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SUMMARY

This paper presents some of the basic theories of flexure, particularly as
applied to sandwich constructions. Consideration of various methods of applying
loads and a theoretical analysis of a particular type of loading resulted in
the conclusion that measurenents of stiffness and strength may best be obtained
by testing under two-point loading, preferably at two quarter-span points. A
formula is presented for de.:.ermining the approximate span, so that shear deflec-
tions can be easily measured. Flexural strength, the nonelastic flexure of
sandwich construction, and the clamping of sandwich constructions are discussed
briefly.

Introduction

Flexure testing of a material was perhaps one of the earliest means of evalua-
ting stiffness and strength. Observations on the bending behavior of different
woods probably aided primitive man in selecting the proper stone-ax handle or
bow and arrow. This type of "hand" testing is usually conducted by anyone who
is handed a piece of material to inspect. The tester advances comments con-
cerning the material's amazing stiffness and strength, if appropriate, or per-
haps a comment as to how poorly the material behaves. Uses for the material are
often suggested if it appears to be unusually stiff and strong, or, if the
material is weak, it may be hinted that there is no possible application.

The result of the "hand" . testing must be properly interpreted. The ultimate use
of the material and the performance requirements-ofthe finished product must
be carefully considered. A string or wire will fail to meet the lowest flexure
requirements, but both find wide use as tensile structural elements. Often the

–Presented at a meeting of American Society for Testing Materials Committee
C-19, on structural sandwich construction, in Washington, D. C. October
22, 1951.

?Maintained at Madison, Wis., in cooperation with the University of Wisconsin.
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shape of the finished product contributes more to successful performance than
the material itself. For example, thin, flexible sheets of steel are now being
used for more or less acceptable automobile bodies.

The invention of testing machines has provided means for obtaining more
quantitative information concerning materials than can be obtained by "hand"
testing. These machines and all of their modern, automatic gadgets, however,
must be used with caution in order to arrive at sensible conclusions concern-
ing the behavior of a material.

Possibly, the salient question to be considered before performing a test is
"What is to be evaluated?" It certainly would not be helpful to determine the
tensile strength of concrete that is to be used in compression. It may be
feasible, however, to conduct quality-control tests in tension rather than in
Compression. Similarly, for most materials, it is not necessary to conduct
flexure tests in determining mechanical properties, although it may be feasible
to conduct quality-control tests in flexure. Flexure tests may be, in fact,
exactly what is needed to evaluatd the adequacy of constructions.

Testing, therefore, is somewhat divided into two parts, quality-control tests
and evaluation of mechanical properties. The principal concern of this paper
is the evaluation of mechanical properties.

The Flexure Test

By means of the flexure test, loads can be applied to the test specimen to
produce_censtant or variable bending moments and constant or variable shears.
Conditioas at the'reactions can be clamped or simply supported. The actual
type of loading and support should be considered in view of what information
is to be obtained.

Uniformly distributed loads can be experimentally applied by various ways, but
these are usually costly and time-consuming.

Clamping of the ends of a beam or the edge of a panel is never accomplished
successfully by empirical means. It can be shown, however, that the effective
experimental clamping can be empirically determined for use in calculating
maximum bending moments and shears.

The method remaining is the use of concentrated loads to produce. constant shears
and constant or variable bending moments in a specimen' simply supported at the
reactions.

The simplest load to apply is a single, concentrated load applied at midspan.
This center loading produces stress concentrations at the load point of twice
the magnitude of corresponding stress concentrations at the reactions. The
point of maximum moment is at the load point, Thus, if the material is not
homogeneous, a weak spot near the reactions would not be discovered by testing
under a single load., In sandWich constructions particularly, the stress at
which a facing wrinkle appears is mostly a guess, because the facing is held to
the core at the point of maximum moment.
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The load may also be applied through two points, preferably symmetrically
placed with reference to the midspan point for simplicity. The use of two-
point loading produces constant bending moments in the portion of the specimen
between the loads and constant shears in the portions outside the loads. Thus,
within the central section, more of the material is stressed to the same amount
in two-point loading than in center loading, and failure due to moments will
begin at the weakest point. Stress concentrations still exist at the load
points, but they are one-half the magnitude of those applied with a single load
and are equal to concentrations at the reactions.

