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Airborne discrete-return lidar is an active remote sensing technology capable 

of obtaining accurate, fine-resolution three-dimensional measurements over large 

areas. Discrete-return lidar data produce three-dimensional object characterizations 

in the form of point clouds defined by precise x, y and z coordinates. The data also 

provide intensity values for each point that help quantify the reflectance and surface 

properties of intersected objects. These data features have proven to be useful for 

the characterization of many important forest attributes, such as standing tree 

biomass, height, density, and canopy cover, with new applications for the data 

currently accelerating. This dissertation explores three new applications for airborne 

discrete-return lidar data. 

The first application uses lidar-derived metrics to predict understory 

vegetation cover, which has been a difficult metric to predict using traditional 

explanatory variables. A new airborne lidar-derived metric, understory lidar cover 
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density, created by filtering understory lidar points using intensity values, increased 

the coefficient of variation (R2) from non-lidar understory vegetation cover 

estimation models from 0.2-0.45 to 0.7-0.8. The method presented in this chapter 

provides the ability to accurately quantify understory vegetation cover (± 22%) at fine 

spatial resolutions over entire landscapes within the interior ponderosa pine forest 

type. 

In the second application, a new method for quantifying and locating snags 

using airborne discrete-return lidar is presented. The importance of snags in forest 

ecosystems and the inherent difficulties associated with their quantification has been 

well documented. A new semi-automated method using both 2D and 3D local-area 

lidar point filters focused on individual point spatial location and intensity 

information is used to identify points associated with snags and eliminate points 

associated with live trees. The end result is a stem map of individual snags across the 

landscape with height estimates for each snag. The overall detection rate for snags 

DBH ≥ 38 cm was 70.6% (standard error: ± 2.7%), with low commission error rates. 

This information can be used to: analyze the spatial distribution of snags over entire 

landscapes, provide a better understanding of wildlife snag use dynamics, create 

accurate snag density estimates, and assess achievement and usefulness of snag 

stocking standard requirements. 
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In the third application, live above-ground biomass prediction models are 

created using three separate sets of lidar-derived metrics. Models are then compared 

using both model selection statistics and cross-validation. The three sets of lidar-

derived metrics used in the study were: 1) a ‘traditional’ set created using the entire 

plot point cloud, 2) a ‘live-tree’ set created using a plot point cloud where points 

associated with dead trees were removed, and 3) a ‘vegetation-intensity’ set created 

using a plot point cloud containing points meeting predetermined intensity value 

criteria. The models using live-tree lidar-derived metrics produced the best results, 

reducing prediction variability by 4.3% over the traditional set in plots containing 

filtered dead tree points.  

The methods developed and presented for all three applications displayed 

promise in prediction or identification of unique forest attributes, improving our 

ability to quantify and characterize understory vegetation cover, snags, and live 

above ground biomass. This information can be used to provide useful information 

for forest management decisions and improve our understanding of forest ecosystem 

dynamics. Intensity information was useful for filtering point clouds and identifying 

lidar points associated with unique forest attributes (e.g., understory components, 

live and dead trees). These intensity filtering methods provide an enhanced 

framework for analyzing airborne lidar data in forest ecosystem applications.  
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EXMANINATION OF AIRBORNE DISCRETE-RETURN LIDAR IN PREDICTION AND 
IDENTIFICATION OF UNIQUE FOREST ATTRIBUTES.  
 
 
CHAPTER 1: INTRODUCTION  
 

Airborne discrete-return lidar (Light Detection And Ranging) remote sensing is 

an established technology for obtaining accurate, fine-resolution three-dimensional 

data over large areas, and provides the ability to increase the accuracy and efficiency 

of large-scale forest inventories (Næsset, 2002; Maltamo et al., 2006). Since the 

technology’s inception, its use for quantifying forest biophysical characteristics has 

increased rapidly. It has been used to successfully estimate and predict many 

important forest attributes, such as above ground biomass, tree height and density, 

and canopy cover, with new attributes being explored at an accelerated pace.  

   Airborne lidar is an active remote sensing technology employing an aircraft 

mounted laser capable of simultaneously mapping terrain and vegetation heights 

with sub-meter accuracy. Lidar data produce three-dimensional characterizations of 

objects in the form of point clouds that are defined by precise x, y and z coordinates. 

The data can also help characterize the reflectance and surface properties of 

intersected objects by providing intensity values, which are a measure of return-

signal strength, for each point. These attributes are useful for forest inventory and 

characterization, because in theory, every object in a forest with a vertical dimension 
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can be detected if adequate lidar point densities are collected within all forest 

canopy layers (e.g., understory, overstory) (Pesonen et al., 2008).  

Airborne lidar has been used successfully to estimate many standing tree 

characteristics  such as biomass and volume (Heurich et al., 2004; Hyyppä et al., 

2001; Næsset, 2002; Maltamo et al., 2006; Packalén & Maltamo, 2006), as well as 

canopy cover and height profiles (Coops et al., 2007, Goetz et al. 2007; Lim et al., 

2003). It has also been incorporated into assessments of biodiversity (Clawges et al., 

2008; Goodwin et al., 2007; Hill & Broughton,2009; Maltamo et al., 2005; Zimble et 

al., 2003), fire behavior models (Andersen et al., 2005; Mutlu et al., 2008; Riaňo et 

al., 2003), and wildlife habitat modeling (Goetz et al., 2007; Vierling et al., 2008). The 

majority of research exploring the ability of the technology to characterize forest 

attributes has focused on standing trees. Analysis methods can be separated into 

individual-tree and plot-based assessment (Reutebuch et al., 2005).  

Individual-tree assessments attempt to identify and measure characteristics 

of individual trees using automated detection methods. Most methods to date have 

located individual trees by identifying local maxima in a lidar-derived canopy height 

model (CHM). A tree location typically corresponds with a peak in the CHM, and the 

corresponding crown area is delineated using some form of edge-detecting 

segmentation algorithm (Kaartinen & Hyyppä, 2008; Vauhkonen et al., 2011). 

Successful detection rates vary depending on CHM interpolation, crown delineation 
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methods, and forest type and conditions. The detection algorithms are generally 

inadequate in their ability to locate intermediate and suppressed trees, trees in tight 

clusters, and trees located in stands with dense canopies; which has limited the use 

of these assessments (Reitberger et al., 2009). Newer methods, attempting to 

overcome these limitations have recently been developed (Wang et al., 2008; 

Reitberger et al., 2009), but they still are unable to adequately identify individual 

trees located beneath the upper canopy layer. Nonetheless, the individual-tree 

approach still has appeal both statistically and for management implications, and will 

continue to see a concerted research effort.  

Plot-based airborne lidar assessments have been more commonly used, 

because they have proven to accurately estimate and predict plot-level forest 

attributes in a diversity of forest types and conditions. These methods derive a 

myriad of plot-level point cloud metrics that quantify the height and density 

characteristics of individual plot point clouds. These metrics are then used as 

explanatory variables in a linear or nonlinear regression analysis to estimate plot-

level field measured attributes, such as biomass, mean tree height, and tree density 

(Lim et al., 2003). Results have been promising in almost all cases using this method 

(Kim et al., 2009; Lefsky et al., 1999; Lim & Treitz, 2004; Næsset, 2002; Means et al., 

2000; Nelson et al., 2004). After model validation, the regression models are applied 
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to the remainder of the lidar dataset to predict the attribute across the landscape 

using a simple two-stage procedure outlined in Næsset (2002).  

More recently, the ability of discrete-return airborne lidar data to 

characterize understory components has received attention. Martinuzzi et al. (2009) 

studied the presence and absence of understory shrub cover (cover > 25%) on 20 m x 

20 m pixels using airborne discrete-return lidar and found presence accuracies of 

83% using two airborne lidar understory metrics along with a transformed slope 

aspect variable. Hill et al. (2009) examined the presence and absence of understory 

vegetation using two separate airborne discrete-return lidar datasets collected at the 

same location; one collected in leaf-on and one collected in leaf-off conditions. They 

found accuracies of 77% using a combination of both lidar datasets and 72% using 

only the leaf-off lidar on 20 m x 20 m plots. In another recent study, Morsdorf et al. 

(2010) used airborne discrete-return lidar height and intensity information to identify 

individual vegetation strata on 5 m x 5 m pixels in various forest conditions and had 

some success detecting the presence of the understory vegetation strata. Detection 

of coarse woody debris (CWD) with airborne lidar has also been studied with some 

promising results (Pesonen et al., 2008; Seielstad & Queen, 2003). These studies all 

point to the possibility of using airborne lidar to accurately predict understory 

components across the landscape.     
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Airborne discrete-return lidar provide information on the reflectance and 

surface properties of intersected objects in the form of intensity values. Intensity 

values are an often underexploited feature of lidar data, due to difficulty and 

variability associated with acquisition settings and calibration. Intensity is the ratio of 

the power returned to the power emitted by a laser pulse. It is primarily a measure of 

surface reflectance and is a function of the wavelength of the source energy, path 

distance, and the composition and orientation of the surface or object which the 

laser pulse intersects (Boyd & Hill, 2007). The usefulness of intensity data is 

dependent upon its quality, which is a function of various acquisition parameters. 

Laser beam divergence, type of source energy, path lengths and variable gain settings 

all affect the quality of the intensity information. These attributes have limited the 

use of intensity data, due to variability associated with intensity values from different 

acquisitions. As vendor calibration and acquisition techniques become more 

standardized and end user calibration becomes possible, the use of intensity 

information is likely to increase.  

Despite these difficulties, intensity information has already been used 

successfully in many forestry applications to differentiate between tree species, 

estimate live and dead biomass, and predict basal area (Donoghue et al., 2007; 

Holmgren & Persson, 2004; Hudak et al., 2006; Kim et al., 2009; Lim et al., 2003; 

Morsdorf et al., 2010). Lim et al. (2003) used an intensity threshold to remove lower 
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NIR intensity returns when estimating live biomass of a northern hardwood forest in 

Ontario, Canada. In that study, the mean height of the higher intensity returns (> 

200) was the best predictor of basal area, biomass and volume. More recently, Kim et 

al. (2009) used intensity value threshold filtering to successfully estimate live and 

dead standing tree biomass. All of these studies point toward the great potential of 

intensity information to help characterize many forest attributes.  

The goal of this dissertation is to explore the use of airborne discrete-return 

lidar to both predict and identify important forest attributes. The use of intensity 

information to help characterize and identify individual forest attributes is explored 

in detail. The specific objectives are to: 1) create useful lidar-derived metrics for 

prediction of understory vegetation cover and examine prediction accuracy, 2) create 

a semi-automated method to detect individual snags across the landscape using an 

individual lidar point filtering algorithm based on local-area intensity information and 

assess its detection rate accuracy, and 3) create new plot-level lidar-derived canopy 

metrics and compare them with traditional lidar-derived canopy metrics in their 

ability to estimate and predict live above ground biomass. Objectives 1-3 of the 

dissertation are addressed in Chapters 2-4, respectively.      

 

 

 



7 

 

 7
 

 

 

 

 

 

 

 

 

 
CHAPTER 2: PREDICTION OF UNDERSTORY VEGETATION COVER WITH AIRBORNE 
LIDAR IN AN INTERIOR PONDEROSA PINE FOREST   
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Abstract 
 

Forest understory communities are important components in forest 

ecosystems providing wildlife habitat and influencing nutrient cycling, fuel loading, 

fire behavior and tree species composition over time. A widely utilized understory 

component metric is understory vegetation cover, often used as a measure of 

vegetation abundance. To date, understory vegetation cover estimation has proven 

to be inherently difficult using traditional explanatory variables such as: leaf area 

index, basal area, slope, and aspect. We introduce airborne lidar-derived metrics into 

the modeling framework for understory vegetation cover. A new airborne lidar 

metric, understory lidar cover density, created by filtering understory lidar points 

using intensity values; increased traditional explanatory power from non-lidar 

understory vegetation cover estimation models (non-lidar R2-values: 0.2-0.45 vs. lidar 

R2-values: 0.7-0.8). Beta regression analysis, a relatively new modeling technique, is 

compared with a traditional weighted linear regression modeling procedure. Model 

validation and comparison was performed using a leave-one-out cross validation 

procedure. Both models provided similar understory vegetation cover accuracies (± 

22%) and biases (~ 0%) from a leave-one-out cross validation procedure using 40.5 

m2 circular plots (n = 154). The method provides the ability to predict understory 

vegetation cover over large areas at fine spatial resolutions for the interior 
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ponderosa pine forest type. Additional model enhancement and the extension of the 

method into other forest types warrant further investigation.  

Introduction 
 

Forest understory communities play many important roles in forest 

ecosystems (Suchar & Crookston, 2010). They provide habitat and forage for wildlife, 

are important factors in nutrient cycling and fire behavior, and help determine 

overstory species composition and structure over time (Falkowski et al., 2009; Legare 

et al., 2002; Scott & Reinhardt, 2001). Thus, understory communities are often 

considered good ecological indicators of forest health (Kerns & Ohmann, 2004; 

Tremblay & Larocque, 2001). To properly utilize understory components in the 

assessment of the above criteria, predictive models are needed for these 

characteristics (Suchar & Crookston, 2010). Unfortunately, most of the significant 

variables found to be useful for prediction of the above criteria have been limited in 

explanatory power and spatial extent (Eskelson et al., 2011; Kerns & Ohmann, 2004; 

Russell et al., 2007; Suchar & Crookston, 2010; Venier & Pearce, 2007). 

