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Significant amounts of uncertainty owing to both modeling decisions and inher-

ent randomness are present in simulating the material and geometric nonlinear

response of structural systems to extreme loading. Computing the sensitivity of

structural response with respect to model parameters indicates which parameters

have the largest affect on the response, which can in some cases be more important

to an engineer than only the deterministic response. Considering the large num-

ber of parameters in a structural model, accurate and efficient response sensitivity

computations, or gradients of the structural response, are required for nonlinear

structural reliability, optimization, and system identification analyses. Response

sensitivity for geometric nonlinear finite element analysis are presented including a

geometrically-nonlinear displacement based-beam column element formulation, the

displacement control nonlinear static solution method, and the corotational trans-



formation of space frame finite elements. The direct differentiation method (DDM)

is used to derive the response sensitivity equations for the aforementioned formu-

lations. The response sensitivity equations for geometric nonlinear displacement-

based beam-column element are formulated in the deformed configuration using

Lagrangian strain. The derivation of the sensitivity equations for the displace-

ment control solution method is performed according to an incremental-iterative

solution strategy. The sensitivity equations of space frame formulations require

the derivative of the system triads in the deformed configuration according to the

corotational theory and the numerical algorithms for its implementation in a finite

element setting.

The derived equations are implemented in the OpenSees software framework.

To verify the accuracy of the derived equations, standalone sensitivity analysis

is performed by comparing the response sensitivity results obtained by the DDM

with those obtained by the finite difference method (FDM). The standalone sen-

sitivity analysis is performed for different element, material, and section models.

Furthermore, the response sensitivity equations are utilized to perform reliabil-

ity and ranking of importance measures for complex steel and reinforced concrete

structures.
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Response Sensitivity Formulations for Geometrically Nonlinear

Finite Element Analysis

1 Introduction

1.1 Structural Response Sensitivity

Structural response sensitivity analysis measures the change in structural response

to changes in system properties [35]. Sensitivity analysis helps identifying the

most important parameters that affect structural response for different structural

limit states. The most common applications that require response sensitivity are

such as optimization, system identification, and reliability analysis. For instance,

sensitivity analysis can be used to minimize the structural cost, and it also helps to

minimize the difference between the measured and numerical response for system

identification purposes [3].

Sensitivity analysis can be computed explicitly for linear analysis and implicitly

for nonlinear analysis using several approaches such as the finite difference method

(FDM), adjoint system method (ASM), complex perturbation method (CPM), and

direct differentiation method (DDM). The FDM is the simplest method but it re-

quires repeating the structural analysis at least once for each uncertain parameter.

The accuracy of the FDM depends on the magnitude of the parameter perturba-

tion . If the perturbed value is too small, then roundoff errors will be introduced,

while if the perturbed value is too large, inaccurate estimates of sensitivity may
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occur. The ASM is more accurate than the FDM especially for linear and non-

linear analyses of elastic systems but is not suitable for path dependent problems

[35, 69].

The CPM is also an accurate method but like the FDM requires full re-analysis

for each parameter of the finite element model. In the CPM, all parameters and

response quantities in a finite element analysis are represented using complex num-

bers and all finite element computations are carried out using complex arithmetic.

The imaginary component of a parameter is set equal to a perturbation. Then the

finite element analysis is performed and response sensitivities are obtained from

the imaginary components of the response [34].

The DDM on the other hand, in which the governing equations of structural

equilibrium, compatibility, and constitutive are differentiated exactly, is more ac-

curate and efficient than FDM and CPM. The DDM computes the response sen-

sitivity within the finite element analysis. To apply DDM, the finite element

algorithms have to be extended to include the response sensitivity equations for

material, section, and element models as well as for solution algorithms.

The application that has been used in this dissertation is reliability analysis,

and hence a brief introduction on reliability analysis is presented next.

1.2 Reliability Analysis

The study of structural reliability is concerned with the calculation and estimation

of the probability of violating the ultimate or safety limit state for the structural



3

system at any stage during its life. A limit state, G(U), is a boundary between

failure and safe performance of the structure. The probability of structural failure

is defined in terms of the reliability index, β, is the shortest distance from the origin

of the reduced random variable space to the design point (u∗) which lies on the

failure surface (G(U)=0) as shown in Fig. 1.1. Greater β represents greater safety,

or lower failure probability. The main methods of calculating the reliability index

are: first order second-moment method (FOSM), first order reliability method

(FORM), and second order reliability method (SORM). First order second-moment

reliability method is sufficient for linear structural reliability analysis where limit

state function is linearized about the mean values of its variables. However, FOSM

is not suitable for nonlinear reliability analysis. For nonlinear reliability analysis,

FORM and SORM can be used where the limit state function is linearized about

the failure point using Tylor series expansion. In this dissertation FORM is used

in performing reliability analysis where first order Tylor series expansion is used

to linearize the limit state function as shown in Fig. 1.1. The sensitivity of the

limit state function is

∂G

∂h
=
∂G

∂U

∂U

∂h
(1.1)

where ∂U
∂h

represents the response sensitivity vector with respect to parameter h

which maps to random variables in standard space. The derivative of the limit

state function ∂G
∂U

is readily available since G is a linear function of the response

quantities U .
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1.3 Finite Element Formulations

Most often, in the analysis of structural frames, linear-elastic analysis is sufficient

to capture performance of civil structures under service and operational loads.

However, civil structures may exhibit permanent (nonlinear) deformations under

extreme loads such as earthquake, blast, or tsunami. The main types of nonlin-

earity the structure may exhibit under extreme loads are material and geometric

nonlinearity. Material nonlinearity, which is also called material plasticity, is a

permanent deformation that occurs when the applied load exceeds material yield-

ing strength, e.g., strain hardening of steel and crushing of concrete. Geometric

nonlinear behavior is the change in geometry as the structure deforms due to large

displacement [15]. Many plasticity models are available to simulate the stress-strain

relationship of steel material such as elastic-perfectly plastic, isotropic, and kine-

matic strain hardening models. The most comonly used models for concrte mate-

rial are: Mander [41] and Kent-Park models [33]. For geometric nonlinear analysis,

there are three formulations available in the finite element analysis, Corotational

formulation, total Lagrangian formulation, and updated Lagrangian formulation.

In the total Lagrangian formulation, the structural deformations are calculated

based on the undeformed configuration. In the updated Lagrangian formulation,

the structural deformations are calculated based on the last deformed configura-

tion. The corotational formulation removes the rigid-body mode which allows to

separate material nonlinearity due to large deformation inside the basic system

from geometric nonlinearity due to large displacement outside the basic system.
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Many studies have shown the advantage of using the corotational formulation over

the Lagrangian formulations such as [68] and [71]. Section force-deformation can

be obtained by integrating the constitutive stress strain material models. Then

element forces can be obtained by integrating section forces or deformations along

the structural member. In finite element analysis, element formulations are based

on either principal of virtual force or principal of virtual displacement. According

to the the principle of virtual work, two types of element formulations are available

in the finite element analysis: force-based beam-column element and displacement

based beam-column element. Three coordinate systems are used to calculate ele-

ment response: global, local, and basic systems. The global coordinate system at

the element level coincides with that at the structural level. The local coordinate

system coincides with the longitudinal and transverse axes of the element. The

basic coordinate system is the local coordinate system after removing redundant

forces and rigid body modes. In the basic system, geometric nonlinearity due

to large displacements is formulated outside the basic system, whereas material

nonlinearity and geometric nonlinearity due to large deformations are formulated

inside the basic system. The model hierarchy that describes the relationships and

transitions between forces and deformations at different levels is shown in Fig. 1.2.

The focus of this dissertation is on deriving the response sensitivity equations

for geometric-nonlinear finite element formulations including displacement-based

beam-column element, displacement control solution method, and corotational

transformation of space frame elements. Therefore, brief descriptions of the afore-

mentioned finite element formulations are presented next.
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Figure 1.1: Nonlinear limit state function in two dimensional transformed basic
variable space.

1.3.1 Displacement-Based Beam-Column Elements

The formulation of displacement-based beam-column element is based on the prin-

ciple of virtual displacement method and Bernoulli assumptions in which plane

section before deformation remains plane after deformation. The formulation is

also based on assumptions of constant axial deformation and linear curvature. Ge-

ometric linear and geometric nonlinear displacement-based beam-column elements

are the most types of this formulation that are commonly used in the finite el-

ement analysis. The geometric linear displacement-based element formulation is

based on small deformations assumption. Engineering strain is used to calculate

section deformations and consequently it does not account for geometric deforma-

tions. However, geometric nonlinear response can be captured by increasing the
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number of elements and using large displacement analysis. The geometric non-

linear displacement-based element formulation is based on moderate deformations

assumption within the basic system. The formulation of the geometric nonlinear

displacement based beam-column element is obtained in the deformed configura-

tion using Lagrangian strain to determine section deformation [15].

1.3.2 Load Control and Displacement Control Methods

There are many solution strategies for static nonlinear analysis such as load control

method, displacement control method, arc length method. Most of these solutions

are based on Newton-Raphson iteration algorithm. In the load control method

(LC), the analysis is performed by applying the load incrementally and the struc-

tural responses are calculated accordingly. Load control solution scheme fails to

capture the softening behavior when structure loses its load carrying capacity. Al-

ternatives to the LC method have been developed where the applied load is treated

as an additional variable in the finite element solution. In these approaches, a con-

straint equation is imposed on the structural response in order to solve for the

applied load at each equilibrium iteration in a load step. Displacement control

(DC) is one such method where the displacement at a single degree-of-freedom

(DOF) is held constant during equilibrium iterations and the structural responses

are calculated accordingly. The main advantage of using the DC over the LC can

be summarized by its ability to capture the softening and snap through behaviors

that can be done by controlling the displacement increments.
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1.3.3 Geometric Nonlinearity: Corotational Formulation

Geometric nonlinear behaviour can be captured using either a total Lagrangian, an

updated Lagrangian, or a corotational formulation. Many studies have shown the

advantage of using the corotational formulation over the Lagrangian formulation

such as [68, 71]. One of the main advantages of the corotational formulation is its

independence of the local system while deriving the internal forces and stiffness

matrices. In a two- dimensional (2D) corotational system, an exact transformation

of displacements and forces can be obtained in two steps (basic to local and local

to global). However, the transformation in three-dimensional (3D) frame element

is more complex than 2D corotational formulation. This is because finite rotations

in three dimensional analysis do not comply with the rules of vector operations

and the results depend on the order in which rotations are applied. In order to

overcome the problem of violating vector properties, Crisfield algorithm [19] is

used to obtain the triads of the deformed configuration in the formulation of large

displacements of space frame elements.

1.4 Objective and Scope

The main objective of this dissertation is to derive the response sensitivity equa-

tions for geometric nonlinear finite element formulations including geometric non-

linear displacement-based beam-column element, displacement control solution

method, corotational transformation of a space frame element. Direct differen-

tiation method (DDM) is used to derive the sensitivity equations within the algo-
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rithms of the aforementioned finite element formulations. The derived equations

are implemented in OpenSees (Open system for earthquake engineering simula-

tion). To validate the sensitivity equations, a comparison between the DDM and

finite difference methods (FDMs) is performed using standalone sensitivity analysis

for different element, material and section models.

The first objective, presented in chapter two, is to derive and implement re-

sponse sensitivity equations for geometric nonlinear based-beam column element

formulation. The derivative of Lagrangian strain is the main step that leads to the

formulation of the response sensitivity of the aforementioned element.

The second objective, which is presented in chapter three, is to develop displace-

ment control (DC) solution method by deriving the sensitivity equations within

the algorithm of the DC. By activating sensitivity analysis for DC, the response

sensitivity gradients including sensitivity of the load factor can be recorded for the

entire response including softening and snap-through behaviors.

The third objective is to extend the corotational formulation of space frame by

including sensitivity equations in its formulation. The derivation requires follow-

ing Crisfield algorithm [19] in which the triads of the deformed configuration are

obtained. The formulation of the response sensitivity of the corotational transfor-

mation of space frame is presented in chapter four. The conclusion is presented in

chapter five.
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2 Response Sensitivity for Geometrically Nonlinear

Displacement-Based Beam-Column Elements

Accurate and efficient response gradients are required in structural reliability, opti-

mization and system identification when geometric nonlinearity is simulated for the

structural response. The direct differentiation method (DDM) is used to obtain the

response sensitivity of the displacement-based beam-column element formulation

considering moderate deformations within the basic system. The derived sensitiv-

ity equations are implemented in the OpenSees software framework. To validate

the sensitivity equations, a comparison between the DDM and finite difference

methods (FDMs) is performed through standalone sensitivity analysis for simple

example structures. Finite element reliability analysis of a steel frame structure

shows that using geometrically nonlinear displacement-based elements affects the

probability of failure, relative to that obtained with a geometrically linear element,

but not the importance ranking of the uncertain model parameters.

2.1 Introduction

Structural response sensitivity analysis measures the change in structural response

to changes in system properties [35]. Sensitivity analysis helps structural engi-

neers better understand the relationship between design variables and structural
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response under service and extreme loads. Response sensitivity, or the first deriva-

tive of the structural response, is also an important component to gradient-based

algorithms where structural response is to be optimized in order to satisfy a per-

formance objective under a variety of constraints. These algorithms are utilized in

applications such as reliability, optimization, and system identification.

For nonlinear finite element analysis of structural systems, there are several

approaches to obtain the response sensitivity with respect to model parameters:

the finite difference method (FDM), the complex perturbation method (CPM),

the adjoint system method (ASM), and the direct differentiation method (DDM).

The FDM offers a simple way to approximate the structural response sensitivity.

However, it is computationally intensive because it requires re-evaluating the entire

time history of structural response with perturbed parameters. The accuracy of

the sensitivity depends on the magnitude of each parameter perturbation. If the

perturbation is too small, then roundoff errors will be introduced; while if the

perturbation is too large, inaccurate estimates of sensitivity may occur.

The DDM is an attractive alternative to the FDMs. In the DDM, the analyt-

ical response sensitivity equations are derived and implemented within the finite

element response algorithm. The DDM computes sensitivity using the same solver

as the ordinary response while the simulation proceeds rather than by complete

re-analysis for each parameter. Many researchers have contributed to the develop-

ment of the DDM.

Essential components of the DDM for solid mechanics were laid out by [35]

with subsequent work on composites processing, fire attack, fluid-structure inter-
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action, and second order derivatives [10, 29, 74, 9]. The focus of this work is

on frame elements with material and geometric nonlinearity, for which there has

been a significant amount of research. DDM response sensitivity equations have

been developed for material nonlinear response with both displacement and force-

based element formulations [72, 58]. A mathematically equivalent approach for

the DDM sensitivity of force-based frame elements was developed by [14]. Later

extensions included geometric parameters such as nodal coordinates and cross-

section dimensions in the derivation of DDM response sensitivity equations for

both displacement and force-based formulations [31]. The effects of constitutive

models on DDM computations were investigated by [6] and [2], who found that

models with smooth state transitions lead to improved estimates of sensitivity for

applications in structural reliability analysis. With respect to geometric nonlinear-

ity, DDM response sensitivity has been developed for large displacements via the

corotational transformation [57] and for geometrically nonlinear force-based frame

elements [54].

The objective of this paper is to develop the response sensitivity of geomet-

rically nonlinear displacement-based frame finite elements. Although force-based

elements have been shown to simulate material and geometric nonlinearity bet-

ter than displacement-based elements, their implementation, along with the cor-

responding DDM, can be complex and their state determination intense in the

presence of significant material nonlinearity [39]. The implementation of geometri-

cally nonlinear displacement-based elements is relatively straightforward and more

stable in state determination. Herein, the DDM is used to obtain the response
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sensitivity for the geometric nonlinear displacement based beam-column element

formulation and the derived equations are implemented in the OpenSees software

framework. Numerical examples verify the efficiency and the accuracy of the DDM

over FDMs. The reliability analysis of a steel frame shows the importance of un-

certain material and geometric parameters relative to other uncertain structural

properties and assesses the effects of geometric nonlinear response in estimating

structural reliability.

2.2 The Application of Response Sensitivities in Finite Element Re-

liability Analysis

In reliability analysis, a performance or limit state function, g, defines the bound-

ary between safe and failure conditions for a structural system. Performance is

typically defined by a response quantity, e.g., a displacement or force, not exceed-

ing a limiting value. Negative values of g indicate the system does not satisfy the

limit state. For the case of a single performance function, the probability of failure,

Pf , is defined as

Pf =

∫
.....

