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Unconditional Estimating Equation Approaches

for Missing Data

1.1 Background

Missing data occurs frequently in longitudinal studies. It is well known that missing data

can lead serious bias and inefficient estimation if the missingness is not taken into account

in the analysis (Afifi, and Elashoff, 1966, Rubin, 1976 ). Therefore, it is desirable to

develop statistical method for handling missing data problem.

Little and Rubin (2002) summarize statistical methods in four categories: complete-

cases analyses (Nie et al.,1975); inversed weighting strategies (Horvitz and Thompson,

1952, Rosenbaum and Rubin, 1983, 1985, Little, 1986, Robins et al., 1994, Rotnitzky et

al., 1998, Scharfstein, 1999); imputation methods (Rubin, 1977, Paik, 1997, Xie,1997);

and the likelihood-based approaches (Ibrahim et al., 1990, 1996, 1999, 2003, Wang, 2002).

Most existing methods are based on likelihood approaches (Ibrahim et al., 1990, 1996,

1999, Lin, 2002, Wu, 2004, Roy, 2005). These approaches require full specification of a

joint distribution of response variables and covariates. In practice, the full likelihood is

often unknown, and if the specification of likelihood is not valid, the likelihood-based ap-

proaches could still cause biased and inefficient estimators. Weighted estimating equation

and imputation methods were developed to handle missing values. These approaches do

not require full likelihood, but they still rely on modeling assumptions for missingness

mechanism or requires imputing missing values under missing at random.

1.2 Missingness Mechanisms

Missing data can occur in response variables, covariates, or both. There are several missing

patterns. For example, data could have univariate missing pattern, with one variable

having missing values; or it could have a monotonic missing pattern, such as drop-out; or
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it could have arbitrary intermittent missing.

Little and Rubin (1987) distinguished the missing patterns and missingness mecha-

nisms. The missing patterns produce missingness indicator matrix based on observed and

missing values, while the missingness mechanisms consider how the missingness is related

to observed and missing values, either missing or observed. The missingness mechanisms

are important because both estimation and inference for missing data depend on the

missingness mechanisms. Rubin (1976) classified missingness mechanisms under three

categories: missing completely at random (MCAR), missing at random (MAR), and in-

formative missing (IM). MCAR and MAR are referred to as ignorable missing and IM

is referred to as nonignorable missing. The main difference between ignorable and non-

ignorable missingness is whether the missingness depends on missing values or not. Little

and Rubin (1987, 2002) define missingness mechanism based on likelihood function as

follows.

Let Y = (yij) be the complete data, θ be the unknown parameters, and R be the

missingness indicator matrix, where each element rij of R is either 1 if yij is observed or

0 if yij is missing. If the missingness is MCAR, where the missingness does not depend

on the data Y , we have the conditional distribution of R given Y and θ, say f(R|Y, θ), is

given as follows

f(R|Y, θ) = f(R|θ), for all Y, θ.

If the missingness is MAR, where the missingness depends on observed data, we have the

conditional distribution of R given Y and Θ as

f(R|Y, θ) = f(R|Yobs, θ), for all Ymis, θ.

If the missingness is IM, where the missingness depends on both observed and unobserved

data, the conditional distribution of R given Y and θ can be written as

f(R|Y, θ) = f(R|Y, θ), for all Y, θ.
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1.3 Models for Longitudinal Data

Longitudinal studies are interested in obtaining treatment effect over time. Subjects are

measured over time. In general, estimators obtained by repeated measure design are more

efficient than those from cross-sectional designs. However, it is more challenge to analyze

longitudinal data than cross-sectional data since the observations within the same subject

are no longer independent any more.

Major approaches for longitudinal analysis include: marginal regression models (Liang

and Zeger, 1986), and mixed-effect regression models (Laird and Gibbons, 1982). Diggle

et al (1994) also provides a detailed review of marginal models, random effect models, and

transition models. We provide a brief introduction for these approaches.

1.3.1 Generalized Estimating Equations

Marginal models, which investigate population average have the same interpretation as

cross-sectional studies. The marginal models model correlation among the repeated ob-

servations for a subject directly through correlation matrix of the error term.

One of the most popular techniques used to handle marginal models is the generalized

estimating equations (GEE) approach, proposed by Liang and Zeger (1986). The GEE

approach is used to model the marginal expectation of responses as a function of a set of

covariates. Let Xi = (xi1, ..., xiT ) be a T ×P covariates matrix, where xit = (xit1, ..., xitP ),

yit be the response variable, Yi = (yi1, ..., yiT ) be a 1 × T vector of responses, and µit =

E(yit), i = 1, ..., N and t = 1, ..., T . Assume the marginal regression model is given as

g(µit) = xitβ, (1.1)

where β is the P×1 regression parameters of interest and g(.) is a link function. Assuming

the T × T covariance matrix for Yi is

V (α) = φA
1
2
i R(α)A

1
2
i ,

where A is a diagonal matrix of variance functions, R(α) is the working correlation matrix

of Y, α is the correlation parameter, and φ is a dispersion parameter. The GEE estimators
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for regression parameters are the solutions of

N∑
i=1

DiV (α)−1(Yi − µi) = 0,

where Di = ∂µi

∂β .

The GEE estimators are consistent if the mean model in (1.1) is correctly specified.

Moreover, the GEE estimators are still consistent if the correlation structure is misspec-

ified. Liang and Zeger (1986) referred V (α) as a working covariance matrix because it

does not need to be correctly specified. However, a correctly specified working correlation

matrix can improve the efficiency of estimators.

An empirical sandwich estimator can be used to estimate the variance of estima-

tors. Another available estimator is the model-based estimator, which is only consistent if

both the mean model and the covariance structure are correctly specified. Generally, the

empirical variance estimator is preferred when the number of clusters is large. When the

number of clusters is small, the model based variance estimator may have better properties

(Prentice 1988).

1.3.2 Linear Mixed Model

The linear regression model has the following form

E(yi) = xiβ,

where the regression coefficients β are fixed for all subjects. Mixed-effect models are

appropriate if the subject specific effect is of interest.

Mixed effect model is able to take heteroscedastic variation into account and estimates

group trends over time. In addition, it provides information of how different subjects

change across time. Compared with marginal models, mixed effects models introduce

model correlations through random effects in mean structure.

Laird and Ware (1982) and Verbeke et al (2000) provide more applications of linear

mixed models. Here we provide a brief introduction. The generalized linear mixed model
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has the following form

g(µi) = xiβ + zibi,

where µi = E(yi); g(·) is a link function; β it the fixed-effect coefficient; zi is the r × 1

vector of random effect variables; and bi is the random-effect coefficients for group i, and

assume to have Nq(0, ψ) distribution. The subject varies through the random effect.

The estimators of parameters in the linear mixed model can be solved by the maximum

likelihood method. In longitudinal studies, it is often assumed that the yit|bi in yi =

(ti1, ..., yiT ) are independent. Let fθ(yit|xit, bi) be the conditional density of response

variable. The likelihood of a generalized linear mixed model (GLMM) can be expressed

as ∫ ni∏
j

fθ(yit|bi,xi)fD(bi)dbi.

However, the integration does not have explicit form in general so that the numerical

approximation for the likelihood is needed.

1.3.3 Transition Model

Diggle et al (2002) introduced the transition models. The transition model is an extension

of the generalized linear model, which is constructed by applying a generalized linear model

for the marginal mean and specifying conditional dependence of current outcomes based

on past outcomes. For repeated measurements in transition model, past outcome and

covariates are modeled as covariates for current outcome. Transition models sometimes

are also called Markov models. That is, the conditional mean of yit for subject i at time

t depends on covariates and prior responses. The simplest transition model is that the

responses are conditionally independent from each other given the previous time. For

example, suppose the transition model is a linear function of previous outcomes

E(yit|yi1, ..., yi(t−1), xi) =
t−1∑
r=1

αr(yir).

For a first-order Markov model, we have

f(yit|yi1, ..., yit−1;α) = f(yit|yit−1),
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The likelihood contribution from subject i is given by

f(yi1, yi2, ..., yiTi ;α) = f(yi1;α)
Ti∏
t=2

f(yit|yit−1).

In general, the estimators of parameters in transition models can be obtained by the

maximum likelihood methods.

Diggle et al (2000) mention that the transition models are intractable in general if

many nuisance parameters are involved and need to be estimated. Therefore, it often

requires more assumptions in order to specify the entire likelihood.

1.4 Analysis of Missing Data in Longitudinal Study

When missingness is not MCAR, the estimators using complete-case only are biased and

not efficient. Therefore, it is important to incorporate missing data information in the

data analysis. We provide several existing methods to handle missing data.

1.4.1 Maximum Likelihood Approach

Likelihood based method is the most fundamental approach. Suppose that Y is the

response variable with density function f(Y|θ), where θ is the parameters. The inference

based on maximum likelihood is a model-based inference about the parameters θ.

Let Y be observed data and Z be missing data, Y and Z form the complete data.

Let fi be the density function of the ith subject of complete data with parameters θ. The

likelihood of the complete data is given by L(θ) =
∏N
i=1 fi(θ). By Bayes’ Rule and the

law of total probability, the probability of missing data given the observed data can be

expressed as:

p(Z|Y, θ) =
p(Y,Z|θ)
p(Y|θ)

=
p(Y|Z, θ)p(Z|θ)∫
p(Y|Z, θ)p(Z|θ)dZ

This requires the density function of p(Y|Z, θ) and p(Z|θ).

The major approach for obtaining maximum likelihood estimator where there is miss-

ing data is by applying the expectation and maximization (EM) algorithm. Hartley (1958)

proposes the earliest version of EM; Dempster, Laird, and Rubin (1977) formalizes EM
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and provides a proof of convergence. EM is particularly useful if the completed likelihood

function is easy to formulate. EM is an iterative optimization method to estimate some

unknown parameters based on given data and with some hidden variables or missing val-

ues, which requires to be integrated out. An EM algorithm updates θ in two steps. The

first step is expectation. The expectation of Q(θ) is given by

Q(θ) = EZ(logL(Y,Z|θ)|Y) =
∫

logL(Y,Z|θ)p(Y,Z|θ)dZ.

Once the parameters, θ, of the Q are known in the first step, Q is fully determined and can

be maximized in the second step of an EM algorithm. The second step is maximization,

that is,

θn+1 = max
θ
Q(θ).

In other words, θn+1 is the value that maximizes the expectation of the complete data

log-likelihood with the observed variables given the previous parameter value.

The EM algorithm is able to handle missing values under MAR and informative

missing. Once the joint probability distribution of data and missingness mechanism is ob-

tained, the conditional likelihood given missing data can be determined and the missing

values can be integrated out. The estimations of parameters are given by maximizing the

conditional log likelihood. However, EM algorithms depend on distributional assumptions

so that the estimators could still be biased and inefficient when the distribution assump-

tions are misspecified. EM could also be extremely slow computationally if the integration

of missing information involves high dimension.

1.4.2 Weighted Generalized Estimating Equations

The original idea of weighted approach for handling missing data is from weighting strate-

gies for finite population surveys (Horvitz and Thompsom, 1952) to obtain unbiased esti-

mator. The weighted method assigns weight to each observed-case to adjust for sampling

bias. Robins et al. extend this idea and propose the weighted estimating equations ap-

proach (1994, 1995). The weighted estimating equations approach weights the observed

subjects with the inverse probability of being observed. This approach is valid when the
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missingness is MAR and given the model for estimating the probability for missingness

mechanism is correctly specified. The consistent estimators of β can be obtained by solving

K∑
i=1

D′
iV

−1
i Wi(Yi − µi) = 0, (1.2)

where Di = ∂µi

∂β and Vi = A
1
2
i RA

1
2
i is a T × T working covariate matrix for Yi and R is a

T × T working correlation matrix, which are assumed known. The choice of working cor-

relation affects the efficiency of estimator. The missingness is taken into account through

specification of a T × T diagonal weighting matrix of Wi, Wi = diag{Ri1wi1, ..., RiTwiT },

and Rit = 1 if the ith subject is observed at time t, and 0 otherwise. That is, Wi provides

weight for the observed visits and 0 for the unobserved visits. The weight wit is the inverse

of the probability where the ith subject is observed at the tth visit, wit is often unknown

and needs to be estimated.

It requires modeling the missing process in order to obtain the weights wit. We denote

λit = P (Rit = 1|Ri(t−1) = 1, Xi, Yi, α) as the probability of a response being observed at

time t for the ith subject given the subject is observed at the time t−1. If the missingness

is assumed to be MAR, we have

λit = P (Rit = 1|Ri(t−1) = 1, Xi, Yi1, ..., Yi(t−1), α),

where the missingness mechanism only depends on observed data and may be specified

up to a q × 1 vector of unknown parameters α. Here λit can be modeled as a logistic

regression model of Zit, a vector of predictor, which may include missingness indicator

variables, covariates and previous responses.

logitλit(α) = Zitα.

Therefore the weight wit, the inverse of the unconditional probability of being observed

at time t, can be calculated as,

ŵit =
1

λ̂i1 × ...× λ̂it
, i = 2, ..., T
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and ŵi1 = 1. The weighted GEE estimator by solving equation (1.2) is consistent and the

asymptotic variance of β is( K∑
i=1

D′
iV

−1
i WiDi

)−1 K∑
i=1

EiE
′
i

( K∑
i=1

D′
iV

−1
i WiDi

)−1

, (1.3)

where Ei = Ui−(
∑K

i=1 UiS
′
i)(

∑K
i=1 SiS

′
i)Si, Ui = D′

iV
−1
i Wi(Yi−πi), and Si =

∑
tRit−1Zit(Rit−

λit) is the score component for the ith subject from the missingness mechanism model

(Robins et al.,1995). The use of
∑K

i=1EiE
′
i instead of

∑K
i=1 UiU

′
i adjusts for the variation

of α estimation.

1.4.3 Imputation

The imputation approach is first proposed by Rubin (1976) to handle missing values.

There are two types of imputation. One is single imputation and another is multiple

imputation. Single imputation computes a value for each missing value. There could

be the mean estimation, or simply using available data in the same strata, or predicting

missing values from a regression model. In general, single imputation does not reflect the

uncertainty about the predictions of the missing values; the standard error based on single

imputation estimators can be underestimated.

Instead of single imputation, a multiple imputation proposed by Rubin (1978) replaces

missing value with a set of imputing values, which also represent the uncertainty about

the true value. Paik (1997) and Schafer (1997) provide through overview of the method.

The multiple imputed values along with observed data are analyzed as if they are from

complete data. The multiple imputation method requires combining results from each

imputation.

The way of combining results from multiple imputation is given as follows. Let m be

the number of multiple imputations and ψ̂i be the estimator, and V̂i be the variance of the

estimator from the ith imputation. The combined estimator from the multiple imputations

is the average of the estimator from each imputation,

ψ̄ =
1
m

m∑
i=1

ψ̂i.
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The variance of ψ̄ is a combination of within imputation variance and between imputation

variance:

V ar(ψ̄) =
1
m

m∑
i=1

V̂i +
m+ 1
m

1
m

m∑
i=1

(ψ̂i − ψ̄)2.

