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ABSTRACT

As part of a study of the large-scale response of coastal sea level to atmospheric forcing along the west coast
of North America during June-September 1973, Halliwell and Allen calculate space- and time-lagged cross-
correlation coefficients R,, between adjusted sea level { at fixed alongshore locations {(3,) and the alongshore
component of the wind stress r at general alongshore positions 7(y). Similarly, correlation coefficients Ry, and
R,, involving, respectively, (o) versus {(y) and 7(),) versus 7(y) are computed. The R,; correlations show a
consistent asymmetry in time and space lag (¢, y,), with maximum values of R,; found for 7(y) to the south
of {(3) and leading in time. The R,, correlations are typically symmetric in ¢, and in y;, while R;; generally
show sea level fluctuations to the south leading those to the north in time. It is shown here that the observed
correlation coefficients involving { are consistent with those derived from solutions to the forced, first-order
wave equation with a linear friction term where an assumed form of R,,, based on observations, is used as a
forcing function. Similar investigations are carried out in the frequency domain where corresponding theoretical
space-lagged squared coherences and phases are calculated. Qualitative agreement with observed behavior is
obtained in several instances for the space-lagged statistical functions in both time and frequency domains.
Additional new results include theoretical expressions for the relation in wind-forced regions of alongshore
propagation velocities of {, determined from lagged cross-correlation coefficients or cross-spectral phase differences
between variables at different alongshore positions, to the free-wave propagation speed c, the determination
of ¢ from R,;, the variation with frequency of alongshore coherence scales of { and of coherence and phase
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between ¢ and local 7.

1. Introduction

The behavior of large-scale fluctuations in coastal
sea level along the west coast of North America during
summer 1973 has been studied by Halliwell and Allen
(1984, hereafter referred to as HA). In this context,
large scale means alongshore spatial scales L, that are
larger than the width L, of the continental shelf and
slope, i.e., L, » L, ~ 100 km. In particular, HA in-
vestigated the response of coastal sea level to large-
scale atmospheric forcing, represented by the along-
shore component of the wind stress at the coast. Among
other results, it was found that a single, forced, first-
order wave equation with a linear friction term was
capable of reasonably modeling the response of ob-
served sea-level fluctuations along the Oregon and
Washington coast to observed winds.

The forced, first-order wave equation was derived
originally by Gill and co-workers (Gill and Schumann,
1974; Gill and Clarke, 1974). For example, Gill and
Schumann (1974) showed it to be the governing equa-
tion for the alongshore and time-dependent behavior
of each cross-shelf mode in a model of forced, baro-
tropic shelf waves in the long wave (L, > L,), non-
dispersive limit. The same equation has been shown
to apply under the long-wave approximation in the
case of a continuously stratified ocean (Clarke, 1977)
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if the variables are expanded in terms of generalized
cross-shelf modes dependent on both the cross-shelf
and vertical coordinates.

With y the alongshore coordinate, positive north-
ward for the Pacific coast, ¢ the time variable, and
Y(y, ©) the amplitude of the lowest cross-shelf mode,
the forced, first-order wave equation with a linear fric-
tion term is

Y+ Y, + (eT)'Y = br(y, 1),  (1.1)

where subscripts (¢, y) denote partial differentiation, ¢
is the lowest-mode nondispersive free-wave speed, Tx
a frictional decay time, b a constant dependent on
topography and stratification, and 7(y, f) is the along-
shore component of the wind stress at the coast. The
application of a single wave equation (1.1) to model-
adjusted coastal sea level {{y, f) observations involves
the assumption that the amplitude of the lowest cross-
shelf mode dominates the fluctuations of sea level at
the coast and thus that { oc Y. Moreover, under the
long-wave approximation, the alongshore velocity v is
assumed to be in geostrophic balance so that fluctu-
ationsin v oc { oc Y. These assumptions are supported
by observations off Oregon (Smith, 1974; Kundu and
Allen, 1976; Huyer et al., 1978; see also HA).

The linear friction term in (1.1) was added in an
ad hoc manner by Gill and Schumann (1974) as the
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simplest, reasonable method to represent dissipative
effects. This term follows from the presence of linear
bottom friction in both barotropic and stratified cases
for frequencies w such that wT=> 1 (Brink and Allen,
1978, 1983; Brink, 1982; Allen, 1984). Although the
simple addition of a linear term (¢Tx) 'Y in (1.1) is
not a strictly valid representation of bottom friction
effects for all conditions, it is utilized in HA and here
in the original spirit of Gill and Schumann (1974).

A finding of particular interest in HA concerns the
patterns of space- and time-lagged cross-correlation
coefficients between adjusted sea level or wind stress
at one location, {{yo), 7(3o), and sea level or wind stress
at general alongshore positions {(y), 7(y). The essential
features of those results are summarized in Fig. 1 in
the form of space- and time-lagged cross-correlation
coefficients calculated from the same data using space-
averaged covariances, as described in Appendix A. In
particular, correlation coefficients of space-averaged
§(o) versus {(WI[R], T(vo) versus 7(y)[R..], and {(yo)
versus 7(y)[R,], for two domains, north and south,
are shown in Fig. 1.

The R, correlations in both domains show a definite
tilt to the contours, indicating fluctuations to the south
lead those to the north. The smaller slope in the south-
ern region of a line through the maximum correlation
at each space lag seems to indicate lower propagation
velocities there than in the north. Also, there is a no-
ticeably longer time scale for the southern { fluctua-
tions. The R,, correlations are much more symmetric
in time lag and space lag than those found for R,
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with similar time and space scales in both regions. The
R, correlations in both domains have maximum val-
ues for 7 fluctuations at locations south of, and leading
in time, the fluctuations in ¢. For the northern domain,
the space and time lags for maximum correlation be-
tween {(y,) and 7(y) are about 540 km and 1.75 days,
while for the southern domain the corresponding lags
are about 200 km and 1 ddy. Qualitatively similar
patterns were found in the R, correlations for all the
individual sea level stations examined in HA. Related
space-lagged frequency domain calculations in HA of
squared coherences between {(y,) and 7(y) also show
asymmetries in space lag, generally similar to R, at
low frequencies (<0.2 cpd), but with a change in struc-
ture at higher frequencies.

The observation from R, in HA, that, in a strongly
wind-forced region, 7 from locations south of the po-
sition of the { measurement is generally more highly
correlated with { than 7 from the same location as ¢
(local 7), is striking and, although this structure of R,
is a simple observational result, it is evidently new. In
the past, evidence for wind driving of shelf currents
frequently has been derived from the correlation of
local 7 and the alongshore current v or of local r and
¢. This method has been utilized because, for time
periods greater than one day, the variability in v (and
hence in ¢) is generally the strongest signal in the shelf
velocity field and 7 is typically only measured locally.
Also, v and { often have significant correlations with
local 7. [Notable exceptions to this procedure (Hamon,
1976; Clarke, 1977; HA) have involved the use of 7
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Fi1G. 1. Observed space- and time-lagged cross-correlation coefficients calculated from space-
averaged covariances for adjusted coastal sea level { and the alongshore component of the wind
stress 7, Rp{ £ (7o) vs £ )], R..[7(30) vs 7(3)], and R, [¢(30) vs 7(3)], with the gridded data analyzed
by Halliwell and Allen (1984) from along the west coast of North America during June-September
1973 (see Appendix A). Correlation coefficients in the top panel involve data only from a northern
domain (41.8 to 52.2°N) and in the bottom panel from a southern domain (33 to 41.8°N). The

contour intervals are 0.2 for Ry, and R,, and 0.

