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The effect of non-zero, but small, viscosity and diffusivity on the marginal stability
of a stably stratified shear flow is examined by making perturbations around the
neutral solution for an inviscid and non-diffusive flow. The results apply to turbulent
flows in which horizontal and vertical turbulent transports of momentum and buoyancy
are represented by eddy coefficients of viscosity and diffusivity that vary in the
vertical (z) direction. General expressions are derived for the modified phase speed
and the growth rate of small disturbances as a function of wavenumber. To first
order in their coefficients, the effect on the phase speed of adding viscosity and
diffusivity is zero. Growth rates are found for two mean flows when the horizontal
or vertical coefficients of viscosity and diffusivity vary in z in such a way that the
rates can be found analytically. The first flow, denoted as a ‘Holmboe flow’, has a
velocity and density interface: the mean horizontal velocity and the density are both
proportional to tanh az, where a is proportional to the inverse of the interface thickness.
The second, ‘Drazin flow’, has a similar velocity variation in z but uniform density
gradient. The analytical results compare favourably with numerical calculations. Small
horizontal coefficients of viscosity and diffusivity may affect disturbances to the flow
in opposite ways. Although the effect of uniform vertical coefficients of viscosity is to
decrease the growth rates, and uniform vertical coefficients of diffusivity increase them,
cases are found in which, with suitably chosen z dependence, vertical coefficients of
viscosity (or diffusivity) may cause a previously neutral disturbance to grow (or to
diminish); viscosity may destabilize a stably stratified shear flow. The introduction of
viscosity and diffusivity may consequently increase the critical Richardson number to
a value exceeding 1/4. While some patterns of behaviour are apparent, no simple rule
appears to hold about whether flows that are neutral in the absence of these effects
(viscosity or diffusivity) will be stabilized or destabilized when they are added. One
such rule, namely our conjecture that viscosity is always stabilizing and that diffusivity
is destabilizing, is explicitly refuted.
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1. Introduction
Naturally occurring flows are generally turbulent with transfers of momentum and

buoyancy (often in the form of heat) that are non-zero. These turbulent transfers,
represented by vertical and horizontal eddy coefficients of viscosity and diffusivity,
have been used by Liu, Thorpe & Smyth (2012) in the equations of motion and
density conservation to examine the effect of turbulence on the stability of stably
stratified flows, with application to those measured in the estuary of the River Clyde
in western Scotland. In that study, equality of the vertical coefficients of viscosity,
AV(z), and diffusivity, KV(z), is assumed. The coefficient KV(z), a function only of the
vertically upwards coordinate, z, is determined from time-averaged available data using
the Osborn (1980) formula, KV = γ e/N2, where e is the rate of dissipation of turbulent
kinetic energy per unit mass, N is the buoyancy frequency and γ is a constant equal to
∼0.2. Both e and N usually vary with z, and therefore so do the two eddy coefficients.
Cases are examined which also include horizontal eddy coefficients, AH(z) and KH(z).
More recently, the method has provided explanations of both the diurnal mixing cycle
and the deep cycle of turbulence in the upper Equatorial Pacific (Smyth et al. 2014).
There is consequently interest in determining the general effects of viscosity and
diffusion parameters that depend on z on the stability of stably stratified shear flows.
Although the analysis described below will apply to the effects of molecular viscosity
and diffusivity as well as to turbulence, for simplicity we adopt the commonly used
symbols of the turbulent eddy coefficients rather than those of the molecular properties
(e.g. we use AV and AH rather than ν for kinematic viscosity). How well turbulence
may be represented by such eddy coefficients is not addressed here.

Our objective is to determine how, with values of wavenumber k and minimum
Richardson number J fixed to be those on the neutral curve of an inviscid and non-
diffusive flow, the addition of small viscosity or diffusivity affects the phase speed and
growth rate of small disturbances. This involves an examination of the local structure
of the neutral surface, not only in k and J space, but in a space that also includes
viscosity and diffusion parameters.

Section 2 describes the perturbation of the neutral solution of a steady stratified
horizontal shear flow, U(z), using a small ordering parameter, δ, to characterize the
magnitude of the viscosity and diffusivity coefficients. The results are applied § 3 to
two particular flows.

The first, denoted for simplicity as the ‘Holmboe flow’, is

U(z)= U0 tanh az and N2(z)= N2
0 sech2az, (1.1)

representing the flow with an interface of thickness ∼2a−1 at z = 0, where N2 =
−(g/ρ0) dρ/dz implies a density variation, ρ, like the horizontal velocity, proportional
to tanh az. The neutral curve, J = Jc(k), on which small periodic disturbances of
wavenumber k have zero growth rate, is given by

Jc = κ(1− κ), 0 6 κ 6 1, (1.2)

where κ = k/a is the non-dimensional wavenumber. Flows with Jc < 1/4, the
maximum value of Jc in (1.2) found at κ = 1/2, are unstable for small disturbances
within a finite band around κ = 1/2. (According to Miles 1961; Hazel 1972 the neutral
curve is first given in UCLA lecture notes by Holmboe in 1960.) Smyth, Moum
& Nash (2011) find that tanh profiles of U and ρ are useful in the analysis of
equatorial flows. The Holmboe flow is also used in a numerical analysis (including
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non-uniform AV and KV) of the diurnal cycle of shear instability in the upper
Equatorial Pacific by Smyth et al. (2014).

