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Abstract 

Background 

Antimicrobial peptides (AMPs) are synthesized and secreted by immune and epithelial cells that 

are constantly exposed to environmental microbes.  AMPs are essential for barrier defense and 

deficiencies lead to increased susceptibility to infection.  In addition to their ability to disrupt the 

integrity of bacterial, viral and fungal membranes, AMPs bind lipopolysaccharides, act as 

chemoattractants for immune cells and bind to cellular receptors and modulate the expression of 

cytokines and chemokines.  These additional biological activities may explain the role of AMPs 

in inflammatory diseases and cancer.  Modulating the endogenous expression of AMPs offers 

potential therapeutic treatments for infection and disease. 

 

Methods 

The present review examines published data from both in vitro and in vivo studies reporting 

effects of nutrients and byproducts of microbial metabolism on the expression of antimicrobial 

peptide genes in order to highlight an emerging appreciation for the role of dietary compounds in 

modulating the innate immune response. 

 

Results  

Vitamins A and D, dietary histone deacetylases and byproducts of intestinal microbial 

metabolism (butyrate and secondary bile acids) have been found to regulate the expression of 

AMPs in humans.  Vitamin D deficiency correlates with increased susceptibility to infection and 

supplementation studies indicate an improvement in defense against infection.  Animal and 
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human clinical studies with butyrate indicate that increasing expression of AMPs in the colon 

protects against infection. 

 

Conclusion  

These findings suggest that diet and/or consumption of nutritional supplements may be used to 

improve and/or modulate immune function. In addition, byproducts ofgut microbe metabolism 

could be important for communicating with intestinal epithelial and immune cells, thus affecting 

the expression of AMPs.  This interaction may help establish a mucosal barrier to prevent 

invasion of the intestinal epithelium by either mutualistic or pathogenic microorganisms. 

 

Introduction 

         Cathelicidins, defensins and other antimicrobial peptides (AMPs) are an evolutionarily 

conserved component of the innate immune system and play an important role in combating 

infection [1-4]. AMPs have two or more positively charged residues in acidic environments and 

can bind to the negatively charged membranes of both gram (-) and gram (+) bacteria, 

mycobacteria, fungi and enveloped viruses which in turn kills the pathogens by disrupting their 

cell membranes [5, 6] . 

 The human cathelicidin antimicrobial peptide (CAMP) gene encodes a preproprotein with 

an ~30 amino acid long N-terminal signal sequence, a 94 amino acid cathelin domain and a 37 

amino acid C-terminal cationic AMP domain (LL-37) [6].  The CAMP gene is primarily 

expressed in myeloid bone marrow cells and the pro-protein, hCAP18, is packaged in neutrophil 

specific granules [7].  CAMP is also expressed by epithelial cells in tissues exposed to 

environmental microbes and the protein is secreted in semen, saliva and sweat providing barrier 
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protection to mammals [8-10].  Mice and humans lacking CAMP are susceptible to bacterial 

infections in numerous tissues [4, 11, 12].  High circulating levels of hCAP18 are found in 

human plasma [13].  The hCAP18/LL37 peptide binds to and neutralizes LPS [14], thus 

preventing its interaction with the LPS-binding protein and subsequent activation of TLR-4 [15], 

NF-B signaling and cytokine release from host cells [16].  LL-37 protects against LPS-induced 

sepsis in animals [17, 18] and kidney dialysis patients with low serum levels of hCAP18 are 

twice as likely to die from infectious disease or sepsis than patients with higher levels [19].  

Therefore, circulating hCAP18 or LL-37 may protect against both bacterial infection and sepsis.   

 Like cathelicidin, defensins are expressed by immune cells and epithelial cells of tissues 

that are exposed to the environment [3].  Defensins have six highly conserved cysteines that form 

disulfide bonds [2].  Human defensins are classified into two families: - and -defensins [20].  

