School of

OCEANOGRAPHY

OREGON STATE UNIVERSITY

FINAL REPORT

Biological Baseline Data
Youngs Bay, Oregon, 1974

by
Duane L. Higley and

Robert L. Holton

Submitted to
Alumax Pacific Aluminum Corporation

BIOLOGICAL BASELINE DATA YOUNGS BAY, OREGON, 1974

FINAL REPORT
1 November 1973 through 30 April 1975

Submitted to
Alumax Pacific Aluminum Corporation

By
Duane L. Higley
and
Robert L. Holton

Edited by

Karla J. McMechan

> School of Oceanography Oregon State University Corvallis, Oregon 97331

John V. Byrne
Dean

ACKNOWLEDGMENTS

Primary support for this work came from Alumax Pacific Aluminum Corporation. The United States Energy Research and Development Administration originally funded construction of the vessel, R/V SACAJAWEA, used in this research. The College Work Study Program (CWSP) supported work by part-time student employees.

Daniel Hancock, John Dickinson and Sally Richardson aided in specimen identifications. James E. McCauley and Beverly Knapp provided editorial assistance. Judy Tiebout typed the text.

NOTICE

Much of the narrative in this report is preliminary and is based upon incomplete analysis of portions of the data. Consequently the reader is cautioned that conclusions presented are tentative and are subject to change when the complete data base has been more thoroughly digested.

CORRECTION

Subsequent examination of the exposed mud flat transect samples (described on pages 11 and 18) revealed a second species of Corophium, C. spinicorne, predominantly located near the shoreline. The samples are being reanalyzed and revised versions of Figures 7 and 8 , along with a tabular presentation of the data, will be presented in the supplemental final report. Preliminary results show that C. spinicorne is more numerous than C. salmonis at 20 m from the shoreline dike, but is nearly absent from stations further from the shore. Sex ratios slightly favor the females throughout the transect samples and no abrupt change occurs near the shoreline.

Robert L. Holton

Michael R. Christian
Marlene B. Franklin
Duane L. Higley
Philip E. Johnson
Norman F. Kujala
Wayne A. Laroche

John Steven Davis
John N. McCall
A. Diane Ford

Laura Lewis
Clinton A. Maurice
Robert M. Pearson
Michael A. Peters
Adrian Rodriguez
Everett F. Russell
W. Patrick Workman

CO-INVESTIGATOR

Research Associate

PARTICIPATING STAFF

Laboratory Technician
Research Assistant
Research Assistant
Research Assistant
Research Assistant
Research Assistant

GRADUATE STUDENTS
Alumax Graduate Research Assistant
Alumax Graduate Research Assistant

PART-TIME EMPLOYEES

CWSP

CWSP

CWSP

CWSP
CWSP

CWSP
CWSP

CWSP

TABLE OF CONTENTS

1 INTRODUCTION 1
2 TEMPERATURE, SALINITY, AND TURBIDITY 3
3 INVERTEBRATE ZOOPLANKTON 5
4 LARVAL FISH 9
5 BENTHOS 11
6 FISH, EPIBENTHIC SHRIMP, AND DUNGENESS CRABS 25
7 CONTENTS OF FISH STOMACHS 41
APPENDIX TABLES 47
APPENDIX FIGURES 83
REFERENCES 91

LIST OF TABLES

TEXT
2-1 Vertical temperature series 52
2-2 Vertical salinity series 54
2-3 Turbidity readings 56
5-1 Densities of benthic fauna 57
5-2 Results of replicate benthos sampling 58
5-3 Mean dry weights of benthic animals 69
5-4 Mean dry weight of Corophium 70
6-1 Capture by trawl: summary of data for four stations 71
6-2 Capture by gill net: summary of data for four stations 9
6-3 Capture by seine: summary of data for two stations 82

LIST OF FIGURES

Seasonal changes in temperature 3
Seasonal changes in salinity 4
Dry weight and numerical densities of benthic infauna 12
Seasonal changes in mean dry weight of Corophium 18
Substrate texture at ten transect stations 19
Densities of benthic groups at ten transect stations 19
Changes in density and sex ratio of Corophizm along a transect 20
Relative frequencies by size of Corophium collected at transect stations 21
Vertical distributions of benthic infauna at two stations downstream from Causeway 22
Vertical distributions of benthic infauna at two stations upstream from Causeway 23
Relative abundances of fish species captured by trawl at Station PW 27
Relative abundances of fish species captured by trawl at Station CWRR 28
Relative abundances of fish species captured by trawl at Station NMFS 1 29
Seasonal changes in trawl catches of flounder and shrimp at three stations 30
Seasonal changes in trawl catches of Pacific staghorn sculpin, prickly sculpin and shiner perch at three stations 31
Length-frequency histograms for starry flounder captured by trawl at Station PW 33
Length-frequency histograms for starry flounder captured by trawl at Station NMFS 1 34
Relative abundances of fish species captured at Station PW during a diurnal series of trawls 35
Changes in bottom temperature and salinity, and in numbers of shrimp and selected fish species captured by trawl at Station PW 36
Contributions of food types to stomach contents of fish captured by trawlat Station PW42
Contributions of food types to stomach contents of fish captured by trawl at Station NMFS 1 44
APPENDIX
Location of stations where temperature, salinity and turbiditymeasurements were made84
Location of zooplankton and larval fish sampling stations 85
Location of stations where benthos grab and core samples were taken in the Youngs Bay area 86
Location of stations where benthos samples were taken in Youngs Riverand Lewis and Clark River87
Location of transect used in sampling exposed mud flat for benthic infauna, and of stations where cores were taken for vertical distribution data 88
Location of trawl, gill net, and seine sample stations 89

INTRODUCTION

This report presents biological baseline information gathered during the research project, "Physical, Chemical and Biological Studies on Youngs Bay." Youngs Bay is a shallow embayment located on the south shore of the Columbia River, near Astoria, Oregon. Nearby portions of the Youngs River, Lewis and Clark River, Columbia River, and Skipanon Waterway were also included in the study.

Research on Youngs Bay was motivated by the proposed construction by Alumax Pacific Aluminum Corporation of an aluminum reduction plant at Warrenton, Oregon. The research was designed to provide biological baseline information on Youngs Bay in anticipation of potential harmful effects from plant effluents.

The information collected concerns the kinds of animals found in the Youngs Bay area, and their distribution and seasonal patterns of abundance. In addition, information was collected on the feeding habits of selected fish species, and on the life history and behavioral characteristics of the most abundant benthic amphipod, Corophirm salmonis.

Research was conducted in these areas during 1974 and 1975. Only 1974 data are presented in this report. A supplement is planned which will complete the tabular presentation of 1974 data (some data are presented in graphical form only), and provide the 1975 data. A bibliography developed on the subject of estuarine ecology and Youngs Bay will also be presented.

Sampling was conducted at approximately threeweek intervals, using commonly accepted methods of animal collection. Relatively few stations were sampled for fish, because of the need to standardize conditions of capture. Data on fish capture are reported in terms of catch-per-unit effort by a particular sampling gear at a specific station. Methods used in sampling invertebrates were generally more quantitative, and allowed sampling at a greater variety of places, as well as a valid basis for the computation of densities. Locations of sampling stations are shown in Appendix Figures 1-1 through 1-6.

Checklists of invertebrate species (Appendix Table 1-1) and fish species (Appendix Table 1-2) were developed from these samples, and are referred to throughout the report. The invertebrate checklist is more specific taxonomically than are tables reporting invertebrate densities. This is because the methods employed in identification were more precise than those used in counts.

TEMPERATURE, SALINITY, AND TURBIDITY

METHODS

A vertical series of temperature and salinity readings was taken at each of four stations (shown on Appendix Figure 1-1). Readings were generally taken in situ within two hours of high tide using a portable salinometer (Industrial Instruments Co. Model RS5-3). On two occasions, however, when the portable salinometer malfunctioned, water samples were collected with a Kemmerer water bottle, measured for temperature by a pocket thermometer, and taken to Corvallis for salinity analysis by either a portable laboratory inductive salinometer (Bissett-Berman Model 6230) or a salinity-conductivity meter (Yellow Springs Instrument Corp. Model 33).

The portable salinometer was standardized against the inductive salinometer, using a series of water samples covering a salinity range of 0 to 25%. Field readings were then corrected according to the graphical relationship thus established. In general, the portable salinometer is not considered accurate in reading salinities below 2%.

Temperature and salinity readings were also taken in conjunction with fish and plankton sampling. These data will be presented in a later supplementary report.

Turbidity was measured at the regular tem-perature-salinity stations using a 20 cm secchi disc. The average depth of disc disappearance and reappearance was recorded as an indicator of suspended particulate matter at each station. Available light varied considerably and probably influenced these readings.

RESULTS

Seasonal patterns of temperature and salinity at the four stations are exhibited in Figures 1 and 2. A complete tabulation of temperature and salinity values is given in Appendix Table 2-1 and 2-2.

Water temperature ranged between 9 and $20^{\circ} \mathrm{C}$ during the period of study. Steep temperature gradients did not exist except at the entrance to Youngs Bay, where marine intrusion was greatest. Summer temperatures at the mouths of Youngs River and Lewis and Clark River were 1 to $3^{\circ} \mathrm{C}$ warmer than those at the Causeway station, and 2 to $5^{\circ} \mathrm{C}$ warmer than those at the bay entrance.

Salinities were generally less than 10% at the river mouths, but occasionally exceeded 25% 。
at the deeper depths found at the Youngs Bay entrance. Salinity gradients existed at all stations during the summer and fall.

Secchi disc readings varied between 0.5 m and 2.2 m (Appendix Table 2-3).

Figure 1. Seasonal changes in temperature during 1974. Measurements were taken at approximately high tide at Entrance to Youngs Bay (a), Causeway (b), Mouth of Youngs River (c), and Mouth of Lewis and Clark River (d). (Location: Appendix Figure 1-1)

Figure 2. Seasonal changes in salinity during 1974. Measurements were taken at approximately high tide at Entrance to Youngs Bay (a), Causeway (b), Mouth of Youngs River (c), and Mouth of Lewis and Clark River (d).

INVERTEBRATE

METHODS

Invertebrate zooplankton samples were collected with a Clarke-Bumpus sampler which was towed for ten minutes in the upper one meter of water. The sampler was equipped with a 0.239 mm mesh net and a digital flowmeter; a closing device was not used. The flowmeter was calibrated at the Oregon State University Wave Research Facility.

Samples were routinely collected at Station CW-Ch 4. On 26 August 1974 samples were taken along a six-station transect extending upstrean from the entrance of Youngs Bay into Youngs River (Appendix Figure 1-2). In addition, a series of samples was taken on 28 and 29 August 1974 at the PW trawl station in conjunction with a diurnal trawling program (Appendix Figure 1-6).

Samples were fixed in 3 to 5% formaldehyde buffered with sodium borate (as borax). Animals were removed from selected samples and identified as specifically as was practical; these animals were used as reference specimens during the counting procedure (see Appendix Table l-l for invertebrate checklist). Aliquots of sample were taken with a one-milliliter (ml) Stempel pipette and transferred to a Petri dish for identification and counting under a stereoscopic microscope. One hundred or more animals were counted from each tow, except in the few cases where less than 100 animals were captured.

RESULTS

Seasonal changes in zooplankton densities in surface water at Station CW-Ch 4 are shown in Table 1. Summer densities exceeded 4,000 zooplankters per cubic meter (m^{3}) (including juvenile copepods). Eurytemora was the most abundant copepod and Daphnia was the most abundant cladoceran. Zooplankton collected along the transect was similar in composition from station to station, but varied in density with no evident pattern (Table 2). Zooplankton captured during the diurnal series appeared most abundant during the pre-dawn ebb tide (Table 3).

Misitano (1974) described similar, or somewhat lower, zooplankton densities for Youngs Bay during 1972. However, this was a year of extreme flooding which created unfavorable conditions for zooplankton. He indicated (personal communication, 1975) that densities of Eurytemora reached 210,000 per m^{3} in 1973. Similarly, Haertel and Osterberg
(1967) found Eurytemora densities exceeding 108, 000 per m^{3} in the Columbia River near Chinook Point during 1964. These other investigators found greater densities and a wider variety of species because they made oblique tows which sampled the bottom as well as the surface, while the current study sampled only the surface.

Table l. Zooplankton densities (number per m^{3}) at Station CW-Ch 4 during 1974. Surface tows were made with a Clarke-Bumpus net (mesh size 0.239 mm). (Location: Appendix Figure 1-2)

Date Time Zooplankter \quadReference to high tide	8 May 1120 4.5 hrs before	28 May 1535 5.0 hrs before	$\begin{array}{r} 19 \\ \text { June } \\ 1515 \\ 1.0 \mathrm{hr} \\ \text { past } \\ \hline \end{array}$	$\begin{gathered} 10 \\ \text { July } \\ 1455 \\ 4.0 \mathrm{hrs} \\ \text { before } \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ \text { Aug } \\ 1559 \\ \text { High } \end{gathered}$	$\begin{gathered} 27 \\ \text { Aug } \\ 1020 \\ 0.5 \mathrm{hr} \\ \text { before } \\ \hline \end{gathered}$	17 Sept 1605 2.0 hrs past	$\begin{array}{r} 13 \\ 0 \mathrm{ct} \\ 1245 \\ 0.5 \mathrm{hr} \\ \text { past } \\ \hline \end{array}$	9 Nov 1015 1.0 hr \qquad past	$\begin{gathered} 3 \\ \text { Dec } \\ 1400 \\ 1.5 \mathrm{hrs} \\ \text { before } \\ \hline \end{gathered}$
Copepoda										
Nauplii			0.7							
Harpacticoida	2.7		0.7							
Calanoida										
Diaptomus										
females	0	2.1	5.0	41.2	66.9					
males	1.1			11.0	22.3		0.7			
Total adults	$\overline{1.1}$	$\overline{2.1}$	$\overline{5.0}$	$\overline{52.2}$	$\overline{89.2}$		0.7			
copepodites	4.9	10.5	2.2	24.7	256.4		1.5		0.5	
Eurytemora										0
females	3.3	3.2		24.7	301.0	1.4	1.5	0.2	1.5	4.0
males	2.2	1.1		44.0	457.0	26.0 .	2.9	0.4		0.7
Total adults	5.5	$\frac{1.3}{4.3}$		68.7	758.0	27.4	$\overline{4.4}$	0.6	$\overline{1.5}$	4.7
copepodites	8.2	9.5		19.2	1,337.6	466.0	6.6	3.8	4.5	29.5
Epischura										
females					22.3					
males					11.2					
Total adults					33.5					
copepodites						1.4				
Rhincalanus copepodites										0.3
Cyclopoida										
Cyclops										
females	6.0	11.6	3.6	. 19.2	55.7	5.8	7.3	1.8		0.3
males	2.2	9.5	1.4	13.7	11.2	1.4		1.6		
Total adults	8.2	21.1	5.0	32.9	$\overline{66.9}$	7.2	$\overline{7.3}$	$\overline{3.4}$		$\overline{0.3}$
copepodites	18.1	68.5	12.9	16.5	211.8	17.4	17.6	6.5	1.0	3.0
Oithona similis copepodites					11.2					
Cladocera										
Daphnia	2.2	27.4	19.3	285.8	1,393.4	5.8	36.7	0.2	5.5	1.3
Bosmina	5.5	76.9	97.4	426.0			4.4		5.0	
Cirripedia										
Nauplii						1.4				
Unidentified crustacean										
Larvae TOTAL	56.4	220.3	$\frac{0.7}{144.0}$	926.1	$4,157.6$	526.8	79.3	15.4	18.1	39.2

