POLE BEANS
(Western Oregon-West of Cascades)

Good management practices are essential if optimum fertilizer responses are to be realized. These practices include use of recommended varieties, selection of adapted soils, weed control, disease and insect control, good seed bed preparation, proper seeding methods, and timely harvest.

because of the influence of soil type, climatic conditions, and other cultural practices, crop response from fertilizer may not always be accurately predicted. Soil test results, field experience, and knowledge of specific crop requirements help determine the nutrients needed and the rate of application. The fertilizer application for vegetable crops should insure adequate levels of all nutrients -- optimum fertilization is essential for top quality and yields.

The suggested fertilizer applications are based on a 5 foot row spacing.

Recommended soil sampling procedures should be followed in order to estimate fertilizer needs. Your county agent can provide you with soil sampling instructions and soil sample bags and information sheets.

NITROGEN (N)

Rates of 100 to 150 lbs of nitrogen (N)/A are suggested.

Apply half of the N at planting time; the remainder can be applied before planting or during the growing season. Split applications will reduce the possibility of leaching losses.

If the application of nitrogen (N) plus potassium (K2O) exceeds 90 lbs/A, there is danger of seedling injury from the concentration of salt when fertilizer is banded at planting time.

There is less danger if the row application is split into two bands.

The danger is greater with sandy than with finer textured soil.

Immediate irrigation at the first sign of burn should reduce further injury.

PHOSPHORUS (P)

P is essential for vigorous early growth of seedlings. P should be applied in bands 2 to 3 inches to the side and 2 to 3 inches below the seed at planting time.

If the OSU soil test for P reads (ppm): phosphorus (P2O5)-lbs/A:

<table>
<thead>
<tr>
<th>ppm</th>
<th>Amount to apply</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 15</td>
<td>150 - 180</td>
</tr>
<tr>
<td>15 to 60</td>
<td>120 - 150</td>
</tr>
<tr>
<td>over 60</td>
<td>90 - 120</td>
</tr>
</tbody>
</table>

The P content of fertilizer is expressed as the oxide (P2O5) on fertilizer labels. Multiply P2O5 by 0.44 to convert to P.

POTASSIUM (K)

K should be applied before planting or banded at planting time. Amounts above 60 lbs K2O/A should be broadcast and worked into the seed bed.

If the OSU soil test for K reads (ppm): Apply this amount potassium (K2O)-lbs/A:

<table>
<thead>
<tr>
<th>ppm</th>
<th>Amount to apply</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 75</td>
<td>120 - 180</td>
</tr>
<tr>
<td>75 to 150</td>
<td>90 - 120</td>
</tr>
<tr>
<td>150 to 250</td>
<td>60 - 90</td>
</tr>
<tr>
<td>over 250</td>
<td>none</td>
</tr>
</tbody>
</table>

The K content of fertilizer is expressed as the oxide (K2O) on fertilizer labels. Multiply K2O by 0.83 to convert to K.
SULFUR (S)

The fertilizer program should include a minimum of 20 to 30 lbs of S/A. S is contained in several fertilizer materials used to supply other nutrients.

MAGNESIUM (Mg)

When the soil test value is below 1.0 meq Mg/100g or when calcium (Ca) is 10 times more than the Mg apply 10 to 15 lbs Mg/A banded at planting. If deficiency symptoms appear, spray with 10 lbs Epsom salts in 100 gals of water/A.

Mg can also be supplied in dolomite which is a liming material and reduces soil acidity to about the same degree as ground limestone. Dolomite should be mixed into the seed bed several weeks in advance of seeding.

BORON (B)

Fields which have received recent heavy B applications should be soil tested for B. If the test indicates 2.0 ppm B or above, there is danger of injury to beans.

ZINC (Zn)

The application of Zn has increased the yields of beans in the Stayton area—especially on the gravelly, dark colored soils.

Where Zn is required, either 10 lb/A of Zn should be broadcast and worked into the soil prior to planting or 3 to 4 lbs/A of Zn should be banded with the fertilizer at planting time.

A broadcast application of 10 lb Zn/A should supply Zn needs for 2 or 3 years.

OTHER NUTRIENTS

Responses of pole beans to nutrients other than those discussed in this guide have not been observed in western Oregon.

LIME

Experimental work has shown that beans will produce good yields over a fairly wide range of soil acidity.

Lime applications should be considered when the soil pH is 5.5 or below, or when calcium (Ca) levels are below 5 meq Ca/100g of soil.

If the OSU buffer test for lime reads: Apply this amount of lime (T/A):

<table>
<thead>
<tr>
<th>pH Range</th>
<th>Lime Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>below 5.2</td>
<td>4 - 5</td>
</tr>
<tr>
<td>5.2 - 5.6</td>
<td>3 - 4</td>
</tr>
<tr>
<td>5.6 - 5.9</td>
<td>2 - 3</td>
</tr>
<tr>
<td>5.9 - 6.2</td>
<td>1 - 2</td>
</tr>
<tr>
<td>over 6.2</td>
<td>0</td>
</tr>
</tbody>
</table>

The liming rate is based on 100-score lime. Lime should be mixed into the seed bed at least several weeks before seeding.

A lime application is effective over several years.

Do not apply lime when the soil pH is above 6.0. Decreased yields have resulted in Willamette Valley experiments when liming raised the soil pH to 6.5.

P, K, Mg, B, Zn, and lime suggestions are based on soil test values from the Soil Testing Laboratory, OSU, Corvallis, Oregon.

This fertilizer guide is largely based on the results of experiments conducted by H. J. Mack, S. B. Apple Jr., Horticulture and T. L. Jackson, Soils, Oregon Agricultural Experiment Station.