 Understory vegetation cover, often used as an abundance measure, is an 

important metric used for wildlife habitat and fuel load characterization, fire 

behavior modeling, and understanding forest competition dynamics (Chen et al., 

2008a). It is often laborious and costly to measure, which has resulted in it being 

sampled in a variety of ways (Eskelson et al., 2011). Traditional sampling methods 



10 

 

 1
0
 

include ocular estimation, line-intercept sampling, and fixed plot sampling (Bonham, 

1989). All of these result in a percentage estimate for a unit area covered by 

understory vegetation.  

Estimation and prediction of understory vegetation cover using field-derived 

explanatory variables has proven to be inherently difficult. To date, there have been 

two types of explanatory variables used in the estimation and prediction of 

understory vegetation cover; 1) topographically-derived (e.g., slope, aspect, digital 

terrain synthesis (DTS)), and 2) overstory-derived (basal area (BA), trees per hectare, 

leaf area index (LAI), canopy cover). The explanatory power associated with these 

models has  been relatively poor (R2 - values ranging from 0.2 to 0.45) and their 

spatial extents often limited to local study areas (e.g., Eskelson et al., 2011; Kerns & 

Ohmann, 2004; Russell et al., 2007; Suchar & Crookston, 2010; Venier & Pearce, 

2007).  

Traditional remote sensing techniques have shown potential for providing 

information on forest characteristics, such as wildlife habitat, over broad areas at 

lower costs than traditional field inventories (Cohen & Goward, 2004; Kerr & 

Orstrovsky, 2003; Schroeder et al., 2007). In terms of estimation or prediction of 

understory vegetation cover, traditional remote sensing methods have been used to 

derive useful explanatory variables in cover modeling. Unfortunately, these methods 

are not sufficiently sensitive to 3D vegetation structure, which restricts their ability in 
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the direct assessment of smaller areas or objects (Kerr & Orstrovsky, 2003; 

McDermid et al., 2005; Pesonen et al., 2008; Wulder & Franklin, 2003). They also 

have coarse spatial resolutions (> 20 m), which can often constrain their usefulness. 

A very promising fine spatial resolution remote-sensing technology for 

increasing the accuracy and efficiency of large-scale forest inventories is airborne 

discrete-return lidar (Næsset, 2002; Maltamo et al., 2006). Airborne lidar can be used 

to directly measure the three-dimensional structure of terrestrial and aquatic 

ecosystems across large spatial extents (Lefsky et al., 2002a). Airborne lidar data 

produce three-dimensional characterizations of objects in the form of point clouds 

that are defined by precise x, y and z coordinates. They also help characterize the 

reflectance and surface properties of intersected objects by providing intensity 

values, which are a measure of return-signal strength, for each point. These 

attributes are useful for forest inventory and characterization, because in theory, 

every object in a forest with a vertical dimension can be detected if adequate lidar 

point densities are collected within all forest canopy layers (e.g., understory, 

overstory) (Pesonen et al., 2008). 

In recent years, airborne lidar has been used successfully to estimate many 

standing tree characteristics  such as biomass and volume (Heurich et al., 2004; 

Hyyppä et al., 2001; Næsset, 2002; Maltamo et al., 2006; Packalén & Maltamo, 2006), 

as well as canopy cover and height profiles (Coops et al., 2007, Goetz et al., 2007; Lim 
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et al., 2003). Airborne lidar has also been incorporated into assessments of 

biodiversity (Clawges et al., 2008; Goodwin et al., 2007; Hill & Broughton,2009; 

Maltamo et al., 2005; Zimble et al., 2003), fire behavior models (Andersen et al., 

2005; Mutlu et al., 2008; Riaňo et al., 2003), and wildlife habitat models (Goetz et al., 

2007; Vierling et al., 2008). Estimation and prediction of understory components such 

as vegetation cover with airborne lidar has received less study. Martinuzzi et al. 

(2009) studied the presence and absence of understory shrub cover (cover > 25%) on 

20 m x 20 m pixels using airborne discrete-return lidar. They found presence 

accuracies of 83% using two airborne lidar understory metrics along with a 

transformed slope aspect variable. Hill et al. (2009) examined the presence and 

absence of understory vegetation using two separate airborne discrete-return lidar 

datasets collected at the same location; one collected in leaf-on and one collected in 

leaf-off conditions. They found accuracies of 77% using a combination of both lidar 

datasets and 72% using only the leaf-off lidar on 20 m x 20 m plots. In another recent 

study, Morsdorf et al. (2010) used airborne discrete-return lidar height and intensity 

information to identify individual vegetation strata on 5 m x 5 m pixels in various 

forest conditions and had some success detecting the presence of the understory 

vegetation strata. Detection of coarse woody debris (CWD) with airborne lidar has 

also been studied with some promising results (Pesonen et al., 2008; Seielstad & 

Queen, 2003).  
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Intensity is the ratio of the power returned to the power emitted by a laser 

pulse. Intensity values are an often underexploited feature of lidar data, due to 

difficulty and variability associated with acquisition settings and calibration. It is 

primarily a measure of surface reflectance and is a function of the wavelength of the 

source energy, path distance, and the composition and orientation of the surface or 

object which the laser pulse intersects (Boyd & Hill, 2007). Currently, airborne lidar 

sensors use variable gain controls to compensate for variations in ground brightness 

and surface object reflectance to help ensure the sensor is adequately detecting 

returns. They affect the quality and the usefulness of intensity values. Variable gain 

settings can either be manually or automatically adjusted throughout an acquisition 

(automatic more prevalent), which can result in intensity values that lack calibration 

or normalization into the same reference scale (often referred to as radiometric 

calibration). Gain settings are currently proprietary, thus they are unavailable to end 

users making radiometric calibration dependent on vendors (Boyd & Hill, 2007; 

Donoghue et al., 2007; Kaasalainen et al., 2007). At the time of this study, the 

majority of lidar vendors do not calibrate intensity values; thus they rely solely on 

variable gain and acquisition settings to provide useful intensity information. The 

quality of the intensity data is also dependent upon additional lidar acquisition 

parameters. Laser beam divergence, type of source energy, and path lengths all 

affect the quality of the intensity information and thus must be adjusted for different 
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acquisition scenarios to ensure useful intensity information is obtained. These 

attributes have resulted in a broad range of quality and limited the use of intensity 

data.  As vendor calibration and acquisition techniques become more robust and end 

user calibration becomes possible, the use of intensity information will likely 

increase.  

Even with these difficulties, intensity information has been used successfully 

in many forestry applications to differentiate between tree species, estimate 

biomass, and predict basal area (Donoghue et al., 2007; Holmgren & Persson, 2004; 

Hudak et al., 2006; Kim et al., 2009; Lim et al., 2003; Morsdorf et al., 2010). Lim et al. 

(2003) used an intensity threshold to remove lower NIR intensity returns when 

estimating live biomass of a northern hardwood forest in Ontario, Canada. In that 

study, the mean height of the higher intensity returns (> 200) was the best predictor 

of basal area, biomass and volume. More recently, Kim et al. (2009) used intensity 

value threshold filtering to successfully estimate live and dead standing tree biomass. 

All of these studies point toward the great potential of intensity information to help 

characterize many forest attributes. In this study, we explored the ability of intensity 

information to filter lidar points associated with various understory components. 

This study seeks to expand on previous work and exploit the additional 

information available in airborne lidar data to predict understory vegetation cover. 

The primary objectives of this study are to: 1) analyze the potential of airborne lidar-
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derived metrics to estimate and predict understory vegetation cover; 2) explore the 

use intensity values to filter understory component lidar points, 3) compare two 

modeling approaches for prediction of understory vegetation cover using the 

airborne lidar-derived metrics; and 4) develop a practical method that utilizes 

airborne lidar-derived metrics to predict understory vegetation cover. New 

understory airborne lidar metrics are introduced and explored.   

Materials and Methods 
 
Study Area 

The study was conducted at Blacks Mountain Experimental Forest (BMEF) in 

northeastern California (Figure 2.1). The experimental forest (40°40´N, 10 121°10´W), 

managed by the USDA Forest Service Pacific Southwest Research Station, is located 

approximately 35 km northeast of Mount Lassen Volcanic National Park and ranges 

between 1700 and 2100 m elevation. Stands are dominated by ponderosa pine (Pinus 

ponderosa Dougl. ex P. & C. Laws) with some white fir (Abies concolor (Gord. & 

Glend.) Lindl.) and incense-cedar (Calocedrus decurrens (Torr.) Florin) at higher 

elevations. At lower elevations, Jeffrey pine (Pinus jeffreyi (Grev. & Balf.); Oliver, 

2000) can also be found in some stands. Classified as an interior ponderosa pine 

forest type (Forest Cover Type 237) (Eyre, 1980), the 4,358 ha forest has a wide range 

of stand conditions as a result of past research and management activities, as well as 

disturbance events (Ritchie et al., 2007).  
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As part of a large-scale, long-term interdisciplinary experimental design at 

BMEF initiated in 1991, two contrasting stand structures were created: low structural 

diversity (LoD) and high structural diversity (HiD) (Oliver, 2000). LoD stands were 

thinned to maintain a single canopy layer of intermediate trees, with the goal of 

simplifying forest tree structure. At the time of treatment implementation (1996 - 

1998), stands were thinned to a uniformly spaced density of approximately 40 trees 

ha-1, maintaining trees with heights ranging from 12 to 30 m and crown ratios 

generally greater than 50%. At the time of our study, LoD stand densities ranged 

from 25 to 430 trees ha-1 based on plot-level data (DBH > 9 cm). In contrast, the HiD 

units retained all canopy layers, which resulted in stands that feature multiple age 

classes and varying crown structures (Oliver, 2000). All large old trees were 

maintained with one smaller tree retained within the larger tree’s crown 

circumference. Tree densities ranged from 60 to 95 trees ha-1 at initial 

implementation and ranged from 90 to 1400 trees ha-1 at the time of our study based 

on plot-level data (DBH > 9 cm). Plots with higher tree densities are associated with a 

few spatially scattered dense thickets (0.4-0.8 ha) containing smaller trees that were 

left as part of the HiD prescription.  

Six research units each were randomly assigned from both the LoD and HiD 

treatments ranging in size from 77 to 144 ha. Each unit was then split in half with one 

randomly assigned half receiving prescribed fire treatments (Figure 2.1). Due to the 
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large unit size, treatment implementation took several years. The three individual 

treatment blocks, each with four units, were created in 1996, 1997, and 1998, 

respectively.  

Also included at BMEF, are four research natural areas (RNA) each 

approximately 40 ha in size (RA, RB, RC, RD).  The RNAs were set aside to serve as 

unmanaged, qualitative controls representative of the interior ponderosa pine type. 

They have never received mechanical treatment, but fire exclusion has greatly 

increased their understory tree densities. Two of the four RNAs (RB & RC) received 

one application of prescribed fire in the late 1990’s. RNA stand densities ranged from 

420 to 1220 trees ha-1 for trees ≥ 9 cm DBH at the time of our study. 

As part of the experimental design, all 16 research units at BMEF have 

permanently monumented grid markers located within them on a 100 x 100 m lattice 

pattern. The permanent grid markers serve as the center points for the plot level 

research being conducted on the forest. Each grid was located by conventional 

survey methods and placed within 15 cm of their predetermined UTM coordinates 

using the High Precision Geodetic Network along with survey grade GPS (Oliver, 

2000). These provide a solid foundation to conduct airborne lidar research, because 

plot location errors are minimized.  
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 Field Data 

Field data were collected on five of the LoD units, six of the HiD units and 2 

randomly selected RNAs in July of 2009 (RC & RD). Standing live tree (DBH ≥ 9 cm) 

stand attributes for all three structure types at the time of our study are summarized 

in Figure 2.2. Using the BMEF permanent grid system, plot locations were assigned 

systematically with a random start within each unit on every other grid point in all 

intercardinal directions (282 m spacing). At each selected grid point location two 

nested circular plots were established: 1) a 40.5 m2 circular plot to measure 

understory vegetation, and 2) a 805 m2 circular plot to measure standing trees and 

coarse woody debris (CWD). A total of 154 plots were measured (LoD = 65, HiD = 79, 

RNA = 10). Every shrub with a height greater than 0.3 m was measured for crown 

dimensions and stem mapped (Figure 2.3). These measurements included the 

azimuth and distance from the plot center to the center of the shrub, two 

perpendicular crown width measurements, and two height measurements 

(maximum height and average height). Maximum height was defined as the top 

height of the shrub, and average height was determined by ocular estimation 

measured with a tape measure. Shrub species found in our study included (listed in 

order of abundance): greenleaf manzanita (Arctostaphylos patula  Green), antelope 

bitterbrush (Purshia tridentate (Pursh)), snowbrush (Ceanothus veluntinus Dougl. Ex 

Hook.), wax current (Ribes cereum), Pacific serviceberry (Amelanchier alnifolia Nutt.), 



19 

 

 1
9
 

rabbitbrush (species) (Chrysothamnus sp.), common snowberry (Symphoricarpos 

albus (L.) S.F. BLake), and Sierra gooseberry (Ribes rozelii Regel). Greenleaf Manzanita 

and snowbrush exhibit denser foliage with larger leaf areas, more branching 

complexity, and tend to grow taller and wider than the other shrub species. 

