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A RECURSIVE DEFINITION OF ORDINAL ARITHMETIC 

INTRODUCT ION 

There are many instances of recursive definition 
in mathematics. Indeed, 11 definitions are ïn a 

certain sense recursive since a defnition depends 

recursively on meaning being attached to the words or 

objects used in the definition. A most striking nd 

simple example of recursive definition is encountered 

in the formal approach to the development of natural 
number arithmetic. On this subject, at least two 

approaches are possible--one via Peano's axioms and the 

other via sot theoretic foundations. No matter which 

formal byway one selects, axiornatics are entailed. The 

object of this paper will be to give a recursive def i- 
nition of ordinai arithmetic. The axiomatic foundations 

will be those of Von Neumann-Fraenkel set theory as 

presented in Halmos' text NAIVE SET THEORY--that is 
with the exception of one axiom, that of replacement 

The axiom of replacement has been rewritten to avoid 

the logIcian's technicalities entailed in Suppest 



formu1aton and the cumbersome sequence functions of 

type-a encountered in Halmos' formulation. 

The ordinal numbers and their arithmetic have 

been a topic of interest to many well-known mathea- 

ticians such as Cantor, Sierpinski, Fraenkel, Von 

Neumann and Hausdorff. Cantor's method of dealing with 

these numbers is very beautiful in its simplicity and 

was more than likely a major source of 5ntorest in the 

subject. However, with the advent of Russell's paradox 

and other paradoxes lying in the then current theory of 

aggregates, a need was seen for an axiomatic foundation 

for the theory of sets. Although Cantor's development 

thus became axiomatically unstable1 it remains one of 

the most intuitive approaches to the theory of nurrbers. 

For this reason, an outline of his development of ordinal 

arithmetic is included in Chapter V. 

Once the axiomatic foundations of set theory were 

established, they lent. themselves beautifully to at 

least part of their original purpose--the definition of 

number. Helmos obtains the natural numbers through the 

axioms of Von Neumann and Fraenkel. A brief outline of 

this method of obtaining the natural numbers is the 

topic of Chapter III. He extends the natural numbers, 



which are themselves ordinal numbers via a unary oeration 

and the axiom of substitution. He then defines ordinal 

numbers and proves some basic theorems concerning them. 

However, rather than define ordinal arithmetic recux'sively 

as he did natural number arithmetic, he defines it by 

Cantorts method with the axiomatic flaws dusted away 

This paper will take the other approach and develop 

ordinal arithmetic recursively. The axioms of Von 

Neumann-Fraenkel set theory through that of infinity 

are assumed. It ïs also assumed that the reader is 

well acquainted with them and with their uses in the 

theory of numbers. Those axioms and theorems which are 

prerequisite to the developments of the paper are listed 

in Chapter ii. Chapter IV lays the foundations necessary 

for this paper's development of ordinal arithmetic (that 

is, the foundations necessary beyond the material men- 

tioned in Chapter IX). The rest is self-explanatory. 



CHAPTER II 

B ACKGROUND 

This chapter will be no more than a listing of the 

axioms of the Von Neumann-Fraenkel system up to but not 

including the axiom of replacement, and of those theorems 

which will be used in this paper. The axioms are stated 

but no attempt is made to discuss them; we assume that 

the reader is already familiar with them and with their 

implications. Also included is a list of those abbre- 

viations and definitions which are perhaps out of the 

ordinary from the classic foundations, Other new defi- 

nitions and abbreviations will be introduced as they 

become relevant, 

Axioms: 

1. Extension: Two sets are equal iff they have 

the same elements. 

2. pecification: To every set A and to every 

condition S(x) there corresponds a set B 

whose elements are exactly those elements x 

of A for which S(x) holds. 

3. Existence: There exists a set. 

4. Pairing: For any two sets there exists a sot 

to which they both belong. 



5 Union: For every set S of sets there exists 

a set that contains all the elements that belong 

to at least one set of S 

6. Powers: For eachsetSthere exists a sat of 

sets that contains among its elements all the 

subsets of the given set S. 

7. Infinity: There exists a set containing O 

and containing the successor of each of its 

elements 

8. Choice: if S is a set of disjoint, non-empty 

sets S, then a set R which has as its 

elements exactly one element of each 

Theorems: 

?rinciile f Mathematical Induction: 

If S C and if OeS and if ncS => J(n)S 

then S = O). J(n) is the successor of n 

The Recursion Theorem: 

If a is an element of a sot X and if f is a 

function from X into X, then there exists a 

function u from into X such that 

u(0) = a 

u(Ja) f[u(n)] for all no. 

An applïcation of the recursion theorem is called 

definition by induction. 
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Principle of Transfinite Induction: 

If X is a well ordered set and if Sr X and 

if s (x) S => xES, then S X. 

