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This paper presents a parallel implementation and validation of an accurate and efficient
three-dimensional computational model (3D numerical wave tank), based on fully nonlin-
ear potential flow (FNPF) theory, and its extension to incorporate the motion of a labora-
tory snake piston wavemaker, as well as an absorbing beach, to simulate experiments in
a large-scale 3D wave basin. This work is part of a long-term effort to develop a
“virtual” computational wave basin to facilitate and complement large-scale physical
wave-basin experiments. The code is based on a higher-order boundary-element method
combined with a fast multipole algorithm (FMA). Particular efforts were devoted to mak-
ing the code efficient for large-scale simulations using high-performance computing plat-
forms. The numerical simulation capability can be tailored to serve as an optimization
tool at the planning and detailed design stages of large-scale experiments at a specific
basin by duplicating its exact physical and algorithmic features. To date, waves that can
be generated in the numerical wave tank (NWT) include solitary, cnoidal, and airy waves.
In this paper we detail the wave-basin model, mathematical formulation, wave genera-
tion, and analyze the performance of the parallelized FNPF-BEM-FMA code as a func-
tion of numerical parameters. Experimental or analytical comparisons with NWT results
are provided for several cases to assess the accuracy and applicability of the numerical
model to practical engineering problems. [DOI: 10.1115/1.4007597]
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1 Introduction

Over the past decade, as modern computing platforms gradually
increased in power, accurate and efficient three-dimensional (3D)
computational wave basins (called numerical wave tanks or sim-
ply NWTs in this paper) have been under development. These
NWTs are intended to simulate complex processes of ocean wave
generation; propagation over arbitrary bottom topography; inter-
action with ocean structures; and dissipation over sloping beaches.
The NWTs will be useful in the development, design, and analysis
of many ocean engineering systems including offshore platforms,
vessels and crafts, wave-energy conversion devices, and coastal
infrastructure (breakwaters, piers, and docks). Until recently, the
analysis and design of the complex ocean processes and engineer-
ing systems had been mostly investigated by performing labora-
tory experiments in large-scale 3D (or directional) wave basins,
which are both expensive and time consuming to operate. To com-
plement such facilities, NWTs can be used to accurately duplicate
the exact physical operation of large-scale wave basins, including
wave-generation algorithms, to simulate and optimize planned
physical experiments ahead of time, and thus allow the users to
more efficiently devote time and efforts to targeted laboratory
experiments. As an added advantage, once validated, the NWTs
can simulate time series of detailed flow parameters (e.g., veloc-
ity, pressure) everywhere in the numerical model, while these are
usually available only at a limited number of experimental probes

(and at the sacrifice of flow-field intrusion) at physically accessi-
ble locations in laboratory experiments.

It is beyond the scope of this paper to provide an exhaustive lit-
erature review of the many methods that have been used to de-
velop NWTs. We will only present and discuss a limited number
of references, targeted to the type of models used in our work, i.e.,
models simulating nonlinear waves based on inviscid fully nonlin-
ear potential flow (FNPF) theory, and implemented based on a
higher-order boundary integral equation (BIE) method, in a finite-
element (FEM) formalism, which is referred to as the boundary-
element method (BEM). Besides its numerical efficiency and
accuracy, the main advantage of the BEM in engineering applica-
tions is that the dimensionality of the discretized problem is
reduced by one. Thus, 3D problems can be discretized using a
surface-only (i.e., two-dimensional) mesh, which reduces the
effort devoted to developing relevant numerical grids. Addition-
ally, while the governing equation (here Laplace’s equation) is
satisfied only approximately over the 3D-BEM domain boundary,
it is satisfied exactly within the domain. Due to the reduced
dimensionality, the numerical solution can be computed effi-
ciently even for higher-order schemes and highly resolved BEM
surface grids. Hence, problems such as free-surface waves can be
solved very accurately. Finally, if required, it is easier to regrid
the (2D) boundary mesh, unlike (3D) domain-discretization based
methods (e.g., FEM). This is particularly useful for moving-
boundary problems (e.g., free-surface waves), wherein regridding
will be redistributing nodes evenly during wave propagation. The
main drawback of the standard BEM, however, is that it yields
nonsymmetric and fully populated linear system matrices, which
for large problems becomes prohibitive to solve, and thus require
fast solution methods or a more advanced implementation that

Contributed by the Ocean Offshore and Arctic Engineering Division of ASME
for publication in the JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING.
Manuscript received May 20, 2012; final manuscript received September 6, 2012;
published online February 25, 2013. Assoc. Editor: Daniel T. Valentine.

Journal of Offshore Mechanics and Arctic Engineering MAY 2013, Vol. 135 / 021104-1
Copyright VC 2013 by ASME

Downloaded From: http://offshoremechanics.asmedigitalcollection.asme.org/ on 08/26/2014 Terms of Use: http://asme.org/terms



creates sparse matrices. This aspect of improving the numerical
efficiency of a 3D-BEM-NWT is one of the main aspects of this
paper that is extensively discussed later.

Historically, the BEM has been studied from the perspectives
of classical boundary integral equations, mathematical analysis,
and engineering applications (see, e.g., [1–7]). Following recent
developments and advances in high performance computing
(HPC), however, the BEM is receiving a renewed attention from
various research communities resulting in new interesting practi-
cal developments and applications of the methodology.

More specifically, in the context of the present work, we present
the parallelization and more efficient numerical implementation,
of an existing 3D-NWT, on small to medium size HPC platforms
consisting of multicore systems with a large shared central mem-
ory. The solution technique used, the fast multipole algorithm
(FMA; see, e.g., [8–12]), makes the 3D-BEM much more efficient
when using large-size discretizations required when solving prac-
tical engineering problems (which may require O(105 to 106)
BEM nodes). The FMA is an important and relatively recent de-
velopment (particularly in the context of NWTs) that has brought
the BEM to the forefront of numerical methods used in such prob-
lems. The principle of the FMA is first to approximate the free-
space Green’s function of the problem governing equations by a
series of spherical harmonics. Then, for each BEM discretization
node, a hierarchy of increasingly distant subdomains is defined, in
which the full Green’s function is used only in the nearest subdo-
mains, and a decreasing number of harmonics are used to repre-
sent the Green’s function (down to no harmonics), for
increasingly distant subdomains. Doing so both accelerates the
computation (through numerical integration) of the nonzero coef-
ficients in the BEM algebraic system matrices and creates large
empty blocks in such matrices for subdomains beyond a cutoff
distance; thus yielding a sparse structure. When properly imple-
mented, a BEM-FMA code can achieve an N log N numerical
complexity (with N the boundary discretization size). References
[9,10] include several numerical examples in elastostatics, BEM-
FEM coupling, and elastodynamics, in which grid sizes up to
millions of nodal unknowns were used, and Ref. [11] presents a
variety of practical engineering applications using FMA-BEM
models. Reference [12] reports on the initial (scalar) implementa-
tion and application of the FMA method in the 3D-NWT used in
this work. Note that an alternative numerical algorithm also based
on the boundary-element method, but using a precorrected fast
Fourier transformation (BEM-PFFT) to accelerate the evaluation
of the far-field influences of source and/or normal dipole distribu-
tions [13], also achieving an N log N efficiency, has been recently
implemented by Yan and Liu [14]. Details of the implementation
of this algorithm can be found in a Ph.D. thesis by Yan [15].