A geographically registered shrub cover layer was then constructed using 

shrub locations coupled with crown dimensions (Figure 2.4). For each shrub, the 

arithmetic mean of the two perpendicular crown widths was used as the average 

shrub diameter. Next, a circle was assumed for the general two-dimensional shrub 

shape and each shrub’s circular area was incorporated into the layer. Lastly, the 

circular shrub areas were merged to create one shrub cover layer for each plot. This 

technique accounts for overlapping shrub crowns, edge effects, and should result in a 

more accurate estimation of shrub cover when compared to many traditional 

sampling methods.  

Seedlings over 0.3 m in height and all saplings were tallied for each plot. 

Saplings were tallied into two diameter at breast height (DBH) classes (2.54 & 5.08 

cm). For seedling and sapling cover estimates, predetermined cover values were used 

(seedlings = 0.15 m2; saplings (2.54 cm class) = 0.5 m2; saplings (5.08 cm class) = 1 

m2). These cover values were based on average values from a subsample of seedling 

and sapling crown dimensions. Saplings greater than 6.35 cm in DBH were considered 

to have crowns above the understory layer based on field observations. Total 
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understory vegetation cover was determined by summing all three of the cover areas 

and dividing by the total plot area. This method does not account for overlapping 

seedling and sapling crowns which could slightly affect the accuracy of the plot 

measured understory vegetation cover values where multiple seedlings and saplings 

were present.     

In addition to the understory vegetation measured, all coarse woody debris 

with at least one end height above 0.3 m and one end diameter greater than 0.3 m 

were measured at every understory vegetation plot location only using a larger plot 

size (809 m2 circular). Azimuth and distance was measured to the middle of each end 

from plot center and each end’s width and height were also measured for cover and 

volume estimation. The spatial characteristics of the data enable direct 

determination of the geographic spatial arrangement associated with each piece of 

CWD. These attributes provided the ability to determine the quantity, cover and 

volume of CWD located within the 40.5 m2 circular understory vegetation plots. In 

addition, prominent stumps (height > 0.5 m) were located using azimuth and 

distance from plot center.   

Standing live and dead trees ≥ 9 cm DBH were also measured on the 809 m2 

circular plots. All trees were stem mapped from plot center and measured for height, 

DBH, crown width, and height to live and dead crown.  These data were used for 

verification of plot locations and to create overstory lidar metrics. 
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Lidar Data 

Discrete multiple return airborne lidar data were provided by Watershed 

Sciences Inc. in LAS file format (version 1.1). The lidar data were acquired over the 

entire BMEF study area in late July 2009 using a Leica ALS50 Phase II laser system 

mounted on a fixed wing aircraft. The aircraft was flown at 900 m above ground level 

following topography. Data were acquired using an opposing flight line side-lap of  

50% and a sensor scan angle  14-degrees from nadir to provide good penetration of 

laser shots through the canopy layers. On-ground laser beam diameter was 

approximately 25 cm (narrow beam divergence setting), which resulted in a low 

percentage of multiple returns (higher order than first returns: 9.2%) and a high 

percentage of first and single returns (first: 9.4%; single: 81.4%). The high ratio of first 

and single returns helped provide better quality intensity information, because 

calibration problems associated with laser pulse energy are reduced for these returns 

(for review: Morsdorf et al., 2010). An average of 6.9 points m-2 was obtained for the 

entire study area, with a standard deviation of 5.6 points m-2. Ground survey data 

were collected to enable the geo-spatial correction of the aircraft positional 

coordinate data collected throughout the flight, and to allow for quality assurance 

checks on final LiDAR data products. Simultaneous with the airborne data collection 

mission, multiple static (1 Hz recording frequency) ground surveys were conducted 

over monuments with known coordinates to enable geo-spatial data correction. 
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Indexed by time, these GPS data were used to correct the continuous onboard 

measurements of aircraft position. To enable assessment of LiDAR data accuracy, 

ground truth points were collected using GPS based real-time kinematic (RTK) 

surveying. 

The vendor post-processed lidar data utilized proprietary software 

(TerraScan) coupled with manual methods to identify ground points for development 

of the digital terrain model (DTM). Vertical DTM accuracy for BMEF was 

approximately 15 cm at a 95% confidence level. The vendor used an automatic 

variable gain setting during acquisition and did not calibrate the intensity values post-

acquisition. In past acquisitions, where the vendor used similar acquisition methods, 

the intensity information was successfully used to differentiate between live and 

dead biomass (Kim et al., 2009). 

Data Analysis 

An important step in any airborne lidar data analysis for forestry applications 

is verification of geo-registered plot locations. Inaccurate plot locations can be one of 

largest sources of model error found in many types of airborne lidar analysis. Even 

though the permanent grid system at BMEF helps to minimize the need for this step, 

every plot location was manually inspected using the standing tree stem maps for 

each 809 m2 circular plot. Every 809 m2 circular plot point cloud was compared to the 

field-measured standing tree stem map to assess the validity of the plot location. All 
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plot locations were found to be highly accurate ( 0.2 m) based on the manual 

inspection. 

Once plot locations were verified, the lidar point cloud heights were 

normalized using the DTM and points corresponding to the 40.5 m2 circular plots 

were extracted from the normalized lidar dataset. These plot point clouds were used 

to derive all potential explanatory lidar metrics used in the understory vegetation 

cover modeling analysis.      

Understory Lidar Metrics 

Martinuzzi et al. (2009) found the use of two understory airborne lidar 

metrics along with a common slope-aspect transformation variable could accurately 

estimate the presence of shrub cover (accuracy: 83%). The two understory lidar 

metrics utilized in their study were the percentage of ground points and percentage 

of points between 1 and 2.5 m compared to all plot points. We introduce a new 

understory lidar metric that combines inherent information found in these two 

metrics.   

The new metric, understory lidar cover density (ULCD), can be derived using a 

series of standardized steps that can be semi-automated (Figure 2.5). First, the height 

range for the understory layer is determined from the average and maximum shrub 

height data collected from field measurements. The minimum height for the 

understory layer was determined by rounding the field-measured minimum average 
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shrub height value downward to the nearest 0.1 m. The maximum height for the 

understory layer for each plot was determined by rounding the field-measured 

maximum shrub height upper 99th percentile value to the nearest 0.1 m. By using the 

99th percentile value of the maximum height range the maximum height threshold 

for the understory layer was reduced by 0.4 m and was determined to better 

represent the overall shrub crown height distributions for the site. The maximum 

height for the understory layer also served as the cut-off level between understory 

and overstory points.   

For this study, average shrub heights ranged from 0.25 to 1.45 m and 

maximum heights ranged from 0.5 to 1.85 m (Figure 2.6). This resulted in an 

understory layer that ranged from 0.2 to 1.5 m. There were a total of 8 shrubs (shrub 

sample size: n = 821) measured that had portions of their crowns above the 

maximum understory layer height threshold.  All lidar points located within the 

understory layer were then extracted from the plot point cloud for further analysis. 

The average plot-level percentage of first and single returns in this layer was similar 

to that of the entire acquisition (first: 6.7%; single: 83.4%). Theoretically, points in 

this layer can intersect one of eight understory components for this forest type: 

shrubs, the base of standing tree boles, seedlings, saplings, CWD, taller herbaceous 

vegetation, low hanging tree branches, and stumps (Figure 2.7). Other intersected 

components were considered too rare to be significant in this study area.  
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We explored the use of intensity values to filter points associated with 

unwanted understory components (e.g., non-vegetation and herbaceous points) 

from the understory layer point cloud. It was hypothesized that the intensity values 

would differ for the various understory components, thus providing a technique to 

identify the points associated with understory vegetation. For each plot, all points 

below the understory threshold (< 1.5 m) were used to calculate understory intensity 

mean and standard deviation values. It was determined from manual inspection of 

understory lidar point clouds, that points associated with live vegetation typically 

contained intensity values within one standard deviation of the mean intensity value, 

and points associated with other understory components were often outside this 

range. Based on this observation, all points with intensity values beyond one 

standard deviation from the plot’s mean intensity value were removed from the 

understory point cloud. The understory lidar cover density metric is then obtained 

using the formula: 

 
 (1)  

where  is the number of remaining understory points after applying the intensity 

filter, and  is  the number of relative ground points (points under 0.2 m).  

Two additional understory lidar metrics derived from the understory point 

cloud (heights < 1.5 m) were understory point density (UPD) and effective plot 
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coverage (EPC). Understory point density was defined as the number of lidar points 

per square meter under 1.5 m, and ranged from 1.5 to 24.2 points m-2 with a mean of 

5.4 points m-2  and a standard deviation of 3.1 points m-2. Typically, point densities 

are used to assess the adequacy of plot point cloud coverage. High point densities for 

a plot are often associated with adequate point coverage over the entire plot. In an 

understory context, it is possible to obtain high point densities while areas within the 

plot have no representative points because of scanning attributes (e.g., scan angle 

and path distance) and overstory obstructions. In attempt to overcome this problem, 

the EPC metric was derived to measure the amount of the plot area that received 

adequate point coverage. This metric contains inherent information from overstory 

characteristics (e.g., canopy cover and structure, species composition, etc.) and 

acquisition methodologies (e.g., point densities, scan angles, pulse rate and pattern). 

Two assumptions must be made to derive the metric. First, how much area an 

individual point should represent, and second, what the significant minimum shrub 

cover area is (i.e., the minimum cover area associated with a shrub that would meet 

sampling requirements).  A balance between these two assumptions must be 

determined. After initial exploration, it was assumed that an area of 0.09 m2 was a 

good representative area in the determination of EPC, because it coincided with the 

smallest shrub crown area sampled. To derive the metric, plots were gridded into 0.3 

x 0.3 m cells and each grid cell was evaluated to determine if it contained an 
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understory point. Grid cells containing at least one point were summed up to 

determine the effective area covered by understory lidar points (Figure 2.8). EPC was 

then determined by dividing the effective area covered by the total plot area. The 

effective plot coverage ranged from 0.12 to 0.88 with a mean of 0.38.  

Overstory Lidar Metrics 

Many previous understory vegetation cover studies found variables 

associated with the overstory  (e.g., standing basal area, tree density, species 

composition) to be significant in the estimation of understory vegetation cover 

(Eskelson et al., 2011; Kerns & Ohmann, 2004; Suchar & Crookston, 2010; Venier & 

Pearce, 2007). From previous lidar studies, the following overstory metrics were 

derived from first, last and combined return overstory point clouds (heights > 1.5 m): 

1) the quantiles corresponding to the 01, 10,…, 90 percentiles of the canopy heights ; 

2) the maximum height values; 3) the mean height values; 4) the standard deviation 

and coefficient of variation of height values; 5) the proportion of points above the 01, 

10,…, 90 quantiles to the total number of points; 6) the proportion of points located 

within six predetermined canopy height intervals (s1 = 1.5-5 m, s2 = 5-10 m, s3 = 10-

20 m, s4 = 20-30 m, s5 = 30-40 m, s6 > 40 m), and 7) overstory canopy cover 

determined by the proportion of first returns over the 1.5 m understory height 

threshold (Falkowski et al., 2009; Hudak et al., 2008; Næsset, 2002).  
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Topographic and Stand Attribute Variables 

Topographic variables are often used for estimation and prediction of 

understory cover (Eskelson et al., 2011; Martinuzzi et al., 2009). Five independent 

topographic variables and two stand attribute variables were used in the model 

selection procedure. Topographic variables were derived from the airborne-lidar-

generated DTM for each plot: elevation, slope, aspect, and two commonly used slope 

aspect transformations [slope ∙ cosine(aspect); slope ∙ sin(aspect)] (Stage & Salas, 

2007). Stand attribute variables included the research unit number and strata (LoD, 

HiD, RNA).    

Estimation and Prediction Modeling 

Although cover is frequently sampled in vegetation surveys, the theoretical 

and statistical basis underlying cover measures are not well understood (Chen et al., 

2006). Understory vegetation cover data, including data used in this study, are 

characterized by two key distributional features that do not conform to the 

assumptions of standard statistical procedures (Damgaard, 2009). They are bounded 

between 0 and 1, and have heteroscedastic error variances. In ordinary least squares 

(OLS), parameter estimates are unbiased but are inefficient when heteroscadastic 

error variances are present; in addition the usual parameter estimate variance-

covariance estimators are biased. There are a number of alternative adjustment 

methods to deal with the unequal error variance problem in the OLS linear regression 
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setting. The two most common adjustment methods are applying independent and 

dependent variable transformations and the use of weighted regression (WR) 

(Kmenta, 1986).  

A theoretically correct way to model cover data is by using the properties of 

the beta distribution, a flexible and useful tool for modeling continuous random 

variables that assume values in the standard unit interval (0, 1), such as rates, 

percentages and proportions (Kieschnick & McCullough, 2003). Thus, it can be 

appropriate for modeling vegetation cover data because it adequately describes the 

frequency distribution of cover for various individual plant species or plant 

communities (Bonham, 1989; Chen et al., 2006; Damgaard, 2009; Pielou, 1997). 

While most of the work with the beta distribution has been completed for grasslands 

and crop fields (Chen et al., 2006, 2008a, 2008b), it has recently been applied in 

forestry applications. For example, Eskelson et al. (2011) used beta regression (BR) in 

the estimation of riparian understory vegetation cover and found that it performed 

better than the OLS model. Korhonen et al. (2007) also successfully estimated forest 

canopy cover with beta regression.   