Transfinite Recursion Theorern 

If W is a well ordered set and if f is a sequence 

function cf type W in a set X, then there exists 

a unique function u from W into X such that 

u(a) 

for each acW. An application of the transfinite 

recursion theorem is called definition by trans- 

finite induction. 

Theorem A: 

Given two well ordered sets and V, either 

is order isomorphic to V or one of these two 

sets is order isomorphic to a strict initial segment 

of the other. 

Abbreviations: 

v = 
for every 

5(x) (ysAfy < X fl the ordering of AI 

s(x) = [ysAjy < X in the ordering of A} 

= the minimal successor set = the natural 

number s 

(AB = the set A is similar to the set B 

j(fl) the (immediate) successor of n 
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Definitions: 

Well Ordered: 

A set is well ordered 1ff every non-empty subset 

of has a least element. 

Successor: 

Let n be a set. J(rt) = n U [n) is called the 

successor (immediate) of n. 

A sequence of type a in X: 

is a function from s(a), where acW and W is 

well ordered, into a set X. If u is a function 

from W to X then the restriction of u to s(a) 

written uls(a) or uC is an example of a sequence 

function of type a in X. 

A sequence function of type W in X: 

where W is well ordered and X is any st is a 

function f whose domain is all sequences of type-a 

in X for all oW and whose range is included in X. 





Now applying J to O and its successors we obtain: 

=0 

i = toi 

2 

3 [0,1,2) 

etc. 

Note that for eath n so rnanufatured, n 

This property is of particular irnportance to us. We can 

continue manufacturing these "numbers ad infinitum with 

no more than the axioms of pairing and union; but the 

critical question is, does there exist a set to which they 

all belong? By continued pairing and unions we can manu- 

facture a set C [0,l,2,...,n} and so ori step by step; 

but nothing in our axioms before that of infinity tells 

us that this process repeated ad infinitum yields a set 

whose members are all the possible successors of O and 

O itself. The axiom of infinity is created to provide 

such a set. The minimal successor set of O is synboiica11y 

denoted » and its members are called naturì1 numbers. 

Thus a is the set of ailnatural numbers. With this 

definition of the natural numbers, the principie of mathe 

rnatical induction is a theorem rather than an axiom as 

- 



it is in Peanots postulatesG To define the eleiientary 

arithmetic operations on the natural numbers tha recursion 

theorem is applieth For example: 

Definition of natural number addition: 

Let o be the natural numbers 

Let X a in the recursion theorem 

Lot f = J in the recursion theorem 

Then, for each mece ] a unique 
5m 

= in 

into 
where w > co 

Here Sm corresponds to u in the recursion 

theoreme Define m + n. 

This is an instance of recursive definition. We will 

want to use such a recursive definition to define ordinal 

arithmetic. Ordinal numbers being special well ordered 

sets, it would seem that the transfnite recursion theorem 

suffices to define ordinal arithmetic; but such is not 

the case for several reasons. The first reason is that 

the transfinite recursion theorem maps a well ordered set 

into a set X where no structure whatsoever is imposed 
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ori X. However, the ordinal numbers are closed under 

addition; thus, if addition is to be regarded as some 

sort of recursive functions 
defined in a well ordered 

set, the range of this function must itself be well 

ordered. The exact difficulties encountered will be 

explained later. Suffice it to say that, in the case 

9f natural number arithmetic operations, closure is 

readily obtained by specifying that the range set of 

the recursive function u be c itself. No such girn- 

mick is possible in the case of ordinal numbers for the 

set of all ordinal numbers does not exist. The man 

responsible for this skeleton in the mathematical closet 

was Burali-Forti; the proof that such a set does not 

exist is called the Burali-Forti paradox. Being void 

of a fitting and proper set of all ordinals to recurse 

from and to, we will have to resort to a more clandestine 

form of attack than that directly offered by the trans- 

finite recursion theorem. 



CHAPThR IV 

ORDINAL NUMBERS AND SOME BASIC THEOREMS CONCERNING THEM 

aecall that a well ordered set is a simply ordered 

set in which every non-empty subset has a smallest 

element. The definition of an ordinal number is based 

on a particular type of well ordered set. First recall 

definition one. 

Definition 1 

j(A) is a unary operation on a set A such that 

J(Â) AU [A}. 

3(A) is called the immediate successor of A. Any 

set obtained from A by repeated applications of J 

is called a successor set of A. 

Definition 2 

An ordinal number W is a set well ordered by point 

set inclusion such that s(a) = a for all aW and 

such that W = s(W). It follows that if aW, a is 

an ordinai number. 

Definition 3 

If y = J(x), x is the immedLte predecessor of y. 
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Definition 4 

Ari ordinal number y is a limit ordinal if y A Jy 

for any ordinal number y 

On the basis of these definitions it should be 

obvious that the natural numbers are themselves ordinal 

numbers. The set of all natural numbers is also 

an ordinal number which is a limit ordinal since 

m Jx for any natural number x. 