All defensins are expressed as a biologically inactive preproproteins and activated by cleavage of  

a prosequence [20].  To date, six -defensins have been identified with HNP-1-4 packaged in 

human neutrophil primary granules and HD-5 and -6 expressed by Paneth cells in the small 

intestine [3]; HD-5 is also expressed by epithelial cells of the female genitourinary tract [21].  

The -defensins have antimicrobial activity against a range of bacteria, viruses and fungi [20].  

 -defensins are the most widely distributed of the antimicrobial peptides.  They are 

typically 38-42 amino acids long [22] and expressed in monocytes, macrophages and dendritic 

cells (DCs) [23] as well as epithelial cells in the respiratory and urogenital tracts, skin and tonsil 

[20, 24].  Human -defensin 1 (HBD-1) is constitutively expressed in many tissues while HBD-

2, -3 and -4 expression is induced by inflammatory stimuli, such as bacterial infection, LPS, IL-

1, TNF-  or phorbol-myristate-acetate (PMA) [2, 3, 20, 22, 25].  -defensins have shown 

activity against both gram (-) and gram (+) bacteria, fungi, viruses and parasites [26-28]. 
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 In this paper, we review the regulation of the CAMP gene and the defensin gene family 

by various nutritional compounds and/or microbial byproducts of metabolism and discuss the 

potential importance of this regulation for human innate immune function. 

 

Nutritional regulation of AMP expression  

Vitamin D  

 CAMP: There are two forms of vitamin D that humans can utilize: vitamin D2 

(ergocalciferol) from fungi and vitamin D3 (cholecalciferol) from animal sources and synthesized 

in the skin [29].  Expression of the human CAMP gene is induced by 1,25(OH)2 D3 and its 

analogs in various cell lines and primary cells [30-32]. Vitamin D induction of CAMP is solely a 

human and non-human primate phenomenon [33, 34] due to a vitamin D response element 

(VDRE) located within a primate-specific retro-transposable element (Alu-SINE) found in the 

upstream promoter region of the CAMP gene [34]. 

 In subsequent studies, it was demonstrated in vitro that toll like receptor (TLR) activation 

induced CAMP expression via a vitamin D-dependent pathway in macrophages [35].  In the 

proposed model, sufficient levels of circulating 25(OH)D3, the precursor to 1,25(OH)2D3, are 

required for induction of CAMP gene expression and production of adequate LL-37 peptide 

levels to effectively combat infection (Fig. 1A) [35].  Cathelicidin expression is also increased in 

keratinocytes via a similar pathway after skin wounding [36].  

 Interestingly, the vitamin D-mediated induction of CAMP potentially boosts 

antimicrobial activity against pathogens through direct killing by LL-37 and enhancing 

phagosome maturation [37].  In THP-1 and human primary monocytes, 1,25(OH)2D3 triggers the 
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formation of autophagosomes and autophagolysosomes via a hCAP18/LL-37-mediated pathway 

[37].  

 Defensins: The HBD-2 gene (DEFB4) was induced by 1,25(OH)2D3 through a VDRE in 

the promoter, but the induction was not as robust as that observed for the CAMP gene [30].  

Also, the induction of the HBD-2 gene in macrophages requires TLR activation and the 

convergence of the IL-1β and vitamin D pathways (Fig. 1B) [38].  In vitro studies demonstrated 

that activation of intracellular pattern recognition receptor nucleotide-binding oligomerization 

domain protein 2 (NOD2) by its ligand muramyl dipeptide (MDP), a lysosomal breakdown 

product of peptidoglycan from both gram-negative and gram-positive bacteria, induced the 

expression of the HBD-2 gene [39].  More recently, 1,25(OH)2D3 was shown to strongly induce 

the expression of  NOD2/CARD15/IBD1 in primary human monocytic and epithelial cells [40].  

