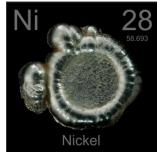
The Release of Nickel from Stainless Steel into Cooked Foods


Kristin Kamerud¹ Kim Anderson²

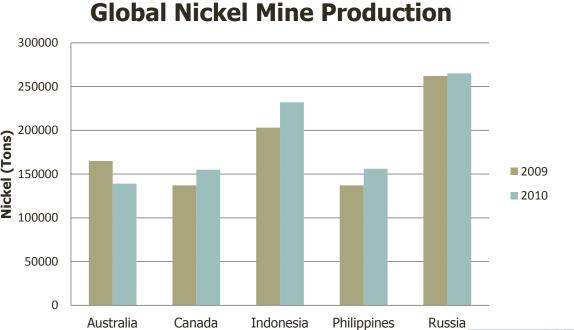
College of Agricultural Sciences¹, Environmental and Molecular Toxicology² Oregon State University

Nickel in the Environment

- Ubiquitous in environment
 - Soils, plants, and animals
- 5th most abundant element (by weight)
 - 84 mg/kg in crust
 - 15-20 µg/L in surface waters
- Widely used in industry
 - Production of stainless steel and other nickel alloys

Nickel in the Environment

- Natural and anthropogenic releases of nickel
 - Weathering of rocks/soil, volcanic emissions, vegetation fires
 - Combustion of fossil fuels, tobacco smoke, industry and recycling



Global Nickel Production

Total global nickel production: 1,550,000 tons

U.S. Geological Survey, Mineral Commodity Summaries, January 2011

Pathways of Human Exposure

- Essential for some species
 - Not yet proven for humans
- Oral exposures through food and drinking water
- Estimated Intakes: up to 900 µg/day
- Tolerable upper intake level (UL): 1000 µg/day

Dietary Exposure to Nickel

Food Type	Nickel (µg/g)
Spinach	0.02-2.99
Cocoa Beans	8.2-12
Soy Beans	4.7-5.9
Beer	0.003-0.02

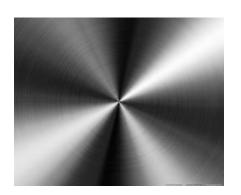
Flyvholm, M.-A., G. D. Nielsen, et al. (1984). "Nickel content of food and estimation of dietary intake." <u>Zeitschrift</u> <u>für Lebensmitteluntersuchung und -Forschung A</u> **179**(6): 427-431.

Nickel Toxicokinetics

- Absorption dependent on form of nickel
 - 0.09% of nickel metal
- Distribution targets
 - Kidney, cardiovascular system, blood, immune system
- Metabolism not well understood

Effects of Nickel Exposure

- Nickel Sensitivity
 - 10% of population
 - Allergic Contact Dermatitis (ACD)
 - Oral doses of 3000µg
 - Recommended to lower
 Nickel intake


Kreciz, Beata. "Systemic Contact Dermatitis to Nickel Present in Cocoa in 14-Year-Old Boy." *Pediatric Dermatology* 28.3 (2011): 335-36.

Stainless Steel Background

- Commonly used in food and beverage industry
 - **316, 304, 420**
- Chromium oxide surface

Q

Stainless Steel Background

 Chemical composition Ni containing stainless steels

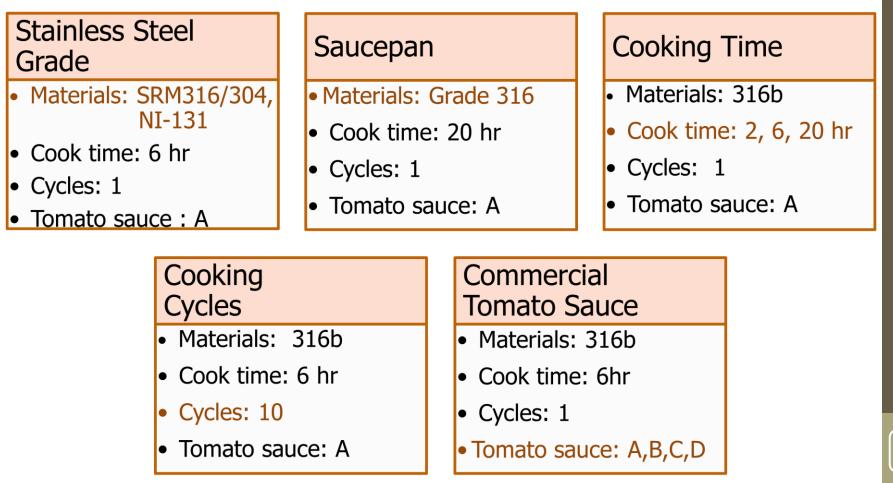
Stainless Steel Grade	Chromium Mass Fraction (%)	Nickel Mass Fraction (%)
316	16-18	10-14
304	17-19	8-10.5
420	12-14	<0.6