Two well ordered sets are similar if they are 

order isomorphic It is a basic fact about well ordered 

sets (theorem A) that if X and Y are well ordered, 

then either X and Y are similar or one of them is 

similar to an initial segment of the other. Several 

important theorems about ordinal numbers are founded 

on this theorem. 

Theorem i 

Given any two ordinal numbers a and b either 

aCb or bCa or b=a, 

Proof: By theorem A either a b or b s(x) 

for some xa or a s(y) for sorne yb under 

an order isomorphism f. 
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Case One. a b 

Let GC a; G [xaf(x) = 

Suppose s(x) C G 

Since a b, 3 an element ycb x is 

mapped into y by f. That is, f(x) y, 

but x = s(x) and s[f(x)] f Is(x) 

.. s(y) 

f Is(x) 

= s(x) x 

so y f(x) = x 

xcG and G=a 

f: a 
ontc 

b and a b. 

1-1 

Case Two. 

If a s(x) for some xb then, by case cne, 

under our order isornorphism, f(a) = a = s(x) 

for some xEb. 

. ab => a C b. 

That a b follows from our initial condition 

a b => a C b. 



Case Tee. 

b s(y) for some yca. 

Proof: parallel to case two. 

Implicit in the definition of an ordinal number 

w is the fact that if a .. W then a C as well as 

the fact that if aW then a W. The first fact 

follows immediately from defInition since a = s(a) >aCW. 

The second fact is not quite so immediate If W 

then a C W; for if it were true that a W, then 

a s(a) = s(W) which is impossible since 

W C W is impossible. Theorem one is no more than 

the trichotomy law for ordinal numbers. 

Definition 5 

Afl ordinal number a is less than an ordinal number b 

(written a C b) 

<=> a C b 
s 

Hence theorem one states that for any two ordinal numbers 

a and b, either a < b, or b < a, or a b. 

Theorem 2 

If a and b are ordinal numbers, then 

a u b u [a} U (b) is an ordinal number to which both 

a and b belong. 
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Proof: By theorem 1, either a = b or a < b 

or b < a. 

Case One. 

If a b then a U b = a = b is an ordinal 

number. Thus a U b U [a) U [b} = a U [a) 

= b U [b} 3(a) 3(b). 

For every xcj(a), either x = a = s(a) or 

xca, in which case x = s(x) and clearly 

3(a) = s{J(a)]. 

.. 3(a) is an ordinal number to which a b 

belongs. 

Case Two. 

a<b 
a < b => a C b 

a U b = b 

3(a) = b => a U (a) U b b U b b 

3(a) b and a < b => 3(a) < b since 3(a) 

is an ordinal number. 

(If 3(a) > b, then b = a or b C a). 

¿gain a u [a) U b = b and 3(b) is an ordinal 

number to which b and a both belong. 
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Case Three, 

b<a 
Pfloot: parallel to that of case 2. 

Corollary 1: 

If a is ari ordinal number, .3(a) is an ordinal 

number to which a be1ongs 

Theorem 3 

Let {j1 e a set of ordinal numbers indexed by a well 

ordered set I. Then a unique ordinal number. 

Proof: By the trichotomy of ordinal numbers the 

'i 
form a simple chain under point set inclusion. 

The least element of each c is O. Let A. 

Let a iI for sorne jtI, aj => a a(a). 

It remains to prove that A is well. ordered. 

Let B C A. bc > bEim for all rncj and rnI. 

Order B by point 8et Inclusion (again the tricho- 

toiny of the ordinals) B must have a least element, 

B is a simple chain. L.t be any 

member of B where bkcQ. 1f bk O, bk is 



is 

the least element of B. If bk not zero, 

then s(bk)C the ordering of B. 

Case One. 

If s(bk) O, bk is the least element of B. 

Case Two. 

If s(bk) O, being a subset of the weil ordered 

set Qq* s(bk) has a least element (ain in the 

ordering of s) b0 which is a least element of 

B. 

Hence A is well ordered and is an ordinal number. 

Q.E,D. 

Having examined some basic properties of ordinal 

numbers, the next task will be to define an arithmetic 

for thorn. We have seen that the natural numbers and cr 

itself are ordinal numbers; but they are certainly only 

a small segment of the ordinai population. What other 

ordinai numbers are theré? Corollary one states that 

if a is an ordinal number then J(a) is also an 

ordinal. Similarly J(o-) is an ordinal which is given 

the name o+l for reasons which will become apparent 

later. Given any ordinal, we can keep taking successors 
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to obtain more mnd more ordinal numbers. How fir can 

this process be continued; and, even more critical, can 

all these orcilnals manufactured by the unary operation 

J be gathered together into one set? If they could, 

then by theorem 3, the union of this set would itself 

be an ordinal number. However, it happens that none 

of the tools for set manufacture which we have at hand 

to this point, including the axiom of infinity, is 

sufficient to guarantee that all the successors obtained 

from an initial ordinal number a by application of J 

ad infinitum belong together in a single set. To accom- 

pUsh this desired end we need a new axiom, the axiom 

of replacement. Thus, just as the axiom of infinity 

was needed to manufacture a, so the axiom of replacement 

is needed to make an appreciable extension of the ordinals 

beyond ct'. 

