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A GENERAL SOLUTION FOR ACTIVE AND
PASSIVE PRESSURES ON A VERTICAL PLANE

IN A SLOPING EARTH MASS O1 INFINITE LENGTH

INTRODUCTION

The first of two classical earth pressure theories

was advanced by Coulomb's sliding wedge analysis in 1773.

In 1860 R.ankine presented his theory of lateral earth

pressures which is based on conjugat. stress relationships

between th. vertical stress and the lateral pressure on a

vertical plane.

Rankino's original development considered a dry cohe

sionless material with either a horizontal or a sloping
surface. Rankine's work was analytical and was later

adapted to Mohr's stress circle for graphical solution.
B.11, in 19l, extended Rankine's work to include

dry cohesive soils by a graphic method of solution (1, p.

124-l0). This graphical solution made us. of Mohr's

stress circle but in an inconvenient manner.

This paper presents the analytical solution for

lateral pressures based on the Rankine assumptions. The

solution is general in that it includes cohesionless and
cohesive soils as well as horizontal or sloping surfaces.

The limitations imposed on the solution are that no seepage

pressures are acting in the slope and the plane of inves

tigation is vertical.



The graphical procedures which are being used for the
determination of lateral pressures are time consuming and
therefore to some extent are not desireabie. The solution

of the equation developed in this paper would also be tim.
consuming, however, charts are enclosed which greatly

simplify the operation.



REVIEW OF STRESSES ON A VERTICAL
PLANE IN AN INFINITE SLOPE

The Rankin. state of stress assumes that at failure

the soil i in a state of plastic equilibrium and the soil

will be deformed in a direction parallel to th. surface

such that two limiting stress conditions on a vertical

plane exist.

The first of these states comes into being when the

element ABCD in Figure 1(a) tends to deform by elongation

parallel to the surface as shown in Figure 1(b) and is

known as the active state of stress. The other state of

stress is approached as the soil tends to deform by short

ening parallel to the surface as shown in Figure 1(c) and

is known as the passive state of stress. With the vertical

stress on a plane parallel to the surface remaining con

stant, the active state of stress is the minimum stress

that will maintain equilibrium while the passive state of

stress is the maximum stress that will maintain equilibrium.

The element AB is chosen such that AB and CD are

parallel to EP, and AC and : are vertical. The selection

of the unit distanc. parallel to the surface is convenient

since the surface of the selected element will then have

unit area when considering a unit thickness normal to the

plane ABCD. The vertical stress, 5, acting on AB is then

equal to the weight above the element.



FIGURE 1
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The horizontal distance across the parallelopiped
thus formed will be equal to the cos as shown, and the

volume of the parallelopiped is ZcosP. The weight, W, as

well as the vertical stress on AB, will, thin be yZcoaO,
where is the unit weight of the soil.

This vertical stress, 3, is the vector sum of the two
components shown in either Figure 1(b) or 1

ponent normal to the surface of the elemen
equal to Scosfl while the tangential stress
to seine. Since S=W='ZcosO it follows that

and A'yZcosesin

c). The corn-

'AB

%B is equal

Aa=,'zcos2e



ADAPTATION TO MOHR'S CIRCLE OF STRESSES

When these stresses are plotted on Moh.r's coordinates,

Figure 2(a), it can be seen that the vector sum, 5, of the

two components 1A8 and tAB may be used directly when

measured along a line oriented identically to the slope.

The sIgn convention for Mohr's coordinates used in

his paper will be consistent with that used jn soil

mechanics where normal compressive stresses are positive

and counterclockwise shear stresses are positive.

Incorporating Mohr's rupture envelope with Figure 2(a)

yields the basic structure of Figure 2(b), where the angle

of friction, ç, and the unit cohesion, c, are the strength

characteristics of the soil.

The leaves of this envelope, UV and U'V', delineate

stress conditions of failure from those of stability. All

stress conditions representing failure would fall in the

crosshatched zone. When the normal and shear stresses on

a plane through an elemental volume are such that they

fall on the lines UV or U'V' the elemental volume of

material is In a state of plastic equilibrium and failure

of the material is imminent.

