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ABSTRACT

Linear disturbance growth is studied in a quasigeostrophic baroclinic channel model with several thou-
sand degrees of freedom. Disturbances to an unstable, nonlinear wave-mean oscillation are analyzed,
allowing the comparison of singular vectors and time-dependent normal modes (Floquet vectors). Singular
vectors characterize the transient growth of linear disturbances in a specified inner product over a specified
time interval and, as such, they complement and are related to Lyapunov vectors, which characterize the
asymptotic growth of linear disturbances. The relationship between singular vectors and Floquet vectors
(the analog of Lyapunov vectors for time-periodic systems) is analyzed in the context of a nonlinear
baroclinic wave-mean oscillation. It is found that the singular vectors divide into two dynamical classes that
are related to those of the Floquet vectors. Singular vectors in the “wave dynamical” class are found to
asymptotically approach constant linear combinations of Floquet vectors. The most rapidly decaying sin-
gular vectors project strongly onto the most rapidly decaying Floquet vectors. In contrast, the leading
singular vectors project strongly onto the leading adjoint Floquet vectors. Examination of trajectories that
are near the basic cycle show that the leading Floquet vectors are geometrically tangent to the local attractor
while the leading initial singular vectors point off the local attractor. A method for recovering the leading
Floquet vectors from a small number of singular vectors is additionally demonstrated.

1. Introduction

Geophysical flows are continually subjected to dis-
turbances that may cause them to evolve away from
their previously observed or expected states. An under-
standing of the evolution of disturbances to geophysical
flows is necessary if these flows are to be predicted.
Classical studies of disturbance growth, encompassing
the well-known normal-mode instability theories of
fluid dynamics, concentrated on the asymptotic devel-
opment of disturbances to idealized flows. Since the
development of operational numerical forecasting, in-
creasing attention has focused on the transient devel-
opment of disturbances. For flows with complex time
dependence, however, the distinction between asymp-

totic and transient stability is often not clear. For ex-
ample, many forced–dissipative flows evolve toward
aperiodic attractors where all trajectories are asymp-
totically unstable, yet disturbances to these trajectories
may go through periods of dramatic transient growth
and decay.

The transient development of disturbances is typi-
cally quantified using singular values and their associ-
ated singular vectors (SVs). Singular vectors are distur-
bances that produce the greatest linear growth in a
specified inner product over a specified optimization
time interval (Lorenz 1965; Farrell 1989). There is con-
siderable arbitrariness in the choice of an inner product
and optimization interval, which can make their physi-
cal interpretation difficult.

The asymptotic stability of trajectories on aperiodic
attractors is described by Lyapunov exponents, which
give the average growth rate of volume elements in the
attractor. Lyapunov vectors (LVs) are physical struc-
tures associated with the Lyapunov exponents. Since
Lyapunov exponents naturally generalize the stability
exponents of normal modes to aperiodic systems, it
might be hoped that a suitable definition of the LVs will
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naturally generalize normal modes to aperiodic flows.
Also, since the unstable LVs exhibit the largest distur-
bance growth in the long term, it might be hoped that
initializing ensemble forecasting systems with LVs will
also lead to largest ensemble spread in the long term,
maximizing the utility of the forecast system. The dif-
ferent requirements of these two applications have lead
to different definitions of the LVs. We use a definition
of the LVs, established by Ruelle (1979) and intro-
duced into the meteorological literature by Legras and
Vautard (1996, who call them characteristic vectors)
and Trevisan and Pancotti (1998), that satisfies the Os-
eledec (1968) theorem. In contrast to SVs, the LVs so
defined are independent of norm and optimization
time, invariant under the linearized dynamics, generally
nonorthogonal, and can be shown to be a proper gen-
eralization of normal modes to aperiodic flows (Tre-
visan and Pancotti 1998; Wolfe and Samelson 2007).
These LVs often undergo significant transient growth
and decay in addition to their asymptotic, exponential
evolution.

Both SVs and an analog of LVs, bred vectors, are
currently in use at operational forecasting centers as
initial conditions for ensemble forecasting systems
(Buizza et al. 2005). Bred vectors are generated
through a repeated “breeding” cycle by which the dif-
ferences between the analysis and the ensemble mem-
bers are rescaled and added back to the analysis to
generate a new set of ensemble initial conditions (Toth
and Kalnay 1993, 1997). Since the ensemble forecast
models are nonlinear, bred vectors of sufficient magni-
tude are nonlinear disturbances. If the amplitude of the
bred vectors is constrained so that the disturbances re-
main linear, the process by which bred vectors are gen-
erated is analogous to the methods used to estimate the
Lyapunov exponents of dynamical systems (Shimada
and Nagashima 1979).

In the present contribution, we examine the relation-
ships between SVs and LVs and the relationship of
both to the local structure of the system’s attractor. The
relationship between these quantities is of interest not
only because of the connections to ensemble forecast-
ing, but also because Lyapunov exponents and vectors
are intrinsic, asymptotic properties of a dynamical sys-
tem’s attractor, whereas singular values and vectors de-
pend both on the choice of inner product and the time
interval of interest. The connection between transient
and asymptotic stability in strongly time-dependent sys-
tems has primarily been studied using either highly sim-
plified, low-order models (e.g., Lorenz 1965; Trevisan
and Pancotti 1998; Samelson 2001b) or models with
complexity comparable to global circulation models
(e.g., Buizza and Palmer 1995; Palmer 1996; Wei and

Frederiksen 2004). Examples of accessible, intermedi-
ate complexity models are few (with exceptions; see,
e.g., Samelson and Tziperman 2001; Miller and Ehret
2002; Stevens and Hakim 2005). One goal of the
present contribution is to present an accessible system
wherein the relationships between asymptotic and tran-
sient stability may be examined in detail.

It should be noted that the majority of the studies
that examine the relationship between SVs and LVs
either use an orthogonalized LV (Vastano and Moser
1991; Vannitsem and Nicolis 1997; Reynolds and Errico
1999) or focus only on the leading LV (Szunyogh et al.
1997; Samelson 2001a). The former case presents diffi-
culties with interpretation since orthogonalized LVs are
essentially identical to SVs with asymptotically long op-
timization intervals (Trevisan and Pancotti 1998). In-
deed, some authors (Legras and Vautard 1996; Reyn-
olds and Errico 1999) define the LVs to be precisely
SVs with asymptotically long optimization intervals.
Thus, studies comparing SVs to orthogonalized LVs are
more properly thought of as comparing SVs with finite
optimization intervals to SVs with asymptotically long
optimization intervals. Studies that focus on a single
leading LV do not present any difficulties with inter-
pretation, but may be misleading in systems with mul-
tiple unstable LVs.