Once having the axiom of replacement, the somewhat 

curious process of defining ordinal arithmetic recursively 

can begin. As was mentioned earlier, natural number 

arithmetic was readily obtained by definition by induction 

from to c. Here the range of the recursive function 

was well ordered. However, definition by transfinite 



induction of ordinal arithmetic is unfeasible since the 

transfinite recursion theorem as developed by Hì1mos 

imposed no structure whatsoever on the range o the 

recursive function. In order to defino ordinal arithmetic 

recursively, we need a structured set for our recursive 

function so as to close the ordinal arithmetic operations. 

The technique of recursive definition will be to 

start with any domain set upon which our function (binary 

operation) is to be dofined manufacture a well ordered 

range by the axiom of replacement and define f accordingly 

so that arithmetic operations will be closed. The whole 

process is rather like refusing to gamble unless you are 

sure that you are going to win. We want the sum of two 

ordinals to be a particular ordinal number; so we define 

the range of first and then define f itself. In 

this manner, we extend the ordinals and define ordinal 

arithmetic simultaneously. 

Once having done this, we could turn back and 

twist our f about to fIt the transfinite recursion 

theorem and thus conjecture that our definition of 

ordinal arithmetic was an instance of definìtion by trans- 

finite recursion. But this is totally unnecessary; so 

transfinite recursion will be abandond and recursive 

definition will suffice. 
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It might be mentioned that there is a perh3ps 

simpler way of obtaining ordinal arithmetic than that 

proposed. This other method amounts to ordering strings 

of disjoint well ordered sets appropriately. In any 

case, replacement is involved. The latter method boing 

more intuitive, it will be examined briefly in a generalized 

form in the next chapter to gain insight into the recursive 

approach. 



CHAPTER V 

ORDER-TYPES, ORDINAL NUMBERS AND THEIR ARITHMETIC 

Mainly to have at our command an operational 

understanding of order-types, we shall use Cantor's 

intuitively beautiful but axiomatically unstable approach 

to the order-type of a chain and the arithmetic of' such 

order-types. The step to ordinal numbers is then simple; 

for ordinal numbers are merely the order-types of 

particular well ordered sets 

According to Cantor, given a set A which is a 

chain, the order-type of A is defined as: 

BIB is a set order-isomorphic to AL 

By B is order-isomorphic to A, we mean that there 

exists a function f which maps A onto B, one to 

one; and that for X, yEA, where A is ordered by R1 

and B is ordered by R2, 

xR1y <=> f(x)R2f(y). 

Consequently, = if and only if A (and Ba). 

Now suppose you have two disjoint simply ordered 

sets A and B, ordered by R and S respectively, 
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whore a and Then, + is the order 

type of A U B ordered by R U S U (A x B). In 

general, the order-type of the a1 of ordertypes 

of pairwise disjoint sets A1 c1rdred by }L is: 

i'I a1 = order-type of 1i1 A1 ordered by 

i'I 
s1] u ?i A1]. 

This, more or less, says that the order-type + 

is the order-type of the set B glued on to the tail 

of the set A. 

Similarly, Cantor defined the product of two 

order-types, and L as the order-type of the 

set obtained by gluing the set A successively Gn to 

its own tail as, many times as the cardinality of B. 

That is: 

M0B_bBbwhere AbA. 
To define exponentiation, let 

-a - - - A A where A = A for all iea. 

Example s: 

1) Let A = [1,2,3) and lot B = [a,b}. 

Then: + [1,2,3,a,b) 

= . 

= [11,21,31,12,22,32) 
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2) II (1,2,3-) and W 

and if Az(13 and 1, 

then,,l'0 + i = [1,2,3,---,1} 
whereas i +2f-o -) 

and hence,'0 + i i +2.'ó. 