The second flow, the ‘Drazin flow’,

U(z)= U0 tanh az and N2(z)= N2
0 , a constant, (1.3)

first studied by Drazin (1958), provides results that may usefully be compared to those
using the ‘Holmboe flow’. The neutral curve is given by

Jc = κ2(1− κ2), 0 6 κ 6 1. (1.4)

Flows with Jc < 1/4, the maximum value of Jc in (1.4) found at κ2 = 1/2 (κ ≈ 0.707),
are unstable to small disturbances.

Preliminary results described by Smyth et al. (2014) using the numerical method
of Liu et al. (2012) find that a non-zero but constant AV , and zero KV , AH and KH ,
results in a reduction in the growth rates of unstable modes as expected because of
the viscous dissipation of disturbance energy. However a constant KV with zero AV , AH

and KH , has the opposite effect, increasing the growth rates. A reduction of growth
rates found when Pr = AV/KV = 1 (and also when Pr = 0.72; Maslowe & Thompson
1971) suggests that at moderate and large Pr the stabilizing effect of viscosity
dominates over the destabilizing effect of non-zero diffusivity. The present authors
conjectured that viscosity might always be stabilizing and diffusivity destabilizing. By
examining viscosity and diffusivity coefficients that vary in z it is shown here that
this conjecture is false. Growth rates of small disturbances to the Holmboe and Drazin
flows are found analytically in § 3 and confirmed numerically in § 4. The examples of
§§ 3 and 4 are used in § 5 to test the conjectures about the general effects of small
viscosity and diffusivity, particularly how the critical Richardson number is changed.

2. Analysis
Following Liu et al. (2012), it is supposed that the temporal rates of change of a

horizontal unidirectional mean shear flow, U, and its buoyancy frequency, N, resulting
from the effects of viscosity or diffusivity, are very small compared to the rates of
growth or decay of small disturbances. (The validity of this assumption is considered
in § C.1.) Assuming a two-dimensional perturbation to the mean flow with stream
function, ψ , and density, ρ, the Boussinesq equation for vorticity becomes(

∂

∂t
+ U

∂

∂x

)
∇2ψ − U′′

∂ψ

∂x
+J (∇2ψ)= g

ρ0

∂ρ

∂x
+ AH

∂2

∂x2
∇2ψ + A′H

∂3ψ

∂x2∂z

+AV
∂2

∂z2
∇2ψ + A′V

(
∂2

∂x2
+ 2

∂2

∂z2

)
∂ψ

∂z
+ A′′V

∂2ψ

∂z2
, (2.1)

and density conservation implies(
∂

∂t
+ U

∂

∂x

)
ρ + ρ0N2

g

∂ψ

∂x
+J (ρ)= KH

∂2ρ

∂x2
+ KV

∂2ρ

∂z2
+ K ′V

∂ρ

∂z
, (2.2)

where J is the Jacobean operator (∂ψ/∂z)∂/∂x − (∂ψ/∂x)∂/∂z, g is the acceleration
due to gravity and ρ0 is the overall mean density. The prime indicates total
differentiation with respect to z (e.g. U′′ ≡ d2U/dz2, A′V ≡ dAV/dz). Excepting the
nonlinear (J ) terms and the use of density rather than buoyancy, these equations are
as given by Liu et al. Extension to three-dimensional flows is straightforward.
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It is supposed that the viscosity and diffusion coefficients are functions only of z
and are of the order of a small parameter, δ, so they may be written δAV∗ , δKV∗ ,
δAH∗ and δKH∗ , where AV∗ etc. are of order one. The stream function of a spatially
periodic disturbance of wavenumber k is written ψ = ε[φ1(z) + δφ11(z)] exp[ik(x −
c0t)] + (terms of order ε2 and δε2 or higher-order), and likewise density, ρ, in terms of
ρ1(z) and ρ11(z), where ε is an ordering parameter corresponding to a perturbation of
the inviscid and non-diffusive flow, and the phase speed is c0 = (c0r+ic0i)+δ(c1r+ic1i).
The functions, φ1, φ11, ρ1 and ρ11, are taken to be real. The lowest-order (ε1) phase
speed of a perturbation, that of an inviscid and non-diffusive flow, is c0r, and the
growth rate is kc0i. The lowest-order phase speed of a perturbation of the viscous
and diffusive flow is c0r + δc1r, and the growth rate is kc0i + δkc1i. In examining
the effect of viscosity and diffusivity on a flow that, in the absence of viscosity and
diffusivity, is neutral, the lowest-order growth rate, kc0i, is zero, and the growth rate of
a perturbation is δkc1i. We seek to determine this growth rate by substituting for ψ and
ρ in (2.1) and (2.2) and comparing terms of orders ε and δε.