Based on the characteristics of the study’s understory vegetation cover data 

(i.e., heteroscedastic error variance), weighted and beta regression models were 

specified for the estimation and prediction of understory vegetation cover using the 

airborne lidar-derived metrics. All three treatment strata (LoD, HiD, RNA) were 
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grouped together to test the models’ robustness to varying forest structure and 

canopy densities.  

Model Specification 

Weighted least squares regression can be used when the unequal error 

variance assumption of the linear regression model is violated. The theory behind 

this method is based on the assumption that the weights are known exactly (Kmenta, 

1986). This is rarely the case, so estimated weights must be used instead. For this 

study, the equally sized group iterative procedure described in Kmenta (1986) to 

stabilize and determine final model parameter estimates was followed (5 iterations). 

Five groups of size approximately 31 were used in the procedure. Fitting this model is 

equivalent to minimizing: 

 
 (2)  

where are weights =  for  from the 5 weighted groups, 

is a vector of dependent variables, and  is from the OLS linear model: 

.  

Using a parameterization of the beta distribution, Ferrari & Cribari-Neto 

(2004) introduced a beta regression model similar to the approach for generalized 

linear models (McCullagh & Nelder, 1989), except that the distribution of the 
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response is not a member of the exponential family. In the extended generalized 

linear model approach,  are independent random variables with each a 

parameterization of the beta probability density function with mean  and variance 

. The beta regression model is specified: 

  (3)  

where  is a vector of explanatory variables,  is a vector of unknown 

regression parameters,  is a linear predictor, g(∙) is a strictly increasing and twice 

differentiable link function that maps (0, 1) into the real line, and  indicates the 

transpose of the vector. A variety of link functions g(∙) are available, but the logit link 

is particularly useful, because  is obtainable in closed form 

(Espinheira et al., 2008). 

Model Selection 

Weighted and beta multiple regression models were fit for estimation and 

prediction of understory vegetation cover. The models were fit to all strata grouped 

together into one dataset to test the robustness of the models to varying forest 

structures and canopy densities.  

Selection of significant independent variables was completed via a two-stage 

procedure. First, a forward and backward stepwise model selection procedure was 

performed using OLS linear regression to reduce the field of explanatory variables to 
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twenty based on Bayesian information criterion (BIC) model performance. Twenty 

was used as the cut-off level to help ensure significant variables (P < 0.05) would not 

be eliminated in this step. In the second step, BR models were fit using different sets 

and combinations of the twenty explanatory variables to identify the most significant 

variables based on BIC model performance. Because understory shrub cover data 

included zero values, the following commonly used transformation was applied to 

the understory vegetation cover dependent variable (Smithson & Verkuilen, 2006): 

  (4)  

where  is field-measured estimate of understory vegetation cover and  is the 

number of sample plots (  = 154). Independent predictor variables with associated p-

values greater than 0.05 were removed after this step. The final models were 

selected based on the lowest BIC value while assessing variable interactions. Variable 

interactions were assessed using a standard principal component analysis procedure 

(Weisberg, 1985). Two models were selected for further analysis with both WR and 

BR; one containing only the most significant variable based on lowest partial F-

statistic value and one containing all significant variables.  

Model Comparison 

No independent data were available to assess the accuracy of the regression 

equations used for prediction. Therefore, leave-one-out cross-validation was used to 
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assess the prediction accuracy of the models. For each step in the validation 

procedure, one sample plot was removed from the dataset at a time and the selected 

models were fitted to the remaining plots ( ). Understory vegetation cover was 

then predicted for the removed plot. This procedure was repeated until predicted 

values were obtained for all plots. Two reliability figures were used to determine the 

accuracy of predictions. The absolute bias (AB), and root mean squared prediction 

error (RMSPE) were reported: 

 
 (5)  

 

 (6)  

 

Results 
 

The final selected model contained three variables: 1)  2) the standard 

deviation of overstory lidar first return point heights ( ); and 3) the density of 

overstory lidar first return points in the predetermined fifth height stratum ( ) 

(Table 2.1).  The signs of the coefficients correspond to the responses between 

understory vegetation cover and the independent variables. Understory vegetation 

cover had a slightly negative relationship with  and a positive relationship 
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with . While predictions from the two model types are directly comparable, the 

regression parameters  and BIC values are not, due to different model fitting 

techniques.  

 explained the greatest amount of variability for understory vegetation 

cover followed by the standard deviation of overstory first return point heights 

( ) and then the density of overstory first return points in the predetermined 

fifth height strata ( ). The WR model containing only ULCD had a BIC value of (-

382.3), while inclusion of the two significant overstory estimators decreased the 

value to (-396.6). For the BR model the BIC value went from (-530.0) to (-543.3) with 

the inclusion of the two overstory estimator variables. BIC values for the two model 

families (WR and BR) can only be used to compare within model performance. 

According to Raferty (1995) and Kass and Raferty (1995), a difference in BIC values 

(∆BIC) of ≤ 2 between models is “not worth more than a bare mention” and a ∆BIC > 

10 implies very strong evidence that the models are different.  

Prediction accuracy was similar for both the WR and the BR models. Overall, 

RMSPE was 0.003 larger for BR2 compared to WR2, which equates to an average 

understory vegetation cover prediction difference of approximately 0.3% (Table 2.2). 

Absolute bias was virtually zero for both models with the BR models displaying a 

slightly lower AB (BR2 0.001 vs. WR2 0.005). RMSPE increased slightly for the models 

containing only the ULCD variable. Both models performed well in the prediction of 
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understory vegetation cover with root mean square prediction errors ranging from 

0.0640 to 0.0735, which translates to average understory vegetation cover prediction 

errors of approximately ± 7%. The overall prediction accuracy for understory 

vegetation cover was ± 22% for all model forms. AB was not significantly different 

from zero for any of the model forms.  No trends were found between understory 

vegetation cover prediction errors and canopy cover for any of the models (Figure 

2.9). A small trend, which should be viewed with caution, was found between 

understory vegetation cover prediction errors and understory point densities. The 

errors decreased with increasing understory point densities, although as point 

densities increased the sample size diminished (Figure 2.10).   

 Residuals for WR models were normally distributed and centered on zero 

with no obvious dependencies or patterns that might reveal improper model 

specification besides the unequal error variance issue in the linear model, which was 

dealt with by using the WR procedure. BR residuals displayed similar traits, except 

the residual errors displayed a more equal variance across all values. The BR residual 

distribution also displayed a slightly more pronounced negative tail. Larger residual 

errors from both the WR and BR models were most often associated with plots that 

contained CWD.      
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Discussion and Conclusions 
 

Understory vegetation cover has been difficult to estimate and predict, 

especially over large spatial extents. The method presented in this paper greatly 

increases the ability to estimate and predict understory vegetation cover in interior 

ponderosa pine forests. Both the WR and BR models produced satisfactory errors for 

prediction of understory vegetation cover. Only a simple independent variable 

transformation was necessary for the beta regression modeling framework, which 

did not result in any prediction bias. Theoretically the BR model seems the most 

appropriate choice; however the WR model performed equally well. This is most 

likely due to the most significant variable (ULCD) being a proportion bounded 

between 0 and 1, which essentially measures the same metric (i.e., the proportion of 

an area covered by shrub crowns). In theory, there should be a one-to-one type of 

relationship between these two variables. To demonstrate this point a simple linear 

regression model is presented in Figure 2.11 between ULCD and field-measured 

understory vegetation cover.  

The method was robust in terms of applicability to different forest structures 

in this forest type based on the model performance combining all three BMEF 

treatment strata (LoD, HiD, RNA). Understory vegetation cover prediction errors did 

not show any obvious relationships with canopy cover in this forest type (Figure 2.9). 

This fact seems somewhat counterintuitive, since areas with higher overstory canopy 
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densities typically occlude laser pulses from reaching the understory. Previous 

airborne lidar studies have identified this occlusion problem as a significant limiting 

factor in characterizing understory components (Hill & Broughton, 2009; Morsdorf et 

al., 2010). The problem was less evident in this forest type and likely resulted from a 

combination of unique characteristics associated with this study. First, the most 

significant variable, ULCD, is relative to the number of points that reach the 

understory. A proportion bounded by 0 and 1 itself, the ratio between the number of 

understory cover points to the total number of points below the understory 

maximum height threshold remains relatively stable under different overstory 

conditions.  Even though laser pulses are less likely to intersect understory vegetation 

in denser canopy conditions, they are also less likely to reach the ground. The second 

key characteristic is that the likelihood of encountering understory vegetation 

decreases with increasing overstory cover for this forest type. Therefore, it is less 

important that a lower number of laser pulses are reaching the understory in these 

situations, because there is less probability of the area containing understory 

vegetation. The third key characteristic is associated with the relationship between 

the overstory and understory layers in this forest type. There tends to be a distinct 

height difference between overstory and understory layers in this forest type, which 

makes it easier to identify and analyze the understory vegetation cover layer 

separately.  
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Although as yet untested, we hypothesize that this method will not perform 

as well in forest types that contain an abundance of understory vegetation under 

dense overstory cover conditions, or where the understory and overstory layers 

intermix. Obtaining higher understory point densities would help to alleviate these 

problems, but this is difficult in areas with dense overstory conditions and would also 

increase acquisition costs. The use of small-footprint full-waveform airborne lidar 

(SFFW) might also provide more explanatory value in identifying and ultimately 

predicting understory characteristics, such as cover. SFFW provides more than just 

coordinate and intensity information, it also provides echo width information. Echo 

width information has proven to be useful for classifying ground and vegetation 

returns and warrants investigation (Ducic et al., 2006; Wagner et al., 2008). Costs 

associated with SFFW acquisition are relatively high, making its use prohibitive for 

most broad-scale forest inventory applications. These costs will likely decrease over 

the next decade. In forests with  significant proportions of deciduous trees, lidar 

acquisition completed during overstory leaf-off conditions and understory leaf-on 

conditions, if and when available, should increase understory lidar point densities 

and provide better results. In areas with taller herbaceous vegetation, acquisition 

should be completed while the herbaceous cover has yet to reach the minimum 

height requirement for the understory layer.  
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While both models performed well, producing R2 values that exceeded most 

other published reports, additional modeling strategies should be investigated for 

this type of data to help determine the best approach. Two potential models not 

investigated in this study are the zero-inflated beta regression model (Ospina & 

Ferrari, 2012), and the Copula model (Nelsen, 2006). The zero-inflated beta 

regression model is an extension of BR that incorporates the probability of observing 

a zero value into the model. Copulas are multivariate distribution functions whose 

one-dimensional margins are uniform on the interval (0, 1) (Nelsen, 2006). Eskelson 

et al. (2011) had promising results applying a multivariate Gaussian copula model to 

understory vegetation cover data which also accounted for spatial dependence. Both 

these models seem well suited for understory vegetation cover data since zero values 

are likely, but we leave this for future work. 

The two overstory explanatory variables selected in the final model 

( , ) indicate that there are significant interactions between overstory and 

understory vegetation. This trend coincides with previous understory vegetation 

studies (Eskelson et al., 2010; Martinuzzi et al., 2009). It is also interesting to note 

that Hopkinson et al. (2006) found the standard deviation of vertical point structure 

to be the most powerful predictor of canopy height for various forest structures, and 

concluded it should be used as a universal lidar canopy height metric. This study 

found the same metric ( ) to be the most significant overstory estimator 
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variable, thus supporting their hypothesis. The metric replaced a combination of 

canopy height distribution quantile metrics. When the metric was removed from the 

model and the model was refit with the remaining estimator variables, two lidar 

canopy height quantile metrics took its place; one representing the lower portion and 

one representing the upper portion of the crown profile. This demonstrates the 

usefulness of   in areas containing variable forest structure and its ability to 

replace multiple lidar derived height metrics.   

Plots containing CWD produced the largest residual errors. To demonstrate 

the effects of CWD, plot-level CWD cover was added to the plot-level understory 

vegetation cover dependent variable and the simple linear model (Figure 2.11) was 

refit (Figure 2.12). The explanatory power (R2 ) increased  from 0.74 to 0.81. This 

suggests that the filtering method was not successful in filtering out all points 

associated with CWD. To further solidify this point, the residual errors from the 

understory vegetation cover models were found to be the most significant estimators 

in a CWD presence and absence logistic regression estimation model (40.5 m2 plot-

level CWD volume > 1.5 m3). Theoretically, the understory vegetation cover model 

residual errors should predominately be associated with the CWD lidar points, since 

other understory component points were successfully filtered based on visual 

inspection of the point cloud data. Residual errors coupled with two other significant 

independent variables, slope ∙ sin(aspect) and the proportion of discarded intensity 
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filtered points, produced presence accuracies of approximately 70% for estimating 

cumulative CWD volumes greater than 1.5 m3 on the 40.5 m2 circular plots. While the 

intensity filter successfully removed a portion of the CWD points from the ULCD 

variable, the understory vegetation cover model residual errors displayed more 

explanatory power than the proportion of discarded intensity filtered points in the 

CWD model. This suggests that there were a higher proportion of unfiltered CWD 

points using the filtering method in this study. If improved lidar point filtering 

techniques can be created, it might become possible to predict CWD in addition to 

understory vegetation cover using a similar method to the one outlined in this paper. 

A linear object recognition filter (Vosselman et al., 2004) coupled with intensity 

filtering might be successfully utilized.  