3) Simiiariy if A = [a,b] and = 2, 

' 2 = tl,23,----; a1,a2,a3,----) i2 

whereas 2 [T2'2' 'o 

since ,- a i-f n odd 
I n+i 
I 

f(n) =( b if n even 1$ an order-isoinoiphism. 
I n 

Although this method gives us a simple algebra of 

order-types, we sUll cannot successfully extend the 

ordinai numbers beyond a without the axiom of replace- 

ment and a unary successor operations 

The axiomatic difficulty with Cantor's definition 
of order-type is the usual ones That is, we have no 

axiom that guarantees that the sot exists One 

sneaks out of this difficulty by first defining a 

specific set B to have a fixed order-type and then by 
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specifying that any sot which is order-isomorphic to 

B has order-type . In our case, we will be concerned 

only with the order-types of well ordered sets. Cur fixed 

well ordered sets will be the ordinal numbers and we will 

obtain the order-type of a particular well ordered set 

by finding the ordinal number to which it is order iso- 

inorphic. 



CHAPTER VI 

THE AXIOM OF REPLACEMENT 

In Chapter IV a method for extending the ordinal 

numbers beyond c was discussed. Thus Jc, J[Ja], 

etc. are ail ordinal numbers. The critical problem 

was, given an ordinal number b, can all the successors 

of b be gathered toqether in one set. We know by the 

xiorn of infinity that the set of ail successors of O 

exists--it is CJ. We next give ourselves an axiom 

that at first sight might not seerri independent at all 

but which, in fact, is independent from the 3xiom of 

infinity (no proof will be given). This is the axiom 

of replacement. 

Definition 6 

Axiom of Replacement: Given any set A such that 

with each OECA there is associated a set B, then 

a set B whose members are all the B . The associa- 
a 

tion between each and B will be called an 
a 

indexing of the B's by A-..written B f(s). The 

set B will be called a replacement set of the set A. 



Note that with this axiom, we are permitted to 

manufacture functions to our hearts de1ight. If the 

set A Is finite, the axiom is unnecessary, but if Â 

is not finite, the axiom is mandatory. For exanp1e: 

i) Suppose p, is the ordinal number 3. 

3 = O,l,2} 

Suppose A,B,C are any three sets. 

We can index A,B, and C by A in the following 

manner: 

f(0)= A 

I(i) = B 

1(2) = C 

By combining effects of the axioms of pairing and 

unions we can manage to got A,B, and C together 

in a set H = [A,B,C) which is the replacement 

set of A Now that H is a set, f becomes a 

function. Replacement was not needed to obtain the 

function f from the indexing f. 

2) Now suppose A = and that we have a 'collection" 

of sets B indexed by . For example: 

f(l) = B1 where each B is a set. 
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Then by no gymnastics with the axioms of union and 

pairing are we guaranteed a set containinq ll the 

B's. By the axiom of replacement, we ar guaranteed 

such a set B. Now that B is a set, our indexing 

f becomes a function. 

With this new tool we extend the ordinals and obtain 

ordinal arithmetic by recursive definition. 



CHAPTER VII 

ORDINAL NUMBER ARITHMETIC 

Theorem 4 

Given any ordinal number V, for each a, a 

unique function ha mapping onto a replacement 

set B : 

ha(o) a 

h(Jx) = J[h(xfl 

hJy) 
, 

h(f3) when y is a limit ordinal. 

Proof: 

First Induction. 

Let G = bT 

Let s(a) C G. 

We must prove 

29 

hb exists and for each x, 

hb(X) is a uniquely defined 

ordinal number. 

aRG; to accomplish this end we 

use the axiom of replacement arid a double induc- 

tion. 



With each xcW associate set by an indexing 

f of as fo11ews 

f(0) = a where aW and hence is a set 

which is a uniquo ordinai number 

f(Jx) = J(f(x)) 

T) where y is a limit ordinai. 

prov. y) exists and is a set for each 

yc* use a second induction, 

Second Induction. 

Let G' C G' =j; is a unique 

\_ 
ordinal number.. 

Let s(x) C Gt; XEG 

Proof: 

Case One. 

If x = Jy then ys(x) and so f(y) is 

a uniquely defined ordinal number, 

J[f(y)] is a uniquely defined ordinal 

number by corollary i. 

But J[f(y)] f[Jy) 

f(x) is a uniquely defined number. 
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Case Two. 

If x is a limit ordinal, then for every 

yx, f(y) is a uniquely defined ordinal 

(yx => yEs(x)). But then, by theorem 3, 

is a unique ordinal number since x 

is a well ordered set. But by definition 

1(x) 
= 

f(y) 

.. f(x) is a unique ordinal number. 

.. XEG'. 

This completes the second induction. 

But then, 'yEW, 1(y) is a set which is a unique 

ordinal number. 

.. The axiom of replacement applies and the replace- 

ment set for exists. 

.. f is a function. 

Define h = f 

Then h exists and for each xW, ha(X) is a 

uniquely defined ordinal number. 

.'. aG => G =, 
This completes the first induction and proves the 

theorem. 
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Definition 7 

Definition of Ordin1 Addition: a + b = h(b) 

Lemma i: 

Given any two ordinal numbers and , a + 

is an ordinal number. 

Proof: This follows immediately from the 

inductive proof of theorem 4. 