Retaining only terms of order ε, writing W = U − (c0r + ic0i), and comparing
coefficients of exp{ik[x− (c0r + ic0i)t)]}, (2.1) leads to

W

(
d2

dz2
− k2

)
φ1 − φ1U′′ − g

ρ1

ρ0
= 0 (2.3)

and (2.2) gives

Wρ1 + ρ0N2

g
φ1 = 0. (2.4)

From (2.4), ρ1 = −(ρ0N2/g)φ1/W which, substituted into (2.3), gives the equation to
order ε for the periodic disturbance to the mean flow:

L (φ1)≡
[

d2

dz2
− k2 − U′′

W
+ N2

W2

]
φ1 = 0. (2.5)

This is the well-known Taylor–Goldstein equation of inviscid and non-diffusive
stratified shear flow (Thorpe 1969; Drazin & Reid 1981), solutions of which are
exponentially growing and therefore unstable if kc0i > 0.

To examine the effects of viscosity and diffusivity, we retain terms of order εδ after
substituting ψ , ρ and AV = δAV∗ , etc. into (2.1) and (2.2). Eliminating ρ1 as before we
find

ikW2L (φ11)+ k (c1i − ic1r)

[
W

(
d2

dz2
− k2

)
φ1 − N2φ1

W

]
=WAV∗

(
d2

dz2
− k2

)
φ′′1 +WA′V∗

(
2

d2

dz2
− k2

)
φ′1 +WA′′V∗φ

′′
1

−KV∗

(
N2φ1

W

)′′
− K ′V∗

(
N2φ1

W

)′
−AH∗Wk2

(
d2

dz2
− k2

)
φ1 −Wk2A′H∗φ

′
1 + k2KH∗

N2φ1

W
. (2.6)

If φ1 and φ11 are zero at the upper and lower boundaries of the flow (making
the vertical velocity there zero) then φ1 and φ11 are adjoint in the sense that∫
φ11L (φ1) dz = ∫ φ1L (φ11) dz, where the integrals are taken over the depth of
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the flow. Hence using (2.5): ∫
φ1L (φ11) dz= 0. (2.7)

Multiplying (2.6) by φ1/W2, integrating over the range of z, and using (2.7), we
obtain an expression for the change in the wave speed (c1r + ic1i) that results from the
presence of viscosity and diffusivity with small coefficients, and their derivatives. On
the inviscid and non-diffusive neutral curve, c0i = 0 and so W = (U − c0r) is real. It
follows from the imaginary part of the integrated equation that

c1r = 0, (2.8)

i.e. the phase speed on the neutral curve is not affected by viscosity or diffusivity
at this order, whatever their variation with z. The real part of the integrated equation
gives the growth rate:
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{∫
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φ1

W
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∫
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W
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W
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−
∫
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W2

(
N2φ1

W

)′′
dz−
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W2

(
N2φ1

W

)′
dz

− k2

∫
AH∗

φ1

W

(
d2

dz2
− k2

)
φ1 dz− k2

∫
A′H∗

φ1

W
φ′1 dz

+ k2

∫
KH∗

N2φ2
1

W3
dz

}/
I, where I =

∫
φ2

1

W

(
U′′

W
− 2

N2

W2

)
dz. (2.9)

(The integral I may be recognized as the same denominator as found by Howard 1963
in his examination of neutral curves to which we refer again in § 5.3.) The expression
is to be evaluated on the neutral curve, the solution of the Taylor–Goldstein equation
(2.5) when c0i = 0 and J = Jc(k).

3. Examples using chosen flows
3.1. The Holmboe flow

Analytical expressions for the neutral curves and for the neutral eigenfunction, φ1, are
available for certain U(z) and N2(z) profiles (e.g. Drazin & Howard 1966; Thorpe
1969; Drazin & Reid 1981) and, in principle, these can be substituted into (2.9) to find
analytical expressions for kc1i.

We first consider the Holmboe flow (1.1) in a fluid of infinite depth. The neutral
eigenfunction is

φ1 = A|sinh az|(1−κ) sech az, (3.1)

with amplitude A, and with c0r = 0 and neutral curve given by (1.2). When appropriate
choices are made for the horizontal and vertical eddy coefficients, e.g. those listed in
table 1, integrals in (2.9) can be found using formulae devised by Howard (1963) that
are summarized in appendix A.

Since there are no products of the coefficients AV∗ , KV∗ , etc. in (2.9) (i.e. they are
not interactive at order εδ) the effect on the growth rate of taking two or more of the
coefficients to be non-zero is found by a summation. In general the growth rates of
disturbances are of the form

δkc1i = a2 [AV0κfAV(κ)+ KV0κfKV(κ)+ AH0κfAH(κ)+ KH0κfKH(κ)] , (3.2)
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where the coefficients, AV0, KV0 etc. characterize the magnitude of the vertical and
horizontal coefficients of viscosity and diffusivity. The non-dimensional growth rates,
σ = δkc1i/aU0, may be written

σ = R−1
V [κfAV(κ)+ Pr−1

V κfKV(κ)] + R−1
V [κfAH(κ)+ Pr−1

V κfKH(κ)], (3.3)

where RV = U0/aAV0 and RH = U0/aAH0 are vertical and horizontal Reynolds numbers,
and PrV = AV0/KV0 and PrH = AH0/KH0 are vertical and horizontal Prandtl numbers,
respectively.