Table 2. Zooplankton densities (number per m^{3}) at six stations along a transect extending from the entrance of Youngs Bay to a point approximately 2.5 miles above the mouth of Youngs River. Surface tows were made with a Clarke-Bumpus net (mesh size 0.239 mm) between 1555 hours and 1820 hours, 26 August 1974. High tide was at 2115 hours. (Location: Appendix Figure 1-2)

Zooplankter	Station					
	1	2	3	4	5	6
Copepoda						
Calanoida						
Diaptomus						
females	1.1	0.5		0.5	0.5	
males					1.0	
Total adults	$\overline{1.1}$	$\overline{0.5}$		$\overline{0.5}$	1.5	
copepodites	2.2		0.7	0.9		1.0
Eurytemora						
females	1.1	1.9	11.6	3.2	1.5	44.9
males	14.1	15.7	29.1	16.0	6.6	109.4
Total adults	15.2	17.6	40.7	19.2	8.1	154.3
copepodites	259.6	72.4	130.8	78.1	46.7	152.3
Centropages						
females				0.5		
Epischura						
copepodites		0.5				
Cyclopoida						
Cyclops						
females	3.3	6.2	8.7	1.8	5.6	
males		3.3	0.7		1.0	
Total adults	$\overline{3} .3$	9.5	9.4	$\overline{1.8}$	6.6	
copepodites	30.4	6.7	39.2	15.1	4.1	2.0

Cladocera
Daphnia
$\begin{array}{lllll}18.5 & 8.6 & 8.0 & 3.2 & 1.5\end{array}$
Bosmina
3.31 .4
1.5
0.5

Podon
1.5

Cirripedia
Nauplii
$\begin{array}{lllllll}\text { TOTAL } & \overline{333.4} & \overline{117.2} & \frac{0.7}{231.0} & \overline{119.7} & \overline{70.0} & \overline{309.5}\end{array}$

Table 3. Zooplankton densities (number per m^{3}) at the PW trawl station on 28 and 29 August 1974. A diurnal series of surface tows was made with a Clarke-Bumpus net (mesh size 0.239 mm). High tides occurred at 1140 hours and 2312 hours on 28 August. (Location: Appendix Figure 1-6)

	28 August 1974				29 August 1974	
Zooplankter	1305	1555	1815	2235	0145	0635

Copepoda
Calanoida
Eurytemora
females $\quad 0.5 \quad 3.2 \quad 2.7 \quad 11.5 \quad 4.2$ males Total adults copepodites

	0.5	3.2	2.7
	$\frac{1.0}{1.5}$	$\frac{0.3}{3.5}$	$\frac{3.6}{6.3}$
8.6	14.5	10.0	8.8

11.5	4.2
10.6	5.7
22.1	9.9
31.3	37.6

Diaptomus
females
copepodites
0.2
0.3
0.9
0.50 .5
Cyclopoida
Cyclops
males
Total adults
copepodites
$\begin{array}{llllll}\text { females } & 0.7 & 2.2 & 0.6 & 3.7 & 2.1\end{array}$

	0.5		0.6
	$\overline{1.2}$	$\overline{2.2}$	1.2
2.2	5.5	8.4	3.6

$\frac{1.8}{5.5}$	$\frac{0.5}{2.6}$
11.0	3.1

Cladocera

Daphnia	1.3	0.5	10.3	2.1	3.2	0.5
Bosmina				0.9		

Mysidae
adults
$0.9 \quad 0.5$
Unidentified Crustacean
larvae
0.5

Amphipoda
3.6

| TOTAL | 12.1 | 23.4 | $\overline{34.4}$ | $\overline{26.8}$ | 75.4 | 55.3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

LARVAL FISH

METHODS

Larval fish were collected by means of tenminute surface tows made with a one-meter net at Station CW-Ch 4 (Appendix Figure 1-2). The mesh openings of this net vary from 0.519 to 0.551 mm .

Filtrate flow rate was measured either with a General Oceanics digital flowmeter (Model 2030/ 31) or with a digital flowmeter housed in a 5 -inch Clarke-Bumpus frame manufactured by Kahl Scientific Instrument Corp. Filtrate volume was computed according to the manufacturer's calibration curve for the General Oceanics meter, and according to data developed by timed test runs made at the OSU Wave Research Facility in the case of the Clarke -Bumpus meter. However, a flowmeter was not available for the first tow, made on 18 April 1974; therefore the filtrate volume estimate was based upon the mean water volume filtered per minute in the eight succeeding tows.

Immediately upon collection, samples were fixed in 3 to 5% formaldehyde buffered with sodium borate (as borax). The samples were also maintained in this solution. Larval fish were identified and counted under a stereoscopic microscope. Complete counts were made of all samples
except the very rich one of 9 May 1974. This sample was divided in a specially constructed splitting chamber, and a one-eighth portion was counted. Vegetative fiber in samples taken during running tides was frequently so abundant that some larvae were obscured during counting. A sample recount indicated that counts on these samples may be 5 to 10% low.

RESULTS

The variety of larval fish captured was small (Table 4). The dominant taxa were the prickly sculpin (Cottus asper) and members of the smelt family (Osmeridae). Smelt attained densities of nearly 10 individuals per m^{3}. Peak abundance occurred in the spring; no larvae were captured during the summer. During 1973 Misitano (personal communication, 1975) captured a similar variety of taxa in Youngs Bay, but found a greater variety in other portions of the Columbia River estuary.

Table 4. Densities of larval fish (number per m^{3}) at Station CW -Ch 4 during 1974. Surface tows were made with a one-meter net (mesh size measured at 0.519 to 0.551 mm). (Location: Appendix Figure 1-2)

Taxon	Date Time Reference to high tide	18 April 1245 2.5 hrs past	$\begin{array}{r} 9 \\ \text { May } \\ 1556 \\ 0.5 \mathrm{hr} \\ \text { past } \\ \hline \end{array}$	$\begin{gathered} 28 \\ \text { May } \\ 1558 \\ 4 \mathrm{hrs} \\ \text { before } \end{gathered}$	$\begin{array}{r} 19 \\ \text { June } \\ 1610 \\ 2 \mathrm{hrs} \\ \text { past } \end{array}$	$\begin{array}{r} 5 \\ \text { Aug } \\ 1531 \\ \text { High } \end{array}$	None Captured on:
Osmeridae		3.296	9.876	0.051	0.011	0.003	27 and 29 August 17 September 13 October
Cottidae Cottus asper		0.161	0.159	0.119	0.042		9 and 10 November 3 December
Clupeidae Clupea hareng	pallasi					0.008	

BENTHOS

Faunal Survey

Grab and core samples were taken along transects and at other stations located in the Youngs Bay area (Appendix Figures 1-3 and 1-4). Five replicate samples were taken at Station WRT-6C:3 on 6 March 1974 in order to estimate sample variability. Otherwise, only single samples were collected.

Two Smith-McIntyre grab samplers (0.1 m^{2} sample area), an Ekman grab ($0.023 \mathrm{~m}^{2}$), and a coring tube (15.2 cm diameter) were employed in the survey. Skipanon Waterway stations Skip: 1 through 7 were sampled with the tube which was pushed 20 cm into mud covered by 8 to 30 cm of water. The Smith-McIntyre grab was used at all other stations, except Skip: TB where a light mud substrate required the messenger-trip system of the Ekman grab. Depth of penetration by the Smith-McIntyre grab varied with substrate composition and the amount of lead weight added to the grab. This depth was measured at the center of the grab and ranged between 3 and 18 cm .

Samples were washed either through a 0.425 mm geologic sieve or in a trough built with 0.408 by 0.457 mm stainless steel wire cloth. No distinction is made between these sieving methods in the rest of this report. After washing, the concentrated samples were fixed in 3 to 5% formaldehyde buffered with borax.

In the laboratory samples were transferred to 40% isopropanol to which the stain Rose Bengal had been added.

A specimen collection was developed by removing animals from selected samples and identifying them as specifically as was practical using stereoscopic and compound microscopes. Samples were counted in enamel pans under a three diopter illuminated magnifier, using the specimen collection for reference. Only new or difficult to recognize animals were removed from the pans for microscopic study.

The large amounts of bark and other vegetative debris encountered in many samples made complete counts impractical. In such cases, the sample was drained, mixed thoroughly, and split into subsamples which were then measured for settled volume, and one subsample was counted.

Exposed Mud Flat Transect

On 18 September 1974 , cores 40 cm deep were taken in an exposed mud flat along a 400 m transect, approximately perpendicular to the south shoreline (Appendix Figure 1-5).

The ten samples (one per station) were processed as described above, except that animals were sorted into vials by taxonomic group during the counting procedure.

The amphipod Corophium salmonis was further studied for changes in sex ratio and size-class structure that might occur along the transect. Each amphipod examined was sexed and sized (rostrum to telson) as follows: 0 to $0.9 \mathrm{~mm}, 1.0$ to 1.9 mm , etc.

Vertical Distribution Studies

The vertical distribution of benthic infauna was studied at four stations in the Youngs Bay area (Appendix Figure 1-5). Cores 7.5 to 38 cm in depth were taken by pushing a 3.5 cm diameter plastic tube into exposed mud near the shoreline (Stations Pier 3, Airport, and CWRR) or into substrate captured in a Smith-McIntyre grab (Station FwGS:1). A plunger inserted into the tube reduced air pressure above the substrate and allowed the tube to travel more freely into the substrate. The plunger was used to extrude the core, which was sliced at 0.5 to 5 cm intervals. The sections were fixed separately in 3 to 5% formaldehyde buffered with borax.

In the laboratory each section was washed through a 0.063 mm sieve, transferred to 40% isopropanol (stained with Rose Bengal) and counted under a stereoscopic microscope.

Dry Weight Analysis

A portion of each sample taken at Station WRT-6C:3 was selected for dry weight analysis. Supplementary measurements were made on animals collected at other stations.

Animals to be weighed were picked free of debris and dried at $60^{\circ} \mathrm{C}$ for 24 hours. Most samples were dried in aluminum foil tares and weighed on a Mettler balance (Model K-7). Very small samples were dried on 20 mm paper filters, and weighed on a Cahn electrobal ance (Model 4100).

Alcohol preservation may have affected these weight analyses through extraction of body fats. The extent of extraction is still being investigated and will be reported in the supplementary report.

Results of dry weight analyses are included with Faunal Survey results.

Substrate fexture

A substrate sample normally was removed from each grab sample and taken adjacent to each core sample by pushing a 3.5 cm tube about 5 cm into the sediment. Each sediment plug was stored in a plastic bag and returned to Corvallis for laboratory analysis.

Each sediment sample was centrifuged and measured for volume in a graduated centrifuge tube. The sample was then wet-sieved through two (sometimes three) sieves, and the fractions produced were also centrifuged and measured. Sediment fractions and descriptions are:

$$
\left.\begin{array}{cl}
>0.991 \mathrm{~mm} & \text { debris (gravel, barkchips, } \\
\text { shells, etc.) }
\end{array}\right\}
$$

The 0.246 mm screening was omitted from some analyses, producing a 0.063 mm to 0.991 mm sand fraction. Skipanon Waterway samples Skip: 1-7 were drysieved through a 0.063 mm screen only, as described in Johnson and Cutshall (In Press).

Results of substrate texture analyses are presented with the Faunal Survey and Exposed Mud Flat data.

RESULTS

Faunal Survey
A summary of benthos densities is presented in Tables 5 through 8; a complete tabulation of all 1974 benthos data and attendant substrate textures is given in Appendix Table 5-1. The tables show that the amphipod Corophium and oligochaete worms dominated that fraction of the benthic fauna captured on a 0.425 mm screen. Corophium densities commonly exceeded 10,000 per m^{2}, and occasionally 40,000 per m^{2} (Appendix Table 5-1).

Conversion to dry-weight densities (Figure 3) served to emphasize the importance of this tubedwelling amphipod (Appendix Tables 5-3 and 5-4 summarize results of the dry-weight analyses).

Highest Corophium densities occurred in the quieter portions of the bay where fine sediments accumulate (e.g. Stations PW: 5 and WRT-6C:3); while regions of coarse sand, (e.g. Station FWGS: 2), harbored lower densities (Table 5).

Figure 3. Dry weight and numerical densities of benthic infauna collected at Station WRT-6C:3 on 28 May 1974. (Location: Appendix Figure 1-3)

Faunal composition and density in the Lewis and Clark River and Youngs River were similar to that in Youngs Bay, while the fauna of the Skipanon Waterway contained fewer Corophivm and more chironomids (Tables 5 to 8).

Seasonal patterns in Corophivon density are not apparent from a study of Appendix Table 5-1. This presumably arises from sampling errors. (Standard error was $20-25 \%$ of the mean for five replicate samples taken at Station WRT-6C:3; Appendix Table 5-2). However, changes in the mean dry weight of Corophium suggest probable seasonal events (Figure 4).

The observed early spring weight increase was probably related to rapid individual growth rates and to egg production, while the ensuing weight reduction was probably due to the release of young (carried in brood pouches by females) and deaths of overwintering adults.

