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The biorevolution in the 1970’s greatly stimulated investment in life-science 

research.  The present dissertation is aimed at evaluating the impact of US public 

investment on industrial investment in life-science research.  The focus is on three major 

life-science fields: biology, medicine, and agriculture.  A dynamic model of industrial 

R&D investment is developed to identify the channels of influence which public R&D 

investment has on industrial R&D investment.  The model takes into consideration four 

determinants of industrial R&D investment: market demand, technological opportunity, 

supply of scientific labor, and adjustment costs.  The model is estimated using R&D 

expenditures and patent counts constructed at the individual life-science field level.  

 Results show that, as far as the life sciences are concerned,  the R&D performed 

by public institutions has been the primary cause of the past two decades’ surge in 

industrial R&D investment.  Even after accounting for the negative wage effect, public-



institution R&D has been strongly complementary to industrial R&D, both in agriculture 

and in medicine.  Public institutions’ basic biological research has had a significant 

“infrastructure” effect on industry’s agricultural and medical research.  Although analysts 

typically have argued that market demand and technological opportunity are equally 

important determinants of the pace and direction of technological change, we find that, in 

the life sciences at least, the dominating stimulant to industrial R&D investment has been 

technology push, i.e., the creation of new technological opportunities when advances are 

made in public institutions’ research.    
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Public Investment Policy and Industry Incentives in Life Science Research 

 

Chapter 1:  Introduction 

 

Life science has become one of the most promising forces of technological 

change and economic growth.  The last two decades have seen a surge of investment in 

life-science research by both the public and private sector.  According to my estimates, in 

1980 U.S. public institutions and industrial firms listed in the U.S. stock markets together 

invested $21.5 billion (2001 constant dollars) in the three major life science fields: 

biology, medicine and agriculture.  By 2003, they were spending $103.7 billion (2001 

constant dollars), about five times the investment in 1980.  In contrast, the total U.S.R&D 

investment in all fields in 2003 was only less than 2.5 times the investment in 1980 

(National Science Foundation, 2003,  table B-21). 

On the other hand, the sectoral composition of life science R&D has undergone a 

dramatic change in this period.  Of the $21 billion R&D in 1980, 60% was invested and 

performed by public institutions such as federal and state governments, universities and 

colleges, and other nonprofit institutions.  The other 40% was invested and performed by 

industry.  By 2003, the public sector only accounted for 29% of the $103.7 billion R&D. 

The rising importance of industrial investment calls for a comprehensive 

evaluation of the role played by public institutions in life science research.  The economic 

rationale of public institutions’ direct involvement in research activity is that a free-

market economy would underinvest in research because of the two peculiar properties of 



knowledge—nonrivalry and partial excludability—as well as the inherent uncertainty in 

knowledge production.  Thus, a socially desirable rate of technological change requires 

public institutions that are not governed by the profit-and-loss criterion for financing 

research activity [Arrow (1962); Nelson (1959).]  Given that so many resources have 

been devoted to life science research by industry, should public institutions continue their 

direct involvement in this enterprise?  Does public investment have anything to do with 

the surging industrial investment in life-science activity?  Does public investment in life 

science research encourage, or substitute for, industrial investment?  These questions are 

especially pertinent to the making of science policy in the federal government, given that 

a large proportion of federal R&D funds is now being invested in life sciences.  In 2003 

life sciences received 53.7% of total federal funds for R&D, according to the recent 

report, “National R&D Trends,” by the National Science Foundation (2003). 

In order to trace the channels of influence which public R&D investment has on 

industrial R&D investment, a thorough understanding of the determinants of industrial 

R&D investment is needed.  The determinants of R&D investment have been extensively 

studied in the literature.  Market demand, technological opportunity, appropriability of 

research outcomes, and research input price are considered to be the major factors a firm 

must take into consideration in making R&D investment decisions.  Moreover, even 

potentially the most profitable R&D project requires the firm be in a position to finance 

the project; and when rapid R&D investment incurs adjustment costs, the firm must slow 

down the pace of investment. 
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The purpose of this dissertation is to evaluate the impact of public investment on 

industrial investment in life science research through a structural examination of 

industry’s dynamic investment decisions.  I focus on the three major life science fields: 

biology, medicine, and agriculture.  I develop a multi-field, two-sector model through 

which I simultaneously examine knowledge spillovers and industry’s dynamic 

investment decisions.  I estimate the model with a unique dataset on R&D expenditures 

and patent counts, constructed at the individual field level.  Results shed light on the 

contribution of public R&D to the growth of industrial R&D in life science, and provide 

guidance for future public investment policy in life science research.    
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Chapter 2:  Literature Review 

 

2.1  Economic Rationale of Public Intervention in Research and Development 

 

Technological change has been widely viewed as one of the most important 

driving forces of economic growth [Romer (1990); Solow (1957).]  It is also well 

established in the literature that a free market economy would fail to sustain a socially 

desirable rate of technological change and that the public sector should intervene in this 

enterprise.  Two schools of thoughts underlie this argument.  On the one hand, from a 

Schumpeterian perspective, innovation creates market power and therefore generates 

welfare losses in the short run.  On the other hand, innovation reduces production cost 

and brings a greater variety of commodities to consumers, improving social well-being in 

the long run.  Moreover, it is the potential quasi-rent available to the innovator as a 

monopolist in the market that constitutes the incentive for continuing innovation 

(Schumpeter, 1950).  To sustain long-term prosperity, therefore, government should 

allow the innovator to have monopolistic market power for a certain period of time.  If 

the monopoly period is too long, the long-run welfare gain will not cover the short-run 

welfare sacrifice.  The optimal solution therefore lies somewhere in-between.  This 

theory constitutes the economic rationale for the patent system and has played an 

important role in the evolution of antitrust law.   

From the point view of welfare economics, the social benefit of basic research is 

far higher than the private benefit appropriable to profit-seeking firms, implying that a 
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free market economy would underinvest in basic research (Nelson, 1959).  More 

generally, the production and trading processes of knowledge as a good have certain 

peculiarities: increasing returns in use, inappropriability, and uncertainty—the three 

classic reasons for the failure of a competitive economy to achieve optimal resource 

allocation—all hold in this case (Arrow, 1962).  The central theme in Nelson and 

Arrow’s studies is that a free market economy would underinvest in R&D and optimal 

allocation of resources in inventive activity calls for governments—or some other 

agencies not governed by the profit-and-loss criteria—to finance R&D.  Having said that, 

it is also likely that competition may cause overinvestment in R&D under certain 

circumstances.  Dasguputa and Stiglitz (1980) show that competition in a specialized 

market may induce replicated R&D programs, resulting in a waste of social resources.  

These theoretical studies are the underpinnings of many government R&D policies, such 

as direct provision of research by the public sector, R&D tax reduction, and R&D 

subsidies.     

Evidence of the success of public involvement in research activity is abundant.  A 

successful example is the U.S. agricultural research system.  As documented in Huffman 

and Evenson (1993), the agricultural sector has on average experienced a 1.61 percent 

annual growth in real output and 1.62 percent growth in productivity during the 20th 

century.  Public R&D investments in agriculture are found to be the major contributors to 

this remarkable growth.  Academic basic research has also been found to be conducive to 

economic growth in the United States.  Combining scientific publication data with 

productivity data, Adams (1990) finds that fundamental stocks of knowledge generated in 

5



 

academic science have been the major contributor of productivity growth in the United 

States.     

 

2.2  Interactions of Public and Private R&D Investment 

 

Public-sector R&D investment not only directly enhances the private sector’s 

productivity, but has a profound influence on the private sector’s R&D investment 

decisions.  A large body of literature has attempted to test whether public-sector R&D 

encourages, or substitutes for, industry’s R&D investment.  An excellent survey by David 

et al. (2000) shows that no satisfactory, conclusive answer can be drawn from this 

literature.  According to these authors, econometric models and data used tend to be non- 

comparable; more importantly, the entire literature lacks the guidance of an appropriate 

structural model, leaving results difficult to interpret.  To fill this gap, David and Hall 

(2000) propose a two-sector model to analyze channels of influence that public 

investment policy may have on private-sector investment decisions.  On the one hand, 

knowledge generated by public-sector research may directly increase the research 

productivity of the private sector.  On the other hand, the public and private sector are 

competing for the same input factor for knowledge production: scientific labor.  

Consequently, an increase in public-sector demand for scientific labor (namely, R&D 

investment) will increase wages and reduce private-sector R&D investment, ceteris 

paribus.   
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This model provides a useful framework for considering the research questions 

raised in the present dissertation.  A comprehensive assessment of the effects of the 

public sector’s R&D investment on private sector  investment requires a good 

understanding of both the technical and behavioral aspects of the problem.  The technical 

aspect refers to knowledge spillovers across sectors and across fields, while the 

behavioral aspect bears on how the private sector’s R&D investment changes in response 

to the public sector’s investment policy.  

The David and Hall model (henceforth D-H model) is restrictive in the sense that 

adjustment costs in R&D investment are ignored.  Yet both theoretical reasoning and 

empirical evidence suggest adjustment costs are present in R&D investment 

(Himmelberg and Petersen, 1994).  As a result, R&D investment tends to approach 

gradually, rather than jump instantaneously toward, the equilibrium.  This dynamic 

disequilibrium phenomenon is missing in the D-H model.  In addition, David and Hall 

focus on theoretical analysis but are silent about how to empirically implement their 

approach. 

In Chapter 3 of this dissertation I develop a theoretical approach which extends 

the static D-H model into a dynamic one by taking into account adjustment costs in R&D 

investment.  The model provides the theoretical foundation for my econometric analysis 

of public and private interactions in life-science R&D investment.  The remainder of this 

Chapter reviews the literature on the technical and behavioral aspects of public and 

private funding interactions.    
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2.3  The Search for Knowledge Spillovers 

  

2.3.1  Performance Response to Knowledge Spillovers 

 

The non-rivalry and partial excludability properties of knowledge are pertinent to 

a wide range of economics fields, from public finance to industrial organization and to 

growth theory.  Not surprisingly, a large body of literature has emerged searching for 

empirical evidence on knowledge spillovers.  The most popular approach is to examine 

the effect of R&D spillovers on the performance of the spillover-receiving unit, measured 

by productivity growth in a primal or dual framework.  The statistical observations can be 

business lines, firms, or industries.   

The central issue in this literature is the construction of the R&D spillover stock.  

The R&D spillover stock usually is defined as a weighted sum of R&D investments by 

the potential “spilling” units, with the weights measuring the “distances” between the 

spillover-receiving and spillover-giving units.  Three weighting schemes have been 

adopted in the literature.  The first uses the industry input-output matrix to construct a 

matrix of weights, the second is based on a technology flows matrix constructed using 

R&D expenditure and patent data (Scherer, 1984), and the third adopts a matrix of 

technological proximity weights derived from the diversification of  a firm’s patents 

across various patent classes (Jaffe, 1986).   

Several surveys on this literature conclude that there exist reliable evidence of the 

presence of R&D spillovers.  In his earlier survey of this literature, Griliches (1992) 
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points out a long list of flaws in the conventional measures of the R&D spillover stock.  

Despite these measurement problems, he concludes with convincing evidence that R&D 

spillovers are present, their magnitude may be quite large, and social rates of return 

remain significantly above private rates.  Mohnen’s survey (1996) concludes that on the 

whole the literature suggests borrowed R&D exerts a more significant marginal effect on 

productivity than own R&D.  Yet, own R&D and borrowed R&D affect productivity 

growth differently for different countries.  For example, the United States seems to 

benefit more from own R&D than from foreign R&D, whereas Japan appears to benefit 

more from foreign R&D than own R&D (Cincera and Bruno Van Pottelsberghe de la, 

2001).  Evidence on cross-firm knowledge spillovers has been found in many studies.  

Cincera and Van Pottelsberghe de la (2001) review 38 econometric estimation results on 

this issue, 14 of them being insignificant and 23 of them significantly positive.   

Although evidence seems in favor of the presence of R&D spillovers, caution 

must be taken in interpreting the results.  In many interindustry studies, the performance 

response approach fails to distinguish two types of R&D spillovers, making it difficult to 

interpret which is actually being measured.   

 

2.3.2 Knowledge Spillovers and Rent Spillovers 

 

Griliches (1979) shows that two major sources of externalities are associated with 

R&D: knowledge spillovers and rent spillovers.  Knowledge spillovers arise from 

imperfect appropriability of knowledge:  knowledge can transcend the boundaries 
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between various economic institutions with little cost.  Different from knowledge 

spillovers, rent spillovers are associated with economic transactions.  An innovator 

cannot capture all the benefits from inventing a new product unless she can exercise first-

degree price discrimination.  Additionally, conventional measures of productivity 

improvement do not correctly capture the benefits of an innovation to either the 

supplying or the buying industry, unless the price deflator for the new product is a perfect 

hedonic price index. 

Thus, the distinction needs to be made clearly between the two different types of 

R&D spillovers, especially when one is assessing R&D investment policy.  Confusing 

them may result in overestimation of knowledge spillover effects and therefore flawed 

policy implications.   

The performance response framework discussed in 2.3.1 fails to distinguish 

between these two types of spillovers.  The spilling industry’s R&D may influence the 

spillover-receiving industry’s performance through either knowledge spillovers or rent 

spillover or both.  Consequently, the parameter on the R&D spillover stock is a measure 

of mixed spillover effects. 

   

2.3.3 Alternative Approaches to Searching for Knowledge Spillovers 

 

Alternative approaches to searching for knowledge spillovers exist in the 

literature.  One of them is to directly estimate the spillover weights, instead of imposing 

any a priori weights.  Bernstein (1989) and Bernstein and Nadiri (1988;1989) do so by 
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treating each industry as a distinctive spillover source.  As a result, their estimates yield a 

network of knowledge spillovers, where each industry is both the spillover sender and 

receiver.  The advantage of this approach is that the weights are estimated directly.  The 

disadvantage lies in the potential multicollinearity in explanatory variables, and in the 

weak degrees of freedom when a large number of industries under study are observed in a 

short time period.  Note that, for interindustry studies, this approach does not distinguish 

between knowledge and rent spillovers either.   

In an intra-industry study such as Bernstein and Nadiri (1989), however, the 

distinction between the two types of spillovers is not an issue because, presumably, there 

exist no rent spillovers within an industry.  The problem remains for studies on 

international knowledge spillovers unless one is working on firm-level data within the 

same industry, or the industries under study do not use one another’s products as 

production inputs.  

Several authors estimate R&D spillovers in a knowledge production function 

framework, where R&D stocks are inputs and patent counts are the output [e.g., 

Henderson and Cockburn (1993) and Jaffe (1986)].  Instead of looking at the effects of 

R&D spillovers on productivity growth in the production of physical goods, these authors 

examine the effects of R&D spillovers on productivity improvement in research activity.  

The distinction between knowledge spillovers and rent spillovers is not at issue here 

because the former are the only spillover effects that prevail.   

In summary, the performance response approach has the inherent difficulty in 

distinguishing between knowledge spillovers and rent spillovers.  When external R&D 
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can influence the performance of an economic unit through both knowledge and rent 

spillovers, a simple regression of performance on R&D spillover stock links one common 

end of the two channels directly to another and therefore will necessarily mingle the two 

distinct forces of influence together.   

There are at least two ways to avoid this problem.  One way is to carefully select a 

statistical sample for which borrowed R&D influences the performance of the economic 

unit only through the channel of interest.  The intra-industry study, for instance, is of this 

kind.  Another way to avoid the problem is to focus on intermediate steps of the causality 

chain to identify the channel of influence in question.  The knowledge production 

function approach falls into such a category.  In the present dissertation, I estimate 

knowledge spillovers in a knowledge production function framework.  Hence, my 

analysis is not subject to the problem discussed above.   

 

2.4 Determinants of R&D Investment 

 

The literature in the 1960s and 1970s has seen a heated debate on whether market 

demand or technological opportunity is the primary determinant of the rate and direction 

of technological change.  In addition to market demand and technological opportunity, 

determinants of R&D investment include other factors such as appropriability, factors 

that affect supply of R&D input, financial constraints facing the R&D investor, and 

adjustment costs in R&D investment.  In this Section I review and synthesize the 

literature on the determinants of R&D investment. 
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2.4.1 Demand-Pull vs. Technology-Push 

 

Since Schumpeter’s (1950) masterpiece was published, economists have devoted 

a great amount of interest and effort to opening the black box of inventive activity for a 

deeper understanding of technological change, business cycles, and economic growth.  

The literature emanated from a fundamental question:   what are the underlying forces 

that determine the rate and direction of technological change? 

Schmookler (1966) argues that technological change—rather than residing in a 

black box independent of economic activities—is determined entirely by economic forces, 

and predominantly by demand forces.  In his study on the railroad industry, Schmookler 

finds that increases in the purchase of railroad equipment and components are followed 

by increases in inventive activity measured by patent counts.  Schmookler also finds 

evidence from cross-industry data to support his demand-pull hypothesis.   

As documented in Ruttan (1997), the debate about the primary role of demand 

side forces and supply side forces intensified in the late 1960s.  On the one hand, studies 

supported by the Office of the Director of Defense Research and Engineering show that 

the significant research programs which contributed to the development of 20 major 

weapons systems were motivated primarily by military need.  On the other hand, a series 

of studies initiated by the National Science Foundation finds that scientific breakthroughs 

have been of much greater importance as a source of technical change.  

This debate ended in the late 1970s, mainly owing to Rosenberg’s critique (1974) 

on Schmookler’s work, as documented in Ruttan (1997).  The main objection Rosenberg 
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raised is Schmookler’s neglect of the supply side forces.  According to her analysis, 

Schmookler’s conclusions are based on an inappropriate assumption that the supply curve 

of inventions is perfectly elastic.  Using an extensive list of historical events of scientific 

and technological breakthroughs, she demonstrates how technological progress has been 

stagnant in certain disciplines because of the constraints of human knowledge; even when 

strong demands exist.  Rosenberg argues that technological opportunities are different for 

different industries, and therefore inventions are not equally possible in all industries.  

Accordingly, a better understanding of the nature of inventive activity calls for an 

integrated investigation into both demand factors and technological opportunities.  

Schmookler’s empirical study has been challenged by later researchers as well.  

Scherer (1982) retests Schmookler’s empirical study using a more comprehensive dataset, 

which includes all manufacturing industries in contrast to only 23 industries in 

Schmookler’s dataset.  Instead of focusing only on capital goods inventions, Scherer also 

studies industrial materials inventions.  Although Scherer finds significant correlation 

between demand indices and patent counts in all cases, the correlation is much weaker for 

materials inventions and the R-squares are far lower than those obtained by Schmookler.  

As for the relative importance of demand side forces and technological opportunity, 

Schmookler’s conclusion is again only supported by the sample of capital goods 

inventions, but not by that of material goods inventions.  Scherer then concludes that 

Schmookler uses the data best suited for supporting his hypothesis, and argues that both 

demand factors and differential technological opportunities must be taken into account 

for an adequate explanation of the rate and direction of technological change. 
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2.4.2 Appropriability 

 

The firm’s R&D investment, like any kind of investment, depends on the 

expected present value of the benefits that can be derived from the investment.  The 

private benefits of R&D are the quasi-rents an innovating firm can extract as a 

monopolist.  Because of the partial excludability of knowledge, the firm may not be able 

to appropriate all the benefits derived from its R&D effort.  Appropriability, which may 

depend on entrepreneur ability, industrial market structure, and the general institutional 

framework in which the firm operates, is another crucial factor in the determination of the 

firm’s demand for R&D investment.   