The system under study is a strongly nonlinear, cha-
otic solution to the nonlinear Phillips (1954) model.
This model is chosen because it is relatively well under-
stood and occupies a middle ground in complexity be-
tween the low-dimensional models used in classical pre-
dictability studies and operational forecast models. The
intermediate complexity of the model allows the rep-
resentation of nontrivial physics while still admitting a
relatively complete analysis.

Most of the present analysis focuses on a single un-
stable, nonlinear, time-periodic oscillation (cycle) of
the model. Periodic cycles are convenient because full
information about the evolution of linear disturbances
can be obtained by a single integration over the cycle.
Additionally, time periodicity imposes a definite modal
structure on the linear space tangent to the cycle in the
form of Floquet vectors (FVs). Further, LVs reduce to
FVs for time-periodic flows (Trevisan and Pancotti
1998; Wolfe and Samelson 2007). Floquet vectors may
thus be unambiguously identified as both normal
modes and LVs. The wave-mean oscillation that will be
considered here and the associated FVs are described
in detail in Wolfe and Samelson (2006, hereafter WS),
which should be considered a companion to the present
contribution.

The present study may be thought of as an extension
of the studies of Samelson (2001a,b), who considered
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LVs and SVs in a weakly nonlinear, weakly chaotic
regime of the model considered here. One of the most
striking conclusions of these studies was that the rep-
resentations of SVs in terms of the LVs were relatively
simple functions of time, even though both are indi-
vidually strongly time dependent. The present study
finds similar results, albeit complicated by the increase
in the complexity of the model and its dynamics.

The format of the paper is as follows: In section 2, we
briefly describe the model, basic cycle, and normal
modes used for the present analysis, as well as the basic
properties of LVs and SVs. Section 3 is devoted to a
detailed discussion of the SVs and their relationship to
the FVs. In section 4, we examine the relationship of
the FVs and SVs to the local structure of the system’s
attractor. A method for recovering the FVs from the
SVs is described and demonstrated in section 5. The
significance of the results is discussed in section 6. Fi-
nally, we summarize in section 7.

2. Formulation

a. Model and basic cycle

The model studied here is the nonlinear Phillips
(1954) quasigeostrophic channel model, which is de-
scribed in detail in Pedlosky (1987, section 7). For the
present study, the Coriolis parameter f is constant, the
equilibrium layer depths are equal, and the background
flow is steady, uniform, and zonal. The model equations
were solved in the manner described in WS except that
the Adams–Bashforth three-level time-differencing
scheme was used throughout. Also, since the SV calcu-
lation is numerically more stable than the Floquet prob-
lem, we were able to use a slightly lower resolution than
WS. Thus, the results of the present study were ob-
tained using Nx � 48 zonal and Ny � 40 meridional grid
points, for a total of 3840 variables, and a time step of
�t � 0.0015.

The two parameters controlling the behavior of the
system are the Froude number F and the Ekman dissi-
pation parameter r. In the notation of Klein and Ped-
losky (1986), we use

� � F � �2 � 4r2 � 45, � � r �8�� � 0.20,

which corresponds to the most strongly supercritical set
of parameters considered by Klein and Pedlosky
(1986). For these parameters the system possesses an
aperiodic attractor with Kaplan–Yorke (Lyapunov) di-
mension �7. The basic cycle considered here is an un-
stable periodic orbit embedded in this attractor. It has
a period of T � 38.498 and begins as a nearly zonal flow
with a small superimposed perturbation. This perturba-

tion grows into a pair of eddies that grow in amplitude
as they advect heat (proportional to �T � �1 � �2)
downgradient, across the channel. By t � 0.3T, these
eddies are strongly nonlinear and have closed stream-
function contours. The cross-channel heat flux pro-
duced by these eddies reduces the background poten-
tial vorticity gradient sufficiently to halt and then re-
verse the growth of the eddies. Toward the end of the
decay phase, the weakening eddies advect heat upgra-
dient, extracting energy from the wave and reestablish-
ing the nearly zonal initial state, now shifted down-
channel by one-half the channel length. After passing
through a second growth and decay phase, the flow
returns to its initial state. The basic cycle is described in
more detail in WS.

The period of the basic cycle is much longer than
either the advective or viscous time scales:

Ta �
1

Umax
� 0.02T; T� �

1
r

� 0.05T,

respectively. Since the basic cycle undergoes two
growth and decay episodes in each period, the charac-
teristic time scale for baroclinic wave growth is

Tw � 0.25T.

Based on the above scales, we expect advective align-
ment of disturbances to be important only on extremely
short time scales. Baroclinic processes related to the
growth and maintenance of the basic cycle are expected
to dominate disturbance growth for moderate to long
time scales.

In principle, the basic cycle is the first in an infinite
series of unstable periodic cycles with progressively
longer periods that form a “skeleton” for the aperiodic
attractor, and any quantity defined on the attractor may
be recovered by forming suitable sums over the un-
stable periodic cycles (e.g., Cvitanović et al. 2005). In
practice, long unstable periodic cycles are very hard to
find in high-dimensional systems. Fortunately, the sums
involved are given with exponential accuracy by the
low-period cycles (Lai et al. 1997) and useful results
may often be obtained using just a few low-period
cycles (Kazantsev 1998, 2001). As discussed in WS, the
basic cycle captures many of the features of the sys-
tem’s aperiodic attractor. In particular, the Lyapunov
spectrum of the basic cycle is very similar to that of the
attractor. The calculations have been repeated using a
few higher period cycles and at different parameter set-
tings with little change in the qualitative features of the
results.

b. Lyapunov vectors and Floquet vectors

The LVs 	i are the physical structures associated
with the Lyapunov exponents 
i, which are ordered by
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increasing stability. A norm-independent set of LVs 	i

may be defined using the following consequence of the
Oseledec (1968) theorem: For almost every time t,
there exists two sets of nested subspaces

S M
� �t
 ⊂ S M�1

� �t
 ⊂ · · · ⊂ S 1
��t
 � �N �1


and

S M
��t
 ⊂ S M�1

� �t
 ⊂ · · · ⊂ S 1
��t
 � �N, �2


such than any vector y ∈ S�
i (t)\S�

i�1(t) grows asymptoti-
cally at the rate �
̂i, where 
̂i is the ith distinct
Lyapunov exponent and M � N is the number of dis-
tinct Lyapunov exponents (Ruelle 1979). The intersec-
tion space

T i�t
 � S i
��t
 ∩ S M�i�1

� �t
 �3


is, in general, mi dimensional, where mi is the multiplic-
ity of the ith Lyapunov exponent. If d � 1, then T i may
be identified as the LV 	i since it grows asymptotically
at the rates 
̂i and �
̂i as the system evolved forward
and backward, respectively, in time. If d � 1, then any
mi linearly independent vectors from T i may be identi-
fied as LVs.

