-	volcanic	64		70	51	20		Ö		
mile Quarry)		70		78	74	19		ŏ		
35-10-0036		53		73	47	20		ĩ		
		90		71	50			ō		PI = 4 $LL = 21$
		86		70	53			0		66 - 21
· .		77			66	20		1		
Esmond Creek Quarry 35-10-0164	Gabbro sill	71mfg	2.72F	82	69	18				S.S. = 7%
Nelson Ridge	Gabbro (diabase)	59	2.78F	76	49	25		4		Strip < 95%
Quarry		71	2.80F	85	66	22		Ó		Strip < 95
35-20-0019		63	2.79F	78	59	25		0		Strip < 95
	f	71	2.81F	76	63	23	0	3		Strip < 95
Langlois Quarry	Metamorphic	73mfg	2.91F	73	61	10	0	0 -		
Sullivan Ranch Quarry		57(A.R.)	2.99F 2.93App	74	66	14	0	Q		
35-08-0058			21000000		98	15	0	0		
AcDowell Quarry 35-36-0047		27		56	40	14				PI = 2 $LL = 28$
		20		36	26	25				PI = 28 PI = 8 LL = 38
Gleneden Beach	Beach sand	98	Bulk=2.63 SSD =2.65							FF = 2.75

Table A-7. Summary of aggregate tests - miscellaneous

Extension Service, Oregon State University, Corvallis, Henry A. Wadsworth, director. This publication was produced and distributed in furtherance of the Acts of Congress of May 8 and June 30, 1914. Extension work is a cooperative program of Oregon State University, the U.S. Department of Agriculture, and Oregon counties.

Extension's Marine Advisory Program is supported in part by the Sea Grant Program, National Oceanic and Atmospheric Administration, U.S. Department of Commerce.

Extension invites participation in its programs and offers them equally to all people, without discrimination.