In the early 1980s, two ambitious studies by Levin and Reiss (1984) and Pakes 

and Schankerman (1984) attempted to combine appropriability with market demand and 

technological opportunity to explain the distribution of R&D intensity across firms and 

across industries.  Pakes and Schankerman (1984) find that demand factors only explain 

5% of the intraindustry variance in R&D intensity, whereas about 70% of the 

intraindustry variance is explained by technological opportunity and appropriability.  In 

the interindustry sample, the story is quite different.  Demand factors account for the 

majority of the interindustry variance in R&D intensity.  According to these authors, that 

different results are obtained at the two different levels of aggregation is due to factors 

affecting the R&D intensities of all firms within the industry.  This finding complements 

those obtained by Schmookler (1966) and Scherer (1982) by specifying that it is the 

industry-specific demand factors rather than firm-specific demand factors that influence 
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R&D investment decisions.  One of the limitations of this study is that the measurement 

of technological opportunity and appropriability is rather crude:  the two of them are 

jointly measured by dummy variables.   

Levin and Reiss (1984) propose a model to test whether interindustry differences 

in technological opportunity, appropriability, and demand can satisfactorily explain 

differences in R&D intensity, concentration, and advertising.  The hypothesis that 

technological opportunity and appropriability do not matter is decisively rejected.  The 

study stands out from previous ones because of its comprehensiveness.  It not only 

incorporates all the three determinants of R&D intensity mentioned above, but also is 

featured with joint determination of market concentration and R&D intensity.  In addition, 

a government R&D equation is included.  They find that government funded R&D 

stimulates industry R&D by enhancing industry’s technological opportunity conditions.  

The comprehensiveness of this study, however, comes at a cost.  The structural model is 

based on a restrictive assumption that all the firms are assumed to be homogeneous and 

symmetric.  Another limitation of this study is the use of dummy variables to capture the 

intraindustry variance in technological opportunity.   

 

2.4.3 Supply of Scientific Labor 

 

David and Hall (2000) probably is the only study to date that emphasizes the 

importance of factors that affect supply of R&D input in the determination of R&D 

investment.  They propose a two-sector (the public and private sector) R&D investment 
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model to study the channels through which the public investment policy may influence 

the private sector’s investment.  The private sector’s demand for R&D investment is 

simply determined by equating marginal product value of R&D investment with wage of 

scientific labor.  The two sectors are competing for the same input factor of knowledge 

production: scientific labor.  When the supply of scientific labor is inelastic, an increase 

in governmental R&D investment may boost the wage of scientists and engineers and 

thus inhibit industry’s investment incentive.   

 

2.4.4 Financing of R&D  

 

Even the best investment opportunity may be left unexploited if no money can be 

found to support the investment project.  The optimal level of R&D investment— as is 

determined by demand factors, technological opportunity, and supply conditions of 

research input—will never be achieved if the firm is not in a position to finance that 

much R&D.  Financial constraints frequently force R&D managers to suspend or drop 

potentially profitable R&D projects.  On the one hand, the need for R&D investment can 

seldom be completely satisfied by internal cash flow.  On the other hand, external 

financing is oftentimes more costly than internal financing because of asymmetric 

information between the investor and innovator (Hall, 2005). 

In this context, the asymmetric information problem refers to the fact that the 

investor is not as informed about the likelihood of success—and the risks—of the R&D 

project as is the innovator.  The investor’s failure to distinguish good projects from bad 
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projects generates an extra “lemons” premium for the transaction to take place.  In the 

extreme case where the asymmetric information problem is too serious and the variance 

in the profitability of R&D projects is too large, the marketplace for the financing of 

R&D will disappear completely.  Still worse, the non-rival nature of knowledge makes it 

infeasible to alleviate the problem through the innovator providing more information 

about the project to the investor.  The innovator is unwilling to reveal detailed 

information about the R&D project to be financed; because once knowing the 

information, the investor can exploit the value of the information with little cost (Hall, 

2005).  

Empirical evidence is abundant that investment (including both physical and 

R&D investment) tends to be highly correlated with measures of internal financial 

resources; the correlation is most significant for firms likely to face asymmetric 

information problems [see Hubbard (1998) for a survey on this topic.]   In their study of a 

panel of 179 firms in high-tech industries, Himmelberg and Pertersen (1994) find a large 

and significant relationship between R&D investment and internal cash flow, suggesting 

that internal financing conditions are an important determinant of R&D intensity.  Hall 

(1992) provides similar evidence by examining a broader panel of U.S. manufacturing 

firms,   

Although the importance of financing conditions in determining R&D investment 

is widely recognized, no empirical effort has been made to simultaneously study this 

factor with other determinants of R&D investment.  Future research should make this 
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attempt, given the fairly convincing evidence of the importance of financing conditions in 

the determination of industrial R&D investment.  

 

2.4.5 Adjustment Costs and Investment Theory 

 

In a study concerned with the firm’s R&D investment behavior, a background 

discussion on the theory of investment seems in order.  The theory of investment has 

occupied a large number of research programs.  Hence, I will not attempt to review the 

entire literature as it is impossible and unnecessary in the present dissertation (an 

excellent survey can be found on the History of Economic Thought website: 

http://cepa.newschool.edu/het/essays/capital/invest.htm).  Rather, I will focus on the 

neoclassical theory of investment which provides the foundation for the theoretical model 

proposed in this dissertation.   

 

2.4.5.1 The Neoclassical Theory of Investment 

 

In their early attempt to derive a new theory of capital and investment from the 

neoclassical marginal productivity theory, economists were frustrated by the difficulty of 

dealing with the flow variable, investment.  The frustration is manifest in a passage by 

Haavelmo: 

 
“What we should reject is the naive reasoning that there is a ‘demand 
schedule’ for investment which would be derived from a classical scheme of 
producers’ behavior in maximizing profits.  The demand for investment 
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cannot simply be derived from the demand for capital.  Demand for a finite 
addition to the stock of capital can lead to any rate of investment, from almost 
zero to infinity, depending on the additional hypothesis we introduce 
regarding the speed of reaction of capital-users.”  

                         — Haavelmo (1960, pp: 216) 
 

To tackle this problem, Jorgensen (1963) derives the optimal capital stock from 

the firm’s intertemporal optimization problem, and assumes that ordered investment 

goods are delivered in separate periods of time, when desired capital stock transfers from 

one equilibrium to another in response to changes in the decision environment.  It follows 

from the latter assumption that the demand for investment is equal to the sum of weighted 

capital stocks in the past periods.  

Jorgenson’s ad hoc treatment of investment demand, which has been highly 

controversial, is forced by the fact that the first order conditions of the firm’s 

intertemporal optimization problem are independent of investment.  While the demand 

equations for capital and other variable inputs can be uniquely determined, the demand 

for investment is equal to either zero or infinity: it will equal zero if the demand for 

capital stays the same, and infinity if extra capital (or disinvestment) is needed 

immediately.  Delivery lags are introduced to prolong the disequilibrium phase so that 

investment occurs every period. 

Eisner and Strotz (1963) propose a more constructive solution to this problem by 

introducing the notion of adjustment costs.  Suppose that a new long-run equilibrium in 

response to changes in the business environment entails an increase in capital.  The new 

equilibrium will not come about instantaneously.  Rather, it will take a certain number of 

periods before the final adjustment can be made to reach the new equilibrium.  Various 
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states of this adjustment process constitute the short- and intermediate-run equilibria, and 

the length of this adjustment process depends on the fixity of capital.   Adjustment costs 

are specified as an increasing and convex function of the investment rate, so that a 

continuous adjustment path can be determined by the profit optimization problem of the 

firm.  

The argument that there are adjustment costs in investment is further extended by 

Lucas (1967) and Treadway (1971) to include n fixed factors.  In their models, the firm’s 

decision rule is governed by a system of differential equations, the solution of which 

provides the demand function of investment goods.  Lucas (1967) also shows that the 

demand function so obtained coincides with, and therefore rationalize, the empirically 

robust flexible accelerator model.   

The backbone of these models is obviously the assumption that adjustment costs 

increase with investment at an increasing rate.  Why this is so, however, has been 

explained in different ways.  Some authors argue that adjustment costs are internal to the 

firm.  When new equipment is purchased, for example, it needs to be installed and 

workers need to be trained to work effectively on it before it can finally be used as a 

productive input.  This “integration” process will distract resources from production, and 

the more rapid is this “integration,” the more resources it will distract.  Other authors 

argue that adjustment costs are external to the firm:  a high investment rate will raise the 

prices of the investment goods and therefore increase investment cost. 

Empirical evidence of the adjustment cost hypothesis is sparse.  Most empirical 

studies estimate only the derived factor demand system [e.g., Bernstein and Nadiri (1989) 
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and Epstein and Denny (1983).]  As an exception, Lichtenberg (1988) directly estimates 

both a production function and a labor demand equation and finds that a dollar of 

expansion in investment causes a 35 cent reduction in current output, providing strong 

support for the internal adjustment cost hypothesis. 

 

2.4.5.2  Adjustment Costs in R&D Investment 

 

The general investment theory discussed above can be directly applied to R&D 

investment.  Moreover, economists argue that R&D investment incurs relatively high 

adjustment costs in comparison with physical investment.  The argument runs as follows.  

The majority of R&D investment goes to wage payment to engineers, scientists, and 

other research workers.  On the one hand, newly hired research workers need to be 

trained before their skills can be productively applied to the firm’s R&D programs.  On 

the other hand, since a significant proportion of R&D capital accumulated by the firm is 

embodied in its research workers, firing these workers implies an immediate loss of R&D 

capital (Grabowski, 1968).   

Empirical evidence on the existence of adjustment costs in R&D investment is 

even more scanty than in physical investment.  Bernstein and Nadiri (1989) estimate the 

R&D and physical investment demand equations simultaneously in a dynamic factor 

demand system, which is derived from the firm’s intertemporal cost minimization 

problem.  In all the four industries studied, the authors find that R&D investment adjusted 

more slowly than physical investment.  This, however, can not be interpreted as evidence 
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of the existence of adjustment costs in R&D investment, because without the adjustment 

cost assumption, the demand system would be totally different from the one they estimate.  

Consequently, the dynamic factor demand system derived from the firm’s intertemporal 

optimization problem does not permit a nested hypothesis testing for the adjustment cost 

assumption.  The present dissertation estimates the knowledge production function along 

with the first-order condition of the firm’s dynamic profit optimization problem.  In the 

case of no adjustment costs in R&D investment, the production function and the first 

order condition of the dynamic profit optimization problem collapse exactly to their 

respective counterparts in a static model, in the spirit of David and Hall’s.  This approach 

thus permits a nested hypothesis test of the adjustment cost hypothesis. 

To conclude, the neoclassical theory of investment provides a convenient 

framework to derive R&D investment demand.  One may use this framework to construct 

a model that takes into account the important dynamic aspect of R&D investment, as well 

as other determinants of R&D investment such as market demand and technological 

opportunity.  There exist some limitations in this approach, however.  The adjustment 

cost model typically assumes perfect competition in both the input and output markets.  

Yet it is widely recognized in the industrial organization literature that the firm may use 

R&D investment as a strategic instrument to acquire market power.  In this sense the 

value of research output should depend on the firm’s investment decisions.  I did not find 

any study that attempts to take into account this dynamic factor in an adjustment cost 

model of investment.  The difficulty is that a departure from the price-taking competition 

23



 

assumption will not permit a closed-form reduction of the system of differential equations 

which governs the firm’s decision rule.   

Another restrictive assumption underlying the adjustment cost model is that the 

firm finances at a constant interest rate.  This assumption apparently contradicts empirical 

evidence of the firm’s dependence on internal cash flow to finance investment.  As 

discussed previously, asymmetric information in capital markets generates an extra 

“lemon” premium for external financing.  Consequently, the interest rate schedule should 

jump up at the point where investment exceeds the firm’s internal financing capacity.  I 

did not find any study incorporating finance conditions into an adjustment cost model.  

Considering the amassed evidence of the firm’s dependence on internal financing 

resources, there is a strong need for future research on this problem.   
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Chapter 3:  Theoretical Model 

 

The model presented in this Chapter describes knowledge spillovers among three 

life-science fields–biology, medicine, and agriculture–and public-private interactions in 

the scientific labor market.  The public sector conducts research in all three life-science 

fields, but the private sector is engaged only in downstream medical and agricultural 

research, not basic biological research1.  The thrust of the model is to understand R&D 

investment decisions in the medical and agricultural industries, and in particular, how 

these decisions may be influenced by the public sector’s investment policy in life-science 

research.     

The model is a dynamic generalization of that introduced by David and Hall 

(2000).  Their model incorporates two effects public-sector R&D investment policy may 

have on the private sector’s R&D investment.  The first is a positive effect:  research in 

the public sector may improve the private sector’s productivity in knowledge generation.  

The second is a negative effect:  since the two sectors presumably compete for the same 

input factor, scientific labor, an increase in R&D investment by the public sector may 

boost the wage of scientific labor, reducing private sector investment ceteris paribus.  

Hence, whether public R&D investment “crowds in” or “crowds out” private R&D 

investment hinges on the relative magnitudes of the spillover effect and wage effect, 

which in turn are determined by the technology and supply of scientific labor. 

                                                 
1 The assumption is driven by the failure to identify industrial investment in biological research (see 
Section 5.2 for construction of industrial R&D investment series.)    
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Here David and Hall’s model is reconsidered in the case in which “internal 

adjustment costs” exist in R&D investment.  When internal adjustment costs exist in 

R&D investment, a rapid change in R&D investment is penalized by a reduction of 

knowledge output.  Hence, it pays to approach the optimal level of investment gradually 

(see Section 2.4.5 for more about adjustment costs in investment).  With the introduction 

of adjustment costs, the private sector’s demand for scientific labor, or R&D investment, 

is the solution to a dynamic profit maximization problem.  In the present dissertation, the 

decision problem is solved under both the static and quasi-rational expectations 

hypotheses, while the equilibrium concept adopted is the “rational expectations 

equilibrium” introduced by Lucas and Prescott (1971).  It can be shown that without 

adjustment costs this dynamic model reduces to David and Hall’s static model, and that 

under the static expectations hypothesis, the long-run equilibrium coincides with the 

equilibrium in David and Hall.   

The specification of quadratic technology and linear supply function allows one to 

analytically solve the dynamic optimization problem and derive investment demand and 

knowledge output elasticities.  Such results provide the theoretical basis for my empirical 

examination of the complementarity-vs.-substitutability hypothesis and the demand-pull-

vs.-technology-push debate.  In addition, I derive the formula for the private rate of return 

in a public investment plan, which may be used to evaluate the worth to the industry of 

one dollar of public investment.   
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3.1 Statement of the Model 

 

Assume that the public sector conducts research in all three life-science fields, 

while there are only two research industries in the private sector, one engaged in medical 

research and another agricultural research.  Knowledge may spill over from one field to 

another and from one sector to another.  The mechanisms of the two sub-models of the 

medical and agricultural research industries are symmetric:  substituting the subscript 

med  for ag  and ag  for med  in the following equations gives us the sub-model of the 

agricultural research industry.   Hence, only the sub-model of the medical research 

industry is presented here.   

Consider a medical research industry in which a finite number of identical 

competitive firms use a single input, scientific labor, to produce a single output, 

knowledge.  The public sector and private sector compete for the same input factor, 

scientific labor for medical sciences.  Let ,med tw  be the wage of scientific labor and ,med th  

be the supply of scientific labor.  The (inverse) supply function is defined to be linear:  

, 1 2 , ,med t med tw hα α= +                                                      (3.1) 

where 1 2 and α α  are parameters of the supply function.  As usual, assume that a higher 

wage induces more supply of labor, namely, 2 0α > .   

Let ,med tp  be the price of knowledge output in medical sciences.  Research firms 

are competitive in the input and output markets, i.e., they take the output price sequence 

,{ }med tp  and wage sequence ,{ }med tw  as given.  One may consider the research industry as 
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a competitive one with a single representative firm.  I assume a quadratic knowledge 

production function with internal adjustment costs: 

, , 1 , , , ,

1 2 5 , 6 , 7 , ,

2 2
3 , 4 , , 1

( , , , , )

        ( )

            +0.5 ( ) 0.5 ( ) ,

prv prv prv pub pub pp
med t med t med t med t bio t ag t

pub pub pp prv
med t bio t ag t med t

prv prv prv
med t med t med t

y f h h h h h

h h h h

h h h

β β β β β

β β

−

−

=

= + + + +

+ −

                                     (3.2) 

where ,
j

i th  denotes the amount of scientific labor engaged in knowledge production in the 

field i  and the sector j  at time t .  Subscript , ,  i med bio ag=  stands for the three life 

science fields: medicine, biology, and agriculture, respectively.  Superscript 

, ,j pub prv pp=  represents the public sector,  the private sector, and the combination of 

the two, respectively.  kβ , 1, 2, 7k = , are the parameters of the knowledge production 

function f .  Assume that 3 0β <  and 4 0β < , which guarantees the function f  is strictly 

concave in , , , 1( )prv prv
med t med th h − ′ .  Assumption 4 0β <  implies that rapid change in R&D 

investment (employment of scientific labor) incurs adjustment costs in the form of a 

reduction of knowledge output.  When 5 0β >  there exist positive knowledge spillovers 

from the public sector’s medical research to the private sector’s:  knowledge generated by 

the public sector helps improve the private sector’s productivity.  The interpretations of 

6β  and  7β  are analogous. 

The representative firm’s R&D investment cost normalized by output price at 

time t  is ,
,

,

med t prv
med t

med t

w
h

p
.  The return to the investment at time t  thus equals to knowledge 
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output (3.2) minus the normalized investment cost.  The representative firm chooses 

contingency plans for ,
prv

med th  to maximize the expected present value of returns: 

,
,0 0 1 2 5 , 6 , 7 , ,

0 ,

2 2
3 , 4 , , 1

[ ( )

                        0.5 ( ) 0.5 ( ) ],

med tprv t pub pub pp prv
med med t bio t ag t med t

t med t

prv prv prv
med t med t med t

w
v E r h h h h

p

h h h

β β β β β

β β

+∞

=

−

= + + + + −

+ + −

∑
                 (3.3) 

where r  is the discount factor obeying 0 1r< < .  The operator tE  is defined by 

|t tE x Ex= Ω , where E  is the mathematical expectation operator, and tΩ  is the 

information set available to the representative firm at time t .  Assume that tΩ  includes at 

least the history of the variables, , , ,pub pub pp
med bio ag medh h h p , and medw , up to time t , and the 

history of priv
medh up to time 1t − .  Note that the representative firm behaves as if the wage 

is independent of its own decision about how much scientific labor to employ despite the 

fact that its own demand for scientific labor affects the wage. 

The solution to the problem (3.3) gives the representative firm’s demand for 

scientific labor, or R&D investment.  The demand-supply equilibrium in the scientific 

labor market must be defined to proceed.  Following Lucas and Prescott (1971), the 

equilibrium pair of sequences ,{ }med tw  and ,{ }prv
med th  satisfy the market clearing condition: 

, 1 2 , ,( ),prv pub
med t med t med tw h hα α= + +                                                    (3.4) 

and the condition that the sequence ,{ }prv
med th maximize (3.3).   
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3.2 Equilibrium Solution: Intuition  

 

Before proceeding to solve for the equilibrium representation of the R&D 

investment sequence, it seems useful to provide an intuitive description of the 

equilibrium solution.  For illustrative purposes, we consider the case where the initial 

value of investment is zero and the decision environment remains unchanged throughout.  

But the intuition gained in this thought experiment can be readily adapted to help 

understand the equilibrium solution when exogenous variables are nonconstant or even 

stochastic.     