The 	i defined in this manner are norm independent
and characterize the asymptotic stability of linear dis-
turbances as the system evolves both forward and back-
ward in time. Further, the 	i reduce to the FVs if the
flow is time periodic (Trevisan and Pancotti 1998) and
to the stationary normal modes if the flow is stationary.
Finally, the 	i are invariant under the linearized flow, in
the sense that they may, in principle, be computed once
and then determined for all time using the tangent lin-
ear propagator.

In the present case, the background flow is time pe-
riodic and the LVs reduce to FVs, which may be cal-
culated as the eigenvectors of the one-period linear dis-
turbance propagator L(T), where the propagator satis-
fies

��t � T
 � L�T
��t
 �4


for any time t and any linear disturbance �(t) (Codding-
ton and Levinson 1955). In the present case, three of
the FVs are unstable and two are neutral, indicating
that the basic cycle has multiple normal-mode instabili-
ties. The number of unstable and neutral modes is in-
dependent of resolution and is an intrinsic characteris-
tic of the basic cycle. The rest of the Floquet spectrum
is completed by a large number of decaying modes, the
exact number of which depends on resolution.

The exponential growth of the unstable FVs is rela-
tively slow, with e-folding times of

T1 � 0.9T, T2 � 1.2T, T3 � 3.6T,

for the first, second, and third FVs, respectively. While
these time scales are longer than the transient baro-
clinic wave growth time scale Tw, the leading FVs un-
dergo significant transient growth and decay in phase
with the basic cycle. The maximum transient growth
rate of the unstable FVs is inner product dependent,
but is on average about 10 times faster than the expo-
nential growth rate in most physically motivated inner
products.

A striking feature of the Floquet spectrum is that the
FVs split into two distinct dynamical classes. The FVs in
the “wave dynamical” (WD) class have growth/decay
rates that are well separated from the dissipation rate
and have spatial structures that are dominated by a few
large-scale Fourier components. In contrast, FVs in the
“damped advective” (DA) class are characterized by
fine scales, broad Fourier spectrums, and decay rates
near the dissipation rate. The naming scheme reflects
the primary dynamical balances of the FVs in each
class: WD modes grow and decay due to baroclinic
wave dynamics, while the DA modes are simply ad-
vected by the mean flow and dissipated by Ekman fric-
tion. The WD modes tend to be frequency locked to the
basic cycle and thus have real Floquet exponents, while
DA modes have complex Floquet exponents with
imaginary parts that are distributed approximately uni-
formly between ��/T and thus either have very long
periods or are quasiperiodic. Further, the number of
WD modes is only weakly dependent on resolution and
their physical structures become independent of reso-
lution once the model is sufficiently well resolved. The
number of DA modes, in contrast, increases apparently
without limit as the model resolution is increased and
individual DAs appear to change discontinuously with
resolution. These features lead WS to speculate that the
WD modes represent true, discrete dynamical modes,
while the DA modes are best thought of as represent-
ing, in sum, a generalized solution to the damped-
advective problem, which, in the continuum limit, may
support a continuous spectrum of modes. Due to the
difficulty of assigning physical interpretations to indi-
vidual DA modes, the focus of the present contribution
will be on the comparison of singular vectors to the WD
modes, which comprise both growing/weakly decaying
modes and the most rapidly decaying modes.

An important property of these FVs from the point
of optimal disturbances (singular vectors) is that they
are nonorthogonal in the inner products considered in
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section 3. This follows from the fact that the one-period
propagator L(T) is nonnormal [i.e., it does not com-
mute with its adjoint L(T)† in these inner products]. A
further consequence of the nonnormality of L(T) is
that the adjoint FV �i, the eigenvectors of the adjoint
propagator, are distinct from the “forward” FV 	i. The
�i are nonorthogonal, as well, but can be ordered so
that they satisfy the following orthogonality relation-
ship with the 	i:

��i, �j� � �ij
�1	ij , �5


where � is a diagonal matrix whose nonzero entries are
the “projectabilities” of the adjoint FVs onto the for-
ward FVs [Stoer and Bulirsch (2002); the term project-
ability is due to Zhang (1988)].

If the chosen inner product �·, ·� is characterized by
the matrix N such that �v, w� � vTNw, then the adjoint
propagator satisfies NL(T)† � L(T)TN. Equation (5)
may then be inverted to define the �i in terms of the 	i:

T � N�1F�T��1, �6


where T and F are matrices whose columns are the �i

and 	i, respectively. While matrix inversion is not nec-
essarily more efficient then eigenvalue decomposition,
computation of the adjoint FVs via (6) ensures that
they are automatically sorted in the same manner as the
forward FVs (i.e., by increasing stability).

The primary property of the �i that will be of use in
the present study is that, for large optimization times,
the adjoint FV �i is the optimal excitation of 	i with
respect to the inner product defining the adjoint. [Far-
rell (1989) and Buizza and Palmer (1995) demonstrate
this fact for stationary flows. The extension to time-
periodic flows is straightforward.] That is, �i is the
smallest perturbation at time t0 that will produce an
excitation of 	i at unit amplitude at a later time t1.

c. Singular vectors

SVs optimize the growth of perturbations in a speci-
fied inner product over a specified optimization interval
� � t1 � t0. Let �j(t) represent the jth most rapidly
growing SV. Since the FVs span the space of linear
disturbances, �j(t) may be written as a fixed sum of FVs:

� j�t
 � �
i�1

N

�i�t
pij � F�t
pj. �7


The projection coefficients pj are independent of time,
so, if the 	i(t) are known, �j(t) is determined for all
time. The SV optimization problem leads, in the usual

way (e.g., Buizza et al. 1993), to the generalized eigen-
value problem:

F�t1
TNF�t1
pj � 
 j
2F�t0
TNF�t0
pj �8


for the SVs and the singular values �j, where N is the
matrix that characterizes the specified inner product.
Note that the pj are not invariant under an arbitrary
rescaling of the FVs: in what follows, we have chosen
the FVs to have unit amplitude in the specified norm at
the initialization time t0.