∫
g≤0

f(h) dh (2.1)

where f(h) is the joint probability density function for the random variables col-

lected in the vector h. Analytical solutions to Eq. (3.2) are generally not available;

however, numerical methods such as FORM and SORM provide approximate so-

lutions. FORM approximates the failure surface as a hyperplane in the standard
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normal space of random variables, defined by the transformation Y = Y(h). The

design point, Y∗, represents the realization of the random variables that corre-

sponds to the most probable point (MPP) of failure [45, 40, 50]

The gradient of the performance function, obtained by the chain rule of differ-

entiation, is required in order to find the design point

∂g

∂Y
=

∂g

∂Uf

∂Uf

∂h

∂h

∂Y
(2.2)

where ∂g/∂Uf is easily obtained for the common case where g is a simple alge-

braic function of the nodal displacement vector Uf . The gradient of the nodal

displacements and the Jacobian of the probability transformation are represented

by ∂Uf/∂h and ∂h/∂Y, respectively. After finding the design point, e.g., using

the HLRF algorithm, the reliability index, β = ‖Y∗‖2, which measures the dis-

tance from the origin to the design point in standard normal space, is determined

and the probability of failure can be estimated by

Pf = Φ(−β) (2.3)

where Φ is the standard normal cumulative distribution function.

In addition to the probability of system failure, FORM provides a ranking of

the random variables according to their influence on failure at the design point.

An importance ranking, γ, that accounts for statistical correlation of the random



16

variables was proposed by [30]

γ = αJY∗,h∗

√
diag

(
J−1

Y∗,h∗J
−T
Y∗,h∗

)
(2.4)

where JY∗,h∗ is the Jacobian of the transformation between standard and normal

spaces evaluated at the design point and α = −∂g/∂Y is the sensitivity vector

from Eq. (2.2). In the case that the random variables are uncorrelated, JY∗,h∗ = I

and γ reduces to α. The search for the design point and the computation of

the importance ranking vector both require ∂Uf/∂h, the gradient of the nodal

response with respect to the random variables, whose computation is discussed in

the next section.

2.3 Top-Level Response Sensitivity Equations

To compute the gradient of the nodal displacements by the DDM, the governing

equations of the discrete structural response are differentiated with respect to h,

the random variables that map to the material, geometric, and load parameters of

the structural model. For nonlinear static analysis, the parameterized system of

nodal equilibrium equations is

Pr(Uf (h),h) = Pf (h) (2.5)

where the vector Pr represents the internal resisting forces of the structure. This

vector depends explicitly on h and implicitly on h via the nodal response vector
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Uf . The vector Pf represents the external loads applied to the structure. To

formulate the structural sensitivity equations for a single parameter, h, from the

vector h, Eq. (2.5) is differentiated using the chain rule

KT
∂Uf

∂h
+
∂Pr

∂h

∣∣∣∣
Uf

=
∂Pf

∂h
(2.6)

where KT = ∂Pr/∂Uf represents the tangent stiffness of the structure. Assem-

bly of the right hand side is required to obtain the response sensitivity for each

parameter in the vector h. The vector ∂Pf/∂h represents the derivative of the

external forces, which is nonzero only when the parameter h corresponds to an

external load. The derivative ∂Pr/∂h|Uf
represents the derivative of the resist-

ing force vector under the condition of fixed displacements and it is assembled

from element contributions by standard finite element procedures. Extension of

the nodal response sensitivity equations to nonlinear dynamic analysis is straight-

forward and independent of the element formulation for material and geometric

nonlinearity [26], an example of which is shown in the following section.

2.4 Gradient Computations for Geometric Nonlinear Displacement-

Based Elements

Many frame finite element formulations use a natural, or basic, system of forces

and deformations that is free of rigid body modes. This approach is advantageous

because it separates geometric nonlinearity due to large displacements outside the



18

basic system from material nonlinearity and geometric nonlinearity due to large

deformations inside the basic system. The simply-supported basic system shown

in Fig. 2.1 uses three basic forces: one axial force, q1, and the bending moment

at each end of the element, q2 and q3. The corresponding deformations are the

extension of the element, v1, and the tangents to the deflected shape, v2 and v3,

at each end of the element.

1

4
6

v2

3

5
(a) Global DOFs (b) Basic System

q1

v32

q3

q2

v1

I I

J
J

ua(x)

ut(x)

x

Figure 2.1: Two-dimensional frame finite elements: (a) global DOFs for displace-
ments and forces; and (b) basic system of forces and deformations.

A displacement-based Euler-Bernoulli formulation is used herein with the as-

sumption of moderate rotation for geometric nonlinearity [32] in the basic system.

With this assumption, the axial deformation along the beam is

εa(x) =
∂ua(x)

∂x
+

1

2

(
∂ut(x)

∂x

)2

(2.7)

while the curvature is determined from the second derivative of the transverse
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displacement field

κ(x) =
∂2ut(x)

∂x2
(2.8)

The axial deformation and curvature are collected in the section deformation vec-

tor, e(x) = [εa(x) κ(x)]T . The corresponding axial force, N(x), and bending mo-

ment, M(x), are collected in the section force vector s(x) = [N(x)M(x)]T which is

computed through a fiber model or stress resultant plasticity model that account

for nonlinear constitutive response. The section stiffness matrix, ks, is the partial

derivative of the section forces with respect to section deformations

ks =
∂s

∂e
=

[
∂N
∂εa

∂N
∂κ

∂M
∂εa

∂M
∂κ

]
(2.9)

To interpolate the axial deformation, a linear function that satisfies the bound-

ary conditions of the basic system is assumed

ua(x) =
(x
L

)
v1 (2.10)

Similarly, for the transverse deflection, cubic Hermitian polynomials are assumed

ut(x) = L

((x
L

)3

− 2
(x
L

)2

+
(x
L

))
v2 + L

((x
L

)3

−
(x
L

)2
)
v3 (2.11)

The section deformations are interpolated from the element deformations using
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the spatial derivatives of the shape functions according to Eqs. (2.7) and (2.8)

e(x) =

[
u′a(x) + 1

2
(u′t(x))2

u′′t (x)

]
= B(x)ub +

[
1
2

(C(x)ub)
2

0

]
(2.12)

where the strain-displacement matrix is

B(x) =
1

L

[
1 0 0

0 6( x
L

)− 4 6( x
L

)− 2

]
(2.13)

and the slope-displacement matrix is

C(x) =
[

0 3
(
x
L

)2 − 4
(
x
L

)
+ 1 3

(
x
L

)2 − 2
(
x
L

) ]
(2.14)

Using the principle of virtual displacements, equilibrium between basic forces

and section forces along the element is

pb =

∫ L

0

BT (x)s(x)dx+

∫ L

0

CT (x)C(x)ubN(x)dx (2.15)

For computer implementation, Eq. (2.15) is evaluated by numerical integration

pb =

Np∑
i=1

BT
i siwi +

Np∑
i=1

CT
i CiubNiwi (2.16)

where Np is the number of integration points with along the element with locations

xi and associated weights wi. For notational convenience, response quantities are

abbreviated as fi ≡ f(xi) in Eq. (2.16) and in subsequent equations. The stiffness
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matrix, kb, of the basic system is the partial derivative of the basic forces with

respect to element deformations

kb =
∂pb
∂ub

=

Np∑
i=1

BT
i ksi

(
Bi + (Ciub)

[
Ci

0

])
wi +

Np∑
i=1

CT
i ks1i

(
(Ciub)Bi + (Ciub)

2

[
Ci

0

])
wi +

Np∑
i=1

CT
i CiNiwi

(2.17)

where ks1 is the first row of the section stiffness matrix defined in Eq. (2.9). Both

the basic stiffness matrix and basic force vector of Eq. (2.16) are assembled in to

the governing equations of nonlinear structural response by standard finite element

procedures.

2.4.1 Element Response Sensitivity

The element response sensitivity is formulated in terms of the derivatives of section

and basic forces with respect to h. The complete derivative of basic forces is

∂pb
∂h

= kb
∂ub
∂h

+
∂pb
∂h

∣∣∣∣
ub

(2.18)

where ∂pb/∂h|ub is the derivative of the basic forces under the condition of fixed

element deformations, kb is the basic stiffness matrix, and ∂ub/∂h is the derivative

of the element deformations. Similarly, the derivative of section forces is

∂s

∂h
= ks

∂e

∂h
+
∂s

∂h

∣∣∣∣
e

(2.19)
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where ∂s/∂h|e is computed from the section response, ks is the section stiffness

matrix, and ∂e/∂h is the derivative of section deformations. Owing to the geo-

metrically nonlinear term in Eq. (2.16), it is convenient to extract the derivative

of the axial force from Eq. (2.19)

∂N

∂h
= ks1

∂e

∂h
+
∂N

∂h

∣∣∣∣
e

(2.20)

where ∂N/∂h|e is the conditional derivative of axial force.

Before utilizing the derivatives defined in Eq. (2.18) through Eq. (2.20), the

element basic force defined in Eq. (2.16) is differentiated with respect to h, which

represents any parameter of the section constitutive model, cross-section geometry,

or coordinates of the element nodes

∂pb
∂h

=

Np∑
i=1

(
BT
i

∂si
∂h

+ CT
i Ciub

∂Ni

∂h

)
wi +

Np∑
i=1

(
∂BT

i

∂h
si +

(
∂CT

i

∂h
Ci + CT

i

∂Ci

∂h

)
ubNi

)
wi +

Np∑
i=1

CT
i Ci

∂ub
∂h

Niwi +

Np∑
i=1

(
BT
i si + CT

i CiubNi

) ∂wi
∂h

(2.21)

where similar terms have been grouped in summations. Inserting the derivatives

of basic and section forces defined in Eq. (2.18) through Eq. (2.20) in to Eq. (2.21)

gives

kb
∂ub
∂h

+
∂pb
∂h

∣∣∣∣
ub

=

Np∑
i=1

(
BT
i

(
ksi

∂ei
∂h

+
∂si
∂h

∣∣∣∣
e

)
+ CT

i Ciub

(
ks1i

∂ei
∂h

+
∂Ni

∂h

∣∣∣∣
e

))
wi +

Np∑
i=1

(
∂BT

i

∂h
si +

(
∂CT

i

∂h
Ci + CT

i

∂Ci

∂h

)
ubNi

)
wi

+

Np∑
i=1

CT
i Ci

∂ub
∂h

Niwi +

Np∑
i=1

(
BT
i si + CT

i CiubNi

) ∂wi
∂h

(2.22)

This system has more unknowns than equations available to solve for the con-
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ditional derivative of basic forces, ∂pb/∂h|ub . To reduce the number of unknowns,

the derivative of section deformations, defined in Eq. (2.12), is differentiated with

respect to h

∂ei
∂h

= Bi
∂ub
∂h

+
∂Bi

∂h
ub + Ciub

[
Ci

∂ub
∂h

+ ∂Ci

∂h
ub

0

]
(2.23)

then inserted in to Eq. (2.22). Utilizing the basic stiffness matrix defined in

Eq. (2.17), terms involving ∂e/∂h and ∂ub/∂h cancel from Eq. (2.22) after al-

gebraic manipulation. The conditional derivative of basic forces is then

∂pb
∂h

∣∣∣∣
ub

=

Np∑
i=1

(
BT
i

∂si
∂h

∣∣∣∣
e

+ CT
i Ciub

∂Ni

∂h

∣∣∣∣
e

)
wi +

Np∑
i=1

(
∂BT

i

∂h
si +

(
∂CT

i

∂h
Ci + CT

i

∂Ci

∂h

)
ubNi

)
wi

+

Np∑
i=1

(
BT
i ksi + CT

i Ciubks1i
)(∂Bi

∂h
ub + Ciub

[
∂Ci

∂h
ub

0

])
wi +

Np∑
i=1

(
BT
i si + CT

i CiubNi

) ∂wi
∂h

(2.24)

The sensitivity of the strain-displacement and slope-displacement matrices, ∂Bi/∂h

and ∂Ci/∂h, respectively, are nonzero only when h represents an uncertain nodal

coordinate at the element ends. In addition to uncertain nodal coordinates, the

term ∂wi/∂h, may also be non-zero when h corresponds to a prescribed integration

weight [60].

In the event that h does not map to an uncertain nodal coordinate or prescribed
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integration weight, Eq. (2.24) simplifies to

∂pb
∂h

∣∣∣∣
ub

=

Np∑
i=1

BT
i

∂si
∂h

∣∣∣∣
e

wi +

Np∑
i=1

CT
i Ciub

∂Ni

∂h

∣∣∣∣
e

wi (2.25)

while the derivative of section deformations, Eq. (2.23), reduces to

∂ei
∂h

= Bi
∂ub
∂h

+ Ciub

[
Ci

∂ub
∂h

0

]
(2.26)

Regardless of the type of parameter, the conditional derivative of basic forces

is computed by Eq. (2.24) or Eq. (2.25) for assembly in to the right-hand side of

Eq. (2.6). After solution for the nodal response sensitivity, the derivative of section

deformations is computed from Eq. (2.23) or Eq. (2.26) so that constitutive models

can be updated for path-dependent response sensitivity. Further details of the two

phase sensitivity calculations are found in [72]. The sensitivity equations have

been implemented in the OpenSees finite element software framework [43, 61] and

are verified and applied to reliability analysis in the following examples.

2.5 Numerical Examples

The following numerical examples verify the sensitivity formulation for the geo-

metrically nonlinear displacement-based element and demonstrate its application

in a gradient-based structural reliability analysis. Standalone sensitivity analysis

for single member models verify the DDM in the first two examples followed by a
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FORM analysis of a steel frame in the third example.

2.5.1 Simply Supported Beam Subjected to Uniform Distributed

Load

The focus of this example is the axial force developed in the statically indeter-

minate, linear-elastic, prismatic beam shown in Fig. 2.2 subjected to a uniform

distributed load, w. The beam length is L=10 m, the cross-section dimensions are

b=0.1 m and d=0.2 m, and the elastic modulus is E=200 MPa. The intensity of

the distributed load increases from zero to its peak value of 0.5 kN/m. The mem-

ber is discretized into five geometrically nonlinear displacement-based elements

that utilize the corotational geometric transformation [18]. Three Gauss-Legendre

integration points are used along each element.

The relationship between distributed load and midspan axial force (recorded

at the second integration point of the middle element) is shown in Fig. 2.3. The

sensitivity of the midspan axial force with respect to section depth, d, and member

length, L, is shown in Fig. 2.4. The sensitivity of the axial force shown in this

figure is determined via Eq. (2.19) after computing ∂e/∂h in the second phase of

sensitivity computations. The finite difference approximations using 0.1 and 0.001

times the nominal parameter values show convergence to the DDM result, thereby

validating the implementation of the section force sensitivity.
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Figure 2.2: Indeterminate beam subjected to uniform distributed load.

0 0.1 0.2 0.3 0.4 0.5
0

5

10

Distributed Load, w (kN/m)

A
x
ia
l
F
or
ce
,
N

(k
N
)

Figure 2.3: Axial force, N , at midspan beam subjected to increasing uniform
distributed load.
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Figure 2.4: Sensitivity of midspan axial force, N , to: (a) cross-section depth, d,
and (b) member length, L.

2.5.2 Simply Supported Beam Subjected to Eccentric Axial Load

The prismatic, elasto-plastic beam shown in Fig. 2.5 is subjected to an eccentric ax-

ial load. The beam section is W12x96 with elastic modulus E=200,000 MPa, kine-

matic strain hardening ratio α=0.05, and yield stress fy=420 MPa. The rotation,

U , at the right support is recorded as a cyclic axial load, P (t) = 2.5(EI/L2) sin(t),

is applied, where L=10 m is the length of the beam and I is the second moment

of the cross-section area. The load eccentricity, e, is equal to twice the member

depth.

The member is discretized in to five geometrically nonlinear displacement-based

elements along its length and the corotational transformation describes the rela-

tionship between basic and local element forces. Three Gauss-Legendre integration

points are used in each element. The load-rotation response for the beam is shown
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Figure 2.5: Simply supported beam subjected to an eccentric axial load.

in Fig. 2.6 where it is noted that the rotation increases rapidly after the onset of

yielding along the member then yields under load reversal.