In problem (3.3) the expression in the bracket is the return to the representative 

firm at period t .  Denote this return function by , , 1( , , )prv prv
med t med tR h h − • .  Note that without 

adjustment costs, i.e., if 4 0β = , the return function is still quadratic.  Let this function be 

,
ˆ ( , )prv

med tR h • . Assume that all the other exogenous variables are constant and that a steady 

state, or long run equilibrium, of the decision variable ,
prv

med th  exists.  By definition we 

have , , 1
ˆprv prv prv

med t med t medh h h−= =  at the long-run equilibrium.  Therefore, there will be no 

adjustment costs once the long-run equilibrium is achieved.  It turns out that the long-run 

equilibrium of R&D investment  ˆ prv
medh  must maximize the quadratic function ,

ˆ ( , )prv
med tR h • .  

Now the problem (3.3) may be interpreted as finding the optimal path for ,
prv

med th  to reach 

the long-run target ˆ prv
medh — or the maximizer of the function ,

ˆ( , )prv
med tR h • — over an infinite 

horizon.  Figure 3.1 graphically depicts this approaching process.  In this figure, the solid 
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curve represents the function ,
ˆ ( , )prv

med tR h •  and the dashed curves are the return functions in 

each of the first five periods, assuming the initial value of R&D investment is zero.  The 

solid circles are the optimal loci of R&D investment and return.  Evidently, the optimal 

path of R&D investment is to approach the long-run target gradually.  Moreover, at each 

period the optimal R&D investment is above the level that maximizes that period’s return. 

Because of adjustment costs, the return function at period 1t +  depends on R&D 

investment at period t .  Specifically, the return at period 1t +  is a positive function of 

R&D investment at period t .  Although a higher level of R&D investment will incur 

more adjustment costs at the current period, it will reduce the adjustment costs at the nest 

period.  It follows that the optimal R&D investment at period t  must be such that no 

extra gain can be achieved by allocating money from period t  to 1t +  and vice versa.  

This is the essence of the first order condition of problem (3.3) as we will see soon. 

In the case where there are no adjustment costs in R&D investment, we have 

, , , 1
ˆ ( , ) ( , , )prv prv prv

med t med t med tR h R h h −• = • .  The optimal path for R&D investment is to jump to the 

equilibrium target that maximizes function ,
ˆ ( , )prv

med tR h • , and to stay there until the decision 

environment changes.  In that case, the dynamic model developed here will reduce to 

David and Hall’s static model.    
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3.3  Equilibrium Solution under the Quasi-Rational Expectations Hypothesis 

  

In this Section, I solve for the equilibrium representation of the R&D investment 

sequence ,{ }prv
med th , using the method used by Sargent (1987, pp. 399-404).  The stochastic 

Euler equation for problem (3.3) is: 

,
2 5 , 6 , 7 , 3 ,

,

4 , , 1 4 , 1 ,( ) ( ),
0,1,2

med tpub pub pp prv
med t bio t ag t med t

med t

prv prv prv prv
med t med t t med t med t

w
h h h h

p

h h r E h h
t

β β β β β

β β− +

+ + + − +

+ − = −

=

                                      (3.5) 

and the transversality condition is: 

,
0 2 5 , 6 , 7 ,

,

3 , 4 , , 1 ,

lim {[

         ( )] } 0

med tt pub pub pp
med t bio t ag tt

med t

prv prv prv prv
med t med t med t med t

w
r E h h h

p

h h h h

β β β β

β β

→∞

−

+ + + −

+ + − =

                                    (3.6) 

On the left hand side of the Euler equation is the marginal cost (benefit) of R&D 

investment (disinvestment) at period t , while on the right hand side is the marginal 

benefit (cost) of R&D investment (disinvestment) at period 1t + .  The transversality 

condition can be interpreted as the requirement that the present discounted value of R&D 

investment at period t  tend to zero as t  tends to infinity. 

As is well known, the quadratic dynamic optimization problem can be solved 

explicitly because the first order condition and transversality condition are linear in 

exogenous variables.  In the current case, however, while the Euler equations (3.5) and 

transversality conditions (3.6) are linear in exogenous variables ,
pub

med th , ,
pub

bio th , and ,
pp

ag th , 

they are nonlinear in ,med tp .  The unusual presence of nonlinearity in a linear-quadratic 
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optimization problem is due to the fact that wage ,med tw  is treated as an endogenous 

variable in the present model, whereas conventionally real wage ,

,

med t

med t

w
p

 is treated as an 

exogenous variable (Sargent, 1978).  To get around this difficulty, one may consider an 

approximation situation in which the representative firm has static expectations for output 

price ,med tp , or the representative firm believes that future prices ,med t jp +  have identical 

degenerate distribution functions localized at ,med tp  , i.e.,  , ,med t j med tp p+ =  with 

probability 1 for all 0t >  and 0j > . 

Substitute from (3.1) into (3.5) to obtain 

1 2 2
2 5 , 6 , 7 , 3 ,

, , ,

4 , , 1 4 , 1 ,

( ) ( )

( ) ( ),                  0,1, 2

pub pub pp prv
med t bio t ag t med t

med t med t med t

prv prv prv prv
med t med t t med t med t

h h h h
p p p

h h r E h h t

α α αβ β β β β

β β− +

− + − + + + −

+ − = − =

           (3.7) 

Rearrange to obtain 

, 1 , , 1
1    ,prv prv prv

t med t med t med t tE h h h z
r

θ+ −− + =            0,1, 2t =                                     (3.8) 

where  

                   3 2

4 4 ,

11
med tr r r p

β αθ
β β

= + + − , 

                   1 2
2 5 , 6 , 7 ,

4 , ,

1 [ ( ) ].pub pub pp
t med t bio t ag t

med t med t

z h h h
r p p

α αβ β β β
β

= − + − + +  

Note that (3.8) is a system of second-order stochastic difference equations.  Following 

Sargent (1987, pp. 391-396), solve it forward using the unstable root to impose the 

transversality condition (see appendix A.1 for details), obtaining: 
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, 1 , 1
02 2

1 1    ( ) ,   0,1, 2prv prv i
med t med t t t i

i

h h E z tλ
λ λ

∞

− +
=

= − =∑                                    (3.9) 

where 2
, 1 , 1 1 2 1,  0.5( 4 ),  and 1 ( )prv prv

med medh h r rλ θ θ λ λ− −= = − − = .  And 1λ  and 2λ  obey 

1 2
10 1
r

λ λ< < < < . 

Expression (3.9) describes the representative firm’s R&D investment at time t  as 

a function of the investment at time 1t −  and the expected values of the exogenous state 

variables conditional on the information set at time t .  If the probability distribution 

functions of these exogenous variables are known to the representative firm, the 

remaining task is to take the conditional expectations of the exogenous variables and 

substitute them into expression (3.9).  If the representative firm does not know the 

probability distribution functions of the exogenous variables, one may assume that it 

forecasts the future values of the exogenous variables in an “optimal” way.  As is often 

assumed in the literature, the forecasting criterion is to minimize the mean squared error.  

Suppose, say, that the exogenous variables evolve as markov processes: 

, 1 1 , 1 1

, 2 2 , 1 2

, 3 3 , 1 3

,

,

,

pub pub
med t med t t

pub pub
bio t bio t t

pp pp
ag t ag t t

h c h

h c h

h c h

ρ ε

ρ ε

ρ ε

−

−

−

= + +

= + +

= + +

                                                            (3.10) 

where itε , 1, 2,3i =  are forecast innovations.  Applying the Wiener-Kolmogorov formula 

(Sargent, 1987, pp. 292) to (3.10) gives 

1
, 1 1 ,

1

1 ,
1

i
pub i pub

t med t i med tPh c hρ ρ
ρ+

−
= +

−
                                                       (3.11) 
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2
, 2 2 ,

2

3
, 3 3 ,

3

1 ,
1

1 ,
1

i
pub i pub

t bio t i bio t

i
pp i pp

t ag t i ag t

Ph c h

Ph c h

ρ ρ
ρ

ρ ρ
ρ

+

+

−
= +

−

−
= +

−

 

where t t iPx +  is the linear least square projection of t ix +  on the space spanned by 

1 2{ , , }t t tx x x− − .  Substitute the linear least square forecasts (3.11) for the conditional 

expectations in (3.9) to obtain 

   

2 1 ,
, 1 , 1

4 2

5 2 , 1 2 ,

2 1

7 3 2 ,6 2 2 ,

2 2 2 3

1 [
1

( )( ( 1) )
          

( ( 1) )( ( 1) )
          ],  

med tprv prv
med t med t

pub
med t med t

pppub
ag tbio t

p
h h

r

p c h

c hc h

β α
λ

β λ

β α λ
λ ρ

β λβ λ
λ ρ λ ρ

−

−
= −

−

− − +
+

−

− +− +
+ +

− −

                (3.12) 

for 0,1,2t =   Expression (3.12) is the equilibrium solution to the representative’s 

decision problem in its feedback form: the representative firm’s equilibrium R&D 

investment depends only on the current realizations of the state variables, , 1
prv

med th − , ,
pub

med th , 

,
pub

bio th , ,
pp

ag th , and ,med tp , but not on the previous history of these variables.  Note also that 

(3.12) demonstrates the essence of Lucas’ critique: the parameters on the exogenous state 

variables will change if the policy interventions change the mode in which these variables 

evolve.  Therefore, correct policy simulations must be based on a “structural” model.  In 

the present context, the appropriate structural model should include both technology and 

supply of scientific labor, as well as a model describing the evolution of the exogenous 

variables.  
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Feedback solution (3.12) permits convenient derivation of the elasticities of 

demand for scientific labor2.  The demand elasticity for private medical R&D investment 

with respect to a shock in public-sector medical R&D investment is 

5 2 , ,
,

4 2 1 ,

( )
( )

pub
med t med td

m m prv
med t

p h
e

r h
β α
β λ ρ
−

= −
−

.                                                   (3.13) 

Note that, by assumption, 2 1 40 1,  1 ,  and 0r λ ρ β< < > > < .  It follows that if 

5 2 ,med tpβ α>  ( 5 2 ,med tpβ α< ), public-sector R&D investment will “crowd in (out)” 

private-sector R&D investment since the negative “wage effect” is dominated by 

(dominates) the positive “spillover effect.” 

The demand elasticity with respect to a shock in public investment in biological 

research ,
pub

bio th  is: 

6 ,
,

4 2 2 ,

.
( )

pub
bio td

m b prv
med t

h
e

r h
β

β λ ρ
= −

−
                                                        (3.14) 

In contrast with the previous case, whether public investment in biological research 

crowds in or crowds out private investment in medical research is determined solely by 

technology, and specifically by the sign on 6β .  This is due simply to the distinction we 

have made between biological and medical scientific labor, which implies that public-

sector demand for biological scientific labor has no wage effect on private-sector demand 

for medical scientific labor. 

                                                 
2 All results of comparative statics analysis in this Chapter and the appendices are based on the assumption 
that no knowledge spillovers exist between medical and agricultural research, i.e., 7 0β =  in both the 

medical and agricultural models.  If 7 0β >  in both industries,  R&D investment in one industry becomes 
endogenous to another industry, and the equilibrium has to be redefined by integrating the two sub-models.     
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The elasticity of private-sector R&D expenditure with respect to knowledge 

output price ,med tp , denoted by ,
d
m pe ,  is algebraically much more complicated than the 

previous two because the investment demand (3.12) is highly nonlinear in ,med tp  (note 

that both 1λ  and 2λ  are nonlinear functions of ,med tp .)  The expression for ,
d
m pe  therefore 

is removed to Appendix A.2.  Note that comparing the demand elasticity with respect to 

output price and those with respect to public R&D investments provides a simple way to 

examine the demand-pull vs. technology-push debate (see Section 2.4.1 for a review of 

this literature) in the context of life science research.  A comparison of these elasticities 

can tell us the relative importance to industrial innovations of technological opportunities 

created by public-sponsored research, and the market incentives derived from consumers’ 

increasing demand for medical products.  

The knowledge output supply function , 1 , , , ,( , , , , )prv pub prv pp
med t med t bio t ag t med ty h h h h p− can be 

obtained by substituting the equilibrium R&D investment (3.12) into the knowledge 

production function (3.2).  The elasticities of knowledge output supply with respect to 

shocks in the exogenous variables then can be computed readily (see appendix A.2.)  

 

3.4 Equilibrium Solution under the Static Expectations Hypothesis 

 

In the previous Section, the model has been solved under the quasi-rational 

expectations hypothesis (QREH), under which the subjective expectation coincides with 

the mathematical expectations over all exogenous variables except the knowledge output 
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price, which is believed to stay constant in all future periods.  In the present Section, I 

solve the model instead under the static expectations hypothesis, i.e., the representative 

firm naively believes that the current values of all exogenous variables will stay constant 

in all future periods.  The static expectations hypothesis (SEH) evidently makes it much 

easier to solve for the equilibrium solution, and the approach has its own merit for 

analyzing policy questions that are interesting in the present context.  In addition, a useful 

result is that the long-run equilibrium under the SEH reduces to the equilibrium in David 

and Hall’s model.  

A convenient way to solve for the equilibrium under the SEH is to replace t t iE z +  

by tz  in (3.10).  The intuition is simple:  under the SEH, the representative firm believes 

that all the exogenous variables have degenerate distribution functions localized at their 

current values, meaning t t iE z + = tz  .  Now we have: 

1 2
, 1 , 1 2 5 ,

4 2 , ,

6 , 7 ,

1 [ ( )
( 1)

                                               ],   

0,1, 2

prv prv pub
med t med t med t

med t med t

pub pp
bio t ag t

h h h
r p p

h h

t

α αλ β β
β λ

β β

−= − − + −
−

+ +

=

                          (3.15)   

At the steady state or long-run equilibrium, where , , 1 ,
ˆprv prv prv

med t j med t j med th h h+ + −= = , we have 

1 2
, 2 5 , 6 , 7 ,

2 , 3 , ,

1ˆ [ ( ) ],

0,1,2

prv pub pub pp
med t med t bio t ag t

med t med t med t

h h h h
p p p

t

α αβ β β β
α β

= − + − + +
−

=

       (3.16) 

Now consider a one-field model like that of David and Hall (2000), by 

letting 6 0β =  and 7 0β = .  In that case, the long-run equilibrium solution of R&D 

investment in the scientific labor market (3.16) is essentially that in the D-H model when 
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technology is quadratic (but the validity of this claim is not restricted to quadratic 

technology; for a more general model, see Wang, et. al., unpublished manuscript.)   

Now we can formally reinterpret the dynamic decision problem as the chasing-

target problem described in Section 3.2.  Rewrite equation (3.15) as 

, 1 , 1 1 ,
ˆ(1 ) ,   0,1, 2prv prv prv

med t med t med th h h tλ λ−= + − =                            (3.17) 

Because rapid change in R&D investment incurs adjustment costs, it pays to approach the 

optimal level of investment gradually.  The optimal level of investment at each period is a 

weighted sum of the level of investment in the last period and the target level of 

investment.  The adjustment parameter 1(1 )λ−  simply tells how fast investment 

approaches the long-run target.  To see this more clearly, rewrite (3.17) as 

, , 1 1 , , 1
ˆ(1 )( ),   0,1,2prv prv prv prv

med t med t med t med th h h h tλ− −− = − − =                           (3.18) 

The adjustment parameter represents the proportion of adjustment made within a single 

year in the process of approaching the long-run target.  If adjustment costs are high (low) 

relative to investment benefits, the adjustment process will be comparatively slow (fast).  

In the extreme case of no adjustment costs, we have ,
ˆprv prv

med t medh h= ; investment reaches the 

steady state immediately, the situation described by the D-H model.  

The short-run and long-run elasticities can be readily obtained by respectively 

taking derivatives of (3.15) and (3.16) with respect to the exogenous variables in question. 

And the equilibrium wage and output supply can be obtained by substituting (3.15) and 

(3.16) into the input supply function (3.4) and knowledge production function (3.2).  The 
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short-run and long-run elasticities of knowledge supply and equilibrium wage then can be 

derived (see appendix A.3 for these results.)     

Finally, the equilibrium solution under the SEH may help to answer the following 

policy question.  Assume that government plans to increase R&D investment in medical 

sciences by $1 million at period 0 and credibly maintain the new level of investment 

permanently.  The policy is announced to the public before being put into effect.  What is 

the shadow value of this investment plan to the medical research industry?  In this 

scenario the equilibrium solution solved under the QREH reduces to the equilibrium 

solution solved under the SEH because the representative firm believes that the 

exogenous variables will stay constant in the future.  The shadow value of public 

investment in medical sciences is the first-order derivative of the value function of 

problem (3.3) with respect to that investment variable.  The marginal cost of the 

investment plan is simply $1 (1 )r−  million.  The shadow value divided by the marginal 

cost gives a measure of the “private rate of return” on public investment in medical 

sciences (see Appendix A.4 for details.)  
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Chapter 4:  Estimation Method and Econometric Model 
 
 

This Chapter considers alternative approaches to estimating the model of R&D 

investment developed in Chapter 3.  The model has been motivated to help us understand 

the influences which public R&D investment policy have on private sector R&D 

investment in the life sciences, so that the effectiveness of current policy can be evaluated.  

To this end, one should estimate a “structural” model in order to avoid the Lucas critique.  

In the present context, an appropriate structural model permitting meaningful policy 

evaluations should include the demand and supply of scientific labor (R&D investment), 

and technology.  Two popular approaches have appeared in the literature for estimating 

rational expectations models.  I begin by reviewing these two approaches. 

 

4.1 MLE versus GMM   

 

The first estimation strategy is to solve the model explicitly and apply the 

Maximum Likelihood Estimation (MLE) procedure.  By imposing strict assumptions on 

the model and on the stochastic properties of exogenous variables, one may solve for an 

equilibrium representation of the endogenous variables as in Section 3.3.  The objective 

function usually is assumed to have the quadratic form, which leads to first-order 

conditions linear in the exogenous variables.  Without such a stringent assumption, 

dynamic rational expectations models typically do not have closed-from solutions.  The 

solution to the dynamic rational expectations model usually involves the expectations of 

future values of exogenous variables, conditional on the current information set.  
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Consequently, stochastic properties of exogenous variables need to be specified in order 

to estimate the expectation terms.  The resulting system to be estimated consists of the 

economic model, the model that describes the evolution of the exogenous variables, and a 

set of cross-equation restrictions implied by the rational expectations hypothesis.  A full 

information estimation procedure such as MLE then can be applied to estimate this 

system [e.g., (Hansen and Sargent, 1980) and (Sargent, 1978).]   

Alternatively, one may focus on estimating the stochastic Euler equation using the 

Generalized Method of Moments (GMM) procedure introduced by Hansen (1982) [for 

applications of this method see, e.g., (Hansen and Singleton, 1982) and (Pindyck and 

Rotemberg, 1983)].  That approach does not require an explicit representation of the 

rational expectations equilibrium.  Hence, one may assume flexible functional forms for 

technology or preferences and impose fairly weak assumptions on the stochastic 

exogenous variables, yet still be able to fully identify the structural model parameters.  

The price of the simplicity, however, is that some restrictions implied by the theoretical 

model–e.g., the transversality condition–are ignored in estimation.  Estimation efficiency 

loss may result. 

In the specific case of investment models with adjustment costs, an important 

advantage of GMM over MLE is that the former approach permits simple nested 

hypothesis testing of the adjustment cost hypothesis.  If in the GMM approach one 

imposes on Euler equation (3.5) the assumption of no adjustment costs, the technology 

and Euler equation in my dynamic model will reduce respectively to the technology and 

first-order condition of a static investment model without adjustment costs.  However, 
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one may not in the MLE approach impose the adjustment costs assumption on the final 

solution of the dynamic decision problem to obtain the solution of a corresponding static 

problem.  This is because in solving the Euler equation as a set of difference equations, 

one implicitly imposes the adjustment cost assumption, and such a solution is valid only 

if the adjustment costs assumption holds [to see this, notice that 4β  cannot be equal to 

zero in expression (3.8).]  Hence, by taking the MLE approach one loses the opportunity 

to test for the adjustment cost hypothesis in a simple way.          