The SV �j may equivalently be written as a fixed sum
of adjoint FVs � i(t):

� j�t
 � �
i�1

N

�i�t
qij � T�t
q j , �9


where the qj are the adjoint projection coefficients.
Such an expansion is useful since, for large optimization
intervals, the optimal excitation of the normal mode 	i

is the corresponding adjoint normal mode �i (Farrell
1989; Buizza and Palmer 1995). The qj satisfy the gen-
eralized eigenvalue problem

T�t1
TNT�t1
qj � 
 j
�2T�t0
TNT�t0
q j , �10


but if—as in the present case—the complete set of FVs
is available, the qj may be more efficiently computed
using

q j � T�t0
�1F�t0
pj � �F�t0
TNF�t0
p j , �11


where the last equality follows from (6). Note that the
rhs of (11) is merely the rhs of (8) weighted by the
projectability factors �.

The SVs depend on the initialization and optimiza-
tion times t0 and t1 as well as on the inner products
defined by the matrix N. We have calculated SVs using
inner products �·, ·� corresponding to the streamfunc-
tion variance (SA), wave energy (WE), and potential
enstrophy (PV). These inner products are defined as
follows:

�v, w�SA � �
n�1

2 �� �n
��
�n

�w
 dx dy, �12


�v, w�WE � �
n�1

2 1
2 �� ��n

�v
 · ��n
�w
 dx dy

�
F

2 �� ��1
�v
 � �2

�v
���1
�w
 � �2

�w
� dx dy,

�13


�v, w�PV � �
n�1

2 �� qn
�v
qn

�w
 dx dy, �14


where �(�,w) and q(�,w) denote the disturbance stream-
function and potential vorticity associated with the dis-
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turbance state vectors v and w and the integrals are
taken over the entire domain. While SVs were calcu-
lated in all three inner products, the bulk of the discus-
sion will focus on the SVs computed in the WE inner
product, with comments on the SA and PV SVs only
when their behavior differs significantly from the WE
SVs. This focus on the WE SVs is reasonable both be-
cause they typically show behavior that is intermediate
between the SA and PV SVs and because the WE inner
product is the analog, in the Phillips model, of the “total
energy” inner product commonly used to compute sin-
gular vectors in atmospheric global circulation models
(Buizza and Palmer 1995; Palmer 1996).

3. The relationship of singular vectors to
Lyapunov vectors

Here we examine the relationship between singular
vectors and Lyapunov vectors using Floquet decompo-
sitions of the singular vectors, as discussed in section 2c.
The behavior of the decompositions as both the SV
initialization time t0 and optimization interval � are var-
ied is investigated by computing SVs with fixed t0, but
variable �, and with fixed �, but variable t0. The eigen-
value problem Eq. (8) for the SVs yields as many SVs
as model variables (in this case, 3840). A subset of the
calculations was repeated at higher resolution with little
change in the structure of the extremal (i.e., most rap-
idly growing and decaying) SVs. The SVs in the middle
of the spectrum—which are not the focus of the present
contribution—changed in number and detailed physical
structure with changes in resolution, but their overall
statistical character remained the same. See WS for a
detailed discussion of the effects of resolution on the
structure of linear disturbances to the basic cycle.

The singular values computed with initialization time
t0 fixed at a basic cycle minimum undergo a short pe-
riod of super-Lyapunov (i.e., faster than the exponen-
tial growth rate of the FVs) growth and decay for short
optimization intervals (Fig. 1). The rapid transient
growth period is more pronounced in the SA inner
product than in the WE inner product, while the SVs in
the WE inner product similarly undergo more transient
growth than the SVs in the PV inner product. In all
cases, the growth rates of the singular values becomes
comparable to the effective exponential growth rate of
the FVs,

�eff, j�t2
 �
1

t2 � t1
ln

��j�t2
�

��j�t1
�
, �15


for optimization intervals greater than a few advective
time scales Ta, or roughly one baroclinic growth time

scale Tw � 0.25T (Fig. 1). Further, the growth rates of
the SVs asymptotically approach the Floquet exponents
as the optimization interval � increases.

Once � 
 Tw, the SVs in each inner product divide
into two classes, much like the FVs. The first class,
which may be identified with the WD class, is made up
of vectors whose singular values either grow or decay at
rates that are significantly different than the dissipation
rate. The second class is made up of a large number of
SVs that decay at or near the dissipation rate, and SVs
may be identified with the DA class. The WD singular
values show pronounced oscillations on the time scale
of the basic cycle wave growth time scale Tw (Fig. 2).
These oscillations are in phase with the basic cycle in

FIG. 1. Effective exponential growth rate 
eff of the (top) first
and (bottom) last five SVs (solid) and FVs (dashed) in the WE
norm, as well as the respective Floquet exponents (dash–dot) as a
function of optimization interval �/T. The vertical lines give the
time t � Tw. The growth rates have been offset from each other by
0.1 for clarity. The least rapidly (top) growing and (bottom) de-
caying vectors have zero offset.
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the SA inner product, but slightly trail the basic cycle in
the WE and PV inner product. This difference is most
likely due to the fact that energy and PV disturbances
continue to sharpen during the early parts of the basic
cycle decay phase.

While the WD singular values are well separated
relative to the DA singular values, the separation is not
perfect and the SVs exchange stability frequently,
which makes the ranking of the SVs ambiguous. For
this section, the numerical ranking of the SVs is based
on the ranking of the corresponding singular values at
the largest optimization interval considered (� � 2T).
Thus, �1 is the leading SV at time � � 2T but, since the
SVs exchange stability as the optimization interval is
changed, �1 may not be the leading SV for � � 2T. Since
the physical structures of the SVs change continuously
as the optimization interval is varied, the individual SVs
may be consistently identified even if the singular val-
ues cross.

The leading WE SVs show significant contributions
from a large number of FVs (not shown). The largest
contributions often come from weakly decaying WD
FVs or from DA FVs, while the leading FVs are typi-
cally subdominant. By contrast, the leading SVs are
relatively simple functions of a small number of the
adjoint FVs (Fig. 3). In fact, for � 
 2Tw, the leading
SVs are nearly optimal excitations of the leading FVs.
Thus, by the optimization time, the leading SVs will be
nearly collinear with the leading FVs. Note that both �2

and �5 (respectively, �4 and �6) have large projections
onto �2 and �4 (respectively, �3 and �6), but the roles of
the adjoint FVs are reversed. This occurs because �2

and �4 (respectively, �3 and �6) are orthogonal, or
nearly so, in all three inner products, to all of the lead-
ing adjoint FVs except each other.

For optimization intervals � 
 2Tw, the most rapidly
damped SVs project onto only the most rapidly damped
FVs (Fig. 4). This is a consequence of the optimization
problem that defines the SVs: the most rapidly damped
SVs can only project onto the most rapidly damped FVs
since, if they did not, they would decay less rapidly. As
with the leading SVs, the FV components of the most
rapidly decaying SVs tend to occur in alternating pairs
due to the fact that the FV pairs 	3835,3839, 	3836,3840,
and 	3837,3838 are orthogonal (to within numerical pre-
cision), in all three inner products, to all other rapidly
decaying FVs except each other.