Comparisons of the DDM and FDM sensitivity of the load-rotation response

with respect to the elastic modulus, E, and yield stress, fy, of the material, cross-

section depth, d, and member length, L, are shown in Fig. 2.7. Each section-level

parameter maps to all sections along the member while the length parameter maps

to the X-coordinate of the roller support. The finite difference parameter pertur-

bations in Fig. 2.7 correspond to 0.1 and 0.001 times the nominal parameter value.

As the parameter perturbation for the finite difference computation decreases, the

results converge to the DDM sensitivity, thereby verifying the DDM equations and

their implementation for the nodal response sensitivity.
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Figure 2.6: Normalized load-rotation response for the simply-supported beam.

2.5.3 Reliability Analysis of Steel Frame

With slender column members and high gravity loads, the frame developed by

[21] has been studied by several researchers in the development of geometrically

nonlinear frame finite element formulations [11, 20]. A reliability analysis of the

steel frame shown in Fig. 2.8 is performed in this example in order to demonstrate

the application of the element response sensitivity equations in a gradient-based

application. Each member is a W8x31 wide flange steel section with elastic mod-

ulus, E=200,000 MPa, yield stress, fy=250 MPa. The stress-strain response is

assumed bilinear with strain hardening ratio α=0.02. Three geometrically non-

linear displacement-based elements with four Gauss-Legendre integration points

is used to simulate the response of each member during the pushover analysis.

For comparison, the analysis will be repeated using three geometrically linear

displacement-based elements per member and one force-based CBDI element per
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member [48, 20, 55]. The corotational formulation captures large displacement

response in all cases.

All material and geometric parameters are considered uncertain. The elastic

modulus E of each member is a lognormal random variable with mean value 200,000

MPa and coefficient of variation (cov) 5% and correlation coefficient 0.6 with the

elastic modulus of the other members. The yield strength fy of each member is

a lognormal random variable with mean 250 MPa and 10% cov and correlation

coefficient 0.6 with fy of the other members. The strain hardening ratio α of

each member is a lognormal random variable with mean 0.02 and 10% cov and

correlation coefficient 0.6 with α of the other members. The section depth, d,

and flange width, bf , of each member are uncorrelated normal random variables

with 2% cov. To account for geometric imperfections, the horizontal coordinates

of the roof nodes, X2 and X3, are also assumed to be uncorrelated normal random

variables with standard deviations equal to 10 mm. The gravity loads applied

to the columns are assumed to be correlated normal random variables with 15%

coefficient of variation and correlation coefficient 0.5.

Rather than quantifying the reliability of this steel frame, the focus of this ex-

ample is to highlight the differences in reliability index and importance measures

when using the geometrically nonlinear displacement-based frame element formu-

lation compared to the standard geometrically linear formulation and force-based

CBDI formulations. A similar approach to quantifying the uncertainty of the un-

derlying numerical methods, rather than that of the underlying system behavior,

was taken by [5].
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Figure 2.7: Sensitivity of load-rotation response with respect to material proper-
ties, section depth, and beam length.
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2.5.3.1 Mean Response Sensitivity

The mean load-displacement response of the frame for two values of gravity load is

shown in Fig. 2.9. The response using a single geometrically linear displacement-

based element is presented in order to examine the significance of moderate ro-

tations within the basic system. As expected, the simulated lateral stiffness and

strength of the frame is reduced when accounting for geometric nonlinearity and the

effect becomes more significant as the gravity load increases from 0.2Py to 0.4Py.

The force-based CBDI element shows a lower yield load due to the satisfaction of

strong equilibrium in the element formulation.

The sensitivity of the frame load-displacement response with respect to the
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Figure 2.9: Mean load-displacement response of the steel frame structure for two
values of gravity loads: (a) P = 0.2Py and (b) P = 0.4Py. DispNL = geometrically
nonlinear, Disp = geometrically linear displacement-based formulation.

yield stress of member 1, as computed by the DDM for each of the three element

formulations, is shown in Fig. 2.10. As expected, the sensitivity of the lateral

displacement is zero up to the onset of yielding in member 1. The sensitivity for

the two displacement-based formulations is approximately the same as the frame

reaches its ultimate lateral load capacity, then starts to diverge in the post-peak

response. Although the response obtained for the three formulations is similar, the

sensitivity of the frame load-displacement response is generally of greater magni-

tude when using the force-based CBDI formulation.
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Figure 2.10: Sensitivity of the rotation at the base of column 1 with respect to
column 1 material yield stress, fy, in the steel frame structure: (a) P = 0.2Py
and (b) P = 0.4Py. DispNL = geometrically nonlinear, Disp = geometrically lin-
ear displacement-based formulation, CBDI = geometrically nonlinear force-based
formulation.

2.5.3.2 Reliability Analysis

Using the aforementioned statistical properties for the cross-section dimensions and

material properties of the frame and gravity loads, a first-order reliability (FORM)

analysis is performed for each level of gravity load. For the lighter gravity load

of P = 0.2Py, the performance function places a limit on Uf2, the horizontal

displacement of node 2

g = 10cm− Uf2 for P = 0.2Py (2.27)
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Using the iHLRF algorithm, the FORM analysis converges to a reliability index of

β=0.257 for the geometrically nonlinear displacement-based element formulation

and to a higher reliability index of β=0.363 for the standard displacement-based

formulation. A negative reliability index of β = −0.0557 was found for the force-

based CBDI element, indicating that the mean realization of the random variables

lies in the failure domain for this model. The load-displacement response associated

with the values of the random variables at the design point is shown in Fig. 2.11

(a) for each element formulation. The design point response is similar between the

element formulations.

The reliability analysis is repeated for the case of higher gravity load, P =

0.4Py. with the performance function

g = 6cm− Uf2 for P = 0.4Py (2.28)

In this case, the FORM analysis converges to a reliability index of β=0.0089 for the

geometrically nonlinear displacement-based element formulation and to β=0.0597

for its geometrically linear counterpart, while the reliability index for the force-

based CBDI formulation was β = −0.216. The load-displacement response at the

design point for each formulation is shown in Fig. 2.11 (b).

In addition to the variance of the reliability index among the three element

formulations, Fig. 2.12 shows that the importance measures for the 16 random

variables shows differences among the formulations. The yield strength of the

column members, 1 and 3, along with the gravity loads rank highest in importance



36

for the P = 0.2Py case. The importance of the gravity loads increases for the case

of P = 0.4Py, as shown in Fig. 2.12 (b) with a relative decrease in importance of

the material properties and cross-section dimensions. In both cases, as expected

for the applied loading, the importance measures of the column section properties,

fy, E, d, and b, rank slightly higher relative to those of the girder member.
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Figure 2.11: MPP load-displacement response of the steel frame structure for two
values of gravity loads: (a) P = 0.2Py and (b) P = 0.4Py.
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Figure 2.12: Importance measures for all random variables in steel frame analysis
for two levels of gravity loads: (a) P = 0.2Py and (b) P = 0.4Py.

2.6 Conclusion

The exact response sensitivity of geometrically nonlinear displacement-based frame

finite elements was developed for uncertain material, cross-section dimension, nodal

coordinate, and load parameters by the direct differentiation method. The inclu-

sion of moderate rotations within the element basic system leads to additional

terms in the conditional derivative of basic forces. The response sensitivity equa-

tions have been implemented in the OpenSees finite element software framework.

Examples of standalone sensitivity analysis verify the DDM implementation for
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the geometrically nonlinear formulation. Finite element reliability analysis of a

steel frame shows that a lower reliability index is obtained compared to the stan-

dard geometrically linear formulation; however, the importance measures differ

only slightly with axial loads having higher importance with the geometrically

nonlinear formulation. These results indicate that modeling decisions are impor-

tant for estimating the probability of failure, but not necessarily the importance

ranking when comparing geometrically linear and nonlinear displacement-based

formulations.
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3 Sensitivity Analysis for Displacement-Controlled Finite

Element Analyses

Displacement-controlled finite element analyses are typically employed to simulate

the nonlinear static response of structural systems where a loss of load carrying ca-

pacity due to localized material failure and/or geometric nonlinearity is expected.

To utilize applications such as reliability, optimization, and system identification

for structural systems where the peak load capacity is a random variable or where

the performance function is defined in terms of the applied load, accurate and

efficient gradients of the displacement-controlled response are required. The direct

differentiation method (DDM) is applied to the displacement control method in

order to compute response sensitivity with respect to the applied load, which is

treated as a variable within each pseudo-time step. The resulting sensitivity gives

the change in structural load carrying capacity with respect to changes in uncertain

parameters. To verify the derived sensitivity equations, comparisons between the

DDM and the finite difference method (FDM) are performed through standalone

sensitivity analyses of structural systems with material and geometric nonlinear-

ity. Reliability analyses of a steel frame show the importance measures obtained

when the performance function is defined in terms of the structural resistance to

applied loads in a displacement-controlled analysis are similar to those obtained

in a load-controlled analysis where the performance function is defined in terms of
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the structural displacements.

3.1 Introduction

The load control method (LC) is commonly used in nonlinear finite analysis as a

straightforward means to determine the load-displacement response of a structural

system, e.g., for pushover analysis in earthquake engineering. However, the LC

approach gives coarse response near limit points and also suffers from convergence

difficulties when the tangent stiffness matrix becomes ill-conditioned due to the loss

of load-carrying capacity. To overcome these convergence problems, alternatives

to the LC method have been developed where the applied load is treated as an

additional variable in the finite element solution. In these approaches, a constraint

equation is imposed on the structural response in order to solve for the applied

load at each equilibrium iteration in a load step. Displacement control is one

such method where the displacement at a single degree-of-freedom (DOF) is held

constant during equilibrium iteration [8, 52, 16]. Similarly, the arc length method

constrains the solution to advance by a specified distance in the hyperspace defined

by the structural response at the last time step [16, 46, 25, 44, 22]. These and

other incremental-iterative strategies were posed in a common framework by [13],

who used a variety of benchmark problems to demonstrate the advantages and

disadvantages of each approach.

Among the incremental-iterative strategies examined by [13], the displacement

control (DC) approach performs well when there is no snap-back behavior in the
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structural response [73, 63, 42]. This makes the DC method suited for practical ap-

plications such as pushover analysis of engineered structures under extreme loads

where a loss of load carrying capacity is possible due to localized material failure

and/or geometric nonlinearity. It is often of interest to find the sensitivity of the

structural response with respect to modeling parameters for uncertainty quantifi-

cation or for gradient-based algorithms where the response derivative is required

in order to find an optimal design point.

Response sensitivity measures the change in structural response with respect to

changes in the system properties [35] and in doing so, it shows the effects of model-

ing parameters on the response as well as the relative importance of the parameters

when used in conjunction with their statistical variance. Various methods based

on perturbed response and analytical differentiation and are available to compute

structural response sensitivity. The finite difference method (FDM) computes sen-

sitivity through repeated analyses with perturbed parameter values. Although the

FDM is subject to round off errors [12], it is easy to implement and can be ap-

plied to any type of analysis (static, dynamic, path-dependent, etc.). A second

perturbation-based approach, the complex perturbation method (CPM), uses per-

turbations of the complex component of parameter values. Although the CPM is

highly accurate compared to the FDM [34], it requires complex arithmetic to be

carried out through the entire finite element analysis. Despite their heavy compu-

tational expense, the FDM and CPM provide useful means of verifying analytical

sensitivity methods.

There are two methods to compute analytical sensitivities: the adjoint structure
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method (ASM) and the direct differentiation method (DDM). The ASM uses an

approach based on Lagrange multipliers, but is limited to path-independent struc-

tural response making it impractical for cyclic loading. The DDM is applicable to

any type of analysis and constitutive response and it computes sensitivities at the

same precision as the structural response. In addition, the DDM does not require

full re-analysis for every parameter. The disadvantage of the DDM is it requires

extensive derivation and implementation verification for each element formulation

and constitutive model; however, this is a one-time expense.

The DDM has been applied successfully to frame finite elements including the

displacement-based, force-based, and mixed variational formulations for material

nonlinearity [59, 14, 7], as well as the corotational formulation for large displace-

ment analysis of frames [56]. Multiphysics finite element analysis applications to

which the DDM has been applied include fire attack [29] and fluid-structure interac-

tion [74]. In addition to individual element formulations, the DDM can be applied

to higher level modules of finite element analyses, e.g., multi-point constraint han-

dling by the penalty, transformation, and Lagrange multiplier methods [28] and

Newmark time integration for nonlinear dynamic response [26]. The DDM has

also been applied in order to compute second order derivatives of finite element

response [9].

The objective of this paper is to use the DDM to develop response sensitivity

equations for nonlinear static finite element analyses that use the displacement

control method to advance through pseudo-time. After an overview of the dis-

placement control method within the incremental-iterative framework developed
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by [13], the derivation of DDM response sensitivity equations is presented. Stand-

alone sensitivity examples verify the DDM implementation for structural systems

that lose load-carrying capacity due to geometric and material nonlinearity. First

order reliability analysis of a steel frame quantifies uncertain response for a per-

formance function defined in terms of the structural load carrying capacity in a

displacement-controlled pushover analysis.

3.2 Displacement Control Method

comprehensive overview of the displacement control method can be found in [13],

and other continuation methods for nonlinear static analysis within an incremental-

iterative framework. This framework is briefly described here because the deriva-

tive of the governing incremental-iterative equations will form the basis for DDM

response sensitivity computations.

Structural equilibrium is expressed as a balance of the internal resisting forces

with the external applied loads, both of which depend on an uncertain parameter,

h, of the structural model

Pr (Uf (t, h), h) = Pf (t, h) (3.1)

where Pr is the vector of internal resisting forces that are a nonlinear function

of the nodal displacements, Uf . The resisting forces depend explicitly on h and

implicitly on h through the nodal displacements. The external force vector is
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represented by Pf , which depends on the parameter h only if it corresponds to the

external loads.

The external load applied to a structure is expressed as a summation over

multiple load patterns

{Pf (t, h)} =
n∑
l=1

λl(t, h){Pref (h)}l (3.2)

where λ(t) represents a time-variant scalar load factor applied to the lth reference

load vector, Pref , of the analysis. Eq. (3.2) allows for separate load patterns to be

applied to a structural model, e.g., constant gravity loads along with time-varying

lateral loads.

In the displacement control method, an analyst-specified displacement incre-

ment is imposed at a single degree of freedom (DOF) and held constant over each

load step. In turn, the load factor is treated as a variable that is computed during

equilibrium iteration within the time step. As described by [13], the first iteration

of a load step is treated separately from the subsequent iterations.

3.2.1 First Iteration

At the first iteration of the ith time step, the tangent displacement vector, {UfT}1
i ,

is computed from the stiffness matrix at the start of the time step and the reference

load pattern

[KT ]0i {UfT}1
i = {Pref} {UfT}1

i =
(
[KT ]0i

)−1 {Pref} (3.3)
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where [KT ]0i = ∂{Pr}0
i /∂{Uf} is the tangent stiffness matrix of the structure. The

superscripts on each term indicate the iteration number within the time step. The

initial load increment ∆λ1
i is obtained by solving a constraint equation that makes

the tangent displacement at the controlled DOF equal to the analyst-specified

displacement increment, ∆Uc

∆λ1
i

(
{g}T{UfT}1

i

)
= ∆Uc ∆λ1

i =
∆Uc

{g}T{UfT}1
i

(3.4)

where the vector {g} contains all zeroes except for a one in the row correspond-

ing to the controlled DOF. The incremental displacement vector {∆Uf}1
i at the

first iteration is then obtained by scaling the tangent displacements by the initial

increment of the load factor

{∆Uf}1
i = ∆λ1

i {UfT}1
i (3.5)

The load factor and displacement vector are then updated from their values at the

conclusion of the previous load step

λ1
i = λi−1 + ∆λ1

i (3.6)

{Uf}1
i = {Uf}i−1 + {∆Uf}1

i (3.7)

At this point, the resisting force vector, {Pr}, is evaluated and the convergence

criterion is checked to determine if equilibrium according to Eq. (3.1) is satisfied.
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For nonlinear response, equilibrium is generally not satisfied, leading to additional

iterations for which the state determination differs as described next.