Lemma 2: 

If ,y,ç. are ordinals such that < '' then 

o: + 3 < (X + arid conversely: 

let G = [x * s(Ç] c + < a + x where 

)L 
f<x. J 

Let s(y) C G. 

ConsIder a + p and a + y where 3 < y. 

Case One. 

y = Jx 

Then cj + y = a + Jx = h[Jx] J[h(x)] 

= (o: + x) U ta. + x}. 

[. 
< X => Q + 3 < CL + X 

So a + a + X C (a + x) U [u f x} and clearly 

cL + ? J(a+ x) = a +. y 

.., a + < a + y. 
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y is a limit ordinal. 

h(y) h(y) 

but since < y => 

a + yl)y h(y) 

a + a +y> a +3 <a +y 
hence yG => G = W 

Proof of Sufficiency: If a + < a + ' thon 3 < y 

a + Ç 
< a + y => h(3) C h(v) 

Suppose y. 

Then by theorem 1, or <f3 

Case One. 

t 
=Y 

Since ordinal addition is unique, it follows that 

h0(f3) = h() contradicting hypotheses. 

... Y. 

Case Two. 

By the necessity proof of the first part of this 

lemma it follows that 

h(') < h(3) 



but a+y<u+ and +3<+v 
is again a contradiction to the theorems 

by theorem i. Q.ED. 

Lemma 3 

Given u43,y are ordinai numbers and a < 3 it 
does not follow that o + y < f3 + y 

Proof: Let u = 2, 3 = 3, y = 

2 +&= 
3 +u =() 

but , 
çrnrn! 4: 

Given any ordinal number a 

a+OO+a 
Proof: a+0h(0)a 
o + a h0(a) = '1 

Let G = j x + O = O + x} 

Let x) C G e 

Case One: 

y = Jx => xeG 

h(0) = y 

h0(y) = h0[Jx] J[h0(x)] J[O+x] = J[x+O] 

= 3(x) hj(0) = 



Case Two: 

y is a limit ordinal => xG, 'xcy 

h0(y) h0(y) h,,(0) 

= 
y = y = h(0) 

.. yG 

Lemma 

Ordinal ad' 

Proof: 

a = 

=> G = W . Q. 

iition does not 

Let a = 

() + 1 = h,(l) 

1 + = h1() 

E.D. 

commute. 

= L 

= J{h((0)] = J() 

= U h () L) yUr i 
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and jk) 

Lemma 6 

3 is a limit ordinal iff + is a limit ordinal 

for any ordinal a 

Proof of Necessity: Let G = [xcW j x + 3 is a 

limit ordinal} 

Let s(y) C G 

Consider y + 

Suppose y + is not a limit ordinal. 

Then y + 3(y) for some ordinal y => yJ(y) 

but y + p = h(p) 
= 

h(x) 
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. 
h,,(x) 

y = y + b 

... .1(y) = J(y + b) = J[h1()] = h[Jh] 

but .Thf3 so that .3(y) h(p) 

.. (y + p) (y + 3) => (y + p) s(y + 3) 

which is nonsense. 

.. y + f3 is a limit ordinal 

.. yeG => G = W . Q.E.D. 

Proof of Sufficiency: Given a + is a limit 

ordinal. 

Suppose is not a limit ordinal. 

Then ¡3 = Jy => h[Jy] = J[h(y)]. 

But J[h(y)] is not a limit ordinal. ntradiction. 

f3 
is a limit ordinal. Q.E.D. 

Lemma 7: 

Given any three ordinal numbers af3,y 

(a +p) +y +(p +y) 

Proof: Let G = (xW (a + f3) + x a + ( + z)) 

Let s(y) C G 

Consider (cx + p) + y. 
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Case One. 

If y Jx, then 

(a + ) + y ha+p(Y) h0,(Jx) = 

J[h(3 + x)] = h[J(3 + x)Ï 

h[J(hr(x)) h[h(Jx)] 

= h[h(y)) = h(p + y) 

= a + ( + y). 

Case Two. 

If y is a limit ordinal, then + y is a 

limit ordinal. 

a + ( + ) 
. 

)(+y)P + 

= [r(3) ((+(+y) and r a + 

But +y=>hey bylenima2. 

a + (í3y) = j(3>)('y and r a + 

= y 
a + (t + ) (a + 1) + 

(a + 13) + -r 

.. yG => G = W. Q.E.D. 

Lemma 8: 

For any ordinal number A and xA and B h(A)p 

A U B is an ordinal numbex. 

Proof: 
y tA 

J B, y = s(y) by lemma I and A U B 

being well ordered follows from lemma 2 
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It is readily seen that theorem four gives us a 

systematic way of extending the ordinal' numbers by 

manufacturing entire replacement sets of theme For 

example, the replacement set B for W ¿& + 1. where 

B = h(W) is 

B {, oe+l, c+2, ..*.) 

and by lemma 8 

w U B = [0,1,2, = + 2 

is again an ordinal number. We can extend the ordinals 

even more quickly by defining ordinal multiplication. 