For example, when AV = KV = 0, and AH and KH are both constant (denoted as AH0

and KH0, respectively, in table 1), (3.3) becomes

σ = R−1
H [κfAH(κ)+ Pr−1

H κfKH(κ)], (3.4)

where κfAH(κ) = −κ(1 + κ)/2 and κfKH(κ) = κ(1 − κ)/2, respectively, as given in
table 1. Because κfAH(κ) is negative in the range 0 6 κ 6 1 of the neutral curve,
small AH acts to decrease the growth rates from their zero value on the inviscid and
non-diffusive neutral curve; the effect of a vertically uniform ‘horizontal viscosity’
(i.e. adding the effect of a horizontal coefficient of viscosity representing horizontal
transfers of momentum by viscosity or turbulent eddies) is to make the growth rates
negative or to stabilize the previously neutral flow. In contrast the effect of a uniform
‘horizontal diffusivity’, with κfKH(κ) > 0, is to destabilize the flow. The sign of the net
growth rate in (3.3) depends on the relative sizes of AH and KH . For example, when
the coefficients, AH and KH , are taken to be not only constant, as above, but equal so
that PrV = 1, the sum the two coefficients in the expression for σ , equal to −κ2, is
negative, implying a change in growth rate that is <0, and the net effect is to stabilize
the flow.

Since sech2az = 1 − tanh2az, the expression for κfKH(κ) when KH = KH0sech2az
is found by subtracting those of KH = constant and KH = KH0tanh2az, and similarly
for AH = AH0sech2az. Similar conclusions for AV and KV follow using tanh2az −
tanh2az sech2az= tanh4az, and are consistent with table 1.

3.2. The Drazin flow
To examine the sensitivity of the results to the ambient stratification, we choose as a
second example the ‘Drazin flow’ (1.3). This differs from the Holmboe flow in that the
density gradient is constant, with no interfacial layer. The neutral eigensolution is

φ1 = A|sinh az|(1−κ2) sech az, (3.5)

and the neutral curve is given by (1.4). The critical Richardson number is 1/4, found
when κ2 = 1/2. Howard (1963) shows that the flow is stable if J > Jc, and unstable
otherwise. The integrals in (2.9), leading to growth rates represented by κfAV(κ) etc.
can be found for coefficients given in table 2.

4. The numerical calculations
Numerical methods described in appendix B are used to test the analytical solutions

for modes near the critical limiting value of the inviscid and non-diffusive stability
boundary at Jc = 1/4 and κ = 1/2 for the Holmboe flow or κ2 = 1/2 for the Drazin
flow. The numerical calculation yields values of κfAV(κ) etc. in (3.2) and (3.3) at
the limiting wavenumbers. Values are given in tables 1 and 2. The agreement of
theoretical and numerical values is generally good; the average of the modulus of the
difference between the values is less than 2.7 % of the average of the modulus of
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the theoretical values. The small inaccuracies appear to originate from the numerical
estimates and not from the theory. The numerical method is used to compute κfAV(κ)

etc. for some cases in which integrals in (2.9) are singular at z= 0.

5. Discussion and application
5.1. The approximations

The validity of approximations and assumptions made in § 2 is considered in
appendix C and depends on how the flow is forced (§ C.1; e.g. by pressure gradients
and thermal radiation). The effects of higher-order terms (§ C.2) are negligible only if
the eddy coefficients are sufficiently small (C 2). A condition that the mean flow can
be maintained in the presence of stirring turbulent eddies is that the vertical scale of
the latter, determined by the Ozmidov length scale, is much less than that over which
the mean flow changes. Included in § C.3 is a discussion of the bounds consequently
placed on the vertical diffusivity of the fluid and on the rate of dissipation of turbulent
kinetic energy per unit mass, e, using values that apply in the ocean.

5.2. Effects of non-zero viscosity and diffusivity
As shown by (2.8), to the present order of approximation the phase speed of neutral
disturbances is not changed by the presence of small viscosity and diffusivity. General
formulae for the modified growth rate of small disturbances, kc1i, on the neutral
curve of the inviscid and non-diffusive flow are given by (2.9), (3.2) and (3.3) in
terms of the eddy coefficients, which may vary with z, and the neutral eigenfunctions,
φ1, solutions of the Taylor–Goldstein equation, (2.5), for periodic two-dimensional
disturbances to the mean flow.

We consider first the Holmboe flow. Examples with various forms of the eddy
coefficients are given in table 1. Two general patterns are evident. First, the largest
growth or decay rates result from the effects of viscosity and diffusion that are
non-zero at the mean flow inflection point at z = 0, i.e. those that are constant or
∝sech2az. Second, for a given value of a coefficient, the effects of vertical viscosity or
diffusivity exceed those of the horizontal by about an order of magnitude. (Horizontal
eddy coefficients, typically 1 m2 s−1 or more in the ocean, are however much larger
than the vertical, typically O(10−2 m2 s−1), compensating this difference.) For the
constant and sech2az profiles where the effects on growth are greatest, viscosity acts
to damp instabilities as expected, while diffusivity enhances growth. The latter may
be because stable density gradients require a growing disturbance to do work against
gravity, reducing growth rates and, since diffusion acts to reduce density gradients, it
permits relatively greater growth rates.