1.5 Organization of the Dissertation

Chapter 2 introduces an approach based on unconditional generalized estimating equa-

tions, which can handle missing values when missingness is ignorable. Contrast to the

weighted GEE or imputation methods, when the missingness mechanism is MAR, uncon-

ditional generalized estimating equations approach does not require modeling the missing

indicator to obtain weights or to impute the missing values. It uses available observed data

to estimate the parameters of interest. The main advantage of the proposed approach is

that it does not require full specification of likelihood or model assumptions of the miss-

ingness mechanism, it only requires the first few moments of the response variables and

covariates.

Chapter 3 proposes a different approach based on unconditional estimating equations,

which can handle nonignorable missing data. This approach requires modeling assumption

for the missing mechanism but does not require fully specification of the joint distribution

of response variables, covariates, and missingness mechanism. It also has computational

advantages compare to the maximum likelihood approach and multiple imputation ap-

proach.
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Unconditional Estimating Equation Approach for

Ignorable Missingness

Lin Lu, Annie Qu, David Birkes

Abstract

We present an unconditional estimating equation approach to handle missing data

that is missing at random (MAR). When generalized estimating equations (GEEs) are used

in a regression analysis, one usually regards the covariates as fixed, but in our approach

we regard them as random. One advantage of our approach is that it does not require

modeling the missingness mechanism, In contrast to the weighted generalized estimating

equation (WEE) method, which must model the missingness mechanism in order to obtain

weights. Also, it does not require working with the conditional distributions that the

multiple imputation method uses to impute missing values. In addition, it does not require

fully specifying likelihood function, but only requires the first few moments of response

variables and covariates. We use simulation to investigate the finite-sample efficiency of

the proposed approach relative to the weighted GEE and multiple imputation approaches.

Data examples are also provided for illustration.

2.1 Introduction

Missing data could occur in various studies such as design based study or observational

study. It could also occur on response variables, or covariates, or both. Missing data

especially occurs often in longitudinal studies where subjects measured over time may

dropout early or have intermittent missing observations. If the missingness mechanism

is not taken into account in the analysis, missing data can cause serious bias and lead
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to inefficient estimation (Afifi, and Elashoff, 1966; Rubin, 1976). Therefore developing

efficient method to handle the missing data has become increasingly important.

Rubin (1976) classified missingness mechanisms into three categories: missing com-

pletely at random (MCAR), where missingness does not depend on observed data; missing

at random (MAR), where missingness only depends on the observed data; and informative

missing (IM), where missingness could also depend on unobserved data, and the missing

information can not be recovered by known information.

The major approaches to handle missing data can be summarized as follows (Little

and Rubin, 2002): complete-cases analysis (Nie et al.,1975); inverse weighting strategies

(Horvitz and Thompson, 1952, Rosenbaum and Rubin, 1983, 1985, Little, 1986, Robins

et al, 1994, 1995, Rotnitzky et al., 1998, Scharfstein, 1999); imputation methods (Rubin,

1977, Paik, 1997, Xie and Paik,1997); and the likelihood-based approaches (Ibrahim et al,

1990, 2005). The likelihood approach is consistent if the missingness is MCAR or MAR

(Dempster, Laird, and Rubin, 1977, Laird, 1988).

However, the likelihood based approaches require full specification of a joint distri-

bution of response variables and covariates. This assumption might be very restrictive in

practice. In addition, if this assumption is violated, the likelihood-based approaches could

still lead to biased and inefficient estimation. In contrast, imputation and WEE do not

require full likelihood functions, however, these approaches still rely on strong modeling

assumptions for modeling missingness mechanism or imputing missing values.

In this paper, we propose a semiparametric approach to handle missing data with

missing at random. This new approach uses unconditional modeling for estimating equa-

tions under MAR. The proposed approach does not require modeling the missing mecha-

nism to estimate weights as in WEE. It also des not require modeling the relation between

missing values and observed values as in imputation approach. In addition, the proposed

approach does not require fully specification of the likelihood function, but only needs the

first few moments of response variables and covariates.

Our contribution is to construct estimating equation based on unconditional expec-

tation of all possible variables and solve these estimating equation simultaneously. This
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approach is able to handle both continuous and discrete response variables. It is also able

to handle missing response or missing covariates. In addition, it can incorporate correla-

tion information for clustered data. We show the proposed estimator is a consistent and

asymptotically normal.

This paper is organized as follows. We provide model framework and notations in

Section 2.2. Then we introduce the unconditional estimating equation method and the

asymptotic properties in Section 2.3. The applications of the proposed method and sim-

ulation studies are given in Sections 2.4 and 2.5. The discussion and conclusion are given

in Section 2.6.

2.2 Models and Notation

We first provide generalized linear models (GLM) and generalized estimating equations

(GEE) briefly. The generalized linear model was introduced by McCullagh and Nelder

(1983) where the mean of response and covariates have following relation:

g(µi) = x′iβ.

2.2.1 Generalized estimating equations

The generalized estimating equations (Liang and Zeger, 1986) is a widely used marginal

approach when the full likelihood function is difficult to specify since it only requires the

first two moments of the distribution. Marginal models are appropriate when the inference

to population average is of interest. GEE can handle multivariate response variables. In

addition, the GEE estimator is consistent when the working correlation is misspecified.

For the longitudinal data setting, suppose that N independent subjects are measured

from time 1 to T . For each independent subject i (i = 1, ..., N), yit is a response variable

and Xi = (xi1, ...,xiT )′ is a T × P covariates matrix. Let µit = E(yit|Xi, β) be the mean

of the response yit. The marginal regression model is given as

g(µit) = x′itβ, (2.1)



14

where β is the P × 1 regression parameters of interest and g(·) is a link function. Denote

yi = (yi1, ..., yiT ) as a T dimensional response vector. The covariance of yi (T ×T matrix)

has the following form:

V (α) = φyA
1
2
i R(α)A

1
2
i ,

where A is a diagonal marginal variance matrix, R(α) is the working correlation matrix of

Y, α is the correlation parameters, and φy is a dispersion parameter. The GEE estimators

for the regression parameters are the solutions of

N∑
i=1

D′
iVi(µi, α)−1(Yi − µi) = 0, (2.2)

where Di = ∂µi

∂β′ , and α can be estimated by the method of moments using Pearson

residuals. If the missingness is MCAR, the GEE estimator is consistent even when the

working correlation is misspecified.

2.2.2 Estimating Equation Approaches for Missing Data

The weighted generalized estimating equations (Robins et al., 1995) and multiple impu-

tation GEE method (Paik, 1997) are effective to handle MAR for longitudinal data. The

WEE provides consistent estimators even if the working correlation model is misspecified.

However, it requires the model for predicting the probability of missingness to be correctly

specified. The WGEE estimator solves

K∑
i=1

D′
iV

−1
i Wi{Yi − µi(Xi, β)} = 0, (2.3)

where Wi is a diagonal weighting matrix with the tth diagonal components representing

the inverse of the probability being observed at the tth visit for the ith subject. Clearly,

any observations with low probability of being observed will have more weights on the

estimating equation in (2.3).

The multiple imputation GEE approach is based on filling the missing data with

imputed values, and the number of multiple imputation typically ranges between 3 and

10 (Rubin, 1987, p.114). The parameters are estimated by solving the GEE in (2.2)
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and replacing the missing response by the imputed response. Rubin (1987, ch4) and

Schafer (1997) provide the valid inference from multiple imputation. Specifically, the final

estimator and inference are obtained by combining results for multiple imputation. See

Section 2.4.1 for more details.

2.3 Unconditional Estimating Equation Approach

Let the response variable yi = (yi1, ..., yiT )′ be a T -dimensional vector with variance-

covariance matrix Σ. We consider two types of covariates in the model. One is time-

varying covariate, X∗
i = (x∗i1, ...,x

∗
iT )′, which is a T ×P matrix. Another is time-invariant

covariate, x∗∗i = (x∗∗i1 , ...,x
∗∗
iQ)′, which is a Q× 1 vector. We denote

xi =


x∗i1

.

x∗iT

x∗∗i

 ,

which is a (T ×P +Q)× 1 covariate vector. Missing values could occur both in yi and xi.

Covariates xi are treated as random variables and the mean and variance are given

as follows

E(xi) = µx, Var(xi) = Σx.

Let ui = (y′i,x
′
i), here ui’s are independent identical distributed, and have the first

two moments as follows

E(ui) = µu(ψ), Var(ui) = V(µ, α). (2.4)

We denote ψ = (β, φ, γ), where β is a vector of regression parameters in (2.1), φ is a set

of joint parameters of yi and xi, and γ is a vector of parameters for xi. Here µ and V

are known functions of ψ. We assume V is known. If it is unknown, we can estimate it

empirically.
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The main idea of the unconditional estimating equation is to construct estimating

equations simultaneously associated with yi and covariates xi. The quasilikelihood equa-

tion with respect to ψ is
N∑
i=1

D′V−1(ui − µu) = 0, (2.5)

where D = ∂µu/∂ψ
′. Since µu does not depend on a specific subject index i, D also does

not depend on index i. So equation (2.5) can be written as

D′V−1(ū− µu) = 0, (2.6)

where ū =
PN

i=1 ui

N is the mean of ui.

We obtain ψ̂ by solving estimating equations (2.6). For complete data if we take

expectation of equation (2.6),

E(D′V−1(ū− µu)) = D′V−1(E(ū)− µu) = 0, (2.7)

Therefore, the estimating equation (2.6) is an unbiased estimating equation. We have

the following theorem.

Theorem 2.1. The estimator ψ̂ is
√
N -consistent, and N1/2(ψ̂ − ψ) is asymptotically

multivariate normal with mean zero and the asymptotic covariance matrix as

(D′V −1D)−1.

The matrix (D′V −1D)−1 is k × k where k is the number of parameters that need to

be estimated. For this matrix to be invertible, we need the rank of D to be at least k,

and in particular, we need the number of rows of D to be at least k. The number of rows

of D is equal to the number of variables in ui. Above we defined ui = (y′i,x
′
i)
′, but if the

number of single variables (response variables y and covariates x) are not enough, we can

include some products of y and x.

Suppose some values of response variables and/or some values of covariates are missing

and assume that the missingness is MAR. Let Ri be a N ×G missingness indicator matrix

whereG = T+T×P+Q (there are T response variables, T×P time varying covariates, and

Q time invariant covariates), where Rig = 1 if uig is observed and Rig = 0 if uig is missing.
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Subjects can be grouped by the pattern of R. We denote r as different missing patterns,

where r = 1, ...,M . For example, if G = 3, there could be M = 23 − 1 possible different

missing patterns. Let Ur be the observed values under missing pattern r and g(U, ψ) be

an estimating function for the hypothetical complete data such that E(g(U,ψ)) = 0. We

have following Lemmas

Lemma 2.1. Under the MAR assumption,

Eψ(g(U, ψ)|R = r, Ur = u) = Eψ(g(U, ψ)|Ur = u).

The conditional expectation Eψ(g(U, ψ)|R = r, Ur = u) has information equivalent

to Eψ(g(U, ψ)|Ur = u), which does not depend on missingness mechanism.

Lemma 2.2. Under MAR assumption, we have

E(
∑
r

Eψ(g(U, ψ)|R = r, Ur = u)) = 0.

For each missing pattern r, we have

∑
r

µ̇′rV
−1
r (Ur − µr) =

N∑
i=1

D′
iV

−1
i E(ui − µi|Uoi ) =

N∑
i=1

(D′
i)
oV −1
i (uoi − µoi ). (2.8)

This approach assume that the missing values can be replaced by conditional expecta-

tion of E(Umi |Uoi ). Therefore, it uses all available information and also provides consistent

estimators when missingness is MAR.

For a specified subject i, if it belongs to the missing pattern r, the corresponding

quasi-score is

D′
irV

−1
ir

(Uir − µir),

where µir consists of the expectation of the response variables and the observed covariates,

and Vir is the corresponding variance-covariance matrix where Rir = 1.

The quasi-score containing subjects with the same missing pattern r is

D′
rV

−1
r (Ur − µr) =

∑
ir

D′
irV

−1
ir (Uir − µir).
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Therefore the quasi-score for all missing patterns has the following form

∑
r

∑
ir

D′
rV

−1
r (Ur − µr) = 0. (2.9)

The parameter ψ is estimated by solving the equation (2.9). Let pr = limN→∞
nr
N ,

where nr is the number of the subjects for missing pattern r.

Theorem 2.2. The estimator of ψ by solving the equation(2.9) is an consistent estimator

of ψ under MAR, and N1/2(ψ̂−ψ) is asymptotically multivariate normal with mean zero

and the covariance matrix as (
∑

r prD
′
rV

−1
r D′

r)
−1.

2.3.1 Example

In this section, we provide an example to illustrate the proposed method. Although this

example only shows how to handle continuous responses and missing one covariate, our

approach is not limited and can be applied to discrete responses or missing response.

Suppose that each subject is measured at time t = 1, 2. The response variables are

yi1, yi2, and the covariate xi are continuous. We assume xi has mean µx, and considered

the following marginal regression model

yit = βt(t− 1) + βxxi + εit, (2.10)

where εi1 and εi2 are distributed as a bivariate normal with mean 0 and the covariance

matrix as Σ. Based on the regression model, the unconditional mean of yit is E(yit) =

βt(t− 1) + βxµx.

We assume that both yi1, yi2 are observed but xi has some missing values. Here

ui = (yi1, yi2, xi), and E(ui) = (µy1, µy2, µx)′ = (βxµx, βt + βxµx, µx)′ . There are three

parameters (βt, βx, µx), where the first two are the parameters of interest and the last one

is the nuisance parameter. The missingness indicator is Ri = (1, 1, Rxi), where Rxi = 1

if xi is observed and Rxi = 0 if xi is missing. There are two missing patterns here. One

is r1 = (1, 1, 1) where the data are completed and another is r2 = (1, 1, 0) for incomplete
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cases. Define

µ̇′ =


∂µy1

∂βt

∂µy2

∂βt

∂µx

∂βt

∂µy1

∂βx

∂µy2

∂βx

∂µx

∂βx

∂µy1

∂µx

∂µy2

∂µx

∂µx

∂µx

 .

For the complete data where r = 1, we have

µ̇′1V
−1
1 (u1 − µ1) =

n1∑
i=1

µ̇′i1V
−1
i1 (ui1 − µi1)

=


0 1 0

µx µx 0

βx βx 1



vy1 vy12 vxy1

vy12 vy2 vxy2

vxy1 vxy2 vx


−1

n1∑
i=1


yi1 − βxµx

yi2 − (βt + βxµx)

xi − µx

 .

For the missing pattern r = 2 where the covariance is missing, we have

µ̇′2V
−1
2 (u2 − µ2) =

n2∑
i=1

µ̇′i2V
−1
i2 (ui2 − µi2)

=


0 1

µx µx

βx βx


 vy1 vy12

vy12 vy2

−1
n2∑
i=1

 yi1 − βxµx

yi2 − (βt + βxµx)

 .