Even though the intensity filtering method used in the study did not 

successfully remove all non-vegetation understory component points, it was 

successful at removing a large portion of them (> 50%). The filter still might be 

improved in a number of ways. The first resides in the fact that the filtering method 

used all lidar points associated with each plot’s understory and relative ground layers 

(points < 1.5 m height). The filter might perform better if only understory vegetation 

layer points are used. This would require a larger plot size or higher understory point 

densities to ensure enough understory component points are available for creation 

of the plot-level intensity filtering statistics (e.g., mean & standard deviation). The 
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use of only first and single understory returns could also provide a way of improving 

the filtering method, since intensity information associated with these returns has 

been shown to be of better quality, especially when no post-acquisition radiometric 

calibration is applied. This theory was tested using the data from this study and the 

results were neither improved nor diminished, which was likely due to the high 

percentage of first and single understory returns (90.1%). It was also found that the 

understory layer intensity data displayed both bi-modal and uni-modal distributions 

before filtering. A filtering method that treated them separately might provide 

another way of improving the intensity filter. It is also important to note that the 

lidar data in this study was acquired during understory leaf-on conditions, which 

likely made differentiating intensity values associated with understory vegetation 

and other understory components easier.  

The use of intensity information to characterize forest attributes is dependent 

upon the quality of the intensity information. The intensity data in this study did not 

receive post-acquisition calibration, if it had, filtration results would likely improve. 

Even without calibration, it displayed great potential in distinguishing lidar points 

associated with the various understory components. Currently, airborne lidar 

vendors are just beginning to develop and apply post-acquisition intensity calibration 

techniques. As this continues to improve, intensity values will likely become a much 

more valuable feature of airborne lidar data.  
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The field sampling design and data analysis steps used to obtain field-

measured understory vegetation cover are simple to implement, provide accurate 

estimates, and fit well into most traditional forest inventory sampling designs. The 

shrub stem map and crown dimensional measurements provided a good method to 

estimate shrub cover accurately by accounting for overlapping crowns and 

incorporated well with the traditional airborne lidar plot-based standing tree 

inventory sampling design. The method can be improved by stem mapping and 

dimensionally measuring seedlings and saplings. Then seedlings and saplings can be 

incorporated into the field based spatial understory shrub cover layer for more 

accurate field estimation of understory vegetation cover. Matching the actual shrub, 

seedling, and sapling crown shapes could also provide for more accurate estimation. 

Although a circle seems like an appropriate assumption for shrub, seedling, and 

sapling cover shapes, the two perpendicular crown width measurements could be 

used to better match the actual crown shape of individual shrubs spatially. This might 

result in more accurate understory vegetation cover estimates. Plot size, sampling 

efficiency and costs associated with this sampling design should also be examined in 

further detail. Understanding the effects of increasing plot size on model variability 

would help to determine the most efficient sampling design. The use of terrestrial 

lidar scanning could also provide a good method in the future for obtaining accurate 

understory vegetation cover field measurements.  
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Application of the prediction model to entire forested stands can be 

completed following the traditional airborne lidar two-stage plot-based gridding 

procedure outlined in Næsset (2002). In this procedure, stands of interest are first 

divided into grid cells that match the prediction model’s plot size. Then significant 

independent variable values are obtained for each grid cell and the prediction model 

is applied using weights for each grid cell to minimize edge bias associated with the 

smaller boundary-edge grid cells. The end result can be used to: 1) identify areas that 

meet understory vegetation cover habitat criteria and create habitat maps over 

entire forest stands, 2) determine understory fuel loadings over entire stands, which 

can then be used to refine fire behavior models, 3) accurately estimate and predict 

understory vegetation biomass and carbon stocks, 4) help assess forest health and 

biodiversity, and 5) assess competition dynamics between understory vegetation and 

standing trees.  

The characteristics of this study’s sampling design, airborne lidar acquisition 

and intensity value calibration provided a unique opportunity to examine the 

capability of airborne lidar to predict understory vegetation cover. The method 

presented in this paper was practical and efficient, and showed promise for 

predicting understory vegetation cover at fine spatial resolutions over large spatial 

extents in the interior ponderosa pine forest type. Incorporating airborne lidar with 

other remote sensing techniques such as aerial photography, or utilizing small-



45 

 

 4
5
 

footprint full-waveform airborne lidar could also enhance the ability to characterize 

and predict understory components such as vegetation cover.  The new ULCD metric 

displayed a strong relationship with understory vegetation cover and was robust to 

various forest structures and densities in this forest type. The filtering of lidar points 

using intensity information helped to remove a portion of understory component 

points not associated with understory vegetation cover (i.e., CWD, stumps, live tree 

boles). The extension of the method to additional forest types warrants further 

investigation. 
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Figure 2.1: Geographic location of the Blacks Mountain Experimental Forest and 
layout of the Blacks Mountain Long-Term Ecological Research Project in northeastern 
California 
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Figure 2.2:. Standing live tree (DBH > 9 cm) attributes from all plots  per treatment 
type (LoD, HiD, RNA) at BMEF.  
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Figure 2.3: Field sampling design for understory shrub cover. 
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Figure 2.4: ArcGIS understory vegetation cover layer created from field-measured 
shrub data. 
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Figure 2.5: Procedure for creation of the understory lidar cover density (ULCD) 
metric. sd = standard deviation, UPF  = number of understory points remaining after 
filtering, RGP = relative ground points. 
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Figure 2.6: Frequency histogram for average and maximum shrub heights and 
depiction of how understory layer height range is determined. n = number of shrubs 
sampled. 
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Figure 2.7: Depiction of possible understory components that airborne lidar pulses 
can intersect. Artwork derived from Dunning (1928).    
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Figure 2.8: Depiction of the ArcGIS layer created to derive the lidar effective plot 
coverage (EPC) metric using 0.3 x 0.3 m grid cells. 
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Figure 2.9: Percent canopy cover (determined by the proportion of first returns over 
1.5 m in height) versus WR2 understory vegetation cover model prediction errors for 
the 40.5 m2 circular plots (n = 154). 
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Figure 2.10: Understory point density versus WR2 understory vegetation cover model 
prediction errors for the 40.5 m2 circular plots (n = 154). 
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Figure 2.11: Field-measured understory vegetation cover versus understory lidar 
cover density and the reference one to one ratio line.    
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Figure 2.12: Field-measured understory vegetation and coarse woody debris cover 
combined versus understory lidar cover density and the reference one to one ratio 
line.    
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Table 2.1: Final statistical model summaries. WR = Weighted Regression; BR = Beta 
regression; BIC = Bayesian Information Criterion. Regression parameters and BIC 
values have different interpretations for BR and WR.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



59 

 

 5
9
 

Table 2.2: Leave-one-out cross-validation results for prediction of understory 
vegetation cover using individual models. RMSPE = Root mean square prediction 
error; AB = Absolute bias. 
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Abstract 
 

Standing dead trees (snags) play many essential roles in forested ecosystems 

at various scales. This has resulted in forest regulatory bodies and forest certification 

programs creating snag stocking standards to help ensure biodiversity is maintained 

or restored over time. The quantification and monitoring of snags across the 

landscape has been difficult due to their irregular and sparse distribution, often 

requiring intensive sampling methods to obtain statistically significant estimates. This 

study presents a new method for quantifying and locating snags using airborne 

discrete-return lidar. The semi-automated method uses both 2D and 3D local-area 

lidar point filters focused on spatial location and intensity information to identify 

individual lidar points associated with snags and eliminate points associated with live 

trees. The end result is a stem map of individual snags across the landscape with 

height estimates for each snag. The method was tested in four different forest types 

with similar results. Detection rates ranged from 35-100%, increasing as the size of 

snags increased. The overall detection rate for snags DBH ≥ 38 cm was 70.6% (± 

2.7%), with low commission error rates in all forest types. The method provides the 

ability to quantify snags across the landscape. This information could be used to 

analyze the spatial distribution of snags over entire landscapes, provide a better 

understanding of wildlife snag use dynamics, assess achievement of stocking 

standard requirements, and create more accurate snag stocking standards.  
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Introduction 
 

In recent years, recognition of the essential roles standing dead trees (snags) 

play in forest ecosystems has become more apparent at various scales. Snags provide 

critical nest, roost, and den habitat for a myriad of vertebrate wildlife species while 

also providing excellent foraging resources (Bate, 1995, Rose et al., 2001; Harmon, 

2002; Laudenslayer, 2002; Mellen et al., 2006). Snags have been classified as key 

habitat components for many threatened and forest health indicator species 

(Harmon, 2002; Laudenslayer, 2002), and many fungal and invertebrate life cycles are 

dependent on snags (Boddy et al., 2008; Jonsson et al., 2005). Additionally, they are 

important for nutrient cycling and provide long-term carbon storage (Harmon, 2002). 

For all these reasons, snags are often considered to be key indicators of biodiversity 

and forest health. 

As the recognition of the importance of snags has become more apparent, 

numerous certification programs and forest management regulatory bodies have 

developed minimum snag stocking requirements to help ensure biodiversity is 

maintained or restored (Pasher & King, 2009). These most often require a certain 

density or volume of snags to be maintained over time in order to provide 

continuous habitat support and ecosystem sustainability (Franklin et al., 1997; 

Holloway et al., 2007). These standards and regulations are often based on results 

from snag sampling studies, which estimate the size and quantity of snags from field 
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sampling methods. One limitation associated with these methods is that the 

distribution of snags across forest stands is highly variable, even within stands that 

are similar in many other respects (Fan et al., 2004). Due to this fact, field sampling 

and monitoring of snags has proven to be inherently difficult; requiring complex, 

intensive, and often expensive sampling procedures to produce statistically 

significant estimates (Rose et al., 2001).    

Much work has gone into development of robust and efficient field sampling 

and monitoring methods for snag quantification (Krebs, 1989; Bull et al., 1990; 

Harmon & Sexton, 1996; Bate et al., 1999; Rose et al., 2001; Ducey et al., 2002; 

Kenning et al., 2005). Typically, snag data is collected using field sample plots, strips 

or transects with high intensities. The field work is not only cost- and time-

consuming, but often difficult in remote areas with rough terrain and steep slopes 

(Bütler & Schlaepfer, 2004). The precision of estimates depends largely on the snag 

spatial patterns. Most standard sampling designs will not be efficient for rare events, 

such a snags (Yoccoz et al., 2001). Therefore, large sample and plot sizes are required 

to produce statistically significant snag quantifications (Lämas & Stahl, 1998; Gray, 

2003). All of these attributes have led to the exploration of utilizing remote sensing 

technologies (e.g., aerial and satellite sensors) to better estimate snag quantities and 

distributions across the landscape (Croft et al., 1982; Bütler & Schlaepfer, 2004; Bater 

et al., 2009; Martinuzzi et al., 2009).  
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Using remote sensing techniques to estimate the quantity and distribution of 

snags can provide a more practical, cost-effective, and reliable method (Bater et al., 

2009). However, to date there have been a relatively small number of studies testing 

the capabilities of remote sensing to quantify snags. While some have used Landsat 

(Frescino et al., 2001), most have utilized airborne multispectral imagery and have 

focused on stand-level disturbance events, such as insect outbreaks, disease or 

windfall (Guo et al., 2007; Hamilton et al., 2010; Kelly et al., 2004). Others have 

focused on the assessment of individual snags (Croft et al., 1982; Haara & 

Nevalainen, 2002; Bütler & Schlaepfer, 2004; Leckie et al., 2004; Pasher & King, 

2009). Bütler & Schlaepfer (2004) achieved promising results by developing a four-

step individual-snag detection method that coupled airborne CIR photos (1:10,000) 

with a geographic information system (GIS) and produced detection rates of 82% for 

unbroken snags ≥ 25 cm diameter at breast height (DBH). However this method had 

many noted limitations; 1) most smaller (DBH < 25 cm) or broken snags were not 

detected, 2) the method requires high-levels of technology, including special 

software, and 3) accuracy can be affected by factors such as aspect, surface slope, 

weather, and hour of flight. Most methods utilizing aerial photography also suffer 

from time and cost issues, and are prone to operator interpretation bias and 

subjectivity errors (Bater et al., 2009). As a result, there has been an increased 

interest in augmenting techniques to estimate and detect snags, which has led to 
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researching the use of new remote sensing technologies, such as airborne light 

detection and ranging (lidar).  

Airborne lidar is an active remote sensing technology employing an aircraft 

mounted laser capable of simultaneously mapping terrain and vegetation heights 

with sub-meter accuracy. It has proven to be a very promising remote-sensing 

technology for increasing the accuracy and efficiency of large-scale forest inventories 

for a myriad of important forest inventory and wildlife habitat variables (Næsset, 

2002; Maltamo et al., 2006; Martinuzzi et al., 2009). Airborne lidar can be used to 

directly measure the three-dimensional structure of terrestrial and aquatic 

ecosystems across large spatial extents (Lefsky et al., 2002a). Lidar data produce 

three-dimensional characterizations of objects in the form of point clouds that are 

defined by precise x, y and z coordinates. They also help characterize the reflectance 

and surface properties of intersected objects by providing intensity values, which are 

a measure of return-signal strength, for each point. These attributes are useful for 

forest inventory and characterization, because in theory, every object in a forest with 

a vertical dimension can be detected if adequate lidar point densities are collected 

within all vertical layers (e.g., understory & overstory, Pesonen et al., 2008).  