Both the leading and most rapidly decaying SVs ap-
pear to be converging to constant linear combinations
of FVs as � increases for all inner products considered
(3 and 4). The rate of convergence, however, is differ-
ent for different SVs, and �4 and �5 still show marked
oscillations in their (adjoint) FV decompositions for the
largest optimization intervals shown. It may be shown
that the SVs converge exponentially, at a rate which
may be estimated from the Floquet exponents, to or-
thogonalizations of the FVs as the optimization time
|� | → � (Wolfe and Samelson 2007). This will be ex-
plored more fully in section 5.

The rapid convergence of the growing (respectively,
decaying) SVs to constant linear combinations of a
small number of adjoints (respectively, forward) is not
a special consequence of the choice of the cycle mini-
mum as the initialization time. This can be seen by

FIG. 2. Singular values in the WE inner product vs optimization interval �/T for fixed
initialization time t0 near a basic cycle minimum. For clarity, only the the first and last 25
singular values are shown. Some of the singular values did not converge at large optimization
times; these values are omitted. The maxima and minima of the basic cycle are denoted by the
vertical dashed and dotted lines, respectively.
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considering the Floquet decompositions of the SVs as a
function of initialization time with the optimization in-
terval fixed to � � T. Again, the leading SVs are rela-
tively simple functions of a small number of the adjoint
FVs (Fig. 5). For each initialization time, the leading

five SVs are nearly optimal excitations of the same FVs.
Both �2 and �5 (respectively, �4 and �6) have large pro-
jections onto �1 and �7 (respectively, �2 and �4), but the
roles of the adjoint FVs are reversed. As in the previous
case, this occurs because �1 and �7 (respectively, �2 and

FIG. 3. Magnitude of the adjoint FV components qj of the leading SVs’ �j in the WE inner product vs
optimization interval �/T for fixed initialization time t1. Components always less than 0.2 have been omitted
for clarity and the Floquet indices of the dominant components are noted in each plot. The vertical lines are
as in Fig. 2.
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�4) are orthogonal, in all three inner products, to all of
the leading adjoint FVs except each other. Similarly,
the most rapidly decaying SVs project onto the same
FVs, regardless of initialization time (Fig. 6). Both �3836

and �3838 project strongly onto the same FVs, but with
their roles exchanged.

If the optimization interval is reduced to � � Tw, the
modal structure is not as clear as those at longer opti-

mization intervals. However, the leading SVs are still
relatively simple functions of a few adjoint FVs (Fig. 7),
although a larger number of adjoint FVs have more
significant magnitude than with � � T. The most rapidly
decaying SVs (not shown), by contrast, have a large
number of components of roughly equal magnitude,
which are complicated functions of initialization time.
This suggests that the leading SVs converge more

FIG. 4. As in Fig. 3 but for the magnitude of the FV components pj of the most rapidly decaying SV �j.
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quickly than the rapidly decaying SVs, and one baro-
clinic growth cycle is not sufficiently long to allow these
SVs to converge to their asymptotic form.

The Floquet decompositions of the SVs in the other
two inner products are qualitatively similar. The pri-
mary difference is that, as the number of derivatives in

the inner product decreases, the number of FVs con-
tributing significantly to each SV increases. This is due
to the fact that the FVs themselves become closer to
orthogonal as the number of derivatives in the inner
product increases.

While the Floquet decompositions of the SVs calcu-

FIG. 5. Magnitude of the adjoint FV components qj of the leading SVs in the WE inner product vs
initialization time t0 /T for fixed optimization interval � � T. Components always less than 0.2 have been
omitted for clarity. The vertical lines are as in Fig. 2.
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lated in the three inner products are qualitatively simi-
lar, the temporal evolution of their spatial scales is re-
markably different. The leading SVs in the SA inner
product are dominated by very small structures at the
initialization time but systematically evolve toward
large scales (comparable to those of the FVs) by the
optimization time (Fig. 8a), where scale is measured by
the mean wavenumber K, defined by

K
2

�

� |��1 |2 � |��2 |2 dx

� �1
2 � �2

2 dx

. �16


In contrast, the leading WE and PV SVs have scales
similar to those of the FVs at both initialization and
optimization times with the WE SVs evolving toward

FIG. 6. As in Fig. 5 but for the most rapidly decaying SVs.
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slightly larger scales (Fig. 8c) and the PV SVs evolving
toward slightly smaller scales (Fig. 8e). While the simi-
larity in scales between the initial WE and PV SVs and
the FVs might suggest that these SVs are likely to
project strongly onto the FVs, examination of their Flo-
quet decompositions shows that this is not so: the lead-
ing initial SVs project not onto the leading FVs, but

onto the adjoint FVs. In all three cases, the most rapidly
decaying SVs show evolution in the opposite sense as
the leading SVs (Figs. 8b, 8d, and 8f).

The physical structures of the leading SVs are very
similar to those found by other authors using global
atmospheric models (e.g., Buizza et al. 1993; Buizza and
Palmer 1995; Szunyogh et al. 1997; Vannitsem and Nic-

FIG. 7. As in Fig. 5 but for fixed optimization interval � � Tw. Only the largest few components have
been labeled.
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olis 1997; Reynolds and Errico 1999) except that they
are constrained by the channel geometry (correspond-
ing roughly to a one-wavelength segment of one of the
midlatitude jets) and by quasigeostrophy. The struc-
tures of the decaying SV are likewise very similar to
those found by Reynolds and Palmer (1998) in their
study of decaying SVs in a global quasigeostrophic
model. Since the SVs have been so well described in
previous studies and since the primary focus of this
study in on the relationship of the SVs to the LVs and

the local attractor structure, we will omit a detailed
discussion of the physical structures of the SVs.

4. Relationship to the local attractor structure

If a model used for ensemble forecasting is to be a
faithful representation of the true dynamics of the at-
mosphere, the attractor of the model should resemble
the attractor of the atmosphere. In that case, errors in
the forecast should primarily be errors of placement

FIG. 8. Scales, as measured by mean wavenumber K, of the leading and trailing SVs at the
initialization (crosses) and optimization (circles) times for SVs calculated using the (a), (b)
SA, (c), (d), WE, and (e), (f) PV inner products. The optimization interval � � T and the
results are averaged over all possible initialization times. The scales of the FVs (dots) are
shown for reference.
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within the attractor. For lead times sufficiently short
that disturbance dynamics are linear (2–3 days in the
atmosphere), the initialization error should then lie in
the unstable tangent linear space of the attractor. Thus,
a common argument against using SVs in ensemble
forecasting schemes is that the SV initial conditions
point off (i.e., they are not geometrically tangent to) the
attractor and that much of their growth is due to rapid
rotation of the disturbances back onto the attractor
(e.g., Kalnay 2003, section 6.3). The growing LVs (the
aperiodic analog of FVs), on the other hand, determine
a local unstable tangent linear space that represents the
geometric tangent of the local attractor.