Vertical eddy coefficients have a variety of effects; the tendency for viscosity
(diffusivity) to stabilize (destabilize) the mean flow is not universal. For example a
vertical eddy coefficient of viscosity of the form AV(z) = AV0tanh2az or AV0tanh4az
leads to positive growth rates (instability) and, when the coefficient is of the form
AV(z) = AV0tanh2az sech2az, whether or not viscosity leads to positive or negative
growth rates depends on the wavenumber of the disturbance. Likewise, vertical
diffusion may result in growth (e.g. when KV is constant or ∝sech2az) or damping
(e.g. when KV ∝ tanh2az or tanh4az), respectively destabilizing or stabilizing a flow
that is previously neutral. Similarly, various effects on stability are found for horizontal
viscosity and diffusivity. Although the effects of viscosity and diffusivity are often
opposite, e.g. when the horizontal coefficients are constant, this is not always the
case, e.g. when AH and KH ∝ tanh2az: a vertical variation of the eddy coefficients may
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change the sign of their effect on disturbances. The additive nature of the effects of
the different coefficients in (2.6) and (2.9) implies that the combined effects of vertical
and horizontal, viscous and diffusive, coefficients is also additive, (3.2) and (3.3).

Table 2 shows growth rates for the Drazin flow. In two cases (where KH0 is constant
and for AH0tanh2az sech2az), κfKH(κ) or κfAH(κ) = 0 and the flow on the inviscid and
non-diffusive neutral curve remains neutral in the presence of viscous or diffusive
effects. This is a change from the Holmboe flow. In the majority of cases, however,
the effects of viscosity or diffusivity on stability or instability are similar to those
in the Holmboe flow. The exceptions are marked with symbol * in table 2. Notable
among these are the reduction or change in growth and decay rates caused by non-zero
diffusion for KV0 (constant), KV0tanh2az and KV0 sech2az; the removal of the Holmboe
density interface appears frequently to change the effect of vertical diffusivity on the
flow.

No simple rule for the effect of introducing small viscosity or diffusivity – or of
weak turbulence – on flows that are neutral in their absence appears to hold. One
such rule, our conjecture (§ 1) that viscosity is always stabilizing and that diffusivity
is destabilizing, is refuted. Ongoing research is aimed at elucidating the physical
mechanisms behind stabilization and destabilization, and thereby attaining the capacity
to predict whether a given flow will be stabilized/destabilized by the addition of
viscosity/diffusion.

5.3. The critical value of Ri
We have so far examined the variation of growth rate, σ , with viscous or diffusion
coefficients at fixed k on the inviscid and non-diffusive neutral curve, (1.2) and
(1.4). Small viscosity and diffusivity affects the neutral stability of a stratified
shear flow and therefore changes the Richardson number at which disturbances of
a given wavenumber become unstable. Howard (1963) devises a useful technique for
examining the growth rate of small disturbances to a steady inviscid non-diffusive
flow near its neutral curve. If the growth rate on the neutral curve decreases as
the minimum Richardson number, J, increases at given k, the neutral curve is an
upper boundary in J marking the transition between unstable and stable flow. The
Holmboe and Drazin flows are used by Howard as examples. For the Holmboe flow he
shows that, near the neutral curve J = Jc, the growth rate of disturbances of positive
wavenumber, k, is

kc0i =−aU0
B(κ, 1/2)
π

(J − Jc) , (5.1)

and for the Drazin flow

kc0i =−aU0
B(κ2, 1/2)

2πκ
(J − Jc) (5.2)

(after correction by a factor 1/2), where B is the beta function (Abramowitz & Stegun
1965, § 6.2). B(κ, 1/2) is positive if, as assumed, κ > 0, and the growth rate is
therefore negative (the flows are stable) if J > Jc and positive (the flows are unstable)
if J < Jc, as expected. In some cases, but not those considered here, Howard’s (1963)
technique breaks down (Huppert 1973; but see also Banks, Drazin & Zaturska 1976).