The use of airborne discrete-return lidar in the quantification of snags has 

received increasing attention in the past few years. The methods for estimating snag 

attributes using airborne lidar can be separated into individual-tree and plot-based 
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assessment (Reutebuch et al., 2005). Plot-based assessments seek to estimate plot-

level snag volume, biomass or abundance measures (Pesonen et al., 2008; Kim et al., 

2009; Bater et al., 2009; Martinuzzi et al., 2009). Pesonen et al. (2008) achieved 

relatively poor results predicting snag volume using plot-based canopy derived lidar-

metrics (RMSE 79%). Kim et al. (2009) achieved better results estimating snag 

biomass using similar plot-based metrics that had been stratified based on intensity 

values. Bater et al. (2009) found that the coefficient of variation of the lidar height 

data was a strong predictor of the proportion of snags in different levels of decay.  

Individual-tree based snag assessment using airborne lidar data has received 

less attention. Individual-tree based assessments seek to extract and measure 

individual trees using segmentation methods. Most methods to date have found 

individual trees by identifying local maxima in a canopy height model (CHM). A CHM 

is an interpolated raster surface model with normalized height values and can be 

thought of as a piece of pliable material laid on top of tree canopies. Tree location 

typically corresponds with a peak in the CHM, and the corresponding crown area is 

delineated using some form of edge-detecting segmentation algorithm (i.e., 

watershed, slope-based, height-crown relationships) (for thorough review: Kaartinen 

& Hyyppä, 2008; Vauhkonen et al., 2011). Successful extraction rates vary depending 

on CHM interpolation, crown delineation methods, and forest type and structure. In 

addition, the methods are most often specialized to unique locales (Kaartinen & 
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Hyyppä, 2008). The major drawback with these methods is that they all rely on the 

CHM, which is reconstructed from the lidar data in an interpolation process which 

smoothes the data to different extents. This can virtually eliminate smaller 

neighboring trees as they become part of larger tree crowns during the CHM 

interpolation process. Thus, approaches that solely use the CHM have had restricted 

success rates, especially in heterogeneous forests where trees grow close together 

(Reitberger et al., 2009). Newer methods, attempting to overcome these limitations 

have recently been developed. Some have developed procedures to predict small 

occluded trees in the understory (Maltamo et al., 2004; Mehtätalo, 2006), while 

others have focused on three-dimensional (3D) assessment or reconstruction 

(Morsdorf et al., 2003; Wang et al., 2008; Reitberger et al., 2009). All of these studies 

have focused on extracting both live and dead trees, with most attention on the 

former. There have been no studies, to date, that have attempted to identify and 

extract individual snags using lidar-based individual-tree assessment methods.  

Intensity values are an often underexploited feature of lidar data, due to 

difficulty and variability associated with acquisition settings and calibration (Wing et 

al., in review (a)). Intensity data are primarily a measure of surface reflectance and 

are a function of the wavelength of the source energy, path distance, and the 

composition and orientation of the surface or object which the laser pulse intersects 

(Boyd & Hill, 2007). The quality of the intensity data is dependent upon adjustable 
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lidar acquisition parameters. Laser beam divergence, type of source energy, path 

lengths and variable gain control settings all affect the quality of the intensity 

information. These attributes have limited the use of intensity data, due to variability 

associated with intensity values from different acquisitions. As vendor calibration and 

acquisition techniques become more standardized and end user calibration becomes 

possible, the use of intensity information is likely to increase.  

Intensity has been used successfully in many forestry applications to 

differentiate between tree species, estimate live and dead biomass, and predict basal 

area (Donoghue et al., 2007; Holmgren & Persson, 2004; Hudak et al., 2006; Kim et 

al., 2009; Lim et al., 2003; Wing et al., in review (a)). Kim et al. (2009) used intensity 

value threshold stratification to successfully estimate live and dead standing tree 

biomass. They stratified plot point clouds based on intensity values and found 

metrics created with the lower intensity plot point cloud better estimated standing 

dead biomass. More recently, Wing et al. (in review (a)) successfully utilized intensity 

information to filter points in the understory not associated with understory 

vegetation (e.g.., stumps, coarse woody debris, tree boles). These studies point 

toward the great potential of intensity information in helping characterize many 

forest attributes.  

Theoretically, lidar points associated with snags should have different 

reflectance and surface properties (intensity values) than live trees, since they 
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contain no photosynthetic material and typically lack needles and fine branches. If 

this is true it could be possible to identify lidar points associated with snags and 

remove lidar points associated with live trees using an intensity value based filtration 

algorithm. This study tests this theory by attempting to filter and remove lidar points 

associated with live trees using a series of individual point-based filters that focus on 

the spatial location of individual points and intensity attributes of local neighborhood 

points. After the algorithm is applied, a traditional CHM individual-tree extraction 

technique is used to extract individual snags and provide height estimates. With this 

two-step semi-automated method, it could be possible to stem map individual snags 

across the landscape while also providing accurate snag density estimates. This 

information could be used to analyze the spatial distribution of snags over entire 

landscapes, provide a better understanding of wildlife snag use dynamics, and assess 

and create more accurate snag stocking standards. The objectives of this study are 

to: 1) create an individual point-based local-area filtering algorithm that removes 

points associated with live trees, 2) apply an individual-snag detection method to the 

filtered point cloud and test the detection and error rates associated with the 

method, and 3) test the method in various forest types and structures to determine 

applicability in different forest conditions. 
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Materials and Methods 
 
Study Area 

The study was conducted at two sites; Blacks Mountain Experimental Forest 

(BMEF) and the Storrie Fire restoration area. Both are located in northeastern 

California (Figure 3.1). BMEF (40°40´N, 10 121°10´W), managed by the USDA Forest 

Service Pacific Southwest Research Station, is located approximately 35 km northeast 

of Mount Lassen Volcanic National Park and ranges between 1700 and 2100 m 

elevation. Stands are dominated by ponderosa pine (Pinus ponderosa Dougl. ex P. & 

C. Laws) with some white fir (Abies concolor (Gord. & Glend.) Lindl.) and incense-

cedar (Calocedrus decurrens (Torr.) Florin) at higher elevations. At lower elevations, 

Jeffrey pine (Pinus jeffreyi Grev. & Balf.; Oliver, 2000)  can also be found in some 

stands. Classified as an interior ponderosa pine forest type (Forest Cover Type 237) 

(Eyre 1980), the 4,358 ha forest has a wide range of stand conditions as a result of 

past research and management activities, as well as disturbance events (Ritchie et al., 

2007).  

As part of a large-scale, long-term interdisciplinary experimental design at 

BMEF initiated in 1991, two contrasting stand structures were created: low structural 

diversity (LoD) and high structural diversity (HiD) (Oliver, 2000). LoD stands were 

thinned to maintain a single canopy layer of intermediate trees, with the goal of 

simplifying forest tree structure. At the time of treatment implementation, stands 
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were thinned to a uniformly spaced density of approximately 40 trees ha-1, 

maintaining trees with heights ranging between 12 to 30 m and crown ratios 

generally greater than 50%. At the time of study initiation, LoD stand densities 

ranged from 25 to 430 trees ha-1 based on plot-level data (DBH > 9 cm). In contrast, 

the HiD units retained all canopy layers, which resulted in stands that feature 

multiple age classes and varying crown structures (Oliver, 2000). All large old trees 

were maintained with one smaller tree retained within the larger tree’s crown 

circumference. Interstices were thinned to approximately 250 stems ha-1. Tree 

densities ranged from 60 to 95 trees ha-1 at initial implementation and ranged from 

90 to 1400 trees ha-1 at the time of our study based on plot-level data (DBH > 9 cm). 

Plots with higher tree densities are associated with a few spatially scattered dense 

thickets (0.4-0.8 ha) containing smaller trees that were left as part of the HiD 

prescription.  

Six research units each were randomly assigned from both the LoD and HiD 

treatments ranging in size from 77 to 144 ha. Each unit was then split in half with one 

randomly assigned half receiving prescribed fire treatments (Figure 3.1).  Due to the 

large unit size, treatment implementation took several years. The three individual 

treatment blocks, each with four units, were created in 1996, 1997, and 1998, 

respectively.  
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Also included at BMEF, are four research natural areas (RNA) each 

approximately 40 ha in size (RA, RB, RC, RD). The RNAs were set aside to serve as 

unmanaged, qualitative controls representative of the interior ponderosa pine type. 

They have never received mechanical treatment, but fire exclusion has greatly 

increased their understory tree densities. Two of the four RNAs (RB & RC) received 

one application of prescribed fire in the late 1990’s. RNA stand densities ranged from 

420 to 1220 trees ha-1 for trees ≥ 9 cm DBH at the time of this study. 

As part of the experimental design all 16 research units at BMEF have 

permanently monumented grid markers located within them on a 100 x 100 m lattice 

pattern. The permanent grid markers serve as the center points for the plot level 

research being conducted on the forest. Each grid was located by conventional 

survey methods and placed within 15 cm of their predetermined UTM coordinates 

using the High Precision Geodetic Network along with survey grade GPS (Oliver, 

2000). These provide a solid foundation to conduct aerial lidar research, because plot 

location errors are minimized.  

The Storrie Fire restoration area (SF), managed by the USDA Forest Service 

Lassen and Plumas National Forests (NF), is located approximately 45 km south of 

Mount Lassen Volcanic National Park and ranges between 900 and 2100 m elevation. 

The area was subject to a wildfire in late-August, 2000. The fire was characterized by 

high spatial complexity with varying levels of low- to high-severity burns on the 
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predominantly forested landscape, burning approximately 23000 ha (Crotteau, 

2011). The fire burned within portions of the Plumas and Lassen NF; this study only 

focused on the Lassen NF portion, which encompassed 48% of the area (11260 ha). 

The Lassen NF portion is dominated by forests of white fir, California red fir (Abies. 

magnifica var. magnifica Andr. Murray), incense-cedar, Sierra lodgepole pine (Pinus 

contorta Louden var. murrayana (Grev. & Balf.) Critchf.), sugar pine (Pinus  

lambertiana Douglas), western white pine (Pinus monticola Douglas), ponderosa 

pine, Jeffrey pine, Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco), and California 

black oak (Quercus kelloggii Newb.). The area had three dominant vegetation cover 

types; Red Fir, White Fir, and Sierra Nevada Mixed Conifer (Forest Cover Types 207, 

211, and 243 respectively) (Eyre, 1980).  

Variable fire severity created a mosaic of different forest conditions within 

each of the three forest vegetation cover types. To aid with the sampling design for 

this and other research projects, the area was stratified into twelve total classes: four 

levels of fire-severity (high (HS), medium (MS), low (LS), and unchanged (U)) across 

three levels of forest type (Figure 3.1). Fire severity was determined by using the 

Relative differenced Normalized Burn Ratio (RdNBR; see Miller et al., 2008) to 

approximate the Composite Burn Index (CBI) produced from the two Landsat 

Thematic Mapper post-Storrie Fire images yielding the four nominal categories. 
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The high-severity stratum can be generally characterized as having no 

surviving live-tree component and numerous snags at similar decay stages, which 

were most often broken. The medium-severity stratum has very few live trees and 

numerous snags at various stages of decay. The low-severity stratum has a higher 

proportion of live trees with some snags at various stages of decay. The unchanged 

stratum generally has almost no fire-induced mortality in the overstory. Any snags 

within the unchanged stratum were unlikely to have been killed by the Storrie Fire.   

Field Data 

At BMEF, five of the LoD units, six of the HiD units and 2 randomly selected 

RNAs (RC & RD) were sampled in July 2009. Standing live and dead tree (DBH ≥ 9 cm) 

stand attributes for all three structure types at the time of the study are summarized 

in Tables 3.1 and 3.2. Using the BMEF permanent grid system, plot locations were 

systematically located with a random start within each unit on every other grid point 

in all intercardinal directions (282 m spacing). At each selected grid point, an 805 m2 

circular plot was established to measure all standing trees ≥ 9 cm DBH. All trees were 

stem mapped from plot center and measured for height, DBH, crown width, and 

height to live and dead crown. The stem map data were used for verification of plot 

locations. Trees were also assigned codes for various tree conditions (i.e., broken, 

dead or forked top, sweep or lean, mistletoe presence, epicormic branching, etc.). 

Trees having DBH ≥ 60 cm were also assigned vigor condition class ratings using the 
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systems developed by Ferrell (1989) for fir and cedar species, and Salman and 

Bongberg (1942) for pine species. The classification systems resulted in individual 

tree vigor risk ratings ranging from 1 to 3 for the fir and cedar species and 1 to 4 for 

pine species, with higher risk ratings associated with declining tree vigor. All snags 

were given a decay condition class rating using the system developed by Thomas et 

al. (1979), with an addition of a broken top category for snag conditions 3-5 (Figure 

3.2).  

At SF, one or two plot clusters were randomly located within each stratum. 

Each plot cluster was comprised of three evenly spaced (50 m) circular plots (805 m2). 