Table 5. Densities of benthic fauna (number per m^{2}) at selected stations in Youngs Bay and the Columbia River,
1974. (Location: Appendix Figure $1-3$)

Table 6. Densities of benthic fauna (number per m^{2}) at selected stations in the Skipanon Waterway, 1974. Dashes indicate taxon may have been present, but was not counted. (Location: Appendix Figure 1-3)

Taxon Station \quadDate	$\begin{gathered} \text { SKIP } \\ 1 \\ 24 \text { Oct } \\ \hline \end{gathered}$								SKIP Ch 12 10 Nov
Amphipoda									
Anisogommarus	54.9							9.3	
Corophiw	4,285.7	6,428.6	1,098.9	219.8			3,846.2	140.2	
I sopoda									
Mesidotea									
Gnorimosphaeroma									
Insecta									
Chironomidae	1,263.7	1,208.8	1,098.9	2,087.9	1,648.3	2,472.5	54.9		
Polychaeta									
Ampharetidae							54.9	9.3	
Nereidae								9.3	18.7
Oligochaeta	604.3	19,065.9	11,318.7	10,384.6	4,340.7	2,802.8	3,967.0	84.1	37.4
Hirudinea									
Nematoda	54.9	2,142.8	439.6	109.9	1,483.5	769.2			
Nemertinea				-	54.9	-	-		
Mollusca									
Macoma Corbicula	54.9								102.8
Hydracarina		1,098.9	384.6	164.8	109.9				
Ostracoda		604.4	109.9		439.6	164.8	54.9		
Mysidacea									
TOTAL	6,319	30,549	14,450	12,967	8,077	6,209	7,418	252	159

Table 7. Densities of benthic fauna (number per m^{2}) at selected stations in Youngs River, 1974. Dashes indicate taxon may have been present, but was not counted. (Location: Appendix Figures 1-3 and 1-4)

Station	$\begin{array}{r} Y R \\ 6 \end{array}$	$\begin{array}{r} Y R \\ 5 \end{array}$	$\begin{array}{r} Y R \\ 3 \end{array}$	YR Mouth
Taxon Date	4 Dec	4 Dec	26 Aug	29 May
Amphipoda				
Anisogammarus		64.7		71.4
Corophium	9,153.3	13,689.3	2,637.4	18,857.1
Eohaus torius		64.7		
I sopoda				
Mesidotea				
Gnorimosphaeroma				
Insecta				
Chironomidae	1,098.4			142.9
Polychaeta				
Ampharetidae	434.8	32.4	54.9	71.4
Nereidae	58.6	161.8	467.0	2,142.9
Oligochaeta	13,821.5	7,378.6	26,620.9	11,071.4
Hirudinea	22.9			
Nematoda	183.0		82.4	1,785.7
Nemertinea		--	--	
Mollusca				
Macoma				
Corbicula				
Hydracarina				
Ostracoda				
Mysidacea				
TOTAL	24,783	21, 392	29,863	34,143

Table 8. Densities of benthic fauna (number per m^{2}) at selected stations in the Lewis and Clark River, 1974. Dashes indicate taxon may have been present, but was not counted. (Location: Appendix Figures 1-3 and 1-4)				
Station	$\begin{aligned} & \text { LC } \\ & 10 \end{aligned}$	$\begin{array}{r} \mathrm{LC} \\ 8 \end{array}$	$\begin{array}{r} \text { LC } \\ 6 \end{array}$	$\begin{aligned} & \text { LC } \\ & \text { WH } \end{aligned}$
Taxon Date	9 Nov	9 Nov	: 9 Nov	9 Nov
Amphipoda				
Anisogammame		66.8		
Corophium	649.8	16,347.4	20,558.6	29,040.0
Eohaustorius . $16,347.4$ 20,558.6 29,040.0				
Isopoda				
Mesidotea				
Gnorimosphaeroma				
Insecta				
Chironomidae	216.6		949.7	80.0
Polychaeta				
Ampharetidae			497.8	160.0
Nereidae			279.3	960.0
Oligochaeta	8,519.9	579.1	15,754.2	33,440.0
Hirudinea				
Nematoda		22.3	335.2	230.0
Nemertinea	--	--		240.0
Mollusca				
Macoma			167.6	160.0
Corbicula			55.9	
Hydracarina				
Ostracoda				
Mysidacea Neomysis				
TOTAL	9,386	17,016	38,603	64,400

Figure 4. Seasonal changes in mean dry weight of Corophium during 1974. Collections were made at Station WRT-6C:3. (Location: Appendix Figure 1-3)

Exposed Mud Flat Transect
There were similarities between benthos densities and substrate textures along the mud flat transect (Figures 5 and 6). The relative densities of amphipods (predominantly Corophium) were related to the fine sand fraction, while oligochaete densities were related to the silt and clay fraction.

Over most of the transect, females outnumbered males (Figure 7). Near the shoreline, however, the male density increased abruptly, producing a 6:l sex ratio favoring the males.

Size class structure varied along the transect with no apparent pattern, except for a possible increase in the relative density of smaller animals near the shoreline (Figure 8).

Vertical Distribution Studies

Most benthic forms at the stations studied were found in the upper five centimeters of substrate (Figures 9 and 10). The fauna at Stations FWGS:1 and Pier 3, located in sandy areas, was not as deeply distributed as the fauna found in the mud at Station CWRR. Harpacticoid copepods were extremely abundant in the upper two centimeters at Station CWRR.

Figure 5. Substrate texture at ten stations extending 400 m along mud flat transect, 18 September 1974. The shoreline dike is set approximately 12 m back from maximum high tide mark. (Location: Appendix Figure 1-5)

Figure 6. Absolute (a) and relative (b) numerical densities of major benthic groups found at ten transect stations, 18 September 1974. Amphipods at 20 m Station and 30 m Station included 2% and 8% Anisogammarus, respectively; otherwise all amphipods counted were Corophium. (Location: Appendix Figure 1-5)

Figure 7. Changes in numerical density (a) and sex ratio (b) of Corophium along a transect, 18 September 1974. (Location: Appendix Figure 1-5)

Figure 8. Relative frequencies by size of Corophium collected at mud flat transect stations on 18 September 1974. Some animals in the 0 to 0.9 mm size-class may have been lost in screening (0.425 mm mesh). (Location: Appendix Figure 1-5)

Figure 9. Vertical distributions of benthic infauna at two stations downstream from the causeway, 9 and 10 July 1974. Arrows indicate section intervals. Values were plotted at the center of each section and represent the number of animals found in a 1 cm section beneath $1 \mathrm{~m}^{2}$ of sediment. Broken lines indicate lost samples. (Location: Appendix Figure 1-5)

Figure 10. Vertical distributions of benthic infauna at two stations upstream from the causeway, 9 and 10 July 1974 . Values for Station CWRR are means from two cores. Arrows indicate section intervals. Values were plotted at the center of each section and represent the number of animals found in a 1 cm section beneath $1 \mathrm{~m}^{2}$ of sediment.
(Location: Appendix Figure 1-5)

FISH, EPIBENTHIC SHRIMP, AND DUNGENESS CRABS

METHODS

Bottom TxawIing

Bot tom trawls were routinely made at three stations (PW, CWRR, and NMFS 1) and occasionally at one station (NMFS 2). Water depth varied from 5 to 20 feet at these locations. In addition to the periodic daytime tows, a diurnal series of tows was made at Station PW on 28 and 29 August 1974. Trawl locations are shown in Appendix Figure 1-6. A 16-foot (headrope length) semiballoon box trawl was used in most cases. This trawl is made of knotless nylon, with a $1 \frac{1}{2}$-inch mesh body, litinch mesh cod end, and $\frac{1}{2}$-inch mesh cod end liner (stretched measurements). The cod end liner was change to one of $\frac{1}{4}$-inch mesh on 18 June 1974.

A 16-foot otter traw1 was used on 18 April 1974. Its construction and performance are similar to those of the box trawl, and the catch results have been added (with notation) to the box trawl data.

On 10 November 1974 alternate tows were made with the box trawl and a 25 -foot otter trawl to investigate possible avoidance by fish of the 16foot trawls. The 25 -foot trawl has the same mesh measurements as the box trawl, but lacks the headrope overhang characteristic of box trawls.

Trawls were towed with a 50 -foot bridle, attached to trawl boards, 24×14 inches (16 -foot trawls) or 34×15 inches (25 -foot trawl) in size.

Tows were generally five minutes in length, measured from the time the trawl reached bottom (gauged by jerks on the tow cable) to the beginning of ascent. Fish undoubtedly were captured during both descent and ascent; thus, differences in water depth may have affected catch rates. Some tows were longer or shorter than five minutes. Rate-of-catch statistics for these tows were adjusted to that of a five minute tow. For example, the number of starry flounder captured during an eight minute tow was multiplied by the factor 5/8.

GiIInetting

One routine station (Ch 8) and three occasional stations (PW, CWRR, and NMFS 1) were fished with nylon gill nets rigged to dive. A single net was generally fished for two hours during the high slack period.

Initially a 125×6 foot net with $1 / 2,3 / 4,1$, $11 / 2$, and 2 -inch mesh panels (stretched measurements) was used. After 6 March 1974 a 90×9 foot net with 4, 3, and 1-1/4-inch mesh panels (stretched measurements) was used.

Seining

Beach seining was conducted at Stations P3 and WAR (Appendix Figure 1-6) using a 171-foot beach seine. The net has a continuously tapered body, composed of $7 / 8$-inch knotted nylon mesh; the bag is made of $1 / 2$-inch knotless mesh (stretched measurements). The seine is set perpendicular to shore with the deep end slightly hooked against the current. The bag, positioned near the shallow (shore-side) end, collects fish traveling with the current. After about 15 minutes, the seine is hand-hauled to shore, deep end first.

The seine was used experimentally with satisfactory success in catching small fish.

Catch Disposition

Fish captured by trawl, gill net, and seine were identified to species and counted. All of the fish captured by seine and gill net, and a variable portion (depending on catch size) of the fish captured by trawl were measured for total length to the nearest centimeter (e.g., fish 14.5 to 15.4 cm were designated 15 cm). These measurements were made in the lab, except for those portions of trawl catches which were returned alive to the bay.

All seine and gill net catches and a subsample representative of the fish species and size classes captured by trawl were fixed in 10% formaldehyde. The fish were taken to Corvallis, and transferred to 40% isopropanol.

All epibenthic shrimp (sand shrimp, Crangon fronciscorw; and members of the family Mysidae) in each trawl catch were similarly fixed, taken to Corvallis, and transferred to 40% isopropanol. The quantity of shrimp contained in each trawl catch was determined by the following procedure. The displacement volume of shrimp and debris was measured. A subsample of this mixture was then divided into sand shrimp, mysids, and debris fractions, 'and each fraction was measured for displacement volume. The resulting proportions were applied to the total.

Dungeness crabs captured by trawl were sexed and measured for carapace width.

RESULTS

3ottom Irauling
Periodic Daytime Tows. The fish species captured in greatest abundance by trawl was the starry flounder, which usually comprised 60% or more of each catch (Figures 11, 12, and 13; see Appendix Table 6-1 for a tabular summary of trawl catch data). Distinct seasonal trends or differences among stations were not evident, except that the 1974 year-class may have been more abundant upstream (Stations CWRR and NMFS 1) than downstream at Station PW (Figure 14). The greatest variety of species was captured at Station PW (Figures 11, 12, and 13), which experiences higher salinities than the upstream stations. Shiner perch were more abundant at Station PW, and prickly sculpin at Station NMFS 1, while Pacific staghorn sculpin seemed to show no preference (Figure 15).

The sand shrimp, Crangon franciscorum, appeared seasonally abundant at all three stations, while mysid shrimp were more abundant at the upstream stations (Figure 14). Dungeness crabs were captured only at Station PW in early winter (Table 9).

Large starry flounder were more numerous at Station PW than at Station NMFS 1 (Figures 16 and 17). The 1974 year class seemed to appear later and in greater numbers at Station NMFS 1. The histogram modes in Figures 16 and 17 seem to change position at similar rates, suggesting that growth rates were similar at the two stations.

Diurnal Tow Series. Considerable change occurred in the number and types of animals captured during the diurnal series of trawls made at Station PW (Figures 18 and 19). The variety of fish species captured increased during the night and was greatest at dawn just before low tide (Figure 18). Starry flounder of the 1973 year class were captured at the greatest rate near high tide at night. Pacific staghorn sculpin and Crangon franciscorm catches increased at night. Other patterns are difficult to interpret, complicated as they are by sampling errors, the schooling behavior of some fish (e.g. shiner perch), tidal cycles, diurnal cycles, and other factors. However, it is apparent that daytime tows capture only a portion of the species which regularly appear at Station PW.

Comparative Tows. Catch statistics for tows made alternately with the 16 -foot and 25 -foot trawls are presented in Appendix Table 6-1. The comparative performances of the trawls have not yet been analyzed.

Gillnetting

Gill net operations captured more peamouths than other fish species (Tables 10 and 11 ; see Appendix Table 6-2 for a complete data summary).

Shiner perch and Pacific staghorn sculpin were captured in moderate numbers. Highest catch rates occurred in summer. This may have been due to greater swimming activity during the warm-water period; however, trawl catches of peamouths were also highest during the summer (Figures 11, 12, and 13).

Seining

The same fish species were captured by beach seine as were captured by trawl (Table 12; see Appendix Table 6-3 for a complete data summary). The relatively large catches by seine of juvenile American shad and surf smelt emphasize the probable importance of shallow waters to these young fish.

Figure 11. Relative abundances of fish species captured by trawl at Station PW during 1974. The base of each histogram is aligned with date of trawl. Total numbers of fish captured are indicated, along with reference to time of high tide. Catches of 3 December and 4 December were combined to form total catch of 171. A 15 -foot box trawl was used on all dates except 18 April, when a 16 -foot otter trawl was used. (Location: Appendix Figure 1-6)

Figure 12. Relative abundances of fish species captured by trawl at Station CWRR during 1974. The base of each histogram is aligned with date of trawl. Total numbers of fish captured are indicated, along with reference to time of high tide. A l6-foot box trawl was used. (Location: Appendix Figure 1-6)

Figure 13. Relative abundances of fish species captured by trawl at Station NMFS 1 during 1974. The base of each histogram is aligned with date of trawl. Total numbers of fish captured are indicated, along with reference to time of high tide. A 16-foot box trawl was used. (Location: Appendix Figure 1-6)

Figure 14. Seasonal changes in trawl catches of flounder and shrimp at three stations during 1974. Tows varied from 2.5 to 12 minutes. A 16 -foot box trawl was used. On 18 June, the cod-end liner was changed from a one-half to a one-quarter inch liner (Location: Appendix Figure 1-6)

Figure 15. Seasonal changes in trawl catches of Pacific staghorn sculpin, prickly sculpin, and shiner perch at three stations during 1974. Tows varied from 2.5 to 12 minutes. A 16 foot box trawl was used. (Location: Appendix Figure 1-6)

	Dungeness crabs caught by trawl at Station PW in 1974. Crabs were not captured at other stations or on other dates. Tows were made with the box trawl except those at 0950 and 1240 hours on 10 November, when a 25 -foot otter trawl was used. (Location: Appendix Figure 1-6)					
				ber caught	Size	cm)
Date	Time	Reference to high tide	Total	$\begin{gathered} \text { per } \\ 5 \text { min. tow } \end{gathered}$	Range	Mean
10 Nov	1315	3.5 hrs past	1	2.5	12	
10 Nov	0950	High	2	2.0	11-13	
10 Nov	1240	3 hrs past	2	5.0	11	
3 Dec	1500	0.5 hrs before	7	7.0	10-13	11.4
4 Dec	1700	0.5 hrs past	7	5.0	9-15	11.1
5 Dec	1000	4 hrs past	7	4.4	no dat	
5 Dec	1020	4.5 hrs past	7	8.8	no dat	

Figure 16. Length-frequency histograms for starry flounder captured by trawl at Station PW during 1974. The base of each histogram is aligned with date of traw. The 1974 year class first appeared in the 30 May trawl. Numbers of flounder caught are indjcated. A 15foot box trawl was used on all dates except 18 April, when a $16-$ foot otter trawl was used. (Location: Appendix Figure 1-6)

Figure 17. Length-frequency histograms for starry flounder captured by trawl at Station NMFS 1 during 1974. The base of each histogram is aligned with date of trawl. The 1974 year-class first appeared in the 18 June trawl. Numbers of flounder caught are indicared. A 16-foot box trawl was used. (Location: Appendix Figure 1-6)