Therefore combining both missing patterns, we have estimating equations:
2∑
r=1

µ̇′rV
−1
r (ur − µr) = 0.

The estimators of βt, βx, and µ are obtained by solving the above equations.

As we mentioned before, we may add cross products into ui to estimate all parameters.

Here is an example. Let us consider model

yit = β0 + β1t+ β2xi + εi,

where t is the time. Suppose there are two time points, and we have two outcomes y1

and y2, and one covariate x. There are four parameters needed to be estimated β0, β1,

β2, and µx. If ui only includes single variables yi1, yi2 and xi, then there are only three

independent equations for four parameters. Therefore, we need to add the product of yi1

and xi, and the product of yi2 and xi to ui, which allows us to have enough equations to

solve the parameters.



20

2.4 Application

In this section, we apply the proposed approach for existing data sets with missing values.

The first data studies contracepting women. It has monotone missing responses. The

second data set studies hip fracture women. It contains both missing response variables

and covariates. We compare the proposed method with multiple imputation method (Paik,

1997, Lipsitz et al., 2000) and the weighted approach (Robins et al., 1995) for these data

sets.

2.4.1 Contracepting Women Data

This data is a longitudinal randomized clinical trial studying contracepting women (Machin

et al, 1988, Fitzmauris, 2000). In this trial 1151 women receive an injection of either 100

or 150 mg of depot-medroxyprogesterone acetate (DMPA) at the beginning of the study

and receive three additional injections at 90-day intervals.

Throughout the study each woman is required to complete a menstrual diary. The

diary data is used to generate a sequence of binary responses for each subject according

to whether or not she has experienced amenorrhea in the four successive three-month

intervals. There is monotone dropout missingness. More than 30% of subjects dropped

out before the completion of the trial.

The marginal regression model (Fitzmauris, 2000) is formulated as

logit pr(yit = 1|xi) = β0+β1(t−1)+β2(t−1)2+β3xi+β4xi×(t−1)+β5xi×(t−1)2, (2.11)

where t = 0, 1, 2, 3 and xi is the treatment. We denote xi = 0 for DMPA dose 100mg and

xi = 1 for DMPA dose 150mg.

To illustrate our method, we assume covariate x as random variable. There are seven

parameters involved in the model with ψ = (β0, β1, β2, β3, β4, β5, µx). This requires at

least seven variables in the ui. We use all response variables and covariates, and the cross

products of y and x additionally,

ui = [yi1, yi2, yi3, yi4, xi, (xy1)i, (xy2)i, (xy3)i, (xy4)i]. (2.12)
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There are four possible different missing patterns including complete case with R =

(1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0), (1, 1, 1, 1). For different missing pattern, we use subset of

(2.12) according to the missing pattern.

We compare our approach with the weighted approach and the multiple imputation.

We briefly describe the weighted method here. In the weighted approach, the probability

of being observed is modeled as

Pr(Rit = 1|y1, ..., yit, xi) =
eg

′
iγ

1 + eg
′
iγ
,

where gi is a combination of the elements of (yi1, ..., yit, xi). Specifically, for this appli-

cation, we modeled the probability of yit being observed condition on previous responses

and covariate xi as

λit = Pr(Rit = 1|yi1, ..., yit−1, xi) =
eγ0+γ1yi1+...+γt−1yit−1+γxi

1 + eγ0+γ1yi1+...+γt−1yit−1+γxi
.

The weights Wi in (2.3) are calculated by taking the inverse of the above estimated prob-

ability of yit being observed. The covariance matrix of β̂ of the weighted GEE (Robins et

al., 1995) is given by

Σβ = (
K∑
i=1

∂µ′i
∂β

V −1
i Wi

∂µi
∂β

)−1
K∑
i=1

EiE
′
i(

K∑
i=1

∂µ′i
∂β

V −1
i Wi

∂µi
∂β

)−1 ,

where Ei = Ui−(
K∑
i=1

UiS
′
i)(

K∑
i=1

SiS
′
i)Si, Ui = ∂µ′i

∂β V
−1
i (Yi−µi(β̂)), and Si =

∑
tRit−1Zit(Rit−

λit) is the score component for the ith subject from the missingness mechanism model

(Robins et al., 1995, Preisser et al., 2002).

For the multiple imputation, we replace the missing values sequentially based on the

imputation using logistic model:

Pr(yit = 1|y1, ..., yit, xi) =
eα0+α1yi1+...+αt−1yit−1+αxi

1 + eα0+α1yi1+...+αt−1yit−1+αxi
.

The estimator of multiple imputation is the average of estimators from each imputa-

tion. The covariance of estimator (Rubin, 1978) is given by

Σ(β) = Ū + (1 +
1
m

)B,
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where m is the number of the multiple imputations, and Ū = 1
m

m∑
j=1

Uj is the average of

within-imputation variance, where Uj is the variance associated with βj with

Uj = (
K∑
i=1

∂µ′i
∂β

V −1
i

∂µi
∂β

)−1
K∑
i=1

∂µ′i
∂β

V −1
i (Yi − µi(β̂))(Yi − µi(β̂))′V −1

i

∂µi
∂β

(
K∑
i=1

∂µ′i
∂β

V −1
i

∂µi
∂β

)−1 .

Here B = 1
m−1

m∑
j=1

(βj − β̄)2 is the variance between imputations.

Table 1 shows that multiple imputation provides highest standard errors among three

approaches. The proposed approach and the weighted method provide similar estimates.

However, the weighted method provides the lowest standard errors among these three

approaches.

2.4.2 Arbitrary Missing Pattern Data

The second example investigates (Allison, 2001) 220 caucasian women, at least 60 years

old, who are treated surgically for hip fractures in Philadelphia area (Mossey, Knott,and

Craik, 1990). They are interviewed three times after the hospital release: at 2 months,

6 months, and 12 months. The outcome variable is a measurement of depression, on a

scale from 0 to 60. The four related covariates are the number of self-care that could be

completed without assistance (x1, ranges from 0 to 3), the degree of pain experienced by

the patient (x2, ranges from 0 (none) to 6 (constant)), self-rated health (x3, measured on

a four-point scale, 1 = poor, 4 = excellent), and whether able to walk without aid at home

(x4, 0 = no and 1 = yes).

The goal of this study is to investigate the relation between depression and the other

four predictors. The linear regression model is given by

yit = β1xit1 + ...+ β4xit4 + β5w1 + β6w2 + εit ,

where yit is the depression score for the person i at time t, w1 and w2 are two indicator

variables for time (w1 = 1 if time at 2 months, and w1 = 0 otherwise. w2 = 1 if time at

6 months and w1 = 0 otherwise.), and the error εi = (εi1, ..., εit) is distributed as mean 0

and variance Σ. Here except x4 is binary variable and the rest of covariates are continuous

variables.
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For this data example, the missing values have arbitrary missing pattern (intermittent

missing) so that the WEE is not applicable. We compared the proposed approach with

the multiple imputation (Paik, 1997, Lipsitz et al., 2000). We imputed the missing values

for month 2 first then for month 6 and month 12 and within the same time period, we

imputed the missing values in covariates first, and then the response variables. We apply

the GEE using imputed values along with the observed values.

Table 2 provides the estimates and standard errors for the estimators. The estimate

for x3 is similar for both approaches. The estimates for time effect (coefficients of w1 and

w2) are significant from both approaches. The number of self-care (x1) and the degree of

pain (x2) do not have significant effect on depression score based on our proposed approach

while they are significant effect based on the multiple imputation approach.

2.4.3 Missing Covariate

We use the subset of the second data example to create missing covariates. We select 138

subjects with complete responses. We consider a relatively simpler model and is given by

yit = β0 + β1xit2 + β2w1 + β3w2 + εit .

We make the missing patterns of x2 as monotone. There are about 24% of the

covariate missing. We compare the proposed approach with the multiple imputation

(Paik, 1997, Lipsitz et al., 2000) and the weighted GEE (Robins et al., 1994). For the

multiple imputation approach, we imputed missing values for t = 1 first then for t = 2

and 3. We apply the GEE based on imputed values and observed data.

For the weighted method, the probability of being observed is modeled as

Pr(Rit = 1|y1, ..., yit, xi1, ..., xit) =
eg

′
iγ

1 + eg
′
iγ
,

where gi is a combination of elements in (yi1, ..., yit−1, xi2).

Table 3 provides the estimates and standard errors for all approaches. The estimates

of all three approaches are similar and all of them show significance of all effects. The

standard error of estimators are similar.
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2.5 Simulations

We conduct several simulations to study the finite sample performance of the unconditional

estimating equation approach. The first two simulations are artificial and the other two

are based on application data. We compare the proposed approach with the WEE and

imputation method. For the first two simulations, the complete data are generated from

sample size N = 250 for each simulation. There is only one covariate x and it had missing

values. All responses are observed. The true missingness mechanism is specified such

that the missingness depends on the observed response variables. This ensures that the

missingness is MAR. The true missingness mechanism follows logistic model

logit pr(Ri = 1|yit, xi) = α0 + α1yi1 + α2yi2 + α3yi3 . (2.13)

2.5.1 Continuous Response

In this section, we simulate response variables and covariates both as continuous. We

generate xi from normal distribution with µx = 2 and σ2
x = 1. The response variables are

assumed to follow the linear model

yit = βt(t− 1) + βxxi + εit , t = 1, 2, 3

The error term (εi1, εi2, εi3) are generated to be correlated with exchangeable correla-

tion structure (ρ). We set βt = 0.5, βx = 1, and α1 = −1, α2 = 1 in (2.13). We study the

performance under different correlations. We set ρ = 0.25 for low, ρ = 0.25 for median,

and ρ = 0.25 for high correlation. We chose different values of α0 and α3 so that the

amount of missing data varies. The bias of the estimators and the square root of mean

square error (RMSE) are given in Table 4. The standard deviations of the estimators are

not in the table because they are very close to RMSE. The missing rates are about 36%

and 60% for the two setups.

Table 4 indicates that the proposed method and the multiple imputation method

yield nearly unbiased estimators of βt and βx with the biases for βx less than 0.2% and

for the bias for βt always less than 0.4%. Among these approaches, the weighted GEE

has the highest RMSE. The RMSE of the proposed approach is smaller than or equal
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to that of multiple imputation for both βt and βx. In addition, when the correlation

among responses increases, the proposed approach tends to have smaller RMSE for βt and

similar RMSE for βx. When the missing rate increases, the RMSE for all three approaches

decreases. Moreover, the RMSE of the proposed approach is slightly smaller than that of

multiple imputation for both βt and βx.

2.5.2 Binary Response

In this section, we simulated both response variables and covariate as binary. Here xi’s

are generated from a Bernoulli distribution with the probability of success as 0.5. The

marginal model for E(yit|xi) is given as follows

logit pr(yit = 1|xi) = βt(t− 1) + βxxi , t = 1, 2

The response variables (yi1, yi2) are generated to be correlated with exchangeable corre-

lation structure with correlation ρ. We set βt = 0.5, βx = 1, α1 = 1, and α3 = 0. Similar

to the last simulation, we set ρ = 0.25 for low, ρ = 0.25 for median, and ρ = 0.25 for high

correlation, we choose different values of α0 and α2 so that the amount of missing data

varies.

The bias and square root of mean square error are given in Table 5. The missing

rates are around 30% and 60% for the two setups, respectively. Table 5 indicates that

the proposed method yields nearly unbiased estimators of βt and βx with the biases for

βt are less than 1% and βx are less than 3%. The WEE and the multiple imputation

approach yield similar biases when correlation among response is low or median. When

the correlation is high, the biases of the proposed estimators are smaller than those of the

other two approaches. Among these approaches, the RMSE of the proposed approach is

less than or equal to that of weighted GEE or multiple imputation. When the correlation

is high, the ratios of RMSE of the proposed approach relative to the multiple imputation

or the weighted approach are nearly 0.5 for β̂t and are less than 0.82 for β̂x.
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2.5.3 Simulation Based on Contracepting Women Data

We simulate data based on the women contracepting data with the sample size as 250.

Both response variables and covariate are binary variables. The response variables given

the covariate x follow a logistic model:

logit pr(yit = 1) = β0 + βt(t− 1) + βxxi t = 1, ..., 4.

Correlated response variables are generated following the procedure by Preisser (2002) and

the covariate is generated by Bernoulli distribution with the mean as the sample mean of x

from the women contracepting data. The missing values occur in responses only. The true

missingness mechanism is specified such that the missingness is monotone and depends on

the previous observed outcome. This ensured that the missing is MAR. The missingness

indicator Rit is 1 if yit is observed and 0 if yit is missing, where t = 2, 3, 4. There is no

missing in y1. The true missingness mechanism follows logistic model and only depends

on the previous response y.

logit pr(Rit = 1|yi1, ..., yit, xi) = α0 + α1yi(t−1). (2.14)

We choose α such that the missing rate is about 27% and also with another missing rate

as 53%).

The bias and standard error of the estimators are provided in Table 6. The multiple

imputation and the weighted GEE have similar biases when the model for the missingness

mechanism or the model for imputing missing values are correctly specified. The proposed

approach gives slightly larger biases. The standard errors for all three approaches are

similar. But when the model of missingness mechanism or the model for imputing missing

values are misspecified, the proposed approach has smaller biases than the WEE and the

multiple imputation estimators. When sample size increases, the variances of estimators

from all three approaches are similar.
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2.5.4 Simulation Based on Monotone Missing Covariate Example

We simulate data based on hip fracture data with missing covariates. The mean of response

(y1, y2, y3) given covariate xit3 is

E(yit) = β0 + β1xit2 + β2w1 + β3w2 , (2.15)

and the covariance is Σy. Three covariates are generated by multinormal distribution with

mean (µx1 , µx2 , µx3) and covariance Σx. They are truncated according to the range of x1,

x2, and x3. We use x2 as covariate in (2.15) and the other two covariates for modeling

missingness mechanism.

The means and covariances of y and covariates are based on the sample mean and

variance of the data. The missingness only occurs in the covariate. The true missingness

mechanism is specified as monotone missing given by
logitPr(Rit = 1) = α0 + α1yit + α2xit1 + α3xit2,

P r(Rit = 1) = 0 if Rit−1 = 0 .

All α’s are obtained based on the information of observed data. The sample size for

this simulation is 250 and the missing rate are 27% and 41% respectively. The bias and

standard error are given in Table 7. The biases of the proposed approach are equal to or

smaller than those of WEE and multiple imputation. The standard errors of the proposed

approach are equal to or slightly larger than those of WEE and multiple imputation. If

the model for the weights or the model for the imputation are misspecified, the proposed

approach has smaller biases than the other two approaches. For two missing rates, all three

approaches have similar trends, with more biases and larger standard errors of estimators

when the missing rate increases.