We may therefore extend the study of the growth of disturbances into J space:
allowing for variation in J, to order δ the growth rate (defined in § 2) is equal to
δkc1i, given by (3.2), plus kc0i, given by (5.1) or (5.2). For example, we consider
a Holmboe flow with vertical eddy coefficients ∝tanh2az. The vertical viscous
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coefficient AV0tanh2az has the growth factor in table 1, κfAV(κ) = κ , positive and
destabilizing. Vertical diffusivity, KV0tanh2az, has a relatively small, but stabilizing,
growth factor, κfAV(κ)=−κ(1− κ)/2. The net growth rate of disturbances is therefore

k(c0i + δc1i)= a2AV0κ − a2KV0κ(1− κ)/2− aU0
B(κ, 1/2)
π

(J − Jc) . (5.3)

At κ = 1/2, B(κ, 1/2)/π= 1, and the growth rate becomes

k(c0i + δc1i)= 0.5a2AV0 − 0.125a2KV0 − aU0 (J − 1/4) . (5.4)

This is zero when

J = 1/4+ 0.5R−1
V

(
1− 0.25Pr−1

V

)
(5.5)

where PrV = AV0/KV0, is the vertical Prandtl number. The molecular Prandtl numbers
in the ocean are ∼7 in thermally stratified water and 670 for salt stratified water,
whilst it is ∼0.73 for air. The turbulent Prandtl number is of order unity. (According
to Kantha & Clayson 2000 the range of the turbulent Prandtl number is ∼0.7–0.9, but
subsequent evidence suggests a value of about 1 + 5J; Smyth et al. 2014.) Generally,
therefore, PrV > 0.25 and the Richardson number, J, of zero growth rate (5.5) exceeds
1/4; positive growth, or instability, will occur at a minimum Richardson number,
J, greater than 1/4, i.e. when 1/4 6 J < 1/4 + 0.5R−1

V (1 − 0.25Pr−1
V ). The critical

Richardson number is therefore increased above the value of 1/4 that, from the
Miles–Howard theorem (Howard 1961; Miles 1961), is the maximum value of J at
which inviscid and non-diffusive flows can become unstable.

This result implies that a stratified laminar shear interface between two weakly
turbulent uniform layers having vertical eddy diffusion coefficients that vary like
tanh2az is generally unstable in a range of J exceeding 1/4. Consequently, for
example, the interfaces on which billows are observed to form in the Mediterranean
thermocline by Woods (1968) may become unstable when the minimum Richardson
number, J, is greater than 1/4, the critical Richardson number of an inviscid, non-
diffusive Holmboe flow.

As a counter example, again for the Holmboe flow, the growth factor is
−κ(1+ κ2)/2 when the horizontal viscosity is AH0 sech2az (table 1), so the net growth
rate when other coefficients are negligible is

k(c0i + δc1i)=−a2AH0κ(1+ κ2)/2− aU0
B(κ, 1/2)
π

(J − Jc) . (5.6)

At κ = 0.5, the growth rate is zero when J = 1/4 − (5/16)R−1
H ; the critical Richardson

number is less than 1/4. (In this, and the previous case, the parameters R−1
V = aAV0/U0

and R−1
H = aAH0/U0 that appear in the expressions for J must however be small; see

§ C.2.)

5.4. Ri after the collapse of Kelvin–Helmholtz turbulence
Might the viscous and diffusive effects of turbulence explain why the minimum
Richardson number, RiF, in the laminar shear flow following the decay of turbulence
generated by Kelvin–Helmholtz instability exceeds the critical Richardson number,
1/4? In laboratory experiments, Thorpe (1973) finds a mean RiF = 0.322± 0.063 while
Smyth & Moum’s (2000) numerical study gives RiF ∼ 1/3. Is the flow with decaying
turbulence still unstable for minimum Richardson numbers, J, up to ∼1/3, but stable
at higher J?
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The mean flow during the final stages of turbulent collapse is roughly consistent
with the Holmboe flow. If the collapsing turbulence in the centre of the interfacial
layer is represented by AV and KV ∝ sech2az, and use is made of (3.3) and values
from table 1, the growth rate of a disturbance of non-dimensional wavenumber κ = 0.5
corresponding to Jc = 1/4 at the peak of the inviscid and non-diffusive neutral curve is
approximately

σ = R−1
V

(−4.28+ 1.82Pr−1
V

)
. (5.7)

(The effects of horizontal viscosity and diffusivity are disregarded.) With a Prandtl
number, PrV , of order unity, this implies that, because disturbances have negative
growth rate, the flow will be stable for Richardson numbers >1/4. However, the
continued mixing observed at the upper and lower boundaries of the collapsing
turbulent region (e.g. see Thorpe 1973; figures 14 and 1e) suggests that AV and
KV might be better represented in the form tanh2az sech2az, having maxima at
z = ±0.883a−1 and decaying to zero at z = 0 and as z tends to ±∞. This choice
gives

σ = R−1
V

(
0.2188+ 0.1563Pr−1

V

)
. (5.8)

The growth rate is now positive and the flow is unstable at Jc = 1/4, indicating that
zero growth rate will be found at a greater Richardson number or that the minimum
Richardson number at which the flow ceases to be unstable exceeds 1/4.

Although ignoring the time evolution of the mean flow during the collapse of
turbulence, does this imply a zero growth rate, i.e. flow stabilization, at J = RiF ∼ 1/3?
Following the discussion leading to (5.5) and assuming, as before, that PrV is about
unity leads to a zero growth rate of disturbances to the flow at J ∼ 1/3 provided
RV ∼ 4.5. Although this value of the turbulent vertical Reynolds number, RV , is
somewhat beyond the range of validity of the theory, it offers promise that numerical
methods, presently in hand and not subject to the condition (C 2), may lead to useful
insights into the value of J when turbulence collapses.