As shown in Section 3.3, the Euler equation in my model is nonlinear in output 

price despite an assumed quadratic technology.  This is because, as explained above, 

wage is an endogenous variable in my model.  To obtain an explicit expression of the 

equilibrium solution, I was forced in Chapter 3 to impose the “quasi-rational 

expectations” assumption.  Altogether it seems that, in the current context, the GMM 

approach is preferable to the MLE.  Hence, I adopt the GMM for econometric estimation.   

 

4.2  GMM: A Review 

 

Method of Moments estimation is based on the analogy principle that matches 

population moments with the appropriate sample moments.  For example, let the 

population moment condition be 0( ( , )) 0tE f x θ = , where tx  is the realization of a time 

series vector sequence at time t , 0θ  is the vector of parameters to be estimated, and 

0( , )tf x θ  is a vector function of tx  and 0θ .  The sample mean of 0( , )tf x θ  is 
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1

1( ) ( , )
T

T t
t

f f x
T

θ θ
=

= ∑ ,                                                  (4.1) 

a natural estimator of the population mean 0( ( , ))tE f x θ .  Accordingly, the sample 

moment conditions are ( ) 0Tf θ = .  The estimator T̂θ  which solves the moment condition 

provides an estimate of the true value 0θ .  When the number of moment conditions is the 

same as the number of parameters to be estimated, one usually can find a unique solution 

for T̂θ .  When the number of moment conditions exceeds the number of parameters to be 

estimated, however, the system of equations are overidentified and there exists an infinite 

number of solutions for T̂θ .   In that case, the Generalized Method of Moments 

estimation introduced by Hansen (1982) is useful.  The basic idea of GMM estimation is 

to minimize a quadratic form of the sample means, 

( ) ( ) ( )T T T TJ f W fθ θ θ′= ,                                               (4.2) 

with respect to θ , where TW  is a positive semidefinite weighting matrix.  The GMM 

estimator of the true parameter 0θ  is  

arg min ( )T TJθθ θ= .                                                   (4.3) 

Since different weighting matrices may result in different GMM estimators, one needs to 

discover the optimal weighting matrix that leads to an efficient GMM estimator.  Usually, 

a two-stage procedure is adopted.  In the first stage an identity matrix, for example, is 

used as the weighting matrix.  The estimation results of the first stage then are used to 

construct the optimal weighting matrix for the second stage.  
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The minimized value of the quadratic criterion (5.2), ( )TJ θ , can be used to test 

the overidentifying restrictions when there are more moment conditions than parameters 

to be estimated.  Hansen (1982) shows that sample size T  times ( )TJ θ  has an 

asymptotically chi-square distribution in which the degrees of freedom are the number of 

overidentifiying restrictions.  This test is often called the Hansen J  test, and ( )TTJ θ  

accordingly the Hansen J statistic.  

Specification tests also can be constructed with the aid of the Hansen J statistic.  

To test the validity of restrictions imposed on the parameters, a statistic can be 

constructed by subtracting the J statistic of the unrestricted model from that of the 

restricted model.  The resulting statistic is distributed as chi-square in which the degrees 

of freedom equal the number of restrictions [see Ogaki (1993) for more detail].    

 

4.3  Econometric Model and Moment Conditions 

 

In order to fully identify all the parameters in the model developed in Chapter 3, I 

need to simultaneously estimate the knowledge production function, the Euler equation, 

and the inverse supply function of scientific labor.  The econometric model for the 

medical research industry3 can be obtained by defining the disturbances of the three  

equations as follows 

 ,1 , 1 2 , ,[ ( )],prv pub
med t med t med t med tw h hμ α α= − + +                                                 (4.4) 

                                                 
3 To obtain the econometric model for the agricultural research industry, substitute the subscript “med” for 
“ag” and “ag” for “med” in each equation in this Section.  
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,2 , 1 2 5 , 6 , 7 , ,

2 2
3 , 4 , , 1

[ ( )

                          +0.5 ( ) 0.5 ( ) ],

prv pub pub pp prv
med t med t med t bio t ag t med t

prv prv prv
med t med t med t

y h h h h

h h h

μ β β β β β

β β −

= − + + + +

+ −
                    (4.5) 

where ,
prv
med ty  denotes the medical industry’s knowledge output; and 

,
,3 2 5 , 6 , 7 , 3 ,

,

4 , , 1 4 , 1 ,            ( ) ( ).

med tpub pub pp prv
med t med t bio t ag t med t

med t

prv prv prv prv
med t med t med t med t

w
h h h h

p

h h r h h

μ β β β β β

β β− +

= + + + − +

+ − − −

                        (4.6) 

Next, I need to define moment conditions for each of the three equations.  The 

moment conditions crucially depend on the interpretations of the disturbances.  We 

begin by equation (4.6).  It follows immediately from stochastic Euler equation (3.5) 

that 

,3 0t med tE μ = .                                                                       (4.7) 

Therefore, disturbance ,3med tμ  is simply an expectation error that is independent of any 

variable in the representative firm’s information set at period t , ,med tΩ .  In fact, 

expression (4.7) embodies the essence of the rational expectation thesis: whatever 

expectational errors made by economic agents are random errors uncorrelated with the 

information available to them.  Let ,3 , , , , 1 , , ,( , , , , , , )pub pub pp prv prv
med t med t bio t ag t med t med t med t med tz h h h h h w p− ′= .   

Since each element of vector ,3med tz  belongs to information set ,med tΩ , by the law of 

iterated expectation we have the following moment conditions for equation (4.6): 

,3 ,3( ) 0med t med tE z μ⊗ = .                                                         (4.8) 

The disturbance term in supply equation (4.4) can be interpreted as a labor 

supply shock.  In order to identify equation (4.4) as a supply function rather than 
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demand function, I need to find instruments that potentially are demand shifters yet not 

supply shifters.  The candidates available include knowledge output price ,med tp , public-

sector biological research investment ,
pub

bio th , and total agricultural R&D investment ,
pp

ag th .  

While knowledge output price is unequivocally a demand shifter but not a supply shifter, 

it is possible that R&D investments in biology and agriculture affect the supply of 

scientific labor in medical sciences.  The reason is that scientific labor in biological and 

agricultural sciences may be, to some extent, substitutable for that in medical sciences. 

Hence, I define two sets of instruments for equation (4.4):  1
,1 ,(1, )med t med tz p ′=  and 

2
,1 , , ,(1, , , , )pub pp

med t med t bio t ag tz p h h ′= .  The moment conditions for equation (4.4) therefore are 

one of the following two equations: 

,1 ,1( ) 0,   1, 2k
med t med tE z kμ⊗ = = .                                            (4.9) 

Finally, the disturbance term in production function (4.5) can be interpreted as a 

technological shock in knowledge production.  Because, in the present study, knowledge 

output is measured by patent numbers, the disturbance may also be interpreted as a 

change in the frequency with which a patent application is awarded.  We may call this an 

“institutional shock.”  The independent variables in production function (4.5) are chosen 

to be the instrumental variables: 

1 2 2
,2 , , , , , , , , , 1(1, , , ,0.5( ) ,0.5( ) )pub prv pub prv pp prv prv prv prv

med t med t med t bio t med t ag t med t med t med t med tz h h h h h h h h h − ′= − . 

Note that because of the quadratic specification, the disturbance term can shift the 

production function up or down but can not affect its curvature.  Consequently, the R&D 
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investment demand obtained from the first-order condition is independent of the 

disturbance term.  This justifies the use of explanatory variables as instruments.     

Additionally, one may assume that the disturbance term is independent of output 

price ,med tp and wage ,med tw , leading to the alternative set of instruments: 

2 2 2
,2 , , , , , , , , , 1 , ,(1, , , ,0.5( ) ,0.5( ) , , )pub prv pub prv pp prv prv prv prv

med t med t med t bio t med t ag t med t med t med t med t med t med tz h h h h h h h h h p w− ′= − . 

Moment conditions for the production function (4.5) consequently would be one of the 

following two equations: 

,2 ,2( ) 0,   1, 2k
med t med tE z kμ⊗ = = .                                                (4.10) 
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Chapter 5:  Data Construction 

 

Table 5.1 contains all the data used in this dissertation.4  R&D investments are 

measured by deflated R&D expenditures.  Price indices used to deflate nominal R&D 

expenditure also serve as scientific labor wages, so that real expenditure is equivalent to 

labor quantity.  Patent counts are used to measure knowledge output.  

The National Science Foundation (NSF) Survey of Federal Funds for Research 

and Development formed the basis of the public-sector R&D expenditure data.  Private-

sector R&D expenditure data were constructed based on Standard & Poor’s Compustat® 

database.  The patent data were purchased from Thomson™.  The Biomedical Research 

and Development Price Index, developed by the National Institutes of Health (NIH), was 

used to deflate medical and biological R&D expenditure, and the agricultural R&D 

deflator was developed by the U.S. Department of Agriculture, Economic Research 

Service (USDA/ERS) was adopted to deflate agricultural R&D expenditure.  Annual data 

on knowledge output, that is patent, prices were developed by linking stock market data 

drawn from Compustat® to patent data obtained from Thomson™.  Our data sample 

spans 1980 to 2004.  Source data for private-sector R&D expenditure are unavailable 

before 1980.  NSF has not updated its R&D expenditure data since 2003. 

                                                 
4 Data construction described in this Chapter is part of a project funded by USDA/CSREES under NRI 
grant No. 2005-35400-15881.  A national team of government researchers and university professors 
contributed to this project.  As a research assistant of our research team, I participated in carrying out the 
original data collection plan, revising it as new problems arose, and designing new data procedures not 
covered in the original plan. 
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5.1  Public-Sector R&D Expenditures 

 

Data on public-sector R&D expenditure in the three life-science fields were 

constructed on the basis of the National Science Foundation Survey of Federal Funds for 

Research and Development (NSFSFFRD).  Federal agencies and their subdivisions 

submit data in response to that survey each year.  Reported R&D expenditures include 

R&D obligations and outlays “incurred or expected to be incurred in the reporting year, 

regardless of when the funds were appropriated.”  Obligations and outlays include those 

resulting from research, development, and R&D plant, which are defined as: 

a. Research is defined as systematic study directly toward fuller scientific 
knowledge or understanding of the subject studied. Research is classified as 
either basic or applied according to the objectives of the sponsoring agency.  

 
Basic research is defined as systematic study directed toward fuller 
knowledge or understanding of the fundamental aspects of phenomena and 
of observable facts without specific applications towards processes or 
products in mind.  
 
Applied research is defined as systematic study to gain knowledge or  
understanding necessary to determine the means by which a recognized 
and specific need may be met.  
 

b. Development is defined as systematic application of knowledge or 
understanding, directed toward the production of useful materials, devices, 
and systems or methods, including design, development, and improvement of 
prototypes and new  processes to meet specific requirements.  

 
c. R&D plant includes acquisition of, construction of, major repairs to, or 

alterations in structures, works, equipment, facilities, or land for use in R&D 
activities at Federal or non-Federal installations.  

 
                                                — National Science Foundation, NSF 05-307 (2005) 
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I selected obligations and outlays in research and development as the basis for 

public-sector R&D expenditure data.  Those in R&D plant were excluded in order to 

render data on public R&D expenditure comparable to data on private R&D expenditure:  

firm R&D expenses reported on Form 10-k do not allow for the types of R&D expenses 

included in R&D plant.    

In responding to the NSFSFFRD, reporting agencies are required to classify their 

research funds by academic discipline.  Academic disciplines are classified into eight 

broad field categories, each consisting of a number of detailed fields.  The broad field of 

life sciences, which is defined as “the scientific study of living organisms and their 

systems,” is comprised of five detailed fields: biological sciences (excluding 

environmental biology), environmental biology, agricultural sciences, medical sciences, 

and life sciences not elsewhere classified (National Science Foundation, 2005).  

Of these five detailed fields, I chose biological sciences (excluding environmental 

biology), medical sciences, and agricultural sciences to be the three life-science fields in 

the present study.  The environmental biology field was excluded because of the 

difficulty in defining a parallel class in patent and private R&D expenditure data.  

Combining it with biological sciences (excluding environmental biology) to form a 

distinct field did not seem plausible either:  the combination would confound the 

spillovers from biological research with those from environmental biology, the former 

with stronger effects than the latter.  The life sciences not elsewhere classified field 

includes, by definition, multidisciplinary projects among the other life-science fields and 

projects that can not be assigned to any of the other four fields.  Inconsistencies of its 
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series may therefore arise across agencies and time, and it also was excluded from the 

life-science fields in the present study.  

A number of problems would immediately arise if I directly used the NSFSFFRD 

R&D expenditure data.  First, although obligations in basic research and applied 

research were reported by each agency at the detailed field level, obligations in 

development were not: only the aggregate development obligations of all fields were 

reported by each agency.  Thus, I needed to find a way to estimate development funds in 

each of the three life-science fields.   

Since development is a natural extension of applied research, it is reasonable to 

assume that the distribution of applied research funds across individual life-science fields 

approximates the distribution of development funds across those same fields.  With this 

assumption, I estimated the development funds in each life-science field by (a) dividing 

each agency’s total development funds into fields in proportion to the distribution of the 

agency’s applied research funds in those same fields; and (b) aggregating across all 

federal agencies the resulting development funds in each field.  

The second problem can be seen in Table 5.2, which provides a 2002 snapshot of 

the flows of R&D funds from funding to performing sector.  Table 5.2 shows that a 

significant proportion of federally financed R&D is performed by industry through 

contracts or grants (under Industry and Industry FFRDCs in Table 5.2).  Its contract and 

grant support does have an impact on the private sector’s R&D investment.  However, 

because the mechanism of its spillover impacts is different from what the Chapter 3 

model describes, the latter is not appropriate for assessing publicly financed, industry 
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performed R&D.  I therefore exclude industry-performed R&D from public-sector R&D 

expenditure. 

 

Table 5.2  National R&D expenditures (in millions of 1996 USD) from funding sectors 
(in the first row) to performing sectors (in the first column): 2002  
 

 Fed Govt. State Govt. Industry U&C Non-profits

Federal Govt. 19,493     
Industry 18,920  171,653   

Industry FFRDCs 2,050     
U&C 20,365 2,235 2,117 6,741 2,428 

U&C FFRDCs 5,476     
Non-profits 4,994  1,051  4,177 

Nonprofit FFRDCs 1,917     
 
Source:  National patterns of R&D sources (NSF). 
FFRDC:  federally funded research and development center 
U&C:  universities and colleges  
 

The difficulty of this exclusion is that although the NSFSFFRD has collected 

reporting agencies’ obligations in basic research, applied research, and development by 

performer, such obligations refer only to the broad field level, not to the detailed field 

level.  To solve this problem, I assumed that for every reporting agency, the ratio between 

industry- and non-industry-performed R&D in each detailed field is the same as the ratio 

in the broad field to which the detailed field belongs.  With that assumption, I then: (a) 

divided each federal agency’s total R&D funds into industry-performed and non-

industry-performed components at the detailed field level; and (b) summed the R&D 

funds in each detailed field across all federal agencies.   
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The third difficulty also can be seen in Table 5.2.  The public sector in the present 

study consists of all institutions operated under a not-for-profit criterion.  Table 5.2 

shows the federal government is not the only funding institution that can be placed in the 

public domain.  State governments, universities and colleges, and not-for-profit 

institutions are in the public sector as well.  Unfortunately, R&D data for these public 

institutions have not been as systematically collected as federal R&D data have.  

Fortunately, NSF also conducts a Survey of Research and Development Expenditures at 

Universities and Colleges.  In its survey, universities and colleges are asked to report 

R&D funds by funding source and academic discipline.  Table 5.2 indicates that the 

majority (73% in 2002) of R&D funded by state governments, universities and colleges, 

and not-for-profit institutions is performed by universities and colleges.  Non-federally-

financed academic R&D funds therefore provide a good proxy for non-federally-financed 

public-sector R&D expenditures.    

Thus, I subtracted federally funded academic R&D from total academic R&D, 

then added the result to federal R&D expenditure in each life-science field.  Note that in 

this way industry-funded academic R&D also was included in public-sector R&D.  In 

other words, by solving one problem we bring in another.  Nevertheless, industry-funded 

academic R&D assumes only a small proportion (16% in 2002 as shown in Table 5.2) of 

non-federally funded academic R&D.  The measurement bias generated by including 

non-federally funded academic R&D in public-sector R&D is smaller than that generated 

by not doing so.  

In summary, I proceeded as follows: 
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Step 1.  Estimation of federal development expenditures in individual life-science 

fields: 

a.  Calculated the distribution of each federal agency’s applied research funds 

in various detailed fields in each of the years from 1980 to 2003; 

b.  Allocated total development funds in each agency-year to various detailed 

fields in proportion to the corresponding distribution in (a); 

c.  Aggregated the estimated development funds in each of the three life-

science fields across all agencies.   

Step 2.  Estimation of non-industry-performed federally financed R&D expenditures:  

a. Calculated the share of each agency-year’s basic research performed by 

institutions other than for-profit firms; 

b. Multiplied each agency-year’s total federally funded basic research in each 

detailed field by the corresponding share computed in (a);  

c. Aggregated the result in (b) across all agencies in each detailed field and 

each year; 

d.  Repeated steps (a), (b), and (c) for applied research and development funds; 

e.  Added the annual series of basic research, applied research, and 

development funds in each of the three detailed fields: biological sciences 

(excluding environmental biology), agricultural sciences, and medical 

sciences.  This yielded annual series of non-industry-performed federally 

funded R&D expenditures in the three life-science fields. 

Step 3.  Estimation of academic R&D expenditures from nonfederal funding sources: 
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In each of the three life-science fields mentioned in step 2, subtracted the 

annual series of academic R&D funds received from the federal government 

from the annual series of total academic R&D funds.   

Step 4.   Estimation of public R&D expenditures in the three life-science fields: 

Added, in each of the three life-science fields, the resulting annual series 

obtained in steps 2 and 3. 

 

5.2  Private-Sector R&D Expenditures 

 

According to Hall and Long (1999), two sources of micro-data are available for 

constructing industry R&D expenditures.  One source is Form RD-1, on which 

U.S.companies report their R&D expenditures to the Census Bureau.  These data have 

been aggregated to the 2-digit industry level and published by the National Science 

Foundation each year.  The RD-1 data, however, are confidential and not available to the 

public (Hall and Long, 1999).  Another source is Form 10-K of publicly listed firms in 

the United States.  All companies traded on U.S.stock markets are required to file their 

R&D expenditures with the Securities Exchange Commission (SEC) on Form 10-K.  

These data are readily accessible via Standard and Poor’s Compustat© database.  

According to Ernst & Young, R&D expenses of publicly traded firms, as reported on 

Form 10, accounted for 80% of industry’s total R&D expenditures in 2002.   

Private-sector R&D expenditure data in the present study were constructed on the 

basis of Form 10-K data.  The construction procedure involved two steps:  breaking down 
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firms’ R&D expenditures into various scientific fields, then aggregating the R&D 

expenditures in each life-science field across all firms.  Breaking down firms’ R&D 

expenditures is necessary because many companies’ R&D projects cut across more than 

one scientific field.   

The strategy adopted was to use information at the business segment level to 

break down life-science firms’ R&D into various fields.  The Compustat Business 

Information–Segment Products file contains firms’ financial data—including R&D 

expenses—at the business segment level.  The idea was to define an approximate 

mapping between business segments and scientific fields.  The difficulty in defining such 

a mapping is that, on Form 10-K, business segments are classified based on industry 

classification systems such as the Standard Industry Classification (SIC) and the North 

American Industry Classification System (NAICS).  Hence, any mapping method is 

inherently imperfect because SIC and NAICS are product-oriented classification systems, 

while production lines may be supported by R&D from different scientific fields.  