Figure 18. Relative abundances of fish species captured at Station PW during a diurnal series of trawls on 28 and 29 August 1974. The base of each histogram is aligned with date of trawl. Total catch size and times of high and low tide are indicated. A 16-foot box trawl was used. (Location: Appendix Figure 1-6)

Figure 19. Changes in bottom temperature and salinity, and numbers of shrimp and selected fish species captured by trawl at Station PW. During the diurnal series on 28 and 29 August 1974, six tows were made with a 16-foot box traw1. Bottom depth varied from 2 to 5 meters. (Location: Appendix Figure 1-6)

Table 10. Number of fish caught per hour of gill net operation at Station Ch 8 during 1974. A 90 -foot multifilament nylon net was used, except on 6 February and 6 March when a 125-foot monofilament nylon net was used. (Location: Appendix Figure 1-6)

Table 11. Number of fish caught per hour of gill net operation at three stations during 1974. A 90 -foot multifilament nylon net was used. (Location: Appendix Figure 1-6)

Date	Time Set	Reference to high tide	Leng th of set (hrs.)		ت్య											TOTAL
							StATION:	PW								
29 May	1340	5 hrs past	2.08	0.5	1.0	0.5	3.8			19.7			0.5			26.0
10 July	1700	1 hr before	1.67				0.6		2.4	5.4						8.4
28 Aug	1435	High	2.00							2.5		0.5	0.5	0.5		4.0
10 Nov	0840	1 hr before	3.00						0.7			12.7	3.3			16.7
							STATION: C	NRR								
18 June	1130	2 hrs before	2.50				0.8		3.6	5.2		3.2	0.4			13.2
18 Sept	1430	1 hr before	2.75					9.4	0.7	2.2		6.5	0.7		0.4	19.9
12 Oct	1025	1 hr before	3.33					0,3	0.3	1.8		2.1				4.5
							Station: N	FS 1								
28 May	1522	5 hrs before	2.05				1.0			14.6			0.5			16.1
29 May	0837	High	2.55				0.8		0.4	0.8			1.2			3.2
6 Aug	0910	6 hrs past	1.83				$2.7 \quad 0.5$		0.5	47.0	0.5	1.6				53.0

CONTENTS OF FISH STOMACHS

METHODS
Fish to be examined for stomach contents were taken from preserved portions of trawl catches made at Stations PW and NMFS 1. The composition (in terms of fish species and size classes) of the subsample examined for stomach contents was approximately the same as the composition of the trawl catch.

Stomachs were excised and placed in separately labeled vials, and later examined under a stereoscopic microscope. The fullness of each stomach and the percent contribution of each food type to the total contents was estimated visually. Stomach fullness varied considerably with individuals and season. Therefore, the "fraction-of-contents" values may be misleading when considering the contributions of various food types to fish growth. For this reason, another variable is also presented: "fraction of maximum stomach volume", which is computed by multiplying "fraction of contents" times "stomach fullness".

RESULTS

The seasonal food habits of the most frequently captured fish are shown in Figure 20 (Station PW) and Figure 21 (Station NMFS 1). Corophium was heavily preyed upon, especially by juvenile chinook salmon, and by starry flounder during the period of rapid growth (June-September).

The overall pattern of food selection by the mixed-species population shows that Corophium was eaten more frequently at Station NMFS 1 than at Station PW (Table 13). The heavy consumption of bivalves at Station Plif included whole clams (Macoma) as well as clam siphons bitten off by young flounder. Mean stomach fullness was greatest during the summer, and was consistently higher at Station NMFS 1 than at Station PW.

The general prevalance of benthic forms over planktonic forms (e.g., calanoid and cyclopoid copepods) in these results may be related both to method of fish collection (bottom trawl) and to the abundance of benthic life in this shallowwater estuary.
JANUARY - MAY

Figure 20A. Contributions of food types to stomach contents of starry flounder, shiner perch and chinook salmon captured by trawl at Station PW. Contributions are represented as fractions of maximum stomach volume. This representation shows the fraction of the stomach which was empty, and is helpful in showing seasonal changes in food habits, where the consumption rate undergoes seasonal cycles. (Location: Appendix Figure 1-6)

PACIFIC STAGHORN SCULPIN

PACIFIC TOMCOD

AN Anisogammarus
BIV Bivolvio
CCOP Colanoida and Cyclopoido
CHL Chironomidoe Larvae
CL Cladocera
COR Corophium
CR Crangon
EO Eohoustorius
F Fish
FE Fish Eggs
HAR Harpacticoida
IS Isopodo
NEO Neomysis
OL Oligochaeto
POL Polychoeto
UNID Unidentified

Figure 20B. Contributions of food types to stomach contents of longfin smelt, Pacific staghorn sculpin and Pacific tomcod captured by trawl at Station PW. Contributions are represented as fractions of maximum stomach volume. This representation shows the fraction of the stomach which was empty, and is helpful in showing seasonal changes in food habits, where the consumption rate undergoes seasonal cycles. (Location: Appendix Figure 1-6)

SHINER PERCH
AN Anisogammarus
BiV Bivalvia
CCOP Calanaida and Cyclopoida
CHL Chironamidae Larvae
CL Cladocera
COR Corophium
CR Crangon
EO Eahaustorius
F Fish
FE Fish Eggs
HAR Harpacticoida
IS Isapada
NEO Neomysis
OL Oligochaeta
POL Palychaeta
UNID Unidentified

Figure 21A. Contributions of food types to stomach contents of starry flounder, shiner perch and chinook salmon captured by trawl at Station NMFS 1. Contributions are represented as fractions of maximum stomach volume. This representation shows the fraction of the stomach which was empty, and is helpful in showing seasonal changes in food habits, where the consumption rate undergoes seasonal cycles. (Location: Appendix Figure 1-6)

Figure 21B. Contributions of food types to stomach contents of longfin smelt, Pacific staghorn sculpin and prickly sculpin captured by trawl at Station NMFS 1. Contributions are represented as fractions of maximum stomach volume. This representation shows the fraction of the stomach which was empty, and is helpful in showing seasonal changes in food habits, where the consumption rate undergoes seasonal cycles. (Location: Appendix Figure 1-6)

Table 13 Mean contributions of various food types to stomach contents of fish captured at Stations PW and NMFS 1. The values approximately represent the seasonal importance of each food type to the mixedspecies population of fish sampled by trawling. (Location: Appendix Figure 1-6)

Food	Station	Mean fraction of stomach contents (\%)		
		Jan-May	June-Sept	Oct-Dec
Amphipoda				
Corophium	PW	62.9	32.8	18.0
	NMFS 1	52.5	74.3	74.2
Anisoganmarus	PW	1.4	2.3	5.9
	NMFS 1	7.6	$+$	0.7
Copepoda				
Harpacticoida	PW	19.1	5.7	6.8
	NMFS 1	18.8	0.8	1.9
Calanoida \mathcal{G}	PW	2.8	5.5	0.7
Cyclopoida	NMFS 1	0	3.1	6.2
Decapoda				
Crangon	PW	0.7	4.8	4.2
	NMFS 1	0	1.0	2.1
Mysidacea				
Neomysis	PW	6.4	17.5	12.2
	NMFS 1	9.7	18.4	10.0
Polychaeta	PW	1.2	13.6	10.5
	NMFS 1	10.0	0.6	1.2
Mollusca				
Bivalvia	PW	3.6	4.1	37.3
	NMFS 1	10.3	0.1	0
Fish	PW	0	4.3	0
	NMFS 1	0	0	0
Mean fullness	PW	20.0	39.4	17.6
	NMFS 1	33.5	51.8	37.8

[^0]
APPENDIX TABLES

Table 1-1. Checklist of invertebrate fauna captured in Youngs Bay, Skipanon Waterway, Youngs River, Lewis and Clark River, and Columbia River during 1974.*

Phylum Nemertinea

Phylum Nematoda

Phylum Annelida
Cl ass Hirudinea
Class Oligochaeta
Class Polychaeta
Subclass Errantia

Subclass Sedentaria

Family Nereidae Neanthes diversicolor
Family Ampharetidae Amphicteis sp.

Phylum Mollusca
Class Bivalvia

Family Cyrenidae Corbicula fluminea
Family Tellenidae

Macoma inconspicua

Phylum Arthropoda
Subphylum Chelicerata
Class Arachnida
Order Hydracarina
Subphylum Mandibulata
Class Insecta
Order Diptera
Class Crustacea
Subclass Branchiopoda Order Diplostraca

Suborder Cladocera
Family Bosminidae
Bosmina sp.
Family Chydoridae
Eurycercus Iamellatus
Family Daphnidae
Daphnia sp.
Family Polyphemidae
Podon sp.

* Classification based on Light, et al. (1961), Meglitch (1972), and Pennak (1953).

Table 1-1. (cont.)

Table 1-1. (cont.)

Superorder Eucarida Order Decapoda

Suborder Natantia
Crangon franciscorum
Suborder Reptantia
Section Macrura
Pacifasticus sp.
Section Brachyura
Cancer magister

Table 1-2. Checklist of fish species captured in Youngs Bay, 1974.*

COMMON NAME	SCIENTIFIC NAME	FAMILY
American shad	Alosa sapidissima (Wilson)	Clupeidae
Carp	Cyprinus carpio Linnaeus	Cyprinidae
Chinook salmon	Oncorhynchus tshawytscha (Walbaum)	Salmonidae
Coho salmon	Oncorhynchus kisutch (Walbaum)	Salmonidae
English sole	Parophrys vetulus Girard	Pleuronectidae
Largescale sucker	Catostomus macrocheilus Girard	Catostomidae
Longfin smelt	Spiminchus thaleichthys (Ayres)	Osmeridae
Northern anchovy	Engraulis mordax Girard	Engraulidae
Pacific lamprey	Entosphenus tridentatus (Gairdner)	Petromyzontidae
Pacific herring	Clupea harengus pallasi valenciennes	Clupeidae
Pacific staghorn sculpin	Leptocottus armatus Girard	Cottidae
Pacific tomcod	Microgadus proximus (Girard)	Gadidae
Peamouth	Mylocheilus caurinus (Richardson)	Cyprinidae
Prickly sculpin	Cottus asper Richardson	Cottidae
Ringtail snailfish	Liparis mutteri (Gilbert and Synder)	Cyclopteridae
Sand sole	Psettichthys melanostictus Girard	Pleuronectidae
Shiner perch	Cymatogaster aggregata Gibbons	Embiotocidae
Snake prickleback	Lumpenus sagitta Wilimovsky	Stichaeidae
Speckled sanddab	Citharichthys stigmaeus Jordan and Gilbert	Bothidae
Starry flounder	Platichthys stellatus (Pallas)	Pleuronectidae
Steelhead trout	Salmo gairdneri Richardson	Salmonidae
Surf smelt	Hypomesus pretiosus (Girard)	Osmeridae
Threespine stickleback	Gasterosteus aculeatus Linnaeus	Gasterosteidae
White sturgeon	Acipenser transmontonus Richardson	Acipenseridae

[^1]Table 2-1. Vertical temperature series taken during 1974. Depth is measured surface to bottom. (Location: Appendix Figure 1-1)

Depth(m)	18 Apr	8 May	29 May	STATION: ENTRANCE TO YOUNGS BAY Temperature (${ }^{\circ} \mathrm{C}$)				17 Sept	13 Oct	11 Nov	4 Dec
				19 June	10 July	5 Aug	27 Aug				
0	9.7	12.6	13.5	16.6	17.0	19.5	20.3	18.1	15.4	11.2	8.7
1	9.8				17.1						
2	9.7	12.6	13.7	16.4	16.9	19.6	19.5	15.5	14.5	11.3	8.6
3	9.7				16.5						
4	9.8	12.6		16.5	16.4	17.3	18.2	13.1	13.3	10.9	9.0
5	9.7				16.5						
6	9.7	12.6	13.5	16.8	16.2	15.8	16.4	13.2	11.2	10.9	9.2
7	9.6				16.1						
8	9.9	12.6		16.1	16.0	15.7	13.9	13.2	10.7	10.9	9.7
9	10.4			15.7	15.8						
. 10	9.6	12.6	12.2		15.5	10.9	13.5	12.8	10.5	11.1	9.7
11					15.5		13.2	12.2			
12		12.7	12.0		15.6	11.0			10.5	10.9	9.7
13											9.7

STATION: CAUSEWAY
Temperature (${ }^{\circ} \mathrm{C}$)

$\begin{aligned} & \text { Depth } \\ & \text { (m) } \end{aligned}$	18 Apr ${ }^{\text {c }}$	8 May	29 May	19 June	10 July	5 Aug	27 Aug	17 Sept	13 Oct	11 Nov	4 Dec
0	9.7	12.8	13.8	16.7	16.8	19.6	19.8	17.9	14.9	11.3	8.6
1	9.8				16.8						
2	9.7	12.8	13.7	16.2	16.7	19.7	19.1	17.9	14.6	11.3	8.9
3	9.9				16.9						
4	9.6	12.8	13.6	16.2	16.7	19.8	17.5	15.7	13.5	11.1	9.1
5	9.8				16.6	19.6	17.6				
6		12.8	13.8	16.2	16.7			14.9	13.2	11.0	9.1
7					16.6						
8				15.9						11.1	
9										10.9	

Table 2-1. (continued)

STATION: MOUTH OF LEWIS AND CLARK RIVER
Temperature (${ }^{\circ} \mathrm{C}$)

Depth (m)	18 Apr	8 May	29 May	19 June	10 July	5 Aug	27 Aug	17 Sept	13 Oct	11 Nov	4 Dec
0	10.1	13.1	14.5	16.2	17.2	20.8	21.1	19.7	15.6	11.2	8.9
1	10.0				17.2						
2	9.9	13.1	13.8	16.6	17.4	20.9	19.5	18.9	14.8	11.1	9.0
3	9.9				17.5						
4	10.0	13.1	13.9	16.9		20.7	19.3		14.8	11.0	8.9
5	9.9						19.2	18.3			
6		13.1	13.6			20.6			14.7	11.3	8.9
7											9.0

54

Table 2-2. Vertical salinity series taken during 1974. Depth is measured surface to bottom. Readings for 8 May are probably inaccurate due to malfunction of salinometer. (Location: Appendix
Figure 1-1)

STATION: ENTRANCE TO YOUNGS BAY

STATION: CAUSEWAY
Salinity (\%)

							Sali	ty (\%					
(m)	18 Apr	8 May	29	May	19	June	10 July	5 Aug	27 Aug	17 Sept	13 Oct	11 Nov	4 Dec
0	0.3	0		0		0	0.6	4.7	4.6	10.0	6.3	4.4	5.8
1	0.6						0.6						
2	0.6	0		0		0	0.6	4.7	6.6	10.3	9.7	8.1	8.0
3	0.6						0.6						
4	0.8	0		0		0	0.9	5.2	10.4	15.8	13.0	14.0	13.1
5	0.7						1.2	5.4	10.6				
6		0		0		0	1.2			18.0	15.2	16.6	14.9
7							1.2						
8						0						17.3	
9												17.2	

Table 2-2. (continued)