Plot clusters were located by first selecting a location within each stratum for the 

initial plot’s establishment. Next, a randomly selected azimuth was used to 

determine the location of the two adjacent plots. All standing trees were measured 

using the same sampling protocol utilized at BMEF. Access to the SF area is limited 

and due to time constraints six strata only received one cluster. Plots were located 

and permanently established using high-grade GPS in the field. Due to GPS accuracy 

errors, all plot locations were manually corrected using the field measured stem map 

data and corresponding lidar point clouds. Standing live and dead tree (DBH > 9 cm) 

attributes for both study locations are summarized in Tables 3.1 and 3.2.        
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Lidar Data 

Discrete multiple return airborne lidar data were provided by Watershed 

Sciences Inc. in LAS file format (version 1.1). The lidar data were acquired over both 

study areas in late July 2009 using a Leica ALS50 Phase II laser system mounted on a 

fixed wing aircraft. The aircraft was flown at 900 m above ground level following 

topography. Data were acquired using an opposing flight line side-lap of ≥ 50% and a 

sensor scan angle ± 14-degrees from nadir to provide good penetration of laser shots 

through the canopy layers. On-ground laser beam diameter was approximately 25 cm 

(narrow beam divergence setting), which resulted in a very low percentage of 

multiple returns (BMEF: 9.2%; SF: 10.1%) and a very high percentage of single returns 

(BMEF: 81.4% & SF: 78.2%). The high ratio of first and single returns helped provide 

better quality intensity information, because calibration problems associated with 

laser pulse energy are reduced for these returns (Morsdorf et al., 2010). At BMEF, an 

average of 6.9 points m-2 was obtained for the entire study area, with a standard 

deviation of 5.6 points m-2. At SF, an average of 6.7 points m-2 was obtained for the 

entire study area, with a standard deviation of 5.9 points m-2. Ground survey data 

were collected to enable the geo-spatial correction of the aircraft positional 

coordinate data collected throughout the flight, and to allow for quality assurance 

checks on final LiDAR data products. Simultaneous with the airborne data collection 

mission, multiple static (1 Hz recording frequency) ground surveys were conducted 
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over monuments with known coordinates to enable geo-spatial data correction. 

Indexed by time, these GPS data were used to correct the continuous onboard 

measurements of aircraft position. To enable assessment of LiDAR data accuracy, 

ground truth points were collected by the vendor using GPS based real-time 

kinematic (RTK) surveying. 

The vendor post-processed lidar data using automated methods in 

proprietary software (TerraScan) coupled with manual methods to identify ground 

points for development of the digital terrain model (DTM). Vertical DTM accuracy for 

both study locations was approximately 15 cm at a 95% confidence level. The vendor 

used an automatic variable gain setting during acquisition and did not calibrate the 

intensity values post-acquisition. In past acquisitions, where the vendor used similar 

acquisition methods, the intensity information was successfully used to differentiate 

between live and dead biomass (Kim et al., 2009).  

Point clouds corresponding to the 805 m2 circular plots plus a 3 m circular 

buffer were extracted and their heights were normalized using the DTM. The 3 m 

circular buffer was added to each plot to eliminate edge effect problems associated 

with the CHM interpolation method. All points located above 1.5 m for BMEF plots 

and 2 m for SF plots were extracted for further analysis, because points located 

below these thresholds corresponded to the understory for those study areas.  
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Snag Filtering Algorithm 

The snag filtering algorithm seeks to identify individual lidar points that are 

associated with snags and remove points associated with live trees. A series of point 

elimination and reinstitution filters focusing on local-area intensity information are 

implemented to accomplish the task. To properly use the intensity information for 

this purpose, the dynamics of intensity in relation to live trees and dead trees must 

first be understood.  As previously discussed, the quality of intensity information is 

dependent upon acquisition and calibration methods. Morsdorf et al. (2010) 

highlighted that first and single returns provided more accurate intensity information 

due to difficulties associated with calibrating intensity values for multiple returns. 

Therefore, only first and single returns were used in this study. The lidar acquisition 

method used for both study areas resulted in first and single return intensity values 

ranging from 0 to 255 i (i will act as the intensity value index, since intensity values do 

not have a known numeric value). For the lidar datasets used in this study the 

following trends were found based on manual inspection of numerous lidar point 

clouds associated with live and dead trees in various conditions: 

For dead trees: 

1) Overall, individual point intensity values were typically low (0-75 i). These 

points seem to be associated with solid woody material (e.g., bare wood, 

bark, or charred wood).  
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2) Some snags contained a relatively small percentage of points (~10%) with 

very high intensity values (> 135 i). These points are thought to be 

associated with bare wood that has seasoned, thus creating a light-colored, 

somewhat reflective surface. This is primarily based on the fact that a 

majority of these high intensity values were associated with snags with 

higher levels of bark-off conditions. 

3) A small percentage of snags (~20%) had a minute number of points (< 5%) 

with mid-range intensity values (75-135 i). The reason for these is uncertain, 

but they tended to be associated with snags that contained witches broom 

(usually formed from mistletoe), sparse dead needles or leaves, or recently 

dead trees still displaying fine branches. They might also be associated with 

lichen, although this was not sampled.   

For live trees:    

1) Individual point intensity values were typically a mix of low (0-75 i) and mid-

range values (75-135 i). The low intensity values seemed to be associated 

with the tree bole and woody branches as they were most often located in 

the interior portion of individual tree point clouds. The mid-range intensity 

values were associated with live vegetation, or possibly dead needles and 

fine branches.  
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2) A very small number of points associated with live trees (< 3%) displayed 

high intensity values (>135 i). The reason for these is uncertain, but they 

tended to be associated with large old trees which typically exhibit less 

dense live vegetation and are more likely to contain dead limbs which have 

lost bark, although this was not sampled.   

The lidar point filtering algorithm was developed with the intention of 

capitalizing on the aforementioned intensity characteristics. The algorithm iteratively 

applies several elimination and reinstitution filters to individual points. There are two 

basic stages in the algorithm; in the first stage, robust local-area 3D point elimination 

filters were applied to identify snag points that are easier to discern (i.e., points 

associated with snags in the open or large snags with multiple branches), and 

eliminate points associated with live trees. Points are eliminated by replacing their 

height information (h-value) with a zero value. By using this method, the point’s two-

dimensional information is retained. This information is used in the next reinstitution 

stage.  

In the second stage, a series of local-area 2D and 3D reinstitution filters are 

applied to identify points associated with snags that were eliminated during the first 

elimination stage. These snags were more difficult to detect for a number of reasons 

but tended to: 1) be located directly adjacent to or near live trees, 2) have shorter 

heights resulting in lower point densities, and 3) have a small number (< 5%) of mid-
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range intensity values (70-125 i) associated with them. If a point is determined to be 

a snag point during this stage, the point is reinstituted by reestablishing its original h-

value.  

The final product is a point cloud where points associated with snags are in 

their original positions and points associated with live trees all have zero elevation 

values. The algorithm is most efficient when the size of the area being examined at a 

time is relatively small (≤ ½ ha). Due to this trait, when applying the algorithm to 

larger areas, the area should be partitioned into smaller areas or tiles (gridding) and 

the algorithm applied to them individually. After the algorithm has been applied to 

the partitioned areas, they can easily be melded back together for further analysis. In 

the following, the algorithm’s stages and their corresponding filters are explained in 

more detail following the order of utilization.         

To run the algorithm, upper and lower threshold values for intensity must first 

be determined for each area being examined. These threshold values serve as the 

cut-offs between points likely representing a solid wood surface (e.g., branches, bole, 

etc.), and points likely representing live vegetation (e.g., needles, leaves). Intensity 

values above the upper or below the lower intensity threshold are most likely 

associated with solid wood, while intensity values between the lower and upper 

threshold values are likely to be from live vegetation. The threshold values are 

determined on the individual plot level to help account for local effects associated 
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with lidar acquisition. For each plot, the lower and upper thresholds were 

determined using simple multiplication factors: 

  (1) 

  (2) 

Where,  is the lower intensity threshold,  is the upper intensity 

threshold, and  is the maximum intensity value associated with individual 

plot point cloud being examined. The multiplication factors (0.35 & 0.65) were 

determined through visual inspection, and trial and error. Recalibration of these 

factors could be necessary for different lidar datasets; especially those collected 

using different sensors. Both lower and upper threshold values remained relatively 

stable at both sites. The lower thresholds ranged from 66 to 89 i with a mean of 74 i 

at BMEF, and from 64 to 89 i with a mean of 75 i at SF. Upper thresholds ranged from 

123 to 165 i with a mean of 136 i at BMEF, and from 120 to 165 i with a mean of 139 i 

at SF. 

Stage One – Live Tree Point Elimination 

In the first stage, the primary focus is to eliminate all points associated with 

live trees using three 3D local-area filters. Points are eliminated by replacing their 

height values with zero, which retains the x and y information and removes them 

from the overstory. The filters are robust to ensure that all points associated with live 
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trees are eliminated. This trait resulted in some points associated with snags being 

eliminated, but the goal of the second reinstitution stage is to identify these points 

and restore them using the retained x and y information.   

Elimination Filter 1: Robust 3D Local-Area 

The first elimination filter loops through all points meeting the live vegetation 

intensity criteria ( < i < ), and eliminates all points located within close 

proximity (Figure 3.3).  Close proximity was defined as a point located within ±1.5 m 

in both the x and y directions, and below 1.5 m above the height of the live 

vegetation point. The ±1.5 m x and y thresholds were developed to approximate half 

the average tree crown-width from field data. They were robust enough to ensure 

the majority of local-area points associated with live trees were eliminated, while 

also maintaining points associated with neighboring snags. The z-dimension 1.5 m 

‘above’ threshold criteria was utilized to ensure that live tree points associated with 

smaller live trees growing under snag canopies did not eliminate snag points located 

above them. Once all the points in close proximity to the individual point being 

analyzed were eliminated, the point being analyzed was eliminated. Even with the 

robust local-area filter, it was sometimes possible for a small number of live tree 

points to remain. The second filter uses a 3D local-area point density threshold to 

eliminate the remaining points associated with live trees.   
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Elimination Filter 2: Point Density 3D Local-Area  

The second filter individually looped through each point with an elevation 

above zero and evaluated their 3D local-areas to determine if there is an adequate 

density of local points. The 3D local-area was defined as ±1.5 m in all three directions 

(x, y, z), and adequate density was defined as ≥ 3 points. The premise is that the local 

3.375 m3 areas, which can be thought of as individual point-centered voxels, with 

point densities < 4 are associated with areas of live trees that were not eliminated 

during the first filter. If a point has a local point density < 4, then that point is 

eliminated. The individual point loop was repeated two iterations to help ensure that 

all points not meeting the point density requirement were eliminated.  

Elimination Filter 3: Dead-Top 2D Local-Area  

In the final elimination filter, individual points with elevations above zero 

were analyzed using a 2D (x, y) local-area filter to determine if they were associated 

with live trees containing dead tops. If there were ≥ 5 points with intensity values 

meeting live vegetation intensity criteria ( < i < ) located within ±1.5 m of 

the point, the point was eliminated. Since the first elimination filter only removed 

points located below 1.5 m above the live vegetation point’s elevation value, it was 

possible for points associated with dead tops to remain. The filter criterion used for 
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this filter (≥ 5 live tree intensity value points) was intentionally designed to be highly 

discriminative, making it difficult for this filter to remove any points. If it was not 

highly discriminative, points associated with snags having live tree(s) growing 

underneath them would be eliminated as well, thus rendering the 1.5 m elevation 

threshold used in the first filter meaningless. Only live trees with dead tops 

containing an abundance of live vegetation underneath all areas of their dead top 

canopies had their corresponding points eliminated with this filter.     

After the three live tree elimination filters were completed, the points with 

elevations above zero were classified as snag points and they could no longer be 

eliminated. In addition, all points with intensities meeting snag criteria located within 

±0.5 m in the x and y directions of the classified snag points had their h-values 

restored and were also classified as snag points. The ±0.5 m local-area threshold 

restored local-area snag points while also helping to ensure live tree points were not 

improperly restored. These points were most often associated with isolated snags, or 

large snags with branches. 

Stage Two – Snag Point Reinstitution 

In the second reinstitution stage, the focus is on reinstituting snag points that 

were eliminated in the first stage. Local-area statistics were created for eliminated 

points meeting snag criteria (i ≤  or i ≥ ) and analyzed individually to 

determine if they were associated with snags and thus needed to be reinstituted. The 
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reinstitution filters must be very discriminative to ensure that points associated with 

live trees are not reinstituted. The stage uses two filters containing multiple steps to 

identify snag reinstitution points. The first filter uses coarse-scale local-area statistics, 

while the second uses fine-scale local-area statistics. Together these two filters 

reinstitute and evaluate reinstituted points to identify points associated with snags.  

Reinstitution Filter 1: Coarse-Scale 2D & 3D Local-Area 

The first filter in the reinstitution stage uses coarse-scale 2D local-area 

statistics and 3D local-area point counts to identify snag points that were eliminated 

in the first stage. Individual points with zero elevation values meeting snag criteria (i 

≤  or i ≥ ) were analyzed by first calculating the snag point ratio (SPR) 

within ±2 m in the x and y directions using the following formula: 

 SPR  (3) 

where,  is the number of points within the 2D local-area with snag criteria 

intensity values (i ≤  or i ≥ ), and  is the number of points within the 

2D local-area with live tree criteria intensity values ( < i < ). Points with the 

higher SPR values are more likely to be associated with snags. Points with SPR values 

≥ 0.75 were sorted in descending SPR order. A SPR value ≥ 0.75 was determined to be 

an adequate cut-off threshold for SPR, as it reduced the number of candidates while 

also helped to ensure possible snag points would not be removed from 
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consideration. The five highest ranked points became possible reinstitution 

candidates. Five was used as a precaution to limit the number of reinstitution 

candidate points, while also providing the ability to capture more than one additional 

snag. The cut-off resulted in some snag points not being reinstituted with this filter; 

however, it was necessary to ensure live tree points were not reinstituted.  