3.2.2 Subsequent Iterations

As the search for equilibrium continues, the increment in nodal displacements is

found by solving the following linear system of equations at each iteration

[KT ]j−1
i {∆Uf}ji = λji{Pref} − {Pr}j−1

i (3.8)

where {Pr}j−1
i is the resisting force vector at the previous iteration and λji is the

unknown load factor, which is accumulated from the previous iteration

λji = λj−1
i + ∆λji (3.9)

where ∆λji is the unknown load factor increment to be determined. To solve for the

load factor increment, Eq. (3.9) is combined with Eq. (3.8), giving the following

system of equations

[KT ]j−1
i {∆Uf}ji = {Rf}j−1

i + ∆λjiPref (3.10)

where {Rf}j−1
i is the residual force vector of the previous iteration

{Rf}j−1
i = λj−1

i {Pref} − {Pr}j−1
i (3.11)
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The displacement increment vector, {∆Uf}ji , can be obtained by solving Eq. (3.10)

{∆Uf}ji = {∆UfR}ji + ∆λji{UfT}ji (3.12)

where {∆UfR}ji is the residual displacement vector, i.e., the displacement incre-

ment based on the residual force vector

[KT ]j−1
i {∆UfR}ji = {Rf}j−1

i {∆UfR}ji =
(
[KT ]j−1

i

)−1 {Rf}j−1
i (3.13)

and {UfT}ji is the tangent displacement vector based on the reference load pattern

[KT ]j−1
i {UfT}ji = {Pref} {UfT}ji =

(
[KT ]j−1

i

)−1 {Pref} (3.14)

Note that the same left-hand side matrix is used to find both the residual and

tangent displacements. The incremental load factor, ∆λji , is obtained by solving

a constraint equation that ensures the change in displacement at the controlled

DOF is zero, as this displacement was imposed entirely in the first iteration

∆λji
(
{g}T{UfT}ji

)
+ {g}T{∆UfR}ji = 0 ∆λji =

−{g}T{∆UfR}ji
{g}T{UfT}ji

(3.15)

After updating the load factor via Eq. (3.9), the displacement increment is com-

puted according to Eq. (3.12), leading to the update of the total nodal displacement

vector

{Uf}ji = {Uf}j−1
i + {∆Uf}ji (3.16)



48

With the updated nodal displacements, the convergence criterion can be evaluated

to check for equilibrium between the applied loads and the resisting force vector.

If the criterion is not satisfied, the search for equilibrium proceeds to the next

iteration, repeating the process described by way of Eqs. (3.8) and (3.16)through.

A simple illustration of the iterations for one time step using the displacement

control method is shown in Fig. 3.1. During the iteration process, the displacement

increment, ∆Uc, is held constant and the load factor is calculated at each iteration.

The iteration process continues until reaching the new converged state where the

residual displacement {∆UfR}ji reduces to a specified tolerance. Upon convergence

of the global equilibrium iteration, the sensitivity of the load factor and nodal

displacements with respect to model parameters can be computed, as described in

the following section.

3.3 Top-Level Response Sensitivity Equations

To formulate the equations of response sensitivity at the structural level, the equi-

librium equations (Eq. (3.1)) are differentiated with respect to the parameter h

[KT ]ji
∂{Uf}ji
∂h

=
∂{Pf}ji
∂h

− ∂{Pr}ji
∂h

∣∣∣∣∣
Uf

(3.17)

The vector ∂{Pr}ji/∂h
∣∣
Uf

represents the derivative of the resisting force vector

evaluated with fixed displacements, and it is assembled from element contributions

by standard finite element procedures [72]. Physically, this vector represents the
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Figure 3.1: Displacement control method for single degree of freedom system.

forces that must be applied to the structure to keep the nodal displacements fixed

due to changes in the parameter h. The vector ∂{Pf}ji/∂h represents the derivative

of the external forces (Eq. (3.2)) with respect to the parameter h.

∂{Pf}ji
∂h

=
∂λji
∂h
{Pref}+ λji

∂{Pref}
∂h

(3.18)

Combining Eq. (3.18) with Eq. (3.17) gives the following expression for the nodal

displacement sensitivity

[KT ]ji
∂{Uf}ji
∂h

=
∂λji
∂h
{Pref}+ λji

∂{Pref}
∂h

− ∂{Pr}ji
∂h

∣∣∣∣∣
Uf

(3.19)
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where ∂{Pref}/∂h is the derivative of the reference load pattern with respect to

h. After convergence of the top-level equilibrium iteration, this equation can be

solved for each parameter in the structural model after assembling the right-hand

side sensitivity vector. While the conditional derivative of the resisting forces is

assembled from element contributions using standard finite element techniques,

the sensitivity of the load factor, ∂λji/∂h, must be determined during equilibrium

iteration within the time step, as shown in the following section.

3.4 Sensitivity Analysis of Displacement Control Method

Direct differentiation of the governing incremental-iterative equations [13] must be

carried out in order to find the sensitivity of the load factor, ∂λji/∂h, in Eq. (3.19).

Similar to the displacement-controlled response, the sensitivity separates the first

iteration in a time step from the subsequent iterations.

To make the proposed derivations applicable to all element types and all system

of equations, the tangent stiffness is considered constant (∂[KT ]ji/∂h = 0). Due to

this assumption, the derivative of the load factor will be handled via the deriva-

tive of the residual displacement vector (∂{∆UfR}ji/∂h) in subsequent iterations.

An example to verify the redundancy of the derivative of the tangent stiffness is

provided in the appendix.
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3.4.1 First Iteration

The sensitivity of the tangent displacements, UfT , with respect to a parameter, h,

at the first iteration is found using a differential form of Eq. (3.3)

∂{UfT}1
i

∂h
=
(
[KT ]0i

)−1 ∂{Pref}
∂h

(3.20)

With the sensitivity of the tangent displacement vector, the sensitivity of the initial

load increment factor, ∂∆λ1
i /∂h, can be calculated by differentiating Eq. (3.4) with

respect to h

∂∆λ1
i

∂h
= −

∆Uc

(
{g}T ∂{UfT }1i

∂h

)
({g}T{UfT}1

i )
2 (3.21)

where it is noted that the analyst-specified displacement increment, ∆Uc, is con-

stant and does not depend on any parameter. The sensitivity of the load factor is

then updated with the sensitivity of the load factor increment

∂λ1
i

∂h
=
∂λi−1

∂h
+
∂∆λ1

i

∂h
(3.22)

Computations for the sensitivity of the load factor with respect to h at subsequent

iterations are shown next.
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3.4.2 Subsequent Iterations

The sensitivity of the tangent displacements computed at subsequent iterations

can be obtained from a differential form of Eq. (3.14)

∂{UfT}ji
∂h

=
(
[KT ]j−1

i

)−1 ∂{Pref}
∂h

(3.23)

Recognizing that the residual force vector, {Rf}j−1
i , goes to zero as the equilibrium

iteration converges, the derivative of the residual displacements with respect to h

is obtained using a differential form of Eq. (3.13)

∂{∆UfR}ji
∂h

=
(
[KT ]j−1

i

)−1 ∂{Rf}j−1
i

∂h
(3.24)

The sensitivity of the residual forces on the right-hand side of Eq. (3.24) is evalu-

ated by differentiating Eq. (3.11) with respect to parameter h

∂{Rf}j−1
i

∂h
=
∂λj−1

i

∂h
{Pref}+ λj−1

i

∂{Pref}
∂h

− ∂{Pr}j−1
i

∂h

∣∣∣∣∣
Uf

(3.25)

where the first two terms on the right-hand side of Eq. (3.25) are obtained from the

differentiation of the external forces in Eq. (3.2). The last term on the right-hand

side of Eq. (3.25) is the conditional derivative of the resisting force vector.

Then, the sensitivity of the incremental load factor can be evaluated by differ-
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entiating Eq. (3.15) with respect to h

∂∆λji
∂h

=

(
{g}T{UfT}ji

) (
−{g}T ∂{∆UfR}ji

∂h

)
+
(
{g}T{∆UfR}ji

) (
{g}T ∂{UfT }ji

∂h

)
(
{g}T{UfT}ji

)2

(3.26)

where the vector g selects derivatives from the tangent displacement vector ∂{UfT}ji/∂h

and the residual displacement vector ∂{∆UfR}ji/∂h, defined in Eqs. (3.23) and (3.24)and,

respectively. The sensitivity of the total load factor is then updated according to

the derivative of Eq. (3.9)

∂λji
∂h

=
∂λj−1

i

∂h
+
∂∆λji
∂h

(3.27)

After equilibrium is achieved at the end of the time step, the sensitivity of the load

factor can be used to determine the applied load sensitivity, ∂Pf/∂h, and the nodal

response sensitivity, ∂Uf/∂h, according to Eqs. (3.18) and (3.19), respectively. Af-

ter all sensitivity calculations for the current time step are complete, uncertainties

can be quantified and gradient-based computations can be made, then the simula-

tion advances to the next time step, according to the process depicted in Fig. 3.2.

3.5 Numerical Examples

The foregoing response sensitivity equations for the displacement control method

have been implemented in the OpenSees finite element software framework [43, 61].

To verify the equations and their implementation, standalone sensitivity analyses
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j = 1

form [KT ]ji & {UfT}ji form
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form ∆λji & λji form
∂∆λji
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&
∂λji
∂θ
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Figure 3.2: Computations for load factor and its sensitivity in the displacement
control method.
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are performed in the first two examples, one with geometric and one with material

nonlinearity. The last example shows the reliability analysis of a multistory steel

frame where the performance function is defined in terms of the frame’s lateral

load resistance.

3.5.1 Shallow Truss

An analysis is performed for the shallow truss shown in Fig. 3.3, which is a common

benchmark example for geometric nonlinearity. Four elastic beam-column elements

in a corotational mesh [18] are used for each member. Each element has elastic

modulus E=200,000 MPa, cross-section area A=0.1 m2, and second moment of

cross-section area, I=0.002 m4.

P

10 m 10 m

0.5 mU

Figure 3.3: Shallow truss subjected to midspan load.

The midspan load-displacement response is shown in Fig. 3.4 using both the

load and displacement control methods. As expected, the load controlled solution

is not able to capture the snap through behavior, but is able to capture the tension

stiffening response that ensues. On the other hand, the displacement controlled
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solution (using ∆Uc=0.01 m for the midspan vertical displacement) is able to

capture the entire range of snap through and tension stiffening response.
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Figure 3.4: Load-displacement relationship using displacement and load control
methods.

To verify the DDM equations and implementation for the displacement control

method, the sensitivity is computed at each time step and compared with FDM

computations. According to the finite difference approximation, the FDM results

should converge to the DDM for decreasing parameter perturbations, i.e.,

lim
∆θ→0

λ(θ + ∆θ)− λ(θ)

∆θ
=
∂λ

∂h
(3.28)

where a forward finite difference is used. For small finite difference perturbations,

similarity of FDM and DDM results implies that the DDM computations are cor-

rect.

A comparison of DDM and FDM load factor sensitivity with respect to the

section area, A, and second moment of area, I, of the shallows truss is shown in
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Fig. 3.5. The DDM results are compared to a finite difference perturbation of 0.001

times the nominal parameter values, which is sufficiently small to satisfy Eq. (3.28).

In each plot, the sensitivities are scaled by the nominal parameter value so that

they have the same units as the response. As shown in Fig. 3.5 (a), the section area

initially acts as a resistance variable (∂λ/∂h > 0), where increasing this parameter

will lead to an increase in the load required to reach the same displacement. The

section area then acts as a load variable (∂λ/∂h < 0) as the truss snaps through to

a stable equilibrium solution. As the truss response continues to stiffen in tension,

the section area returns to its role as a resistance variable. The second moment

of section area, I, acts as a resistance variable throughout the entire load path, as

shown in Fig. 3.5 (b).
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Figure 3.5: Response sensitivity of load factor with respect to shallow truss cross-
section properties: (a) section area, A; (b) second moment of section area, I.

The sensitivity of the applied load with respect to X and Y coordinates of the

midspan node is shown in Fig. 3.6. The X coordinate is a load variable where
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increasing the horizontal coordinate of the midspan node (making the truss more

shallow) leads to a reduction in the load required to follow the load-displacement

path. In contrast, increases in the Y coordinate of the midspan node (making

the truss more steep) make this parameter a resistance variable where the load

required to follow the snap through path must increase. However, as the truss

enters tension stiffening response, the Y coordinate switches to a load variable.
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Figure 3.6: Response sensitivity of load factor with respect to nodal coordinates
at apex of shallow truss: (a) horizontal X-coordinate; (b) vertical Y -coordinate.

3.5.2 Reinforced Concrete Bridge Pier

A reinforced concrete bridge pier, specimen 7 in the tests of [67] is used in this

example. The geometry and reinforcement details of the bridge pier are shown in

Fig. 3.7. Due to confinement, the concrete compressive strength is f ′c=39 MPa,

and the peak compressive strain is εc=0.0052. In addition, the residual concrete
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compressive strength is fcu=11.7 MPa, and the corresponding strain εu=0.0248. A

bilinear stress-strain relationship is assumed for the steel reinforcement with yield

stress, fy= 510 MPa, elastic modulus, E=200,000 MPa, and 1% strain hardening

ratio.

P=0.3f ′cAg

V , u

1.65 m 40 mm clear cover

550 mm

550 mm12 #20 bars

Figure 3.7: Reinforced concrete bridge pier configuration, reinforcement details,
and material properties.

One force-based beam column element [47] with four Gauss-Lobatto integra-

tion points is used to simulate the bridge pier response. A fiber discretization of

the cross section accounts for the effect of axial-moment interaction based on the

prescribed stress-strain relationships for the concrete and reinforcing steel. A con-

stant gravity load equal to 30% of the gross section capacity is applied to the bridge

pier. The base shear-lateral displacement response computed using the displace-

ment control method is shown in Fig. 3.8 where the pier reaches its peak lateral
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load resistance at a displacement of approximately 1.3 cm. After this displacement,

the pier forms a plastic hinge and loses load carrying capacity.
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Figure 3.8: Base shear-lateral displacement relationship for reinforced concrete
bridge pier.

The sensitivity of the base shear computed with respect to the section strength

parameters of concrete, f ′c, and reinforcing steel, fy, is shown in Fig. 3.9. As

in the first example, the sensitivities are multiplied by the nominal parameter

value in order to achieve consistent units. In addition to verifying that the DDM

implementation is correct by comparisons with finite difference computations using

∆θ = 0.001 times the nominal parameter value, Fig. 3.9 shows that both f ′c and

fy are resistance variables where increasing their values leads to an increase in the

load required to reach the same lateral displacement. The discrete jumps observed

in Fig. 3.9 (b) occur when the steel reinforcing bars yield, i.e., the parameter

fy becomes active in the DDM computations. The final jump occurs when the

plastic hinge forms at 1.3 cm lateral displacement, where the response sensitivity
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is roughly equal with respect to both the concrete and steel strength. However,

at the final lateral displacement of 2.5 cm, the sensitivity with respect to f ′c is

higher than that for fy. These results confirm engineering judgment that both

the concrete and steel strength affect the peak load capacity of the pier while the

concrete strength plays a more important role on the residual capacity.
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Figure 3.9: Response sensitivity of load factor with respect to section strength
parameters: (a) concrete compressive strength, f ′c; (b) steel yield strength, fy.

The base shear sensitivity for two post-yield constitutive properties: the con-

crete residual strength, fcu, and the steel hardening modulus, Hkin, is shown in

Fig. 3.10. The displacements at which the response sensitivities become non-zero

indicate where these parameters become active, with the steel yielding prior to

the concrete core reaching its peak compressive strength. Compared to the sec-

tion strength parameters in Fig. 3.9, neither of the post-yield parameters has a

significant influence on the load resistance of the bridge pier.

The response sensitivity of the base shear with respect to geometric parameters
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Figure 3.10: Response sensitivity of load factor with respect to section post-yield
constitutive parameters: (a) concrete ultimate strength, fcu; (b) steel hardening
modulus.

of bridge pier length, L, and cross-section depth, d, is shown in Fig. 3.11. The

results shown in Fig. 3.11 (a) indicate an increase in the bridge pier length will

result in a reduction of the lateral load carrying capacity, i.e., the pier length is

a load variable. Conversely, Fig. 3.11 (b) shows that the section depth, d, is a

resistance variable. Both the length and the section depth have a large influence

on the lateral load carrying capacity of the bridge pier. As the pier reaches its

peak load capacity at 1.3 cm displacement and forms a plastic hinge, the response

sensitivity with respect to length reduces. On the other hand, the sensitivity with

respect to the section depth remains approximately unchanged in its contribution

to the post-peak residual capacity of the bridge pier after the plastic hinge forms.
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Figure 3.11: Response sensitivity of load factor with respect to geometric properties
of the bridge pier: (a) pier length, L; (b) cross-section depth, d.