Moreover, subjective variations arise across reporting firms regarding which business 

segments belong to which SIC/NAICS industries.  Worse still, when the SIC/NAICS data 

are missing, the matching method is no longer helpful in the mapping process.  Solving 

these problems was the most laborious part of the data construction project.  Private-

sector R&D expenditures were constructed as follows:  

 

Step 1:  Selection of life-science-related NAISC and SIC industries: 
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We selected industries whose R&D activities, if any, belong in the broad field 

of life sciences.  Using two industry classification systems, NAICS and SIC, I 

obtained a set of NAICS industries and another of SIC industries, denoted 

respectively by LS-NAICS (Table 5.3) and LS-SIC (Table 5.4).   

Table 5.3  Selected NAICS industry classes matched to life-science fields 
 

NAICS Industry Class Name Life-Science Field 

111 Crop Production Agricultural Sciences 

112 Animal Production Agricultural Sciences 

113 Forestry and Logging Agricultural Sciences 

114 Fishing, Hunting and Trapping Agricultural Sciences 

115 Support Activities for Agriculture and 
Forestry Agricultural Sciences 

311 Food Manufacturing Agricultural Sciences 

312 Beverage and Tobacco Product 
Manufacturing Agricultural Sciences 

3253 Pesticide, Fertilizer, and Other Agricultural 
Chemical Manufacturing Agricultural Sciences 

54132 Landscape Architectural Services Agricultural Sciences 

56173 Landscaping Services Agricultural Sciences 

81291 Pet Care (except Veterinary) Services Agricultural Sciences 

3254 Pharmaceutical and Medicine Manufacturing Medical Sciences 

54194 Veterinary Services Medical Sciences  

621 Ambulatory Health Care Services Medical Sciences 

622 Hospitals Medical Sciences 

54171 Research and Development in the Physical, 
Engineering, and Life Sciences 

Agricultural, medical, biological sciences or 
others 

54169 Other Scientific and Technical Consulting 
Services 

Agricultural, medical, biological sciences or 
others 

541380 Testing Laboratories Agricultural, medical, biological sciences or 
others 
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Table 5.4  Selected SIC industry classes matched to life-science fields 
 

SIC Industry Class Name Life-Science Field 

100 Agricultural Production Crops Agricultural Sciences 

200 Agriculture production livestock and animal 
specialties Agricultural Sciences 

700 Agricultural Services Agricultural Sciences 

800 Forestry Agricultural Sciences 

900 Fishing, hunting, and trapping Agricultural Sciences 

2000 Food And Kindred Products Agricultural Sciences 

2100 Tobacco Products Agricultural Sciences 

2870 Agricultural Chemicals Agricultural Sciences 

2830 drugs Medical Sciences 

8731 Commercial Physical and Biological 
Research 

Agricultural, medical, biological sciences or 
others 

8734 Testing Laboratories Agricultural, medical, biological sciences or 
others 

 

Step 2:  Selection of life-science firms: 

We used the LS-NAICS and LS-SIC industry classes to identify life-science 

firms.  A firm was selected if at least one of its business segments was 

classified in an industry belonging in either LS-NAICS or LS-SIC and in at 

least one year from 1980 to 2004.  The resulting set, denoted by LS-FIRM, 

contains 3,006 firms (The Compustat universe consists of more than 10,000 

active and 7,600 inactive firms.) 

Step 3:  Data retrieval: 

Annual data from 1980 to 2004 on R&D expenses, net sales, business segment 

names, NAICS, and SIC,  were drawn from the Compustat Business 
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Information-Segment Products file for LS-FIRM firms.  Corresponding firm-

level data in the same time period were retrieved from the Compustat 

Industrial Annual Data file.  These two datasets then were merged by firm and 

by year. 

Step 4:  Refinement of the life-science firm set: 

A firm was deleted from set LS-FIRM if its R&D expenses were never 

reported, or reported to be zero in every year from 1980 to 2004.  After the 

deletions I was left with 1,884 firms in LS_FIRM. 

Step 5:  Mapping of business segments into R&D fields: 

Each business segment was assigned to one of the five R&D fields—

agricultural sciences (AG), medical sciences (MED), biological sciences 

(BIO), non-life-science fields (NLS), and no R&D (NORD)—using a 

procedure combining computer programming and manual assignment. The 

programmable part of the mapping was executed by running the following 

routine: 

a. A business segment is assigned to R&D field NORD if its primary SIC 

code indicates that it belongs to industries such as 4000 (Transportation), 

5000 (Wholesale and Retailer), and 6000 (Insurance and Finance).  

b. A segment is assigned to R&D field NLS if it cannot be assigned to 

field NORD according to instruction (a), and none of its primary and 

secondary business segment SIC code belongs to industry set LS-SIC. 
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c. A segment is assigned to R&D field AG if its primary SIC code belongs 

to one of the following SIC industry classes: 100 (Agricultural 

Production Crops), 200, 700, 800, 900, 2000, 2100, or 2870 (see Table 

5.4 for definitions). 

d. A segment is assigned to R&D field MED if its primary SIC code 

belongs to SIC industry class 2830 (drugs). 

e. A segment whose primary SIC code belongs to SIC industry class 

8731(Commercial Physical and Biological Research) or 6794 (Patent 

Owners & Leasers) is assigned to R&D field AG if its secondary SIC 

code belongs to one of the agricultural industries listed in instruction (c), 

to field MED if its secondary SIC code belong to SIC industry class 

2870 (drugs), to field NLS if its secondary SIC code does not appear in 

industry set NS-SIC, and to field BIO otherwise. 

After executing the above routine, I still was left with some business segments 

to which no R&D field was assigned.  These segments largely fell into two 

categories.  One included those whose SIC codes are not available in certain 

years.  Another included those whose primary SIC codes do not—but 

secondary SIC codes do—belong to the set of life-science-related industries 

LS-SIC.  I solved this missing-data problem using the following method:  

f.  For the data-missing segment-year observations, missing SIC codes 

were filled up with the SIC codes of the same or similar business 

segments in data-non-missing years.  Whether two business segments in 
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different years are in fact the same business segment can, in most cases, 

be identified by the names and IDs of the business segments in question. 

g. Each of these business segments then was assigned to an R&D field 

following instructions a through e. 

After solving the missing-data problem, I was left with 155 firms whose 

primary SIC codes did not—but secondary SIC codes did—belong to the set 

of life-science-related industries LS-SIC.  Dr. William Folks, Professor in 

Biochemistry at the University of Missouri-Columbia, was asked to help me 

with this problem.  I read to Dr. Folks the names of these business segments 

and Compustat’s textual description of the 155 firms’ businesses, and he used 

his judgment in suggestion to which R&D field each indeterminate segment 

should be assigned5.   

Step 6:  Classification of life-science firms by R&D field: 

With the R&D field of each business segment identified, the 1,884 life-

science firms were classified into the following five groups: agricultural R&D 

(UNIAG), medical R&D (UNIMED), biological research (UNIBIO), non-life-

science R&D (UNINLS), and firms conducting R&D in more than one field 

(MULTIF).  Of the 1,884 firms in  LS-FIRM, 679 fell into group UNINLS 

and thus were deleted from set LS-FIRM.  Of the remaining 1205 firms, 180 

                                                 
5 It is worth noting that for a business segment whose SIC code belongs to industry classes like 286 
(Industrial Organic Chemicals) and 2844 (Perfumes, Cosmetics, and Other Toilet Preparations Cosmetics), 
we assigned it into the R&D field MED as long as its company’s main business is drug manufacturing. 
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were assigned to UNIAG, 816 to UNIMED, 12 to UNIBIO, and 197 to 

MULTIF. 

Step 7:  Estimation of R&D expenditures of MULTIF firms’ individual fields: 

Recall that our objective is to obtain industrial R&D expenditure series in the 

three life-science fields.  Hence, I needed to aggregate all firms’ R&D 

expenditures in each individual field.  For firms only conducting R&D in a 

single R&D field, such as those in UNIAG, UNIMED, and UNIBIO, I could 

directly use the firm-level R&D expenditure data.  For firms in MULTIF, 

however, I needed to obtain R&D expenditure data at the business segment 

level.  The problem was that although all firms remaining in LS-FIRM 

reported R&D expenses at the firm level, not all did report R&D expenses at 

the business-segment level.  Business-segment R&D expenditures were 

estimated using the following method: 

a. Twenty one of the 197 MULTIF firms were found to have reported 

segment R&D expenditures for all but a few years.  Moreover, business 

segments in the data-missing years were found to exist in recent data-

available years.  I assumed the distribution of the firms’ R&D 

expenditures across business segments is the same in the data-missing 

as in the data-available years.  With this assumption, I estimated the 

missing R&D expenditure data by i) computing the distributions of 

R&D expenditures across business segments in the recent three years of 

the data-missing year; ii) computing the geometric mean of the 
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distributions in these three years; and iii) dividing the firm’s total R&D 

expenses in the missing year into various business segments according 

to the average distribution computed in ii).  

b. For the remaining 168 firms, I adopted the following formula to 

estimate the missing R&D expenditures:  

1) If in the data-missing year no business segment belongs to R&D 

field NORD, and R&D expenditure data are missing for all business 

segments, then a business segment’s R&D expenditure is equal to 

the firm’s total R&D expenditure multiplied by the said business 

segment’s sales share in the firm; 

2) If in the data-missing year one or more segments belong to R&D 

field NORD, the R&D expenditure of a segment that does not 

belong to NORD is equal to the firm’s total R&D expenditure 

multiplied by the said business segment’s sales share in all the 

firm’s business segments except those belonging to NORD; 

3) If, in the data-missing year, R&D expenditure data are available for 

some but not all segments, then total R&D expenditure and sales of 

all data-missing segments are computed by subtracting data-non-

missing segments’ total expenditure and sales from the firm’s total 

expenditure and sales, respectively; and the data-missing business 

segments are treated as a firm with R&D data missing for all 
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business segments to apply formulae 1) and 2), depending on 

whether there exists a data-missing segment belonging to NORD.  

Step 8:  Aggregation of R&D expenditure data in individual life-science fields: 

The resulting data were integrated into a dataset of R&D expenditures at the 

business segment level.  The dataset has three dimensions—time, firm, and 

R&D field.  I sorted the entire dataset into three life-science R&D fields in 

each year, then aggregated the R&D expenditures in each individual field each 

year. 

 

Construction of private-sector R&D expenditure data for the individual life-

science fields was the most laborious part of the data processing, and is the best that 

could be done given the data sources available.  Nevertheless, the procedure might have 

generated some measurement errors.  Following is an assessment of the potential errors:  

 

a. As described above, a business segment’s R&D field was solely determined in 

most cases by its primary SIC industry code.  Sometimes, however, the secondary 

SIC code indicated that R&D activities in the business segment might cut across 

two R&D fields.  Unfortunately, no information was available on the relative 

proportion of R&D in two different fields within a given business segment.  I 

therefore was unable to separate a business segment’s R&D expenditure further 

into two R&D fields. 
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b. An assumption of the above data construction was that the “private sector” is 

composed of all companies traded in U.S. stock markets regardless of the home 

country of the firm.  However, the universe of Compustat firms has evolved over 

time on account of firm entry, exit, and merger.  Although the merger of two 

Compustat firms would not affect my aggregate data, entry into and exit from U.S. 

stock markets might bring some measurement error.  The extent of this potential 

mismeasurement is unknown. 

c. My data indicate an almost negligible volume of industrial R&D expenditure in 

biology.  This may be interpreted to mean that industry performs little basic 

biological research.  Or the little it does is conducted with specific application in 

mind.  It may therefore be included in either medical or agricultural research, 

depending upon the specific application in mind.  In general, however, I expect 

the majority of this type of research is performed in pharmaceutical firms.  This 

was confirmed by reading the business segment names in the UNIBIO group.  I 

thus merged the UNIBIO firms with the UNIMED firms.  Accordingly, biological 

and medical patents awarded to industrial firms were merged into a single group 

of medical patents (see Section 5.4.) 

 

5.3  R&D Investment and Wage of Scientific Labor 

 

R&D expenditure data are nominal measures in that they do not take account of 

changes in the price of the research input, which is predominantly composed of scientific 
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labor.  Appropriate deflators or price indices were needed to convert nominal into real 

R&D expenditures.  I used the Biomedical Research and Development Price Index 

(BRDPI) constructed by the National Institutes of Health (NIH) to deflate medical and 

biological R&D expenditures, and the agricultural R&D deflator constructed by the 

USDA’s Economic Research Service (ERS) to deflate agricultural R&D expenditures.  

The agricultural R&D deflator was developed on the basis of Klotz et al. (1995)’s method.  

The BRDPI is defined as follows: 

 
“The BRDPI measures changes in the weighted-average of the prices of all the 
inputs (e.g., personnel services, various supplies, and equipment) purchased with 
the NIH budget to support research. The annual change in the BRDPI indicates 
how much the NIH budget would need to change to maintain purchasing power—
to compensate for the average increase in prices and to maintain NIH-funded 
research activity at the previous year’s level.”   
 

— National Institute of Health (2006) 
 

The R&D investment series shown in Table 5.1 are these deflated R&D 

expenditures, and scientific labor wage rates are the price indices used in the deflation.   

 

5.4  Knowledge Output: Patent Counts 

 

Patent counts long have been used to measure knowledge output.  In order to take 

into account the value differences among patents, citation data may be used to adjust 

patent counts.  I constructed knowledge output data using patent count data purchased 

from Thomson™.  Unfortunately, the cost of citation-count-adjusted patent counts was 

prohibitive.   
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In collaboration with Thomson’s patent experts and my colleagues, I selected a 

set of life-science patent classes from four DWPI (Derwent World Patent Index) patent 

Sections: B (Pharmaceuticals), C (Agricultural Chemicals), D (Food, Detergents, Water 

Treatment, and Biotechnology), and P (General).  The selected patent classes and 

subclasses are listed in appendix C.1.  I then worked with Thomson’s patent experts to 

design a search procedure to retrieve annual patent counts for the three life-science 

fields—biology, medicine, and agriculture—and five agricultural subfields:  plants, 

animals, natural resources, food, and agricultural chemicals.  I designed a filter to 

distinguish between patents awarded to institutions in the public and in the private sector.  

The resulting measures included the public sector’s and private sector’s annual patent 

counts from 1980 to 2005 in three life-science fields and five agricultural subfields. (See 

Table 5.1 for the private sector’s data.)  

Patent data were retrieved according to the following re-classification of DWPI 

patent classes: 

 

BIOP, the set of biological patents, including all patents in class D16, i.e, 

BIOP = D16 ; 

PHARMP, the set of medical patents, including patents in classes B01-06, exclusive of 

all patents in classes D and P, i.e.,       

PHARMP = (B01 B02 B03 B04 B05 B06)\(BIOP D13 D15
                      P11 P12 P13 P14 P15);

∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪
∪ ∪ ∪ ∪
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AGP, the set of agricultural patents, including patents in C01-06, D13 and D15, and 

P11-15, while excluding those that belong to either BIOP or PHARMP, i.e., 

AGP (C01 C02 C03 C04 C05 C06 P11 P12 P13
             P14 P15 D13 D15)\(PHARMP BIOP).

= ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪
∪ ∪ ∪ ∪

 

 

AGP was further partitioned into five subsets: PLANTP, ANIMALP, NATRESP, 

FOODP, and AGCHEMP, respectively representing patents in the agricultural subfields 

of Plants, Animals, Natural Resources, Food, and Agricultural Chemicals.  The 

agricultural subfield classification consists of: 

 

PLANTP, including all AGP patents in DWPI class P11-13 and P15, i.e., 

PLANTP = (P11 P12 P13 P15) AGP;∪ ∪ ∪ ∩  

ANIMALP, including all AGP patents in class P14, i.e., ANIMALP = P14 AGP;∩  

NATRESP, including all AGP patents in class P15, i.e., NATRESP = D15 AGP;∩  

FOODP, including all AGP patents in class D13, i.e., FOODP = D13 AGP;∩  

AGCHEMP, including all AGP patents in class C01-C06, i.e., 

AGCHEMP = (C01 C02 C03 C04 C05 C06) AGP.∪ ∪ ∪ ∪ ∪ ∩  

 

Finally, annual series of patent counts in each field and subfield were divided into 

two time series, one for the public sector and another for the private sector.  For the 

reason explained in Section 5.2, the private sector’s medical and biological patent counts 

were combined to measure industry’s knowledge output in medical research and 
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development.  Along with Thomson’s patent experts and my colleagues, I designed a list 

of keywords for finding the names of the public-sector patent assignees.  Drawing public-

sector patents from our patent pool left the private-sector patents.  Following are the 

keywords employed: 

 

“CENTER” or “cent” or  “AGENCY” or  “INST” or  “INSTITUTION” or  

“INSTITUTE” or “inst” or  “ASSOCIATION” or “assoc” or  “FOUNDATION” or 

“fond” or “found” or  “ORG” or  “PUBLIC” or  “GOVERNMENT” or  

“UNIVERSIT?” or “univ”  or  “COLLEGE” or  “dept” or  “US  dept” or “us admin” 

or “us sec” or  “NAVY” or  “NASA” or  “ARMY” or  “AIRFORCE” or “sec” or “us”. 

 

5.5  Price of Knowledge Output: Average Market Value of Patents 

 

A patent is the property right awarded to the innovator of an invention, giving 

exclusive commercial use of the invention.  If a market exists for a patent, its market 

price should exactly equal the present value of cash flow that can be generated by 

completely exploiting the property right associated with that patent.  Hence, patent price 

reflects profitability in the industry in which the invention is used to produce new goods 

or reduce production costs.    

One might question whether patent prices reflect social value, given that the 

distribution of patent values is highly skewed: a small number of blockbuster patents is 

extremely valuable, while the majority have no licensing revenues whatever.  However, a 
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time series of average patent value remains informative about changes in profitability 

conditions in the patent-using industries (Griliches, 1990).  These changes have an impact 

on industry R&D investment and hence should be taken into account to explain 

fluctuations in industrial R&D investment demand.    

The difficulty in constructing annual series of average patent values is that no 

integrated market exists for patents.  Thus, one has to resort to indirect information—say, 

the implicit value of a patent as perceived by economic agents—to estimate patent value.  

Pakes (1986) and Lanjouw, Pakes, and Putnam (1998) use patent application and renewal 

data to estimate such value.  Their idea is that every patent holder must posit an “optimal 

stopping” decision each year about whether or not to renew the patent monopoly, keeping 

in mind the annual renewal fee to which every patent is subject.  Hence, the renewal data 

contain information about the value of the patent as perceived by the patent holder.   

Alternatively, researchers have estimated patent market value through stock 

market information [Griliches (1981); Hall, et. al. (2005)].  A firm’s stock price reflects 

its profitability as perceived by the buyers and sellers of the firm’s stocks.  The value of a 

new invention will, if significant, change the price of the inventing firm’s stock, other 

things equal.  With this in mind, Griliches (1981) regresses the firm’s Tobin Q on the 

firm’s patent counts along other control variables such as R&D expenditure.  The 

estimated marginal effect of patent counts on Tobin’s Q provides an estimate of patent 

value.  Griliches shows that a successful patent is worth about $ 200,000.  (The base year 

of this figure is unclear; but from the 1967-1974 sample period and 1981 article 

publication date, I assume it is in the late 1970’s.)  A recent study by Hall, et al. (2005) 
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applies citation-weighted patent counts to the Griliches model and finds that the marginal 

value of a patent is approximately $ 370,000 million (1980 U.S. dollars.) 