Research Questions:

- Is nickel released into foods?
- Is the amount significant?
- What factors contribute to nickel leaching?
- Variables Tested:
 - Grade of stainless steel
 - Cooking time
 - Cooking cycles (usage "seasoning")
 - Commercial tomato sauces

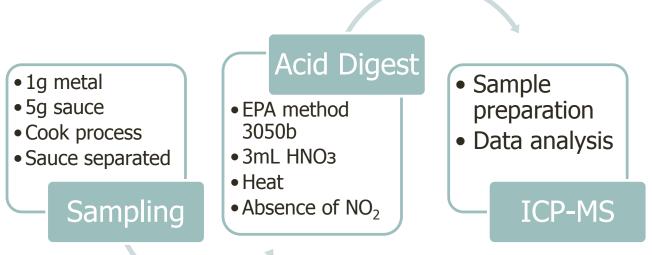
Hypotheses:

- Nickel released is inversely proportional to grade of stainless steel
- Nickel released increases with cook time
- Nickel released is constant over multiple cook cycles
- Nickel content is constant for multiple commercial tomato sauces



Materials Used

Description	Identification Number	Stainless Steel Grade Equivalence	Composit	mical ion (mass on %) Ni
316a	NIST 121d	316	17.50	11.18
316b	NIST 123c	316	17.40	11.34
304	NIST 160b	304	18.37	12.35
Nickel Pellet	NI-131			99.9
Saucepan		316		


 Four commercially obtained tomato sauces (pH 4.17-4.3)

Study Design

Methods

Multi-Matrix Method Validation

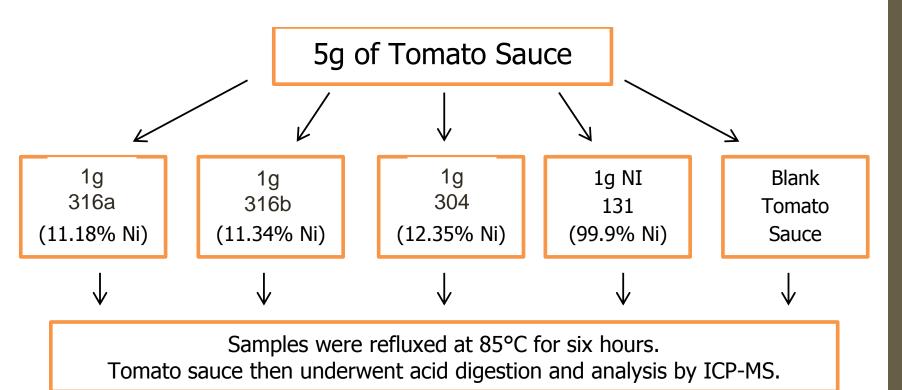
- Acid digest and ICP-MS analysis validated with Certified Reference Materials
 - Tomato leave, oyster tissue, soils and sediment matrices
 - 0.25g of each CRM was digest and analyzed for 16 metals including Ni
 - Conducted over three different days
 - Replicates of three each day
 - Quality Control Samples
 - Pre-digest fortification