2.5.5 Simulation Based on Arbitrary Missing Pattern

In this simulation, the data is generated based on the hip fracture example. The response

variables (y1, y2, y3) are generated with the mean

E(yit) = β1xit3 + β2w1 + β3w2 ,



28

and a random error with variance (σ2
y1 ,σ

2
y2 , σ

2
y3) and exchangeable correlation structure.

We set ρ = 0.25, 0.5, and 0.75 for low, median, and high correlation. Three covariates

are generated by multinormal distribution with mean (µx1 , µx2 , µx3) and covariance Σx.

They are truncated according to the range of x1, x2, and x3. We use x3 as covariate in

(2.15) and the other two covariates for modeling missingness mechanism.

The means, variances and covariances of the responses and covariates are based on

the sample mean and variance of the data. The missing values occur in both covariates

and responses. The true missingness mechanism is modeled as

Pr(Rit = 1) = α0 + α2xit1 + α3xit2 ,

and Rxt3 and Ryt are generated with the same correlation as from the hip fracture data.

All α’s are obtained from the information of the observed data. The sample size for this

simulation is 200.

Since the weighted approach can not handle this kind of missing data, Table 8 pro-

vides the bias and standard errors for our approach and the imputation method. Our

proposed approach has smaller biases and standard errors than multiple imputation for

time effect. As for covariate, the proposed estimator has smaller bias than multiple im-

putation estimator, but the standard error of our estimator is similar to or slightly larger

than that of multiple imputation.

2.6 Discussion and Conclusion

The unconditional estimating equation approach is mainly based on unconditional ex-

pectation of all possible variables including the responses and covariates and relies on

approximation to the multivariate normal distribution. The main advantage of the uncon-

ditional estimating equation approach is that it does not require modeling for missingness

mechanism or imputing the missing values.

Our simulation studies for different missing situations suggest that the proposed ap-

proach has negligible bias and the bias was found to be less than 2% in general. The

variance of the proposed estimators is smaller than or equal to that of the weighted and
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the imputation approaches in most cases.

Furthermore, the proposed method can be easily applied to arbitrary missing patterns.

While the WEE can not be easily extended in this case. The sequential imputation

approach (Paik, 1997) can be extended to arbitrary missing patterns. but it does not

perform as well as the proposed approach based on the simulation results.

There are some drawbacks of the proposed approach. In particular, it does not

perform well for the models when matrix D is close to singular, because there can be

convergence problem. But this problem could be solved by including cross products of

response variables and covariates in data matrix.
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Table 1: Estimates and Standard Errors for Contracepting Women Data
estimate SE Z P-value

Int ˆβMI -1.5537 0.1074 -14.4665 0.0000

β̂w -1.4923 0.0967 -15.4323 0.0000
ˆβprop -1.4890 0.1053 -14.1406 0.0000

time ˆβMI 0.6511 0.1894 3.4377 0.0006

β̂w 0.5335 0.1073 4.9720 0.0000
ˆβprop 0.5139 0.1305 3.9379 0.0001

t2 ˆβMI 0.0299 0.0604 0.4950 0.6206

β̂w -0.0058 0.0256 -0.2266 0.8207
ˆβprop 0.0019 0.0398 0.0477 0.9620

trt ˆβMI 0.1024 0.1553 0.6594 0.5096

β̂w 0.1057 0.1395 0.7577 0.4486
ˆβprop 0.1057 0.1412 0.7486 0.4541

trt*t ˆβMI 0.4734 0.2763 1.7134 0.0866

β̂w 0.4069 0.1559 2.6100 0.0091
ˆβprop 0.4248 0.1829 2.3226 0.0202

trt*t2 ˆβMI -0.1446 0.0877 -1.6488 0.0992

β̂w -0.1318 0.0374 -3.5241 0.0004
ˆβprop -0.1271 0.0559 -2.2737 0.0230

Table 2: Estimates and Standard Errors for Arbitrary Missing Pattern Data
estimate SE Z P-value

x1
ˆβprop 0.2241 0.2314 0.9685 0.8336
ˆβMI -0.5702 0.2122 -2.6871 0.0036

x2
ˆβprop -0.0665 0.2475 -0.2687 0.3941
ˆβMI 0.4240 0.1316 3.2219 0.0006

x3
ˆβprop 2.3678 0.2440 9.7041 0.0000
ˆβMI 2.63289 0.2268 11.6089 0.0000

x4
ˆβprop -2.8666 0.7584 -3.7798 0.0001
ˆβMI -1.9252 0.4918 -3.9146 0.0001

w1
ˆβprop 6.6085 0.4521 14.6173 0.0000
ˆβMI 8.6531 0.7395 11.7013 0.0000

w2
ˆβprop 5.5184 0.4090 13.4924 0.0000
ˆβMI 8.0443 0.5180 15.5295 0.0000

Table 3: Estimates and standard errors for missing covariate
estimate SE Z P-value

Int β̂w 2.3609 0.5036 4.6880 0.0000
ˆβMI 2.2801 0.4895 4.6580 0.0000
ˆβprop 2.4715 0.4717 5.2396 0.0000

x2 β̂w 0.9479 0.2153 4.4027 0.0000
ˆβMI 0.9462 0.2115 4.4738 0.0000
ˆβprop 0.9143 0.2173 3.3852 0.0003

w1 β̂w 9.4847 0.5410 17.5318 0.0000
ˆβMI 9.1413 0.5792 15.7826 0.0000
ˆβprop 9.3067 0.5629 16.5335 0.0000

w2 β̂w 8.4414 0.5180 16.2961 0.0000
ˆβMI 8.0565 0.5043 15.9756 0.0000
ˆβprop 8.4380 0.4937 17.0914 0.0000
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Table 4: Simulation results for continuous data based on 250 sample and 1000 simulations
βt=0.5 βx=1 ρ=0.25 ρ=0.5 ρ=0.75

β̂w β̂MI β̂p β̂w β̂MI β̂p β̂w β̂MI β̂p

α0=−1.1, α3=0 biasβt 0.0055 0.0010 0.0012 0.0028 0.0018 0.0014 0.0021 0.0002 0.0005
missr=36 % RMSEβt 0.0767 0.0412 0.0398 0.0565 0.0364 0.0320 0.0408 0.0308 0.0222

biasβx 0.0006 0.0000 0.0000 0.0000 0.0002 0.0002 0.0007 0.0001 0.0003
RMSEβx 0.0221 0.0147 0.0149 0.0206 0.0155 0.0153 0.0195 0.0163 0.0154

α0=−1,α3=0.67 biasβt 0.0039 0.0039 0.0037 0.0004 0.0002 0.0013 0.0003 0.0012 0.0013
missr=60 % RMSEβt 0.0558 0.0390 0.0382 0.0423 0.0354 0.0333 0.0313 0.0287 0.0223

biasβx 0.0005 0.0005 0.0005 0.0005 0.0000 0.0004 0.0002 0.0000 0.0003
RMSEβx 0.0159 0.0130 0.0130 0.0148 0.0138 0.0134 0.0146 0.0143 0.0134

Note: missr represents the missing rate of the data, e.g. 36% means 36% subjects have missing values.

Table 5: Simulation results for binary data based on 250 sample size and 1000 simulations
ρ=0.25 ρ=0.5 ρ=0.75

β̂w β̂MI β̂p β̂w β̂MI β̂p β̂w β̂MI β̂p

α0=−1.1, α3=0 biasβt 0.0109 0.0041 0.0061 0.0158 0.0094 0.0138 0.0045 0.0064 0.0019
missr=32 % RMSEβt 0.1838 0.1722 0.1679 0.1789 0.1722 0.1360 0.1744 0.1755 0.0965

biasβx 0.0137 0.0367 0.0087 0.0413 0.0676 0.0406 0.0540 0.0614 0.0296
RMSEβx 0.2868 0.2765 0.3048 0.3346 0.3412 0.3078 0.3599 0.3678 0.2940

α0=−1,α3=0.67 biasβt 0.0017 0.0028 0.0049 0.0050 0.0010 0.0075 0.0011 0.0024 0.0002
missr=60 % RMSEβt 0.2025 0.1809 0.1636 0.1978 0.1840 0.1360 0.1842 0.1834 0.0948

biasβx 0.0227 0.0356 0.0095 0.0416 0.0544 0.0261 0.0304 0.0395 0.0183
RMSEβx 0.3140 0.3118 0.2899 0.3619 0.3763 0.3172 0.3755 0.3901 0.3147

Note: missr represents the missing rate of the data, e.g. 32% means 32% subjects have missing values.

Table 6: Estimates and standard error for the simulation based on contracepting women
data with sample size 250

WEE WEE(Y) MI MI(Y) Prop true β
mir =27% int -1.5230(0.1644) -1.4674(0.1640) -1.5219(0.1632) -1.4657(0.1641) -1.5422(0.1656) -1.5072

t 0.5103(0.0640) 0.4672(0.0700) 0.5140(0.0562) 0.4720(0.0654) 0.5179(0.0596) 0.5114
x 0.2599(0.2064) 0.2783(0.1811) 0.2624(0.1801) 0.2777(0.1775) 0.2700(0.1810) 0.2653

mir =53% int -1.5165(0.1909) -1.4675(0.2040) -1.5172(0.1868) -1.4287(0.2136) -1.5120(0.1948) -1.5072
t 0.4922(0.0842) 0.4719(0.0806) 0.5123(0.0731) 0.4707(0.0731) 0.4910(0.0720) 0.5114
x 0.2661(0.2329) 0.2628(0.2443) 0.2705(0.2220) 0.2151(0.2141) 0.2544(0.2417) 0.2653

Note: mir represents the missing rate of the data, e.g. 27% means 27% subjects have missing values.

Table 7: Biases and standard errors for the simulation based on missing covariates with
sample size 250

WEE WEE(Y) MI MI(Y) Prop true β
mir=26 % int 0.6108(0.3286) 0.7448(0.3534) 0.8226(0.3156) 1.1698(0.2913) 0.5177(0.3433) 2.6419

x -0.0836(0.1512) -0.0918(0.1580) -0.3099(0.1371) -0.4886(0.1256) -0.1111(0.1551) 1.4937
t1 -0.4100(0.4229) -0.5316(0.4412) -0.2995(0.5427) -0.3562(0.5418) -0.2965(0.4258) 9.9432
t2 -0.3286(0.3477) -0.4848(0.3669) -0.2871(0.3448) -0.3356(0.3473) -0.2472(0.3492) 8.0057

mir=41 % int 0.6550(0.3447) 0.7988(0.3779) 0.9488(0.3105) 1.0995(0.2939) 0.5314(0.3643) 2.6419
x -0.0942(0.1656) -0.0906(0.1694) -0.4045(0.1355) -0.6195(0.1254) -0.1173(0.1688) 1.4937
t1 -0.4621(0.3952) -0.6115(0.4223) -0.2823(0.3926) -0.4051(0.3952) -0.3002(0.4015) 9.9432
t2 -0.3740(0.3575) -0.5662(0.3869) -0.3250(0.3542) -0.3935(0.3650) -0.2755(0.3585) 8.0057

Note: mir represents the missing rate of the data, e.g. 26% means 26% subjects have missing values.
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Table 8: Simulation results for continuous data based on missing covariates data with
sample size of 200 and simulation size of 1000

βx=2.3853 βt1=8.2119 βt2=6.3340
ρ=0.25 ρ=0.5 ρ=0.75

β̂MI β̂p β̂MI β̂p β̂MI β̂p

β̂x 2.5824 2.5048 2.5906 2.5067 2.5836 2.5025
missr=37 % stdβx 0.1310 0.1363 0.1334 0.1362 0.1363 0.1361

β̂t1 9.2439 7.9044 9.2418 7.9319 9.2374 7.9562
stdβt1

0.6321 0.6036 0.6086 0.5291 0.5599 0.4811

β̂t2 6.9323 6.1496 6.9359 6.1885 6.9263 6.2094
stdβt2

0.5866 0.5315 0.5633 0.4504 0.5621 0.3740

missr=53 % β̂x 2.6814 2.4850 2.6947 2.5053 2.6940 2.4966
stdβx 0.1427 0.1489 0.1439 0.1511 0.1425 0.1477

β̂t1 9.3730 7.9265 9.3702 7.9353 9.3620 7.9322
stdβt1

0.6696 0.6042 0.6629 0.5287 0.6217 0.4802

β̂t2 7.2428 6.2161 7.2863 6.2570 7.2445 6.2489
stdβt2

0.6550 0.5221 0.5907 0.4631 0.4955 0.3745

Note: missr represents the missing rate of the data, e.g. 37% means 37% subjects have missing values.
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Unconditional Estimating Equation Approach for

Nonignorable Missingness

Lin Lu, David Birkes, Annie Qu

Abstract

Given regression data from a sample of independent subjects, we propose a new

approach to estimating regression coefficients when some data are missing and the miss-

ingness mechanism is nonignorable. For a complete data set, with no missing values, an

estimate of the vector of regression coefficients can be obtained as the solution to a gener-

alized estimating equation (GEE) based on the difference between the vector of outcomes

and its expectation conditional on the covariates. When data are missing, our approach

uses an “unconditional” generalized estimating equation, based on the difference between

a vector of “extended-sense” outcomes and its unconditional expectation. Extended-sense

outcomes include (1) the original outcomes in the complete data set multiplied by their

missingness indicators, (2) the covariates in the complete data set multiplied by their

missingness indicators, (3) the missingness indicators, and (4) selected products of these

variables. The advantage of an estimating-equation approach is that fewer distributional

assumptions are needed in comparison to maximum likelihood (ML) and explicitly mod-

eled multiple imputation (MI). Weighted estimating-equation (WEE) estimators have the

same advantage of requiring few distributional assumptions, but our estimator can be

easier to obtain in some situations. Through simulation we investigate the efficiency of

the proposed estimator relative to ML, MI, and WEE estimators. The unconditional

estimating-equation (UEE) estimator is as efficient as the other three estimators when the

missingness mechanism is correctly specified.
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3.1 Introduction

Missing data occur frequently in scientific research, for many reasons, such as if subjects

drop out of a longitudinal study before its completion, or if the data is missing by human

error. The missing-data mechanism could be ignorable, where missingness only depends

on observed information, or it could be nonignorable (or informative), where missingness

depends on unobserved information. Considerable research has been done on statistical

methods for handling ignorable missingness; see Little and Rubin (2002), Schafer (1997),

Allison (2002), Ibrahim, Chen, Lipsitz, and Herring (2005), Robins, Rotnitzky, and Zhao

(1994, 1995), Davidian, Tsiatis, and Leon (2005).

The problem of nonignorable missingness is appreciably more difficult to deal with

since the missingness mechanism depends on missing values, which of course are unob-

served. Existing methods for nonignorable missingness include likelihood methods (Diggle

and Kenward 1994; Ibrahim, Lipsitz, and Chen 1999), Bayesian analyses (Huang, Chen,

and Ibrahim 2005), multiple imputation methods (Paik 1997), and weighted GEE methods

(Rotnitzky, Robins, and Scharfstein 1998). Maximum likelihood (ML) requires specifica-

tion of a full joint likelihood for the data, including the missingness indicators. A Bayesian

approach also requires a full likelihood, plus specification of a prior distribution on the

parameters. Multiple imputation (MI) in many settings (Kenward and Carpenter 2007,

section 4) involves specification of the conditional distribution of the missing data given

the observed data and sometimes the missingness indicators. Some versions of MI (Paik

1997), weighted estimating-equation (WEE) estimation and the unconditional estimating-

equation (UEE) we proposed require only that certain moments of the data be specified.