The stress conditions on all of the planes through the

elemental volume, normal to the plane ABGD, are expressed

by Moh.r's circle of stresses.



(b)
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8

he cases under consideration the stresses on the

plane parallel to the surface are known. If failure is

impending, the stress condition on one of the planes

through the element must be coincident with one of the

leaves of Mohr's rupture envelope. These two conditions

may be met, as well as the condition that the center of

the circle of stresses lies on the line of zero shear

stress, by the two circles of strssE shown in Figure 2(b).

Circle I represents the stresses in the element at

the active case of failure, while circle II represents the

stresses in the element during the passive case of failure.

Mohr's circl, of stresses, since its original pres-

entation in 1882, has been modified in many ways to

expedite its use. The use of this circle in this paper,

with the single angle and origin of planes modifications,
may bø outlined by the following steps:

Through the point of known stress condition

on Mohr's circle of stresses draw a line parallel to the

plane on which these stresses act.

The point where this line again intersects

the circle of stresses is the origin of all of the planes

normal to plane ABCD in the element, and is known as the

origin of planes or OP.

To find the stress condition on any other

plane through the elemental volume, construct a line
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hrough the origin of planes parallel to the plane on whIch
the stresses are desired.

(4) The point at which the line thus constructed
again intersects the circle of stresses is the stress
condition on the desired plane.

Applying these steps to circle I, Figure 2(b), the
active stress, A' on a vertical plane in the elemental
volume AD of Figure 1(a) may be determined as shown in

Figure 2(b).

By symmetry about th. line designating zero sh.a
see it is seen that the point representing the active
ess on the vertical plane lies at the intersection of

the circle of stresses and a line drawn through the origin
of coordinates, £nclined at an angle e from the line of
zero shear stress. The distance from the origin of coord-
natu to this intersection is identical to the distance
between the origin of coordinates and the origin of planes,
OP. A similar situation exists for the passive pressures,
pp, on a vertical plane as shown in Figure 2(b).

Thus the magnitudes of the active and passive pres-
sures on a vertical plane may be found by determining the
distance from the origin of coordinates to the respective
origin of planes.



THE ANALYT1CL DEVELOPMENT

Th solution of the problem is accomplished by solving
the unknown stress conditions (ciA, A' 1p and tp) in terms

of the known stress conditions (ci1 and i), the strength
characteristics of the soil ( and c), and the angle of the
slope measured from the horizontal (0). The interrelation-
ships are shown graphically in Figure 3.

It will suffic, to use the terms ci2 and 2 in place of

ciA, A' cip, and since a single derivation yields a quad
ratic equation giving both solutions.

The equation of the leaf of Mohr's rupture envelope
shown in Figure 3 is:

t-tan-c * 0
Since the radius of Mohr's circle of stress must be

normal to this leaf we may writ, the equations

10

which is the normal form of Equation (1) and is the
equation of all lines normal to the line given by
Equation (1).

To find th. length of the line between the rupture
envelop, and the point (ci0,) which ii perpendicular to
the rupture envelope, coordinates of the point (ci*ci0 and

ar. substituted in Equation (2) which gives
(4, p. 63):

(2)



FIGURE 3
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c1tnq, C

1+tan2q 4i+tan2

which is the radius of Mohr's circle of' stresses.
The equation of the stress circle is then:

{c0tan+c)2
(l+tanZ)

when and 'tw11tane the equation of the stress
circle i

2
(0tan+c)2

jtan0) - 'F:.(1+tan)
ion (5) iay be written in the forms

0

a02(l+tan2 )-(c0tanp+c)2'*0
(li-tan20)(1+tan2)

The sum of the roots of a quadratic equation in is
equal to the coefficient of cri, with its sign changed,
divided by the coefficient of (5, p. 130) on

2c

(l+tan2O)

Equation (5) may also be written in the form:
2a1-21tan2-2ctan)ci0

1+tan2cp+tan20+tan2ptan20)-c2) 0

12

Solving for in Equation (8) using the quadratic formulas



(2cr1+2e1 tan2p2ctanq)
2

4

Substituting th. value of from Equation (9) Into
Equation (7) and solving for c2 gives:

(2i1+2ir1tan2p+2ctanp)

(1+tan2O)

As'

2c1jtan2cp 2ctan

(l+tan2e)2

+tan2ê)2

Equation (10) may be reduced to:

1(l+2tan2p-tan20) + 2ctancp
-

(l+tan20)

2
(l+tan2,)[q2(tan2,-tan2e)+2cijctan

(l+tan2O)2

From Figure 2(a) it can be seen that l=Tzcos2e,

substituting this value in Equation (11):

(10)

C .*2t1itar4r2ctar
4



yZcos

2cyZcos 2Otancp+c2]

(l+tan28)2

Since (1+tan2O)1cos2O and simplyfing Equation (12):

cos2e[2yZcos2e(l+tan2p)+2ctanyZ) *

2cos2E(1+tan2q,)tyZcos2e(yZcos2e

(1+tan2p)+2ctanp-.z1+c2T

which is the normal stress on a vertical plane. In order

to obtain the resultant stress, p, th. normal stress, ,

is divided by cosex

p = co5e[2.zcos2e(1+tan2,)+2ctanp-?Z] ±

2cosO j( ltan2)[yZcos2G(yZcos28

+ 2t

(1

n2q-tan2O)+2ctan

tan2e)

(l+tan2)+2ctan-yZ)+c2) (14)

which is the general equation for the active and passive

pressures on a vertical plane in a sloping earth mass.
The smaller magnitude, using the minus sign of the quadratic

solution, yields the active stress,
A' whil, the larger

magnitude, using the plus sign, gives the passive stress,
Pp.

Letting: G cosOf2yZcos26(1+tan2p)+2ctanp-yZ]

and 7 2coseJ(l+tan2,)fyZcos28(Zcos

(l+tan2)+2ctanp-yZ3+c2)

14

C .2)
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the general equations for active and passive pressures
may be writtens

PAG3 (15)

andpG+J (16)



CWRT SOLUTIONS OF
THE GENERAL EQUATION

Since a solution of the general equation each time a
es is desired would be a rather arduous task, charts

enclosed which greatly simplify this operation.

If both sides of Equation (i4) are divided by the unit

cohesion, c, all, terms are dimensionless quantities. Two

dimensionless parameters containing four of the six var-

iables are useful in the construction of the charts. They

are c/yZ which is set equal to N and p/c which is set equal.

to K. Substituting K and N in Equation (14) gives:

cos9[4cos2O(l+tan2)+2tan
+

16

(17)

Equation (17) was programmed on an IBM 650 computer

and sufficient values of K were determined to construct

the charts shown in Figures 4 through 21.

Figures 4 through 12 ar. for K, or the active coef-

ficient, and Figures 13 through 21 give values for Kp, the

passive coefficient.

The limits of N were arrived at by setting arbitrary

limits on the parameters of which N is a function. It was

originally assumed that the unit weight could vary from 20
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pounds per cubic foot, the submerged condition, to 130

pounds per cubic foot for the dy dense condition; the unit
cohesion, c, would vary from zero, cohesionless soils, to
3,000 pounds per square foot; and Z from one foot to fifty
feet. The minimui and maximum values of N ar. then zero

and 150 respectively.

It was found from the computed data that the values
of K were very insensitive with N values greater than ten,
therefore the charts were not produced beyond this value.
Since K varied so rapidly, it appeared impractical, due to
space limitations, to extend the curves below an N value
of one.tenth.

Example Chart Solution:

Given: c=2,500 pounds per square foot, io°,
l00 pounds per cubic foot, and 020°.

Required: The passive pressure on a vertical
plane 10 feet below the surface.