$\begin{aligned} & \text { Depth } \\ & \text { (m) } \\ & \hline \end{aligned}$	18 Apr	8	May	29	May	19 June	Salinity (\%)				17 Sept	13 Oct	11 Nov	4 Dec
								July	5 Aug	27 Aug				
0	0.6		0		0			0	1.7	4.8	3.0	2.6	3.9	5.4
1	0.6													
2	0.6		0		0			0	1.7	6.2	3.2	3.1	5.4	6.4
3	0.7													
4	0.7							0	1.7	6.4	7.3	4.6	6.4	7.1
5	0.7													
6	0.7		0		0		0	0	1.8	7.1	7.9	5.5	7.7	7.4
7	0.7													
8	0.7						0	0	1.8	7.2	8.0	5.9	7.8	8.1
9	0.8													
10	0.8		0		0		0	0	2.0	7.2	7.9	6.4	7.8	9.0
11	0.8											6.7		
12					0		0	0	2.1		8.0		7.8	
13													7.9	
14			0											

STATION: MOUTH OF LEWIS AND CLARK RIVER

							Salin	ty (\%o					
(m)	18 Apr	8	May	29	May	19 June	10 July	5 Aug	27 Aug	17 Sept	13 Oct	11 Nov	4 Dec
0	0.7		0		0	0	0	1.4	4.3	2.3	2.1	2.9	7.2
1	0.7						0						
2	0.7		0		0	0	0.2	1.4	5.9	3.2	1.6	5.5	8.3
3	0.8						0.3						
4	0.8		0		0	0		1.7	6.3		6.6	6.7	8.4
5	0.8		.						6.3	6.7			
6			0		0			2.0			6.9	7.6	8.7
7													10.1

Table 2-3. Turbidity readings taken during 1974. Depth of visibility of a 20 cm secchi disc was recorded at each station. No adjustments were made for time of day or conditions of weather. (Location: Appendix Figure 1-1)

	Secchi Disc Visibilities (m)									
Station	0.8	8 May 28 May	28 M	10 J	5 Aug	27 Au	17 Sep	13 Oct	11 Nov	4 Dec
Entrance to Youngs Bay		0.6	1.0	-	-	-	1.5	2.2	1.5	1.6
Causeway	0.7	0.7	0.7	0.7	1.0	1.6	1.5	1.5	1.5	1.6
Wouth of Youngs River	0.7	0.7	-	0.7	1.7	1.0	1.0	1.2	1.1	-
Mouth of Lewis and Clark River	0.5	0.6	0.6	0.6	0.7	0.7	1.0	1.4	1.1	1.5

Table 5-1. Summary of benthos densities (number per m^{2}) for stations in the Youngs Bay area during 1974. Sampling gear used was Smith-McIntyre grab samplers (SM = older model; NSM = newer, stainless steel model), a 15.2 cm coring tube, and an Ekman dredge ($0.023 \mathrm{~m}^{2}$). Substrate texture is given for most samples. A few samples were sieved only with a 0.063 mm screen; most were sieved either with 0.063 mm , and 0.991 mm screens, or these screens and a 0.246 mm screen. In all cases the percent silt and clay is given by the $<0.063 \mathrm{~mm}$ fraction. A dash indicates taxon may have been present, but was not counted. (Location: Appendix Figures 1-3 and 1-4)

STATION	FWGS	FWGS	FWGS	FWGS	FWGS	P3-FLG	$\underset{3 C}{P 3-F L G}$
date	18 June	10 July	18 June	18 June	10 July	7 March	7 March
GEAR	SM						
FRACTION OF SAMPLE COUNTED	1.0	1.0	1.0	1.0	1.0	0.31	1.0
$\begin{aligned} & \text { SUBSTRATE TEXTURE (\%) } \\ & >0.991 \mathrm{~mm} \end{aligned}$	0	0.5	0	0	4.4	1.2	0.2
$0.246 \mathrm{~mm}-0.991 \mathrm{~mm}$	85.3	82.9	33.4			14.1	
$0.063 \mathrm{~mm}-0.246 \mathrm{~mm}$	14.7	15.5	63.6	97.8	71.7	44.8	97.7
$<0.063 \mathrm{~mm}$	0	1.1	3.0	2.2	23.9	39.9	2.1
SAMPLE DEPTH (cm)	10	7	9	6.5	5.5		9.5

TAXON
Amphipoda

Anisogommarus	20.2	40.4	10.1			65.1	
Corophium	343.4		151.5	$3,686.9$	$8,323.2$	$1,856.7$	50.5
Eohaustorius	\ddots	363.6	$1,859.6$	434.3	20.2		
Paraphoms						191.9	

I sopoda
Mes
Mesidotea
Gnorimosphaeroma
Insecta
Chironomidae
10.1
10.1

Polychaeta
Ampharetidae
$10.1 \quad 10.1$

Nereidae
Oligochaeta
10.1

Hirudinea
Nematoda
Nemertinea
10.1
40.4
97.7
10.1
30.3

Mollusca
Hacoma
Corbicula
Hydracarina
Ostracoda
Decopoda
Pacifasticus
10.1

Crangon
Mysidacea
Neomysis

$$
\text { TOTAL } \quad 727 \quad 1,970
$$

```
Table 5-1 (continued)
```

STATION	PW						
	1	2	2	2	2	2	2
DATE	17 April	17 April	7 May	29 May	17 June	9 July	12 Oct
GEAR	SM	SM	SM	SM	SM	SM	NSM
FRACTION OF SAMPLE COUNTED	1.0	1.0	0.552	1.0	1.0	1.0	1.0
SUBSTRATE TEXTURE (\%)							
$>.991 \mathrm{~mm}$	0.5	1.1	0.5	0.1		1.4	0.2
. 246 mm - . 991 mm	89.2	20.9	28.0	16.1		91.0	18.1
$.063 \mathrm{~mm}-.246 \mathrm{~mm}$	89.2	74.7	71.5	77.4		91.0	76.7
$<.063 \mathrm{~mm}$	10.3	3.3	0	6.4		7.6	5.0
SAMPLE DEPTH (cm)	6	6.5	7	7	9	6	9.5

TAXON

Amphipoda

Anisogormarus	10.1	10.1	18.3		30.6	65.4	
Corophium	$11,252.5$	$4,555.6$	$7,142.9$	$8,646.5$	$27,230.0$	$17,724.5$	224.3
Eohaustorius	10.1	222.2	36.6	40.4	10.0	61.2	766.4
Paraphoxus							

Isopoda
Mesidotea 20.2
Gnorimosphaeroma
18.3

Insecta
Chironomidae 10.0
Polychaeta
Ampharetidae
10.1
$50.5 \quad 170.0$
Nereidae
Oligochaeta
$202.0 \quad 141.4$
18.3

- -

$414.1 \quad 30.3$
40.4
140.0
51.0
859.8

Hirudinea
Nematoda 111.1
40.4
173.5
46.7

Nemertinea
Mollusca
Macoma
Corbicula
10.1
131.3
18.3
10.2
850.5

Hydracarina
Ostracoda
Decopoda
Pacifasticus
Crangon
Mysidacea
Neomysis 18.7

TOTAL	12,040	5,090	7,253	8,818	27,560	18,245	3,383

Table 5-1 (continued)

STATION	PW	PW	$\begin{array}{r} \text { PW } \\ 4 \end{array}$	PW	PW	$\begin{gathered} \text { PW } \\ 5 \end{gathered}$	PW
DATE	3 Dec	17 April	17 April	17 April	7 May	30 May	18 June
GEAR	NSM	SM	SM	SM	SM	SM	SM
FAACTION OF SAMPLE COUNTED	1.0	1.0	1.0	0.513	0.522	0.25	0.25
SUBSTRITE TEXTURE (\%)							
>.991 mm	0	0		0.7	0.4		0.4
. 246 mm - . 991 mm	21.4			14.3	15.5		33
$.063 \mathrm{~mm}-.246 \mathrm{~mm}$	73.4	89.1		71.7	65.9		93.0
$<.063 \mathrm{~mm}$	5.2	10.9		13.3	18.2		6.6
SAMPLE DEPTH (cm)	11	6	5	6	3		10
TAXON							
Amphipoda							
Anisogommarus	46.7		50.5	39.4	135.4		40.3
Corophium	9.3	9,717.2	24,282.8	36,043.3	23,017.4	45,920.0	13,790.3
Eoraustorius	243.9	10.1	10.1	19.7			
Farapnoxus	130.8				-		
I sopoda							
Mesidotea			20.2		\cdots		
Gnorimosphaeroma							
Insecta							
Pclychaeta							1,290.3
Anpharetidae			40.4	19.7		.	-
\ereidae	897.2	50.5	323.2	905.5	348.2	840.0	-
O1igochaeta		404.0	2,737.4	2,480.3	1,702.0	2,080:0	3,225.8
Hirudinea							
Nematoda		101.0	434.3	3,661.4	1,721.5	1,080.0	685.5
Nemertinea	37.4	20.2		-	-	-	-
Mollusca							
\therefore acoma	467.3	90.9	20.2				
Corbicula							

Hydracarina
Ostracoda
Lecopoda
Easifasticus
Crangon
Mysidacea
Neomysis

	46.7	46.7					
TOTAL	1,879	10,393	27,919	43,169	26,924	49,920	19,073

Table 5-1 (continued)

STATION	$\begin{array}{r} \mathrm{PW} \\ 5 \end{array}$	$\begin{gathered} \text { PW } \\ 5 \end{gathered}$	$\begin{gathered} \text { CW } \\ \text { Trough } \end{gathered}$	CWRR	CWRR	CWRR	$\begin{gathered} \text { WRT }-6 \mathrm{C} \\ 1 \mathrm{~B} \end{gathered}$
DATE	12 Oct	3 Dec	29 May	7 May	18 June	9 July	7 March
GEAR	NSM	NSM	SM	SM	SM	SM	SM
FRACTION OF SAMPLE COUNTED	1.0	0.38	1.0	0.303	0.129	1.0	0.25
SUBSTRATE TEXTURE (\%)							
$>.991 \mathrm{~mm}$	0.2	0.8	ND		0.4	0.7	2.0
$.246 \mathrm{~mm}-.911 \mathrm{~mm}$	19.2	10.6	36.3		29.	1.0	21.4
$.063 \mathrm{~mm}-.246 \mathrm{~mm}$	76.0	72.6	ND		29.0	10.0	61.2
$<.063 \mathrm{~mm}$	4.6	15.9	ND		70.6	88.3	15.4
SAMPLE DEPTH (cm)	11	12	6	15	13	17	10

TAXON

Amphipoda
Anisoganmarus
Corophizm
Eohaustorius
Paraphoxus
Isopoda
Mesidotea
Gnorimosphaeroma
Insecta
Chironomidae

Polychaeta							241.9
Ampharetidae				66.7	,	51.2	-
Nereidae	448.6	1,113.8	10.1	1,033.3	731.7	542.9	-
Oligochaeta	112.1	774.8	20.2	33,066.7	37,317.0	50,295.9	5,306.4
Hirudinea							
Nematoda	252.3	677.9	111.1	1,200.0	1,056.9	2,183.7	201.6
Nemertinea	-	72.6			-	-	-
Mollusca Macoma						10.2	40.3
Corbicuza							

Hydracarina
Ostracoda

Decopoda
Pacifasticus
Crangon
Mysidacea
Neomysis TOTAL $\quad 31,617 \quad 24.2$
4.2
$\begin{array}{rr} & 33 . \\ 3,717 & 55,800\end{array}$
62,439
65,520
49,274

Table 5-1 (continued)

STATION DATE	$\begin{gathered} \text { WRT-6C } \\ 1 \\ 17 \text { April } \\ \hline \end{gathered}$	$\begin{gathered} \text { WRT-6C } \\ 1 \\ 7 \text { May } \\ \hline \end{gathered}$	$\begin{aligned} & \text { WRT-6C } \\ & 3 A \\ & 6 \text { March } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { WRT-6C } \\ & 3 B \\ & 6 \text { March } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { WRT-6C } \\ & 3 \mathrm{C} \\ & 6 \text { March } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { WRT-6C } \\ & \text { 3D } \\ & 6 \text { March } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { WRT-6C } \\ & 3 \mathrm{E} \\ & 6 \text { March } \\ & \hline \end{aligned}$
GEAR	SM						
FRACTION OF SAMPLE COUNTED	0.25	0.2975	1.0	1.0	1.0	1.0	1.0
SUBSTRATE TEXTURE (\%) $>.991 \mathrm{~mm}$							
. 246 mm - . 991 mm	16.0	21.4	1.1	1.2		1.4	0.5
$.063 \mathrm{~mm} \mathrm{-} \mathrm{}$.	62.4	61.9	63.0	83.9		54.5	83.6
$<.063 \mathrm{~mm}$	20.8	16.4	33.3	14.9		44.1	15.9
SAMPLE DEPTH (cm)	7.5	6	9	10	9	7	7
TAXON							
Amphipoda							
Anisogcommarus			90.9	30.3	50.5	70.7	30.3
Corophizm	1,747.8	9,152.5	50,272.7.	43,494.9	32,858.6	42,737.4	26,666.7
Echaustorius							
Ensophoxus							
I sopoda							
Mesidotea							
Grorimosphaeroma							
Insecta							
Chironomidae	.						
Polyohaeta							
Amharetidae	5.7		90.9	50.5	30.3	50.5	40.4
Vereidae		135.6	303.0	434.3	383.8	494.9	313.1
Oligochaeta	395.4	6,711.9	$6,535,3$	6,555.5	4,222.2	3,666.7	1,545.4
Hirudinea							
Nematoda	232.0	644.0	1,838.4	2,656.6	787.9	1,808.1	606.1
Nemertinea			-	-	-	-	-
Mollusca							
Macoma			20.2		20.2		
Corbicula							

Hydracarina
Ostracoda

Decopoda
Pacifasticus
Crangon
Mysidacea
Neomysis
TOTAL $2,381 \quad 16,644 \quad 59,162.1033,222 \quad 38,354 \quad 48,828 \quad 29,202$

Table 5-1 (continued)

Station DATE	$\begin{gathered} \text { WRT-6C } \\ 3 \\ 17 \text { April } \\ \hline \end{gathered}$	$\begin{gathered} \text { WRT-6C } \\ \quad 3 \\ 7 \text { May } \end{gathered}$	$\begin{aligned} & \text { WRT-6C } \\ & 3 \\ & 28 \mathrm{May} \end{aligned}$	$\begin{gathered} \text { WRT-6C } \\ 3 \\ 17 \text { June } \end{gathered}$	$\begin{aligned} & \text { WRT-6C } \\ & 3 \\ & 8 . \mathrm{J}_{1117} \end{aligned}$	$\begin{gathered} \text { WRT-6C } \\ 3 \\ 36 \text { And } \end{gathered}$	WRT-6C 3
GEAR	SM	SM	SM	SM	SM	NSM	NSM
FRACTION OF SAMPLE COUNTED	0.127	0.135	0.13	0.131	0.521	0.146	0.17
SUBSTRATE TEXTURE (\%) $>.991$ mm							
. 246 mm - .991 mm	52.1	6.5	2.3 11.4	0.4 86.8	1.5 5.9	2.0 6.0	6.5
$.063 \mathrm{~mm}-.246 \mathrm{~mm}$	52.1	54.6	72.3	86.8	50.9 80.6	82.2	-8.4
$<.063 \mathrm{~mm}$	46.7	37.8	14.0	12.8	12.0	9.8	7.7
SAMPLE DEPTH (cm)	8	5.5	8	10.5	8.5	14	15