In this paper, we propose a semiparametric approach to handle missing data. The

procedure is partially parametric in so far as moments of the data, including the miss-

ingness indicators, are expressed in parametric form, and it is partially nonparametric in

so far as no further distributional assumptions are made. When no data are missing, a

commonly used method for estimating regression coefficients in a generalized linear model

is to solve a generalized estimating equation (GEE) (Liang and Zeger 1986). A GEE is

based on the difference between the vector of outcomes and its expectation conditional
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on the covariates, which are regarded as fixed. In the proposed method, the covariates

are regarded as random. Our unconditional estimating equation (UEE) is based on the

difference between a vector of “extended-sense” outcomes and its unconditional expecta-

tion. Extended-sense outcomes include (1) the original outcomes in the complete data

set multiplied by their missingness indicators, (2) the covariates in the complete data set

multiplied by their missingness indicators, (3) the missingness indicators, and (4) selected

products of these variables.

Treating the covariates as extended-sense outcomes is suggested by Kenward and

Carpenter (2007, p. 203). Inclusion of the missingness indicators as extended-sense out-

comes is similar to the joint estimating-equation approach of Zhao, Lipsitz, and Lew

(1996), but their estimating equation is based on conditional expectations. The idea of an

extended-sense outcome vector including an original outcome, a covariate, and a missing-

ness indicator appears in the weighted estimating equation derived by Lipsitz, Ibrahim,

and Zhao (1999).

In a typical ML estimation, one must postulate a parametric model for the joint

distribution of the data and missingness indicators. In multiple imputation (MI), the

imputation is often done by postulating a parametric model for simulating missing values

given the observed data. Estimating-equation approaches such as WEE and UEE are

semiparametric in that a parametric expression is required only for certain moments of the

data and missingness indicators, and no further restrictions are placed on the distribution

of the data. To be assured that an ML or explicitly modeled MI estimator is consistent, the

postulated distributions should be true. For a WEE or UEE estimator to be consistent, one

needs only the weaker condition that that the postulated expressions for the moments are

true, regardless of the distribution of the “residuals”. Here the moment is the expectation

of some quantity, namely, a power of an observation. The corresponding “residual” is the

difference between the quantity and the moment.

This article is organized as follows. The GEE, ML, MI, and WEE estimation proce-

dures are discussed further in Section 3.2. In Section 3.3 we give the model and notation

and introduce the UEE estimator. Its asymptotic properties are stated in Theorem 3.1.
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The proposed method is illustrated in two simple examples. In Section 3.5 UEE estimation

is applied to three real data sets. In Section 3.4 three simulation studies are presented,

based on models taken from the applications in the preceding section. Discussion and

conclusions are given in Section 3.6.

3.2 Background and Available Approaches

The generalized estimating equations (GEE) (Liang and Zeger, 1986) is a widely used

when the full likelihood function is difficulty to specify and the inference of population

average is of interest. The GEE estimator is also consistent when the working correlation

is misspecified. However, the GEE estimator is biased if the missing mechanism is not

missing completely at random.

The weighted generalized estimating equations (WEE) (Robins et al., 1995) and mul-

tiple imputation GEE methods e.g. (Paik, 1997) are effective to remove biases for missing

at random (MAR), where missingness depends on observed data only. WEE provides

consistent estimators even if the working correlation model is misspecified. However, it

requires that the model for predicting the probability of missingness is correctly specified.

The WEE estimator solves the weighted GEE equations with weights of the inverse of the

probability being observed. The WEE estimator is biased if the missing mechanism is not

ignorable.

The multiple imputation GEE approach (Paik, 1997, Xie, 1997, Lipsitz, 2000) fills

the missing data with imputed values. The number of multiple imputation is discussed by

Rubin (1987, p.114). The parameters are estimated by solving the GEE equations with

missing response being substituting by the imputed values. Rubin (1987, ch4) and Schafer

(1997, p.109) provide valid inferences for multiple imputation approaches. Multiple im-

putation is able to handle nonignorable missing if the distribution of missing variables

can be modeled by observed variables and missingness indicators. However, this approach

requires Bayesian technique for computation.

Likelihood approaches for handling missing data are based on a likelihood function

by assuming a specific model assumptions. The main technique for computing maximum
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likelihood estimators from incomplete data is the expectation and maximization (EM)

algorithm (Hartley, 1958, Dempster, Laird, and Rubin ,1977). EM is particularly useful

when the maximum likelihood estimation of a complete data model is not difficult to

compute. The EM algorithm is able to handle nonignorable missingness. However, it

requires specification of full likelihood and it could be extremely slow when the likelihood

function is complicated.

3.3 Proposed Method

Let the response variable yi = (yi1, ..., yiT )′ be a T -dimensional vector with variance-

covariance matrix Σ and mean E(yi), which satisfies

E(yi) = µi = g(µi) = xiβ. (3.1)

where β is the P × 1 regression parameters of interest and g(·) is a link function.

We consider two types of covariates in the model. One is time-varying covariate,

X∗
i = (x∗i1, ...,x

∗
iT )′, and is a T × P matrix. The other is time-invariant covariate, x∗∗i =

(x∗∗i1 , ...,x
∗∗
iQ)′, which is a Q× 1 vector. We denote

xi =


x∗i1

.

x∗iT

x∗∗i

 ,

which is a (T × P + Q) × 1 covariate vector. Missing values could occur in yi or xi, or

both.

Covariates xi are treated as random variables and the mean and variance are given

as follows

E(xi) = µx, var(xi) = Σx.

Let Ui = (y′i,x
′
i), Uis’ are independent identical distributed, which have the following

first two moments,

E(Ui) = µu(ψ), Var(Ui) = V(µu, α). (3.2)



40

We denote ψ = (β, φ, γ), where β is a vector of regression parameters in (3.1), φ is a set

of joint parameters of yi and xi, and γ is a vector of parameters for xi. Here µ and V

are known functions of ψ. We assume V is known. If it is unknown, we can estimate it

empirically.

Suppose some of responses Yi or covariates Xi are missing and the missingness is

either MAR or informative missingness. Let R be a N ×G missingness indicator matrix

where G is the number of the variables with missing values. Let Rig = 1 if Uig is observed

and Rig = 0 if Uig is missing.

The joint probability of missingness indicators can be expressed as

p(Ri1, ..., Rig|ui, τ) = p(Rig|Ri1, ..., Rig−1,ui, τg)

× p(Rig−1|Ri1, ..., Rig−2,ui, τg−1)× ...× p(Ri1|ui, τ1),

where τ = (τ ′1, ..., τ
′
g−1, τ

′
g)
′ is a vector of parameters for missingness indicator. The number

of parameters can be reduced by using this sequential probability (Lipsitz et al., 2000).

Since the missingness indicators are always binary outcome, they can be modeled as

logistic regression. For any missingness indicator, we model it as

µRig |Ri1,...,Rig−1,Ui,τ =
exp(Uiτ

u +
∑g−1

j=1 Rijτ
r
j )

1 + exp(Uiτu +
∑g−1

j=1 Rijτ
r
j )
,

where τu are coefficients for U and τ r are coefficients for missingness indicators. Therefore,

a joint probability of missingness indicators can be modeled as a sequence of logistic

models.

Let wi = (Uo
i ,Ri � Um

i ,Ri)′ and define 0 multiply by a missing-values equals 0,

where wi is a vector of data, Uo
i includes variables without any missing values, Um

i

includes variables with missing values, and � is element-wise multiplication. Therefore,

the “extended-sense” outcome wi does not include any missing values. All missing values

are replaced by zeros, which incorporates the effect of missingness indicators.

We have wi as i.i.d, with first two moments as follows

E(wi) = µw(ψw, φ), var(wi|S) = V (µw, φ), (3.3)
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We denote ψ = (β, φ, γ, α), where β is a vector of regression parameters in (3.1), γ is a

vector of parameters for xi, α is a vector of parameters for missingness indicator, and φ

is a set of joint parameters of yi, xi, and Ri. Here µw and V are known functions of ψ.

We assume V is known. If it is unknown, we can estimate it empirically.

The main idea of this approach is to construct unconditional estimating equations for

w. The quasilikelihood equation with respect to ψw is

N∑
i=1

D′
wV

−1
w (wi − µw) = D′

wV
−1
w

N∑
i=1

(wi − µw) = 0, (3.4)

where Dw = ∂µw/∂ψ
′. Since µw does not depend on a specific subject index i, D also

does not depend on index i. So equation (3.4) can be written as

D′
wV−1(w̄ − µw) = 0, (3.5)

where ū =
PN

i=1 wi

N is the mean of wi.

We obtain ψ̂ by solving estimating equations (3.5). If we take expectation of equation

(3.5),

E(D′
wV−1(w̄ − µw)) = D′

wV−1(E(w̄)− µw) = 0, (3.6)

Therefore, the estimating equation (3.5) is an unbiased estimating equation. We have

the following theorem for consistency and asymptotical normality of ψ̂w.

Theorem 3.1. The estimator ψ̂w is
√
N -consistent, N1/2(ψ̂w − ψw) is asymptotically

multivariate normal with mean zero, with the asymptotic covariance matrix as

(D′
wV

−1
w Dw)−1.

The matrix (D′
wV

−1Dw)−1 is k×k where k is the number of parameters that need to

be estimated. For this matrix to be invertible, we need the rank of D to be at least k, and

in particular, we need the number of rows of D to be at least k. The number of rows of

D is equal to the number of variables in wi. Above we defined wi = (Uo
i ,Ri �Um

i ,Ri)′,

but if the number of single variables (Uo, R �Um, R) are not enough, we can include

some products of Uo, R�Um, and R.
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In order to apply GEE for wi, we need to implement the expectation of wi. For

example, considering missingness indicator Rig, the expectation of Rig is∑
Rig

Rigp(Rig) = p(Rig) = p(Rig = 1|Ri1, ..., Rig−1, wi)p(Ri1, ..., Rig−1, wi). (3.7)

Equation (3.7) can be written as∫
wi

∑
Ri1,...,Rig−1

p(Rig = 1|Ri1, ..., Rig−1, wi, α)× p(Ri1, ..., Rig−1|wi, α)p(wi).

To evaluate the integral above, the full specification of the distribution of (Ri1, ..., Rig, wi)

is required. To avoid specifying the joint distribution of (Ri1, ..., Rig, wi), we use the mul-

tivariate normal approximation (Whittle, 1961, Crowder, 1985, Lipsitz et al., 2000) to

evaluate the joint distribution. For the multinormal distribution, the conditional distri-

bution of W1 given W2 = w2 is multivariate normal with mean

µ1 + V12V
−1
2 (w2 − µ2),

and the covariance

V1 − V12V
−1
2 V ′

12.

For binary variables, the conditional distribution of one variable W1 = 1 given W2 =

w2 is

p(W1 = 1|W2 = w2) = E(W1|W2 = w2). (3.8)

By Taylor expansion, equation (3.8) becomes

p(W1 = 1|W2 = w2) ≈ µ1 + V12V
−1
2 (w2 − µ2).

However, this proposed approach requires to model missingness indicator correctly. If

the model of missingness is misspecified, equation (3.4) may be biased, also the proposed

approach would not be as efficient as the model of the missingness is correctly specified.

For informative missingness, the choice of variables in the model of missingness indi-

cator is important. If the model for the missingness indicator can not be determined with

certainty, sensitivity analysis is needed to decide the model for Ri. Sensitivity analysis,
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which fit a range of different nonignorable missing patterns by changing a subset of pa-

rameters. Discussions about sensitivity analysis can be found in Rubin (1977), Zhu and

Lee (2001), Verbekr et al. (2001), Molenberghs et al. (2001),and Kenward (1998).

3.3.1 Examples

In this section, we provide two simple examples to illustrate the proposed method. The

first example shows how to handle missing covariates under ignorable missingness for

continuous variables. The second example shows how to handle the missing response

under nonignorable missingness for binary response variables. Although these examples

show how to handle missing responses or covariates, the proposed approach is able to

handle both missing response and covariates.

Example 1 Consider a generalized linear model

yi = βxi + εi, (3.9)

where εi has a normal distribution with mean 0 and variance σ2, and xi has N(µx, σ2
x).

Suppose yi is observed but xi has some missing values. The missingness indicator

ri = 1 for xi being observed and ri = 0 for xi being missing. The true probability of xi

being observed is

Pr(ri = 1|yi, xi) =
exp(αyi)

1 + exp(αyi)
. (3.10)

We model the probability of xi being observed as the true given in (3.10). There are

three parameters β, α, and µx that need to be estimated. Let Wi = (ri, yi, ri ∗ xi). We

solve following equation to obtain estimators for the three parameters.

D′
wV

−1
w

N∑
i=1

(Wi − µw) = 0, (3.11)

The unconditional mean of yi is E(y) = µy = βµx, and let µr be the mean of ri and µrx

be the mean of ri ∗ xi, the unconditional mean of Wi can be expressed as

µw = E(Wi) =


E(r)

E(y)

E(rx)

 =


µr

µy

µrx

 =


∫
y

eαy

1+eαy f(y)dy

βµx∫
x

∫
y

eαy

1+eαy xf(y|x)f(x)dxdy

 ,
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where f(y) is the density of y, f(y|x) is the density of y given x, and f(x) is the density

of x, which are given by

f(y) =
exp(−(y − µy)2/(2σ2))√

2πσ2

f(y|x) =
exp(−(y − βx)2/(2σ2))√

2πσ2

f(x) =
exp(−(x− µx)2/(2σ2

x))√
2πσ2

x

.

Let A1 = Pr(r = 1|y) = eαy

1+eαy , A2 = ∂Pr(r=1|y)
∂α = yeαy

(1+eαy)2
, D can be writen as

D′ =


∂µr

∂β
∂µy

∂β
∂µrx

∂β

∂µr

∂α
∂µy

∂α
∂µrx

∂α

∂µr

∂µx

∂µy

∂µx

∂µrx

∂µx



=


∫
y A1

∂f(y)
∂β dy µx

∫
x

∫
y A1xf(x)∂f(y|x)

∂β dxdy∫
y A2f(y)dy 0

∫
x

∫
y A2xf(y|x)f(x)dxdy∫

y A1
∂f(y)
∂µx

dy β
∫
x

∫
y A1xf(y|x)∂f(x)

∂µx
dxdy

 ,

Since D′ does not have an explicit form, the numerical integration is needed. In

addition, V matrix in equation (3.11) can be estimated empirically. we solve β̂, α̂, and µ̂x

from equation (3.11).