We again want to define the operation recursively. The 

most natural way to do this would seem to be to define 

a function on a set which is an ordinal number 

containing m so that 

= h(p(x)3 , 

pm(Jx) = (rn). 

lt turns out, however, that the latter method is the 

correct one since (for reasons whtch will become clear 

shortly) 

p3( + 1) h3[p3(a)) * h3() * ü) 

whereas 
p3(t + 1) = = h(3) * f 3* 
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Theorem 5. Second Existence Theorem 

Given an ordinal number W, vi J 
unique function 

Pm: W - B (B a replacement set) 4 

pm(0) = O 

= 
h()(rn) 

= () when is a limit ordinal. 

First Induction. 

Let s(m) C G where 

G =[bEW I b 
exists and 'xcW pb(X) is a 

'\.unique ordinal number 

Does m exist? 

We want to manufacture a replacement set for 

W via ari indexing which we shall call 

Define Pm(0) m Q O is certainly a set and 

is a unique ordinal number. 

Second Induction. 

Let G' = W Pjc) is a unique ordinal 

number}. 

Let s(y) C G'; does yG'? 

Case One. 

y is a limit ordinal. 



Define P1(y) recursively as 

= 
P(p) 

This, by the axiom of replacement, is a set 

since each P(3) is a unique ordinal number 

and the are indexed by the set y. 

That is, the replacement set y 

exists and hence, axiomatically by the axiom 

of unions, U p () exists as a set. 
EY 

Furthermore, by theorem 3, la a unlqu 

ordinal number. 

Case Two. 

y = Jb => bcs(y) => pm(b) is an ordinal number. 

Define recursively as follows: 

Prn(Y) = Pm(Jb) = hpm(b) 
(rn) = P(b) m 

In order that we be permitted to do this, we 

need to know that an ordinal number to which 

both in and P(b) belong in order that 

addition be defined. By theorem 2 

Pm(b) u [P(b)ì u m {m is such an ordinal 

number. 
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Hence, hP(b)(m) is defined and by theorem 4 

is a unique ordinal number. 

Thus ytG'=> G' = W; which completes the second 

induction. But now m 
defined on all of 

W and for each aeW, Pm(a) ìs an ordinal 

number and, hence, a set. Thus, by the axiom 

of replacement, a replacement set 3 for 

W obtained by the replacement function Pm 

indexed over W. 

Since, for each aW, Poe(a) is uniquely defined, 

is a function which maps W onto the 

replacement set B. 

Let m m 

Thus rnG => G = W. 

This completes the second inductIon and thus 

proves the theorem. 

Definition S 

Definition of Ordinal Multiplication: 

For any ordinal number W and m,bEW, define: 

m b=p(b) 

where m b is called the product of m dnd b. 



A few examples of ordinal multiplication follow. 

Let W= + j. 

PS(0) = O 

p5(1) h(0)(5) = h0(5) 5 

p5(2) h(1)(5) 5 + 5 10 

= 

p(l) h(0)(a) Ui 

p,\(2) h(1)(m) = Co + o co 2 

p(7) = h(6)(ro) c0 6 +c Û) 7 

Lemma 9: 

For any ordinal number W and for each xW 

w P(Y) ïs an ordinal number. 

Proof: Thiorem 3. 

Lemma 10: 

Ordinal multiplication is not commutative. 

Proof: Let W + i ( and 2cW. 

Pc(2) = h( 
1) 

(Û) = h('o) = Co 2 

p2(o) pt) P2(3) W Û) 2 
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Lemma 11: 

If a> O, then < y <=> < 

Proof: Let W an ordinal number. 

Necessity: Let G = [xc(W - sÇT)1p < x > a < ox) 

Let s(x) C G 

Case One. 

x = Jy => ycs(x) => aÇ3 < ay 

Then ax = p0EJyj h()(a) 

+ a 

= ay + a where a > O 

but then ay < ax by lemma 2 

(that is O<u=>ay+O<cxy+a) 

< ay< aX> a? <ax 

. xEG => G = W 
Case Two. 

x is a limit ordinal. 

Then ax 
= ô?x a 

but x since < x 

.. afax > c43 < ax 

.. xG => G = W 

Sufficiency: If a < ay and ¡3 % y then p = y or 

/ t- 

Y ' 



¡3 = y > cÇ ay by lemma 12. 

y < 
¡3 

> ay < a by necessity portion of lemma 11. 

... 
¡3 y to avoid contradiction. 

Lemma 12: 

If a > O and a3 = ay then ¡3 = y. 