These statements are typically made in the context of
low-dimensional systems and the behavior is general-
ized to much more complex systems evolving on high-
dimensional attractors. In the present context—an in-
termediate complexity model evolving on a moderately
high-dimensional attractor—these statements can be
examined in a quantitative manner, both with regard to
the unstable cycle and to the more complex chaotic
attractor itself. The leading FVs define the local un-
stable tangent space to the basic cycle, and it is clear
from the results of section 3 that the leading SVs do not
project strongly into the subspace of the leading FVs
but, instead, have strong projections onto the adjoint
FVs. Thus, the leading SVs point “off” of the basic
cycle and much of their initial growth comes from rapid
rotation into the unstable subspace defined by the lead-
ing FVs.

It is of interest to determine if these results general-
ize to the attractor at large. We focus on trajectories
within the attractor that are near the basic cycle in the
following sense: Let the state vector formed by the ba-
sic cycle at the first cycle maximum be denoted by Pb

and define a Poincaré section by the hyperplane passing
through Pb, which is orthogonal, in the sense of the SA
inner product, to the tangent to the basic cycle �tPb.
Define �Pj � Pj � Pb as the difference between the
Poincaré intersections and the basic cycle. The
Poincaré intersections Pj with relative distance to Pb,

d �
��Pj �

�Pb �
� 0.1, �17


where || · || is the norm induced by the SA inner product,
are considered to be “near” the basic cycle. Out of
120 000 Poincaré intersections, generated from a long
integration on the attractor, 210 near approaches to the
basic cycle satisfying (17) were found (Fig. 9). Since the
attractor of the present system is a fairly high-dimen-
sional object, any low period orbit represents only a
part of the attractor, and this small number of returns is

not a surprise. The 210 returns are nevertheless suffi-
cient to furnish a useful description of the local struc-
ture of the attractor. Note that these and the following
calculations were performed using a reduced resolution
of 24 � 22 for computational expediency.

The extent to which the leading FVs describe the
variability of nearby trajectories can be quantified by
attempting to expand �Pj in the leading n FVs:

�Pj � �
i�1

n

�ij�i � �j
�n
, �18


where �(n)
j is the residual after expanding �Pj in the first

n FVs. The determination of the expansion coefficients
�ij is complicated by the fact that the FVs are not or-
thogonal; however, they can be obtained as the unique
minimizer of the functional

J j
�n
 � ��j

�n
�2 ����Pj � �
i�1

n

�ij �̂i��2

, �19


where the 	̂i are the FVs projected into the Poincaré
section. Note that, for orthonormal 	̂, minimization of
J is equivalent to orthonormal expansion.

The relative magnitude of the residual gives the frac-
tion of the variance of nearby Poincaré intersections
left unexplained after expansion in the leading n FVs;
thus,

f �n
 � 1 �
�J j,min

�n


��Pj �
�20


gives the fraction of the local variance explained by the
leading n FVs. It is found that the leading 10 FVs ex-

FIG. 9. Histogram of the relative d from the basic cycle Pb to the
Poincaré intersections Pn based on 120 000 Poincaré intersections.
The total number of intersections with d � 0.1 is 210. There were
no intersections with d � 0.04.
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plain approximately 90% of the local variance of �Pj,
although there is significant point-to-point variability
(Fig. 10). Note that very little improvement results from
adding the fourth FV 	4. This FV is the neutral mode
proportional to �tPb, which defines the normal to the
Poincaré section. The �Pj are thus orthogonal to 	4 by
construction.

The fraction of the local variability on the Poincaré
section explained by the leading SVs may be similarly
assessed by expanding �Pj in terms of the leading SVs.
The details of the calculation are unchanged. The initial
conditions of the leading SVs do a poor job of describ-
ing the local variance, with little more than 25% of the
variance captured by the WE and PV SVs and only
about 2% captured by the SA SVs (Fig. 11, left panels).
The initial WE and PV SVs explain significantly more
of the local variance than the SA SVs because their
spatial scales are much closer to those of the FVs than
those of the SA SVs, as shown in section 3. In contrast,
the SV final conditions capture as much of the variance
as the FVs and show little variation between the three
inner products (Fig. 11, right panels). This is consistent
with the observation that the leading SVs project
strongly on the leading FVs by the optimization time.

The above results demonstrate that, in addition to
defining the local tangent space to the basic cycle, the
leading FVs are also geometrically tangent to the local
attractor structure; that is, they point onto the local
attractor. On the other hand, the leading SV initial con-
ditions point off of the local attractor, but rotate to
become geometrically tangent to the local attractor by
the optimization time.

5. Recovering Lyapunov vectors from singular
vectors

The results of the previous section suggest that FVs
and their generalizations, LVs, may be more useful
than SVs for describing the behavior of trajectories that
populate the phase space near a given control trajec-
tory. In the present case, the LVs (here FVs) are avail-
able from a straightforward eigenvalue calculation and
are used to calculate the SVs. For the more typical case
of general time dependence, the FVs are not defined
and the LVs are difficult to obtain. Standard techniques
for calculating them require knowledge of N � 1, where
N is the dimension of the system, asymptotically
evolved and orthogonalized linear disturbances (usu-
ally SVs) to compute each LV, except for the most
rapidly growing and decaying vectors (Legras and Vau-
tard 1996; Trevisan and Pancotti 1998). For high-
dimensional systems, computing N � 1 asymptotic SVs
is typically beyond the capabilities of current comput-

ing systems. Wolfe and Samelson (2007) have pre-
sented an efficient method for constructing the extre-
mal n LVs using just 2n � 1 SVs and demonstrated the
effectiveness of this method using two low-dimensional
numerical examples. If this method is effective in com-
plex, high-dimensional systems, it would make a previ-
ously impossible calculation possible. The present
model, with 3840 variables, provides an ideal system
with which to begin testing this method. Furthermore,
since the FVs are already known, they may be used to
check the calculations. For a detailed discussion and
justification of the method for recovering Floquet vec-
tors from SVs, see Wolfe and Samelson (2007). A brief
recapitulation is given here for completeness.