Method Validation

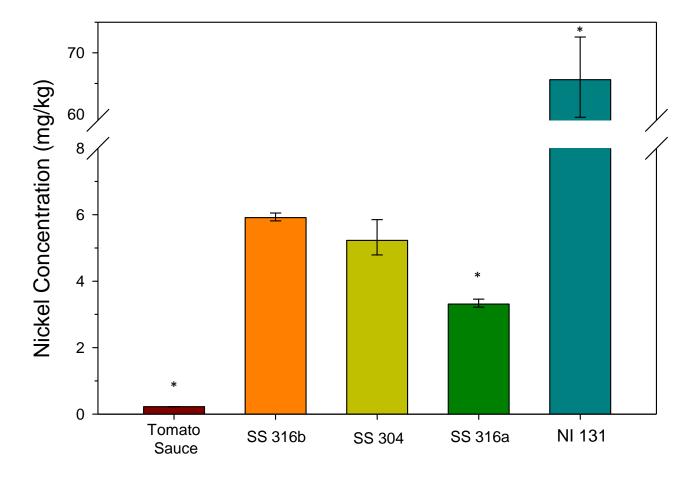
Precision & Accuracy

- Average nickel % recovery: 91.3%
 - %RSD: 1.35

■ n=7


- Average pre-digest sample fortification % recovery: 103%
- Limit of Quantification: 0.085µg/L

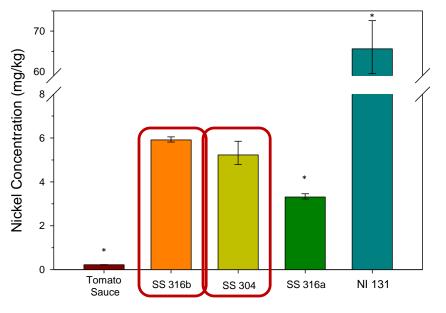
Quality Control Results


- Quality Control Samples
 - Meet QC data quality objectives

Sample Type	Concentration (µg/L)			% Recovery	n Total
Instrument Blank	BDL			—	16
Reagent Blank	BDL			_	16
10μg/L Check Standard	10.4	±	0.572	96.0	9
20µg/L Check Standard	21.2	±	0.399	106	5
Pre-digest Fortification	52.1	±	1.01	104.2	3

Grade of Stainless Steel

Stainless Steel Grade



Stainless Steel Grade

n=5; samples deemed significant at p=<0.05 * Statistical difference between one or more samples November 26th 2012

Discussion

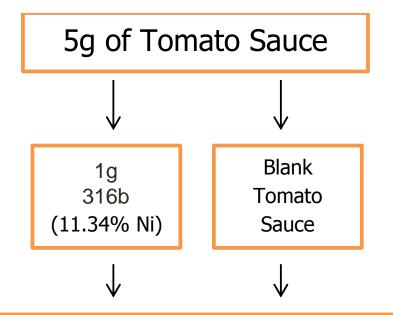
Description	Identification Number	Stainless Steel Grade Equivalence	Composit	nical ion (mass on %) Ni
316a	NIST 121d	316	17.50	11.18
316b	NIST 123c	316	17.40	11.34
304	NIST 160b	304	18.37	12.35
Nickel Pellet	NI-131			99.9
Saucepan		316		

- 316a and 316b about equal
- 304 high response
- Results show 316b and 304 equivalent
 Protective properties of Cr

21

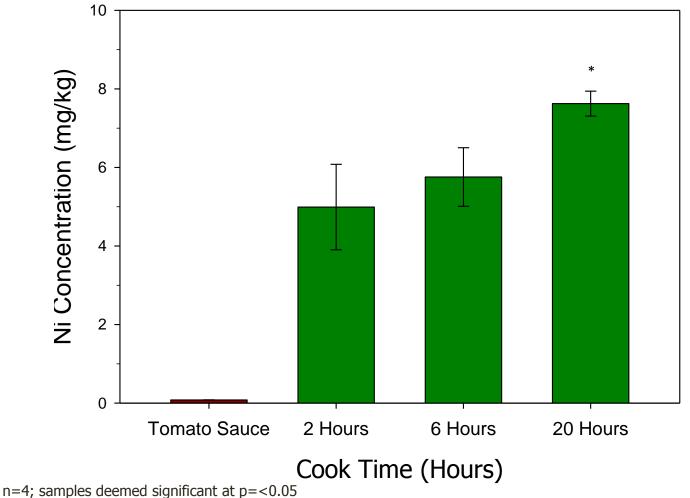
Stainless Steel Grade

Expectations:


Percent Nickel Released

Experimental Tomato Sauce Sample	Chemical Composition (mass fraction %) Cr Ni		Average Ni Leached (µg)	% Ni Leached
316a	17.50	11.18	3.11	2.78
316b	17.40	11.34	5.71	5.04
304	18.37	12.35	5.1	4.13
Nickel Pellet	_	99.9	65.8	6.59

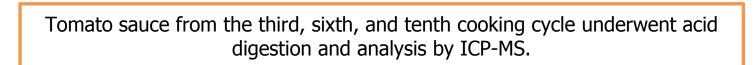
 Grade of stainless steel experimental samples


■ n=5

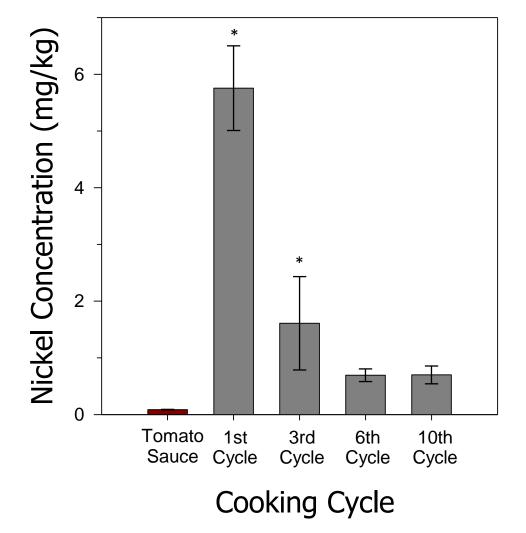
Cooking Time


Samples were refluxed at 85°C for two, six, or twenty hours. Tomato sauce then underwent acid digestion and analysis by ICP-MS.

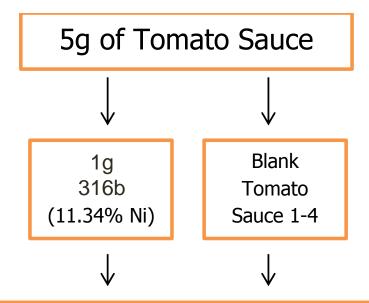
Cooking Time



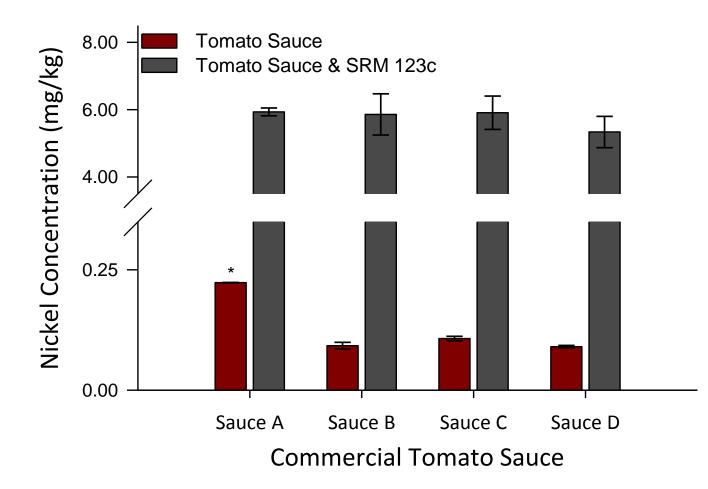
* Statistical difference between one or more samples


Cooking Cycles

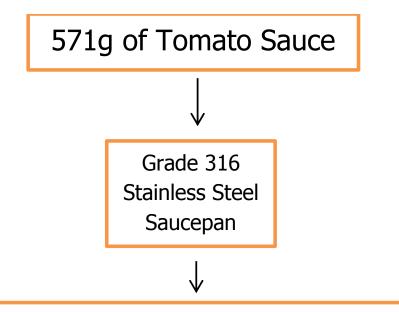
Samples were refluxed at 85°C for six hours. Tomato sauce was washed off, and replaced with fresh sauce.