Example 2 Suppose that each subject is measured at time t = 1, 2. The response

variables are yi1 and yi2, and the covariate xi is binary. We assume that xi has a Bernoulli

distribution with mean µx. Considered yit follows the logistic regression model

logit yit = βt(t− 1) + βxi. (3.12)

Based on the regression model, the unconditional mean of yit is

µt = E(yt) =
eβt(t−1)+β

1 + eβt(t−1)+β
µx +

eβt(t−1)

1 + eβt(t−1)
(1− µx) .

We assume that both yi1, xi are observed but yi2 has some missing values. The

missingness indicator for yi2 is ri. The missingness indicator is

logit ri = α0 + α1yi2. (3.13)
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We model the missingness indicator following the true missingness indicator. There

are five parameters (βt, β, α0, α1, µx) that need to be estimated. If wi only includes single

variables yi1, ri ∗ yi2 xi, and ri, then there are only four independent equations for five

parameters. Therefore, we need to add at least one cross product from yi1, ri ∗ yi2 xi, and

ri to obtain enough equations to solve the parameters. Let Wi = (ri, yi1, xi∗yi1, ri∗yi2, xi),

we solve the following equation to obtain estimators for the parameters.

D′
wV

−1
w

N∑
i=1

(Wi − µw) = 0, (3.14)

The expectation of Wi is given as follows

µw = E(Wi) =



µr

µy1

µxy1

µry2

µx


=



eα0+α1

1+eα0+α1
µ2 + eα0

1+eα0 (1− µ2)

µ1

eβ

1+eβ µx

eα0+α1

1+eα0+α1
µ2

µx


.

Let

A1 =
eα0+α1

1 + eα0+α1

A2 =
eα0

1 + eα0

B1 =
∂A1

∂α0
=
∂A1

∂α1
=

eα0+α1

(1 + eα0+α1)2

B2 =
∂A2

∂α0
=

eα0

(1 + eα0)2

µ̇1β =
eβt+β

(1 + eβt+β)2

µ̇2β =
eβt

(1 + eβt)2
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D′ can be writen as

D′ =



∂µr

∂βt

∂µy1
∂βt

∂µxy1
∂βt

∂µry2
∂βt

∂µx

∂βt

∂µr

∂βx

∂µy1
∂βx

∂µxy1
∂βx

∂µry2
∂βx

∂µx

∂βx

∂µr

∂α0

∂µy1
∂α0

∂µxy1
∂α0

∂µry2
∂α0

∂µx

∂α0

∂µr

∂α1

∂µy1
∂α1

∂µxy1
∂α1

∂µry2
∂α1

∂µx

∂α1

∂µr

∂µx

∂µy1
∂µx

∂µxy1
∂µx

∂µry2
∂µx

∂µx

∂µx



=



(A1 −A2)µ̇1βµx + µ̇2β(1− µx) 0 0 A1µ̇1βµx + µ̇2β(1− µx) 0

(A1 −A2)µ̇1βµx
eβ

(1+eβ)2
eβ

(1+eβ)2
A1µ̇1βµx 0

B1µ2 +B2(1− µ2) 0 0 B1µ2 0

B1µ2 0 0 B1µ2 0

(A1 −A2)( eβt+β

1+eβt+β − eβt

1+eβt
) eβ

1+eβ − 1
2

eβ

1+eβ A1( eβt+β

1+eβt+β − eβt

1+eβt
) 1


.

All estimates of parameters are obtained by solving equation (3.14).

3.4 Application

In this section, we apply the proposed approach for existing data sets with missing values.

The first data studies translaryngeal intubation. It is a special case of longitudinal model-

GLM with some missing covariate values. The second data studies contracepting women.

It has monotone missing responses. The third data set studies hip fracture women. It

contains both missing response variables and covariates. We compare the proposed method

with multiple imputation method (Paik, 1997, Lipsitz et al., 2000), the weighted approach

(Robins et al., 1995), and maximum likelihood approach for these data sets.

3.4.1 TLI Data

The data is based on a translaryngeal intubation study (Ibrahim, 1990 and Colice, Stukel,

and Dain, 1989). The data set involves a study of 82 patients who experienced transla-

ryngeal intubation (TLI) for more than four days and are prospectively evaluated for

laryngeal complications. The study is designed to identify a group of patients experienc-

ing prolonged TLI (more than four days) and to prospectively evaluate the incidence and
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the type of laryngeal complications they might suffer. The data are collected from the

patients during the period of TLI. Three covariates (serum albumin x1, Serum creatinine

x2, and the ratio of laryngeal size to tracheal tube size x3) are incomplete. The response

variable is dichotomized to 0 or 1,with 0 representing no damage of the larynx at baseline,

and 1 otherwise. All covariates are dichotomized too. More details of this data is given

by Ibrahim (1990).

The marginal regression model for this data is

logit pr(yi = 1|x1i, x2i, x3i) = β0 + β1x1i + β2x2i + β3x3i. (3.15)

For the proposed approach, we treat response variable and covariates as random

variables. The “extended-sense” outcomes include y, x and cross products of y and x,

namely,

[y,R1x1, R2x2, R3x3, R1yx1, R2yx2, R3yx3], (3.16)

where R1, R2, and R3 are missingness indicators for x1, x2, and x3 and Rki × xki is xki if

Rki = 1 and 0 if Rki = 0, where k = 1, 2, 3. The missingness indicators are modeled as

Pr(Rki = 1|yi, x1i, x2i, x3i) =
eg

′
iα

1 + eg
′
iα
,

where gi is a combination of the elements of (yi, x1i, x2i, x3i). Because the missingness

indicator for TLI data is assumed as MAR, we only use variable y in g.

We compare the proposed method with multiple imputation methods (Paik, 1997,

Lipsitz et al., 2000) and the maximum likelihood approach (Ibrahim, 1990). For multiple

imputation, conditional models are used to impute the missing outcome data. We impute

missing values in x1, x2, x3 by drawing a random sample from a Bernoulli distribution

with probability of success

Pr(xki = 1|yi, xk−1i) =
em

′
iγ

1 + em
′
iγ
, k = 1, 2, 3

where mi is some combination of the elements of (yi, xobs). In particular, m1 = (y),

m2 = (x1, y), and m3 = (x1, x2, y). The imputed data along with observed data are

analyzed by GLM. Five imputations are generated.
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For the maximum likelihood approach, it is followed by Ibrahim (1990). Since all

covariates are binary variables, we specify a joint discrete distribution on X ′ = (x1, x2, x3)

as

f(xi|γ) = Π8
j=1γ

I(Xi)j

j ,

where I(Xi) is an indicator function. For each missing Xi, we fill missing values by the

possible values (0 and 1) multiplying by the corresponding probability Pr(Xm
i |Xo

i , yi).

Then obtain parameters by solving weighted generalized linear model.

The results are given in table 9. Table 9 indicates that all estimations are not signif-

icantly different from 0. All three methods yield similar estimates and variances.

3.4.2 Contracepting Women Data

This data is a longitudinal randomized clinical trial studying contracepting women (Machin

et al, 1988, Fitzmauris, 2000). In this trial 1151 women receive an injection of either 100

or 150 mg of depot-medroxyprogesterone acetate (DMPA) at the beginning of the study

and receive three additional injections at 90-day intervals.

Throughout the study each woman is required to complete a menstrual diary. The

diary data is used to generate a sequence of binary responses for each subject according

to whether or not she has experienced amenorrhea in the four successive three-month

intervals. There is monotone dropout missingness. More than 30% of subjects dropped

out before the completion of the trial.

The regression model (Fitzmauris, 2000) is formulated as

logit pr(yit = 1|xi) = β0+β1(t−1)+β2(t−1)2+β3xi+β4xi×(t−1)+β5xi×(t−1)2, (3.17)

where t = 0, 1, 2, 3 and xi is the treatment. We denote xi = 0 for DMPA dose 100mg and

xi = 1 for DMPA dose 150mg.

For the proposed approach, we treat response variables, missingness indicators, and

covariates as random variables. Since the missingness indicator is MAR and missing

pattern is monotone, the missingness indicators are modeled as

Pr(Rit = 1|yi1, ..., yi4, xi) =
eg

′
iα

1 + eg
′
iα
,
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where the missingness indicator Rit = 1 if yit+1 is observed and Rit = 0 if yit+1 is missing

and gi is a combination of the elements of (yi1, ..., yi4, xi). In this example, g1 includes y1,

g2 includes y2, and g3 includes y3 based on data. There are 13 parameters (six β’s, µx, six

α’s) need to be estimated. The “extended-sense” outcomes include all response variables,

covariate, missingness indicators, and cross products of y and x, R, namely,

[y1, xy1, R1y2, R1xy2, R2y3, R2xy3, R4y4, R3xy4, x,R1, R2, R3, R1y1, R2y2, R3y3]. (3.18)

We apply unconditional GEE to w to solve all parameters.

We compare our approaches with the weighted, multiple imputation and our proposed

approach in chapter 2. For our proposed approach in chapter 2, we use all response

variables, covariates and the cross products of y and x in data matrix,

U = [y1, y2, y3, y4, xy1, xy2, xy3, xy4, x].

We briefly describe the weighted method here. In the weighted approach, the proba-

bility of an observation being observed is modeled as

Pr(Rit = 1|y1, ..., yit, xi) =
eg

′
iγ

1 + eg
′
iγ
,

where gi is a combination of the elements of (yi1, ..., yit, xi). Specifically, for this appli-

cation, we modeled the probability of yit being observed condition on previous responses

and covariate xi as

λit = Pr(Rit = 1|yi1, ..., yit−1, xi) =
eγ0+γ1yi1+...+γt−1yit−1+γxi

1 + eγ0+γ1yi1+...+γt−1yit−1+γxi
.

The weights Wi in (2.3) are calculated by taking the inverse of the above estimated prob-

ability of yit being observed. The covariance matrix of β̂ of the weighted GEE (Robins et

al., 1995) is given by

Σβ = (
K∑
i=1

∂µ′i
∂β

V −1
i Wi

∂µi
∂β

)−1
K∑
i=1

EiE
′
i(

K∑
i=1

∂µ′i
∂β

V −1
i Wi

∂µi
∂β

)−1 ,

where Ei = Ui−(
K∑
i=1

UiS
′
i)(

K∑
i=1

SiS
′
i)Si, Ui = ∂µ′i

∂β V
−1
i (Yi−µi(β̂)), and Si =

∑
tRit−1Zit(Rit−

λit) is the score component for the ith subject from the missingness indicator model (Robins

et al., 1995, Preisser et al., 2002).
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For the multiple imputation, we replace the missing values sequentially based on the

imputation using logistic model:

Pr(yit = 1|y1, ..., yit, xi) =
eα0+α1yi1+...+αt−1yit−1+αxi

1 + eα0+α1yi1+...+αt−1yit−1+αxi
.

The estimator of multiple imputation is the average of estimators from each imputa-

tion. The covariance of estimator (Rubin, 1978) is given by

Σ(β) = Ū + (1 +
1
m

)B,

where m is the number of the multiple imputations, and Ū = 1
m

m∑
j=1

Uj is the average of

within-imputation variance, where Uj is the variance associated with βj with

Uj = (
K∑
i=1

∂µ′i
∂β

V −1
i

∂µi
∂β

)−1
K∑
i=1

∂µ′i
∂β

V −1
i (Yi − µi(β̂))(Yi − µi(β̂))′V −1

i

∂µi
∂β

(
K∑
i=1

∂µ′i
∂β

V −1
i

∂µi
∂β

)−1 .

Here B = 1
m−1

m∑
j=1

(βj − β̄)2 is the variance between imputations.

The results are given in table 10. The proposed approach I and II and the weighted

method give similar standard errors for most of the regressors. The only exception is the

effect of time2, the proposed approach II shows that the effect is significant but the other

three approaches show no significance. Multiple imputation provides similar estimations

to the other three approaches but has highest standard errors among all approaches.

3.4.3 Missing Covariate

This example investigates (Allison, 2001) 220 caucasian women, at least 60 years old, who

are treated surgically for hip fractures in Philadelphia area (Mossey, Knott,and Craik,

1990). They are interviewed three times after the hospital release: at 2 months, 6 months,

and 12 months. The outcome variable is a measurement of depression, on a scale from

0 to 60. The four related covariates are the number of self-care that could be completed

without assistance (x1, ranges from 0 to 3), the degree of pain experienced by the patient

(x2, ranges from 0 (none) to 6 (constant)), self-rated health (x3, measured on a four-point

scale, 1 = poor, 4 = excellent), and whether able to walk without aid at home (x4, 0 =

no and 1 = yes).
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We use the subset of the second data example to create missing covariates. We select

138 subjects with complete responses. We consider a relatively simpler model and is given

by

yit = β1xit2 + β2w1 + β3w2 + εit .

We make the missing patterns of x2 as monotone. There are about 24% of the

covariate missing. We compare the proposed approach with the multiple imputation

(Paik, 1997, Lipsitz et al., 2000) and the weighted GEE (Robins et al., 1994). For the

multiple imputation approach, we imputed missing values for t = 1 first then for t = 2

and 3. We apply the GEE based on imputed values and observed data.

For the proposed approach, since the missingness indicator is MAR and missing pat-

tern is monotone, the missingness indicators are modeled as

Pr(Rit = 1|yi1, ..., yi3, xi1, ..., xi3) =
eg

′
iα

1 + eg
′
iα
,

where the missingness indicator Rit = 1 if xit is observed and Rit = 0 if xit is missing and

gi is a combination of the elements of (yi1, ..., yi3, xi1, ..., xi3). In this example, g1 includes

y1, g2 includes y2, and g3 includes y3 based on data. There are 12 parameters (three

β’s, three µx, six α’s) need to be estimated. The “extended-sense” outcomes include all

response variables, covariate, missingness indicators, and cross products of y and x, R,

namely,

[y1, R1x1, R1x1y1, y2, R2x2, R2x2y2, y3R3x3, R3x3y3, R1, R2, R3, R1y1, R2y2, R3y3]. (3.19)

We apply unconditional GEE to w to solve all parameters.

For the weighted method, the probability of being observed is modeled as

Pr(Rit = 1|y1, ..., yit, xi1, ..., xit) =
eg

′
iγ

1 + eg
′
iγ
,

where gi is a combination of elements in (yi1, ..., yit−1, xi2).

For our proposed approach in chapter 2, we use

U = [y1, y2, y3, x1, x2, x3, x1y1, x2y2, x3y3].

The results are given in table 11. The results show that all four approaches give

similar estimations. Two proposed approaches provide slight larger standard errors.
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3.5 Simulations

We conduct several simulations to study the finite sample performance of the proposed

approach for ignorable and informative missingness. Parameters in the simulations are

based on the example data.

3.5.1 Simulation Based on TLI Data

Simulations are conducted based on the TLI data (Ibrahim, 1990). There is one response

variable and three covariates. The missing values occur on the covariate. The response

variable is fully observed. The covariates are generated as correlated binary variables

based on the sample means and covariance of observed x1, x2, and x3. The response

variable is generated with the logistic model

logit pr(yi = 1|x1i, x2i, x3i) = β0 + β1x1i + β2x2i + β3x3i. (3.20)

All β’s in (3.20) are estimated from data by using GLM based on complete data.