Fix a time t. Under fairly general conditions, SVs
converge exponentially as � → � to constant linear
combinations of the LVs (here, FVs). The convergence
rate �n of the nth SV is estimated by

�n � �
|�2 � �1 | , n � 1

min� |�n�1 � �n | , |�n � �n�1 |�, 1 � n � N

|�N � �N�1 | , n � N.

�21


Note that, if the Floquet spectrum is degenerate, the
SVs associated with multiple Floquet exponents will
not exhibit exponential convergence to constant vectors
and may not converge at all. Note, also, that complex
conjugate Floquet exponents are considered degener-
ate according to this definition.

FIG. 10. Fraction of the local variance of Pn explained by the
leading FVs f (n) ordered by the relative distance to the basic cycle
d. Lines give bin averages of f and error bars (plotted on the n �
5 line) give bin standard deviations. The bin size is 0.005. The
number of FVs n used to construct the leading subspace increases
vertically, starting with n � 1 and ending with n � 10.
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In the present case, a large number (�3000) of FVs
have complex Floquet exponents whose real parts clus-
ter near the dissipation rate (WS), and, thus, the asso-
ciated SVs are expected to converge very slowly (if at
all) to their asymptotic forms. Fortunately, the Floquet

exponents on the extreme upper and lower ends of the
spectrum are real, distinct, and well separated, with two
exceptions: First, FVs 4 and 5 are the two neutral
modes and, thus, have 
4 � 
5 � 0. These modes are,
however, orthogonal in the inner products used here, so

FIG. 11. Fraction f of the local variance of Pn explained by the leading SVs in the SA, WE, and PV norms,
respectively, ordered by the relative distance to the basic cycle d. Lines give averages of f over bins of size
0.005. The number of SVs n used to construct the leading subspace increases vertically, starting with n � 1
and ending with n � 10.
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the degeneracy of the Floquet exponents does not af-
fect the convergence of the associated SVs. Thus, FV 5
(respectively, 4) was removed when calculating the con-
vergence estimate (21) for FV 4 (respectively, 5). Sec-
ond, FVs 3832 and 3833 form a complex conjugate pair,
so |
3832 | � |
3823 | . These modes are thus degenerate
and are not expected to converge in any finite time.

The first and last 10 SVs were calculated in the PV
inner product for a fixed set of optimization intervals,
with the longest interval � � 3T. The PV norm was
chosen because it appeared to generate SVs with the
fastest convergence rate. The order of magnitude of the
convergence times is correctly estimated by Eq. (21),
but do not agree with the estimated convergence time
to the same degree as do the low-order examples of
Wolfe and Samelson (2007) (Fig. 12). Some of the dis-
crepancy may be due to the fact that—in contrast with
the previous study—the present model is sufficiently
computationally burdensome that the optimization in-
terval was not systematically increased until conver-
gence within a specified tolerance was observed. Thus,
for some of the SVs, there may not be sufficient data to
accurately estimate the observed convergence rate.

Let �̂ denote the initial conditions of SVs initialized
at time t and optimized in the distant future and �̂ be
the final conditions of SVs initialized in the distant past
and optimized at time t. [“Distant past” and “distant
future” should be taken to mean “long compared to the
estimate Eq. (21).”] The method of Wolfe and Samel-
son (2007) allows the first n FVs to be recovered from
2n � 1 asymptotic SVs by finding the nontrivial solu-
tion to

D�n
y�n
 � 0, �22


where

yk
�n
 � ��̂k, �n�, k � 1, 2, . . . , n, �23


Dkj
�n
 � �

i�1

n�1

��̂k, �̂i���̂i, �̂j�, k, j � n. �24


The recovered FV 	̃n is then given by

�̃n � �
k�1

n

yk
�n
�̂k. �25


The last n FVs may be obtained in a similar manner.
The FV 	̃ recovered from the asymptotic SVs com-

pare well with the FV 	 calculated directly from the
one-period propagator, with differences of order 1%–
5% for the leading 10 FVs and trailing 7 FVs (Fig. 13);
the slower convergence of FVs 3831–3834 is consistent
with their longer convergence time scales (Fig. 12). This
agreement demonstrates that the efficient method of
Wolfe and Samelson (2007) can be used successfully to
compute LVs from SVs in a model with several thou-
sand degrees of freedom and multiple unstable modes.
Curiously, while the leading 10 recovered FVs show a
systematic improvement in accuracy as the optimiza-
tion interval is increased, a number of the trailing FVs
do not. This may be due to the fact the trailing FVs
decay so rapidly (by more than 10�37 after three peri-
ods) that the numerical stability of the tangent linear
integration and eigenvalue calculation are compro-
mised for long optimization intervals. Since the leading

FIG. 12. Singular vector convergence e-folding time Tc relative to the period of the baroclinic
wave-mean oscillation T. Circles give the expected convergence time based on the Floquet
exponents; crosses give the average convergence time (based on an exponential fit). The
asymptotic forms were only calculated for the first and last 10 SVs. For SVs 3832 and 3833, Tc

is infinite.
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FVs/LVs are likely to be the most useful for predict-
ability studies, the poor convergence properties of the
rapidly decaying FVs/LVs are not of great concern.

6. Discussion

A significant advantage of the present calculations is
that they allow the connection between normal mode
disturbances (FVs) and optimal disturbances (SVs) to
be explicitly displayed. The leading SVs are nonmodal
disturbances: They have significant contributions from
a large number of damped FVs and owe a significant
portion of their initial growth to the rapid decay of the
damped FVs. Further, as shown in section 4, the initial
leading SVs point off the local attractor. It appears
(Figs. 4 and 6) that the most rapidly damped SVs are
modal, or nearly so, but this is an illusion. The largest
components of the most rapidly damped SVs decay so
quickly that, by the optimization time, the physical
structure of these SVs will be dominated by less rapidly
decaying FVs, no matter how small their initial projec-
tion onto the SVs.

The dynamical splitting observed in the present sys-
tem is not as clear as that observed by Samelson
(2001a,b) in a similar study of a weakly nonlinear
model of the baroclinic instability. In that system, the
dynamical splitting was so pronounced that the WD
SVs projected strongly onto only the WD FVs. In that

case, the primary transient growth mechanism for the
leading SVs was interference between the inviscidly
growing (leading) and inviscidly decaying (trailing) WD
modes, which led Samelson to conjecture that invis-
cidly damped modes might be important for under-
standing the dynamics of transient error growth. In the
present, less constrained system, we find that the lead-
ing SVs project primarily onto DA modes and weakly
decaying WD modes. In fact, all of the SVs have strong
projections onto FVs (either DA or WD modes) that
decay at or faster than the dissipation rate, implying
that the calculation of SVs from a leading subspace of
normal modes is likely to produce highly suboptimal
SVs.