TAXON

Amphipoda
Anisogormams
Corophium
Eohaustorius
Paraphoxus
Isopoda
Mesidotea
Gnorimosphaeroma
317.5
$46,349.2 \quad 18,358.2 \quad 31,953.1 \quad 32,692.3 \quad 22,325.6 \quad 22,756.4 \quad 23,681.3$

Insecta
Chironomidae
Polychaeta
Ampharetidae
Nereidae
$01 i g o c h a e t a$
Hirudinea

Nematoda	952.4	223.9	2,890.6	4,000.0	1,259.7	448.7	1,868.1
Nemertinea							

Mollusca
Macoma
Corbicula
Hydracarina
Ostracoda
Decopoda
Pacifasticus
Crangon
Mysidacea $\begin{array}{ccccccccc}\text { Neomysis } & & & & 76.9 & & \\ . & \text { TOTAL } & 52,778 & 22,239 & 42,969 & 50,615 & 32,597 & 40,000 & 46,209\end{array}$

Table 5-1 (continued)

STATION DATE	$\begin{aligned} & \text { WRT-6C } \\ & 3 \\ & 12 \text { Oct } \\ & \hline \end{aligned}$	$\begin{gathered} \text { WRT-6C } \\ 3 \\ 9 \text { Nov } \\ \hline \end{gathered}$	WRT-6C 3 3 Dec	WRT-6C 5 May	$\begin{gathered} \text { WRT-6C } \\ 7 \\ 17 \text { Apri1 } \end{gathered}$	WRT-6C 7 May	$\begin{gathered} \text { WRT-6C } \\ 7 \\ 30 \text { May } \\ \hline \end{gathered}$
GEAR	NSM	NSM	NSM	SM	SM	SM	SM
FRACTION OF SAMPLE COUNTED	0.23	0.256	0.23	0.25	0.395	0.312	1.0
SUBSTRATE TEXTURE (\%)							
.246 mm - . 991 mm	11.3	0.9 82.8	1.2 8.3	1.6	2.3 6.5	1.2 5.7	1.0 7.6
$.063 \mathrm{~mm}-.246 \mathrm{~mm}$	74.2	82.8	75.8	45.6	53.7	63.6	48.7
$<.063 \mathrm{~mm}$	13.3	16.2	14.7	52.8	37.5	29.5	42.7
SASPLE DEPTH (cm)	11	10.5	14.6	11	13	10	8
TAXON							
Amphipoda							
Anisogammarus			162.5	40.3			
Corophium	22,235.8	25,474.5	19,544.9	36,451.6	27,954.0	22,459.5	16,686.9
Eohaustorius	81.3						
Foraphoxus							
Isopoda							
Mesidotea							
- Snorimosphaeroma							

Insecta
Chironomidae
Polychaeta
Ampharetidae $\quad 80.6 \quad 226.5 \quad 30.3$
Nereidae

O1igochaeta

| 609.8 | 255.5 | 447.0 | $1,008.1$ | 383.6 | 226.5 | 313.1 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $1,138.2$ | $12,518.2$ | $13,774.9$ | $29,314.5$ | $23,324.5$ | $31,100.0$ | $10,202.0$ |

Hirudinea

Nematoda	$1,219.5$	$2,445.3$	$1,544.1$	$1,733.9$	$1,432.2$	711.9
Nemertinea		401.4	12.9		-	
Mollusca						
\quad Macoma						
\quad Corbicula		145.9	284.4			

hydracerina
Ostracoda
97.0

Decopoda
Pacifasticus
Crangon
Mysidacea Neomysis

TOTAL	35,285	41,241	35,880	68,629	53,095	44,822	27,960

Table 5-1 (continued)

TAXON
Amphipoda
Anisogommarus

- Corophium

Eohaustorius
Paraphoxus
Isopoda
Mesidotea
Gnorimosphaeroma
50.0

Insecta
Chironomidae
Polychaeta
Ampharetidae
Nereidae
Oligochaeta
Hirudinea
Nematoda
Nemertinea
Mollusca
Macoma
CorbicuZa
Hydracarina

Ostracoda					1,800.0		
Decopoda							
Pacifasticus							
Crangon							
Mysidacea							
Neomysis							
TOTAL	33,081	58,607	55,935	28,841	10,882	22,270	6,319

Table 5-1 (continued)

STATION	SKIP 2	SKIP 3	${ }_{4}^{\text {SKIP }}$	SKIP 5	$\begin{gathered} \text { SKIP } \\ 6 \end{gathered}$	$\underset{7}{\text { SKIP }}$	SKIP $T B$
DATE	24 Oct	9 July					
GEAR	CORE	CORE	CORE	CORE	CORE	CORE	EKMAN
FRACTION OF SAMPLE COUNTED	1.0	1.0	1.0	1.0	1.0	1.0	0.5
SUBSTRATE TEXTURE (\%) $>.991 \mathrm{~mm}$							
$\begin{aligned} & .246 \mathrm{~mm}-.991 \mathrm{~mm} \\ & .063 \mathrm{~mm}-.246 \mathrm{~mm} \end{aligned}$							12.5
$<.063 \mathrm{~mm}$	4.1	16.6	18.6	7.4	61.0	13.3	87.5
SAMPLE DEPTH (cm)	20	20	20	20	20	20	-
TAXON							-
Amphipoda							
Anisogommarus				-			43.6
Gorophium	6,428.6	1,098.9	219.8			3,846.2	13,703.7
Ecrauctorius							
Foraphowus							
Isopoda							
Mesidotea							
Gnorimosphaeroma							
Insecta							
Chironomidae	1,208.8	1,098.9	2,087.9	1,648.3	2,472.5	54.9	
Polychaeta							
Ampharetidae						54.9	
Nereidae							21.6
Oligochaeta	19,065.9	11,318.7	10,384.6	4,340.7	2,802.2	2,967.0	261.4
Hirudinea							
Nematoda	2,142.8	439.6	109.9	1,483.5	769.2	439.6	610.0
Nemertinea	-	-	-	54.9	-	- .	-
Mollusca							
Corbicula							
Hydracarina	1,098.9	384.6	164.8	109.9			
Ostracoda	604.4	109.9		439.6	164.8	54.9	
Decopoda							
Crangon							21.8
Mysidacea							
Neomysis							
TOTAL	30,549	14,450	12,967	8,077	6,209	7,418	14,662

Table 5-1 (continued)

STATION DATE	$\begin{gathered} \text { SKIP } \\ \text { TB } \\ 10 \text { Nov } \end{gathered}$	$\begin{gathered} \text { SKIP } \\ \text { CH12 } \\ 10 \text { Nov } \\ \hline \end{gathered}$	$\begin{array}{r} \mathrm{YR} \\ 6 \\ 4 \mathrm{Dec} \\ \hline \end{array}$	$\begin{gathered} Y R \\ 5 \\ 4 \mathrm{Dec} \\ \hline \end{gathered}$	$\begin{array}{r} \mathrm{YR} \\ 3 \\ 26 \mathrm{Aug} \\ \hline \end{array}$	YR MOUTH 29 May	$\begin{aligned} & \text { LC } \\ & 10 \\ & 9 \text { Nov } \end{aligned}$
GEAR	NSM	NSM	NSM	NSM	NSM	SM	NSM
- FRACTION OF SAMPLE COUNTED	1.0	1.0	0.408	0.289	0.34	0.141	0.259
SUBSTRATE TEXTURE (\%) $>.991 \mathrm{~mm}$	1.3	0.3	31.6	3.8	14.6	1.8	16.3
$\begin{gathered} .246 \mathrm{~mm}-.991 \mathrm{~mm} \\ .063 \mathrm{~mm}-.246 \mathrm{~mm} \\ <.063 \mathrm{~mm} \end{gathered}$	$\begin{array}{r} \}_{9.2} \\ 89.5 \end{array}$	$\begin{aligned} & \}_{8.3} \\ & 91.3 \end{aligned}$	$\begin{aligned} & 10.7 \\ & 25.3 \\ & 32.4 \end{aligned}$	$\begin{array}{r} 37.6 \\ 8.6 \end{array}$	14.6 41.8 43.5	$\}_{45.5}^{1.8}$	$3_{56.7}$ 27.0
SAMPLE DEPTH (cm)	19	19	13.5	13	18	8	14
TAXON							

Amphipoda:

Anisogammarus	9.3
Corophium	140.2

$$
\begin{array}{rrrr}
& 64.7 & & 71.4 \\
9,153.3 & 13,689.3 & 2,637.4 & 18,857.1
\end{array}
$$

649.8

Eohoustorius
Paraphoxus
Isopoda
Mesidotea
Gnorimosphaeroma
Insecta
Chironomidae
Polychaeta
Ampharetidae
Nereidae
Oligochaeta

$$
9.3
$$

18.7
434.8
32.4
54.9
71.4
84.1
37.4

13,821.5
7,378.6
26,620.9 11,071.4
$8,519.9$
22.9
183.0
$82.4 \quad 1,785.7$
Nemertinea
Mollusca
Macoma
Corbicula
Hydracarina
Ostracoda
Decopoda
Pacifasticus
Crangon
Mysidacea
Neomysis

TOTAL	252	159	24,783	21,392	29,863	34,143	9,386

Table 5-1 (continued)

STATION	LC	LC	LC	LC
	8	6	WH	WH
DA̧TE	9 Nov	9 Nov	7 March	9 Nov
GEAR	NSM	NSM	SM	NSM
FRACTION OF SAAPLE COUNTED	0.42	0.167	0.33	0.117
SUBSTRATE TEXTURE (\%)				
. 246 mm - . 991 mm		29.1	54.2	12.7
.063 mm - . 246 mm	$\int_{29.9}$	$\}_{51.4}$	$\}_{29.2}$	$\}_{62.1}$
$<.063 \mathrm{~mm}$	66.0	- 19.5	16.7	25.1
SAMPLE DEPTH (cm)	14.9	17.2	11.5	
TAXON				
Amphipoda				
Anisogammames	66.8		91.7	
Corophium	16,347.4	20,558.6	12,813.4	29,040.0
Eohoustorius			91.7	
Paraphoxus			-	
Isopoda				
Mesidotea				
Gnorimosphaeroma				
Insecta				
Chironomidae		949.7		80.0
Polychaeta			825.7	
Ampharetidae		502.8	82	160.0
Nereidae		279.3	-	960.0
Oligochaeta	579.1	15,754.2	18,165.1	33,440.0
Hirudinea				
Nematoda	22.3	335.2	30.6	320.0
Nemertinea	-		-	240.0
Mollusca				
Yacoma		167.6		160.0
Conbicula		55.9		
Hydracarina				
Ostracoda				
Decopoda				
Pacifasticus				
Crangon				
Mysidacea				
Neomysis				
TOTAL	17,016	38,603	32,018	64,400

Table 5-2. Results of replicate benthos sampling. Total counts were made on contents of five Smith-McIntyre grab samples taken at Station WRT-6C:3, 6 March 1974. (Location: Appendix Figure 1-3)

	Mean $(5$ samples $)$	Standard deviation	Standard error of mean (\%)
Corophium	$3,406.0$	$1,861.4$	24.4
Anisogammamis	5.4	2.6	21.7
Polychaeta	43.2	7.4	7.6
O1igochaeta	446.0	209.2	21.0
Nematoda	152.0	83.5	24.5

Table 5-3. Mean dry weights of bonthic animals collected during 1974. Organisms were sorted into the taxonomic groups shown and dried at $60^{\circ} \mathrm{C}$ for 24 hours. Some samples were formed by combining organisms found at different stations or dates. All organisms were preserved initially in formaldehyde and transferred to 40% isopropanol, and thus were subjected to alcohol extraction. (Location: Appendix Figures 1-3 and 1-4)

Table 5-4. Mean dry weight of Corophium collected at Station WRT-6C:3 during 1974. Organisms were dried for 24 hours at $60^{\circ} \mathrm{C}$. Preservation in 40% isopropyl alcohol may have caused weight losses through alcohol extraction. (Location: Appendix Figure 1-3)

Date	$\begin{gathered} \text { Sample } \\ \text { size } \\ \hline \end{gathered}$	$\begin{gathered} \text { Mean } \\ \text { dry weight } \\ \text { (mg) } \\ \hline \end{gathered}$
6 March	652	0.074
17 April	304	0.123
7 May	244	0.249
28 May	392	0.151
17 June	419	0.076
8 July	477	0.077
26 August	337	0.101
16 September	410	0.071
12 October	538	0.077
9 November	690	0.063
3 December	478	0.041

Table 6-1

CAPTURE BY TRAWL

Capture by trawl: Summary of data for four stations during 1974 Capture was by 16 -foot box trawl except for (1) a 16-foot otter traw1, Station PW, 18 April, 1515 hours, and (2) a 25-foot otter trawl, Station PW, 10 November, 0950 and 1240 hours. All trawls had one-half inch cod end liners, except the box trawl which was changed from a one-half to a one-quarter inch liner on 18 June. Starry flounder were separated into 1973 year class, 1974 year class, and older fish where length frequency histograms showed distinct divisions of these groups (see Figures 16 and 17); otherwise, no year class distinction was made. Mean size was computed where the number of a species measured was six or greater. Size was measured as total length to the nearest centimeter. (Location: Appendix Figure 1-6)

Table 6-1. Capture by traw1.