This method is data-demanding.  Employing it to obtain a time series of average 

patent market values in a given field requires time-series, cross-section data at the firm 

level.  To my knowledge, the only data with this potential is the NBER patent data 

constructed by Bronwyn Hall and her coworkers.  Constructing such panel data requires 

merging firm data in Compustat with NBER patent data.  The work of matching 

Compustat firms with patent assignees is still in its infancy.  Professor Hall and her 

coworkers have developed such a matching on the basis of firm ownership information in 

1989.  They have matched 2,592 Compustat firms with patent assignees who were 

granted USPTO patents in or before 1999.  Unfortunately, of the over 1000 life-science 

firms in my dataset, only 134 appeared in Hall’s firms-matched-to-assignees sample.  

Still worse, few of the 134 firms appeared in my dataset through the entire 1980-2004 

sample period. 

  Confronted with these difficulties, I turned to a relatively crude estimation 

method.  I subtracted each firm’s book value from its market value, aggregated the net 

market values of all firms in a field and year, then divided the resulting aggregate net 

market value by the total number of patents awarded in the field and year.   

Unlike the previous two approaches, this requires data only at a high level of 

aggregation.  Of course, it assumes that the profit potential of a firm’s research entirely 

explains the firm’s market value net of its physical assets.  This is a strong assumption.  

Other intangible assets—such as consumer loyalty established through advertising, and 
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management efficiency—are reflected in stock price as well.  Nevertheless, the approach 

does capture the most important changes in the profitability conditions of patent-using 

industries.   

In summary, following are the procedures used to construct time series of average 

patent values in each life-science field: 

  

Step 1. Compute book and market values of the 1205 life-science firms in LS-FIRM 

(see appendix C.2 for formulae and definitions). 

Step 2.  Estimate book and market values of business segments in the 197 firms in 

MULTF, which were found to conduct R&D in more than one R&D field.  

Each firm’s book and market values were divided into business segments 

according to sales shares. 

Step 3.  Aggregate book and market values across firms and business segments in each 

field and year.    

Step 4.  Calculate market-to-book ratios in each field and year. 

Step 5.  Multiply aggregate book values by one minus the corresponding market-to-

book ratio to obtain the total net market value of all firms and segments in a 

given field. 

Step 6.  Normalize annual net market values obtained in step 5 into 2001 dollars using 

the Consumer Price Index (CPI). 

Step 7.  Construct patent stocks by applying the perpetual inventory formula: 

1 1(1 )t t tK R K δ− −= + − , 1981, 2004t = ; where K  is patent stock, R  is 
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annual patent counts, and δ  is obsolescence rate (δ  = 0.15).  Initial 

knowledge stock was estimated by 1980 1980K R γ= , where 0.23γ = .  

Step 8.  Divide the aggregate net market value in a research field and year by patent 

stock constructed in Step 7.  This obtains the average patent value in the given 

field  and year.  
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Chapter 6:  Results 
 
 

As discussed in Chapter 4, the R&D investment models developed in Chapter 3 

were estimated using the GMM estimation technique.  Estimation was executed in 

GAUSS with the Hansen/Heaton/Ogaki GMM package.  Each model was estimated four 

times, successively using instrument sets ,j aI , ,j bI , ,j cI , and ,j dI , where j med=  for the 

medical research industry and j ag=  for the agricultural research industry.  (See 

Appendix B for definitions of these instrument sets).  The GMM estimator is a 3SLS 

estimator that corrects for estimated heteroskedasticity.  Estimation results were fairly 

robust across the four instrument sets and across alternative discount factors (see 

Appendix B for details.)  Here, I discuss the results obtained from instrument set bI 6 

under the assumption of a 0.95 discount factor.    

 

6.1  Parameter Estimation and Specification Tests 

 

6.1.1  Medical Research Industry 

 

Tables 6.1 displays parameter estimates from the medical research industry.  The 

J statistic in this table represents the Hansen J statistic, which has an asymptotic chi- 

                                                 
6 I use a “minimum mean squared prediction error” criterion to compare results obtained from the four sets 
of instrument variables.  Specifically, for each observation, I substitute the observed exogenous variables 
into the estimated model to compute the equilibrium values of the endogenous variables.  I then compute 
the mean squared prediction error for each endogenous variable.  In both the medical and agricultural 
research industry, the model estimated with bI  generates the smallest prediction error for all endogenous 
variables. 

77



       

 

 

 

Table 6.1  Parameter estimates in the medical research industry  

 Model 1 Model 2 Model 3 Model 4 
0.3852 0.3411 0.3957 0.3837 

1α  
(0.0101) (0.0091) (0.0098) (0.0088) 
0.0101 0.0107 0.0097 0.0101 

2α  
(0.0002) (0.0002) (0.0002) (0.0002) 
5.7310 -0.8324 5.4541 5.5571 

1β  
(0.8044) (0.4379) (0.8013) (0.5765) 
-0.3785 -0.1469 -0.7529 -0.3532 

2β  
(0.1209) (0.1185) (0.0734) (0.0892) 
-0.0056 -0.0112 -0.0168 -0.0052 

3β  
(0.0030) (0.0030) (0.0010) (0.0028) 
-0.0445 0.0016  -0.0457 

4β  
(0.0114) (0.0104)  (0.0107) 
0.0820 0.0797 0.1178 0.0815 

5β  
(0.0136) (0.0135) (0.0099) (0.0135) 
0.0251 0.0310 0.0408 0.0244 

6β  
(0.0045) (0.0045) (0.0021) (0.0038) 
0.0024 -0.0358 0.0126  

7β  
(0.0077) (0.0066) (0.0073)  
-0.9140  -0.7617 -0.8991 

8β  
(0.0940)  (0.0855) (0.0808) 

J 15.1417 109.7443 30.3407 15.2377 
P-Value 0.0871 0.0000 0.0008 0.1236 

d.f. 9 10 10 10 
 
Note: Models are estimated with instrument set bI .  Numbers in parentheses are 
asymptotic standard errors.                  
 

square distribution.  The degrees of freedom of the chi-square distribution equal the 

number of moment conditions minus the number of parameters estimated.  The J  statistic 

therefore provides a natural test of the validity of the moment conditions.  The statistic 

also can be used for specification tests.  The J statistic of the restricted model minus that 

of the unrestricted model is distributed chi-square with degrees of freedom equal to the 

number of restrictions imposed.  Model 2 in Table 6.1 is that described in Chapter 4.  
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Model 1 adds a trend term to the production function in Model 2.  The parameter of the 

trend term is 8β .  The J statistic in Model 2 (109.74) minus that in Model 1 (15.14) 

equals 84.60, which is far greater than 3.84, the 5% critical value of a chi-square 

distribution with 1 degree of freedom.  Thus, Model 2 is rejected against Model 1.  Model 

3 imposes restriction 4β = 0 on Model 1, implying no adjustment costs in medical R&D 

investment.  The same test procedure leads me to reject the no-adjustment-cost 

hypothesis at the 5% level.  Model 4 imposes restriction 7 0β = , implying no knowledge 

spills over from agricultural research, be it public or private, to private-sector medical 

research.  The chi-square statistic equals to 15.24 - 15.14 = 0.1, far less than the 5% 

critical value of a chi-square distribution with 1 degree of freedom.  The null hypothesis 

thus is not rejected.  However, the comparable hypotheses regarding knowledge 

spillovers from public-sector medical and biological research to private-sector medical 

research, i.e., 5 0β =  and 6 0β =  respectively, are rejected.  The joint hypotheses that 

there have been no knowledge spillovers from pairs of spilling sources were also tested 

and successively rejected.  Thus, Model 4 is the final one adopted.   

In Model 4, assumptions 2 0α > , 3 0β < , and 4 0β <  in the theoretical model 

(Chapter 3) are satisfied.  In medical research, that is, scientific labor supply is a linearly 

increasing function of wage and the representative firm’s technology is quadratic with 

internal adjustment costs.  These assumptions guarantee that the representative firm’s 

dynamic decision problem (3.3) is well defined.  The J statistic in Model 4 equals 15.24, 

which is less than 18.31, the 5% critical value of the chi-square distribution with 10 
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degrees of freedom.  The overidentifying restrictions are therefore not rejected, 

supporting the use of the moment conditions.   

The failure to reject the adjustment-cost hypothesis suggests a dynamic model is 

more appropriate for the medical research industry than is a static model.  Recall that 

adjustment parameter 1(1 )λ−  represents the proportion of the adjustment that occurs 

within a single year [see equation (3.18)].  As shown in expressions (3.8) and (3.9) 1λ  is a 

nonlinear function of interest rate r , knowledge output price ,med tp , and parameters 

3 4 2,  ,  and β β α .  The average adjustment parameter over the 1980-2003 sample period is 

0.29 (quasi-rational expectations are assumed in computing this parameter), implying that 

on average only 29% of the adjustment occurred within a single year.  This result is 

consistent with Bernstein and Nadiri’s (1989) finding that 36%, 32%, 26%, and 22% of 

R&D investment adjustment cost occurred within a year in, respectively, the chemical, 

petroleum, machinery, and instrument industries.  The chemical industry (SIC28) in that 

study includes as a subclass the same medical industry (SIC283), from which I have 

drawn my medical research firm data.  The result obtained here thus complements that 

obtained by Bernstein and Nadiri by suggesting medical R&D tends to incur higher 

adjustment costs than do other chemical industries in SIC28. 

Model 4 implies knowledge has spilled over from public-sector medical and 

biological research to private-sector medical research.  That is, public biological and 

medical research has enhanced medical firm research productivity by creating 

technological opportunities and providing knowledge infrastructure.  Interestingly, the 

estimated parameter on public-sector medical research investment (0.082) is larger than 
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that on public-sector biological research investment (0.024).  Yet it remains unclear 

whether the former contributed more than the latter to the growth of industrial demand 

for medical R&D investment, since the former’s negative wage effect has not been 

accounted for.   

Although the sign on the parameter of agricultural R&D investment is positive in 

Model 1,  the rejection of Model 1 against Model 4 indicates that knowledge spillovers 

from agricultural research, be it public or private, to private-sector medical research are 

not statistically significant.  It is well known that, thanks to advances in biotechnology, 

many subfields of medical and agricultural research now are organized within the same 

discovery process.  This is confirmed by my observation, when describing construction of 

private-sector R&D expenditures in the medical and agricultural sciences, that many 

large life-science firms have both agricultural and pharmaceutical business segments.  A 

recent study by Xia (2002) finds evidence of within-firm knowledge spillovers between 

agricultural biotech research and pharmaceutical biotech research.  The result obtained 

here, however, is not inconsistent with Xia’s result.  Agricultural and medical research 

are in the present study broadly defined to consist of both non-biotech-based and biotech-

based (DNA-based) research programs.  Knowledge spillovers from biotech-based 

agricultural research to biotech-based medical research likely are diluted in aggregation.  

Finally, the estimated negativity of 8β  implies that, after controlling for 

knowledge spillover effects, productivity of private-sector medical R&D has been 

declining since 1980.  This productivity regress may be due to technological exhaustion, 

to a diminishing rate of USPTO patent approvals, or to both. 
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6.1.2 Agricultural Research Industry 

    

Table 6.2 provides the parameter estimates from the agricultural research industry.  

Models 1 and 2 in this table are analogous to those in Table 6.1 for medical research.  

Unlike in medical research, the hypothesis that there has been no trend in technological 

or institutional shocks is not rejected in the agricultural research industry.  Model 2, that 

is, is not rejected against Model 1 because the J  statistic in Model 2 (12.02) minus that 

in Model 1 (11.64) is 0.38, far smaller than 3.84, the 5% critical value of the chi-square 

distribution with 1 degree of freedom.  Model 3 is used to test the no-adjustment-cost 

hypothesis in agricultural research by imposing restriction 4 0β =  on Model 2.  The no-

adjustment-cost hypothesis is not rejected, even though 4β  assumes the correct sign in 

Model 2.  Model 4 allows for adjustment costs while assuming no knowledge spillovers 

from medical research, public or private, to private-sector agricultural research, i.e., 

7 0β = .  I fail to reject this hypothesis.  Finally, using Model 5, I test hypotheses 4 0β =  

and 7 0β =  jointly.  The joint hypothesis is not rejected either.  In the same fashion, 

assumptions 5 0β =  and 6 0β =  respectively are tested jointly with assumption 4 0β = .  

The two joint tests are each rejected.  The P-value of the J statistic in Model 5 is 0.37, 

strongly supporting the use of the moment conditions.  Thus, I choose Model 5 as the 

final one for the agricultural research industry.  This final model is a special case of 

David and Hall’s static model with linear labor supply and quadratic technology.   
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Table 6.2  Parameter estimates in the agricultural research industry                          

 Model 1 Model 2 Model 3 Model 4 Model 5 
-0.1260 -0.1276 -0.1370 -0.1112 -0.1204 

1α  
(0.1290) (0.1290) (0.1285) (0.1258) (0.1252) 
0.1047 0.1043 0.1062 0.1022 0.1041 

2α  
(0.0161) (0.0161) (0.0159) (0.0157) (0.0155) 
0.3840 1.0433 0.9900 1.1108 1.0580 

1β  
(1.2837) (0.7189) (0.7157) (0.7091) (0.7059) 
-0.0819 -0.4981 -0.4504 -0.5324 -0.4848 

2β  
(0.7295) (0.2852) (0.2788) (0.2788) (0.2723) 
-0.1799 -0.1167 -0.1225 -0.1062 -0.1119 

3β  
(0.1127) (0.0479) (0.0473) (0.0443) (0.0437) 
0.0175 -0.0681  -0.0685  

4β  
(0.1626) (0.0860)  (0.0860)  
0.3439 0.3889 0.3793 0.3879 0.3782 

5β  
(0.1232) (0.0996) (0.0988) (0.0995) (0.0988) 
0.0446 0.0458 0.0464 0.0471 0.0477 

6β  
(0.0043) (0.0038) (0.0037) (0.0030) (0.0029) 
0.0025 0.0005 0.0005   

7β  
(0.0034) (0.0008) (0.0008)   
-0.0334     

8β  
(0.0539)     

J 11.6386 12.0230 12.6497 12.3481 12.9833 
P-value 0.2345 0.2835 0.3168 0.3381 0.3703 

d.f. 9 10 11 11 12 
 
Note: Models are estimated with instrument set bI .  Numbers in parentheses are 
asymptotic standard errors.        
 

In Model 5 the positive estimate of 2α  implies that agricultural scientific labor 

linearly increases with wage.  The estimate of 2α  in the agricultural model (0.10) far 

exceeds that in the medical model (0.01), implying agricultural scientific labor supply is 

much less elastic than is medical scientific labor supply.  This in turn indicates that, in 

agricultural research, public investment has had a much stronger wage effect on private 

investment than it has in medical research.   
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On the other hand, the own-field knowledge spillover effect in agricultural 

research ( 5
ˆ 0.38β = ) also is much stronger than in medical research ( 5

ˆ 0.08β = ).  As 

documented in Huffman and Everson (1993), research funded by public institutions such 

as the USDA and Agricultural Experiment Stations has been extraordinarily instrumental 

in driving technological change in the U.S. agricultural sector.  The comparison here with 

medical research provides a new perspective on the contribution of public to private 

agricultural research.  Yet the strong negative wage effect indicated by the inelastic 

agricultural scientific labor supply may well neutralize the knowledge spillover effect on 

private investment incentives.  It remains unclear whether, in agriculture, public 

investment has been more complementary to private investment than it has been in 

medicine. 

Public biological research also had a significant spillover effect on private 

agricultural research ( 6
ˆ 0.48β = ), stronger than that on private medical research 

( 6
ˆ 0.24β = ).  As in the medical model, however, public biological research has exerted a 

much weaker knowledge spillover effect than public own-field research has.  In addition, 

no significant knowledge spillovers are found from either public or private medical 

research to private agricultural research.  This may be interpreted in a way analogous to 

the medical model.  That is, knowledge spillovers from biotech-based (DNA-based) 

medical research on biotech- based agricultural research is diluted, both in agriculture 

and medicine, in the aggregation of biotech-based and non-biotech-based research 

programs.   
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Finally, a comparison of the estimate of the curvature parameter in the medical 

model ( 3
ˆ 0.005β = − ) and that in the medical model ( 3

ˆ 0.112β = − ) suggests agricultural 

research has a more concave production function than does medical research.  In other 

words, the marginal productivity of private investment decreases at a faster speed in 

agricultural research than in medical research.  This is evident in Figures 1 and 2, which 

show the evolutions of the two industries’ knowledge production functions during the 

sample period.  In common with both industries, however, the marginal productivity of 

private investment has increased dramatically over the sample period, thanks to public-

sector investments in basic biological and own-field research. 

In summary, results in this Section indicate that the medical research industry 

follows a model quite different from that in agricultural research.  In the first place, the 

tests of the adjustment cost hypothesis suggest that a dynamic model is appropriate for 

the medical research industry, while a static one is appropriate for the agricultural 

research industry.  In the second place, the technology and supply of scientific labor are 

quite different in the two industries.  In common with both industries is the knowledge 

spillover pattern:  public own-field and biological research improve private research 

(although the former did more strongly than the latter); and no significant  knowledge 

spillovers are found between medical and agricultural research.  The latter implies the 

two industry’s R&D investments are exogenous to each other, dramatically simplifying 

the ensuing computation of elasticities and simulations (see footnote 1 on page 36.)   In 

the next Section, we study the elasticities of the representative firm’s demand for 
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scientific labor (R&D investment), providing insight into the complementarity vs. 

substitutability hypothesis and the demand-pull vs. technology-push debate. 

 

6.2  Elasticities 

         

Model 4 in Table 6.1 and Model 5 in Table 6.2 are used to compute input demand 

and output supply elasticities by applying the formulae derived in Chapter 3 and 

Appendix A.  Since the specification tests suggest a dynamic model is appropriate in 

medical research, I compute elasticities under both quasi-rational and static expectations.  

Under the SEH, I compute both short- and long-run elasticities.  Under the QREH, the 

long-run equilibrium is stochastic because of the stochastic nature of the exogenous 

variables.  Thus, only short-run elasticities are computed under the QREH.  Elasticity 

formulae include (3.13 -14) and those in Sections 2 and 3 of Appendix A.  For the 

agricultural research industry, the model adopted is a static one in the spirit of David and 

Hall’s because the adjustment cost hypothesis is rejected.  In this case no distinction 

needs to be made between short- and long-run equilibrium.  As shown in Chapter 3, 

equilibrium in such a static model is the same as the long-run dynamic equilibrium solved 

under static expectations.  I therefore apply the long-run dynamic elasticity formulae, 

under the SEH, to the agricultural R&D model derived (see Appendix A.3.)  

Table 6.3 contains elasticities of the medical research industry’s demand for R&D 

investment with respect to public-sector investment in medical research ( pub
medh ), public-

sector investment in biological research ( pub
bioh ), and knowledge output price  ( medp ).  
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Table 6.3 Elasticities of demand for R&D investment in the medical research industry 

Elasticity of private-sector demand for R&D investment 

1982-1990 1991-2003 

Short-run Long-run Short-run Long-run 
With respect to SEH† QREH‡ SEH SEH QREH SEH 

pub
medh  1.55 0.97 3.05 0.67 0.51 1.27 
pub

bioh  0.52 0.38 1.03 0.22 0.20 0.42 

medp  0.31 0.23 0.88 0.04 0.04 0.13 

 
Note: Numbers are average elasticities over each indicated time period.  
†Elasticities are computed under the static expectations hypothesis. 
‡Elasticities are computed under the quasi-rational expectations hypothesis, under which 
the representative firm holds static expectations on output price medp , and rational 
expectations on the other two state variables, pub

medh and pub
bioh .  The latter two variables are 

assumed to evolve in a first-order autoregressive mode.  OLS estimation yields 
1 , , 1( ) 1.24 0.86pub pub

t med t med tE h h− −= +  and 1 , , 1( ) 0.47 0.96pub pub
t bio t bio tE h h− −= + .  