The results of the present study are broadly consis-
tent with those of Szunyogh et al. (1997) and Reynolds
and Errico (1999), who also study the convergence of
SVs to LVs. Both studies found that the leading SVs
converge toward the leading LVs with a time scale of
roughly one baroclinic life cycle. Detailed comparison
of the results of the previous studies with the present
contribution is complicated by the different definitions
of the Lyapunov vectors used. For example, Reynolds
and Errico (1999) used orthogonalized LVs estimated
using 40-day SVs, while Szunyogh et al. (1997) consid-
ered only the convergence of the SVs to the first LV.

Accurate ensemble forecasting requires that the en-
sembles be initialized in such a way that their subse-

FIG. 13. One minus the pattern correlation between the recovered FVs 	̃ and the true FVs
	 for optimization intervals of T (circles), 2T (plus signs), and 3T (crosses), where T is the
period of the basic wave-mean oscillation. A value of unity indicates orthogonality while a
value of zero indicates collinearity. Pattern correlations for which 1 � | �	̃, 	� | 2 � 10�8 are
plotted at 10�8 to show the upper values more clearly.
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quent evolution is representative of the possible future
states of the atmosphere. This initialization should also
be economical so that the broadest possible set of fu-
ture states is achieved by the smallest possible en-
semble.

In the present case, the initial singular vectors point
off the attractor and thus represent “unlikely” pertur-
bations provided the forecast model is a reasonably
good representation of the atmosphere. This may indi-
cate that initial singular vectors are not a good choice
for initial perturbations of ensemble members. On the
other hand, the asymptotic stability of the basic cycle is
determined by the leading LVs, so these modes are a
natural choice for the ensemble initial conditions. The
leading LVs have the advantage that they are few in
number and that they are fluid instabilities that are
related, in a straightforward manner, to the background
flow (WS). This implies that the modes that are most
interesting from the standpoint of geophysical fluid dy-
namical instability theory are also natural choices for
ensemble initial conditions.

The results of section 3 indicate that, for optimization
intervals greater than or equal to the baroclinic growth
time scale, the leading final, or “evolved,” singular vec-
tors are approximately an orthogonalization of the
leading LVs [this is also seen in studies of simpler mod-
els, e.g., Trevisan and Pancotti (1998); Wolfe and
Samelson (2007)]. Thus, ensemble forecasting systems
using the LVs and evolved singular vectors should be-
have roughly equivalently, all other things being equal.
The choice between SVs and the LVs then becomes
one of computational expediency. As discussed in sec-
tion 5, current methods for estimating the leading LVs
require knowledge of SVs with asymptotically long op-
timization intervals, making their computation signifi-
cantly more expensive than the computation of short to
midlength optimization interval SVs currently used in
ensemble forecasting. However, since the LVs com-
puted using the method outlined in section 5 are invari-
ant under the tangent linear flow, it may be possible to
reuse previously calculated LVs, reducing the effective
burden of their computation. It is currently not clear
whether this is sufficient to make LVs competitive,
from an efficiency standpoint, with SVs. Experiments
examining the feasibility of computing LVs in atmo-
spheric GCMs are currently under way and may help
resolve this question.

7. Summary

The SVs obtained in the present study characterize
the transient growth of disturbances to a nonlinear
wave-mean oscillation of a two-layer quasigeostrophic

model. The model is simple enough to admit complete
numerical solutions in terms of time-dependent normal
modes (FVs), but, with several thousand degrees of
freedom, complex enough to allow connections to be
made to realistic operational forecast models. Much
like the FVs of the same system (WS), the SVs divide
into two dynamical classes. Singular vectors in the
wave-dynamical class grow or decay at rates signifi-
cantly different from the dissipation rate and exhibit
large oscillations on the time scale of the baroclinic
wave mean oscillation. The SV spectrum is completed
by a large number of damped-advective modes that de-
cay at rates near the dissipation rate.

For optimization times greater than the baroclinic
wave growth time scale, the WD SVs asymptotically
approach constant linear combinations of FVs. The
most rapidly decaying SVs project strongly onto the
most rapidly decaying FVs. In contrast, the leading SVs
project strongly onto the leading adjoint FVs. The lead-
ing SVs are thus approximately optimal excitations of
the leading FVs. Calculations where the initialization
time was allowed to vary while the optimization inter-
val was fixed to � � T show that, while changes in the
initialization time have a large impact on the singular
values, they cause little change in the projection of the
SVs onto the FVs. If the optimization interval is short-
ened to � � Tw, the FV decompositions of the most
rapidly decaying SVs become complicated functions of
initialization time, but the leading SVs remain rela-
tively simple functions of the adjoint FVs.

Examination of Poincaré intersections near the basic
cycle allows us to demonstrate, in a concrete and quan-
titative manner, that the leading FVs of the basic cycle
are geometrically tangent to a local attractor. The lead-
ing initial SVs, by contrast, point off the attractor but
rotate into the attractor by the optimization time. This
demonstrates the value of LVs (here FVs) for describ-
ing the local structure of the attractor in a model of
intermediate complexity and suggests they may be use-
ful for even more complex models.

A method for recovering the leading LVs (here, FVs)
from a relatively small number of SVs was demon-
strated using the present calculations. While this sys-
tem, used in the present study, is significantly more
complex than those considered by Wolfe and Samelson
(2007), the method was able to recover the leading LVs
at a relative accuracy of 1% using SVs with � � T.
Increasing the optimization time generally leads to sig-
nificantly improved accuracy. This result suggests that
the method may be robust enough for use in models
with complexity comparable to operational forecast
models.

MARCH 2008 W O L F E A N D S A M E L S O N 893



Acknowledgments. The authors gratefully acknowl-
edge the Office Naval Research, Grants N00014-98-1-
0813 and N00014-06-1-0369, Code 322 OM, for support
of this work. Computational resources were provided,
in part, by the National Science Foundation through
the San Diego Supercomputer Center system DataStar.
The suggestions of three anonymous referees substan-
tially improved this text.

REFERENCES

Buizza, R., and T. Palmer, 1995: The singular-vector structure of
the atmospheric general circulation. J. Atmos. Sci., 52, 1434–
1456.

——, J. Tribbia, R. Molteni, and T. Palmer, 1993: Computation of
unstable structures for a numerical weather prediction
model. Tellus, 45A, 388–407.

——, and Coauthors, 2005: A comparison of the ECMWF, MSC,
and NCEP global ensemble prediction systems. Mon. Wea.
Rev., 133, 1076–1097.

Coddington, E. A., and N. Levinson, 1955: Theory of Ordinary
Differential Equations. McGraw-Hill, 429 pp.
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