In the absence of 1,25(OH)2D3, the activation of NOD2 by MDP activates NF-κB and there is a 

modest induction of the HBD-2 gene; however, pre-treatment with 1,25(OH)2D3 followed by 

MDP leads to a robust, synergistic induction of the HBD-2 gene (Fig. 1B) [40].  Activation of 

the vitamin D pathway alone is not sufficient to induce robust expression of HBD-2 and 

additional signaling pathways are required [38, 40].  Treatment of normal human keratinocytes 

with 1,25(OH)2D3 increased HBD-3 mRNA levels in a dose-dependent manner [41].  

Interestingly, treatment of lesional psoriatic plaques with the vitamin D analog calcipotriol 

increased IκB-α protein levels inhibiting the NF-κB signaling pathway and blocked IL-17A-

induced expression of HBD-2 in the plaques [42].  Down-regulation of HBD-3 was also 

observed in the lesional psoriatic plaques after treatment with calcipotriol [42].   

 

Primary and secondary bile acids 
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          Bile acids play an important role in digestion and absorption of dietary fat and nutrients by 

the digestive system.  They bind to and activate many nuclear receptors and thus modulate 

metabolism.  In humans, the  two major primary bile acids are cholic acid (CA) and 

chenodeoxycholic acid (CDCA) [43].  CDCA binds to farnesoid X receptor (FXR) [44] and up-

regulates cathelicidin expression (Fig. 1C) [45].  This regulation may contribute to sterility of the 

bile duct.  

 Lithocholic acid (LCA), a toxic secondary bile acid, is a byproduct of CDCA metabolism 

by bacteria in the colon.  It is a low affinity ligand for FXR, pregnane X receptor (PXR) as well 

as the VDR[46-48].  LCA binds to the VDR and significantly increases both human CAMP 

transcript and protein levels in human primary keratinocytes (NHEK) in a time-and dose-

dependent manner [49].  In the human colonic epithelial cell line HT-29, LCA and butyrate act 

synergistically to induce human CAMP gene expression [50].  The LCA derivatives LCA acetate 

and LCA propionate induced expression of human CAMP more efficiently than LCA itself and 

were less toxic in tissue culture cells and mice, suggesting they are more potent VDR agonists 

and might be safer potential therapeutic agents than LCA [51].  Unlike LCA, the secondary bile 

acid ursodeoxycholic acid (UDCA) is not a ligand for the VDR, but rather increases the levels of 

VDR in the nucleus that, in turn, increases CAMP expression (Fig. 1C) [45].   

  

Butyrate 

     CAMP: Butyrate is a short chain fatty acid produced in the colon by fermentation of dietary 

fiber by anaerobic bacteria.  It is found in many foods, such as butter and cheeses and is a histone 

deacetylase inhibitor (HDACi) [52].  Shigella infections down-regulate LL37 and -defensin-1 

levels in the colon of adult patients [53].  and rabbit CAP18 levels in colon surface epithelium 
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are reduced during Shigella infection; however CAP18 can be restored after oral administration 

of sodium butyrate [54].   

 Because of its unpleasant smell, butyrate is rarely used in clinical trials and instead 4-

phenylbutyrate (PBA), an odorless and palatable derivative of butyrate is used clinically. In 

several human cell lines PBA up-regulates CAMP gene expression more potently than butyrate 

[55].  It was recently shown that PBA also counteracts the down-regulation of cathelicidin in 

both the colon and lung by Shigella in rabbits [56].  Furthermore, butyrate and its derivatives up-

regulate transcription of cathelicidin in human colon epithelial cells [57] and synergistically 

induces human CAMP mRNA levels with 1,25(OH)2D3 in lung epithelial  and myeloid cells [32, 

55].  A chemical analogue of PBA, -methylhydrocinnamate (ST7), can also dramatically up-

regulate human CAMP mRNA transcription [55].  These studies support a potential role for 

sodium butyrate and its derivatives in the treatment of human infections. 

      Defensins: There are few publications reporting the regulation of defensins by butyrate; 

however, it has been shown to induce HBD-2 mRNA expression in colonocytes [58] and 

pretreatment of gingival epithelial cells with sodium butyrate significantly induced HBD-2 

expression in response to bacterial challenge [59]. 