3.5.3 Reliability Analysis of Steel Frame

In addition to computing the sensitivity of load resistance to uncertain modeling

parameters, this example shows how computations of load factor sensitivity can

be used for reliability analyses of structural systems whose performance is defined

by load capacity. The model shown in Fig. 3.12 is based on the exterior moment

resisting frame of a “Pre-Northridge” Los Angeles SAC steel building [24]. All

members are wide flange sections with the shapes indicated in the figure for the

floor girders (A36 steel) and the interior and exterior columns (A572 Gr. 50 steel).

The floor dead load is 4.6 kPa while the (reduced) live load is 0.96 kPa. The

tributary width for the floor loads is 4.6 m.

A single force-based beam-column element [47] simulates the response of each

member. Four Gauss-Lobatto integration points are used in each element where
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a fiber model represents the section force-deformation relationship. A uniaxial,

bilinear constitutive relationship is assumed for each steel fiber with E=200,000

MPa and strain-hardening ratio 0.02. There are five fibers in each flange and 25

fibers in the web at each element integration point. The vertical distribution of

lateral loads shown in Fig. 3.12 is based on the first mode effective earthquake

forces.
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Figure 3.12: Steel moment frame for reliability example.

All material and geometric parameters are considered uncertain. The elastic

modulus E of each member is a lognormal random variable with mean value 200,000

MPa, coefficient of variation (cov) 5%, and correlation coefficient 0.6 with the

elastic modulus of the other members. The yield strength fy of each member is a

lognormal random variable with mean value 300 MPa, 10% cov, and correlation

coefficient 0.6 with fy of the other members. The strain hardening ratio α of each

member is a lognormal random variable with mean 0.02, 10% cov, and correlation

coefficient 0.6 with α of the other members. The cross-section dimensions of each
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member are modeled as uncorrelated normal random variables with mean values

based on the nominal wide-flange dimensions and 2% cov. The gravity and lateral

loads are considered deterministic.

A nonlinear static pushover analysis is performed on the frame with the mean

realization of all random variables. The lateral response of the frame shown in

Fig. 3.13 reaches a base shear of 6000 kN at a lateral roof displacement of 0.49 m.

Two first order reliability method (FORM) analyses are carried out based on this

ultimate mean response. The first performance function seeks the probability that

the lateral roof displacement exceeds 0.7 m when the peak load level is reached

g1 = 0.7− Uroof (m) (3.29)

where Uroof is the horizontal displacement of the roof. This performance function

requires a load-controlled pushover analysis and FORM analysis reveals a reliability

index of β=1.53, which corresponds to an 6.3% probability of the roof exceeding

the prescribed displacement. The load-displacement response at the design point

is shown in Fig. 3.13 and the ranking of the 20 most important random variables

is shown in Table 3.1 (a) using the measures proposed by [30].

The second performance function seeks the probability that the frame’s load

carrying capacity is less than 5500 kN when the peak lateral displacement is reached

g2 = Vb − 5500 (kN) (3.30)

where Vb is the base shear. A displacement-controlled analysis is required in order
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to evaluate this performance function. Based on FORM analysis, the reliability

index for this performance function is β=3.32, indicating a 0.044% probability

that the lateral load resistance of the frame will be less than 5500 kN at the

peak roof displacement. The load-displacement response corresponding to the

realization of the random variables at the design point is shown in Fig. 3.13. The

20 most important random variables are shown in Table 3.1 (b). Similar to the first

performance function, the yield strength and depth of the girders have the largest

influence on failure of the frame for this limit state. Although the two performance

functions were not defined to give similar levels of safety, the importance rankings

resulting from the respective FORM analyses are virtually the same. The first

performance function leads to a higher probability of failure (lower reliability index)

because, compared to reducing the base shear, it is relatively easy to increase the

roof displacement after the frame has yielded and the member stiffnesses have

reduced.

3.6 Conclusion

Response sensitivity equations were derived for the displacement control method

by applying the direct differentiation method (DDM) to the incremental-iterative

equations developed by [13]. The derived equations were implemented in the fi-

nite element software framework OpenSees, and the equations were verified by

comparing the DDM equations with the finite difference computations through

stand-alone sensitivity analysis of structural models with geometric and material
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Figure 3.13: Load-displacement response at the mean and failure realizations of
the random variables for the steel moment-resisting frame.

nonlinearity. Probabilistic analyses of a multistory steel frame using the first order

reliability method give the reliability index, probability of failure, and importance

measures for displacement-controlled analyses. Future work will extend DDM sen-

sitivity analysis to other continuation methods such as the arc-length and minimum

unbalanced displacement norm approaches [13].
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Table 3.1: Ranking of the 20 most important parameters in the steel frame example
using performance functions based on load and displacement control methods.

(a) Load Control, g1

Member Property Importance
G2 fy -0.5449
G1 fy -0.5345
G3 fy -0.4145
G1 d -0.2612
G2 d -0.25
C2 fy -0.1395
C3 fy -0.139
C4 fy -0.1374
G3 d -0.1155
C1 fy -0.1127
C5 fy -0.1115
C2 d -0.06377
C3 d -0.06274
C4 d -0.0616
C1 d -0.05177
C5 d -0.0459
G2 E -0.02502
G1 E -0.02373
G3 E -0.01365
C2 E -0.01227

(b) Displacement Control, g2

Member Property Importance
G2 fy -0.5405
G1 fy -0.5149
G3 fy -0.4249
G1 d -0.2675
G2 d -0.2571
C2 fy -0.1456
C3 fy -0.1451
C4 fy -0.1435
G3 d -0.1187
C1 fy -0.1179
C5 fy -0.1167
C2 d -0.06768
C3 d -0.06634
C4 d -0.06507
C1 d -0.05608
C5 d -0.04891
G2 E -0.01964
G1 E -0.01783
C1 E -0.01253
C2 E -0.01177
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4 Corotational Post-Buckling Sensitivity Analysis of Space Frame

Structures

Accurate and efficient response sensitivity computations for nonlinear geometry are

required in structural reliability, optimization, and system identification. The re-

sponse sensitivity equations using direct differentiation method (DDM) have been

formulated for material nonlinear analysis. For geometric nonlinear analysis, the

DDM has been developed only for two dimensional simulations. The proposed

research develops DDM sensitivity for the corotational formulation of space frame

elements. The main problem in the corotational formulation of space frame ele-

ments is that the finite rotations are not true vector quantities and the structural

response depends on the order in which rotations are applied and hence complex

algorithm, presented by Crisfield [19], is used to create a local system that is in-

variant with respect to the definition of the local axes . The response sensitivity

equations are obtained for corotational formulation of space frame elements and

implemented in OpenSees software framework. To verify the accuracy of the de-

rived sensitivity equations, standalone sensitivity analysis is used by comparing

the proposed DDM with finite difference method (FDM) for simple and complex

structures. Future applications that require the present formulation are: struc-

tural reliability and optimization of three dimensional structures undergoing large

displacements.
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4.1 Introduction

Response sensitivity analysis measures the change in structural response due to

changes in system properties [35]. Sensitivity analysis helps to identify the most

important parameters that affect structural response for different limit states. The

most common applications that require sensitivity gradients, which are the results

of the sensitivity analysis, are optimization, system identification, and reliability

analysis. For instance, sensitivity analysis can be used to minimize the struc-

tural cost, and it also helps to minimize the difference between the measured and

numerical response for system identification purposes [3].

Different methods are available to perform sensitivity analysis such as the finite

difference method (FDM), the complex perturbation method (CPM), the adjoint

system method (ASM), and the direct differentiation method (DDM). The FDM

requires rerunning the structural analysis with perturbed parameter values to esti-

mate the response sensitivity. As a result, it is computationally intensive. Further-

more, the accuracy of the FDM depends on the perturbation value. For instance,

too small perturbation value leads to round-off errors, while too large perturbation

value leads to inaccurate response sensitivity results. The ASM, which is based

on Lagrangian multipliers, is more accurate than FDM especially for linear analy-

sis. However, ASM is not recommended for path dependent problems [35]. In the

CPM, all sensitivity parameters and response quantities in a finite element analy-

sis are represented using complex numbers and all finite element computations are

carried out using complex algebra. By performing structural analysis using CPM,
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the real component of the complex response represents the structural response and

the imaginary component of the complex response represents the response sensitiv-

ity. In spite of giving very accurate response sensitivity results, CPM requires full

re-analysis for each parameter in the finite element model and hence it is computa-

tionally intensive. The DDM is an attractive alternative to FDM. In the DDM, the

analytical response sensitivity equations are derived and implemented within the

finite element response algorithm. The DDM computes sensitivity gradients using

the same solver as the ordinary response while the simulation proceeds rather than

by complete re-analysis for each parameter. Many researchers have contributed to

the development of sensitivity analysis such as [53, 31, 57, 53, 36, 5, 27, 62, 34].

Geometric nonlinear behavior can be captured using either a total Lagrangian,

an updated Lagrangian or a corotational formulations. The difference between

the aforementioned formulations is in the reference configuration system that de-

scribes the motion of the body. For instance, in the total Lagrangian formulation,

the structural deformations are calculated based on the undeformed element con-

figuration. In the updated Lagrangian formulation, The structural deformations

are calculated based on the last deformed element configuration. The corotational

formulation removes the rigid-body mode which allows to separate material nonlin-

earity due to large deformation inside the basic system from geometric nonlinearity

due to large displacement outside the basic system. Many studies have shown the

advantage of using the corotational formulation over the Lagrangian formulations

such as [68] and [71].

For two and three dimensional linear transformations, the implementation of



72

response gradients is straightforward. Under the rigid body mode assumption,

the local-global coordinate transformation is linear and the local-basic coordinate

transformation is based on the undeformed configuration. In the 2D corotational

system, an exact transformation of displacements and forces can be obtained in

two steps (basic to local and local to global). However, the transformation for

3D frame elements is more complex than that for 2D elements. This is because

finite rotations in three dimensional space elements do not comply with the rules

of vector operations, non-vectorial nature, and the results depend on the order

in which the rotations are applied. To overcome the problem of violating vector

properties, Crisfield algorithm [19] is used to obtain the triads of the deformed

configuration of the space frame element.

The objective of this paper is to derive the response sensitivity equations for 3D

space frame element using DDM. The derivation requires following Crisfield algo-

rithm [19] to obtain the element triads and their sensitivities in the deformed con-

figuration. The derived equations are implemented in the OpenSees finite element

framework software and verified through a set of standalone sensitivity analyses

for simple and complex structures.

4.2 Global and Basic Coordinate Systems

For three-dimensional frame elements, there are 12 nodal degrees of freedom (six

DOFs at each connected node, I and J) as shown in Fig. 4.1. For notational
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convenience, the global DOFs are grouped as

uT =
[

uTI γTI uTJ γTJ

]
(4.1)

where uI and uJ are the global translational displacement components while γI

and γJ represent the global rotations at each end of the element.

uI =


u1

u2

u3

 γI =


u4

u5

u6

 (4.2)

uJ =


u7

u8

u9

 γJ =


u10

u11

u12

 (4.3)

With the corotational formulation, it is necessary to remove the rigid body displace-

ment modes from the element displacement field. For frame elements in three di-

mensions, there are six rigid body displacement modes and six deformation modes.

This leads to the six basic DOFs shown in Fig. 4.1 that describe the deformation

of the element

ub =



ub1

ub2

ub3

ub4

ub5

ub6


=



Ld − L
θI3

θJ3

−θI2
−θJ2

θJ1 − θI1


(4.4)
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where ub1 is the change in length of the element (the difference between the de-

formed length, Ld, and the original length, L) and ub6 is the torsional deformation.

Basic DOFs ub2 through ub5 represent the flexural deformations of the element.

The nodal rotations, θI1 through θJ3, are measured about the local element axes.

The non-vectorial nature of these rotations in three dimensions makes the transfor-

mation of displacements and forces between the global and basic systems compli-

cated. As a result, an approximate algorithm is required to describe the rotation

of a space frame element in the deformed configuration.
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Figure 4.1: Force and displacement degrees of freedom of global and basic coordi-
nate systems of space frame (3D) element.
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4.3 Rotation Matrix for Large Rotations-Rodrigues Formula

The vector V0 shown in Fig. 4.2 describes the position of a point P0 with respect

to a fixed reference system (X, Y, Z). To describe the transition of point P0 to a

new position Q, the vector V0 has to be rotated to describe the new position. To

do so, Rodrigues formula, which describes the rotation of a vector in space, can

be used. The derivation of Rodrigues rotation formula was presented by many

researchers such as [4], [18], [20], and [23]. The formula describes rotation of a

vector V0 about a unit vector t by an angle θ to a new vector V1 as shown in

Fig. 4.2

V1 = R(θ1)V0 (4.5)

where θ1 is the pseudo rotation vector with magnitude equal to the rotation angle

θ about an axis of rotation described by the unit vector t.

θ =
[
θ1 θ2 θ3

]T
= θt (4.6)

where the rotation angle θ is

θ = ‖θ‖ =
√
θ2

1 + θ2
2 + θ2

3 (4.7)

The vector θ that describes the angle of rotation is called the “pseudo rotation

vector” because it violates the properties of vector addition (non-vectorial nature).
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Figure 4.2: Rotation of a vector in space.

The rotation matrix R(θ) can be obtained using Rodrigues formula [19]

R(θ) = I +
sin(θ)

θ
S(θ) +

(1− cos(θ))

θ2
S(θ) (4.8)

An alternative expression for the rotation matrix R(θ) can be obtained using the

tangent scaled pseudo vector ω instead of θ, where ω is defined in terms of θ,

about the same unit vector t, as

ω = wt = 2 tan(θ/2)t = 2
tan(θ/2)

θ
θ (4.9)

Substituting Eq. (4.9) in to Eq. (4.8) gives the rotation matrix R(ω)

R(ω) = I +
1

1 + 1
4
ωTω

[
S(ω) +

1

2
S(ω)S(ω)

]
(4.10)
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where the spin tensor S(ω) can be represented as a skew symmetric matrix that

contains infinitesimal rotations about the orthogonal local axes

S(ω) =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (4.11)

It is noted that Eq. (4.10) is not applicable when θ equals 180o and odd multiples

thereof, in which case the tangent scaled pseudo vector, ω, becomes infinite and

the rotation matrix R becomes singular. One approach to overcome this obstacle is

to use the normalized unit quaternion [70, 65] instead of the pseudo rotation vector

θ. The normalized quaternion vector consists of the quaternion scalar element, q0,

and a vector of three components. The vector components are represented by a

sine-scaled pseudo vector in the same direction as the unit vector t. The scalar

component q0 is represented by a cosine of pseudo rotation and is used to extract

the pseudo rotation vector θ out of the rotation matrix R(ω). Note that the length

of the quaternion vector is one, i.e., qTq = 1.

q =


q0

q1

q2

q3

 =

[
cos(θ/2)

sin(θ/2)t

]
(4.12)

Using the half angle formulas for cosine and sine of the angle of rotation, θ.

cos θ = cos2

(
θ

2

)
− sin2

(
θ

2

)
= 1− 2 sin2

(
θ

2

)
(4.13)
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sin θ = 2 cos

(
θ

2

)
sin

(
θ

2

)
(4.14)

substitution of Eq. (4.13) and Eq. (4.14) into Eq. (4.8) gives

R(θ) = I + 2 cos

(
θ

2

)
sin

(
θ

2

)
S(t) +

[
1− cos2

(
θ

2

)
+ sin2

(
θ

2

)]
S (t)2 (4.15)

where S(t)2 is the square of the skew symmetric matrix which can be expressed as

S(t)2 = ttT − I (4.16)

By substituting Eq. (4.16) in Eq. (4.15), the equation of the rotation matrix be-

comes

R(θ) =

[
cos2

(
θ

2

)
− sin2

(
θ

2

)]
I + 2 cos

(
θ

2

)
sin

(
θ

2

)
S(t) +

[
2 sin2

(
θ

2

)]
ttT

(4.17)

The final form of the rotation matrix R in terms of the normalized quaternion can

be obtained by substituting Eq. (4.12) in to Eq. (4.17).