How are the load points to be spaced? The ultimate use of many constructions
is to withstand uniformly distributed loads. If the loads are applied at two
quarter-span points, the greatest moments and shears produced will-be equal to
those applied by uniformly distributed loads. Therefore, the best method, of
loading in a flexure test is to apply two concentrated loads at the quarter-
span points on a beam simply supported at the reactions.

Theoretical Considerations 

From the test data of a beam, the stiffness and strength will undoubtedly be
computed. For most materials, the beam deflection depends mainly upon the
modulus of elasticity of the material. There is always some additional deflec-
tion due to shear, but this is usually so small that it is neglected. For
sandwich constructions, however, the core material has a relatively low shear
modulus, and the beam may deflect a considerable amount because of shear defor-
mations. This low shear modulus of the core will also decrease the buckling
loads of plates and shells. Since neglect of proper consideration of the shear
modulus of the core may lead to unconservative prediction of deflections or
critical loads, it is essential that the modulus be determined in order that its
effect may be taken into account.

One way to determine the shear modulus of a core of structural sandwich construc-
tion is by means of a flexure test under two-point loading. The two-point
loading allows the central portion of the beam to bend under constant moment
without shear, and, therefore, the stiffness of the sandwich construction with
no shear deflection may also be obtained by proper measurement of deflections.
The span of the test specimen should be chosen so that deflections due to shear
are sizeable as compared to bending deflections. The following discussion and
derivation give the formulas for analyzing the test data for a sandwich beam
simply supported at the reactions and loaded at two quarter-span points

The beam is assumed to be loaded with a total load, P, equally applied at two
quarter-span points, each spaced a distance, 	 , from the reactions on a total
span, a.

The general expression for the curvature of a beam, assuming positive deflections
downward and the axis origin at the left reaction (x positive to the right), is
given by3

3--
-Timoshenko, S. Strength of Materials, Part I. New York. 1940.
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2	 M	 Vsu = x 4. 	 x)
D	 dx

dx
2

where y = deflection (measured positive downward)
x = distance from left reaction

M = bending moment (positive bending produces, positive curvature)
X 
D = bending stiffness of beam

Vx
 = shear load (shear is positive if the force on the positive side of

an elemental beam length is in the positive z direction)
N = shear rigidity of beam

The deflection is determined by solving formula (1). As usual, the beam is
considered in its several parts:

Section 1, from x = 0 to x—= a/4,

Px
Mxl = 2	 7x1 =

thenand 2y) = Px 1 (dVx)

dx2
1	

2D N dx

Px2_

	

	 P
4-55+-01-+Cl

Px3	 + C ix + C2
Y1 = - 12D 2n

When x = 0, y = 0. Therefore, C 2 = 0

Px3 Px
Y1 = 12D 	 clx

Section 2, from x = a/4 to x = 3a/4,

where

and then

M = Pa	 Vx2 . 0x2 87- 

(d2y, \, _ Pa

2
— 8D

6-.2( ) 2

- Pax + c3

/ 2

where

and

(1)
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When x = a/2, tif = 0. Therefore, Pa2
16D