 

Sulforaphane 

     Defensins: Sulforaphane (SFN) is a dietary HDACi found in cruciferous vegetables (e.g. 

broccoli and broccoli sprouts) that reactivates epigenetically-silenced genes [60].  Recently, it 

was demonstrated that SFN induces HBD-2 mRNA and protein expression in the Caco-2 human 

colon cancer cell line in a time- and dose-dependent manner [58].  Inhibition of VDR by an 

antagonist significantly blocked the SFN-induced HBD-2 mRNA expression in these cells, and 
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SFN treatment increased the expression of VDR in both Caco-2 and HT-29 cell lines, indicating 

that induction of HBD-2 by SFN was mediated by the vitamin D pathway [58].  Whether these 

observations were due to epigenetic changes was not examined.  The MAPK/ERK and NF-κB 

signaling pathways were also involved [58].  It has not been determined if cathelicidin 

expression is regulated by SFN. 

 

Retinoic acid  

     Retinoic acid (RA) is a metabolite of vitamin A which is important in several aspects of 

immune function [61].  The retinoic acid receptor (RAR) forms a heterodimer with the retinoid X 

receptor (RXR) and interacts with specific retinoic acid response elements (RAREs) in the 

promoters of target genes [62].  All-trans RA was shown to induce both porcine cathelicidin, PR-

39 expression [63] and hCAP18 promoter activity [64].  In contrast, induction of HBD-2, -3 and 

-4  by Ca
2+

, TNF-, IL-1, INF-γ, PMA or P. aeruginosa in human keratinocytes is inhibited by 

RA [65].  The promoter regions of all the inducible human -defensin genes have several 

possible AP-1 binding sites [65] and RA may suppress expression of these genes by antagonizing 

AP-1 (c-Jun/c-Fos)-mediated gene expression pathways [66].  Therefore, RA may impair the 

innate immune response in human skin, thus increasing susceptibility to infections during RA 

therapeutic treatment [65].  On the other hand, -defensin HNP-1 was induced by both all-trans 

RA and 9-cis-RA in a dose-dependent manner, suggesting that retinoic acid may be important for 

myeloid cell expression of HNP-1 [67].   

 

Human Health 

http://en.wikipedia.org/wiki/Retinoic_acid_receptor
http://en.wikipedia.org/wiki/Retinoid_X_receptor
http://en.wikipedia.org/wiki/Retinoid_X_receptor
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     Increasing endogenous cathelicidin and defensin expression may be particularly useful in the 

treatment of infections.  Clinical studies have shown that asthma patients have reduced hCAP18 

levels [68].  High levels of circulating hCAP18 in hemodialysis patients at the beginning of their 

treatment was indicative of a significant decrease in 1-year mortality and there was a modest 

correlation with 1,25(OH)2D3 levels, but not with 25(OH)D levels [19].  In sepsis patients, lower 

25(OH)D, vitamin D binding protein (DBP) and cathelicidin levels were associated with severe 

illness and a positive correlation between 25(OH)D and cathelicidin levels was seen in all 

subjects [69].  Additional studies are needed to substantiate these latest findings and determine if 

supplementation of vitamin D-deficient individuals with vitamin D or therapy with active 

analogs of 1,25(OH)2D3 would boost plasma levels of cathelicidin and thus increase protection 

against infection and sepsis.   