2 Background of FNPF Theory and Free-Surface

Waves Modeling

Potential flow theory solves inviscid, incompressible, Euler
equations for irrotational flows. The governing equation for poten-
tial flows is mass conservation, which is expressed as a Laplace’s
equation for the potential, i.e., a second-order linear elliptic partial
differential equation. Nonlinearity in wave processes originates
from the presence of, and equations governing, the free surface,
i.e., the dynamic (DFSBC) and kinematic (KFSBC) free surface
boundary conditions. When full nonlinearity is kept in the latter,
this yields FNPF equations.

Earlier works in applying the FNPF theory to modeling various
strongly nonlinear near shore waves [16,17] indicate that it is accu-
rate outside of the surf zone, up to the breaking point, where vis-
cous effects are usually negligible, and hence vorticity is not
generated, except in thin bottom and free-surface boundary layers.
Additionally, in the presence of submerged or floating ocean struc-
tures, viscous effects are also negligible for large-scale bodies (such
as ships); for small bodies (e.g., pipelines), while viscosity may be
locally important for the flow around the structure, it will typically

be negligible for the large scale (or far-field) wave flow itself. The
assumption of incompressible fluid is valid when there is no air-
water mixing (i.e., no bubbles), which is mostly the case for non-
breaking waves. Accordingly, most results of classical wave dy-
namics and applications to date have been based on FNPF theory,
or on other equations derived from it through perturbation expan-
sions (e.g., Stokes waves [18]). One severe limitation of the FNPF
theory, however, is that wave overturning and breaking will cause
flow (i.e., breaking jet) penetration, which violates the governing
equations and thus interrupts computations based on this flow
model. Hence, in FNPF-NWTs, numerical absorbing beaches have
been developed and used to prevent waves from overturning,
through the absorption of the energy of steeper waves, usually by
specifying an “absorbing” pressure distribution on the free surface;
more details on this aspect of NWT simulations are given later.

In the 2D-FNPF models (and NWTs) initially developed
[19–25], both the solution method (based on a direct Gaussian
elimination scheme) and the computation of the matrix elements
limited the size of problems that could be handled. For the inte-
gration of free-surface boundary conditions (i.e., time updating),
a fourth-order multistep implicit Adams–Bashforth–Moulton
predictor-corrector scheme (ABM4, initialized by a fourth-order
Runge–Kutta (RK4) scheme), or an explicit second-order Taylor
expansion scheme, were used. Regridding, combined in some
cases with smoothing techniques, was employed to minimize nu-
merical (sawtooth) instabilities.

With regard to fluid-structure interactions, using a 2D-FNPF
theory, Lin [22] studied the nonlinear behavior of the flow near
the intersection point of a free surface and a floating body (repre-
sented by a piston wavemaker). A numerical algorithm was pro-
posed to accommodate the singularity resulting from satisfying
conflicting boundary conditions near the intersection point. This
aspect was revisited by Grilli and Subramanya [25] in the context
of a different BEM model implementation, which used double
nodes with specific continuity and compatibility conditions, and
extended to the generation of waves by paddle flap or piston
wavemakers [24,25].

As part of a pioneering project on 3D numerical simulations of
nonlinear water waves, several studies [26–29] generated substan-
tial research based on using the BEM and FNPF approaches. This
work confirmed that, for large objects with characteristic dimen-
sions on the order of one wavelength, viscous as well as compres-
sibility effects can be neglected in the fluid flow: While the
assumption that the flow is potential is not valid at all stages of
physical processes, it is valid for many practical engineering situa-
tions. A detailed discussion of mathematical properties, such as
existence, uniqueness, and well-posedness of BIE-BEM problems
can also be found in these references. In these early 3D-NWT
models based on FNPF, the time updating scheme was based on a
RK4 scheme. The BEM was a low-order panel method. Romate
[26] used a conjugate gradient square (CGS) algorithm for solving
the linear system of discretized BIE equations at a given time
step. The results were accurate and stable for linear and weakly
nonlinear waves, but displayed significant stability problems in
the case of highly nonlinear waves. Broeze [27] focused on
improving the panel method developed in [26] for highly nonlin-
ear wave problems. The CGS algorithm was used in this work,
with several additional optimizations in the matrix-vector multi-
plications (which have a N2 numerical complexity). It was found
that more iterations were needed for solving larger problems, due
to the occurrence of matrix conditioning issues, particularly when
using large length to depth ratios in the computational domain
(this typically occurs in wave propagation problems in NWTs rep-
resenting near shore regions). In such cases, the increase in com-
putational time will be worse than quadratic in the number of
unknowns. The generalized minimal residual (GMRES) method
was tried and found to be faster and have better convergence, but
it required more memory than CGS. Memory limitation is much
less of a problem nowadays, and our 3D-NWT uses GMRES
with good success, as the basic method of solution. One obvious
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disadvantage of panel methods over the BEM is that the geometry
and solution are known only at discrete collocation points in the
panels. This necessitates additional techniques to find the solution
at the intersection of various surfaces. (For completeness, other
early works should be noted for interesting contributions. Liu
et al. [30] compared BIE solutions of 2D nonlinear water wave
problems using free space or periodic Green’s functions. Cooker
[31] further develops the method in [21] for 2D nonlinear wave
propagation over irregular beds; discretization is only needed on
the free surface, resulting in a faster solution method; lateral peri-
odicity, however, is required.)