Cooking Cycles

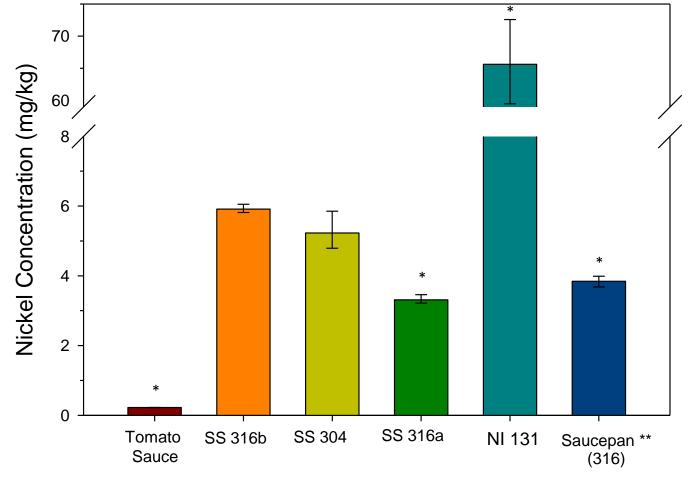

n=4; samples deemed significant at p=<0.05 * Statistical difference between one or more samples

Commercial Tomato Sauces



Samples were refluxed at 85°C for six hours. Tomato sauce then underwent acid digestion and analysis by ICP-MS.

Commercial Tomato Sauce


Saucepan

Sauce was refluxed at 85°C for twenty hours.

5g aliquots were taken and underwent acid digestion and analysis by ICP-MS.

Saucepan

Stainless Steel Grade

* Statistical difference between one or more samples

** 20 hour cook time

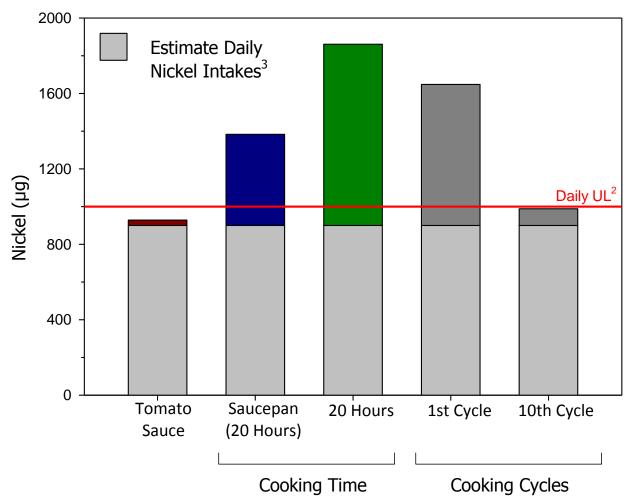
Grade 316:

316b and Stainless Steel Saucepan

- Would have expected similar nickel concentrations
- ~50% less nickel leached from saucepan than 316b
 - However, tomato sauce to stainless steel surface area ratios different

Surface Area

316b


- Avg. nickel released after 20h cook time: 7.63mg/kg
- Sauce : Stainless steel ratio
 - **1:5**

Saucepan

- Avg. nickel released after 20h cook time: 3.84mg/kg
 - ~50% less than 316b
- Sauce : Stainless steel ratio
 - **1:0.6**
- Would expect a nearly a 10 fold difference, but we observed only a 2 fold difference
- Stainless steels used a good surrogate for cookware and cooking variable assessment

Ni per Serving of Tomato Sauce

Nickel per Serving of Tomato Sauce Contribution to Total Nickel Intake

Conclusions

- Hypothesis: Nickel released is inversely proportional to grade of stainless steel
 - Nickel is leached into tomato sauce
 - 316b and 304 showed no statistical difference
 - Protective properties of Cr
 - 316a statistically different than 316b and 304
 - 316b showed greatest response
 - Dependent on chemical composition

Conclusions

- Hypothesis: Nickel released increases with cook time
 - Nickel increase with cook time
- Hypothesis: Nickel released is constant over multiple cook cycles
 - Nickel is still leaching after 10 cook cycles but the amount is less than the early cook cycles
- Hypothesis: Nickel content is constant for multiple commercial tomato sauces
 - No significant difference were seen between multiple commercial tomato sauces in their effect on nickel leaching

Conclusions

- Stainless steel cookware contributes to total nickel intakes
- Avoidance of stainless steel cookware may decrease total nickel exposure

37

Acknowledgements

- Kim Anderson, Ph.D.
- Kate Field, Dan Sudakin
- FSES
 - Kevin Hobbie, Norman Forsberg
- Friends & Family

Thank you for your attention. Any Questions?