1 for R,-;



JUNE 1984

integrated alongshore in the appropriate direction to
test solutions of (1.1).] An examination of (1.1), or of
the depth-integrated momentum equation (e.g., see
Allen and Smith, 1981) shows, however, that, unless
the shelf flow field is totally dominated by friction,
there is no reason for a perfect correlation of local 7
and ¢ or v. Rather, (1.1) implies that local = should
be correlated with a particular combination of ¢ and
of the time and space derivatives, {;, and {,. Thus, it
is not surprising that { may have a higher correlation
with 7 at some other alongshore position. That position,
in fact, can be determined from the solution to (1.1).
One purpose of this paper is to show that the R
correlations found from observations in HA are con-
sistent with those derived from solutions to the forced,
first-order wave equation (1.1).

Space-lagged cross-correlation coefficients and cross-
spectra are natural statistical functions to examine in
observational studies of alongshore variations in shelf
flow fields. Although the observed patterns in space-
lag and time-lag (or frequency) of these quantities show
very definite structure, there is at present no direct
way of understanding how that structure relates to
physical models. This lack of identification of statistical
functions with even qualitative theoretical predictions
applies not only to the new results in HA, but also to
quantities commonly calculated in wind-forced regions
such as alongshore propagation speeds for fluctuations

_in ¢ or v from lagged cross-correlation coefficients or
from cross-spectral phase differences between variables
measured at different alongshore positions, alongshore
coherence scales of { or v as a function of frequency,
and coherence and phase between v and local 7. To
help remedy this shortcoming, we present here a theo-
retical study of statistical characteristics of solutions
to the first-order wave equation (1.1). We utilize (1.1)
based on the strong support found in HA for its ap-
plicability to the northwest Pacific coast. The procedure
is to obtain representative results in idealized cases,
with parameters varied one at a time. The basic ob-
jective is to translate theoretical model output into the
same language used in discussing observations and thus
to build insight into the nature of theoretical predictions
for relevant statistical variables and the dependence of
these predictions on different physical effects.

2. Analysis—Time domain

Defining the variable

Yy =ylc, 2.1

and then dropping the prime (i.e., y' — y), we write
(1.1) in the form

Y, + Y, + (To)'Y = cbr(y, D). (2.2)

Note that now both y and ¢ have dimensions of time
and that the characteristics of (2.2) have slope dy/dt
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= 1. The solution to (2.2), appropriate here where 7
is assumed specified for all y and ¢, is

Yo,0)=cb J:O exp(—r/Tp) 7(y — r, t — r)dr. (2.3)

The solution (2.3) for Y may be utilized to find
expressions for the resulting space- and time-lagged
cross-correlation coefficients described for ¢ and 7 in
Section 1. In particular, we assume that 7(y, ?) is a
stationary random function of time with zero mean
and with variance <rz(y)>, where the angle brackets
here denote the time average

To
1
= lim — f t)dt. 2.4
| (&) Mmoo ) (1) (2.4)
We define
vw=y+y, t=t+1i, (2.5a,b)

where y; and ¢, are space and time lags, respectively,
and use the shorthand notation

Yo=Y, t(»n=r, }
YoLt) =Y, ) =11

The wind stress is assumed to be characterized by
a space- and time-lagged cross-correlation coefficient,
that is a function of y, = yy, —yand ¢y = ¢, — t of
the form

(2.6)

T
<112>l/;<12>1/2 = R, (¥, t1)

= exp[—(2x% + 2Axyete + DT 2], (2.7a)

where
x = cT/L. (2.7b)

Here T and L are time and space exponential decay
scales for R, [recall the scaling (2.1)] and AMJA| < 1)
IS a parameter that governs rotation in the (¢;, y;)
plane of the decay ellipse,

T? = y®x* + 2axyut + 12, (2.8)

“in the argument of the exponential in (2.7a). Such a

rotation would correspond to a preferred direction of
propagation for fluctuations in 7. Note that with as-
sumption (2.7), the variance of 7 may still be a function
of y, {(7*) = (7%()), in which cdse the cross-covariance

<TIT> = <72(yl)>]l2<72(y)>l/2Rrr(yL5 tL)s (2'9)

depends on y, as well as on y; and ¢;. The assumed
form (2.7) of R,, is compared with observed R,, from
Fig. 1 in Section 4.

It is useful to obtain (YY) from the solution to

NY), + 2T (YY) = cb({r,Y) + {7Y})), (2.10)

which may be readily derived from (2.2).
To obtain {(7,Y), we multiply (2.3) by 7, and av-
erage, which gives
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(rY)y=cb fo * exp(—r/Ts)

X {ry, b)yr(y — r, t — N)dr.  (2.11)
With (2.7), (2.11) is.

(@) = b [ expl-n TP 00K — Dy

X R-r'r(yL + r,t + r)dr. (2.12)

Thus, as a result of the fact that Y is determined in
(2.3) by an integral over 7, {r,Y) is determined in
(2.11) by an integral over {7,7). In a similar manner,
we obtain

(Y = cb fo " exp(=r/ Ta(T ) A0 — DY

X R, (r—yp,r—tdr. (2.13)

The solution to (2.10) gives (YY) directly in a
convenient form. We note that (¥,Y) may also be
found, of course, by averaging the product Y,Y using
(2.3). Identical results are obtained after some algebraic
manipulation of the latter expression.

o a (%), =0
We first consider the case of uniform 7-variance,
<TZ> = 74> = constant. (214
As a result, (YY), = 0 and the solution to (2.10) is

(MY = S Tech(n Yy + (¥, (2.19)
For y; = 0, (2.15) gives the variance of Y as
(Y?) = Treh(7Y). (2-16)

With (2.14) and the assumed form (2.7) for (7,7},
the integrals in (2.12) and (2.13) may be evaluated
explicitly to give analytical expressions for

Y,Y
Ryy= T /;<1>72>' = (2.17)
' Y
Ry= <le>1’/;<¥2>1/2 : (2-18)

These are written out in Appendix B. Note that with
(2.14),

(12 = R (1 = 7,
Ryy = Ryy(y1, t1), R.y = R.y(yr, 1)

" b <7'2>y=7é 0

To investigate effects of y-dependence on the vari-
ance of 7, we choose a specific, idealized case and
assume that
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) = 10 exp(—2y5), 2.19)

where 6 = ¢/D and D is an exponential spatial decay
scale about y = 0 for the standard deviation {72)"/%.

Again, (Y,Y) may be obtained from the solution
to (2.10), which here is

(Y\Y)=cb J; i exp(—2r/TF)

X (r Y = ) + (r¥i(p — MHldr.  (2.20)

Using (2.19), we can calculate (7,Y) and {7Y,) from
(2.12)and (2.13) and (Y, Y) from (2.20). The resulting
expressions for Ryy = Ryy(Vr, 115 ¥), R,y = R.y(yr,
tr; ¥), and {Y*(y)) are given in Appendix B.