In a series of research papers that represents the basis for the
present work [32–35], Grilli and co-workers developed an accu-
rate and versatile 3D-NWT based on FNPF theory, which directly
extended their earlier 2D work (e.g., [17,24,25]). This 3D-NWT
was initially based on combining a third-order BEM, based on a
free-space Green’s function in the physical space, with an explicit
time updating based on second-order Taylor series expansions, in
a mixed Eulerian–Lagrangian (MEL) formulation [32,33]. To
improve the computational efficiency, the method was later
extended [12,34,35] to using the fast multipole algorithm. The
method used to solve the BEM algebraic system was GMRES. In
applications of the BEM-FMA model, the numerical complexity
was found to be nearly proportional to the problem size N. Wave
energy dissipation was accomplished in the 3D-NWT by using an
absorbing beach, which combines free-surface (pressure) damping
and a lateral active absorbing wavemaker. This initial work and
applications to the propagation of highly nonlinear waves in a
3D-NWT was summarized in a recent book chapter [35].

Despite its demonstrated success for academic-type applica-
tions, the range of engineering applications that could practically
be solved using the 3D-NWTs developed by Grilli and co-
workers, however, those models were limited by the size of prob-
lems that could be solved on a single processor machine. This was
because both the FMA and the BEM had been implemented in
scalar mode in the original model. Also, while wavemakers had
been used in a few applications [34], the FMA implementation of
the 3D-NWT neither feature a snake piston wavemaker for simu-
lating laboratory directional wave generation (e.g., such as in Ore-
gon State University’s (OSU) 3D wave basin), which is an
important requirement to be able to model water waves in a physi-
cal wave basin, nor was there a fully operational absorbing beach
(AB), as used in 2D applications.

In this work we report on recent improvements in the 3D-NWT
implementation and validation by (i) parallelizing the code for
multicore shared memory computers; (ii) adding a snake piston
wavemaker for arbitrary wave generation (with the development
of a wave generation module consistent with the control software
driving the actual wavemaker at OSU’s wave basin); and (iii) an
efficient absorbing beach. These improvements bring the

3D-NWT model to the level of a practical engineering tool, able
to simulate meaningful laboratory experiments in a large-scale
wave basin, on a moderate size HPC platform. This is demon-
strated by comparing numerical results for 3D wave generation
and propagation to laboratory measurements.

In the following we first present a summary of the mathematical
model and numerical algorithms underlying the FNPF 3D-NWT,
and then we describe the enhancements implemented into the NWT
and their systematic validation for the generation of solitary waves
and periodic waves (cnoidal and airy waves), which are some of
the most fundamental wave generation capabilities of directional
wave basins (e.g., the one at OSU). Applications are presented,
with a comparison of numerical results to experimental data and
theoretical solutions. Finally, a summary discussion of the NWT
parallelization (particularly FMA-BEM) and resulting performance
characterization demonstrating the relevance of the newly added
capabilities is presented. This work is part of a long-term effort to
develop a “virtual” numerical wave basin to facilitate and comple-
ment large-scale physical wave basin experiments.

3 Mathematical Model

As indicated before, under FNPF theory, the governing differ-
ential equation, i.e., mass conservation, is governed by the Lap-
lace equation. With / denoting the velocity potential and the
velocity given by u ¼ r/ ¼ u; v;wð Þ, this reads

r2/ ¼ @
2/
@x2
þ @

2/
@y2
þ @

2/
@z2
¼ 0 (1)

Figure 1 shows the general setup and typical geometry of the
3D-NWT, in the case of wave generation by a snake piston wave-
maker on the leftward boundary Cw, with stroke function xp(y,t).
Wave elevation g(x,y) on the free surface boundary Cf is defined
with respect to the still water level, corresponding to the (x,y)
plane (that is z¼ 0). The tank axis is at y¼ 0, and x is positive
rightward, in the initial direction of wave propagation away from
the wavemaker. As in OSU’s directional wave basin, we assume
here that the four sides of the tank are vertical boundaries, one of
these being the moving snake wavemaker and the opposite end,
parallel to the (y,z) plane, a moving absorbing piston boundary
Cap. The two sidewalls Cs, parallel to the (x,z) plane, are fixed in
location. The impermeable bottom boundary Cb is represented in
the figure with a constant depth h0, but can be specified to be slop-
ing or with an arbitrary topography.

On the free surface Cf, the potential satisfies the nonlinear kine-
matic (KFSBC) and dynamic (DFSBC) boundary conditions,

DR

Dt
¼ u ¼ r/ (2)

Fig. 1 Sketch of 3D-NWT geometry and parameters, for wave generation by a
snake piston wavemaker (notation and details of mathematical model can be found
in Sec. 3)
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D/
Dt
¼ �gzþ 1

2
r/ � r/ (3)

respectively, with R(t) the position vector of a fluid particle on the
free surface, g is the acceleration due to gravity, and D/Dt is the
material (or Lagrangian) derivative. Both conditions are required
since there are two unknowns (position and potential) on the free
surface. The KFSBC states that the normal velocity is equal to the
normal fluid velocity at the surface, when following a fluid parti-
cle at the free surface (this means that such particles remain on
the free surface). The DFSBC, obtained from Bernoulli’s equation
(i.e., an integration of the Euler equations), states that the pressure
on the free surface equals the atmospheric pressure, which is
assumed here to be zero for simplicity.

For fixed boundaries including rigid vertical sidewalls and tank
bottom, a no-flow condition (zero flux) is specified as @/=@n ¼ 0,
where n is the normal vector to the surface (pointing outside the
fluid).

For a moving (piston) wavemaker boundary, both the motion
(stroke function) and velocity are prescribed based on waves to be
generated, by way of a wavemaker theory, as

x ¼ xpðy; tÞ;
@/
@n
¼ up � n (4)

where xp and up are the wavemaker stroke and velocity,
respectively

The initial free surface boundary condition (at t¼ 0) is given by
specifying a cold start in the NWT, with a still water level (z¼ 0)
and zero potential (Dirichlet BC), and all other surfaces having
zero (i.e., vertical sidewalls and tank bottom) or specified normal
fluxes (Neumann BC).

4 Numerical Implementation

A higher-order BEM is used to solve Eq. (1), whereby Green’s
second identity is applied to transform Laplace’s equation into a
BIE, which is discretized on the boundary. The numerical imple-
mentation is summarized below. For details, see [32,33,35].