The applicable chart is shown in Figure 15 which
is for Xp and ql0°.
N - c/Z 2,500/(lOO)(lO) 2.5

The value of Kp corresponding to N2.5 and
$O is 2.67.
Since Kpp/c, then pp=cKp(2,500)(2.67)=6,675
pounds per square foot.
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DISCUSSION

It has been found in field measurements that the

Rankine state of stress is of greater magnitude than the

stress developed in actual field conditions when used in

retaining wall design in cohesionless materials. in the

case of clay soils where soil creep is involved it is

doubtful that the developed stresses are as low as the

Rankine assumptions indicate. It should not be construed

that this paper advocates the Use of the Rankino stress

condition over those solutions involving more rational

assumptions.

It is believed, however, that the simple chart solu

tion would be beneficial in expediting preliminary esti

mates. It is also conceivable that this solution could

be used economically in the design of small retaining

walls (i.e. perhaps less than twenty feet in height) where

in som. cases the cost of a more detailed design procedure

would exceed the savings in materials (2, p. 242).

The general solution presented in this paper may be

reduced to the following three particular solutions a

indicateds

) Cohesionless soil, horizontal surface:

Equation (17) let the unit cohesion, c, and the angle of

slop., e, equal zero. The equation then reduces to:



Pp *

l-sin

Pp 1+siap

which agrees with the equation developed by Rankin. (3,

P. 236).

Cohesionless soil, sloping surface: In

Equation (17) let the unit cohesion, c, equal zero. The

equation then reduces to:

PA ZcosO cos8-Jcos28-cos2!

l-sin
l+sin

(1+sin) + 2c111+sin,
(i.sinp) 'V l-sincp

37

rZcose Pp

which agrees with Rankine's work (6, p. 424).

Cohesive soil, horizontal surface: In

Equation (17) let the angle of slope, e, equal zero. The

equation then reduces to:

and

hich agree with existing equations (7, p. 38)

There are a number of limiting or boundary conditions

hich also merit discussion, these were used as aids in

programming and checking computer operations and are:

(a) When the unit cohesion, c, is zero and the

slope angle, 0, exceeds the angle of internal friction, ,,

Equation (17) becomes complex since th. quantity under the

radical sign becomes negative. The physical significance



of this is that a cohesionless soil will not stand a

slope exceeding its angle of internal friction.

When the unit cohesion, c, is greater than

zero the active stress, A' will be zero at some depth,

which shall be called the tension depth. Above the tension

depth the soil will increase in tensile stress to a maxi-

mum at the surface. From the surface to the tension depth

the soil will stand vertically unsupported. Below the

tension depth the activø stress increases in magnitude in

a compressive sense. At the tension depth, since the

tive pressure is zero, G must equal J in Equation (lb).

Equating these quantitXes and solving for N*

tsnsion depth = cos/2(l+sin)

When the unit cohesion, C, is greater than

zero and the slope angle, 6, is greater than the angle of

internal friction, p, the tension depth again exists in

the slope. In addition to this there is a depth where on

Mohr's coordinates the line representing the slope inter-

sects a leaf of the rupture envelope. The depth corre-

sponding to this intersection is known as the critical

depth. The critical depth is the maximum depth of the

soil on the slope without failure. At depths greater than

the critical depth the three conditions placed on Mohr's

circle of stresses cannot be satisfi*d, therefore the

equation becomes complex and the quantity under the radi
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becomes negative. At the critical depth the quantity under

th. radical is zero ands

1critica1 depth (tan8-tan)cos

If the quantity inside the radical is zero it follows that

J in Equations (13) nd (16) is zero, and that at the
critical depth the active pressure equals the passive pres

sure. For this case it should be noted also that the

passive stress reaches its maximum value at some depth less

than the critical depth. This maximum value could be

determined by setting the first derivative of equation (16)

equal to zero.

In ensuing extensions of Rankine's work the plane of

stress investigation could be considered a variable in

addition to the five independant variables treated in this

paper.

Another possible area of investigation is to develop

an equation which would express the total thrust which is

the area of the compressive portion of the pressure

diagram. This could be accomplished by integrating

Equation (17) between the limits of the tension depth and

the desired depth.

Still other possibilities are the incorporation of

steady state fluid flow parallel to the surface and the

inclusjo of a friction value betweøn th. soil and the

back of a retaining structure.
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