3. Analysis—Frequency domain

Although frequency domain results may be obtained
from Fourier transforms of (YY) and (riY), as is
done later with {(7;7), we find it more useful for in-
terpretation to work directly with the Fourier transform
of (2.2). Consequently, we regard 7(y, t) as a sample
function of an ergodic, stationary random process. We
assume initially that the values of all variables outside
a finite interval — T, < t < T, are replaced with zero
and utilize the Fourier transform

+o0
Y(y, w) = f Y(y, He™“'dt. 3.1)
Spectra and cross-spectra are obtained from an en-
semble average of the appropriate product followed
by division by 27, and the limit 7, — co. That com-
bined operation is denoted by braces as in (3.4).
The Fourier transform of (2.2) gives

Y, + (T — iw)Y = cb7,

with solution

3.2)

Y(y; w) = cb J:o exp[—(TF ' — iw)slr(y — s, w)ds.
3.3)

A shorthand notation similar to (2.6) is employed,
eg, Y(y, w) = ¥, Y(yi, w) = Y, where y, = y + y,
as in (2.5a). An asterisk is used to denote complex
conjugate, e.g., Y*. The following analysis parallels
that in Section 2.

We assume that the wind stress is characterized by
space-lagged cross-spectra of the form

{r71} -
{_;;_*} ‘/2{7-_1;7} 1/2 - Srr(yL, w)a

(3.4)
where, corresponding to the Fourier transform with
respect to ¢, of {r;7) in (2.9),

(3.5a)
(3.5b,0)

S‘r'r(.VLy w) = exP(_dJ’Lz - eyL)’

d=(c¥L>(1 — N, e=iw\x,
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{F7*0)} = (FO))P(w), (3.6a)

P(w) = Tx'? exp(— }‘ «*T?.  (3.6b)

The following analysis and results are not dependent
on the particular form of P(w) in (3.6b).
It is convenient to find (YY?) from the solution to

(PTH}, + 2TF { P71} = cb({T71} + {7¥1}), (3.7)
which may be derived from (3.2).

To obtain {Y7%}, we multiply (3.3) by 7¥ and av-
erage, which gives -
{Y7¥} =cb f exp[—(TF ! — iw)s]

0
X {FF4Y — O} AFTH00} Sy — 9)ds. (3.8)
Similarly, we obtain
(7%} = cbj; exp[—(TF ' + iw)s]
X {77*)} {77 *(y, — 8)}'2S,.(s — y)ds.  (3.9)
a. <12>y =

For the case of uniform 7-variance (2.14), {77*}
= 19°P(w), {YY¥}, =0, and it follows from (3.7) that

(PP} =2 Trch({ P71} + (7F1)).  (3.10)

The integrals in (3.8) and (3.9) may be evaluated to
give analytical expressions for the space-lagged cross-
spectral quantities

(778

SYY= {)7}_’*}1/2{)71?‘1"}”2’ (3-11)
Vo ok
S.y= {ret} (3.12)

{)—’Y*}‘/Z{‘F,?‘,“} 12:
These are written out in Appendix C, where, with
(2.14), Syy = Syy(y1, w) and S,y = S,y(yL, w).

b. (1%, # 0

We assume again that {v%()) is given by (2.19). In ‘

this case, the solution of (3.7) gives
(P91} = b [ exp(-2T 90 F710 — 9)
]

+ (FPHy — )}lds.  (3.13)

Using (2.19) in (3.6), we can calculate {Y71}, and
{rY¥} from (3.8) and (3.9) and {YY?} from (3.13).
The resulting expressions for Syy = Syy(yr, w; ¥) and
S.y = S;¥(yr, w; y) are given in Appendix C.

In Section 5, the space-lagged cross-spectra are pre-
sented in terms of the coherence squared C and the
phase © where, e.g.,
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Cor = IS:/% O,y = tan™'[Im(S, y)/Re(S, )],
(3.14a,b)
and where Re and Im denote real and imaginary parts.

4. Results—Time domain

a (%, =0

We utilize the assumed form of R, in (2.7) and
calculate Ryy and R,y for various combinations of the
parameters ¢, Tr, L, T, and X in the case of uniform
r-variance (2.14). Based on the observed R,,-correla-
tion patterns in Fig. 1, we choose for a basic set of
parameters the values

L=500km, T=15days, A=0. (4.1a)

Also, based on observed R;; and R, from the northern
domain and results to follow we choose

c=1300kmday”!, Tr=3days. (4.1b)

To gain an understanding of how differences in the
parameters of the problem affect the statistics of the
solution, we vary individually T, L, and A, where the
variations of T and L correspond to changes in the
dimensionless parameters Tx/T and x = ¢T/L, re-
spectively. Except where noted, the parameter values
used in the following calculations correspond to those
in (4.1). The positive y-direction will be referred to as
northward, as appropriate for the Pacific coast of North
America.

The R,, for the basic case (4.1a) is plotted in Fig.
2. We emphasize that R,, in (2.7) is chosen for ana-
lytical convenience as a qualitative representation only
of observed values. In Fig. 3, the assumed R,,, with
parameters (4.1a), is compared for y, = 0and ¢, =0
with the observed R,, in Fig. 1. The correspondence
is reasonable, with the assumed values decaying more
rapidly than the observed for increasing ¢; and y;, as
might be expected for (2.7).

Also shown in Fig. 2 are R, for A = £0.5. These
values of A were chosen, with L and T the same as in
(4.1), to represent the situation where 7-fluctuations
have a dominant tendency to propagate either north-
ward (A = —0.5) or southward (A = +0.5). The mag-
nitude of the propagation velocity of 7-fluctuations for
both of these values of A is 667 km day™!. Note that
both #;, and y; are measured in days; y; may be con-
verted to km by multiplying by ¢ = 300 km day™!.

The expression for the variance of Y in (B4) shows
that the nondimensionalized variance {Y*)y-= (Y?)/
(cbroT)? depends on the parameters T, 8, = (1/2)TF !,
and « = T2 + 2Ax + 1) and that (¥?)y
~ T(172)(w/a)'?T~2 for Tr' — 0. Thus, as friction
goes to zero, the variance <Y2> ~is unbounded, resulting
from the resonant forcing of (2.2) at alongshore wave-
numbers / = «. For fixed T/T, the magnitude of {Y*)»
depends only on T2, increasing as a7? decreases.
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FIG. 2. Assumed form (2.7) for R,.(t,, y;) with parameters (4.1a)
for A = 0, —0.5, and +0.5. Contour interval 0.1.

Note that a«~'/? is a decay time for R,, in the (t1, y;)-
plane along the characteristic line y, = ¢,. Conse-
quently, for fixed T, whatever the individual values
of ¢, T, L and X are, T*(Y?)y depends only on the
decay time a2 of R,, along'y; = t; and it increases
as a2 increases.

Plots of Ryyand R,y for T = 1, 3, 6 days are shown
in Fig. 4. The maximum values, Ryy,, and R,y,,, of
Ryy and R,y for each space lag y, and the corre-
sponding values of ¢, at which the maximum occurs
(tzm, Yim) are plotted in Fig. 5.

The Ryycontour lines possess the symmetry Ryy (1,
Y1) = Ryy(—t;, —y;) as would be expected in the case
(r*), = 0 and (¥?), = 0. The contours of Ryy are
tilted, corresponding to southern stations (more neg-
ative y;) leading northern stations, in the same sense
as found in the observations (Fig. 1). The spatial cor-
relation scale from Ry, defined approximately as |yl
for Ryy = 0.7, increases as Tr increases (Fig. 5). For
Tr= 3 and 6 days, it is much larger than the correlation
scale of = from R,,, in agreement with observations
(Fig. 1). The values of (¢1,,, Vrm) for Ryy., (Fig. 5) show
that characteristic dimensionless velocities ¢, of the
forced Y-fluctuations, determined using these lags
(¢m = Yim/tim), vary with y;,, and T, such that they

0.8 — = -
0.6 — - -
k . » |
% 04 - = —
0.2 — ; =

0.0 T T T 1T | B —
0 1 2 0 1 2 3

i yr

FIG. 3. Comparison for y, = 0 and #, = 0 of assumed R,.(1,, y.)
with parameters (4.1a) and of observed R,, from the northern and
southern domains (Figure 1, Appendix A).

are largest for small 7y and are always greater than
the free-wave speed given by dy;/dt; = 1. The slope
of the line (y1,n, {Lm) is asymptotic to 1, however, as
L, yp — *oo.