R(q) = 2


q2

0 + q2
1 − 1

2
q1q2 − q0q3 q1q3 + q0q2

q2q1 + q0q3 q2
0 + q2

2 − 1
2

q2q3 − q1q0

q3q1 − q0q2 q3q2 + q0q1 q2
0 + q2

3 − 1
2

 (4.18)

To extract the tangent-scaled pseudo vector ω from the rotation matrix, the

quaternion vector has to be extracted first. To this end, the Spurrier algorithm,

which was introduced first by [37] and improved later by [66], is the most efficient al-
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gorithm for extracting the normalized quaternion from the rotation matrix. Many

researchers have shown the robustness of the Spurrier algorithm[49, 64, 17, 1, 20],

which is based on using the square root operation to compute only the largest of

the trace of R and the diagonal elements of R. Then, only this largest compo-

nent is used as a divisor in computing the other components of the quaternion as

shown in Fig. 4.3 where i, j, k is the cyclic permutation of 1,2,3. After obtaining

the normalized quaternion via the Spurrier algorithm, the tangent scaled pseudo

vector, ω, can be obtained by combining Eq. (4.9) and Eq. (4.12)

ω = 2 tan

(
θ

2

)
t =

2

q0

q (4.19)
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a=max(tr(R), R11, R22, R33)

a = tr(R) q0 = 1
2

√
tr(R) + 1

qi = 1
4q0

(Rkj − Rjk)

qi =
√

1
2
a+ 1

4
[1− tr(R)]

q0 = 1
4qi

(Rkj −Rjk)

ql=
1

4qi
(Rli −Ril)

where l = j, k

yesno

Figure 4.3: Extraction of the unit quaternion from the rotation matrix using
Spurrier algorithm.

4.3.1 Compound Rotations

The result of successive large rotations depends on the order in which they are

applied. For example, consider a vector v0 that is rotated to a vector v1 using

pseudo angle θ1 and then rotated to another vector v2 using pseudo angle θ2 via

the following operations

v1 = R(θ1)v0

v2 = R(θ2)v1

(4.20)
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The new vector v2 can then be expressed in terms of v0

v2 = R(θ2)R(θ1)v0 (4.21)

Alternatively, the new vector v2 can be obtained using the quaternion product

operation [65]

v2 = R(q2)R(q1)v0

v2 = R(q12)v0

(4.22)

where R(q12) can be calculated using Eq. (4.18) and q12 represents the quaternion

product

q12 = q2q1 =

[
q10q20 − qT1 q2

q10q2 + q20q1 − q1 × q2

]
(4.23)

Note that the first row is the scalar component and the second row is the vector

component. Furthermore, the quaternion product is not a commutative operation

due to the presence of the vector cross-product (q1 × q2 = −q2 × q1).

4.4 Displaced Local Frame

Three node triads are defined for the deformed element: two nodal triads, NI and

NJ , are defined at the element ends along with one local element base triad Ê,

as shown in Fig. 4.4. The triads NI and NJ represent the nodal rotations at the
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ê2

ê3
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nJ3
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Figure 4.4: Three nodal triads of the deformed element.

element ends, each in terms of three base vectors

NI =
[

nI1 nI2 nI3

]
NJ =

[
nJ1 nJ2 nJ3

]
(4.24)

The local element base triad Ê, which corresponds to a rotation matrix that trans-

forms vectors from global to local coordinate system, consists of three unit base

vectors

Ê =
[

ê1 ê2 ê3

]
(4.25)

The unit base vector ê1 lies along the element between nodes I and J . In the

deformed configuration, ê1 can be computed by considering the end displacements

of the element.

ê1 =
XIJ + uIJ

Ld
(4.26)
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where XIJ and uIJ are the difference between global coordinates and displacements

of nodes I and J , respectively, as shown in Fig. 4.5.

XIJ = XJ −XI (4.27)

uIJ = uJ − uI (4.28)

The deformed length of the element, Ld, is

Ld = ‖XIJ + uIJ‖ =
[
(XIJ + uIJ)T (XIJ + uIJ)

] 1
2 (4.29)

which is easily computed from the original nodal coordinates and the translational

nodal displacements.

Note that the geometric linear transformation that is performed in the unde-

formed configuration can be retrieved by setting uIJ to zero. For linear transfor-

mation, the unit base vectors ê2 and ê3 that give the orientation of the element

cross-section after deformation can be computed using a vector, v, lying on the

x-z plane that can be specified as a user input data such that

ê2 =
v × ê1

‖v × ê1‖
(4.30)

ê3 = ê1 × ê2 (4.31)

where × denotes the vector cross-product operation.

On the other hand, for the corotational transformation, the vectors ê2 and ê3
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cannot be computed directly because their formulations depend on the rotations

of nodal triads in the deformed configuration. The most common approach to

obtain ê2 and ê3 independently from the orientation of the local axes (x, y, z) is

the Crisfield algorithm [19], which will be discussed next.

Figure 4.5: Deformed configuration of frame in space.

4.4.1 Crisfield Algorithm

The pseudo rotation increment vector of node I and J can be described as

∆θI = {θI}ji − {θI}j−1
i (4.32)

∆θJ = {θJ}ji − {θJ}j−1
i (4.33)
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where the subscript i refers to the time step and the superscript j refers to the

iteration number within the time step. The increment of the pseudo rotation

vectors is used to compute the quaternion vector q(∆θ) by applying Eq. (4.12).

The orientation of the deformed sections located at the ends of the element is

represented by the nodal triads (NI and NJ) and can be obtained by applying

Eq. (4.18).

To combine the triads NI and NJ , Crisfield used the compound rotation for-

mula

NJ = R(ζ)NI (4.34)

where ζ is the tangent-scaled pseudo rotation vector that connects the nodal ro-

tations NI and NJ . The matrix R(ζ) is the rotation matrix that corresponds to

the rotation from triad NI to triad NJ . By multiplying both sides of Eq. (4.34)

by NT
I and considering that NI is an orthogonal matrix gives

R(ζ) = NJN
T
I (4.35)

To get the ζ vector out of the rotation matrix R(ζ), the quaternion vector has

to be extracted first by using Spurrier algorithm [66] and then using Eq. (4.19) to

get ζ out of the quaternion vector. The average rotation matrix can be calculated

now in terms of the pseudo rotation vector, ζ, using Eq. (4.10).

R̄ = R

(
ζ

2

)
NI (4.36)
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The mean triad (R̄) is a 3×3 matrix and each column in this matrix corresponds

to the local axes orientation in the deformed configuration

R̄ =
[

r̄1 r̄2 r̄3

]
(4.37)

To find the triad Ê, Crisfield made an assumption that r̄1 coincides with ê1 via

small possible rotations while ê2 and ê3 are

ê2 = r̄2 −
r̄T2 ê1

2
(r̄1 + ê1) (4.38)

ê3 = r̄3 −
r̄T3 ê1

2
(r̄1 + ê1) (4.39)

After defining the unit base vectors (ê1, ê2, ê3) and the nodal rotations (NI and

NJ) in the deformed configuration, the displacements in the local and basic systems

are defined next.

4.5 Transformation From Local to Basic Coordinates

As in the planar case, the axial deformation (ul1) produces extension which is the

difference between the deformed and the initial length (Ln)

ul1 = Ld − Ln =
1

Ld + Ln
(2XIJ + uIJ)T uIJ (4.40)

Once the three triads (NI , NJ , and Ê) are determined, the local rotations at

the ends of the element (node I and J) can be obtained using the Crisfield algo-



87

rithm [19]. The local displacement vector ul can be represented by

ul =



ul1

ul2

ul3

ul4

ul5

ul6

ul7


=



θI1

θI3

θI2

θJ1

θJ3

θJ2

ul1


(4.41)

where

θI1 = arcsin

[
1

2

(
êT3 nI2 − êT2 nI3

)]
(4.42)

θI2 = arcsin

[
1

2

(
êT1 nI3 − êT3 nI1

)]
(4.43)

θI3 = arcsin

[
1

2

(
êT2 nI1 − êT1 nI2

)]
(4.44)

θJ1 = arcsin

[
1

2

(
êT3 nJ2 − êT2 nJ3

)]
(4.45)

θJ2 = arcsin

[
1

2

(
êT1 nJ3 − êT3 nJ1

)]
(4.46)

θJ3 = arcsin

[
1

2

(
êT2 nJ1 − êT1 nJ2

)]
(4.47)
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The element deformations vector v within the corotational basic system can be

obtained by

v = Tblul (4.48)

and the equilibrium between the basic forces, pb, and forces in the local coordinate

system, pl, is described by

pl = TT
blpb (4.49)

where Tbl is a 6x7 local-basic transformation matrix

Tbl =



0 0 0 0 0 0 1

0 1 0 0 0 0 0

0 0 0 0 1 0 0

0 0 −1 0 0 0 0

0 0 0 0 0 −1 0

−1 0 0 1 0 0 0


(4.50)

4.6 Transformation From Global to Local Coordinates

The first components in the corotational theory is the transformation of element

displacements from global coordinate system to local coordinate system which can

be described by the matrix-vector product

ul = Tu (4.51)

where u is the dispacement vector in the global coordinate system. The size of the

local and global displacement vectors are 7 and 12, respectively. Therefore, the
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size of the local-global transformation matrix T is 7×12.

The vector of the local element forces, pl, transforms to the vector of the global

forces, p, by the contragradient relationship

p = TTpl (4.52)

Unlike the 2D corotational formulation, in which the local-global transformation

matrix T is a linear function, the transformation matrix T of the 3D corotational

formulation is a function of displacements in the deformed configuration (T(u(h)).

More information about the derivation of the transformation matrix T can be

found in [19] and [20], and is omitted here for brevity. The first component in the

transformation matrix is t1 that corresponds to global-local transformation of axial

deformations and forces. The global-local transformation components t2, t3, t4,

and t5 correspond to the transformation of element end rotations. The last tow

components t6I and t6J correspond to the transformation of torsional rotations at

element ends, node I and node J . The final form of the the end of the element.

TT =
[

tT1 tT2 tT3 tT4 tT5 tT6I tT6J

]
(4.53)

where

t1 =
[
−êT1 0T êT1 0T

]
(4.54)

t2 =
1

2 cos(θI3)
[L(r̄2)nI1 + hI3 ]

T (4.55)
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t3 =
1

2 cos(θJ3)
[L(r̄2)nJ1 + hJ3 ]

T (4.56)

t4 =
1

2 cos(θI2)
[−L(r̄3)nI1 − hI2 ]

T (4.57)

t5 =
1

2 cos(θJ2)
[−L(r̄3)nJ1 − hJ2 ]

T (4.58)

t6J =
1

2 cos(θJ1)
[L(r̄3)nJ2 − L(r̄2)nJ3 + hJ1 ] (4.59)

t6I =
1

2 cos(θI1)
[L(r̄3)nI2 − L(r̄2)nI3 + hI1 ]

T (4.60)

The matrix L is produced as a result of taking the variation of the base vectors

ê2 and ê3, respectively.

δêk = L(r̄k)
T δu (4.61)

for k = 1, 2 and the matrix L is

L(r̄k)
T =

[
L1(r̄k)

T L2(r̄k)
T −L1(r̄k)

T L2(r̄k)
T
]

(4.62)

with

L1(r̄k) =
1

2
(r̄Tk ê1A + Ar̄k(ê1 + r̄1)T ) (4.63)

and

L2(r̄k) =
1

2
S(r̄k)−

1

4
r̄Tk ê1S(r̄1)− 1

4
S(r̄k)ê1(ê1 + r̄1)T (4.64)
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The matrix A is obtained by taking the variation of the base vector ê1

δê1 = AδuIJ (4.65)

A =
1

Ld
(I− ê1ê

T
1 ) (4.66)

Finally the vector h is obtained as a result of taking the variation of the rotation

vectors Eq. (4.42) through Eq. (4.47)

hTI1 =
[

0T (S(nI2)ê3 − S(nI3)ê2)T 0T 0T
]

(4.67)

hTI2 =
[

(AnI3)
T (S(nI1)ê3 − S(nI3)ê1)T −(AnI3)

T 0T
]

(4.68)

hTI3 =
[

(AnI2)
T (S(nI1)ê2 − S(nI2)ê1)T −(AnI2)

T 0T
]

(4.69)

hTJ1 =
[

0T 0T 0T (S(nJ2)ê3 − S(nJ3)ê2)T
]

(4.70)

hTJ2 =
[

(AnJ3)
T 0T (−AnJ3)

T (S(nJ1)ê3 − S(nJ3)ê1)T
]

(4.71)

hTJ3 =
[

(AnJ2)
T 0T (−AnJ2)

T (S(nJ1)ê2 − S(nJ2)ê1)T
]

(4.72)

Up to here, the finite element corotational formulation of space frame elements
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is completed and the DDM response sensitivity equations are defined next.

4.7 Sensitivity of The Unit Base Vectors

Derivation of sensitivity begins with the displaced local frame, which is defines by

element triads and unit base vectors. The sensitivity derivations of the element

triad Ê in the deformed configuration start by differentiating the unit base vector

ê1 in Eq. (4.26) with respect to parameter h

dê1

dh
=
Ld(

dXIJ

dh
+ duIJ

dh
)− (XIJ + uIJ)dLd

dh

L2
d

(4.73)

where the sensitivity of the deformed length can be obtained by differentiating

Eq. (4.29) with respect to parameter h

dLd
dh

=
(XIJ + uIJ)T (∂XIJ

∂h
+ ∂uIJ

∂h
)

Ld
(4.74)

where ∂uIJ
∂h

is the sensitivity of the nodal displacement. The sensitivity of the nodal

coordinates dXIJ/dh is nonzero only when the parameter h corresponds to a nodal

coordinate at the element ends.

The derivatives of the other unit base vectors ê2 and ê3 are more complex and

require following the Crisfield algorithm which starts by taking the derivative of

the pseudo rotation increment defined in Eq. (4.32) and Eq. (4.33)

d∆θI
dh

=
d{θI}ji
dh

− d{θI}j−1
i

dh
(4.75)
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d∆θJ
dh

=
d{θJ}ji
dh

− d{θJ}j−1
i

dh
(4.76)

The next step of the derivation is to differentiate the unit quaternion vector defined

in Eq. (4.12), with respect to the parameter h

dq

dh
=


dq0
dh
dq1
dh
dq2
dh
dq3
dh

 =

[
−1

2
sin(θ/2) dθ

dh

sin(θ/2)
θ

dθ
dh

+
( θ
2
dθ
dh

cos(θ/2)− dθ
dh

sin(θ/2))

θ2
θ

]
(4.77)

where the sensitivity of the magnitude of the pseudo rotation, θ, can be obtained

by differentiating Eq. (4.7) with respect to parameter h

dθ

dh
=
θ1

dθ1
dh

+ θ2
dθ2
dh

+ θ3
dθ3
dh

θ
(4.78)

The sensitivity of the updated rotations requires the derivative of the quaternion

product, which can be obtained by differentiating Eq. (4.23) with respect to pa-

rameter h

q12

dh
=

[
q10

dq20
dh

+ dq10
dh

q20 − (qT1
dq2

dh
+

dqT1
dh

q2)

q10
dq2

dh
+ dq10

dh
q2 + q20

dq1

dh
+ dq20

dh
q1 − d(q1×q2)

dh

]
(4.79)

The sensitivities of the rotation triads NI and NJ are ready to be evaluated by

differentiating Eq. (4.18) with respect to parameter h. For instance, to get dNI/dh,

it is necessary to apply the quaternion vector and its derivative corresponding to

node I
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dR

dh
=


2q0

dq0
dh

+ 2q1
dq1
dh

q1
dq2
dh

+ dq1
dh
q2 − (q0

dq3
dh

+ dq0
dh
q3) q1

dq3
dh

+ dq1
dh
q3 + q0

dq2
dh

+ dq0
dh
q2

q2
dq1
dh

+ dq2
dh
q1 + q0

dq3
dh

+ dq0
dh
q3 2q0

dq0
dh

+ 2q2
dq2
dh

q2
dq3
dh

+ dq2
dh
q3 − q1

dq0
dh
− dq1

dh
q0

q3
dq1
dh

+ dq3
dh
q1 − q0

dq2
h
− dq0

dh
q2 q3

dq2
dh

+ dq3
dh
q2 + q0

dq1
dh

+ dq0
dh
q1 2q0

dq0
dh

+ 2q3
dq3
dh


(4.80)

The sensitivity of the rotation triad from node I to node J can be evaluated

now by differentiation Eq. (4.35)

dR(ζ)

dh
= NJ

dNT
I

dh
+
dNJ

dh
NT
I (4.81)

To obtain the sensitivity of the average tangent scaled pseudo vector, ζ, the sen-

sitivity derivation has to be extended to include the Spurrier algorithm as shown

in Fig. 4.6.