The true missingness indicator is specified such that the missingness depends on the

observed outcome data. This ensures that the missing is MAR. The missingness indicator

Rki is 1 if xki is observed and 0 if xki is missing, k = 1, 2, 3. The probability of xki being

observed is given as

logit pr(Rki = 1|yi, xki) = α0 + α1yi. (3.21)

All α’s are modified based on data to increase the missing rate. The missing rate is about

32 %. The simulation uses same sample size 82.

The second simulation based on this data modifies β3 and increases sample size to

200. Also α are changed to obtain different missing rate.

We compare our proposed approach with multiple imputation (Paik, 1997) and maxi-

mum likelihood approach (Ibrahim, 1990) based on the simulation size of 1000. The biases

and standard errors for the first simulation are given in Table 12 and for the second are

given in 13.

Table 12 indicates that the proposed approach and the maximum likelihood approach

yield similar biases and the biases are smaller than the multiple imputation estimates.
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The standard errors of the proposed approach and the maximum likelihood approach are

similar but they are larger than those of the multiple imputation estimates.

Table 13 indicates that the proposed approach and the multiple imputation have sim-

ilar biases and standard errors, although the maximum likelihood approach yields smaller

biases and standard errors for the intercept and x1, it has larger biases and standard errors

on x2 and x3. When missing rate increases, the biases increase for all three approaches.

3.5.2 Simulation Based on Women Data

We simulate data based on the women contracepting data with the sample size as 250.

Both response variables and covariate are binary variables. The response variables given

the covariate x follow a logistic model:

logit pr(yit = 1) = β0 + βt(t− 1) + βxxi t = 1, ..., 4.

Correlated response variables are generated following the procedure by Preisser (2002)

and the covariate is generated by Bernoulli distribution with the mean as the sample mean

of x from the women contracepting data. The missing values occur in responses only. The

true missingness indicator is specified such that the missingness is monotone and depends

on the previous observed outcome. This ensured that the missing is MAR. The missingness

indicator Rit is 1 if yit is observed and 0 if yit is missing, where t = 2, 3, 4. There is no

missing in y1. The true missingness indicator follows logistic model and only depends on

the previous response y.

logit pr(Rit = 1|yi1, ..., yit, xi) = α0 + α1yi(t−1). (3.22)

We choose α such that the missing rate is about 27% and also with another missing rate

as 53%.

The bias and standard error of the estimators are provided in Table 14. When the

missingness indicators are correctly specified, the proposed approach has smallest biases

for most of the estimations and has similar standard error for most of the estimators to

multiple imputation. The standard errors of these two approaches are smaller than those
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of the weighted GEE estimators (with correctly specified missingness indicator) and our

first proposed approach.

3.5.3 Simulation Based on Missing covariates Data

We simulate data based on hip fracture data with missing covariates. The means of

response (y1, y2, y3) given covariate xit2 are

E(yit) = β1xit2 + β2w1 + β3w2 , (3.23)

and the covariance is Σy. Three covariates are generated by multinormal distribution with

mean µx2 and covariance Σx2 . They are truncated according to the range of x2.

The means and covariances of y and covariates are based on the sample mean and

variance of the data. The missingness only occurs in the covariate. The true missingness

indicator is specified such that the missingness is informative.

Pr(Rit = 1) = α0 + α1yit + α2xit .

The parameters α0 and α1 are based on the estimates from the data, but α2 is

artificial. We setα2 = 0.5. We compare our proposed approach with maximum likelihood

approach (EM approach). For both approach , we model the missingness indicator the

same as true missingness indicator. We also show results for weighted method and multiple

imputation for reference.

The biases and standard errors are provided in Table 15. The results are based on 500

simulations with sample size 200. The table shows that our proposed approach and max-

imum likelihood approach having similar biases and standard errors for covariate effects,

but the proposed approach has slightly smaller biases and standard errors than maximum

likelihood approach for time effects. Since the missingness indicator is informative, the

weighted approach and multiple imputation do not give consistent estimations. Table 15

show that multiple imputation gives more biases and larger standard errors than weighted

method, while weighted method gives slightly larger biases and standard errors than our

proposed approach and the maximum likelihood approach.
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3.6 Discussion and conclusion

The proposed approach is based on unconditional expectation of all possible variables and

an approximation to the multivariate normal distribution. This approach avoids complete

specifying the full joint distribution of all variables. Although it requires some assumptions

about the distributions of covariates and associations among them, in general they are easy

to satisfy.

Similar to the weighted method, our approach requires model assumptions for missing-

ness indicator, but it can easily handle nonignorable missingness without full specification

of the joint distribution of covariates, responses, and missingness indicator. In addition,

our proposed approach can easily extend to arbitrary missing pattern while the weighted

method and multiple imputation cannot.

The simulation studies suggest that the proposed approach has negligible bias. The

simulation results also indicate that the bias and the variances of the proposed estimators

are comparable to the multiple imputation, weighted method, or maximum likelihood. But

since there are many possible missing data configurations, it is difficult to draw definitive

conclusions from limited simulations.

There are some drawbacks of the proposed approach. In particular, it does not

perform well for the models when matrix D is close to singular, because there can be

convergence problem. But this problem could be solved by including cross products of

variables in response variables, covariates, and missingness indicators.
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Table 9: Estimates for TLI
estimate SE Z P-value

Int β̂MI -0.0838 0.3900 -0.2149 0.8299

β̂prop 0.0385 0.3929 0.0980 0.9219

β̂ml 0.0604 0.3769 0.1603 0.8966

x1 β̂MI -0.0079 0.5290 -0.0149 0.9881

β̂prop -0.0297 0.5327 -0.0558 0.9555

β̂ml 0.0894 0.5043 0.1773 0.8850

x2 β̂MI 0.3913 0.4983 0.7853 0.4323

β̂prop 0.3855 0.4944 0.7797 0.4356

β̂ml 0.2876 0.4822 0.5964 0.5361

x3 β̂MI 0.1307 0.4873 0.2682 0.7885

β̂prop -0.0941 0.4950 -0.1901 0.8492

β̂ml -0.0991 0.4442 -0.2231 0.8200

Table 10: Estimates for Women data
estimate SE Z P-value

Int β̂MI -1.5537 0.1074 -14.4665 0.0000

β̂w -1.4923 0.0967 -15.4323 0.0000

β̂propI -1.4890 0.1053 -14.1406 0.0000

β̂propII -1.5788 0.1083 -14.5780 0.0000

time β̂MI 0.6511 0.1894 3.4377 0.0006

β̂w 0.5335 0.1073 4.9720 0.0000

β̂propI 0.5139 0.1305 3.9379 0.0001

β̂propII 0.7195 0.1420 5.0669 0.0000

t2 β̂MI 0.0299 0.0604 0.4950 0.6206

β̂w -0.0058 0.0256 -0.2266 0.8207

β̂propI 0.0019 0.0398 0.0477 0.9620

β̂propII -0.0971 0.0368 2.6386 0.0083

trt β̂MI 0.1024 0.1553 0.6594 0.5096

β̂w 0.1057 0.1395 0.7577 0.4486

β̂propI 0.1057 0.1412 0.7486 0.4541

β̂propII 0.1141 0.1545 0.7385 0.4602

trt*t β̂MI 0.4734 0.2763 1.7134 0.0866

β̂w 0.4069 0.1559 2.6100 0.0091

β̂propI 0.4248 0.1829 2.3226 0.0202

β̂propII 0.4272 0.1791 2.3853 0.0171

trt*t2 β̂MI -0.1446 0.0877 -1.6488 0.0992

β̂w -0.1318 0.0374 -3.5241 0.0004

β̂propI -0.1271 0.0559 -2.2737 0.0230

β̂propII -0.1341 0.0383 -3.5031 0.0004
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Table 11: Estimates for missing covariate
estimate SE Z P-value

x1 β̂MI 1.4949 0.1716 8.7115 0.0000

β̂w 1.4080 0.1744 8.0734 0.0000

β̂propI 1.8694 0.2485 7.5227 0.0000

β̂prop 1.8887 0.2669 7.0764 0.0000

w1 β̂MI 10.5166 0.6187 16.9979 0.0000

β̂w 11.2639 0.4926 22.8662 0.0000

β̂propI 10.1055 0.6629 15.2444 0.0000
ˆβprop 10.7647 0.7816 13.7726 0.0000

w2 β̂MI 9.4779 0.5283 17.9404 0.0000

β̂w 10.3455 0.5273 19.6198 0.0000

β̂propI 9.3242 0.5500 16.9531 0.0000

β̂prop 10.0871 0.6579 15.3323 0.0000

Table 12: Biases, square root of mean squared errors (RMSE) and standard errors for
simulation based on TLI with sample size 82

true β ML MI Prop
Est Int -0.1642 -0.0364 0.0610 -0.0356
RMSE(std) 0.3416 (0.3397) 0.2701(0.2631) 0.3457(0.3439)
Est x1 -0.4013 0.0182 0.2063 -0.0201
RMSE(std) 0.4743(0.4740) 0.4422(0.3911) 0.4752(0.4748)
Est x2 0.3554 0.0932 -0.1297 0.0839
RMSE(std) 0.5859(0.5784) 0.4864(0.4688) 0.5861(0.5801)
Est x3 0.1093 0.0590 -0.0133 -0.0058
RMSE(std) 0.8084(0.8062) 0.6008(0.6007) 0.8108(0.8108)

Table 13: Biases and standard errors for simulation based on TLI with sample size 200
beta ML MI Prop

mir=40 % Bias Int -0.1642 -0.0044 0.0078 -0.0090
std 0.2792 0.2801 0.2803
Bias x1 -0.4013 -0.0164 -0.0313 -0.0297
std 0.4520 0.4558 0.4650
Bias x2 0.3554 0.1540 0.0105 0.0200
std 0.5131 0.4530 0.4612
Bias x3 1.6093 -0.1030 0.0720 -0.0612
std 0.5801 0.4301 0.4290

mir=70 % Bias Int -0.1642 -0.0531 -0.0006 0.0143
std 0.2891 0.3178 3201
Bias x1 -0.4013 0.0233 0.0545 -0.0380
std 0.5081 0.6001 0.6585
Bias x2 0.3554 -0.1312 -0.0557 0.0607
std 0.5383 0.5810 0.6012
Bias x3 1.6093 -0.2011 -0.1001 -0.1200
std 0.5889 0.5427 0.5431

Note: mir represents the missing rate of the data, e.g. 40% means 40% subjects have missing values.
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Table 14: Biases and standard errors for the simulation based on women data with sample
size 250

true β WEE MI PropI PropII
mir=27% Est Int -1.5072 -0.0158 -0.0133 -0.0350 -0.0072

std 0.1644 0.1641 0.1686 0.1640
Est time 0.5114 -0.0115 0.0026 0.0065 0.0004
std 0.0640 0.0562 0.0654 0.0622
Est x 0.2653 -0.0058 -0.0029 0.0124 -0.0010
std 0.2064 0.1801 0.1810 0.1800

mir=53% Est Int -1.5072 -0.0058 -0.0100 -0.0048 -0.0072
std 0.1909 0.1868 0.1948 0.1910
Est time 0.5114 -0.0129 0.0009 0.0204 0.0021
std 0.0842 0.0731 0.0860 0.0738
Est x 0.2653 0.0008 0.0152 -0.0108 -0.0100
std 0.2329 0.2220 0.2417 0.2310

Note: mir represents the missing rate of the data, e.g. 27% means 27% subjects have missing values.

Table 15: Estimates and standard errors for 500 simulation based on missing covariates
data with sample size of 200

true β WEE MI ML Prop
missingrate 25% n=200
Est Int 2.3853 2.4374 2.2538 2.3983 2.4046
std 0.1116 0.1315 0.0990 0.1035
Est time 8.2119 7.9560 9.2176 8.1063 8.1205
std 0.5891 0.6776 0.5192 0.5134
Est x 6.3340 6.0858 7.3361 6.1968 6.2011
std 0.4032 0.8326 0.4008 0.3730
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General Conclusion

This dissertation proposed a class of semiparametric estimators, which is consistent when

missingness mechanism is either ignorable or nonignorable. The proposed estimators are

based on unconditional model, , therefore, we have certain assumptions on covariates and

associations among covariates. But they do not require full specification of the distribu-

tions, only the first few moments of covariates are necessary, and generally only the first

and second moments, which makes the assumptions are easy to meet. This is a significant

advantage over likelihood-based approaches.

When missingness mechanism is MAR, The proposed approaches does not require

additional model assumptions for missingness mechanism, only use available cases to ob-

tain consistent estimators. This is a significant advantage over weighted and multiple

imputation methods.

The results of the simulation study suggest that the proposed approaches have neg-

ligible bias either under MAR or nonignorable missingness. The simulation results also

indicate that the bias of the estimators from the proposed approach is comparable to the

imputation, weighted method, and maximum likelihood approach in most of the situa-

tions. The variances of the proposed estimators are comparable to those of the weighted

and imputation approaches for missing covariates or missing both. Under missing response

situation, the first propose approach has larger variances than the weighted GEE and mul-

tiple imputation. But the second propose approach has similar or smaller variances than

the weighted GEE and multiple imputation when missingness is correctly specified.

The proposed approach can easily handle nonignorable missingness. But weighted

method cannot be extended to nonignorable missingness easily, while the multiple impu-

tation has to use Bayesian imputation approach.

Furthermore, the proposed method can easily be applied to arbitrary missing patterns.

The weighted method cannot be easily extended to arbitrary missing patterns. Sequential

imputation approach (Paik, 1997) could be extended to arbitrary missing patterns, but it
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does perform as well as the proposed approach based on the simulation results.

Although currently we have no extensive simulation study results available, we con-

jecture that the proposed method will perform well for other types of data sets, it will be

very interesting to study the results of applying the approach to other types of data sets

(such as count data). If the future research could overcome the numerical difficulties in

solving unconditional equations, we could apply these approach more easily and widely.

Since we have numerical difficulties in solving unconditional equations and lots of

nuisance parameters sometime, we are considering using conditional model or partial con-

ditional model to handle missing values. We are developing methodology based on con-

ditional model, which has similar idea to the approach proposed by Lipsitz et al. (2000),

the approach based on conditional model could reduce the number of parameters. We

think partial conditional model is another way to handle missing values. The partial con-

ditional model we mentioned here means we treat fully observed covariates not as random

variables but treat covariates with missing values as random variables. By this way, we

could reduce the number of parameters and make the equations more easily to solve.
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Proofs of the Theorems

Proofs in Chapter 2

Proof of Lemma 2.1: We write

Eψ(g(U, ψ)|R = r, Ur = u) =
∑
u

g(U;ψ)Pψ(U = u|R = r, Ur = u)

=
∑
u

g(U;ψ)
Pψ(U = u,R = r, Ur = u)

Pψ(R = r, Ur = u)

=
∑
u

g(U;ψ)
Pψ(R = r|U = u, Ur = u)Pψ(U = u, Ur = u)

Pψ(R = r|Ur = u)Pψ(Ur = u)
.