4.1 Governing Equation. The BIE representation of Eq. (1)
reads

a xlð Þ/ xlð Þ ¼
ð

CðtÞ

@/
@n

xð ÞG x; xlð Þ � / xð Þ @G

@n
x; xlð Þ

� �
dC (5)

where C denotes the boundary of the fluid domain, a(xl) is func-
tion of the exterior solid angle made by the boundary at the collo-
cation point xl [32], and the 3D free space Green’s function for
Laplace’s equation is defined as

G x; xlð Þ ¼ 1

4pr
(6)

where r ¼ x� xlj j is the distance from the source point x to the
collocation point xl (both on the boundary). The normal derivative
of the Green’s function further reads

@G

@n
x; xlð Þ ¼ rG � n ¼ � 1

4p
r � n
r3

(7)

4.2 Time Integration. Second-order explicit Taylor series
expansions are expressed for the free surface position and potential,
updated to the next time step tþDt, as a function of the solution at t,

R tþ Dtð Þ ¼ R tð Þ þ Dt
DR

Dt
tð Þ þ Dtð Þ2

2

D2R

Dt2
tð Þ þ O Dtð Þ3

n o

/ tþ Dtð Þ ¼ / tð Þ þ Dt
D/
Dt

tð Þ þ Dtð Þ2

2

D2/
Dt2

tð Þ þ O Dtð Þ3
n o (8)

These expressions yield an explicit, stable, and efficient MEL
time stepping scheme [32]. In these equations, zeroth-order coeffi-
cients are given by the free-surface geometry and potential at time
t. First-order coefficients are evaluated from the free surface BCs
(Eqs. (2) and (3)), also as a function of geometry and the BIE so-
lution for / and @//@n at time t. Based on Eqs. (2) and (3),
second-order coefficients are expressed as

D2R

Dt2
¼ Du

Dt
¼ @u

@t
þ u � ru ¼ r @/

@t
þr/ � r r/ð Þ

D2/
Dt2
¼ �g

Dz

Dt
¼ 1

2

D r/ � r/ð Þ
Dt

¼ �gwþ u
Du

Dt

(9)

The expressions in Eq. (9) can be calculated as a function of ge-
ometry and the BIE solutions for both the potential and the time
derivative of the potential at time t (i.e., @//@t and @2//@t@n). It
should be emphasized that this second BIE solution uses the same
system matrix as the first one and has boundary conditions, which
can be calculated as a function of the solution of the first BIE (see
Refs. [32,33] for details).

5 Salient Features of the Numerical Algorithms

Salient features of the numerical algorithms combining higher-
order BIE solutions and an explicit time updating scheme can be
summarized as follows (as above, see [32,33,35] for details).

• Second-order Taylor series coefficients, used in the time
updating, are obtained from time derivatives of the boundary
potential and flux, which are obtained from solving another
BIE. Since this is performed using the same geometry as that
for the first BIE for the potential, the same discretized BEM
algebraic system matrix is used, with a different right hand
side; hence the solution of the second BIE comes only at a
moderate additional time cost [32].

• The time step is adapted as a function of the minimum dis-
tance between two nodes on the free surface, based on a con-
stant mesh Courant number C0� 0.45 [25,32].

• The numerical solution of the algebraic BEM systems uses
GMRES, wherein the matrix vector products are replaced by
the fast multipole algorithm (FMA) for distant sources points,
relative to a given collocation node [12,35]. This algorithm,
which uses multipole expansions and tree data structures,
avoids the full assembling of the discretized system matrix in
memory. The theoretical computational complexity of the
FMA is O(N log N), where N is the number of nodes on the
boundary [12]. This is a very good improvement over the
standard GMRES implementation, which results in an O(N2)
performance. More details on the FMA implementation can
be found in [12]. Here the FMA was modified to allow for a
parallel implementation on computer systems with multicore
nodes that share a large central memory (details are given
later).

• The majority of the 3D-NWT code was developed in FOR-

TRAN, while the FMA algorithms used libraries written in C
language.

• The user’s input to the 3D-NWT was designed to be minimal
[32], in the form of the broad dimensions of the NWT and
number of elements in each direction, plus a few other con-
trol and FMA parameters. The 3D surface mesh is automati-
cally generated in the model, based on input parameters; thus
resulting in a considerable time saving for the user.

• A node regridding technique can be automatically applied for
any user-specified iterations so that free surface nodes are
redistributed evenly over the grid. This option helps prevent
inaccuracies and instabilities due to a very uneven distribu-
tion of nodes during wave propagation (which may occur due
to Stokes drift for strongly nonlinear waves).
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6 Piston Wavemaker Motion and Wave Generation

Boundary conditions for a plane (2D) piston wavemaker were
derived in [24,25], for generating solitary cnoidal or other types of
elementary waves. Fochesato et al. [34] extended this 2D wave-
maker generation to arbitrary irregular waves, based on a target
wave energy spectrum, and the possibility to correct the wave-
maker stroke function for reflection in the NWT. In the 3D-NWT,
Grilli and co-workers implemented a snake flap wavemaker to
model 3D wave focusing (see [34]).

To demonstrate the practicality of the code and to more accu-
rately generate shallow water waves, a snake piston wavemaker
corresponding to the one at the OSU directional wave basin is
implemented in the 3D-NWT. To ensure a match between experi-
mental and numerical wave generation, the wavemaker paddle
stroke function in Eq. (4) is essentially identical to those used to
specify the motions of the mechanical actuators of the OSU direc-
tional wave basin. In the latter, the multidirectional (or snake)
wavemaker has 29 rigid segments (or paddles) connected at the
edges to 30 independently controlled actuators. While (for the
purpose of validating the new 3D-NWT implementation) we will
only present in this paper applications with long-crested 2D waves
due to space limitation, more general and complex cases of wave
generation will be reported in future work.

The wavemaker stroke were general functions of time t and lat-
eral position y (there is no vertical variation for a piston wave-
maker), with stroke xp(y,t) (Fig. 1), velocity: jupj ¼ up¼ dxp/dt,
and acceleration ap¼ dup/dt, so that an arbitrary snaking motion
could be specified.