Paxand dy 	+
dx / 2	 toD	 loD

Pax2 Pa2x
Y2 =	 I6]5 	 4

The constants C1 and Cit are found by conditions at x = a/4. At this point, the

slope due to bending is the same in section 1 as in section 2. Therefore,

(2z Vx)

dx N
1 V)N 2

from which

SlY _	 =
dx 3. 2N	 dx 2

Then

from which

Therefore,

Pa2 PP -	 Pa2 Pa2
-a-T) + ET + '1 - 2N = 32D 16D

C,	 2.f.aZ
1 64D

Px2 P	 3Pa2
= 4-15- 2N 1- NE-

Px3 Px
Y1 -- 12D +2N

3pa2x

64D

Also, at x = a/4, yl y2

Ra 3 Pa 3Pa3	Pa3 Pa3
768D 8N 4. 256D	 256E	 +--

and C
4

= _ Pa3	 Pa
768D 83

Then

Therefore,

Y2
Pax2 Pa2x Pa3 	Pa
16D + Ef7  7-6E7.5

Finally, the deflections of most interest, those at the load points (x =) and

at midspan (x = -;), are given,by
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Pa3 Pa
Ya/4 "g6f 8N

llPa3 Pa
Ya/2 - 768D 4- IN

If the deflection at the quarter-span point (formula 2) is subtracted from the
midspan deflection (formula 3), it is seen that the deflection of the central
portion of the beam is caused by bending only, with no shear deflection. Then

3Pa3
Ya/2 Ya/4 - 768D

The midspan deflection due to bending alone is therefore 11/3 of the deflection
of the central portion of the beam.

From the previous derivation, the deflection due to shear may be obtained by
measuring midspan and load-point deflections. Subtraction of the load-point
deflection from the midspan deflection yields the bending deflection of the
central portion of the beam. Multiplying this by 11/3 and subtracting from
the midspan deflection yields the shear deflection. Thus,

Pa	 11
= Ya/2	 (Ya/2 Ya/1)

which reduces to Pa 1
m =	 - 8ya/2)

From the last equation, the shear rigidity, N, is given by

3FaN -
8(11y

a/4
 - 8y

a/2
)

If only shear rigidity is to be determined, a mechanical device that automatic-
ally measures the bending deflection of the central portion of the beam,
multiplies this deflection by 11/3, and subtracts the result from the total
midspan deflection can be used to obtain the shear deflection directly during
the test.

The bending stiffness may be computed from the bending deflection of the central
portion of the beam by

3Pa3 
D 768(ya/2	

a/4)

(5)

(6)
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EF(h3 - c3)b
D = 	

12AF
3(12 fl)

2

1-
(1 +	 + 12)(f, + f, )

2

h c e

(8)

In order to obtain the shear deflection, it is necessary to subtract the bending
deflection from the total deflection. If the specimen is too long, the shear
deflection may be reduced to an imperceptible quantity. The span should be
chosen so that the shear deflection at the load point is approximately 40 per-
cent of the total deflection, thereby rendering test errors of small consequence.
The span may be estimated by the following process: The load-point deflection
is given by formula (2):

Pa3 PaY 	 "'""'"a/4 99D 8N

The shear deflection, Pa is to be 4/10 of the total deflection; therefore,
8N

10Pathe total deflection is to be 10	
32N

/4 of the shear deflection, or	 . Substi-

tutng this value in formula (2) gives:

10Pa PO Pa
32N -	 N

or
	

&pa Pa3
32W - 96D

Therefore,

or

2 18D
a = -H-

ry-
a = 3 2D

N (7)

Formula (7) can be used to obtain the approximate span on which the sandwich
beam should be tested. The bending stiffness, D, can usually be computed with
sufficient accuracy if the properties of the facings are known. If it is assumed
that the core does not contribute to the stiffness of the sandwich construction
(EF/E

c
;> 100, where EF and Ec are moduli of elasticity of the facing and core,

respectively), the bending stiffness is given byli

where EF = modulus of elasticity of facing
h = total thickness of sandwich construction
c = thickness of core
b = width of sandwich construction
F = 0.91 for isotropic facings and 0.99 for orthotropic facings

f1,2 = thicknesses of facings

March, H. W. and Smith, C. B. Flexural Rigidity of a Rectangular Strip of
Sandwich Construction. Forest Products Laboratory Report No. 1505. March
1949.
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(10)

(u)

The appearance of/NF in formula (8) has been partially verified by test. A

wide plate of sandwich construction was tested in bending. Strain gages, which
measured strains at right angles to the span and,at points across the width of
the specimen, showed that the strain was nearly zero at the center of the width
and was a sizeable value at the edges. Therefore, the ;, F, must be used to

describe correctly the deflection of the plate. Subsequent testing of narrower
and narrower strips cut from the plate showed no change in stiffness for widths
as small as 1 inch; therefore, the X F must also be used for narrow strips of
sandwich construction.