Under the MAR assumption, we have

Pψ(R = r|U = u, Ur = u) = Pψ(R = r|Ur = u).

Therefore,

∑
u

g(U;ψ)
Pψ(R = r|U = u, Ur = u)Pψ(U = u, Ur = u)

Pψ(R = r|Ur = u)Pψ(Ur = u)

=
∑
u

g(U;ψ)
Pψ(U = u, Ur = u)

Pψ(Ur = u)

=
∑
u

g(U;ψ)Pψ(U = u|Ur = u).

Proof of Lemma 2.2: The estimating function g(U, ψ) =
∑N

i=1D
′V −1(Ui−µi), where

D = ∂µ/∂ψ.

∑
r

Eψg(U, ψ)|Rr, Ur = u =
∑
r

Eψg(U, ψ)|Ur = u.

We write Ui as two parts

Ui =

Uoi

Umi

 .
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Therefore, the covariance matrix Vi can be partitioned as

Vi =

 V O
i V mo

i

V mo
i V m

i

 .

Using the conditional expectation. We have

E(Ui|Uoi ) = E(

Uoi

Umi

 |Uoi ) =

E(Uoi |Uoi )

E(Umi |Uoi )

 =

 Uoi

E(Umi |Uoi )

 .

If Ui has a multivariate normal distribution, we have Uoi − µi

E(Umi − µi|Uoi )

 =

 Uoi − µi

V mo
i (V o

i )−1(Uoi − µi)

 =

 I

V mo
i (V o

i )−1

 (Uoi − µi). (4.1)

If Ui does not have a multivariate normal distribution, by Taylor expansion, equation (4.1)

becomes  Uoi − µi

E(Umi − µi|Uoi )

 ≈

 I

V mo
i (V o

i )−1

 (Uoi − µi). (4.2)

Let H = V o
i − V om

i (V m
i )−1(V mo

i )′, D = V m
i , and B = V om

i = (V mo
i )′, we have

V −1

 Uoi − µi

E(Umi − µi|Uoi )

 . (4.3)

Since BD−1B′ = V o
i −H, we have

H−1 −H−1BD−1B′(V o
i )−1 = H−1 −H−1(V o

i −H)(V o
i )−1 = (V o

i )−1,

and

−D−1B′H−1 +D−1B′(V o
i )−1 +D−1B′H−1BD−1B′(V o

i )−1

= −D−1B′H−1 +D−1B′(V o
i )−1 +D−1B′H−1(V o

i −H)(V o
i )−1 = 0.
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Therefore, (4.3) becomes H−1 −H−1BD−1

−D−1B′H−1 D−1 +D−1B′H−1BD−1

  I

V mo
i (V o

i )−1

 (Uoi − µi)

=

 H−1 −H−1BD−1V mo
i (V o

i )−1

−D−1B′H−1 +D−1 +D−1B′H−1BD−1V mo
i (V o

i )−1

 (Uoi − µi)

=

(V o
i )−1

0

 (Uoi − µi).

For a specific pattern s, we write D as

Do

Dm

, the quasi-score is

Eψ{g(U, ψ)|Rr, Ur = u} =
ni∑
i=1

D′(V o)−1(Uoi − µoi ) =
ni∑
i=1

(Do)′(V o)−1(Uoi − µoi ) = 0.

Therefore,

∑
r

Eψ{g(U, ψ)|Rr, Ur = u} =
∑
r

nr∑
i=1

(Do)′(V o)−1(Uoi − µoi ) = 0.

Proof of consitency 2.1: We assume that all subjects are i.i.d. The log quasilikelihood

for the ith subject is V −1(ui−µ), so that the log likelihood for all subjects is
∑N

i=1 V
−1(ui−

µ). The estimators ψ̂ maximize the log quasilikelihood,

Qn(ψ) =
1
N

N∑
i=1

V −1(ui − µ).

The log quasilikelihood function Qn(ψ) depends on data. Define

Q(ψ) = EψV
−1(ui − µ).

where Eψ is the expectation with respect to the true parameter ψ0. By law of large

numbers, for any ψ,

Qn(ψ) → Eψ0V
−1(ui − µ) = Q(ψ).

Note that Q(ψ) only depends on ψ.
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Lemma For any Q(ψ), Q(ψ)¡Q(ψ0) unless

P [Q(ψ) = Q(ψ0)] = 1.

Proof: Let us consider the difference

Q(ψ)−Q(ψ0) = Eψ0 [V
−1(ui − µψ)− V −1(ui − µψ0)]

≤ Eψ0 [
F (ui, ψ)
F (ui, ψ0)

− 1] = 0,

where F (ui, ψ) and F (ui, ψ0) are quasilikelihood functions.

We know ψ maximizesQn(ψ), and ψ0 maximizesQ(ψ) and for all ψ, we haveQn(ψ) →

Q(ψ) by LLN. Therefore, since two functions Qn(ψ) and Q(ψ) are getting closer, the points

of maximum should also get closer which exactly means the consitency.

Proof of Theorem 2.1: We assume that all subjects are i.i.d. The log quasilikelihood

for the ith subject is V −1(ui−µ), so that the log likelihood for all subjects is
∑N

i=1 V
−1(ui−

µ).

Proof of consitency: We assume that all subjects are i.i.d. The log quasilikelihood for

the ith subject is V −1(ui−µ), so that the log likelihood for all subjects is
∑N

i=1 V
−1(ui−µ).

The estimators ψ̂ maximize the log quasilikelihood,

Qn(ψ) =
1
N

N∑
i=1

V −1(ui − µ).

The log quasilikelihood function Qn(ψ) depends on data. Define

Q(ψ) = EψV
−1(ui − µ).

where Eψ is the expectation with respect to the true parameter ψ0. By law of large

numbers, for any ψ,

Qn(ψ) → Eψ0V
−1(ui − µ) = Q(ψ).

Note that Q(ψ) only depends on ψ.
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Lemma For any Q(ψ), Q(ψ)¡Q(ψ0) unless

P [Q(ψ) = Q(ψ0)] = 1.

Proof: Let us consider the difference

Q(ψ)−Q(ψ0) = Eψ0 [V
−1(ui − µψ)− V −1(ui − µψ0)]

≤ Eψ0 [
F (ui, ψ)
F (ui, ψ0)

− 1] = 0,

where F (ui, ψ) and F (ui, ψ0) are quasilikelihood functions.

We know ψ maximizesQn(ψ), and ψ0 maximizesQ(ψ) and for all ψ, we haveQn(ψ) →

Q(ψ) by LLN. Therefore, since two functions Qn(ψ) and Q(ψ) are getting closer, the points

of maximum should also get closer which exactly means the consitency.

The estimators ψ̂ maximize the log quasilikelihood,

Qn(ψ) =
1
N

N∑
i=1

V −1(ui − µ).

We have

Q′
n(ψ) =

1
N

N∑
i=1

D′V −1(ui − µ) = 0,

where D = ∂µ/∂ψ.

Use first-order Taylor expansion, we have

f(a) = f(a0) +5fT (a1)(a− a0), (4.4)

with f(ψ) = Q′
n(ψ), and a0 = ψ0, where ψ0 is the true parameter. Let Q′′

n(ψ) = ∂Q′/∂ψ,

by (4.4) we can write

0 = Q′
n(ψ̂) = Q′

n(ψ0) +Q′′
n(ψ1)(ψ̂ − ψ0) for ψ1 ∈ [ψ̂, ψ0],

and therefore

(ψ̂ − ψ0) = (Q′′
n(ψ1))−1(Q′

n(ψ̂)−Q′
n(ψ0) = −(Q′′

n(ψ1))−1Q′
n(ψ0). (4.5)
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The mean of −Q′
n(ψ0) is

E(Q′
n(ψ0)) =

1
N

N∑
i=1

D′V −1(E(ui)− µ) = 0,

and the variance of −Q′
n(ψ0) is

var[Q′
n(ψ0)] =

1
N
D′V −1 var{

N∑
i=1

(ui − µ)}V −1D

=
1
N
D′V −1

N∑
i=1

{var(ui − µ)}V −1D′ = D′V −1D.

By the central limit theorem, Q′
n(ψ0) converges to N(0, D′V −1D) in distribution. By

the weak law of large numbers, Q′′
n(ψ1) converges to the mean of Q′′

n(ψ1)

E(Q′′
n(ψ1)) = E[

1
N

N∑
i=1

∂D′/∂ψV −1(ui − µ)−D′V −1D]

= −D′V −1D.

Therefore, we have

−Q′′
n(ψ1)−1Q′

n(ψ0) →d N(0, (D′V −1D)−1).

Therefore, we have

√
N(ψ̂ − ψ0) =

√
N(−Q′′

n(ψ1)−1Q′
n(ψ0)) →d N(0, (D′V −1D)−1).

Proof of Theorem 2.2: We assume that all subjects are i.i.d. The log quasilikelihood

for Ith subject in s pattern is V −1
r (uri − µr), so that the log likelihood for all subjects is∑N

i=1 V
−1(ui−µ) =

∑
r

∑nr
i=1 V

−1
r (uri−µr). The estimator ψ̂ from the proposed approach

maximizes the log likelihood,

Qn(ψ) =
1
N

∑
r

nr∑
i=1

V −1
r (uri − µr).

By Lemma 2.2, we have

Q′
n(ψ) =

1
N

∑
r

nr∑
i=1

D′
rV

−1
r (uri − µr) = 0,
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where Dr = ∂µr/∂ψ.

By first-order Taylor expansion,

f(a) = f(a0) +5fT (a1)(a− a0), (4.6)

with f(ψ) = Q′
n(ψ), a0 = ψ0, where ψ0 is the true parameter. Let Q′′

n(ψ) = ∂Q′/∂ψ, by

(4.6) we can write

0 = Q′
n(ψ̂) = Q′

n(ψ0) +Q′′
n(ψ1)(ψ̂ − ψ0) for ψ1 ∈ [ψ̂, ψ0],

and therefore

(ψ̂ − ψ0) = (Q′′
n(ψ1))−1(Q′

n(ψ̂)−Q′
n(ψ0) = −(Q′′

n(ψ1))−1Q′
n(ψ0). (4.7)

The mean of −Q′
n(ψ0) is

E(Q′
n(ψ0)) =

1
N

∑
r

nr∑
i=1

D′
rV

−1
r (E(uri)− µr) = 0,

and the variance of −Q′
n(ψ0) is

var[Q′
n(ψ0)] =

1
N
D′
rV

−1
r var[

∑
r

nr∑
i=1

(uri − µr)]V −1
r Dr

=
1
N
D′
rV

−1
r

∑
r

nr∑
i=1

(var(uri − µr))V −1
r Dr =

∑
r

nr∑
i=1

D′
rV

−1
r Dr.

By the central limit theorem, the numerator in (4.7) converges to N(0,
∑

r

∑nr
i=1D

′
rV

−1
r Dr)

in distribution. By the weak law of large numbers, the denumerator in (4.7) converges to

the mean of Q′′
n(ψ1)

E(Q′′
n(ψ1)) = E[

1
N

∑
r

nr∑
i=1

D′
rV

−1
r Dr∂D

′
r/∂ψV

−1
r (uri − µr)−

∑
r

nr∑
i=1

D′
rV

−1Dr]

= −
∑
r

nr∑
i=1

D′
rV

−1Dr.

Therefore, we have

−Q′′
n(ψ1)−1Q′

n(ψ0) →d N(0, (
∑
r

nr∑
i=1

D′
rV

−1
r Dr)−1).

Therefore, we have

√
N(ψ̂ − ψ0) =

√
N(−Q′′

n(ψ1)−1Q′
n(ψ0)) →d N(0, (

∑
r

nr∑
i=1

D′
rV

−1
r Dr)−1).



75

Proofs in Chapter 3

Proof of Theorem 3.1: We assume that all subjects are i.i.d. The log quasilikeli-

hood for the ith subject is V −1(wi − µ), so that the log likelihood for all subjects is∑N
i=1 V

−1(wi − µ). The estimators ψ̂ maximize the log quasilikelihood,

Qn(ψ) =
1
N

N∑
i=1

V −1(wi − µ).

We have

Q′
n(ψ) =

1
N

N∑
i=1

D′V −1(wi − µ) = 0,

where D = ∂µ/∂ψ.

Use first-order Taylor expansion, we have

f(a) = f(a0) +5fT (a1)(a− a0), (4.8)

with f(ψ) = Q′
n(ψ), and a0 = ψ0, where ψ0 is the true parameter. Let Q′′

n(ψ) = ∂Q′/∂ψ,

by (4.8) we can write

0 = Q′
n(ψ̂) = Q′

n(ψ0) +Q′′
n(ψ1)(ψ̂ − ψ0) for ψ1 ∈ [ψ̂, ψ0],

and therefore

(ψ̂ − ψ0) = (Q′′
n(ψ1))−1(Q′

n(ψ̂)−Q′
n(ψ0) = −(Q′′

n(ψ1))−1Q′
n(ψ0). (4.9)

The mean of −Q′
n(ψ0) is

E(Q′
n(ψ0) =

1
N

N∑
i=1

D′V −1(E(wi)− µ) = 0,

and the variance of −Q′
n(ψ0) is

var[Q′
n(ψ0)] =

1
N
D′V −1var{

N∑
i=1

(wi − µ)}V −1D

=
1
N
D′V −1

N∑
i=1

{var(wi − µ)}V −1D′ = D′V −1D .
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By the central limit theorem, Q′
n(ψ0) converges to N(0, D′V −1D) in distribution. By

the weak law of large numbers, Q′′
n(ψ1) converges to the mean of Q′′

n(ψ1)

E(Q′′
n(ψ1) = E[

1
N

N∑
i=1

∂D′/∂ψV −1(wi − µ)−D′V −1D]

= −D′V −1D.

Therefore, we have

−(Q′′
n(ψ1))−1Q′

n(ψ0) →d N(0, (D′V −1D)−1)).

Therefore, we have

√
N(ψ̂ − ψ0) =

√
N(−(Q′′

n(ψ1))−1Q′
n(ψ0)) →d N(0, (D′V −1D)−1)).
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Table 16: TLI data
x1 x2 x3 y Frequency
. 0 0 0 1
0 0 0 0 10
0 0 1 0 10
0 1 0 0 6
0 1 . 0 1
0 1 1 0 2
1 0 1 0 7
1 0 0 0 1
1 1 . 0 1
. . . 1 1
. 0 . 1 1
0 . 0 1 1
0 0 0 1 9
0 0 1 1 10
0 0 . 1 2
0 1 0 1 2
0 1 1 1 7
1 0 0 1 3
1 0 . 1 1
1 0 1 1 1
1 1 . 1 1
1 1 0 1 1
1 1 . 1 3