Let n be the outward normal vector to the piston wavemaker
boundary, and (s, m) the tangential vectors with, s �m¼ 0 (s point-
ing in the global z direction; see Fig. 1) and n¼ s�m. We define

/n ¼
@/
@n
¼ up � n; /m ¼

@/
@m
¼ up �m; /s ¼

@/
@s
¼ up � s

(10)

with xp¼ xp i and up¼ up i (where (i, j, k) denote unit vectors
along the global x, y, and z axes, respectively). This yields the
boundary condition for the second BIE problem as

@2/
@t@n

¼ Dup

Dt
nþ up

dn

dt
þ /n /ss þ /mmð Þ � /m/nm (11)

Now, defining as (x1, y1, z) and (x2, y2, z), the coordinates of the
edges of a plane individual waveboard in the snake piston wave-
maker, we have the local vectors,

m ¼ x1 � x2ð Þiþ y1 � y2ð Þj; s ¼ k;

n ¼ � y1 � y2ð Þiþ x1 � x2ð Þj

Finally, with these definitions,

dn

dt
¼ up1 � up2

� �
j (12)

since the actuators only move the wavemaker paddles in the x
direction. In the 3D-NWT, derivatives with respect to n are
obtained from the BIE solutions, while those with respect to s and
m are analytically calculated using sliding fourth-order bipolyno-
mial interpolation [32,33].

A new module (Wavegen) was implemented to generate the
various stroke functions (xp, up, ap) required to simulate laboratory
experiments in the OSU directional wave basin, for various type
of standard waves, based on algorithms used in the OSU basin
wavemaker driver software. At present, Wavegen offers three
types of long-crested wave generation capabilities, which will be
illustrated in the present applications: solitary, cnoidal, and airy
waves. Hughes [36] presented various analyses related to wave

generation using wavemakers, including more complex or nonlin-
ear waves.

As shown in earlier work using a 2D- or this 3D-NWT
[17,24,25,32,37–40], it should be noted that the wavemaker laws
of motions used here are derived from linear or mildly nonlinear
(i.e., Boussinesq) theories and; hence, would only generate strictly
permanent form waves in a numerical model solving equations
corresponding to these theories. Since the FNPF equations are
solved here, only exact or numerically exact invariant wave solu-
tions of the FNPF equations will keep an invariant wave form in
the model. This was most extensively studied for (Boussinesq)
solitary waves, such as the ones generated here, and it was shown
that, for sufficient nonlinearity (usually for H/h> 0.2), wave
height would start decreasing upon generation, during (inviscid)
propagation over constant depth, while an oscillatory tail was
shed behind the wave. For this matter, Goring [40] observed the
exact same phenomenon in his wave tank experiments. To be able
to propagate solitary waves of arbitrary nonlinearity in this and
the earlier 2D-NWT, Grilli and co-workers had to specify these
directly on the free surface based on Tanaka’s [41] numerically
exact solution. Similarly, to be able to propagate steady-state peri-
odic waves in the NWT, a method for generating numerically
exact fully nonlinear waves based on stream-function wave theory
[18] was implemented. These phenomena will be illustrated in the
present applications.

7 Verification of Generation, Propagation,

and Absorption of Simple Waves

The original model, on which the 3D-NWT is based, has al-
ready been validated for a number of theoretical applications
(e.g., for solitary waves) where both convergence and accuracy of
the BEM solution were assessed as a function of mesh and time
step parameters. None of these earlier validation tests, however,
had been conducted for large 3D grids and with the solution per-
formed using the new parallelized FMA algorithm. In addition,
although the equivalent 2D-FNPF model had been validated for
strongly nonlinear waves using experimental data, no such com-
parison of 3D-NWT results with detailed laboratory experiments
in a large 3D wave basin, such as those available from the OSU
directional wave basin, had been performed to date.

In this section we perform numerical simulations to verify that
the new implementation of wave generation by a piston wave-
maker, propagation over constant depth, and energy absorption by
the “absorbing beach,” perform as expected. Due to space limita-
tion and for simplicity of presentation, in these validation applica-
tions, only simple long-crested (i.e., 2D) waves are generated;
hence, the piston wavemaker moves as a whole, as discussed in
the previous section. (Additional details of the parallel computa-
tional algorithm, snake wavemaker capability and 3D bathymetry
effects, and corresponding speed-up studies, will be presented in
future publications.) For such cases, the width of the NWT does
not really matter and can be small, to save on computational time;
we thus are dealing here with a narrow 3D-NWT. In the following
computations, the 3D-NWT has a length of 25 m, a depth of
h¼ 0.75 m, and a width of 1 m for solitary waves, or 0.5 m, for
cnoidal or airy waves. These waves are generated at the wave-
maker, propagate in the tank, and are absorbed at the far end in an
absorbing beach (AB) of 3 m length (with an AB coefficient
�o¼ 400 kg/m s). Although the OSU directional wave basin has
larger dimensions (length 48.8 m and width 26.5 m), the reduced
dimensions (along length and width) in the model are acceptable,
as already indicated, since we are only generating 2D waves (in
the vertical plane) (Fig. 2). Results detailed below include a com-
parison with experiments and theoretical wave profiles.

A summary description of the 3D-NWT parallel implementa-
tion and assessment of model performance are given in Sec. 8.
The computer platform used in all simulations in this section was
a Dell Precision WorkStation 690, with 8 Intel Xeon 3 GHz

Journal of Offshore Mechanics and Arctic Engineering MAY 2013, Vol. 135 / 021104-5

Downloaded From: http://offshoremechanics.asmedigitalcollection.asme.org/ on 08/26/2014 Terms of Use: http://asme.org/terms



processors, 64GB of shared RAM and a 64 bit Redhat Linux
Enterprise 5.

7.1 Solitary Waves. In this simulation, the BEM grid has
200 elements along the length, 5 elements along the width, and 8
elements along the depth. This yields a total of N¼ 6138 nodes
and M¼ 5280 elements. Two waves are generated, with targeted
heights H¼ 0.3 and 0.45 m in depth h¼ 0.75 m, or H/h¼ 0.4 and
0.6, respectively (Fig. 3); hence these are strongly nonlinear
waves selected to demonstrate the more challenging fully nonlin-
ear capability of the numerical model. Results for H¼ 0.3 m,
shown in Figs. 4(a) and 5(a), took 7.82 h of clock time to compute
13 s (600 time steps) of wave propagation. Results for H¼ 0.45 m
shown in Figs. 4(b) and 5(b) took 7.91 h for a similar simulation.
For both waves, numerical wave profiles, at the wavemaker and
three wave gauges, and particle velocities at the third gauge (at a
depth z¼�0.61 m), are found to agree well with experimental
results. Wave absorption (absorbing piston and absorbing pressure
beach) at the end of the tank appears to be working well as no sig-
nificant reflected waves can be seen in the wave gauge records.
Note, as discussed above, the height reduction of waves as they
propagate down the NWT and the physical basin, and the small
oscillatory tails shed behind the waves.