 

Elasticities are evaluated at all observations and averaged over two successive periods: 

1982-1990 and 1991-2003.  The private sector’s investment demand elasticity with 

respect to public investment permits examination of the complementarity vs. 

substitutability hypothesis discussed in Chapters 2 and 3.  The positive signs on the 

demand elasticities with respect to pub
medh  indicate that public-sector R&D investment is 

complementary to private-sector R&D investment in medical research, even after 

accounting for the negative wage effect.  Evidently, the positive spillover effect 

dominates the negative wage effect, consistent with the finding in the previous Section 

that medical scientific labor supply is highly elastic.  That the demand elasticities with 

respect to pub
bioh  are positive implies public-sector investment in biological research helps 
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improve the medical research industry’s productivity.  Recall that in the previous Section 

the question whether private R&D has been more responsive to public biological or to 

own-field research was unsolved because at that point the equilibrium had not been 

solved and the magnitude of the wage effect was unknown.  We can now conclude from 

Table 6.3 that private-sector medical R&D investment has been more responsive to 

public-sector medical R&D investment than it has been to public-sector biological R&D 

investment.   

The medical research industry’s investment demand elasticities with respect to 

knowledge output price ( medp ) are all positive as theory predicts.  The magnitudes of 

these elasticities, however, are smaller than those with respect to public-sector 

investments in medical and biological research ( pub
medh  and pub

bioh , respectively).  More 

strikingly, investment demand after 1990 became almost perfectly inelastic to knowledge 

output price, in turn implying that the post-1990 growth of industrial R&D in medical 

sciences was driven almost solely by productivity improvements induced through 

knowledge spillovers from public institutions.  That result has interesting implications for 

the demand-pull vs. technology-push debate of the 1960’s and 1970’s.  As reviewed in 

Section 2.4.1, most of the 1970’s literature concluded that both demand-pull and 

technology-push are the major driving forces of inventive activity in modern economies.  

I find instead that, at least since 1980, technological opportunity rather than market 

demand has been the dominant driver in private-sector medical research investment.  

Indeed, industry investment in medical R&D has since 1990 been almost exclusively 

determined by technological opportunities created through publicly-funded biological and  
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Table 6.4  Elasticities of knowledge output supply in the medical research industry 
  

Elasticity of private-sector supply of knowledge output 

1982-1990 1991-2003 

Short-run Long-run Short-run Long-run 
With respect to SEH† QREH‡ SEH SEH QREH SEH 

pub
medh  1.79 2.78 3.13 3.14 4.32 3.49 
pub

bioh  0.57 0.66 1.03 1.01 1.18 1.15 

medp  -0.13 -0.41 0.30 -0.18 -0.24 0.05 

 
Note: Numbers are average elasticities over each indicated time period.  
†Elasticities are computed under the static expectations hypothesis. 
‡Elasticities are computed under the quasi-rational expectations hypothesis (see Table 6.3 
for a precise definition.) 
 

medical research. 

Observe that, especially after 1990, elasticities estimated under the QREH are 

quite similar in magnitude to those estimated under the SEH.  This provides part of the 

justification for employing the SEH in the simulations discussed below in Section 6.4.   

Table 6.4 provides the medical research industry’s output elasticities.  A 

comparison of the elasticities with respect to ,  ,pub pub
med bioh h  and medp  further confirms the 

conclusion drawn above about the demand-pull vs. technology-push debate.  Knowledge 

output, measured by numbers of patents, has been more responsive to technology push 

than to demand pull throughout the sample period, especially after 1990.   

The negative short-run output supply elasticities in table 6.4 are worth noting.  

The negative signs seem to contradict the standard economic theory that output supply is 

monotonically increasing in output price.  However, a moment’s reflection leads us to 
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reject this conjecture.  More favorable investment environments lead the representative 

firm to recruit more scientific workers.  When adjustment costs are high, integrating the 

new with the old research workers may reduce the productivity of ongoing research 

programs.  The loss, however, is transient:  when the integration is completed, 

productivity will resume.  Thus, the long-run output supply elasticity with respect to 

output price must be positive, an hypothesis confirmed in Table 6.4.  The adjustment cost 

model does not contradict the static output supply theory, it enriches that theory.        

Table 6.5 provides the estimates of the input demand and output supply 

elasticities in the agricultural research industry.  Because the agricultural model is static, 

no distinction needs to be made between static and quasi-rational expectations or between 

short- and long-run equilibrium.  As in medical research, public-sector R&D investment 

in agricultural research has, during the 1980 – 2003 sample period, been complementary 

to private-sector investment, even after accounting for the negative wage effect.  

Elasticities in public-sector agricultural research are uniformly higher than the 

corresponding elasticities in public-sector biological research.  As shown in Table 6.2, 

public-sector agricultural R&D investment has had a much stronger spillover effect than 

has public-sector biological research ( 5
ˆ 0.38β =  vs. 6

ˆ 0.05β = ).  Even after being 

neutralized by the wage effect, the strong own-field spillover effect still has generated 

more incentives for private investment than have spillovers from public-sector biological 

research.   
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Table 6.5  Input demand and output supply elasticities in the agricultural research 
industry  
 

Elasticity of private-sector demand 
for R&D investment 

Elasticity of private-sector supply 
of  knowledge output 

With respect 
to 1982-1990 1991-2003 1982-1990 1991-2003 

pub
agh  1.19 1.03 1.67 1.58 
pub

bioh  0.43 0.51 0.57 0.78 

agp  0.28 0.08 0.09 0.01 
 
Note: Numbers are average elasticities over the indicated time period. 
 

Relative magnitudes of elasticities with respect to public R&D investment and 

output price exhibit the same patterns in the agricultural research industry as in the 

medical industry.  In particular, public research has played a much more important role 

than market demand in driving industrial agricultural R&D in the past two decades.  

Indeed, private agricultural R&D investment and patent output have since 1990 become 

almost perfectly insensitive to demand pull.  Productivity improvements induced by 

knowledge spillovers from public-sector research have been the main cause of the growth 

in industrial agricultural R&D. 

To gain further perspective on the contrasting characteristics of agricultural and 

medical research, we next compare elasticities across these two industries.  Note that 

elasticities in the agricultural research industry are comparable only to SEH long-run 

elasticities in the medical research industry.  Broadly speaking, the comparison suggests 

that R&D investment and knowledge output supply have in agricultural research been 

less responsive to exogenous variables than in medical research.  Our earlier comparison 
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of the parameter estimates in these two models shows that, on the one hand, public-sector 

own-field and biological research have exerted a stronger spillover effect on private 

sector research in the agricultural research industry than in the medical research industry.  

On the other hand, medical scientific labor supply is much more elastic than agricultural 

scientific labor supply.  An inelastic supply implies that induced incentives for R&D 

investment tend to be neutralized by the rising wage.  Indeed, this is exactly what 

happens in the agricultural research model:  strong spillover effects have been offset by 

the strong, counteracting wage effect.  The net result is that industrial investment in 

agricultural research has become even less responsive to exogenous stimulants than has 

industrial investment in medical research.    

 

6.3  Private Rate of Return to Public Investment 

 

Considering the predominant role that public-sector R&D investment has played 

in private sector R&D investment decisions, it seems useful to characterize the industrial 

value of public-sector R&D investment.  Let us consider a policy of permanently 

boosting public investment, for example in the medical sciences, by $1 million per year.  

What is the private rate of return on this investment plan to the medical research industry?  

By the private rate of return to public investment, I mean the worth to the industry of a 

dollar of public investment.  In Section 3.4 and Appendix A.4, I have shown that such a 

return rate may be computed as the marginal value to the industry of the investment plan 

divided by the marginal cost of the investment plan incurred by the public investor.  For 
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the medical research industry, I apply the formulae derived in Appendix A.4 to Model 4 

in Table 6.1.  For the agricultural research industry, I apply the same formulae to Model 5 

in Table 6.2. 

 

Table 6.6  Private rates of return in the medical research industry to public-sector R&D 
investments  
 

To the medical research industry 
1982-1990 1991-2003 1982-1990 1991-2003 

Rate of return on _____patents/$ million _____ ____$ million/$ million ____ 
pub

medh  2.47 7.32 25.77 183.33 
pub

bioh  0.75 2.20 7.79 55.06 
 
Note: Numbers are average rates of return over the indicated time period. 
 
 
Table 6.7  Private rates of return in the agricultural research industry to public-sector 
R&D investments 
 

To the agricultural research industry 
1982-1990 1991-2003 1982-1990 1991-2003 

Rate of return on _____patents/$ million _____ ____$ million/$ million ____ 
pub

agh  1.51 2.64 12.40 36.43 
pub

bioh  0.20 0.34 1.62 4.69 
 
Note: Numbers are the average rates of return across the indicated time period. 
 

As shown in Table 6.6, the private rate of return to the medical research industry 

of public medical R&D in the 1980’s was 2.47 patents (worth of $25.77 million) per $1 

million of investment.  The same rate of return increased in the 1990’s to 7.32 patents 

(worth of $183.33 million) per $1 million of investment.  Rates of return to public 

biological R&D in biological research are evidently much smaller.  A similar pattern can 
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be observed in Table 6.7 for the agricultural research industry.  In particular, $1 million 

of public investment in agricultural research in the 1980’s produced 1.51 patents, or 

$12.40 million, to the private agricultural research industry, and in the 1990’s it produced 

2.64 patents or $36.43 million.   

Because of the partial equilibrium nature of the present study, these results do not 

necessarily imply that public research resources be reallocated from basic biological to 

downstream medical or agricultural research.  The broader social value of science is 

extremely difficult to measure. 

In summary, public R&D investments in the life sciences have generated 

impressively high rates of return to the private sector, and these rates have continually 

risen in the last two decades.  The secular increase is due in part to rising private-sector 

R&D and its complementary relationship with public-sector R&D, and in part to 

increases in patent values.  The suggestion is that public direct involvement in research 

activity remains an effective policy tool for creating incentives for private-sector 

innovation.   

 

6.4  Simulations 

 

With the models estimated in Section 1 of this Chapter, we may simulate the 

effects of exogenous on endogenous variables in selected years.  I conduct the 

simulations under the static expectations hypothesis in a deterministic context because, as 

we have seen in Section 6.2, elasticities obtained under static expectations approximate 
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those under quasi-rational expectations.  Moreover, the SEH is more appropriate than the 

QREH for policy experiment (i) considered below.       

We examine how the endogenous variables respond over time to the following 

separate events: (i) one of the three exogenous variables — public-sector own-field R&D 

investment, public-sector biological R&D investment, and knowledge output price —

increases by 1% in the fifth year after the system has reached equilibrium, permanently 

remaining at this new level; (ii) one of the three exogenous variables unexpectedly 

increases by 1% in the fifth year after the system has reached equilibrium, dropping back 

to its original level in the following year.  

Simulation results are shown graphically in Figures 6.3-6.8.  In each figure, the 

three leftmost charts describe the evolutions of the exogenous variables.  Each of the 

three charts is matched, to its right, with three additional charts describing the evolutions 

of the three endogenous variables — private-sector R&D investment, private-sector 

knowledge output, and scientific labor wage — in response to changes in the 

corresponding exogenous variable.  1985 and 2003 data are chosen for these simulations 

in order to observe interim changes in the manner in which the endogenous variables 

have responded to the exogenous variables.   

  Figures 6.3 and 6.4 simulate event (i) in the medical research industry with 1985 

and 2003 data, respectively.  In both years, the endogenous variables are most responsive 

to a 1% change in public-sector medical R&D and least responsive to a 1% change in the 

price of the knowledge output.  Indeed, changes in knowledge output prices have 
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negligible effects, consistent with our discussion above of the demand-pull vs. 

technology-pull debate.   

Because of adjustment costs, the endogenous variables approach their new 

equilibria gradually.  Adjustments appear to be quite long, especially in private-sector 

R&D investments and in wages, consistent with the fact that the average adjustment 

parameter in the medical research industry is 0.29.  Finally, comparing Figures 6.3 and 

6.4 indicates each endogenous variable becomes less responsive to a given change in the 

exogenous variables as time passes.        

Figures 6.5 and 6.6 provide the counterparts of Figures 6.3 and 6.4 for the 

agricultural research industry.  Because no significant adjustment costs are evident in 

agricultural R&D investment, the endogenous variables jump to their new equilibria 

immediately.  The manner, however, in which they respond to changes in the exogenous 

variables, and how those responses vary over the years, are the same as we have observed 

in the medical research industry in Figures 6.3 and 6.4.   

Figures 6.7 and 6.8 show, respectively for the medical and agricultural research 

industry, how the endogenous variables respond to an unanticipated 1% increase in each 

of the three exogenous variables.  2003 data are used for these simulations.  Not 

surprisingly, demand-side shocks have little impact on private-sector R&D investment 

decisions.  Because the exogenous variable is assumed to return to its original level 

immediately after the shock, endogenous variables in medical research do not have time 

to reach their new equilibrium.  Adjustment costs, that is, act as a buffer for exogenous 

variable shocks. 
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In summary, the above simulations further confirm the contribution of public 

investment to the growth of industry demand for R&D investment.  In particular, 

simulations with the 2003 data suggest industrial R&D investment has remained 

responsive to public R&D investment, but hardly to knowledge output price, in recent 

years.        
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Chapter 7:  Conclusions 
 
 

The two decades since the biorevolution of the 1970’s have seen an investment 

surge in the life-science research of both public institutions and private firms.  Over 50% 

of federal funds for research and development now go to the life sciences.  Yet 

investment growth in industry has far outpaced that in public institutions, and the 

majority of life-science R&D now is being invested and performed in the private sector. 

The objective of the present dissertation has been to evaluate the contribution of 

public research to industrial life-science R&D growth during the past two decades.  To 

this end, I have developed a dynamic model of industrial R&D investment permitting a 

structural examination of cross-field and cross-sector knowledge spillovers, public and 

private interactions in the research input market, and the technological characteristics of 

knowledge production in the principal life-science fields.  The model has been estimated 

with a unique dataset of R&D expenditures and patent counts constructed at the 

individual life-science field level.  

Results show that the technology of private agricultural research differs markedly 

from that of medical research.  The marginal productivity of R&D investment decreases 

at a quicker rate in agricultural than in medical research.  High internal adjustment costs 

are evident in medical R&D investment, and estimates obtained here of medical R&D 

adjustment parameters are consistent with previous results.  Nonsignificant adjustment 

costs, however, are found in agricultural R&D.  The implication is that a dynamic model 

is appropriate for characterizing medical R&D investments, while a static model suffices 

for the agricultural research industry. 
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Estimates are provided in this dissertation of the knowledge spillovers between 

the three major life-science fields and between the public and private sector.  Basic 

biological research performed in public institutions is found to have a significant 

“infrastructure” effect on research productivity in both agriculture and medicine.  Own-

field research performed in the public sector also has strong spillover effects on private 

agricultural and medical research.  However, no significant knowledge spillovers are 

found from either public or private agricultural research to medical research, or from 

public or private medical research to agriculture research.   

A comparison of medical and agricultural knowledge production functions shows 

that spillovers from public own-field and basic biological research to agricultural 

research are greater than they are to medical research.  This result provides new 

perspectives on the important role of public institutions in the U.S. agricultural research 

system. 

Public sector R&D investment may affect the private sector not only through 

knowledge spillovers but through competition for the same research input, scientific labor.  

In theory, knowledge spillovers encourage industrial investment, whereas the wage effect 

inhibits industry investment incentives.  I find that, both in agriculture and medicine, the 

positive spillover effect dominated the negative wage effect during the 1980 - 2003 

sample period.  Altogether, public institutions’ R&D investments have been strongly 

complementary with those in private firms.  And rates of return to private firms of public 

investments in the life sciences have been impressively high. 
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The supply of scientific labor in agricultural research is found to be much more 

inelastic than that in medical research, implying a stronger wage effect in agricultural 

than in medical research investment.  In agricultural research, the strong wage effect 

neutralizes the strong spillover effect.  As a consequence, private R&D investment in 

agriculture has been less responsive to exogenous factors than it has in medicine.      

Technological opportunities created through public research have been the 

dominating force in private R&D investment, swamping any market-demand effects 

throughout the sample period.  Indeed, after 1990, industry investment in both agriculture 

and medicine became almost perfectly inelastic to market demand, driven instead by 

technological opportunities created through public-sector research.   

Evidence of public investment’s predominant role in creating incentives for 

industrial investment in life-science research has important implications for government 

science and technology policy.  During the past two decades, the federal government has 

greatly expanded life-science research investment in response to rising public demands 

surrounding health and food issues.  I have shown this investment strategy to be highly 

successful in creating technological opportunities for life-science firms.  Simulation 

results indicate public investment in the life sciences will continue to be extremely 

valuable for the private sector.  R&D tax credits may, of course, have exerted similar 

knowledge spillover effects, and represent alternative policy instruments for stimulating 

industry R&D investment. 

This study has its limitations.  It has not taken into explicit account any changes 

during the sample period in industry financing opportunities or in the strength of 
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intellectual property rights in the life sciences.  Those issues raise important difficulties in 

modeling and variable construction, which would have greatly complicated the present 

framework.  On the other hand, although no rigorous study has yet simultaneously 

considered all four determinants of private R&D investment – market demand, 

technological opportunity, scientific labor supply, and adjustment costs – the present 

research has taken a significant step in that direction.                                        
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Appendix A:  Mathematical Details for Chapter 3 

 

A.1  Equilibrium Solution under the Quasi-Rational Expectations Hypothesis 

 

Following Sargent (1987, pp. 391-396), we solve the stochastic Euler equations 

(3.8) forward using the unstable root in order to impose the transversality condition (3.6), 

and then solve it backward using the stable root to impose the initial condition. 

Assume ,{ }pub
med th , ,{ }pub

bio th , and ,{ }pp
ag th  are exogenous stochastic processes of 

exponential order less than 1/ r , i.e., for some 0M > and 1 1/s r≤ ≤ , 

   , , ,,  ,  ,pub t j pub t j pp t j
t med t j t bio t j t ag t jE h Ms E h Ms E h Ms+ + +

+ + +< < <                 (A.1.1) 

for all t  and j t≥ .  Rewrite equation (3.8) as 

2 1
, 1

1    ( + ) prv
t med t t tB B E h E z

r
θ− −

−− = ,                                                       (A.1.2)                        

where the operator B  is defined by j
t t t t jB E x E x−

+= .  Let 1 2λ λ θ+ =  and 1 2
1
r

λ λ =  so 

that (A.1.2) can be written as 

 1 1
1 2 , 1    ( )( ) prv

t med t t tB B E h E zλ λ− −
−− − = .                                                 (A.1.3)  

Without loss of generality, let 1λ ≤ 2λ .  Under the assumptions 2 0α > , 3 0β < , 

and 4 0β < , it is straightforward to show 1 2
10 1
r

λ λ< < < < .  Dividing both sides of 

(A.1.3) by 1
2B λ− −  yields 

114



       

 

 

, 1 , 1 1 , 11 1
2 2 2

1 , 1 2
02 2

1    
1 /

1 1            = ( ) ,

prv prv prvt t t t
med t med t med t

prv i i
med t t t i

i

E z E zh h h
B B

h E z c

λ λ
λ λ λ

λ λ
λ λ

− −− −

∞

− +
=

= + = −
− −

− +∑
                   (A.1.4) 

where c  is constant.  Since 2 1λ > , we must have 0c =  in order for the transversality 

condition (3.6) to be satisfied.  This gives expression (3.9) in Section 3 of Chapter 3.   