Proof: Suppose c4 = ay 

but ¡3y 
then 

¡3 
< y or y ¡3, 

by theorem 1. 

¡3 
< y > aÇ < ay 

contradiction 
y ¡3 ay < a3 

J' 

* . ¡3 = y. 

Lemma 13: 

If a > O and 

Proof: Let 

= p1() 

ya. 

= y'U it does not folloN that 
¡3 

¡3 1, y 2, a = (O 

L) o Cx) xa 1 

u (r) = xo 2 

but 2l. 
Lemma 14: 

If a. > O and y it does not follow that 

< ya. 

Proof: Let y 2, a r. 
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Lemma 15: 

* is a limit ordinal 1ff a is a limit ordinal 

or p is a lImit ordinal. 

Proof Necessity: 

Part One. 

Let be a limit ordinal. Suppose a 3 Is 

not a limit ordinal. Then a p = y which is 

not a limit ordinal. 

.'. m,n where n = 3m 

u m < y u n (i) 

a 
= 

a y 

(i) > a m e a => m e Ç 
by lemma 11, but since 

p is a limit ordinal, m e n t 

a n e a 

so by the transitivity of e, ae a which is 

impossible. 

a Ç is a limit ordinal. 

Part Two. 

Let a be a limit ordinal. 

Case One. 

= Jy. 

Then a = h (a) + a 

4t') 



a 3 is a limit ordinal. 

Case Two. 

f3 is .a limit ordinal. 

Then a f3 is a limit ordinal by part one 

Sufficiency: Suppose a,f3 are not limit ordinals. 

Then f3 = Jy 

a 
* 

f3 = a(Jy) = = h()(a) 

a s y + a is not a limit ordinal by lemma 

6. 

T .rnm; i A 

Ordinal multiplication distributes over addition 

from the left, but not from the right. That is: 

(i) m(a+) =ma+mf3 

() ( + )m ' am + f3m (Proof omitted) 

Proof(i): 

For a,f3W an ordinal number 

Let G = xWa( + x) a + ax) 

Suppose s(x) C G 

Then consider a( + x). 
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Case One. 

X = Jy 

Then + Jy h(Jy) J[h(y)) 

.., a(f3+x)=a( +Jy)a. J[ +y] 

p[J(3 + y)) 

= h(p )(a) 

= hp(a) 
= haLhay(a)] 

= hBLhP(Y)(a)) 

= hapLPa(JY}) 

= hj3Ep(x)) 

a + ax => xG 

Case Twos 

If X IS liiflit ordinal than by lemma ô, 

r + x is a limit ordinal. 

+ x) 
= . 

o 

= ck = b for bfl + X] 

= = u(í + y) for yx] 

= cic = ? + (L for X] since 
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= [dc = h(ay) for x) 

= [dc = h(4) for ax) since x is a 

limit ordinal 

h(ay) 

= h(cx) 

= OE + LX 

. xG => G = W. Q.E.D. 

Lemma 17: 

Given OE.13,T ordinals 

(($1'( = a(f3y) 

Proof: Let an ordinal number 

Let G = [xcW a(3x) (a3) x 

Suppose s(x) Ç G 

Case Orì'3. 

X = Jy => yG 

(a)x = (af3)[Jy] = pJy) 

= = (c43)y + cxf3 

= (13y) + since yG 

OELLy + 3] by lemma 15 

= a[hp(f3)] = 
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= u [(Jy)] = a(x) 

=> xcG 

Case Two. 

x is a limit ordinal. 

cx) p[pq(x) 
= yx 

= p() since x is a limit ordinal, 

= 3yyEX} [b} q 

= {mßm = a for ôq} 

= [mjmn = a(,t3y) for yx} since 

{mjm (a) y for yx} since ycG 

= 
= (c43) X > xG 

> G = W. Q.E.D. 

The object of this paper has thus in part, been 

achieved. It is possible to extend the theory to obtain 

ordinal exponentiation, the theory of sequences of ordinals 

and so forth. For the details of such material the reader 

is referred to the works of Suppes and Sierpinski. It 

might be remarked that this paper has relied rather 

heavily upon the work of Suppes although it has avoided 

his axiom schema in order not to become entangled in the 

logic of quantifiers, free and bounded variables, etc. 
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If the functions defining addition and multiplication 

in any way vaguely resemble homomorphisms from sets with 

unary operations onto sets with unary operations, such 

is not a coincidence, This paper began as ari extension 

of Leon Henkin's paper '10n Mathematical jnduction" to 

the domain of' definition by transfinite recursion on 

well ordered sets. Henkin's paper emphasized the alge- 

braic aspects of the recursive definition of natural 

numbers. He defined natural number addition for example 

as a homomorphism from a very special induction model 

(special in that it was a Peano model) with a unary 

operation into itself. Thus, when this paper was begun, 

the search was for homomorphisms. 
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