The shear rigidity, N, of the sandwich construction is given by2

N -	 G(h + c)b
2
	 (9)

where Gc = shear modulus of the core material.

Values of D and N can be computed and substituted in formula (7) to obtain the

possible to make some simplifying approximations of the bending-stiffness for-
span. The span, however, is not to be determined with great accuracy, and it is

mula. Formnla (8) for the bending stiffness can be approximated by

chb(f1 f2)Ep
DR4

if
	 1	 > 0.5 and cih >	 .fl

2

If it is also assumed that c h, formula (7) then becomes:

a = 3c 

i 

(f1 + f2) EF

\ 
2c Gc

Values of the shear modulus, G c , may have to be estimated, but, since the span
depends on the square root of the estimate, the error of the estimate may not
be great.

After the span is determined by formula (11), the sandwich construction is
tested, and the appropriate deflections are measured. The shear modulus of the
core material is computed from the test data using the formula

Gc	 5Pa
 4(h 4- c)1) (Ilya/4 - 8ya/2)

	 (12)

2Forest Products Laboratory. Sandwich Construction for Aircraft, Part II. ANC-
23 Bulletin, p. 39, par. 3.13. May 1951. Published by the Munitions Board.
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If the shear deflections are measured directly (by proper instrumentation),
shear modulus of the core is given by

	

G _ 	 Pa 
4(h + c)bys

where y = measured shear deflection.

Flexural Strength

The flexure test provides data from which the bending stiffness of the sandwich
construction and the shear modulus of its core can be obtained. By continuing
the test to failure, the flexural strength can also be measured.

A sandwich construction will fail in the facings by facing compression, tension,
or wrinkling, or in the core by shear. Whether the construction fails in the
facings or core depends on the relative moments and shears induced by the
applied loads.

Experience with materials now available shows that loading at two quarter-span
points will usually cause core failures if the sandwich has high-strength
facings, such as are used for aircraft constructions. Facing failures will
occur if the sandwich has low-strength facings, such as have been used for
house constructions. Therefore, it is possible to continue the flexure test
under quarter-point loading to produce core failure at a shear stress,
given by

2V

	

c	 (h +	 c)b

where V = shear load, or a facing failure at a stress, an.„ , given by
-°1 2

2cr	 2M
F1,2 fl 2 (h + c)b

where M = bending moment.

For large deflections, the bending moment should be increased by the amount

ar tan 0

	

2	 •

where y = midspan deflection
= slope of beam at reaction

The slope at the reaction can be roughly determined by fastening a protractor
to the tilting reaction plate.

(13)

(15)
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The test specimen of sandwich construction should be proportioned so that
failures occur where desired. For example, if the shear modulus and shear
strength of the core are to be determined, -the sandwich construction would be
loaded in flexure at two quarter-span points. The facings and core should then
be thick enough so that the facings will not fail at a load less than that
estimated to cause the core to fail. If the same sandwich construction is to
be tested to determine the stress at which the facings fail, the load points
can be placed closer together than at quarter-span points, thus increasing the
bending moment and also increasing the shear area of the core.

Facings of sandwich constructions having honeycomb cores have been found to
fail at stresses that cause dimpling of the facing into the honeycomb-core
cells.§. The stress at which dimpling occurs, TF ' is given by/.