7.2 Cnoidal Waves. Here the NWT-BEM grid has 200 ele-
ments along the length, 5 elements along the width, and 5 ele-
ments along the depth. This yields a total number of nodes
N¼ 4896 and elements M¼ 4050. The targeted theoretical wave
height is H¼ 0.3 m and period T¼ 3.5 s; the expected wavelength
from cnoidal theory is L¼ 9.84 (m¼ 0.989); hence, L/h¼ 13.1,
which corresponds to a fairly long (but still intermediate depth)
wave, and H/h¼ 0.4, indicating a strongly nonlinear wave. Addi-
tionally, cnoidal theory predicts a trough depth of �0.08 m and a
crest height of 0.22 m (Fig. 6). Results shown in Figs. 6–8 took
20.5 h, on the same 8 CPU computer, to compute 27.6 s of wave

propagation. Figure 6 shows that the initial numerical wave profile
at the wavemaker agrees well with well-known analytical solu-
tion. Figure 7 shows wave profiles computed at a few gauges, and
Fig. 8 shows particle velocity components at one location and

Fig. 2 Snapshot of 3D-NWT simulations for the propagation of
a solitary wave over constant depth in a geometry identical to
that of OSU’s wave basin (48.8 m long, 26.5 m wide, 0.78 m
deep)

Fig. 3 Solitary waves of target height H 5 (a) 0.3 m; (b) 0.45 m,
in water depth h 5 0.75 m. Surface elevations versus time at the
wavemaker, in (—) numerical model; (-o-) OSU’s 3D tank experi-
ments (experimental data were shifted by a 0.04 s time lag; only
25% of experimental points are shown).

Fig. 4 Solitary waves of target wave height H 5 (a) 0.3 m; (b)
0.45 m, in depth h 5 0.75 m. Numerical (—) and experimental (-o-)
surface elevations as functions of time, at three gauges at
x 5 8.8 m (g1), 14.9 m (g2), and 18.7 m (g3), with y 5 0 (experimen-
tal data were shifted by a 0.16 s time lag; only 25% of experimen-
tal points are shown).

Fig. 5 Solitary waves of target wave height H 5 (a) 0.3 m;
(b) 0.45 m, in depth h 5 0.75 m. Numerical (—) and experimental
(-o-) water particle velocity components (u, w) as functions of
time, at gauge g3 location: x 5 18.7 m, y 5 0, at depth
z 5 20.61 m (only 25% of experimental points are shown).

Fig. 6 Cnoidal wave of target height H 5 0.3 m and period
T 5 3.5 s, in water depth h 5 0.75 m. Numerical (—) and theoreti-
cal (- - -) surface elevations at the wavemaker as functions of
time.
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bottom pressure at two gauges. The good periodicity of these pa-
rameters, once simulations have reached a quasi-steady state, indi-
cates that wave absorption is working adequately in the NWT.
Note, in Fig. 7, while both crest height and trough depth stay quite
close to the expected values, small oscillations are present in each
wave trough, which are a well-known indication of the generation
of higher-order harmonics in the generation of strongly nonlinear
waves using a low-order wave theory.

7.3 Airy Waves. The grid used here is the same as for cnoidal
waves. The wave height is H ¼ 0.2 m and period T¼ 3.0 s, yielding
a linear wavelength L¼ 7.68 m; hence, L/h¼ 10.2, which corre-
sponds to an intermediate wave, and H/h¼ 0.27 and H/L¼ 0.026,
indicative of a fairly strongly nonlinear wave. Results in Figs. 9–11
took 30.5 h to compute, on the 8-CPU computer, for a 40.6 s maxi-
mum time. In Fig. 9, which presents a comparison of the numerical

predictions with analytical solution, we see the initial wave shape
at the wavemaker is, as expected, closely sinusoidal and trough/
crest symmetric. Figure 10, however, shows that, as expected, the
linear wave gradually adjusts its shape, to reach a permanent form
profile consistent with wave nonlinearity. Thus, at the farther gauge
down the NWT (g3), wave profiles have become fairly steady, with
narrower and taller crests (at 0.15 m) and wider and shallower
troughs (at �0.06 m). Dynamic pressure and wave particle veloc-
ities at locations far down the tank also become quasi-steady
(Fig. 11). Wave absorption in the absorbing beach is thus also
working well in this case.

8 Parallelization and Performance Studies

This section summarily reviews numerical features of the new
3D-NWT implementation, discusses alternatives explored for par-
allel computing, choices adopted, and presents performance stud-
ies and insight gained in the process.

8.1 Serial Version. The initial BEM algorithms of the
3D-NWT code [32,33] were implemented in scalar mode, using
Fortran 77, which for a long time has been the dominant language
in scientific computing. Thus, memory was statically assigned in
common blocks during compilation, which allowed subroutines
called in sequence to access the same data. One disadvantage of
this approach for evolving codes (such as part of research proj-
ects), however, is that the data structure is spread all over the code
and it is thus more difficult to modify parts of the model as other
associated processes may directly depend on such modifications.
With the addition of new features over several years (which
is inevitable in evolving computational/numerical software, as

Fig. 7 Cnoidal wave of Fig. 6 numerical wave elevation as a
function of time, at three wave gauges at x 5 (g1: —) 8.8 m,
(g2: - - -) 14.9 m, and (g3: —.) 18.7 m, with y 5 0

Fig. 8 Cnoidal wave of Figs. 6 and 7. Numerical: (a) bottom
pressure as a function of time at two gauges at x 5 (—) 4 and
(- - -) 16 m, with y 5 0; (b) wave particle velocity components
u (—), w (- - -) as functions of time at gauge g3, with x 5 18.7 m,
y 5 0, at depth z 5 20.61 m.

Fig. 9 Airy wave of target height H 5 0.2 m and period T 5 3.0 s,
in water depth h 5 0.75 m. Numerical (—) and theoretical (- - -)
surface elevations at the wavemaker as functions of time.

Fig. 10 Airy wave of Fig. 9 numerical surface elevation as a
function of time, at three wave gauges at x 5 (g1: —) 8.8 m,
(g2: - - -) 14.9 m, and (g3: —.) 18.7 m, with y 5 0

Fig. 11 Case of Figs. 9 and 10, numerical: (a) bottom pressure
as a function of time at two gauges at x 5 (—) 4 and (- - -) 16 m,
with y 5 0; (b) wave particle velocity components u (—), w (- - -)
as functions of time at x 5 18.7 m, z 5 20.61 m, y 5 0
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evidenced by publications [32,35]), this dependency between data
and implementation became increasingly more complex to
manage.