Date	Time	Reference to high tide	Species	Number caught		Number measured	Size (cm)	
				Total	tow		Range	Mean

STATION: PW

18 Apr	$\begin{aligned} & 1515- \\ & 1527 \end{aligned}$	4 hrs past	Starry flounder 1973 year class older fish Threespine stickleback TOTAL	35 31 4 3 38	14.6 12.9 1.7 1.3 15.9	35 31 4 3 38	$\begin{gathered} 7-25 \\ 7-10 \\ 18-25 \\ 5 \end{gathered}$	10.3 8.8
8 May	$\begin{aligned} & 1500- \\ & 1506 \end{aligned}$	1 hr before	Starry flounder 1973 year class older fish	162 160 2	135 133.3 1.7	162 160 2	$\begin{aligned} & 7-15 \\ & 7-11 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$
			Pacific staghorn sculpin	20	16.7	20	10-17.	12.9
			Prickly sculpin	3	2.5	3	13-14	
			Longfin smelt	4	3.3	4	8-13	
			Peamouth	6	5	6	16-30	20.7
			Shiner perch	74	61.7	74	9-14	11.8
			TOTAL	269	224.2	269		
30 May	$\begin{aligned} & 0917- \\ & 0925 \end{aligned}$	0.5 hr before	Starry flounder 1974 year class 1973 year class older fish	142	88.8	105	$\begin{gathered} 4-25 \\ 4 \end{gathered}$	9.2
				1 101	0.6 63.1	1 101		
				3	1.9	3	14-25	18.3
			Pacific staghorn sculpin	6	3.8	1	14	
			Chinook salmon	5	3.1	5	7-9	
			Peamouth	2	1.3	2	16-20	
			Shiner perch	41	25.6	41	9-15	11.4
			Carp	1	0.6	1	66	
			Longfin smelt	4	2.5	4	4-13	
			Prickly sculpin	1	. 6	1	16	
			TOTAL .	202	126.3	174		
19 June	$\begin{aligned} & 1122- \\ & 1127 \end{aligned}$	3 hrs before	Starry flounder	144	144	144	$3-11$	
			1974 year class	12	12	12	3-4	3.5
			1973 year class	132	132	132	8-11	9.4
			Pacific staghorn sculpin	8	8	8	9-14	11.1
			Prickly sculpin	8	8	8	8-15	11.3
			Longfin smelt	2	2	2	9-11	
			Chinook salmon	18	18	18	8-10	9.2
			Peamouth	2	2	2	19-23	10.5
			TOTAL	44	44226	$\begin{array}{r} 44 \\ 226 \end{array}$	9-14	
				226				
10 July	$\begin{aligned} & 1605- \\ & 1610 \end{aligned}$	2 hrs before	Starry flounder 1974 year class 1973 year class older fish	215	215	148	4-23	10.2
				3	3	3	4-5	
				143	143	143	$\begin{array}{r} 8-12 \\ 19-23 \end{array}$	10.1
				2	2	$\begin{array}{r} 2 \\ 20 \end{array}$		
			Pacific staghorn sculpin Osmeridae	20	20 1		$\begin{array}{r} 19-23 \\ 8-19 \end{array}$	9.7
			Prickly sculpin	2	2	2	$\begin{gathered} 8-19 \\ 3 \end{gathered}$	
			Longfin smelt	35	35	35	$3-12$	9.7
			Clupeidae	1	1	1		
			Peamouth	3	3	3	$\begin{gathered} 5 \\ 17-23 \end{gathered}$	
			Shiner perch	188	188	184	8-15	9.5
			TOTAL	465	465	394		
6 Aug	$\begin{aligned} & 1435- \\ & 1440 \end{aligned}$	2 hrs before	Starry flounder 1974 year class 1973 year class Pacific staghorn sculpin	121	121	121	4-13	8.2
				66	66	66	4-7	5.9
				55	55	55	$\begin{aligned} & 10-13 \\ & 15-20 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 16.1 \end{aligned}$
				8	8	8		
			Prickly sculpin	1	1	1	$\begin{array}{cc} 15-20 & 16.1 \\ 11 & \end{array}$	
			Longfin smelt	43	43	43	$\begin{array}{cr}11 & \\ 8-12 & 9.9\end{array}$	
			Shiner perch	19	19	19	5-13	9.6
			Sand sole Pacific tomcod	1	1	1	16	
				2	2	2	16-17	
			Surf smelt	4	4	4	8-9	
			TOTAL	199	199	199		

Table 6-1. Capture by trawl (continued)

Date	Time	Reference to high tide	Species	Number caught		Number measured	Size (cm)	
					Per 5 min.			
				Total	tow		Range	Mean
28 Aug	0930-	2 hrs before	Starry flounder	103	103	103	5-15	8.8
	0935		Pacific staghorn sculpin	1	1	1	12	
			Shiner perch	5	5	5	6-10	
			TOTAL	109	109	109		
	1330-	2 hrs past	Starry flounder	199	199	176	5-17	8.8
	1335		Pacific staghorn sculpin	3	3	3	11-14	
			Prickly sculpin	2	2	2	2	
			Surf smelt	1	1	1	16	
			TOTAL	205	205	182		
	1750-	5.5 hrs before	Starry flounder	78	78	60	5-16	9.3
	1755		Pacific staghorn sculpin	2	2	2	5-13	
			Longfin smelt	6	6	6	10-12	10.8
			Shiner perch	4	4	4	6-10	
			Pacific tomcod	4	4	4	8-9	
			TOTAL	94	94	76		
	2155-	2 hrs before	Starry flounder	89	89	82	5-41	10.5
	2200		Pacific staghorn sculpin	10	10	10	10-19	13.6
			Prickly sculpin	1	1	1	14	
			Longfin smelt	2	2	2	10-11	
			Shiner perch	1	1	1	6	
			Sand sole	1	1	1	14	
			Pacific tomcod	9	9	9	7-9	7.9
			TOTAL	113	113	106		
29 Aug	$0125-$	2 hrs past	Starry flounder	384	384	384	6-16	11.2
	0130		Pacific staghorn sculpin	8	8	8	13-19	16.9
			Longfin smelt	4	4	4	10-12	
			Northern anchovy	4	4	4	10-13	
			Pacific tomcod	35	35	35	7-22	10.8
			Snake prickleback	9	9	9	22-33	27.6
			TOTAL	444	444	444		
	0530-	6 hrs past	Starry flounder	270	270	270	5-16	10.5
	0535		Pacific staghorn sculpin	5	5	5	5-16	
			Longfin smelt	10	10	10	10-11	10.8
			Peamouth	1	1	1	23	
			Shiner perch	34	34	- 34	7-13	11.4
			Threespine stickleback	8	8	8	4	4.0
			Pacific herring	5	5	5	4-5	
			Northern anchovy	2	2	2	13	
			Pacific tomcod	10	10	10	8-20	16.4
			Surf smelt	1	1	1	9	
			Sand sole	1	1	1	17	
			TOTAL	347	347	347		
17 Sept	$1038-$	4 hrs before	Starry flounder	218	218	218	6-19	11.1
	1043		Shiner perch	58	58	58	7-13	10.6
			Snake prickleback	1	1	0		
			Pacific staghorn sculpin	5	5	5	12-14	
			Longfin smelt	21	21	21	7-12	10.1
			Peamouth	8	8	8	15-21	18.4
			Pacific tomcod	67	67	67	6-17	8.5
		.	Northern anchovy	184	184	184	10-15	12.4
			Sand sole	1	1	1	17	
			TOTAL	563	563	562		

Table 6-1. Capture by trawl (continued)

Table 6-1. Capture by trawl (continued)

Date	Time	Reference to high tide	Species	Number caught		Numbermeasured	Size (cm)	
				Total	Per 5 min.			
					tow		Range	Mean
			STATION: NMFS 2					
19 June	1440-	0.5 hr past	Starry flounder	379	379	379	1-11	5.9
	1445		1974 year class	208	208	208	1-5	2.9
			1973 year class	171	171	171	8-11	9.4
			Pacific staghorn sculpin	6	6	6	7-16	12.3
			Prickly sculpin	8	8	8	2-8	5.9
			American shad	2	2	2	14-15	
			Longfin smelt	4	4	4	6-9	
			Chinook salmon	6	6	6	9-10	9.2
			Peamouth	5	5	5	16-20	
			Shiner perch	13	13	13	9-13	10.7
			Surf smelt	1	1	1	6	
			TOTAL	424	424	424		

STATION: CWRR

9 May	$\begin{aligned} & 1440- \\ & 1445 \end{aligned}$	2 hrs before	Starry flounder Pacific staghorn sculpin Shiner perch TOTAL	119 3 1 123	119 3 1 123	119 3 1 123	$\begin{aligned} & 6-12 \\ & 4-7 \\ & 10 \end{aligned}$	8.4
	1455-	2 hrs before	Starry flounder	69	69	69	7-14	8.8
	1500		Pacific staghorn sculpin	2	2	2	4-5	
			American shad	1	1	1	13	
			Surf smelt	1	1	1	6	
			Chinook salmon	1	1	1	10	
			Shiner perch	1	1	1	12	
			TOTAL	75	75	75		
50 May	$\begin{aligned} & 1014- \\ & 1020 \end{aligned}$	0.5 hr past	Starry flounder	102	85	102	2-10	
			1974 year class	67	55.8	67	2	2.0
			1973 year class	35	29.2	35	7-10	8.9
			Pacific staghorn sculpin	4	3.3	4	7-12	
			Prickly sculpin	3	2.5	3	1-10	
			Longfin smelt	5	4.2	5	8-10	
			Chinook salmon	24	20	24	7-10	8.6
			Peamouth	2	1.7	2	8-10	
			TOTAL	140	116.7	140		
18 June	$\begin{aligned} & 1159- \\ & 1204 \end{aligned}$	1 hr before	Starry flounder	238	238	238	1-11	3.3
			1974 year class	219	219	219	1-5	2.8
			1973 year class	19	19	19	8-11	9.4
			Pacific staghorn sculpin	18	18	18	6-14	9.5
			Prickly sculpin	29	29	29	1-12	2.5
			Chinook salmon	3	3	3	7-8	
			Peamouth	1	1	1	25	
			Shiner perch	2	2	2	11-12	
			TOTAL	291	291	291		
	1223- 1 hr before1228		Starry flounder	120	120	120	1-11	3.6
			1974 year class	102	102	102	1-4	2.5
			1973 year class	18	18	18	8-11	9.7
			Pacific staghorn sculpin	13	13	13	6-14	9.0
			Prickly sculpin	10	10	10	1-16	5.9
			Longfin smelt	3	3	3	9-11	
			Chinook salmon	9	9	9	5-8	7.4
			Peamouth	3	3	3	18-21	
			Shiner perch	1	1	1	11	
			TOTAL	159	159	159		

76
Table 6-1. Capture by trawl (continued)

Date	Time	Reference to high tide	Species	Number caught		Number measured	Size (cm)	
					Per 5 min.			
				Total	tow		Range	Mean
8 July	1650-	High tide	Starry flounder	207	207	207	1-11	4.6
	1655		1974 year class	169	169	169	1-6	3.4
			1973 year class	38	38	38	9-11	9.7
			Pacific staghorn sculpin	13	13	13	7-13	8.6
			Prickly sculpin	27	27	27	1-14	5.0
			Longfin smelt	1	1	1	11	
			Chinook salmon	4	4	4	7-9	
			Peamouth	3	3	3	17-23	
			Shiner perch	11	11	11	9-14	11.4
			TOTAL	266	266	266		
7 Aug	1535-	1 hr before	Starry flounder	114	114	114	3-13	6.6
	1540		Pacific staghorn sculpin	19	19	19	9-15	11.1
			Prickly sculpin	4	4	4	7-13	
		-	Chinook salmon	4	4	4	9-12	
			Peamouth	4	4	4	18-21	
			Shiner perch	14	14	14	4-13	10.1
			Carp	1	1	1	51	
			TOTAL	160	160	160		
18 Sept	1520-	High tide	Starry flounder	119	119	119	6-16	9.7
	1525		Pacific staghorn sculpin	1	1	1	9	
			Peamouth	3	3	3	17-25	
			Shiner perch	33	33	33	6-12	9.1
			Northern anchovy	5	5	5	11-13	
			Chinook salmon	3	3	3	12-13	
			White sturgeon	1	1	1	60	
			TOTAL	165	165	165		
12 Oct	1140-	High tide	Starry flounder	98	98	98	7-14	9.9
	1145		Pacific staghorn sculpin	6	6	6	13-15	14.3
			Prickly sculpin	1	1	1	14	
			Shiner perch	5	5	5	7-11	
			Peamouth	1	1	1	14	
			Threespine stickleback	1	1	1	5	
			Chinook salmon	1	1	1	12	
			TOTAL	113	113	113		
3 Dec	1545-	High tide	Starry flounder	6	6	6	11-23	14.3
	1550		Pacific staghorn sculpin	1	1	1	3	
			American shad	8	8	8	7-9	8.0
			Surf smelt	2	2	2	4-5	
			Shiner perch	2	2	2	8	
			Threespine stickleback	4	4	4	4-6	
			TOTAL	23	23	23		

STATION: NMFS 1

17 Jan	4 hrs . past	Starry flounder	144	72	144	7-20	11.5
		Pacific staghorn sculpin	42	21	42	7-15	11.4
		Prickly sculpin	4	2	4	5-15	
		Longfin smelt	12	6	12	6-13	11.6
		Threespine stickleback	43	21.5	43	4-6	5.2
		TOTAL	245	122.5	245		
8 May	2.5 hrs before	Starry flounder	814	814	264	7-14	8.8
		Pacific staghorn sculpin	11	11	11	11-14	12.1
		Prickly sculpin	34	34	34	6-15	9.1
		American shad	1	1	1	14	
		Longfin smelt	1	1	1	11	
		Coho salmon	1	1	1	18	
		Peamouth	4	4	4	16-23	
		Largescale sucker	1	1	1	56	
		TOTAL	867	867	317		

Table 6-1. Capture by trawl (continued)

Date	Time	Reference to high tide	Species	Number caught		Number measured	Size (cm)	
					Per 5 min.			
				Total	tow		Range	Mean
9 May	1126-	5 hrs before	Starry flounder	36	72	36	7-15	9.0
	1128.5		Pacific staghorn sculpin	1	2	1	13	
			Prickly sculpin	11	22	11	5-8	6.5
			American shad	1	2	1	13	
			Longfin smelt	2	4	2	11-12	
			Chinook salmon	2	4	2	8-12	
			Coho salmon	9	18	9	16-18	16.8
			TOTAL	62	124	62		
	1150-	5.5 hrs before	Starry flounder	73	60.8	73	7-14	8.9
	1156		Pacific staghorn sculpin	8	6.7	8	10-15	12.6
			Prickly sculpin	7	5.8	7	5-13	7.6
			American shad	1	0.8	1	13	
			Longfin smelt	2	1.7	2	9-10	
			TOTAL	91	75.8	91		
30 May	$1106-$	1.5 hrs past	Starry flounder	175	145.8	175	7-11	8.9
	1112		Pacific staghorn sculpin	2	1.7	2	8-12	
			Prickly sculpin	6	5	6	6-16	11.5
			Longfin smelt	3	2.5	3	8-9	
			Peamouth	1	0.8	1	21	
			Chinook salmon	17	14.1	17	7-10	8.2
			TOTAL	204	169.9	204		
18 June	$1541 \text { - }$	3 hrs past	Starry flounder	162	162	162	1-11	5.0
	1546		1974 year class	119	119	119	1-5	3.4
			1973 year class	43	43	43	8-11	9.1
			Pacific staghorn sculpin	6	6	6	6-15	9.7
			Prickly sculpin	3	3	3	2-9	
			American shad	2	2	2	15	
			Surf smelt	1	1	1	6	
			Chinook salmon	15	15	15	7-9	1.8
			Largescale sucker	1	1	1	22	
			TOTAL	190	190	190		
8 July	1600-	1 hr before	Starry flounder	327	327	220	3-12	
	1605		1974 year class	126	126	126	3-6	4.3
			1973 year class	94	94	94	8-12	10.0
			Pacific staghorn sculpin	9	9	9	9-17	12.8
			Prickly sculpin	31	31	31	2-14	8.2
			American shad	1	1	1	15	
			Peamouth	4	4	4	22-25	
			Shiner perch	3	3	3	11-14.	
			Largescale sucker	3	3	3	42-43'	
			TOTAL	378	378	271		
7 Aug			Starry flounder					
	$\begin{aligned} & 1115- \\ & 1120 \end{aligned}$	5.5 hrs before	Starry flounder 1974 year	288	288	252	4-13	10.5
			1974 year class	52	52	52	4-8	6.4
			1973 year class	200	200	200	10-13	11.6
			Pacific staghorn sculpin	24	24	24	10-17	13.0
			Prickly sculpin	26	26	26	6-16	11.3
			Longfin smelt	12	12	12	9-13	10.8
			Peamouth	2	2	2	16-22	
			Shiner perch	19	19	19	9-14	10.8
			Threespine stickleback	24	24	24	4-5	4.8
			total	395	395	359		
: Sept	1717-	2.5 hrs past	Starry flounder	232	116	232	6-17	10.2
	1727		Pacific staghorn sculpin	12	6	12	4-17	12.5
			Prickly sculpin	1	0.5	1	12	
			American shad	14	7	14	5-9	6.1
			Peamouth	1	0.5	1	17	
			Shiner perch	55	27.5	55	7-13	10.6
		-	Northern anchovy	-1	0.5	1	13	
			TOTAL	316	158	316		