The contours of R,y exhibit the same asymmetry
as found in the observations (Fig. 1) with the absolute
maximum value (maxR, y) found at negative values of
v and ¢;, (¢Lam, Viam)- The magnitude of maxR,y is
greatest for 7r = 1 and decreases with increasing T,
accompanied by an increase in |y14,,. Thus, the smaller
the friction, the greater the distance |y, of the lo-
cation of = that is most highly correlated with ¥ and
the lower the value of maxR,y. The fall in maxR.y as
Tr increases is related to the increase in <Y2>N. It
may be shown from (B1) that, for 77 ! — 0 and fixed
a, maxR,y ~ T2 (x/a)'* and yim ~ —{a™!
X In[THe/m)"?]}'72. At zero space lag, y, = 0, R,y
behaves similarly to maxR,y and decreases as T in-
creases, while |¢;,,] increases. Also, we note that as #;,
yr — —oo, the pattern of R,y becomes similar to that
of Ryy. This results, with (YY) given by (2.15), be-
cause (7Y;y ~ 0 for t;, y, — —oo.

It is noteworthy that ;,, = Y74, so that the point
(tLam> YLam) lies on the characteristic line y, = 1, through
yr = 0. From (B1) and (B5), it may be shown that
this result holds in general for all cases considered here
with R, given by (2.7) and with either uniform (2.14)

" or variable (2.19) r-variance. Consequently, velocities

estimated in these cases using y; 4,,,/t1.m correspond to
the free-wave propagation velocities. )

Also plotted in Fig. 5 are Ry, and R,,, along
with corresponding (f;,,, y.m), from the observed
northern-domain values in Fig. 1. These are shown
for qualitative comparison only as the observed values
are obtained from space averages over regions where
{7*) and {{*) vary strongly with y and that can affect
the space-lagged statistics as implied by the results in
Section 4b. The qualitative comparison is reasonable,
with the closest agreement for Ry, obtained with
Tr =~ 3 days and for R,y with T ~ 6 days. These
values of Tr bracket that of T = 4.25 days found in
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FIG. 4. Ryy(t,, y.) and R,y(t,, y.) for uniform r-variance (2.14), parameters (4.1),
and T = 1, 3, 6 days. Contour interval 0.1. .

HA by maximizing sea-level variance predicted from
(2.3), with constant ¢ and T, at four northern-domain
sea level stations. Again, we emphasize that y-variability
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FIG. 5. Maximum values Ryy,, and R,y,, of Ryy and R,y for each
space lag y, (top) and the corresponding value of ¢, at which the
maximum occurs (¢7,», ¥») (bottom). The absolute maximum values
of R,y are maxR,y = 0.95, 0.79, 0.65 for T = 1, 3 and 6 days,
respectively. The small circles are observed values of Ry, and R,
and corresponding (fz», Y1») from the northern domain (Fig. 1,
Appendix A).

of observed (%) and {{) prevents quantitative testing
of the statistical results from this idealized model.

Differences obtained in Ryy and R,y when L and
A are varied are discussed briefly in Appendix D.

b. <1'2>y *0

The case of nonuniform 7-variance (2.19) is inves-
tigated with the basic set of parameters (4.1) and with

D = 600 km. 4.2)

The form (2.19) for the y-variability of (1'2(y)> and
the value of D in (4.2) were chosen to model, in an
idealized manner, the large increase in 7-variance near
Cape Mendocino around 40°N discussed in HA.

A plot of (7%(y))/7¢* with this choice of D, and the
resulting solution (B7) for {Y?(3))/{Y?)max are shown
in Fig. 6. It may be seen that {Y*()))max is displaced
northward from (7%)n.c. The decay scale of (Y*())
for y — oo is related to the particular value chosen
for Trin (4.1). In HA, the observed maximum variance
in sea level is also found north of the observed <72>max.

Plots of Ryy and R,y are shown in Fig. 7 for
¥y = 0, 3 which correspond respectively to positions at
and north of <12>max. One of the primary purposes
here is to investigate the change in the position y;
(=tLsm) of maxR,y as y increases. It may be seen that
|VLam| increases and maxR,y decreases as y increases.
This is similar to the behavior observed in HA for R,
calculated with sea level measured at South Beach,
Oregon (44.6°N), just north of the region of large 7-
variance along northern California and southern Or-
egon, and at Neah Bay, Washington (48.4°N), farther
north in a region of lower 7 variance.

The behavior of Ryy in Fig. 7 for ¢;, y; negative,
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FIG. 6. {(7%(y))/ and the resulting solution (B7) for (Y*(3))/
(Yz)m,, in the case of nonuniform r-variance (2.19) with (4.2).

where the spatial correlation scale to the south increases
for y = 3 compared to y = 0, is also similar to the
observed behavior for R;; to the south of South Beach
and Neah Bay. The increase in correlation scale from
south to north for Ryy at y = 0 is also a feature of the
observed Ry, calculated for South Beach sea level.

In our example (2.19), {7*(»)) — 0 as y — co which
results in frictionally damped free-wave propagation
to the north asymptotically as y — oo. For y = 3, we
find near perfect correlation Ryy ~ 1 along the char-
acteristic line y; = ¢; for y;, t; > 0. In addition, the
slopes of the other contour lines are asymptotic to the
constant value 1 for y;, ¢; > 0. This feature is also
found for some of the contours of Ryy for y = 0. That
particular behavior is built into the model by the as-
sumed form of (2.19) and is not found in the obser-
vations discussed in HA.

5. Results—Frequency domain

We utilize the assumed form of S,, in (3.5) and
calculate the space-lagged squared coherences Cyyand
C.,y as a function of frequency w and y, for the same
sets of parameters as in Section 4. We also calculate
the associated phases Oyy and O,y and, from O,y a
dimensionless velocity ¢y = —wy/Oyy characteristic
of the Y-fluctuations. Variations in frequency w are
confined to the range 0 < o' = w/27 < 0.6 cpd. Note
that as part of the full (w, y;)-structure of these variables,
we obtain theoretical predictions for the variation with
w of quantities that have been extensively calculated
from previous observations, namely, the coherence
squared and phase between { (or v) and local 7, i.e.,
C,yand O,y at y; = 0, and the propagation velocity
¢y from sea-level (or current measurement) stations
separated alongshore by some distance y,g.
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It is useful to keep in mind that C,, has a frequency-
independent decay in y;, proportional to exp(—2dy;?).
The phase ©,, = 0 for A = 0 and it corresponds to a

constant dimensionless ¢, = —wy;/O,, = +2.2 for
A = F0.5.
a (%), =0

Plots of Cyy, Oyy, ¢y and of C,y, O,y for uniform
7-variance (2.14) and for parameters (4.1) with
Tr = 1, 3, 6 days are shown in Figs. 8 and 9, respec-
tively. As expected with (7%), = 0, Cyy(3,) = Cyy(—¥1),
Oyy() = —Oyy(~y1), and cy(yr) = cy(—yL). The
coherence scales from Cyy, defined approximately as
[yl for Cyy = 0.5, are greater for low frequencies. For
«' < 0.3 cpd they are greater for weaker friction, i.e.,
for larger Tr, and are much larger than the frequency-
independent coherence scale of C,, which is approx- °
imately |yz| ~ 1. Isolated points in the (w, y;)-plane
exist at which the coherence squared is zero, i.c., at
which Cyy = 0. The locations of those points are most
easily seen from the accompanying nodes in the phase
Oyy. They strongly influence the (w, y;)-patterns of
Cyy, leading, for example, to very short coherence
spatial scales for o' > 0.3 cpd when T = 6 days. The
points of Cyy = 0 arise indirectly from zero values of
{7Y?t} and of {Y7¥} for positive and negative y,,
respectively [recall (3.10)].