After obtaining the sensitivity of the unit quaternion vector, the sensitivity of

the tangent scaled pseudo vector can be computed by differentiating Eq. (4.19)

with respect to the parameter h

dζ

dh
=

2
(
q0

dq
dh
− dq0

dh
q
)

q2
0

(4.82)

The sensitivity of the mean rotation triad is ready to be evaluated now by differ-

entiating Eq. (4.36) with respect to h.

dR̄

dh
= R(

ζ

2
)
∂NI

∂h
+
∂R(ζ

2
)

∂h
NI (4.83)

The sensitivity of the rotation Matrix R(ζ/2) can be obtained by differentiat-
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a=max(tr(R), R11, R22, R33)

a = tr(R) dq0
dh

= 1
4

∂dtr(R)
∂dh√
tr(R)+1

dqi
dh

=
qi(

dRkj
dh
− dRjk

dh
)− dq0

dh
(Rkj−Rjk)

4q20

dqi
dh

= 1
4

(
da
dh

qi
− d(tr(R))

dh

)

dq0
dh

=
qi(

dRkj
dh
− dRjk

dh
)−(Rkj−Rjk)

dqi
dh

4q2i

dql
dh

=
qi(

dRli
dh
− dRil

dh
)− dqi

dh
(Rli−Ril)

4q2i

yesno

Figure 4.6: Extraction the sensitivity of the unit quaternion from the rotation
matrix using Spurrier’s algorithm.

ing Eq. (4.10) with respect to parameter h where the tangent scaled vector ω is

evaluated at ζ/2.

∂R(ω)

∂h
=

1

1 + 1
4
ωTω

[
∂S(ω)

∂h
+

1

2

∂(S(ω)S(ω))

∂h

]
−

1
2
ωT ∂ω

∂h(
1 + 1

4
ωTω

)2

[
S(ω) +

1

2
S(ω)S(ω)

]
(4.84)

where the derivative of the spin tensor ∂S
∂h

and its square ∂(S(ω)S(ω))
∂h

are

∂S(ω)

∂h
=


0 −∂ω3

∂h
∂ω2

∂h

∂ω3

∂h
0 −∂ω1

∂h

−∂ω2

∂h
∂ω1

∂h
0

 (4.85)
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∂(S(ω)S(ω))

∂h
=


−2ω3

∂ω3

∂h
− 2ω2

∂ω2

∂h
ω1

∂ω2

∂h
+ ∂ω1

∂h
ω2 ω3

∂ω1

∂h
+ ω1

∂ω3

∂h

ω1
∂ω2

∂h
+ ω2

∂ω1

∂h
−2ω3

∂ω3

∂h
− 2ω1

∂ω1

∂h
ω3

∂ω2

∂h
+ ω2

∂ω3

∂h

ω3
∂ω1

∂h
+ ∂ω3

∂h
ω1 ω3

∂ω2

∂h
+ ω2

∂ω3

∂h
−2ω2

∂ω2

∂h
− 2ω1

∂ω1

∂h


(4.86)

The derivative of the tangent scaled pseudo vector ∂ω
∂h

where ω is evaluated at

ζ/2 are calculated by Eq. (4.82).

Note that the components of dR̂/dh are

dR̄

dh
=
[

dr̄1
dh

dr̄2
dh

dr̄3
dh

]
(4.87)

The sensitivity of the unit base vectors ê2 and ê3 can be computed now based on

the derivatives of dr̄2/dh and dr̄3/dh, respectively.

dê2

dh
=
dr̄2

dh
− 1

2

[
dr̄T2
dh

ê1 + r̄T2
dê1

dh
(r̄1 + ê1) + r̄T2 ê1

(
dr̄1

dh
+
dê1

dh

)]
(4.88)

dê3

dh
=
dr̄3

dh
− 1

2

[
dr̄T3
dh

ê1 + r̄T3
dê1

dh
(r̄1 + ê1) + r̄T3 ê1

(
dr̄1

dh
+
dê1

dh

)]
(4.89)
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4.8 Sensitivity Derivations in The Element Level

The sensitivity of the global-local transformation starts by differentiating Eq. (4.52)

with respect to parameter h

∂p

∂h
= TT ∂pl

∂h
+
∂TT

∂h
pl (4.90)

where ∂p/∂h and ∂pl/∂h represent the sensitivity of the element forces in the

global and local coordinate systems, respectively. The sensitivity of the global-

local transformation matrix is presented by ∂TT/∂h. By applying the chain rule

in the differentiation of p(u, h) and pl(ul, h) with respect to parameter h, Eq. (4.90)

expands to

Kg
∂u

∂h
+
∂p

∂h

∣∣∣∣
u

= TT

(
K
∂ul
∂h

+
∂pl
∂h

∣∣∣∣
ul

)
+
∂TT

∂h
pl (4.91)

where Kg and K are global and local stiffness matrices. The conditional deriva-

tive of the external force vector is ∂p/∂h|u. The derivatives ∂u/∂h and ∂ul/∂h

represent the nodal displacement sensitivities in the global and local coordinate

systems, respectively.

It is necessary to obtain the relationship between the derivative of the global

displacements u and the local displacements ul by

∂ul
∂h

= T
∂u

∂h
+
∂T

∂h
u (4.92)
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Then, Eq. (4.106) and Eq. (4.91) are combined to give the following expression

Kg
∂u

∂h
+
∂p

∂h

∣∣∣∣
u

= TT

(
KT

∂u

∂h
+ K

∂T

∂h
u +

∂pl
∂h

∣∣∣∣
ul

)
+
∂T

∂h
pl (4.93)

Note that the relationship between the global and local stiffness matrices is

Kg = TTKT (4.94)

By applying Eq. (4.94) in Eq. (4.93), the first terms in the left and right-hand sides

of Eq. (4.93) are equal and hence they cancel out. As a result, Eq. (4.93) gives the

following expression for the conditional derivative of the element forces

∂p

∂h

∣∣∣∣
u

= TT

(
K
∂T

∂h
u + TT ∂pl

∂h

∣∣∣∣
ul

)
+
∂T

∂h
pl (4.95)

4.8.1 Sensitivity of The Local-Basic Transformation

To determine the conditional derivative of the element forces, ∂pl/∂h|ul in Eq. (4.95),

Eq. (4.49) has to be differentiated by a procedure identical to that which led to

Eq. (4.93)

K
∂ul
∂h

+
∂pl
∂h

∣∣∣∣
ul

= TT
bl

(
kb
∂v

∂h
+
∂pb
∂h

∣∣∣∣
v

)
+
∂TT

bl

∂h
pb (4.96)

Note that the local-basic transformation matrix is constant and accordingly its

derivative ∂TT
bl/∂h is equal to zero. The derivative of the element deformations

in the basic system is ∂v/∂h and the conditional derivative of the basic forces is



99

∂q/∂h|v. The derivative of the element deformations ∂v/∂h is obtained by the

chain rule of differentiation

∂v

∂h
= Tbl

∂ul
∂h

+
∂v

∂h

∣∣∣∣
ul

(4.97)

Note that the conditional derivative of the basic displacements, ∂v
∂h

∣∣
ul

, is zero be-

cause of the constant local-basic transformation matrix ,Tbl. Following the same

derivation procedure as that employed for the gradient of the transformation from

global to local coordinates, inserting Eq. (4.97) into Eq. (4.96) gives

K
∂ul
∂h

+
∂pl
∂h

∣∣∣∣
ul

= TT
bl

(
kbTbl

∂ul
∂h

+
∂pb
∂h

∣∣∣∣
v

)
+
∂TT

bl

∂h
pb (4.98)

After simplification, the final form of the conditional derivative of the element

forces is

∂pl
∂h

∣∣∣∣
ul

= TT
bl

∂pb
∂h

∣∣∣∣
v

(4.99)

The formulation of the conditional derivatives, ∂pb/∂h|v in the basic system de-

pends on the type of element formulation used in the structural analysis. More

information about ∂pb/∂h|v can be found in [59], [31], and [57]. The derivative

of the local displacements, ∂ul/∂h, and the global-local transformation matrix,

∂T/∂h, are defined next.
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4.9 Sensitivity of The Local and Basic Displacements

The sensitivity of the local rotation can be obtained directly by differentiating

Eq. (4.42) through Eq. (4.47) with respect to parameter h

dθI1
dh

=

1
2

(
êT3

dnI2
dh

+
dêT3
dh

nI2 − êT2
dnI3
dh
− dêT2

dh
nI3

)
1− 1

4
(êT3 nI2 − êT2 nI3)

1/2
(4.100)

dθI2
dh

=

1
2

(
êT1

dnI3
dh

+
dêT1
dh

nI3 − êT3
dnI1
dh
− dêT3

dh
nI1

)
1− 1

4
(êT1 nI3 − êT3 nI1)

1/2
(4.101)

dθI3
dh

=

1
2

(
êT2

dnI1
dh

+
dêT2
dh

nI1 − êT1
dnI2
dh
− dêT1

dh
nI2

)
1− 1

4
(êT2 nI1 − êT1 nI2)

1/2
(4.102)

dθJ1
dh

=

1
2

(
êT3

dnJ2
dh

+
dêT3
dh

nJ2 − êT2
dnJ3
dh
− dêT2

dh
nJ3

)
1− 1

4
(êT3 nJ2 − êT2 nJ3)

1/2
(4.103)

dθJ2
dh

=

1
2

(
êT1

dnJ3
dh

+
dêT1
dh

nJ3 − êT3
dnJ1
dh
− dêT3

dh
nJ1

)
1− 1

4
(êT1 nJ3 − êT3 nJ1)

1/2
(4.104)

dθJ3
dh

=

1
2

(
êT2

dnJ1
dh

+
dêT2
dh

nJ1 − êT1
dnJ2
dh
− dêT1

dh
nJ2

)
1− 1

4
(êT2 nJ1 − êT1 nJ2)

1/2
(4.105)
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The sensitivity of the axial displacement (with reference to the basic system) can

be obtained by taking the derivative of Eq. (4.40) with respect to parameter h.

du1

dh
=

1

Ld + L

[
(2XIJ + uIJ)T

duIJ
dh

+ (2
dXIJ

dh
+
duIJ
dh

)TuIJ

]
−

dLd
dh

+ dLn
dh

(Ld + Ln)2
(2XIJ + uIJ)TuIJ

(4.106)

4.10 Sensitivity of The Global-Local Transformation Matrix

The sensitivity of the global-local transformation matrix can be obtained by dif-

ferentiating Eq. (4.54) though Eq. (4.60) with respect to parameter h. The sen-

sitivities of the auxiliary matrices, A, L, and h, are omitted here for brevity and

provided in appendix B.

dt1

dh
=
[
−dêT1

dh
0T

dêT1
dh

0T
]

(4.107)

dt2

dh
=

1

2 cos(θI3)

[
L(r̄2)

dnI1
dh

+
dL(r̄2)

dh
nI1 +

dhI3
dh

]T
+

sin(θI3)

2 cos2(θI3)

dθI3
dh

[L(r̄2)nI1 + hI3 ]
T

(4.108)

where nI1 is finite component of NI , similar for others.

dt3

dh
=

1

2 cos(θJ3)

[
L(r̄2)

dnJ1
dh

+
dL(r̄2)

dh
nJ1 +

dhJ3
dh

]T
+

sin(θJ3)

2 cos2(θJ3)

dθJ3
dh

[L(r̄2)nJ1 + hJ3 ]
T

(4.109)
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dt4

dh
=

1

2 cos(θI2)

[
−L(r̄3)

dnI1
dh
− dL(r̄3)

dh
nI1 −

dhI2
dh

]T
+

sin(θI2)

2 cos2(θI2)

dθI2
dh

[−L(r̄3)nI1 − hI2 ]
T

(4.110)

dt5

dh
=

1

2 cos(θJ2)

[
−L(r̄3)

dnJ1
dh
− dL(r̄3)

dh
nJ1 −

dhJ2
dh

]T
+

sin(θJ2)

2 cos2(θJ2)

dθJ2
dh

[−L(r̄3)nJ1 − hJ2 ]
T

(4.111)

dt6J

dh
=

1

2 cos(θJ1)

[
L(r̄3)

dnJ2
dh

+
dL(r̄3)

dh
nJ2 − L(r̄2)

dnJ3
dh
− dL(r̄2)

dh
nJ3 +

dhJ1
dh

]T
+

sin(θJ1)

2 cos(θJ1)

dθJ1
dh

[L(r̄3)nJ2 − L(r̄2)nJ3 + hJ1 ]
T

(4.112)

dt6I

dh
=

1

2 cos(θI1)

[
L(r̄3)

dnI2
dh

+
dL(r̄3)

dh
nI2 − L(r̄2)

nI3
dh
− dL(r̄2)

dh
nI3 +

dhI1
dh

]T
+

sin(θI1)

2 cos(θI1)

dθI1
dh

[L(r̄3)nI2 − L(r̄2)nI3 + hI1 ]
T

(4.113)
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4.11 Numerical Examples

The derived DDM sensitivity formulation for corotational space frame elements

have been implemented in OpenSees and verified through standalone sensitivity

analyses for a cantilever beam and multistory steel frame structure.

4.11.1 Cantilever Example

The cantilever shown in Fig. 4.7 is a commonly used verification example for ge-

ometrically nonlinear frame element formulations [38, 51]. A bilinear stress-strain

relationship is assumed with yield stress, fy= 30.0 ksi, elastic modulus, E=30,000

ksi, kinematic hardening, Hkin=3000.0 ksi, and Poisson’s ratio, ν=0.3. The length,

L, is 5 in and the section is rectangular with dimensions 0.1 in by 0.5 in. Geometric

nonlinear analysis is performed using one force based beam-column element with

four Gauss-Lobatto integration points. The section is discretized into 30 by 30

fibers. Previous work with this example included shear deformation at the sec-

tion and material level; however, these effects are neglected here as the focus is

on DDM sensitivity of the corotational formulation, which is independent of the

material formulation. A vertical displacement is applied at the free end and the

structural analysis is performed using displacement control solution method. The

shear force-displacement relationship is recorded as shown in Fig. 4.8.
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Figure 4.7: Cantilever beam subjected to shear force at the free end.

Standalone sensitivity analyses of the load factor and the free end rotation are

performed with respect to the modulus of elasticity E, yield strength, fy, and the

kinematic hardening, HKin. The perturbed value used with FDM is 0.0001 times

the value of the uncertain parameter. Compatible results are obtained for both

DDM and FDM as shown in Fig. 4.9, Fig. 4.10, and Fig. 4.11.
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Figure 4.8: Load-displacement relationship at the free end of the Cantilever beam.
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Figure 4.9: Response sensitivity of load factor and free end rotation with respect
to the modulus of elasticity, E.
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Figure 4.10: Response sensitivity of load factor and free end rotation with respect
to the yield strength, fy.
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Figure 4.11: Response sensitivity of load factor and free end rotation with respect
to the kinematic strain hardening, Hkin.
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4.11.2 Two-Story Three-Dimensional Frame

A three-dimensional frame, which was analyzed by many researchers such as [4],

[1], and [20], is used in this example. Elastic perfectly plastic material is used

with elastic modulus, E=19613 MPa, yield strength, fy=98 MPa, and Poisson’s

ratio ν=0.17. Beam and column sections are rectangular with dimensions shown

in Fig. 4.12.

The section is discretized into 30 by 30. Geometric nonlinear analysis is per-

formed using one force beam-column element per member with five Lobatto in-

tegration points. The analysis is performed by controlling the horizontal roof

displacement, and the lateral load-displacement relationship is recorded as shown

in Fig. 4.13
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109

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

Lateral roof displacement, U (cm)

L
oa

d
,
P

(k
N

)

Figure 4.13: Load-displacement relationship for two-story frame.