8.2 Alternatives in Parallelization and Implementation
Using OpenMP. Consistent with the leading computing paradigm
at the time, a vectorized version of the original code was imple-
mented on a CRAY-90 computer using GMRES for the solution of
linear algebraic systems. Although the computational efficiency
was greatly improved, the size (discretization) of problems that
could be solved was still very limited, due to the need to assemble
the full BEM system matrix in the computer memory. The FMA
implementation that was later developed for the BEM system solu-
tion [12], allowed both a significant gain in efficiency and the use
of larger grid discretizations in applications [34,35]. However, this
was still a scalar implementation. Additionally, the BEM and time
stepping parts were written in FORTRAN while the FMA library was
written in C. Hence, the initial scalar code used a hybrid compiler
technology (GNU C compiler and Intel Fortran), with different
paradigms of passing memory chunks from one part to another.

In order to parallelize the 3D-NWT with the FMA implementa-
tion, an off-the-shelf component was first tested in the code: The
distributed parallel multipole tree algorithm (DPMTA) library
[42]. This software was written in C language, using the message
passing interface (MPI) parallelization protocol. Benchmark tests
of the DPMTA indicated that, with proper parameter selection, it
could yield nearly linear speedup with respect to the number of
processors, for the same problem size, and also with increase in
data size. In its original form, the 3D-NWT had a significant serial
part in the computations (e.g., mesh generation/regridding, itera-
tive scheme of solution at each time step, and also time stepping,
until a user-specified number of time steps or a maximum time is
reached). In order to gain maximum advantage from MPI, we first
tried introducing a division of mesh data and work among pro-
cessors, with a minimization of message passing. However, this
would have required a major code rewriting and redesigning of
the model flow chart, with the risk of coding errors and the
requirement of extensive testing. An alternative was to entirely
rewrite/design the code, using one of the latest (object oriented)
software architectures, but this would have been prohibitive and at
the risk of introducing errors.

Hence, for the NWT parallelization, we opted for a more prag-
matic and efficient (in terms of developmental time and efforts),
albeit less optimum, strategy and used OpenMP [43], rather than
the DPMTA library (and MPI). Parallel codes using OpenMP
work by creating a user-specified number of threads, which are in-
dependent sets of instructions within a process. All threads created
by the same process have access to the same data in physical
memory, without duplicating or transferring data (as in MPI);
however, one has to make sure that threads do not write on the
same physical location in memory at the same time. In order to
achieve load balancing (i.e., each processor taking equal load), the
maximum number of threads can be set to the number of process-
ors, but this is not required. Note that using more threads than the
number of processors can cause the system to become unrespon-
sive to other tasks. A practical point of concern is that the over-
head (including the creation of threads) for parallelization is not
negligible. Hence, the size of and speed-up resulting from parallel
components must be significant enough to overcome this over-
head. In other words, the problem size (or model size in a simula-
tion) should be large enough as to achieve good speedups. This
will be illustrated and quantified in applications below.

Finally, to efficiently implement OpenMP, the blocks in the code
that are major bottlenecks were identified by profiling. Parallelization
code was limited to such areas, with careful modifications such that
no two threads write to the same memory location at the same time.

8.3 Performance Studies. In this section we assess the per-
formance of the new parallel implementation of the 3D-NWT

code using OpenMP, in terms of computational efficiency meas-
ured by clock time on a multicore computer platform. Rather than
using a large shared parallel computer cluster, it was decided to
use a local desktop minicluster that was 100% available to the
project. This was a Dell Precision WorkStation 690, with 8 Intel
Xeon 3 GHz processors, 64GB of shared RAM and a 64 bit Redhat
Linux Enterprise 5. Larger multiprocessor computer clusters could
of course be used to achieve improved CPU times.

The FMA uses multipole expansions and tree data structure
[6,11], and avoids the full assembling of the algebraic system ma-
trix in memory. Results clearly showed that, in addition to prob-
lem size (i.e., N, M), the code run time was also influenced by the
choice of FMA parameters, such as the number n of tree levels in
the grid region subdivisions.

The applications used in this performance study correspond to
wave generation/propagation in a 3D-NWT with the actual geom-
etry of the OSU directional wave basin (Fig. 2): 48.8 m long and
26.5 m wide, with depth h¼ 0.78 m. For simplicity we used the
canonical case of a strongly nonlinear solitary wave of height
H¼ 0.39 m¼ 0.5 h, propagating over constant depth. In all cases,
we used eight terms in the multipole expansion and computed for
five time steps. This small number is aimed at speeding up compu-
tations for larger problems; all things being equal, the CPU time is
simply proportional to the number of time steps. (This linear scal-
ing phenomenon was verified by a number simulation runs with
significantly longer duration for several model cases.) The FMA
cube length (which should be specified to be at least twice the
sum of the maximum dimension with an allowance for wave
absorption [12]) covering the wave basin is 105 m. Further details,
such as the number of tree levels, are provided below for each
model application.

Figure 12 first shows the 3D-NWT performance for two small
applications: 1 with N¼ 2592 nodes and 2 with N¼ 13,838 nodes.
The number of FMA tree levels is selected to n¼ 6 to 7, respec-
tively, to obtain the best CPU times and speed-ups with eight pro-
cessors; speed-up is the ratio of CPU time using a single processor
by that using multiple processors. We see maximum speed-ups

Fig. 12 Clock time (—) and speed-up (- - -) versus number of
CPUs, for five time steps of 3D-NWT simulations (Fig. 2) for
application: (a) 1, using N 5 2592 nodes and n 5 6 FMA tree lev-
els; (b) 2, using N 5 13,838 nodes and n 5 7
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achieved in these applications are 2.51 and 2.48, respectively (i.e.,
about one-third the number of processors). It is observed that, in
these applications, speed-up is not markedly increasing beyond
5–6 processors. This is because speed-up depends on the size of
parallel components, out of the total computation and associated
overhead. As indicated, the code still has inherently sequential
components and some parallelized ones; using additional process-
ors only reduces the CPU time of the parallelized components.
For smaller applications (such as here), an increase in the number
of processors, beyond some number, does not cause a significant
reduction in processing times because of the additional overhead
this incurs (due to thread creation, setup, etc), which overcomes
gains from parallel computation.