The zero values of {Y7¥} show up directly in C,y
(Fig. 9). Mathematically, they are associated with com-
plex zeros of the complementary error function erfc(g/
d'’?), where g and d are defined in (C2b,d) and (3.5b).
The first complex zero of erfc(g/d'/?), for example, is
given approximately by Re(g/d'/?) = —1.35 and Im(g/
d"?) = —2.0 (from Fig. 7.3 of Gautschi, 1964). Using
these numbers, we obtain, with (C2b,d) and (3.5b),

y=0

[ |
Ryy - s
-
— - -
- ~, - - 2
— " — —
R,y N /fl o 8
i 0 / ) B
i /
I B B A | <7 T T -4
-4 -2 0 2 -4 -2 0 2 4
173 73

FIG. 7. Ryy and R,y for nonuniform r-variance (2.19), (4.1), and
(4.2) at y = 0, 3. MaxR,y = 0.95, 0.81 for y = 0, 3, respectively.
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TF‘:’

FIG. 8. Cyy(w, y1), Oyr(w, yr) and cy(w, y;) for uniform r-variance (2.14), parameters (4.1)
and Tx = 1, 3 and 6 days. Oy is in degrees; Oyy(y.) = —O(—yL). cy is dimensionless (in units
of ¢); cy(y) = cy(—yL). For Cyy, the contour interval is 0.1. For Oyy, the contour interval is
45°, with —180° < Oyy < 180°. The dashed contour lines are for negative phase and the heavy

* solid lines are 0° or +180°. For cy, the dashed contoured lines run from 1.2 to 1.8 at intervals
of 0.2, the solid lines increase from 2 at intervals of 1. Values of ¢y are calculated and contoured
only for Cyy = 0.2.

the following values of (wg, y1o) for the first zero of

C.,y:

wo ~ 4(c/LY1 — MY 1 + Ax)7!,

Yoo =~ —(L/cy*(1 — N
X [1.35(c/L)(1 — N2 4 % Tp“] . (5.1b)

TF=6

| U S R N |

(5.1a)

It follows for this case that wp = we/27m =~ 0.38 cpd,
and that |y, | decreases with increasing Tr. This agrees
with the position of the nodal points of O,y in Fig. 9.
We note that the existence of (w, y;)-points where C,y
= 0 does not seem to be associated with the particular
form (2.7) assumed for R,,. It may be shown that
isolated zero points are present in other cases, e.g., for

— e e

=———

-4

T
T

- = - 2
- “ — e
P IN——
= ol — —
_ i / oL _,
T = - -4
00 02 04 00 02 04 06
opd cpd

FIG. 9. C,y(w, y;) and ©,y(w, y;) for (2.14), (4.1), and T = 1, 3 and 6 days. Contours intervals
for C,y and O,y are the same as for Cyy and Oy, in Fig. 8.
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R,. with exponential decay dependent on the absolute
values of y; and of ¢;. Physically, the C,y = 0 points
are presumably related to phase randomization by the
effect of integrated 7-forcing.

The values of ¢y in Fig. 8 are also, of course, influ-
enced by the zero points of Cyy. We see that, for all
T, ¢y > ¢ with ¢y closest to ¢ for « < 0.3 ¢cpd and
Tr large.

The plots of C,y for T = 3 and 6 days (Fig. 9) show
that, for low frequencies «' < 0.2 cpd, the highest
values of C,y are found for negative y;, ie., for
—2 < y; < —1, similar to the values found for y;,,
in Section 4. As «' increases past 0.3 cpd, however,
the highest C,y occurs with near-local 7, i.e., with y;
~ 0. From (C1), (C2), and the asymptotic expansion
for erfc(go/d'/?) (Gautschi, 1964), it can be shown that
for y. =0, C.y (3. = 0) ~ 1 as go/d"> — oo with
arg|go/d"?| < 3w. Based on the relation |go/d"/*|* > 1,
we find the following approximate condition on w for

- obtaining this asymptotic state:

o> (1 + M)H4(c/LY(1 — M) — T2, (5.2)
For the parameter values in this -case, (5.2) gives
o' > 0.11, 0.18, 0.19 cpd for Tr = 1, 3, 6 days, re-
spectively, in qualitative agreement with the change
in patterns of C,y (y. = 0) as w increases in Fig. 9. In
particular, the weak dependence of this change on T,
for Tr increasing from 3 to 6 days, is evident in Fig.
9. Condition (5.2) clearly corresponds in (3.2) to the
dominance of (77" — iw)Y over the term Y, involving
an alongshore derivative. Consequently, the satisfaction
of (5.2) implies a more nearly two-dimensional (3/dy
=~ () response of Y which, corresponding to the loss
of importance of alongshore derivatives, might also be
described as a condition of local driving. Note that,
for Tr' < 1, (5.2) is similar to @ > (1/2)w,, With wp
given by (5.1a). Thus, the condition of local driving
at higher w tends to be associated with the shorter
alongshore coherence scales more typical of C,., which
seems to be physically consistent.

In the limit (5.2), we also find

O,y (v = 0) ~ tan'[wTx(1 + Ax)).  (5.3)

Thus, O,y (. = 0) ~ 90 deg for wTx(1 + Ax) > 1.
The faster increase toward 90 deg of 6,y (y; = 0) for
larger T is evident in Fig. 9.

A scaled dimensionless ratio of the resulting spec-
trum of Y to that of 7, SRy(w) = SR(w)/SR (w = 0.13
cpd) where SR is defined in (C3), is shown in Fig. 10.
As is characteristic of all cases studied here, SRy de-
creases as w increases, indicating {YY*} falls off with
increasing w more rapidly than {77*}. That falloff
steepens as T increases. Also shown in Fig. 10 are
observed values for SRy obtained from space-averages
of the {- and r-autospectra presented in HA. The over-
all agreement between observed and these theoretical
SRy is not particularly good, but again the space av-
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FiG. 10. SRy = SR(w)/SR (w = 1.3 cpd), where SR is given in
(C3), a scaled dimensionless ratio of the spectrum of Y to that of r
with uniform 7 variance (2.14) and T = 1, 3 and 6 days. The circles
are corresponding ratios of space-averaged observed autospectra of
¢ and 7 from Halliwell and Allen (1984) (grid points 2-16).

erages of observed values are over regions where large
y-variability in the autospectra of 7 and { are observed.
Nevertheless, in the range 0.1 cpd < o’ < 0.3 ¢pd the
observed SRy falls off with increasing w in a manner
qualitatively similar to the theoretical values.