Date	Time	Reference to high tide	Species	Number caught		Numbermeasured	Size (cm)	
					Per 5 min .			
				Total	tow		Range	Mean
13 Oct	1555-	3.5 hrs past	Starry flounder	269	269	269	7-14	9.5
	1600		Pacific staghorn sculpin	8	8	8	12-18	14.5
			Prickly sculpin	20	20	20	4-14	9.7
			Longfin smelt	52	52	52	9-16	10.9
			Peamouth	1	1	1	19	
			Shiner perch	129	129	129	8-14	10.7
			Northern anchovy	1	1	1	10	
			TOTAL	480	480	480		
9 Nov	1145-	2.5 hrs past	Starry flounder	11	11	11	7-13	9.8
	1150		American shad	2	2	2	8	
			Shiner perch	2	2	2	8-11	
			TOTAL	15	15	15		

Table 6-2. Capture by gill net: Summary of data for four stations during 1974. Capture was by 90 -foot multifilament nylon net except for sets made at Station Ch 8 on 6 February and 6 March; on these dates a 125 -foot monofilament nylon net was used. Nets were rigged to sink; fish were measured for total length to the nearest centimeter. Means were computed for samples of greater than five fish. (Location: Appendix Figure 1-6)

Date	Time	Reference to high tide	Species	Number caught		Number measured	Size (cm)	
				Total	Per hour		Range	Mean
			STATION: PW					
29 May	1340-	5 hrs past	Starry flounder	1	0.5	1	8	
			American shad	1	0.5	1	17	
			Coho salmon	1	0.5	1	16	
			Peamouth	41	19.7	41	13-26	17.8
			Largescale sucker	8	3.8	8	42-52	47.2
			Carp	2	1.0	2	52-54	
			TOTAL	54	26.0	54		
10 July	$1700-$	1 hr before	Pacific staghorn sculpin	4	2.4	4	13-15	
			Peamouth	9	5.4	9	17-20	17.5
			Largescale sucker	1	0.6	1	51	
			TOTAL	14	8.4	14		
28 Aug	1435-	High	Starry flounder	1	0.5	1	7	
	1635		Peamouth	5	2.5	5	18-30	
			Shiner perch	1	0.5	1	11	
			Surf smelt	1	0.5	1	21	
			TOTAL	8	4.0	8		
10 Nov	$0840-$	1 hr before	Starry flounder					8.7
	1140		Pacific staghorn sculpin	2	0.7	2	15-16	
			Shiner perch	38	12.7	38	10-13	11.2
			TOTAL	50	16.7	50		

STATION: CWRR

18 June	$1130-2 \mathrm{hrs}$ before	Starry flounder	1	0.4	1	9	
	1400	Pacific staghorn sculpin	9	3.6	9	13-15	14.0
		Peamouth	13	5.2	13	15-27	19.8
		Largescale sucker	2	0.8	2	38-50	
		Shiner perch	8	3.2	8	11-12	11.4
		TOTAL	33	13.2	33	112	11.4
18 Sept	1430- 1 hr before	Starry flounder	2	0.7	2	8-9	
	1715	Pacific staghorn sculpin	2	0.7	2	14	
		Peamouth	6	2.2	6	18-33	20.8
		Shiner perch	18	6.5	18	10-13	11.4
		Northern anchovy	26	9.4	26	12-15	13.2
		White sturgeon	1	0.4	1	160	
		TOTAL	55	19.9	55		
12 0ct	1025-1 hr before 1345	Pacific staghorn sculpin	1	0.3	1	13	
	1345	Peamouth	6	1.8	6	17-19	17.8
		Shiner perch	7	2.1	7	10-11	10.4
		Northern anchovy	1	0.3	1	13	
		TOTAL	15	4.5	15		

STATION: NMFS 1

Table 6-2. Capture by gill net (continued)

Date		Reference to high tide	Species	Number caught		Number measured	Size (cm)	
	Time			Total	Per hour		Range	Mean
29 May	$0837-$	High	Starry flounder	3	1.2	3	9	
			Pacific staghorn sculpin	1.	0.4	1.	15	
			Peamouth	2	0.8	2	19-22	
			Largescale sucker	2	0.8	2	39-49	
			TOTAL	8	3.2	8		
6 Aug	0910-	6 hrs : past	Pacific staghorn sculpin	1	0.5	1	15	
	1110		Prickly sculpin	1	0.5	1	16	
			Longfin smelt	1	0.5	1	12	
			Peamouth	86	47.0	86	16-24	17.9
			Largescale sucker	5	2.7	5	38-45	
			Shiner perch	3	1.6	3	10-11	
			TOTAL	97	53.0	97		

STATION: Ch 8

6 Feb	$\begin{aligned} & 1050-1.5 \mathrm{hrs} \text { before } \\ & 1240 \end{aligned}$	TOTAL	0	0	0		
6 Mar	$1325-2 \mathrm{hrs}$ past 1540	Starry flounder Pacific staghorn sculpin TOTAL	2 1 3	$\begin{aligned} & 0.9 \\ & 0.4 \\ & 1.3 \end{aligned}$	0 0 0		
30 May	0825- 1 hr before 1045	Peamouth Largescale sucker Carp TOTAL	$\begin{array}{r} 8 \\ 11 \\ 1 \\ 20 \end{array}$	$\begin{aligned} & 3.4 \\ & 4.7 \\ & 0.4 \\ & 8.5 \end{aligned}$	8 11 1 20	$\begin{gathered} 16-20 \\ 44-53 \\ 51 \end{gathered}$	$\begin{aligned} & 18.0 \\ & 47.4 \end{aligned}$
19 June	1226- 1.5 hrs before 1455	Starry flounder Pacific staghorn sculpin Peamouth Largescale sucker Shiner perch TOTAL	$\begin{array}{r} 6 \\ 2 \\ 42 \\ 1 \\ 3 \\ 54 \end{array}$	$\begin{array}{r} 2.4 \\ 0.8 \\ 16.9 \\ 0.4 \\ 1.2 \\ 21.7 \end{array}$	6 2 42 1 3 54	$\begin{gathered} 8-9 \\ 13-14 \\ 15-21 \\ 46 \\ 10-13 \end{gathered}$	8.7 18.3
8 July	1525-1.5 hrs before	Pacific staghorn sculpin Peamouth Largescale sucker Shiner perch TOTAL	$\begin{array}{r} 5 \\ 17 \\ 4 \\ 1 \\ 27 \end{array}$	$\begin{array}{r} 1.9 \\ 6.6 \\ 1.5 \\ 0.4 \\ 10.4 \end{array}$	5 17 4 1 27	$\begin{gathered} 13-17 \\ 16-21 \\ 42-46 \\ 11 \end{gathered}$	18.6
7 Aug	1055-6 hrs before	Pacific staghorn sculpin Prickly sculpin Peamouth Shiner perch TOTAL	$\begin{array}{r} 1 \\ 1 \\ 21 \\ 10 \\ 33 \end{array}$	$\begin{array}{r} 0.5 \\ 0.5 \\ 11.5 \\ 5.5 \\ 18.0 \end{array}$	$\begin{array}{r} 1 \\ 1 \\ 21 \\ 10 \\ 33 \end{array}$	$\begin{gathered} 14 \\ 13 \\ 16-23 \\ 10-13 \end{gathered}$	$\begin{aligned} & 18.2 \\ & 11.4 \end{aligned}$
27 Aug	$0930-1.5 \mathrm{hrs}$ before 1140	Starry flounder Pacific staghorn sculpin Peamouth Largescale sucker Shiner perch TOTAL	$\begin{array}{r} 3 \\ 3 \\ 31 \\ 7 \\ 3 \\ 47 \end{array}$	$\begin{array}{r} 1.3 \\ 1.3 \\ 13.3 \\ 3.0 \\ 1.3 \\ 20.2 \end{array}$	3 3 31 7 3 47	$\begin{array}{r} 8-13 \\ 13-15 \\ 17-20 \\ 67-70 \\ 10-12 \end{array}$	$\begin{aligned} & 18.0 \\ & 69.0 \end{aligned}$
17 Sept	$1400-1 \mathrm{hr}$ before 1630	Starry flounder Pacific staghorn sculpin Peamouth Shiner perch Northern anchovy TOTAL	$\begin{array}{r} 2 \\ 1 \\ 32 \\ 10 \\ 22 \\ 67 \end{array}$	$\begin{array}{r} 0.8 \\ 0.4 \\ 12.8 \\ 4.0 \\ 8.8 \\ 26.8 \end{array}$	$\begin{array}{r} 2 \\ 1 \\ 32 \\ 10 \\ 22 \\ 67 \end{array}$	$\begin{aligned} & 13-15 \\ & 14 \\ & 17-30 \\ & 10-12 \\ & 11-14 \end{aligned}$	$\begin{aligned} & 19.2 \\ & 10.9 \\ & 12.8 \end{aligned}$

Table Date	Time	Reference to high tide		Species		Number caught		Number measured	Size (cm)			
				Total	Per hour	Range	Mean					
13 Oct	$\begin{aligned} & 1120- \\ & 1345 \end{aligned}$	1 hr	before			Pacific staghorn	sculpin	1	0.4	1	14	
				Prickly sculpin		3	1.2	3	15			
				Peamouth		57	23.6	57	17-31	19.0		
				Shiner perch		2	0.8	2	12			
				TOTAL		63	26.0	63				
9 Nov	$\begin{aligned} & 0815- \\ & 1045 \end{aligned}$	1 hr	before	Pacific staghorn TOTAL	sculpin	5	2.0	5	13-15			
				TOTAL		5	2.0	5				
3 Dec	$\begin{aligned} & 1420- \\ & 1620 \\ & \hline \end{aligned}$		before	Starry flounder		1	0.5		13			
				TOTAL		1	0.5					

Table 6-3. Capture by seine: Summary of data for two stations during 1974. Net used was a 171-foot beach seine with one-half inch bag and seven-eighths inch body (stretched measurements). (Location: Appendix Figure 1-6)

Date	Time	Reference to high tide	Species	Number caught	Number measured	Size (cm)	
						Range	Mean
			STATION: P3				
27 Aug	1510	5.5 hrs. past	Starry flounder	12	21	6-12	7.6
			Pacific staghorn sculpin	4	4	8-13	
			Chinook salmon	1	1	10	
			Peamouth	1	1	6	
			Shiner perch	7	7	$6-9$	6.7
			Threespine stickleback	2	2	4	
			total	27	36		
12 Oct	1530	$4 \mathrm{hrs}$. past	Starry flounder		15	7-12	
			American shad	16	16	$6-8$	7.0
			Shiner perch	19	19	$8-12$	9.0
			Threespine stickleback	28	28	$4-6$	
			Carp	1	1	65	
			TOTAL	79	79		
11 Nov	0945	1 hr . before		35	35	9-12	8.7
			Chinook salmon	7	7	11-15	13.0
			Largescale sucker	6	6	41-56	47.2
			Threespine stickleback	2	2	4-5	
			Surf smelt	118	118	9-12	10.8
			TOTAL	168	168		

STATION: WAR

27 Aug	1700	5 hrs. before	Starry flounder	16	9	9-12	10.1
			Pacific staghorn sculpin	7	7	8-12	9.9
			Peamouth	29	29	11-18	13.9
			Shiner perch	13	6	11-13	11.8
			Carp	9	9	60-74	64.1
			TOTAL	74	60		

Figure 1-1. location of stations where temperature, salinity, and turbidity meanurements were made.

Figure 1-2. Location of zooplankton and larval fish sampling stations. Transect stations are numbered 1 to 6 . Transect station 3 was located at regular sampling station $\mathrm{CW}-\mathrm{Ch} 4$.

Figure 1-3. Location of stations where benthos grab and core samples were taken in the Youngs Bay area.
Additional stations are shown in Appendix figure $1-4$. Additional stations are shown in Appendix Figure 1-4.

Figure 1-4. Location of stations where benthos grab samples were taken in Youngs River and Lewis and Clark River.

Figure 1-5. Location of transect used in sampling exposed mud flat for benthic infauna, and of stations where cores were taken for vertical distribution studies.

Figure 1-6. Location of trawl, gill net, and seine sample stations. Seine stations are indicated by stars.

REFERENCES

American Fisheries Society. Committee on Names of Fishes. 1970. A List of Conmon and Scientific Names of Fishes from the United States and Canada. by R.M. Bailey, Chairman, et al. 3d edition. Amer. Fish. Soc. Special Publication No. 6. Washington, D.C. 150 pp .

Barnes, Robert D. 1968. Invertebrate Zoology. 2nd Ed. W.B. Saunders Co. Philadelphia. 743 pp.

Haertel, Lois and Charles Osterberg. 1967. Ecology of zooplankton, benthos and fishes in the Columbia River estuary. Ecology 48(3):459-471.

Johnson, Vernon G. and Norman H. Cutshall. [In Press] Geochemical Baseline Data: Youngs Bay, Oregon, 1974. Final Report to Alumax Pacific Aluminum Corporation. Oregon State University, School of Oceanography Reference 75-7. Corvallis, Oregon.

Light, S.F., R.I. Smith, F.A. Pitelka, D.P. Abbott and F.M. Weesner. 1961. Intertidal Invertebrates of the Central California Coast. University of California Press. Berkeley, California. 446 pp .

Yeglitsch, Paul A. 1972. Invertebrate Zoology. 2nd Ed. Oxford University Press, New York. 834 pp.

Misitano, David A. 1974. Zooplankton, water temperature, and salinities in the Columbia River estuary, December 1971 through December 1972. NMFS Data Report 92. National Marine Fisheries Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce. Seattle, Washington.

Misitano, David A. 1975. Letter dated 28 March 1975. National Marine Fisheries Service NOAA, U.S. Department of Commerce. Seattle, Washington.

Pennak, Robert W. 1953. Fresh-water Invertebrates of the United States. Ronald Press Co., New York. 769 pp.

[^0]: + indicates trace amount

[^1]: * Based on American Fisheries Society (1970).