      Supplementation may increase cathelicidin and defensin expression in tissues and immune 

cells, thus enhancing barrier function.  Atopic dermatitis patients suffer from frequent skin 

infections; therefore, induction of CAMP expression in the skin may increase protection from 

infection [70].  Patients supplemented with 4,000 IU/d of oral vitamin D for 21 days showed 

increased cathelicidin expression in skin lesions and a mild increase in unaffected skin, but a 

decrease in skin infection was not determined [70].  Ex vivo infection of urinary bladder biopsies 

from post-menopausal women after vitamin D supplementation resulted in an increased 

induction of the CAMP gene and protein expression when compared to biopsies taken prior to 

supplementation [71].  The studies to date would argue that it is important for individuals to have 

sufficient serum levels of 25(OH)D to allow for the production of  adequate levels of cathelicidin 

during infection.                                                                    
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      Epidemiological studies link vitamin D deficiency and increased rates of respiratory 

infections and there is interest in using vitamin D supplementation to reduce influenza infections 

and treat tuberculosis [72].  In a small randomized trial of school age children, the vitamin D-

supplemented group showed a nearly two-fold reduction in influenza A rates than the placebo 

group [73].  In another study with participants from different racial groups  it was shown that the 

maintenance of serum 25-hydroxyvitamin D levels at 38 ng/ml or higher was correlated with a 

two-fold reduction in the incidence of acute viral respiratory tract infections [74].  In a double-

blind randomized control trial of tuberculosis patients starting treatment, vitamin D 

supplementation did not significantly affect the time that patient sputum cultures converted from 

positive to negative for M. tuberculosis growth in the study population as a whole; however, a 

significantly shortened time of conversion was observed in a sub-group of participants with the tt 

genotype of the TaqI vitamin D receptor polymorphism [75].  The latter study demonstrates the 

importance that genetic differences among individuals may play in the outcomes of trials 

involving supplementation. 

       In contrast to the positive findings above, a number of negative studies with vitamin D have 

been reported.  A randomized controlled trial of vitamin D3 supplementation showed that there 

was no obvious difference in the incidence and duration of severity of upper respiratory tract 

infections (URIs) between vitamin D (2000IU/day) and placebo groups although 25(OH)D level 

increased significantly after 12 weeks in the vitamin D group compared to the placebo group 

[76].  Another study found that there was no difference in serum 25(OH)D levels between groups 

of patients aged 1-25 months admitted to hospital with uncomplicated acute lower respiratory 

tract infection (ALRI) and healthy, similarly aged patients without a history of hospitalization for 

ALRI.  This study suggested that vitamin D status was not a risk factor in hospitalization for 
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ALRI [77].  In a randomized, double-blind, placebo-controlled trial in TB clinics, the 

intervention and placebo groups were given 100,000 IU of cholecalciferol or vegetable oil at 

inclusion and again at five and eight months after the start of treatment, but no significant 

difference was observed between the groups on mortality in patients with TB [78].  

 Very recently, a randomized, double-blind, placebo controlled clinical trial to determine 

the efficacy of sodium butyrate as an adjunct therapy with antibiotics in the treatment of 

shigellosis in patients was performed.  Reduced rectal luminal content of inflammatory cells and 

pro-inflammatory cytokines, increased expression of LL-37 in the rectal epithelia and improved 

rectal histopathology as compared to the placebo group was evident [79].  Nevertheless, efficacy 

of sodium butyrate treatment in clinical recovery was not observed as in studies with rabbits [54, 

79].  Important differences between the animal and human studies included oral delivery in 

rabbits versus delivery by enema in the humans and the lack of antibiotics in rabbits [79].  It 

remains to be determined if oral delivery of butyrate compounds would be more efficacious as 

the treatment would not be eliminated as quickly as it is with an enema due to repeated bouts of 

diarrhea [79].   

 

Conclusions 

     Accumulating evidence demonstrates that nutrients and microbial byproducts derived from 

the metabolism of dietary factors may play a critical role in modulating the innate immune 

response via regulation of AMP gene expression.  The byproducts of gut microbe metabolism are 

potentially important for increasing AMP expression by epithelial cells of the luminal lining of 

the digestive tract, thus establishing a mucosal barrier preventing contact of microbes and 

pathogens with the intestinal epithelium [12, 50].  Increasing the consumption of dietary fiber, 
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thus increasing short chain fatty acid production, and/or food containing dietary HDAC 

inhibitors could increase the expression of AMPs in the digestive tract.  This in turn would 

increase barrier protection in the gut lumen and reduce the rate or severity of intestinal 

infections.  This is nicely demonstrated in the studies using a rabbit model of shigellosis [54, 56] 

and has shown some promise in a human trial [79]. 