Theoretical results obtained for Cyy, cy, and C,y
when L and M\ are varied are discussed briefly in Ap-
pendix D.

b. <72>y #0

The case of nonuniform 7-variance (2.19) is inves-
tigated, as in Section 4b, with parameter values (4.1)
and (4.2). Results are shown for y = 0, 3 in Fig. 11.
For o' < 0.4 cpd, the variations of spatial coherence
scales from Cyy as a function of y and of y; are similar
to the variation of spatial correlation scales found from
Ryy in Section 4b. The spatial coherence scale to the
south (negative y;) increases for y = 3 compared to
y = 0. Likewise, at y = 0, the coherence scale to the
north is much larger than that to the south. The speeds
cy are generally larger for more negative y and y,. At
y =0, ¢y > ¢ and cy decreases for increasing y;. At y
= 3, ¢y is close to ¢, ¢ < ¢y < 1.2¢, for almost all «
and y;, i.e., for o < 0.5 cpd and y; > —<2.5.

For « < 0.3 cpd, the highest C,y are found for
negative y; at a value that decreases greatly from
yo~ —08 at y = 0 to y, =~ —2.5aty = 3. The
magnitudes of C,y at y = 3 for o’ < 0.3 cpd are sub-
stantially higher for y; negative, y; =~ —2.5, near the
position of (7*)max, than for y, ~ 0. This is also con-
sistent with the values found for R,y at y = 3 in Section
4b. Also, O,y (3, = 0) (not shown) behaves differently
for each y, increasing more rapidly with w as y increases.
Aty =3,0,,(y. = 0) > 90 deg for o’ > 0.2 cpd. This
is the only case of those studied here where, for 0
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FIG. 11. Cyy, ¢y, and C,y for nonuniform r-variance (2.19), (4.1),
and (4.2) at y = 0, 3. Contour intervals same as in Fig. 8.

<« < 0.6 cpd, O,y (. = 0) lies outside the range 0
to 90 deg.

6. Summary

The space- and time-lagged cross-correlation coef-
ficients, Ryy and R,y, calculated from solutions to the
forced, first-order wave equation (2.2) using the as-
sumed form (2.7) for R,, are qualitatively consistent
with the Ry and R, correlations found from obser-
vations in HA. In particular, the asymmetric pattern
in time- and space-lags found for R,;, in which the

largest values of R,; occur for negative 7, and y;, is

reproduced in R,y.

In the case of uniform r-variance (2.14), values of
the parameters T, L and X are varied individually to
gain an understanding of the resultant effects on Ryy
and R,y. It is found that the spatial correlation scales
determined from Ryy are generally larger than that of
7 from R,,, in agreement with observations, and that
they increase as Tr and L increase and for A negative
compared with A positive. Characteristic speeds c,, of
Y fluctuations, determined using time lags #,, for
maximum values of Ryy at each y; , are always greater
than the free-wave speed ¢, approaching ¢ more closely
for increasing T, decreasing L, and for negative A.

The time and space lags (!7um, Yram) at which the
absolute maximum value of R,y(maxR,y) is found lie
on the characteristic line y; = ¢, through y; = 0 and
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thus determine the correct wave speed, Vrom/tram = 1.
Values of y; ., are negative, with larger absolute values
of |Yram| found for greater T and L and for negative
A. Correspondingly, the magnitude of maxR, yis larger
for small T, large L and negative A.

For the case of nonuniform 7-variance (2.19), the
maximum value of (Y*()) is found north of {72)may.
Similar behavior occurs in the observed sea-level vari-
ance in HA. The Ryy and R,y patterns reflect quali-
tative features found in HA for R;; and R, centered
at sea level stations north of the location of an observed
large maximum in (%) near Cape Mendocino (40°N).
Spatial correlation scales determined from Ryyincrease
to the north of (72)may. In addition, the magnitude of

" |VLaml increases for y stations to the north of {7%)may,

so that maxR, y occurs near the position of the largest
T-variance.

The possibility of using observationally determined
values of R;r and R, to extract information on effective
magnitudes of T is suggested by the change of patterns
in Fig. 4. The variations with y of Ryy and R,y that
result solely from nonuniform 7-variance (Fig. 7),
however, indicate difficulties in applying that idea.

The frequency-domain calculations with uniform
r-variance of space-lagged squared coherences Cyy and
C.y and their associated phases show considerable
variations of these quantities with w and y, and with
the parameters T, L and A. Spatial coherence scales
determined from Cyy are in general largest at low fre-
quencies (w' < 0.2 c¢pd), where the variation with T,
L, and X is the same as found for the correlation scales
from Ryy. Points are found in the (w, y;)-plane where
Cyy = 0; these strongly influence the Cyy patterns,
leading, for example, to shorter coherence scales for
L = 800 km, compared to L = 300 km, when 0.2
< o' < 0.5 cpd. The Cyy = 0 points are associated
with points where C,y = 0. The values of (wp, Vi)
associated with the first zero of C, are given in (5.1).

The characteristic propagation velocities cy, cal-
culated from Oy, are typically positive, in the same
direction as the free-wave propagation velocity ¢, and
greater than c. Negative values of ¢y are found with A
= +0.5 (southward propagating 7 fluctuations), but
only for o > 0.25 cpd. In general, values of cy are
closer to c¢ for low frequencies (e.g., ' < 0.2 cpd), for
larger TF, smaller L, and for negative A. ‘

At low frequencies, the largest magnitudes of C,
are typically found at negative values of y;,, similar to
YLam for maxR.y. For increasing frequency, however,
the location of highest C,y switches to near y; ~ 0.
This occurs approximately for frequencies satisfying
condition (5.2), which corresponds to a dominance of
the time derivative and friction terms in (2.2) over the
alongshore derivative term and, thus, to a more nearly
two-dimensional (8/9y =~ 0) or locally driven balance.
As seems consistent physically, this transition tends to
coincide with a reduction in coherence scale of Y (as-
sociated with Cyy = 0 points) to values closer to that
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FiG. 12. Observed space-lagged squared coherences calculated from space-averaged cross-
spectra with the northern-domain data of Halliwell and Allen (1984). Notation same as for
observed correlation coefficients (see Appendix A). The contour interval is 0.2. The unlabeled
C;; contour at w’ < 0.15 ¢cpd, y. < —500 km is 0.2.

of 7. In agreement with (5.2), the change, as w increases,
of largest C,y from y; negative to y;, ~ 0 occurs at
lower frequency for smaller T, larger L, and posi-
tive A,

One additional feature of the C,, = 0 points should
be pointed out. For T = 6 days in Fig. 9, C,y = 0
occurs at wp ~ 0.38 cpd and at a negative value of y;,
close to that for maximum coherence at lower fre-
quency. If cross-spectra between r at a location near
that value of y, and between { at y, = 0 were used
to extract the wind-driven component of {, a spectrum
of the residual series would show a peak near the zero
coherence frequency. It might be concluded that
around that frequency ¢ is not wind-driven and that
other processes are responsible for the residual series
energy. That, of course, would be incorrect.

Scaled dimensionless ratios of the spectra of Y to
the spectrum of 7, show that, in general, the forced
Y-spectra fall off more rapidly with increasing w than
the r-spectrum. The falloff is steeper for large 7, large
L, and positive . A similar falloff in the ratio of space-
average observed ¢- and r-spectra from HA is found
for 0.1 cpd < ' < 0.3 cpd.