Turbulence, represented by eddy coefficients of viscosity and diffusivity, may change
the critical Richardson number of a mean flow but whether its effect is stabilizing or
destabilizing depends on the vertical variation of the turbulence and on the relative
magnitudes of the viscous and diffusion coefficients.
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Appendix A. Singular integrals
Howard (1963) shows that care is needed in evaluating the integrals of the form

appearing in (2.9) as a critical layer, U(zc) = c0r, is approached; many of the integrals
become singular at this level. Howard finds, however, that in the limit as c0i tends to
zero, supposing that U(z) is odd and a monotonically increasing function of z but with
U′ 6= 0 at the critical level and when N2 is even and c0r = 0 (cases exemplified by (1.1)
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and (1.3)), terms in (2.9) can be simplified using

lim
c0i→0

∫ ∞
0

U′′W−2nH2 dz= (1− exp(2πni))
∫ ∞

0
U′′U−2nH2

s dz, (A 1)

lim
c0i→0

∫ ∞
0

W−(1+2n)N2H2 dz= [(1− exp(2πni))/2n]
∫ ∞

0

(
N2H2

s

U′

)′
U−2n dz, (A 2)

where H = φ1Wn−1 (=Hs at z = zc) and n = κ for the Holmboe flow and κ2 for the
Drazin flow. For example, (A 2) may be used to express the indefinite integral of the
form lim

∫∞
−∞ sinh−(1+2κ)z sech z dz, that appears in I when the Holmboe form of the

stream function is inserted, leading to

I =−k2
π[1− exp(2πκi)]/(sin κπ). (A 3)

The integral, ∫ ∞
0

sinh−(1+2κ)z sech z dz, (A 4)

and other integrals in (2.9) are evaluated using beta and gamma functions (e.g. see
Abramowitz & Stegun 1965: especially equations 6.1.15, 6.1.17, 6.2.1)and 6.2.2). For
the Drazin flow,

I =−k2
π[1− exp(2πκ2i)]/(sin κ2

π). (A 5)

Appendix B. Numerical methods
The numerical tests of the perturbation theory require computation of the growth

rate, σ , at Jc = 0.25, and at wavenumbers κ = 0.5 or 0.707 for the Holmboe and
Drazin flows, respectively, for various profiles of the viscosity and diffusivity, and
examining the behaviour as the amplitude of the viscosity and diffusivities, represented
by Coeff , say, tend to zero.

The numerical calculation of σ employs the matrix method of Liu et al. (2012) to
find normal mode solutions of (2.1) and (2.2). Impermeable free-slip constant-density
boundary conditions are imposed at az=±5 to approximate the infinite depth assumed
in the theory. The matrix method is accurate to second-order in the non-dimensional
grid spacing, set here to 0.01.

Profiles of the eddy coefficients are chosen as in tables 1 and 2. In vertical cases
where viscosity vanishes at z = 0, the viscosity profile is supplemented with a small
constant value, 1AV (equal to 10−4 in non-dimensional form), to improve numerical
stability. This adjustment has only a minor effect on the results.

The matrix method fails close to stability boundary and we therefore perform the
analysis at J = 0.20, 0.21, 0.22 and 0.23, κ = 0.5, and extrapolate to J = 0.25 by
fitting a parabola to the resulting growth rates. This procedure is repeated at several
small values of the eddy coefficient, Coeff , the extrapolated growth rates being fitted,
again by a parabola, to determine ∂σ/∂Coeff , equivalent to the quantities κfAV(κ) etc. in
(3.2) and (3.3).

Sensitivity of the estimated growth rates to the non-dimensional vertical separation,
H (in units of a−1), of the boundaries is relatively small. For example,
∂[κfAV(κ)]/∂H ∼−0.019 at κfAV(κ)= 0.5520, the value given in table 1 when H = 10,
κ = 0.5 and AV = AV0tanh2az, and ∂[κfKV(κ)]/∂H ∼ 0.0048 at κfKV(κ) = −0.1214 as
in table 1 when H = 10, κ = 0.5 and KV = KV0tanh2az.
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Appendix C. The validity of approximations
C.1. Changes to the mean flow and density field

The validity of the approximations made in § 2 can be assessed in view of the
magnitude of the growth rates found in § 3 for the Holmboe and Drazin flows. In § 2
it is assumed that the rate of change of the mean flow and density field are much
smaller than that of a small disturbance. Only vertical viscosity or diffusivity may
change the mean flow and need be considered. Smyth et al. (2011) show that three
conditions are necessary for the mean flow to be regarded as steady: the pressure
gradient must balance the action of viscosity; the mean vertical pressure gradient must
be in hydrostatic balance with the mean density; and the action of diffusion must
not change the mean density profile significantly on the time scale of the change of
a small disturbance. The first two of these conditions may be assumed to hold in
physically realizable situations. The third condition holds automatically for the Drazin
flow when diffusivity is uniform but is less likely to be valid for the Holmboe flow
or when diffusivity varies in z. The mean density, Π(z, t), is given by a conservation
equation of the form

∂Π

∂t
= ∂

∂z

(
KV
∂Π

∂z

)
. (C 1)

If the vertical scale of the density variation and of the vertical diffusivity, KV , is a−1,
and the vertical diffusivity is characterized by KV0 (as in the examples taken in § 3),
the mean density, and therefore the buoyancy frequency, will change at a rate a2KV0.
This is about the same rate as that of disturbances to the diffusive flow (see (3.2)) and
the disregarding of the change to the mean flow is invalid.