Standalone sensitivity analyses of the load factor and the horizontal roof dis-

placement are performed with respect to the modulus of elasticity, E and yield

strength, fy. The perturbed value used with FDM is 0.0001 times the value of the

uncertain parameter. Compatible results are obtained for both DDM and FDM,

as shown in Fig. 4.14 and Fig. 4.15. Note that the effect of fy parameter starts at

displacement of 18.5 cm. The discrete jumps observed in Fig. 4.15 and Fig. 4.14

occur when the steel section yields at lateral roof displacement of 34 cm.
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Figure 4.14: Response sensitivity of load factor and lateral roof displacement with
respect to the modulus of elasticity, E.
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Figure 4.15: Response sensitivity of load factor and lateral roof displacement with
respect to the yield strength, fy.



111

4.12 Conclusion

Response sensitivity equations using direct differentiation method (DDM) are ob-

tained for corotational space frame finite elements. In order to overcome the prob-

lem of violating vector properties, Crisfield algorithm [19] is used to obtain the

triads of the deformed configuration. The derived equations are implemented in

OpenSees software and verified with finite difference method (FDM) through a set

of standalone sensitivity analyses for simple and complex structures. The response

sensitivity results obtained by DDM are compatible with those obtained by FDM.

By including sensitivity equations in the implementation of 3D corotational space

frame elements, the DDM response sensitivity can be used in simulating material

and geometric nonlinear formulations of frame finite elements in three dimensional

simulations, giving researchers a powerful tool for gradient-based applications that

can help prevent man-made and natural hazards from becoming disasters through

robust reliability-based design optimization.



112

Acknowledgments

This research was made possible through the support of the Higher Committee for

Education Development (HCED) in Iraq. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of the authors and do not

necessarily reflect the views of the HCED.



113

5 Conclusion

The response sensitivity equations of geometric nonlinear finite element formula-

tions including geometric-nonlinear displacement-based frame finite elements, dis-

placement control solution method, and the three dimensional space frame element

have been obtained. Direct differentiation method (DDM) is used to derive the

response sensitivity equations for the aforementioned formulations where the sen-

sitivity equations are derived within the finite element algorithm. The derived

equations are implemented in OpenSees software framework. Standalone sensitiv-

ity analyses are used to verify the accuracy of the derived equations by comparing

the response sensitivity results obtained by DDM with those obtained by finite

difference method (FDM).

Analytical response sensitivity of geometrically nonlinear displacement-based

frame finite elements is developed for uncertain material, cross-section dimension,

nodal coordinate, and load parameters. The derivation is based on moderate ro-

tations within the element basic system which leads to additional terms in the

conditional derivative of basic forces. Examples of standalone sensitivity analy-

sis verify the DDM implementation for the geometrically nonlinear formulation.

Finite element reliability analysis of a steel frame shows that a lower reliability

index is obtained compared to the standard geometrically linear formulation; how-

ever, the importance measures differ only slightly with axial loads having higher
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importance with the geometrically nonlinear formulation. These results indicate

that modeling decisions are important for estimating the probability of failure, but

not necessarily the importance ranking when comparing geometrically linear and

nonlinear displacement-based formulations.

Furthermore, displacement control solution method is extended by including

the response sensitivity equations using the direct differentiation method (DDM).

The DDM sensitivity derivations are applied to the incremental-iterative equations

developed by [13]. The derived equations are implemented in the finite element

software framework OpenSees, and the equations are verified by comparing the

DDM equations with the finite difference computations through stand-alone sen-

sitivity analysis of structural models with geometric and material nonlinearity.

Probabilistic analyses of a multistory steel frame using the first order reliability

method give the reliability index, probability of failure, and importance measures

for displacement-controlled analyses. Future work will extend DDM sensitivity

analysis to other continuation methods such as the arc-length and minimum un-

balanced displacement norm approaches [13].

For 3D space frame element. response sensitivity equations using direct dif-

ferentiation method (DDM) are obtained. In order to overcome the problem of

violating vector properties, Crisfield algorithm [19] is used to obtain the triads of

the deformed configuration in the formulation of large displacement of space frame.

The derived equations are implemented OpenSees software and verified with finite

difference method (FDM) through a set of standalone sensitivity analyses for sim-

ple and complex structures. The response sensitivity results obtained by DDM are
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compatible with those obtained by FDM. By including sensitivity equations in the

implementation of 3D corotational space frame element, the DDM response sensi-

tivity can be used in simulating material and geometric nonlinear formulations of

frame finite elements in three dimensional simulations, giving researchers a pow-

erful tool for gradient-based applications that can help prevent man-made and

natural hazards from becoming disasters through robust reliability-based design

optimization.
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A Spring Example

A.1 Spring Example

The goal of the following example is to illustrate the redundancy of the deriva-

tive of the structural tangent stiffness on the proposed sensitivity equations of

displacement control solution method. A simple spring system is presented in this

example. The system has two unconstrained displacements with three spring ele-

ments as shown in Fig. A.1. The basic force-deformation relationship is presented

by Eq.(A.1), Fig. A.2, and Fig. A.3.

Pb (Ub) = Pbo

((
3
Ub
Ubo

)
−
(
Ub
Ubo

)3
)

(A.1)

Figure A.1: Two-DOF spring example
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Figure A.2: Force-deformation values of each spring element
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Figure A.3: Force-deformation values of each spring element

The values of Ubo and Pbo are shown in table A.1.

Table A.1: Force-deformation values of each spring element

Springnumber Pbo Ubo
1 5 1.5
2 2 3
3 3.5 1.5

The sensitivity of the load factor to the peak response force at the spring ele-

ment one is plotted using both DDM and FDM methods as shown in Fig. A.4. One

step of analysis is performed twice. The first analysis considers ∂[KT ]ji/∂h = 0

while the second analysis considers ∂[KT ]ji/∂h 6= 0 and the sensitivity of the load

factor to the maximum load (Pb01) of spring 1 is recorded .



126

0 0.1 0.2 0.3 0.4
0

2

4

6

8
·10−2

Displacement (Uf1)

∂
λ
/∂
P
b 0

1

DDM
FDM

Figure A.4: Sensitivity of the load factor to the peak response force of spring
element one

A.1.1 Case 1: ∂[KT ]ji/∂h = 0

For this example, the sensitivity of the tangent displacement vector is zero, where

no solution for the sensitivity of the load factor can be attained in the first iteration.

The solution is achieved after three iterations.

A.1.2 The First Iterative Cycle, j=1

The tangent stiffness matrix of all iterations can be obtained via the matrix-triple

product.

[KT ]ji = AT
f [Kb]

j
iAf
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where Af is the compatibility matrix.

[KT ]11 =

[
11.9977 −1.9977

−1.9977 8.9666

]
The reference load vector is defined as

{Pref}= {0, 1}T

The tangent displacement vector and its derivative can be obtained by applying

Eq. (3.3) and Eq. (3.20), respectively.

{Uft}1
1 = {0.0193, 0.1158}T

∂{Uft}11
∂Pb01

={0, 0}T Because of the zero sensitivity of the tangent displacement, the

sensitivity of the load factor is zero at this iteration.

∂λ11
∂Pb01

=0

The residual force vector and its derivative can be evaluated by applying Eq. (3.11)

and Eq. (3.25), respectively.

{Rf}1
1 = {0.1999,−0.0354}T

∂{Rf}11
∂Pb0

= {0, 0}T

More iterations are required to minimize the residual force vector to a specified

tolerance (10−6).

A.1.3 The Subsequent Iterative Cycles, j > 1

By following the aforementioned steps for the subsequent iterations, the residual

displacement vector and its derivative can be calculated based on the residual force

vector of the previous iteration as illustrated in Eqs. (3.13) and (3.24), respectively.

{∆UR}2
1 = {0.01662,−0.00025}T
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∂{∆UR}21
∂Pb01

={0, 0}T

The sensitivity of the load factor can be evaluated based on the derivatives of the

tangent and the residual displacements using Eq. (3.27)

∂λ21
∂Pb01

= 0

An additional iteration is required to converge the results which leads to the exact

solution for the sensitivity of the load factor (
∂λ31
∂Pb01

).

{Rf}2
1 = {0.1027 ∗ 10−5, 0.5827 ∗ 10−5}T

∂{Rf}21
∂Pb01

={−0.033325, 0}T
∂{∆UR}31
∂Pb01

={−0.00288,−0.00064}T
∂λ31
∂Pb01

= 0.00555

A.1.4 Case 2: ∂[KT ]ji/∂h 6= 0

In this case the sensitivity of the tangent displacement can be obtained by

[KT ]ji
∂{UfT}ji

∂h
=
∂{Pref}
∂h

− ∂[KT ]ji
∂h

{UfT}ji (A.2)

where the derivative of the stiffness matrix (∂[KT ]ji/∂h) is based on the sensitivity

of the basic stiffness matrix as shown in Eq. (A.3). Note that the sensitivity of the

compatibility matrix is zero because of not considering the geometric parameters

in the analysis.

∂[KT ]ji
∂P01

= AT
f

∂[Kb]
j
i

∂P01

Af (A.3)
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A.1.5 The First Iterative Cycle, j=1

Same as before, the stiffness matrix is

[KT ]11 =

[
11.9977 −1.9977

−1.9977 8.9666

]

The derivative of the stiffness matrix can be obtained by applying Eq. (A.3)

∂[KT ]11
∂Pb01

=

[
2 0

0 0

]
The reference force and the tangent displacement vectors are repeated for clarity.

{Pref}= {0, 1}T

{Uft}1
1 = {0.0193, 0.1158}T

The sensitivity of the tangent displacement vector can be obtained by applying

Eq. (A.2)
∂{Uft}11
∂Pb01

={−0.0033387,−0.0007438}T Most of the solution for the sen-

sitivity of the load factor is captured at the end of this iterative cycle (j = 1)

∂λ11
∂Pb0

= 0.005545

As expected, one iteration is not enough to satisfy the equilibrium condition that is

represented by minimizing the residual force vector to a specified tolerance (10−6)

{Rf}1
1 = {0.1999,−0.0354}T

Because of the nonzero derivative value of the load factor and according to Eq. (3.25),

the derivative of the residual force vector is not zero.
∂{Rf}11
∂Pb0

= {0, 0.005545}T

As in case 1, more iterations are required to satisfy the tolerance condition.
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A.1.6 The Subsequent Iterative Cycles, j > 1

As in subsequent iterations of case 1, the residual displacement and its derivative

vectors are obtained by applying Eqs. (3.13) and (3.24), respectively.

{∆UR}2
1 = {0.01662,−0.00025}T

∂{∆UR}21
∂Pb01

={−0.00277, 0.000001158}T

The sensitivity of the load factor can be updated by applying Eq. (3.27)

∂λ21
∂Pb01

= 0.00555

The residual force vector and its derivative are updated for the next iteration.

{Rf}2
1 = {0.1027 ∗ 10−5, 0.5827 ∗ 10−5}T

∂{Rf}21
∂Pb0

= {−0.0333, 0.00555}T

The residual displacement vector and its derivative are updated using the residual

force vector of previous iteration.

{UR}3
1 ={0.20134 ∗ 10−6, 0.6947 ∗ 10−6}T

∂{∆UR}31
∂Pb01

={−0.0028,−2.2948 ∗ 10−7}T

The sensitivity of the load factor is attained after three iterations.

∂λ31
∂Pb01

= 0.00555
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B Sensitivity of A, L, and h Matrices With Respect to

Parameter h

The derivative of the A matrix can be obtained by deriving Eq. (4.66) with respect

to parameter h

dA

dh
=
−Ld(dê1êT1 )

dh
− (I− ê1ê

T
1 )dLd

dh

L2
d

(B.1)

where dLd/dh is the derivative of the deformed length which is defined in Eq. (4.74).

The derivative of the ê1ê
T
1 is

dê1ê
T
1

dh
= ê1

dê1

dh

T

+
dê1

dh
êT1 (B.2)

The derivative of the L matrix is

dL(r̄k)
T

dh
=
[

dL1(r̄k)T

dh
dL2(r̄k)T

dh
d−L1(r̄k)T

dh
dL2(r̄k)T

dh

]
(B.3)

where dL1(r̄k)T

dh
can be obtained by taking the derivative of Eq. (4.63) with respect

to parameter h.

dL1(r̄k)

dh
=

1

2

[
(r̄Tk ê1)

dA

dh
+
d(r̄Tk ê1)

dh
A + A

d(r̄k(ê1 + r̄1))

dh
+
dA

dh
r̄k(ê1 + r̄1)T

]
(B.4)
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where the derivative of r̄Tk ê1 can be obtained using product rule

d(r̄Tk ê1)

dh
= r̄Tk

dê1

dh
+
dr̄Tk
dh

ê1 (B.5)

and by following the same rule of production, the derivative of the r̄k(ê1 + r̄1)T is

d(r̄k(ê1 + r̄1))

dh
= r̄k(

dê1

dh
+
dr̄1

dh
)T +

dr̄k
dh

(ê1 + r̄1)T (B.6)

The sensitivity of L(r̄2) can be obtained by taking the derivative of Eq. (4.64) with

respect to parameter h

dL2(r̄k)

dh
=

1

2

dS(r̄k)

dh
− 1

4

(
r̄Tk ê1

dS(r̄1)

dh
+
d(r̄Tk ê1)

dh
S(r̄1) + S(r̄k)

d(ê1(ê1 + r̄1)T )

dh

)
−

1

4

(
dS(r̄k)

dh
ê1(ê1 + r̄1)T

)
(B.7)

dS(r̄k)

dh
=


0 −drk3

dh
drk2
dh

drk3
dh

0 −drk1
dh

−drk2
dh

drk1
dh

0

 (B.8)

The derivative dS(r̄1)
dh

can be obtained by substituting k = 1 in Eq. (B.8).

d(ê1(ê1 + r̄1))

dh

T

= ê1

(
dê1

dh
+
dr̄1

dh

)T
+
dê1

dh
(ê1 + r̄1)T (B.9)
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B.1 derivative of h matrix

dhI1
dh

T

=
[

0T
(
dS(nI2 )

dh
ê3 + S(nI2)

dê3

dh
− dS(nI3 )

dh
ê2 − S(nI3)

dê2

dh

)T
0T 0T

]
(B.10)

dhI2
dh

T

=

 (
A

dnI3
dh

+ dA
dh

nI3

)T (
dS(nI1 )

dh
ê3 + S(nI1)

dê3

dh
− S(nI3)

dê1

dh
− dS(nI3 )

dh
ê1

)T
−
(
A

dnI3
dh

+ dA
dh

nI3

)T
0T


(B.11)

dhI3
dh

T

=

 (
A

dnI2
dh

+ dA
dh

nI2

) (
dS(nI1 )

dh
ê2 + S(nI1)

dê2

dh
− S(nI2)

dê1

dh
− dS(nI2 )

dh
ê1

)T
−
(
A

dnI2
dh

+ dA
dh

nI2

)T
0T


(B.12)

dhJ1

dh

T

=
[

0T 0T 0T
(
dS(nJ2 )

dh
ê3 + S(nJ2)

dê3

dh
− dS(nJ3 )

dh
ê2 − S(nJ3)

dê2

dh

)T ]
(B.13)

dhJ2

dh

T

=

 (
A

dnJ3
dh

+ dA
dh

nJ3

)T
0T −

(
A

dnJ3
dh

+ dA
dh

nJ3

)T(
dS(nJ1 )

dh
ê3 + S(nJ1)

dê3

dh
− S(nJ3)

dê1

dh
− dS(nJ3 )

dh
ê1

)T


(B.14)
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dhJ3

dh

T

=

 (
A

dnJ2
dh

+ dA
dh

nJ2

)T
0T −

(
A

dnJ2
dh

+ dA
dh

nJ2

)T(
dS(nJ1 )

dh
ê2 + S(nJ1)

dê2

dh
−
(
S(nJ2)

dê1

dh
+

dS(nJ2 )

dh
ê1

))T


(B.15)

where the derivatives dS(nIk)/dh and dnIk/dh can be obtained using Eq. (B.8)

and Eq. (4.80), respectively where k = 1, 2, 3.