To give an indication of how theoretical C,y and
Cyy compare with observed, in Fig. 12 we show Cies
C.., and C,; calculated from space-averaged cross-
spectra using the northern-domain data in HA (Ap-
pendix A). The coherence scale of C,, is reasonably
constant with frequency (200-400 km), increasing
somewhat for decreasing w’ and with an indication of
larger scales around 0.22 cpd. The coherence scales of
Cyr are =200 km for w’ > 0.2 cpd, and increase for
decreasing ' to values ~ 800 km for ' ~ 0.13 cpd.
The pattern of Cy; is, in fact, rather similar to that of
theoretical Cyy for Tr = 3 or 6 days in Fig. 8. For
C., the highest values are found near ' = 0.13 cpd
for negative space lags in the range 300-700 km. This
feature is qualitatively similar to the C,y patterns in
Fig. 9 for Tr = 3, 6.days, but the increase in C,y

(v = 0) with increasing w is not evident in C",;. The
structure of observed C; is presumably related to the
fact that the sea-level fluctuations at the northern grid
points in the northern domain are forced at southern
locations (HA). Thus, C,; is formed by averages over
several points where individual C,; are closer in struc-
ture to C,y at y = 3 (Fig. 11), which is similar to C,;.
The same argument does not work well for Cyy at y
= 3, however. Another reason for the differences be-
tween the theoretical C.,y and the observed C,; is the
idealized form assumed for S,, in (3.5). Even if the -
model of the dependence on y; in (3.5a) is reasonable,
d and e/w vary with frequency. In addition, the spectral
shape P (3.6b) of the autospectra of 7 is generally a
function of y and w, i.e.,, P = P(y, w). Nevertheless,
the theoretical patterns for Cyy and C,y produced with
this simple model, idealized form of S,,, and limited
variation of parameters, show an interesting and sur-
prisingly large range of variability in structure asso-
ciated with different physical effects and agree quali-
tatively with observed values on several major features.
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APPENDIX A

Observed Cross-Correlation Coefficients
and Cross-Spectra

Space- and time-lagged cross-correlation coefficients
from space-averaged covariances for adjusted coastal
sea level { and the alongshore component of the wind

stress 7, R {$(0) versus {0)], R..[r()o) versus 1(3)],
and R, {{(y,) versus 7(1)], are calculated with the grid-
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ded data analyzed by Halliwell and Allen (1984) from
along the west coast of North America during June-
September, 1973. For that time period, sea level fluc-
tuations are found in HA to have two alongshore do-
mains of variability, one in the north (41.8°N to
52.2°N; grid points 9-16) and an adjacent one to the
south (33°N to 41.8°N; grid points 2-9). These do-
mains are characterized by relatively high correlations
of ¢ within the domains, but poor correlations between
them. Consequently, separate sets of correlation coef-
ficients are calculated for each domain.

For N (=8) grid points in each domain, grid interval
Ay (=180 km), coordinate y; = (i — 1)Ay(1 < i< N),
and space lag y, = nAy(l — i < n < N — i), space-
lagged correlation coefficients are defined, for example,
as

R, ¥) = @i + ¥))
X K@i + yad 72,

where angle brackets denote time average and the time-
lag dependence is not shown. The corresponding space-
lagged correlation coefficients formed with space-av-
eraged covariances are denoted by a caret and are given,
e.g., by

(A1)

J
Z GO + ya))
Rr{(yn) = J = J ’
[Z O (720 + vy
i=1 i=1

(A2)

where, forn=0,7I=1,J =N — n, and, for n < 0,
I=|n| + 1, J = N. The results for each domain are
shown in Fig. 1, where the number of space-lags is
limited to || < 5. Note that when both variables are
the same, €.g., {, Ry (t, ) = Ry(—1, —y). T

Space-lagged cross-spectral functions, e.g., S,
formed from space-averaged cross-spectra, are calcu-
lated in the same manner as in (A2). Corresponding
squared coherences C,; are then calculated from S,
as in (3.14).

APPENDIX B

Equations for Ryy, R,y
a. <1'2>y =0

The evaluation of (2.12), (2.13) and (2.15), with
- (2.7) and (2.14), gives

(Y, Y) N,

Ryy(yp, t) = W = B: » (Bla)

T]Y N2

R‘rY(yLy lL) = <T12>I/Z<Y2>l/2 = 52 >

(B1b)
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where _
N, = % exp(—v)[exp(8*/a) erfc(B/a'/?)
+ exp(8?/a) erfc(8/a'?)], (Blc)
172
M=[§nﬂwmwﬂ
X exp(—7) exp(8”/a) erfc(B/a'?), (B1d)
D, = exp(Bo’/a) erfc(Bo/a'’?), D, = D', (Ble,(f)
where
2 oo}
erfc(x) = —= | exp(—t3)dt (B2)
VI«
is the complementary error function and
a=T72[x*>+2xx + 1], (B3a)
B=3Ts'+d& f=:T'-d (B3bo
& =T y*+ MO+ 1) + 1),  (B3d)
v = T y*x.® + 2Mxyute + 1.2, (B3e)
Bo=B0L=0,t,=0)=3T". (B3
Also, 1
(Y = 3 Tr(chro)(w/a)"/*D;. (B4)

b. <12>y #+0

The evaluation of (2.12), (2.13), and (2.20), with
(2.7) and (2.19), gives

Ryy(yr, tr; ¥) = N3/Ds, (B5a)
R,y(yL, tL; ¥) = N4/ Dy, (B5Sb)
where ’
N; = %exp(—v) f exp[—2TF 's — (y — )29
0
— (1 — 8)*8%1[exp(Bs/ ;) erfc(Ba/a,''?)
+ exp(Bs*/ay) erfc(Bafey/H)]ds, (B5c)
Ny = %(7"/0‘1)1/4 X exp[—y — y*¢*]
X exp(By*/ay) erfc(B3/a;'?),  (B5d)
D3 = Dy(y)Ds(31), (BSe)

Dy(y) = {fow exp[—2TF 's — 2(y — 5)°]

172
X exp(B,%/ay) erfC(ﬂz/al”z)dS} ,  (B5)

where
o) =a+ 8%

(B6a)

Br=3Tr' ~ (=9 fs=6—yb (B6bC)
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Ba=B——50 Bs=8— (0 — 5%
Also,

(B6d,e)

(YAp)) = (cbro)(w/etr) ”D(y). (B7)

In the calculations of (B5) and (B7), the integrations
over s are performed numerically.