We might escape the problem either by introducing a buoyancy flux that balances
the diffusion term on the right of (C 1) (e.g. through a radiation term that modifies
the mean fluid density, much as did Matthews 1988 in regard to density in a frozen
lake, but in general this is a rather contrived situation) or by restricting attention
to cases in which vertical diffusion results in changes to the mean flow at a rate
much less than the viscosity-induced changes to disturbances. Results for the Holmboe
flow are now being tested using numerical methods that are valid for larger growth
rates. Preliminary results tend to substantiate the qualitative predictions (stabilization
of destabilization) in table 1.

C.2. Higher-order terms
The validity of comparing terms with coefficients of order ε or of εδ, and disregarding
those of order ε2, can be assessed by comparing the magnitude of terms in (2.1) and
(2.2). The εδ terms involving the viscous and diffusion coefficients, of order Coeff , say
(representing AV0, KH0 etc. as in appendix B), will be small compared to the ε terms
provided

χ = Coeff

U0
� 1 (C 2)

(χ is equal to the inverse Reynolds number when Coeff = AV0). Equation (C 2) can
be evaluated noting that 2a−1 is a measure of the interface thickness: the scale
a ∼ 102 m−1 in laboratory experiments corresponds to an interface thickness of
2 × 10−2 m. In a laminar laboratory flow with Pr > 1 (e.g. heat or salt stratification
of water) the kinematic viscosity, ν ∼ 10−6 m2 s−1, exceeds the diffusion coefficient.
Taking U0 ∼ 10−1 m s−1 gives χ ∼ 10−3 � 1. In the ocean representative scales
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might be an interface thickness of 20 m (so a ∼ 10−1 m−1) and U0 ∼ 10−1 m s−1,
so that χ � 1 if Coeff � 1 m2 s−1. This is likely to be valid for the vertical
coefficients, AV and KV , but may be less likely for horizontal turbulent eddy
coefficients, AH and KH . The narrow sheet-like interfaces observed by Woods (1968)
are of thickness ∼0.2 m(a ∼ 10 m−1) and U0 ∼ 1 × 10−2 m s−1, so that χ � 1 if
Coeff � 1× 10−3 m2 s−1.

If η is the perturbation of density surfaces caused by a displacement with(
∂

∂t
+ U

∂

∂x

)
η =−∂ψ

∂x
, (C 3)

the magnitude of the vertical displacements, Amp, resulting from a stream function of
amplitude A is of order A/U0 . The (Im) terms of order ε2 in (2.1) and (2.2) will
be small compared to the εδ terms if Coeff /(U0Amp)� 1. Noting (C 2), it follows that
Amp � a−1, or that the neglect of ε2 terms is valid only whilst disturbances are of
amplitude much less than the interface thickness.

C.3. Effect of turbulence in the mean flow
A condition for the consistency of selecting a steady mean flow, U(z) = U0 tanh az, in
the presence of turbulence with an overturning scale equal to the Ozmidov scale, LO,
is that the mean flow velocity length scale, [(dU/dz)/U0]−1� LO. (A similar condition
applies for the mean density.) Now LO = e1/2/N3/2, where e is the rate of dissipation of
turbulent kinetic energy per unit mass, and hence the condition becomes

e� N3

a2
cosh4az. (C 4)

For both the Holmboe and Drazin flows (C 4) is satisfied for all z if e� N3
0 a−2.

The Osborn (1980) formula, KV = γ e/N2, with γ ≈ 0.2 then leads to the condition

KV � 0.2
N0

a2
. (C 5)

For an oceanic interface with a fractional buoyancy difference (g1ρ/ρ0) of 10−4 m s−2

corresponding approximately to a temperature difference of 0.1 K at a temperature of
∼5 ◦C, N0 = (ag1ρ/ρ0)

1/2 ≈ 3.2 × 10−3 s−1 if a ∼ 10−1 m−1 (a 20 m thick interface),
so that e and KV must be much less than 3.3 × 10−6 m2 s−3 (greater than the largest
values commonly observed, e.g. Liu et al. 2012), and 6.4 × 10−2 m2 s−1, respectively.
For the thin thermally stratified ‘sheet’ interfaces observed by Woods (1968) the
corresponding values are 3.3 × 10−7 m2 s−3 and 6.4 × 10−5 m2 s−1, respectively. The
latter bound on KV may possibly be satisfied in view of Wood’s observation that flow
in the sheets appears to be almost laminar and therefore with a diffusion coefficient
approaching the molecular value for heat of about 1.4× 10−7 m2 s−1.
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