1
3/2 -

65'1 = 3 ,R

4EET
where ER = reduced facing modulus 

	

_
\li + ET

ET = tangent modulus
E = Young's modulus

fl = thickness of compression facing
R = radius of circle inscribed in core cell.

Past experience has shown that rarely does a tension facing fail unless the
tension facing is thinner or of a different material than the compression facing.
Tension facings fail at the tensile strength of the facing material.

Nonelastic Flexure of Sandwich Construction

Sandwich construction presents a material that is unique in its performance in
flexure in that the load-carrying material is sensibly concentrated at its outer
surfaces. Therefore, an analysis of behavior above proportional-limit stresses
need include the variation of modulus of elasticity as affected only by changing
moment along the span of the beam, not by distance from the beam's neutral axis.

This type of analysis was successfully applied to the deflection of aluminum-
faced constructions having facings of equal or unequal thickness. The results
of the analysis enabled the plotting of a load-deflection curve from the begin-
ning of the test until failure. The curves obtained for the specimens tested
agreed fairly well with the load-deflection curve obtained by actual measurements.

Cuenzi, E. W. Edgewise Compressive Strength of Panels and Flatwise Flexural
Strengths of Strips of Sandwich Constructions. Forest Products Laboratory
Report No. 1827. May 1951.

Ifforris, C. B. and Kommers, W. J. Short-column Compressive Strength of Sand-
wich Constructions as Affected by the Size of the Cells of Honeycomb-core
Materials. Forest Products Laboratory Report No. 1817. August 1950.

(16)
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The analysis is outlined briefly as follows: The usual expression for curvature
of the beam in terms of the moments is written with the stiffness expressed in
terms of the modulus of elasticity of each facing. The tangent modulus of each
facing is then written as a function of the stress. This function is determined
empirically from stress-strain curves for the facing material. The expressions
for the tangent moduli are substituted for the appropriate facing moduli in the
expression for curvature and the facing stresses expressed in terms of the
moments. The curvature expression is then integrated for the particular type
of loading under consideration.

Deflections due to shear deformations in the sandwich core and the effect of
exceeding the proportional-limit stress of the core in shear can also be
included in the analysis.

The analysis showed that, if a sandwich construction having unequal facings of
aluminum is loaded to failure in flexure, the deflection is much larger and the
load "hangs on" much longer if the construction is loaded so that the thin
facing is in tension rather than in compression.

Clamping of Sandwich Constructions 

It may be desired to determine the behavior of a sandwich plate or beam having
the edges clamped as they would be in actual use. The theoretical condition
of perfect clamping can never be attained. The flexure-test results can be
analyzed, however, by determining an effective experimental clamping constant
and using this constant to compute the maximum moments and shears.

The procedure is to multiply the theoretical clamped moment by the experimental
clamping constant,. Using this product of the constant and the theoretical
clamped moment, the usual expressions for moments and shears are written, and
the deflections determined. All the expressions will be in terms of the con-
stant. The constant can be determined by comparing the experimental deflections
with the theoretical deflections for simply supported and clamped end conditions.
Thus, the constant is determined experimentally from the deflections, and the
maximum moments and shears can then be computed. The constant is independent
of shear deflections of the sandwich construction and the shear deflections
are the same for both simply supported and clamped end conditions. For some
radome constructions that were tested, the effective clamping was 40 to 70
percent. As the stiffness of the sandwich construction increased, the effective
clamping decreased.

Conclusion

This discussion of the flexure test, theoretical considerations, flexural
strengths, nonelastic flexure, and clamping of sandwich constructions attempts
to dispel some of the misconceptions concerning the flexural behavior of sana-
wich constructions. Undoubtedly, exception can be taken to some of the basic
ideas if they are applied blindly to describe the behavior of some extremely
special constructions. The discussion, however, was not intended to cover com-
pletely the field of sandwich flexure. It should be remembered that testing
should only be attempted after careful consideration of what is being evaluated,
rather than merely for the sake of testing.
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