     The potential for VDR and FXR to bind to the VDRE in the human CAMP gene offers an 

abundance of new compounds that can be synthesized or obtained from the diet to produce 

potent ligands for these steroid hormone receptors and used to enhance AMP expression.  For 

example, the therapeutic use of active vitamin D is hampered by the toxic side-effects of 

hypercalcemia [12] and although synthetic analogs reduce these side-effects they still exist.  On 

the other hand, analogs of LCA have been shown to lack this side-effect, but activate VDR-target 

genes like CAMP [51]. 

       The VDR may act as a receptor for additional nutritional ligands including curcumin and 

polyunsaturated fats including -linolenic acid, docosahexaenoic acid, eicosapentaenoic acid and 

arachidonic acid [80]; however, we recently demonstrated that in tissue culture only curcumin 

modestly induced CAMP gene expression through a yet uncharacterized VDR-independent 

mechanism (Guo et al., in press).  Identification of additional nutritional compounds and their 

synthetic analogs would provide further options for increasing AMP gene expression for 

therapeutic uses. 

      AMPs are critical to the barrier defense provided by the innate immune system and deficits in 

AMP production can increase susceptibility to infections. As discussed, numerous nutritional 

compounds and microbial byproducts from metabolism of dietary factors have been shown to 

regulate the expression of AMPs. The possibility of improving the innate immune response or 
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boosting barrier defenses toward infection by increasing the consumption of food items rich in 

these nutrients is an exciting prospect, but well-designed clinical and animal model studies need 

to be performed to demonstrate that compounds obtained from the diet can improve immune 

function by increasing AMP levels. 
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Figure Legends 

 

Figure 1.  Regulation of AMP gene expression through the VDR or FXR pathways.  (A) Vitamin 

D-pathway dependent TLR activation of CAMP gene expression.  TLR-signaling activates NF-

κB binding and induces VDR and CYP27B1 expression, the enzyme that catalyzes the 

conversion of 25(OH)D to 1,25(OH)2D. The expression of the vitamin D receptor (VDR) is 

increased. In the presence of locally high levels of 1,25(OH)2D, ligand-bound VDR:RXR 

heterodimers translocate into the nucleus and bind to the VDRE in the promoter of the human 

CAMP gene inducing its expression.   (B)  Vitamin D-mediated regulation of the human DEFB4 

gene.  (1) Direct induction: TLR stimulation activates the vitamin D-pathway as described in Fig. 

1A.  Also it up-regulates expression of IL-1β and IL-1R1 and down-regulates expression of IL-

1R antagonist (IL-1RA).  IL-1R1 activates the NF-κB transcription factor which binds to the 

promoter proximal NF-κB binding site in the DEFB4 gene and induces HBD-2 expression 

together with the VDR:RXR heterodimer that binds to the VDRE in the promoter of DEFB4 

gene. Indirect induction:  In the presence of 1,25(OH)2D3 the VDR:RXR heterodimer that binds 
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the VDRE in the NOD2 gene promoter and induces expression of the NOD2 protein.  Activation 

of NOD2 by its agonist muramyl dipeptide stimulates the NF-κB transcription factor that binds 

to the promoter proximal NF-κB binding site in the DEFB4 gene to induce its expression.  (C)  

Regulation of human CAMP gene expression by vitamin D and bile salts in biliary cells.  1) 

1,25(OH)2D3 activates the VDR:RXR heterodimer that then binds to the VDRE in the CAMP 

gene promoter;  2) UDCA activates the ERK1/2 signaling pathway that, in turn, induces VDR 

protein expression and induction of CAMP gene expression in the presence of 1,25(OH)2D3 and 

3) CDCA binds to the FXR:RXR heterodimer that binds to the VDRE in the CAMP gene 

promoter.   

  

 