After replacing least square predictions with expectations to get (3.13), the final 

solution to the problem can be obtained by solving (A.1.4) backward using the stable root 

1λ .  Write (3.13) as ,
1

1
1

prv
med t th

L
η

λ
=

−
,                                                            where 

2 1 , 5 2 , 1 2 ,

4 2 2 1

7 3 2 ,6 2 2 ,

2 2 2 3

( )( ( 1) )1 [   
1

( ( 1) )( ( 1) )
       ].

pub
med t med t med t

t

pppub
ag tbio t

p p c h
r

c hc h

β α β α λ
η

β λ λ ρ

β λβ λ
λ ρ λ ρ

− − − +
= − +

− −

− +− +
+ +

− −

 

With , 1
prv

medh −  given, this can be expressed as  

1
, 1 , 1 1

0

t
prv t prv t

med t med t i
i

h hλ λ η+
− −

=

= +∑ , 0,1,2t =                                 (A.1.5) 

It is straightforward to confirm that (A.1.5) satisfies the transversality condition (3.6): 

,
0 2 5 , 6 , 7 ,

,

3 , 4 , , 1 ,

lim {[

         ( )] } 0

med tt pub pub pp
med t bio t ag tt

med t

prv prv prv prv
med t med t med t med t

w
r E h h h

p

h h h h

β β β β

β β

→∞

−

+ + + −

+ + − =

 

To see this, notice that by (A.1.1) and (A.1.5), ,
prv

med th  is a sequence of exponential order 

less than 1/ r , i.e.,  ,
prv t

med th Ms< , where 0M >  and 1 1/s r≤ ≤ ; and so is ,med tw  by 

the market clear condition (3.4).  Since by assumption , ,0med t medp p=  for 0t ≥ , the 
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transversality condition is satisfied.  Hence, (A.1.5) is the unique solution for the 

equilibrium sequence ,{ }prv
med th .  Substituting from (A.1.5) into the market clear condition 

(3.4) yields the unique solution for the equilibrium sequence ,{ }med tw . 

 

A.2  Elasticities under the Quasi-Rational Expectations Hypothesis 

 

As shown in Chapter 3, it is simple to derive the elasticities of the private sector’s 

equilibrium R&D investment with respect to the public sector’s R&D investment.  The 

elasticity with respect to knowledge price ,med tp , however,  is a bit more complicated than 

the other two to derive, because the equilibrium representation of R&D investment (3.12) 

is highly nonlinear in ,med tp .  What follows is the derivation of this elasticity. 

Notice first that 2
1 2

1

10.5( 4 ),  r
r

λ θ θ λ
λ

= − − = , and 3 2

4 4 ,

11
med tr r r p

β αθ
β β

= + + − , 

so that 1λ  and 2λ  are nonlinear functions of ,med tp .  The derivates of the former two 

variables with respect to the latter are 

2
21

2
, 4 ,

2
21

2
, 4 ,

0.5 (1 4 )
,

0.5 (1 4 )
.

med t med t

med t med t

rd
dp r p

rd
dp r p

α θ θλ
β

α θ θλ
β

− −
=

+ −
=

                                                          (A.2.1) 

Differentiating ,
prv

med th  with respect to ,med tp  in (3.12) gives 
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(
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p c h d
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−
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p d
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β α λ
λ

λ ρ
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λλ
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        (A.2.2) 

Substituting from (A.2.1) into (A.2.2) and multiplying by , ,
prv

med t med tp h  gives the 

expression of the elasticity ,
d
m pe .   

The knowledge output supply function , 1 , , , ,( , , , , )prv pub prv pp
med t med t bio t ag t med ty h h h h p− can be 

obtained by substituting the equilibrium R&D investment (3.12) into the knowledge 

production function (3.2).  Apply the chain rule to obtain the elasticities of private-sector 

knowledge supply in medical sciences with respect to  , ,, ,pub prv
med t bio th h  and ,med tp  as follows: 

, , , ,
, 5 ,

, , ,

, , , ,
, 6 ,

, , ,

,

( , )
,

( , ) ( , )

( , )
,

( , ) ( , )

(

prv pub prv prv
med t med t med t med ts d

m m m mprv prv prv
med t med t med t

prv pub prv prv
med t bio t med t med ts d

m b m bprv prv prv
med t med t med t

s
m p

h h f h h
e e

f h h f h

h h f h h
e e

f h h f h
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e

β
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= +

∂

∂
= +

∂

∂
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i i
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i i
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, ,

, )
.

( , )

prv prv
med t med t d

m pprv prv
med t med t

h
e

h f h∂
i

i

                                 (A.2.3) 
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A.3  Elasticities under the Static Expectations Hypothesis 

 

Under the static expectations hypothesis, the short-run and long-run elasticities 

are derived from (3.15) and (3.16), respectively.  The short-run elasticities of private-

sector R&D investment in medical research ,
prv

med th  with respect to public investment in 

medical research ,
pub

med th , public investment in biological research ,
pub

bio th , and knowledge 

price ,med tp , respectively, are: 

                     

5 2 , ,
,

4 2 ,

6 ,
,

4 2 ,

1 1
, , 1 22

, 4 2 ,

2
5 , 6 ,

,
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( 1)
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          ( ) ]
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m m prv
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d prv
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pub pub
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h
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de h

dp r p

h h
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αβ β
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−
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The corresponding long run elasticities are: 
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Finally, the short-run and long-run output supply elasticities are analogous to (A.2.3).   

 

A.4  Private Rate of Return on Public-Sector R&D Investment  

 

Consider the policy plan described in Chapter 3.  The public sector announces a 

permanent increase in medical R&D investment by 1 $ million at period 0.  The questions 

of interest are 1) what is the shadow value of this policy plan to the private sector, and 2) 

what is the “private rate of return on public R&D investment in medical sciences,” by 

which we mean the ratio of shadow value to the marginal cost of this policy plan.   

To begin, rewrite (3.17) in its open-loop form: 

1 1
, 0 1 , 1 1 ,0

ˆ( ) (1 ) ,   0,1, 2prv t prv t prv
med t med medh h h tλ λ+ +

−= + − =ω                                  (A.4.1) 

where 0 , 1 ,0 ,0 ,0 ,0( , , , , )prv pub pub pp
med med bio ag medh h h h p− ′=ω  are the initial values of the exogenous state 

variables.  The corresponding equilibrium wage is  

, 0 1 2 , 0 ,0( ) [ ( ) ],prv pub
med t med t medw h hα α= + +ω ω  0,1,2t =                              (A.4.2) 

The value function of the problem (3.3) is 

,0 0 , 1 0 , 0 , 0 0
0

( ) ( ( ), ( ), ( ), )prv t prv prv
med med t med t med t

t

V r g h h w
+∞

−
=

= ∑ω ω ω ω ω                      (A.4.3) 

where 

 

, 0 , 0 0

, 0
1 2 5 , 6 , 7 , , 0

,

2 2
3 , 0 4 , 0 , 0

    ( ( ), ( ), )
( )

( ) ( )

   0.5 [ ( )] 0.5 [ ( ) ( )]

prv
med t med t

med tpub pub pp prv
med t bio t ag t med t

med t

prv prv prv
med t med t med t

g h w
w

h h h h
p

h h h

β β β β β

β β

= + + + + −

+ + −

ω ω ω
ω

ω

ω ω ω

                     (A.4.4) 
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and , 1 0 , 1( )prv prv
med medh h− −=ω .  Differentiate the value function (A.4.3) with respect to ,0

pub
medh  

and apply the envelop condition to obtain 

  

,0 0 , 1 0 , 0 , 0 0 , 0

0,0 ,

, 1 0 , 0 , 0 0

,

( ) ( ( ), ( ), ( ), ) ( )
[

( ( ), ( ), ( ), )
                              

prv prv prv
med med t med t med t med tt

pub pub
tmed med t med

prv prv
med t med t med t

p
med t

dV g h h w dw
r

dh w dh

g h h w
h

+∞
−

=

−

∂
=

∂

∂
+

∂

∑
ω ω ω ω ω ω

ω ω ω ω
].ub

    (A.4.5) 

The derivatives in the brackets are 

, 1 0 , 0 , 0 0 , 0

,

( ( ), ( ), ( ), ) ( )prv prv prv
med t med t med t med t

med med t

g h h w h
w p

−∂
= −

∂
ω ω ω ω ω

 

, 1 0 , 0 , 0 0
5 , 0

( ( ), ( ), ( ), )
( )

prv prv
med t med t med t prv

med tpub
med

g h h w
h

h
β−∂

=
∂

ω ω ω ω
ω , 

and 

, 0 , 0

,0 ,0

( ) ( )
[ 1]

prv
med t med t

pub pub
med med

dw dh
dh dh

α= +
ω ω

 

where by (A.4.1) and (3.16) 

, 0 , 0 5 2 ,01 1
1 1

,0 ,0 2 ,0 3

ˆ( ) ( )
(1 ) (1 )

prv prv
med t med t medi i

pub pub
med med med

dh dh p
dh dh p

β α
λ λ

α β
+ + −

= − = −
−

ω ω
. 

Substituting the last expression into (A.4.5) yields 

,0 0 , 0 5 2 ,01
2 1 5 , 0

0,0 , 2 ,0 3

1
5 2 ,0 1 , 0

0

( ) ( )
{ [(1 ) 1] ( )}

                  ( ) [1 (1 ) ] ( ),

prv prv
med med t medt i prv

med tpub
tmed med t med

t i prv
med med t

t

dV h p
r h

dh p p

p r k h

β α
α λ β

α β

β α λ

+∞
+

=

+∞
+

=

−
= − − + +

−

= − − −

∑

∑

ω ω
ω

ω

  (A.4.6) 

where 2 ,0

2 ,0 3

med

med

p
k

p
α

α β
=

−
.  Now substitute from (A.4.1) into (A.4.6) to obtain 
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,0 0 1 1 1
5 2 ,0 1 1 , 1 1

0,0

1 1 1
5 2 ,0 , 1 1 1 1

0

( ) ˆ( ) [1 (1 ) ][ (1 ) ],

                  ( ){ [ (1 ) ]

                              

prv
med t t t prv t prv

med med medpub
tmed

prv t t t t
med med

t

dV
p r k h h

dh

p h r k

β α λ λ λ

β α λ λ λ

+∞
+ + +

−
=

+∞
+ + +

−
=

= − − − + −

= − − −

∑

∑

ω

1 1 2
1 1

0

5 2 ,0 1 , 1 2

ˆ                  [(1 ) (1 ) ]}

ˆ                  ( )( ),

prv t t t
med

t

prv prv
med med med

h r k

p m h m h

λ λ

β α

+∞
+ +

=

−

+ − − −

= − +

∑

(A.4.7) 

where  

1 1 1
1 2

11 1

(1 ) ,
11 ( )(1 )

m k
rr r

λ λ λ
λλ λ

−
= −

−− −
 

2
1 1 1

2 2
11 1

1 (1 )
1(1 )(1 ) (1 )( )(1 )

rm k
rr r r r

λ λ λ
λλ λ

− −
= −

−− − − −
. 

Dividing the shadow value by the marginal cost of the investment plan, namely, 1 (1 )r− , 

gives the private rate of return on public R&D investment in medical sciences. 

Similarly, the private  rate of return (to the medical research industry) on public 

R&D investment in biological sciences is  

,0 0
6 1 , 1 2

,0

( ) ˆ(1 ) ( )(1 )
prv

med prv prv
med medpub

bio

dV
r m h m h r

dh
β −− = + −

ω
. 
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Appendix B:  Robustness of Estimation Results 
 

 
This appendix presents the parameter estimates for the medical and agricultural 

R&D model, obtained using four alternative sets of instrument variables and using 

alternative discount rates.  The four sets of instrument variables are: 1 1
, ,1 ,2 ,3{ , , }j a j t t j tI z z z= , 

2 1
, ,1 ,2 ,3{ , , }j b j t j t j tI z z z= , 1 2

, ,1 ,2 ,3{ , , }j c j t j t j tI z z z= , and 2 2
, ,1 ,2 ,3{ , , }j d j t j t j tI z z z= , where j med=  

for the medical research industry and j ag=  for the agricultural research industry.  

Specifically,  

1
,1 ,(1, ) ,med t med tz p ′=  

2
,1 , , ,(1, , , , ) ,pub pp

med t med t bio t ag tz p h h ′=  

1 2 2
,2 , , , , , , , , , 1(1, , , , ,0.5( ) ,0.5( ) ) ,pub prv pub prv pp prv prv prv prv

med t med t med t bio t med t ag t med t med t med t med tz t h h h h h h h h h − ′= −  

2 2 2
,2 , , , , , , , , , 1 , ,(1, , , , ,0.5( ) ,0.5( ) , , ) ,pub prv pub prv pp prv prv prv prv

med t med t med t bio t med t ag t med t med t med t med t med t med tz t h h h h h h h h h p w− ′= −  
 

,3 , , , , 1 , , ,( , , , , , , ) .pub pub pp prv prv
med t med t bio t ag t med t med t med t med tz h h h h h w p− ′=  

 
Substituting the subscript med  for ag  and vice versa in the above equations gives the 

definitions of 1 2 1 2
,1 ,1 ,2 ,2, , , ,ag t ag t ag t ag tz z z z  and ,3ag tz .   

Tables B.1-4 contain parameter estimates for the medical research industry.  The 

discount factor is assumed to be 0.95.  The parameter estimates seem robust across the 

four sets of instrument variables.  I conduct specification tests in the same fashion as 

described in Chapter 6.  In all four sets of results, I fail to reject the restriction in Model 4, 

i.e., no knowledge spillovers from agricultural research—be it public- or private-sector—
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to private-sector research.  All the remaining parameters but 3β  in Model 4 have the right 

signs across the four tables.  The estimates of 3β  in Model 4 of Tables B1, B2, and B4 

are negative, but that in Model 4 of Table B3 is positive.  This latter result violates the 

concavity assumption for technology, though the estimate of 3β  is not significantly 

different from zero at the 5% level.  Although the parameter estimates of 3β  in Model 4 

of other three tables have the right signs, only the one in Table B.2 is significantly 

different from zero at the 5% level.  This implies that only inconclusive evidence is found 

for concave technology, or decreasing returns to scale in R&D investment.  Fortunately, 

Model 4 of Table B2 yields the smallest mean squared prediction error, compared to 

Model 4 in other tables.  Hence, I adopt it for further comparative statics analysis and 

simulations in Chapter 6. 

Tables B.5-8 are the counterparts of Tables B.1-4 for the agricultural research 

industry.  Restrictions in Model 5 fail to be rejected in all four tables, meaning that in the 

agricultural research industry, there are no adjustment costs in R&D investment, no 

trending technological or institutional shocks, and no knowledge spillovers from medical 

research.  Parameter estimates have the right signs for all tables.  Model 5 in Table B.6 

yields the smallest mean squared prediction error, and therefore is adopted for further 

analysis in Chapter 6. 

Table B.9 contains the parameter estimates of Model 4 in Table B2, when the 

discount factor is 0.90, 0.95, and 0.99.  Table B.10 contains the parameter estimates of 

Model 5 in Table B6, when the discount factor are 0.90, 0.95, and 0.99.   It is evident that 
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the choice of the discount factor, at least in the range between 0.90 to 0.99, does not alter 

the parameter estimates much both in the agricultural model and in the medical model.    
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Appendix C:  Supplementary Details for Chapter 5 
 
 
C.1  Selected DWPI Patent Classes for the Life Sciences 

 

B   Pharmaceutical 

B01   Steroids - including systems containing carbocyclic and/or heterocyclic rings fused 

onto the basic steroidal ring structure.   

B02   Fused ring heterocyclics.   

B03   Other heterocyclics.   

B04   Natural products and polymers. Including testing of body fluids (other than blood 

typing or cell counting), pharmaceuticals or veterinary compounds of unknown 

structure, testing of microorganisms for pathogenicity, testing of  hemicals for 

mutagenicity or human toxicity and fermentative production of DNA or RNA.  

General compositions. 

B05   Other organics - aromatics, aliphatic, organo-metallics, compounds whose 

substituents vary such that they would be classified in several of B01 - B05.   

B06    Inorganics - including fluorides for toothpastes etc. 

 

C   Agricultural Chemicals 

C01   Organophosphorus; organometallic - i.e. compounds containing other than H, C, N, 

O, S and halogen. 

C02   Heterocyclic.  C03 Other organic compounds, inorganic compounds and 

multicomponent mixtures. Polymers and proteins. 
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C04   Fertilisers - including urea and phosphoric acid production. Also soil modifiers and 

plant growth media. Chemical aspects of compost production. 

C05   Biological control - excluding veterinary medicine, but including use of 

microorganisms, predators and natural products.   

C06   Biotechnology - including plant genetics and veterinary vaccines.   

 

D    Food, Detergents, Water Treatment and Biotechnology 

D13   Other foodstuffs and treatment – including preservation of food, milk, milk 

products, butter substitutes, edible oils and fats, non-alcoholic beverages, artificial 

sweeteners, food additives and animal feed (A23B-L). 

D15   Chemical or biological treatment of water, industrial waste and sewage – including 

purification, sterilising or testing water, scale prevention, treatment of sewage 

sludge, regeneration of active carbon which has been used for water treatment and 

impregnating water with gas e.g. CO2, but excluding plant and anti-pollution 

devices (C02). 

D16   Fermentation industry – including fermentation equipment, brewing, yeast 

production, production of pharmaceuticals and other chemicals by fermentation, 

microbiology, production of vaccines and antibodies, cell and tissue culture and 

genetic engineering. 

 

P   General 

P11   Soil working, planting (A01B, C).  
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P12   Harvesting (A01D, F). 

P13   Plant culture, dairy products (A01G, H, J). 

P14   Animal care (A01K, L, M). 

P15   Tobacco (A24). 

 

C.2  Formulas and Definitions for Computing the Book Values and Market Values 
of Life-Science Firms 
 

Following Hall et al. (1988), a firm’s book value is defined as the sum of the net plant 

and equipment, the inventory, and the investments in unconsolidated subsidiaries, 

intangibles, and others.  A firm’s market value is defined as the sum of the value of the 

common stock, the value of the preferred stock, the value of the long-term debt, and the 

value of short-term debt net of assets.   

 

BOOKVALUE = BKPLNT + BKINV + TOTAL 

TOTAL = TOTAL1 + TOTAL2 + INTANG 

MARKET VALUE =  PREFST + VCOMS + LTDEBT + STDEBT – ADJ= PREFST + 

NONSHARE * PCLOSE + BKDEBT + STDEBT – (CURRASST – BKINV – STLIAB 

+ STDEBT)= PREFST + NONSHARE * PCLOSE + BKDEBT – CURRASST + BKINV 

+ STLIAB  

 

BKPLNT – DATA8 (Million Dollars):  Property, plant, and equipment – total (net)  

BKINV – DATA3 (Millions of Dollars):  Book value of inventory  
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TOTAL1 – DATA31 (Million Dollars):  Investments and advances – equity method  

TOTAL2 – DATA32 (Million Dollars):  Investments and advances – other  

INTANG – DATA33 (Million Dollars):  Intangibles  

PREFST – DATA10 (Million Dollars):  Preferred stock (liquidating value) 

NONSHARE – DATA25 (Millions): The number of common shares outstanding 

PCLOSE – DATA24 (Dollars and cents):  End of calendar year stock price 

STDEBT – DATA34 (Million Dollars):  Debt portion of current liabilities 

STLIAB – DATA5 (Million Dollars):  Current liabilities – total 

CURRASST – DATA4 (Million Dollars):  Current assets – total 

PREFD – DATA19 (Million Dollars):  Dividends on the preferred stock 

BKDEBT – DATA9 (Million Dollars):  Book value of long-term debt 
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