APPENDIX C
Equations for Syy, S,y
‘a. <T2>y =0

The evaluation of (3.8), (3.9) and (3.10), with (3.5)
and (2.14), gives

3 {YTY¥} _N.
SYY(yL, w) = {}-,Y*}l/z{ly-.l}-,f}llz "H:, (Cla)
CoL {Y7¥} _Ne
Sf)'(J"L, w) - {Y)-,*} 1/2{1-_1:'-_?(}1/2 = D6 5 (Clb)
where
Ns = exp(—h)[exp(g*/d) erfc(g/d"?)
+ exp(g?/d) erfe(g/d'?)], (Clc)

Ns = [TF '(x/d)'"*]"/* exp(—h) exp(g?/d) erfc(g/d'?),

(C1d)
Ds = [exp(go’/d) erfc(go/d'?) _
-+ exp(§o’/d) erfe(§o/d"?)], (Cle)
Dg = Ds'7, (C1f)
and .
h=dy* — ey, (C2a)
g=3TF'+4& §=T7'—§ (C2bg)
§= % (—iw + 2dy; — e), (C2d)
8o = g(yL = 0)’ gO = é(yL = 0)} . (Cze)f)
with, from (3.5b,c), ’
Cd=(cHLH1 - N), e=ivhx. (C2gh)
Also,
- {YY*} _1 1/27—1
SR(w) LRI F] 2 (1r/d)‘ T-'Ds. (C3)
b. <12>y #*0

The evaluation of (3.8), (3.9) and (3.13), with (3.5)
and (2.19), gives

Syy(YL, w; ¥) = Ny/D4,  S,y(yr, w; y) = Ns/Ds,

(C4a,b)
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where
N; = exp(—h) f exp[—2TF 's — (y — 5)%8°
0

— (1 — 5)%0°][exp(g,?/d,) erfc(g,/d,"?)
+ exp(g,°/d,) erfc(§,/d,""?))ds, (C4c)

172
Ng = B (T/dl)l/z:l exp(—h — y%§?)

X exp(g2’/dy) erfc(gr/d,'?), (C4d)
D; = D;'2(3)D;' (), Ds = D;'(y), (Ce,f)

Dy(y) = fo ) exp[—2TF's — 2(y — 5)%%?]

X [exp(g %0/ d,) erfe(gio/d, 1/2)
+ exp(gio/d,) erfc(gio/d,))ds, (Cag)

where
d =d+ 8, (Csa)
§=8— (=9, &=§- -9 (CSho) -
80 =80L=0), £o=8&0L= 0). (Csde)

In the calculations of (C4), the integrations over s
are performed numerically.
Also,

-1
SR(@, ) = B <7r/d1)”2157(y)][§ T/ T exp(—2y262)] :

(C6)
APPENDIX D
Variations of L and A

Time-domain results obtained when L is varied to
L = 300 and 800 km are shown in Fig. 13. The Ryy

L = 800
¥ T I | 4
Ryy / 53737'//‘ 0 3
: C 4
3 = T
) T
— R 2
R,y ] 78\ B o &
] ) T

| | |

0 2 -4 =2 0 2 4
i y

FIG. 13. Ryy and R,y for (2.14), (4.1), and L = 300 and 800 km.

Contour interval 0.1. MaxR,y = 0.73, 0.82 for L = 300 km, 800
km, respectively.
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FIG. 14. Ryy and R,y for (2.14), (4.1), and A = £0.5. Contour

interval 0.1. MaxR,y = 0.75, 0.85 for A = +0.5, —0.5, respectively.

spatial correlation scale increases as L increases, as
would be expected. Also, a characteristic velocity ¢,
determined from Ryy using (¢,,., V1) increases as L
increases, reflecting the decrease in magnitude of
alongshore gradients and the approach of the motion
toward alongshore uniformity. The magnitude of
maxR,y is greater and occurs at larger |y, for
L = 800. As L increases, the decay time scale o'/
for R,, along the characteristic line y; = t; increases.
It may be shown from (B1) that, for '/ — oo and
fixed Tr, maxR,y ~ 1 and y;,m ~ —TF. The increase
of maxR,y shown in Fig. 13 for increasing L evidently
illustrates this tendency toward perfect correlation as
the space-time decay scale of R,, along the character-

L = 300 L = 800
T R ! \l\/\_i/ .l 4
P 03 —_—
Cyr _Qég‘ r—) -
—u.8% »
i g9 ¥ | | S T 0
4 t2. e o
Cy - —‘7’} - -2 s
— - N -

F1G. 15. Cyy, ¢y, and C,y for (2.14), (4.1), and L = 300 and
800 km. Contour intervals same as in Fig. 8.
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Cy

FiG. 16. Cyy, ¢y, and C,y for (2.14), (4.1), and A = £0.5. Contour
intervals same as in Fig. 8, except that long dashed lines in ¢y indicate
negative values decreasing from —2 with contour intervals of 1.

istic line y; = ¢; goes to infinity. At zero space lag, y;
=0, R,y and |t.,,| both increase as L increases.

The Ryy- and R,y-patterns that result when A is
varied to A = £0.5, corresponding to R,, in Figure 2,
are shown in Fig. 14. From Ryy, the spatial correlation
scale is greater with A = —0.5, i.e., with 7-fluctuations
propagating in the same direction as the free-wave
solutions of (2.2) and thus closer to resonant forcing
conditions. Also, Y-fluctuation velocities ¢,,, determined
using Y./t from Ryy are again larger than the free-
wave velocity ¢ for both values of A\, with those found
with A = —0.5 being considerably closer to c. The R, y-
patterns show that maxR,y and |y...| are greater for
A = —0.5, consistent with the trend found before with
variable L as a~'? increased. The A = —0.5 case of
northward propagating 7-fluctuations is the only one
of those studied here where R,y,, for any y;,, occurs
at a time lag that is not negative, i.e., occurs at
tr» > 0, which it does for y; > 0.8.

Frequency-domain results obtained for L = 300 and
800 km are shown in Fig. 15. The spatial coherence
scale from Cyy is substantially larger for o’ < 0.2 cpd
with L = 800 km. The coherence scale decreases as
w' increases past 0.2 cpd for L = 800 and past 0.5 cpd
for L = 300. These patterns are related to the Cyy
= 0 points and correspond to the fact that the frequency
wo 1n (5.1a) for C,y = 0 decreases as L increases, while
|yrol increases. The values of ¢y are greater than ¢, with
those for L = 800 km substantially larger than those
for L = 300 km. This is similar to the variation in ¢,
found above.

For low frequencies, the largest C,y are found for
L = 800 km at greater negative y; and with higher
values than for L = 300 km. Both of these results are
similar to those found for maxR,y. At the same time,
for L = 800 km the transition, as frequency increases,
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to locally driven flow, with highest C,y found near
yr = 0, occurs at w’ = 0.2 cpd. This is a much lower
transition frequency ‘than that inferred from Fig. 15
for L = 300 km, and is in agreement with (5.2). In
addition, as w increases, O,y (3. = 0) (not shown)
increases toward 90 deg much more rapidly with
L = 800 km. Plots of SR(w) (not shown) show a sub-
stantially steeper falloff for increasing w with larger L.

Results obtained with A = +0.5 are shown in Fig.
16. The coherence scale from Cyy is larger at al-
most all frequencies for A = —0.5. For A = 4+0.5, a
C.y = 0 point occurs at wp = 0.23 cpd and y;o = —3.2
and this is strongly reflected in the overall Cyy- and
Oy y-patterns. In fact, for A = +0.5 the values of ¢y

obtained for w’ > 0.25 cpd are negative, so that Y- -

fluctuations appear to propagate in the same southward
direction as the 7-fluctuations. When o' < 0.25 cpd,
however, c¢y is positive and larger than ¢. With A
= —(0.5, cy is always positive and i§ much closer to c,
ie, ¢ < ¢y < ldg, for all w and y;.

In the C,y-plots, the highest values for A = —0.5
are found for negative y;, i.e., y, < —1, over a wide
range of frequencies, 0 < ’ < 0.3 cpd. On the other
hand, for A = +0.5, the change, as ' increases, to
locally driven flow, with highest C,y found for y;
= 0, occurs at low frequency near v’ = 0.15 cpd. In
both instances, this behavior is consistent with (5.2).
The phase O,y (y, = 0), is much smaller for all w when
A = —0.5. For A = +0.5, O,y (y. = 0) =~ 90 deg for
' > 0.3 cpd. SR(w) shows a steeper falloff for increasing
w with A = +0.5.
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