From a user’s perspective this means that higher speed-ups will
be achieved with a larger numbers of processors only for
increased application size (which gives rise to larger parallelizable
components in the code). However, for all cases, the maximum
speed-up is limited to a maximum value by the sequential compo-
nents in the code, which is a function of the number of processors.
These observations are demonstrated in the first two applications
in Fig. 12 (where the number of nodes in the second application is
6 times that of the first one, but both have about the same speedup
for eight processors).

Figure 13 more broadly illustrates the performance of the paral-
lel 3D-NWT using either one (i.e., scalar mode) or eight process-
ors, for the same solitary wave problem, using many different grid
sizes N¼ 2592 to 149,250 nodes. The FMA number of tree levels
n is varied from 5 to 8, with increasing values of N. In all cases,
faster clock times are achieved with eight processors but, for a
given n value, the speed-up from parallelization gradually reduces
beyond some threshold N value. Around the latter, clock time
increases as O(N log N). This computational complexity rate was
already identified for the scalar 3D-NWT using the FMA [12], for
large enough N (usually more than 6000 or so), and is also visible
on Fig. 13 for the one-processor curve with n¼ 5. In addition,
when reaching the threshold N value of a given n, one can reduce
the rate of clock time increase by increasing n. In Fig. 13, using
eight CPUs, this occurs for N¼ 10,000, from n¼ 6 to 7; and for
N¼ 50,000, from n¼ 7 to 8. We see that for the lower envelope of
these various performance curves, the computational complexity
is on average O(N1.3), which is still very good. Hence, when
increasing grid size N for a given number of CPUs, smaller clock
times can only be achieved when increasing the FMA n levels.

Based on Fig. 13, a user of the 3D-NWT model can thus select
a relevant FMA n level for a given grid size N, as a function of the
number of processors, to achieve an optimal clock time. It is
expected that similar curves could be derived using larger num-
bers of CPUs on larger computer cluster systems.

8.4 Insight Gained. Some of the insight and experience
gained during this parallelization effort are summarized below to
serve as guidelines for other developers undertaking similar
efforts.

8.4.1 FMA Input Parameter—Number of Tree Levels. This
parameter indicates the number of hierarchical levels into which
the “cube” (containing the discretization) is divided. The comput-
ing speed-up is considerably affected by this parameter, as the
work shared by the threads is dependent on the number of cells in
the hierarchy. The user should be able to experiment and deter-
mine the optimum n parameter for a specified number of threads
and given problem size N. The practical values of this parameter
range from 4 to 8. A much larger number of tree levels (> 8)
would considerably increase the memory requirement and the run
may not be able to fit within the shared memory resources of the
computing system. This limitation, however, can be alleviated in
view of the anticipated future availability of larger (and faster)
hardware resources.

8.4.2 FMA Input Parameter—Cube Length. This is the cube
size surrounding the entire geometry of the discretization. The
cube is defined with the origin of the grid at its center. The user
has to identify the maximum dimension, estimate the possible
change in length (due to wave absorption for instance), and use
twice this value for the cube length. One should use just as low a
value as possible, for optimal performance of the FMA.

8.4.3 FMA Input Parameter—Number of Terms in a Multi-
pole Expansion. The larger this number, the better the accuracy
of the expansions, but the larger the computing time. While this
parameter can range from 4 to 16, the practical value is around
6–8 (the latter was used here).

8.4.4 Distribution of Nodes. The distribution of nodes (or the
grid geometry and number of nodes) in the FMA cube can also
affect computing time. A study performed for one of the applica-
tions, using a cube size of 60 m instead of 120 m, showed a reduc-
tion in computing time from 19.76 to 8.53 h. The reason is that a
cube size of 60 m caused nodes to be more uniformly distributed
in FMA cells and thus reduced the computational effort.

9 Concluding Remarks

This paper presents improvements in the implementation of an
existing computation model (3D-NWT), based on the FNPF
theory, to make it an efficient tool to complement experimental
facilities such as the OSU directional wave basin or elsewhere.
The numerical algorithms and mathematical formulations
involved in furthering the development of wave generation capa-
bilities (i.e., for solitary, cnoidal, and airy waves) are provided.
Comparisons with experiments for simple waves illustrate that nu-
merical and experimental results are in good agreement and pro-
vide a strong basis for the use of the 3D-NWT code for all
appropriate and practical engineering purposes.

The insight gained from the parallelization effort, along with
the performance studies, provides guidelines for a more efficient
use of the code and also could help with similar efforts on devel-
oping other numerical codes to be run on multicore processor
clusters. The near-linear performance of the parallel algorithms in
the 3D-NWT is demonstrated for a sufficiently large number of
BEM nodes and a proper selection of FMA parameters. Hence,
the BEM–GMRES–FMA–parallel capabilities, provide an
“optimal” combination of tools for solving FNPF problems, such
as 3D nonlinear free surface waves, in a reasonable computing
time, on small (and larger) computer clusters.

More complex cases of wave generation, for fully nonlinear 3D
waves and/or varying bathymetry in the NWT, will be reported in
future work. Additionally, work on improving wave generation
using wavemakers, to account for wave nonlinearity (not detailed
here), was also conducted to derive the stroke motion necessary to

Fig. 13 Clock time versus number of BEM nodes N and CPUs:
1 (- - -) or 8 (—), for five time steps of 3D-NWT simulations for
various application (o) (Fig. 2), using n 5 (5) to (8) FMA tree lev-
els. The straight lines (—.) and (— —) indicate clock time: !N1.3

and N log N, respectively.

Journal of Offshore Mechanics and Arctic Engineering MAY 2013, Vol. 135 / 021104-9

Downloaded From: http://offshoremechanics.asmedigitalcollection.asme.org/ on 08/26/2014 Terms of Use: http://asme.org/terms



generate fifth order Stokes waves. Although this was successful in
the NWT, currently there is no practical methodology to imple-
ment this capability in physical facilities. It should be noted that
the generation of exact stream function waves using a “porous”
piston wavemaker that was implemented in the 2D-NWT could be
easily incorporated in the 3D-NWT. However, such a wavemaker
cannot be simulated in a physical facility such as the OSU direc-
tional wave basin. Nevertheless, finding a relevant piston wave-
maker motion that could create approximate fully nonlinear
periodic waves in a physical facility could be investigated using
the present improved 3D-NWT. Such an addition, which could be
done in future work, would benefit both the numerical wave tank
and corresponding laboratory wave basins.
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