A precautionary step was applied next to help ensure the five highest ranked 

SPR points were associated with snags and not large old decadent trees. It was found 

on a number of occasions (5 for the entire study) that SPR candidate points were 

associated with large old decadent trees. These trees often exhibited low 

percentages of live crowns and high percentages of large branches, thus lidar points 

intersecting these trees often exhibited higher than normal ratios of snag criteria 

points compared to most live trees. Since these trees were always large, it resulted in 

an abnormally high number of points with high SPR values. This characteristic was 

used to remove them from consideration for reinstitution. If one of the five 

candidate SPR points had more than 40 points located within ±2 m in the x and y 

directions with SPR values ≥ 0.75, all of the points located within an area of ±5 m in 

the x and y directions had their SPR values set to zero. A value of 40 was used as the 

threshold, because it was determined to adequately differentiate between the large 

old decadent trees and snags. The area of ±5 m (100 m2) was used to eliminate SPR 

values, because it helped to ensure all point SPR values associated with large old 
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decadent trees would be removed since these trees never exhibited tree crowns 

greater than 72 m2 based on field samples. After the large decadent tree step was 

completed the SPR values were sorted again in descending order and the five highest 

ranked values with SPR values ≥ 0.75 had their h-values restored. In addition, all 

points with intensity values meeting the snag criteria located within ±1 m in the x and 

y directions of these points had their h-values restored to their original values.  

In the last step, the restored points were assessed with a 3D local-area filter 

to determine if they were associated with areas where the edges of multiple live tree 

crowns came together. It was found that live tree crown edges often contained 

points with intensity values below the lower intensity threshold. They were typically 

not enough to cause snag detection errors, but when multiple live tree crowns were 

oriented in such a way where they slightly overlapped, it was possible for the filter to 

falsely identify them as snags. This occurred eight different times for the entire study, 

with no obvious link to any particular strata. The restored point cloud pattern 

associated with these occurrences was characterized by having one small tightly 

grouped area of points with similar heights, and no points located beneath them. 

This trait was used to remove the incorrectly restored points. Each restored point’s 

3D local-area was assessed by counting the number of points located within ±1 m in 

the x and y directions and under 75% of the point’s height (h-value). If the number of 
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counted points was ≤ 2, the point was flagged for elimination; however points were 

not eliminated in this step until all points had been analyzed. 

Restored points were considered to be associated with snags and 

permanently reinstituted. In addition, all points with intensity values meeting the 

snag criteria located within ±1 m in the x and y directions of these points had their h-

values restored to their original values. While multiple snags can be reinstituted using 

this filter, no more than two snags were reinstituted for any plot. The majority of 

plots (~71%) did not contain any points with SPR values meeting the filter’s threshold 

value of ≥ 0.75.   

Reinstitution Filter 2: Fine-Scale 2D Local-Area 

The second reinstitution filter utilized fine-scale 2D local-area statistics to 

identify points most likely associated with snags that were eliminated in the first 

stage. Individual points with zero elevation values meeting snag criteria (i ≤  or i 

≥ ) were analyzed by first calculating the SPR within ±0.5 m in the x and y 

directions. If a point had a SPR value ≥ 0.67 and at least 3 points were located within 

the local-area, additional 2D local-area statistics were calculated for that point. The 

SPR value threshold of ≥ 0.67 was used because it adequately distinguished between 

live tree and candidate snag points for the fine-scale local-areas. The 3-point 

minimum was applied to increase the efficiency of the algorithm without hampering 

its ability to identify candidate snag points. Points meeting the criteria had local-
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areas surrounding them gridded into 0.5 x 0.5 m cells in multiple layers (Figure 3.4). 

For each grid cell, a SPR value was calculated by counting the number of points 

meeting snag criteria and live tree criteria, and then applying the SPR formula. The 

number of grid cells not containing any points were also summed in each layer. These 

statistics were then used to identify individual points that were most likely associated 

with snags. Three scenarios using the fine-scale local-area statistics were identified 

that adequately recognized the most likely snag points.  

In the first scenario, small snags located in relatively open areas were 

targeted. It was found that the previous filters often did not capture smaller or 

shorter snags, even in relatively open areas, since these snags did not have sufficient 

point densities. For an individual point to be classified as a snag point under this 

scenario, it was required to meet three fine-scale local-area criteria. First, it required 

an initial SPR value ≥ 0.667 for the local-area surrounding the point (± 0.5 m). Next, ≤ 

2 grid cells in both layers one and two surrounding the point could contain points. If 

it met these three criteria, the point was permanently reinstituted as a snag point. 

The second and third scenarios targeted snags located adjacent to live trees 

that were often more difficult to identify. Both these scenarios were applied in areas 

with canopy cover values ≤ 70% (determined by the proportion of lidar points above 

the understory height threshold compared to all points), because it was found that in 
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areas with canopy covers > 70%, the algorithm incorrectly reinstituted live tree 

points.  

In the second scenario, individual points were required to meet three fine-

scale local-area criteria to be reinstituted. First, the SPR value was required to be ≥ 

0.8 for the local-area within ± 0.5 m of the point. Next, ≥ 9 grid cells in the first layer 

and ≥ 14 grid cells in the second layer were required to either contain no points or 

have SPR values ≥ 0.5. In the third scenario, individual points were required to meet 

four fine-scale local-area criteria to be reinstituted. First, the SPR value was required 

to be ≥ 0.9 for the local-area within ± 0.5 m of the point. Next, ≥ 9 first layer grid cells, 

≥ 13 second layer grid cells, and ≥ 20 third layer grid cells were required to either 

contain no points or have SPR values ≥ 0.5. If a point met all criteria under either the 

second or third scenarios, it was permanently reinstituted as a snag point. 

After the three fine-scale local-area filter scenarios were completed, all points 

located within ±1 m of the reinstituted points with intensity values meeting snag 

criteria had their original h-values restored. At BMEF, one last step was used to 

remove points associated with mountain mahogany (Cercocarpus ledifolius Nutt. 

(Rosaceae)), whose growth characteristics (e.g., high ratio of exposed wood) often 

caused them to be misclassified as snag points. It occurred rarely (3 plots) and never 

grew above 2.5 m in height; therefore all points ≤ 2.5 m were eliminated. After this 

last step, the filter was completed.  
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After the reinstitution stage was applied, the entire snag filtering algorithm 

was completed. The result is a point cloud where only the most likely snag points 

have h-values above zero, while points with zero h-values are most likely associated 

with live trees. This final snag filtered point cloud was used to create the individual 

CHMs for each plot. These CHMs were then used to detect individual snags and 

measure their corresponding heights.  

Individual-Snag Detection 

Individual-snag detection was completed using a traditional airborne lidar 

individual-tree detection method. In the method, a CHM is first created using the 

snag filtered point cloud, and then individual-snags are located and measured using 

an automated local maxima detection algorithm. The method typically has problems 

identifying smaller understory trees because the CHM often incorporates smaller 

neighboring trees into larger tree canopies during the CHM smoothing process. This 

problem should be greatly reduced for this study, since snag-filtered point clouds and 

the sparse spatial arrangement associated with snags simplify the CHM creation 

process and reduce tree crown adjacency issues. The method produced an individual-

snag list file containing location coordinates, and heights for each detected snag. 

These location coordinates were then compared to field-measured snag location 

coordinates to determine if individual snags were correctly detected. 
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The first step of the individual-snag detection method was to create a CHM 

using the snag filtered point cloud. CHMs can have various forms depending on how 

the surface is interpolated and smoothed. When the primary use for a CHM is to 

detect individual-trees or snags, it is crucial the CHM accurately represents individual 

trees or snags by providing single height maxima while following crown profiles. In 

this study, the CHM was created using the ‘CanopyModel’ command line utility 

processing program in the Fusion lidar software package (McGaughey, 2012). 

CanopyModel creates an interpolated canopy surface model using the lidar point 

cloud. The default setting assigns the elevation of the highest return within each grid 

cell to the grid cell center. The program provides additional smoothing of the 

generated surface using median or mean filters (McGaughey, 2012). It is also capable 

of preserving local maxima in the surface while smoothing to force the surface to 

adhere to the tops of trees. 

Ground lidar points (h-values ≤ 0.1) were reinstituted into the snag filtered 

point clouds to support CHM creation. These points helped by filling open gaps in the 

point cloud. Using trial and error the following parameters where determined to 

create a CHM that adequately characterized individual snags. A grid cell size of 0.8 x 

0.8 m was used, because it was large enough to ensure multiple maxima were not 

created for individual snags, while adequately adhering to crown profiles based on 

visual inspection. A 3 x 3 median smoothing filter was applied to the raster surface 
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model to smooth the CHM and also reduce the likelihood of multiple local maxima. 

The local maxima were also maintained through the surface smoothing process to 

help force the surface to adhere to the tops of trees.  

Individual snags were located and measured from the lidar-derived CHM by 

using the automated command line utility processing program ‘CanopyMaxima’ in 

the Fusion lidar software package (McGaughey, 2012). In the program, the location 

of individual snags is estimated by searching for local height maxima in the CHM. 

Seeds are placed in every grid cell with a h-value greater than the understory height 

threshold (BMEF: 1.5 m & SF: 2 m) and allowed to climb in the direction of the 

steepest slope. When a seed reaches a position where all neighboring grid cells have 

lower h-values, a local maximum is found (see: Popescu & Wynne, 2004). At each 

local maxima the original x and y location of the highest point within the grid cell is 

designated as the snag location, and the h-value as the snag height. The program 

outputs a tree (snag) list with location coordinates and height values in comma 

separated file format. 

Snag Detection & Error Rates 

Each plot’s CHM was analyzed with CanopyMaxima to produce individual plot 

snag lists. These snag lists were then compared with field-measured snag location 

data to determine snag detection and error rates. To determine if a snag was 

accurately detected, acceptable location distance errors had to be assigned. Taking 
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into account the positional accuracy of the differential GPS unit for determining the 

location of the subplot centers at SF and the permanent grid system accuracy at 

BMEF, individual snag locations errors are expected to be within 1.5 m for the field-

measured locations. This error only refers to the position of the base of the tree, 

without considering the deviation of the tree top relative to the base. The CHM is 

expected to have a horizontal accuracy of approximately 0.5 m, given the estimated 

horizontal accuracy of the laser acquisition. It is also more likely for taller snags to 

have tops not aligned with the base of the snag. Given these characteristics, the 

thresholds for acceptable location distance errors were set as 2.5 m for snags < 9 m 

in total height and 4 m for trees with total heights ≥ 9 m. If a lidar detected snag 

location was within the acceptable distance of a field measured snag, it was classified 

as detected. Only one field measured snag could be associated with each lidar 

detected snag location. Lidar detected snags not within the acceptable distance of 

any field measured snags were classified as commission errors (e.g., a live tree or a 

portion of a live tree that was incorrectly classified as a snag). If a field measured 

snag was not detected using the lidar method it was classified as an omission error.      

Detection and error rates were calculated for both grouped and individual 

strata in various DBH and height classes to assess the method’s accuracy and 

applicability in different forest types and conditions. Commission and omission errors 

were summarized categorically to help understand error causes. Lidar derived snag 
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heights were also compared to field measurements to determine if the method 

produced accurate height estimates. 

Results 
 
Overall Snag Detection Rates 

The overall snag detection rate for both study locations combined was 52.6% 

(± 1.7%) (Standard errors are given in parenthesis). Figure 3.5 depicts the overall 

detection rate trends for the various forest types. Snag detection rates increased as 

DBH and snag height increased in all strata. The average overall detection rate for 

snags in the smaller DBH classes (9-50 cm) was 46.4% (± 1.9%), while in larger DBH 

classes (51-90 cm) was 72.5% (± 3.3%). Overall detection rates were also calculated 

for greater than or equal DBH scenarios (e.g., number of snags over a specified DBH).  

The detection rate for snags with DBHs ≥ 25 cm was 65.7% (± 2.0%) and steadily 

increased to 79.3% (± 7.5%) for DBHs ≥ 90 cm. The detection rates for the various 

DBH scenarios were also calculated with different height thresholds (≥ 3, 6, 9, 12 m). 

The overall detection rates for the various DBH scenarios increased by an average of 

3.9% for every 3 m increase in the height threshold, with the largest increases 

occurring between 3 and 6 m (6.0%).  

 

 



97 

 

 9
7
 

Study Area and Forest Type Snag Detection Rates 

The area sampled at BMEF was much higher than at SF (BMEF 30.8 ha vs. 10.5 

ha). The two study areas produced similar detection rates for larger diameter snags, 

however smaller diameter snags were not detected as well at BMEF. Since the 

majority of snags at BMEF were small diameter snags the overall detection rates 

differed considerably between the two study locations (BMEF: 34.5% (±2.5%) vs. SF: 

63.1% (±2.2%). The average detection rates for smaller and larger DBH classes were 

30.8% (±2.5%) and 64.8% (±7.5%) respectively at BMEF versus 59.6% (±2.6%) and 

70.7% (±7.0%) at SF (Figure 3.5). The detection rates at the two studies remained 

similar after DBHs reached the ≥ 51 cm threshold. At BMEF, the detection rate 

increased an average of 4.1% for every 3 m height threshold increase, while at SF it 

increased an average of 3.6% for every 3 m increase.   

For BMEF and the interior ponderosa pine forest type, the majority of snags 

had DBHs ≤ 37 cm with an overall detection rate of 32.6% (±2.6%) for these snags. 

The method produced higher overall detection rates for snags with DBH > 37 cm 

(55.4% (±6.2%)), and DBH > 49 cm (65.0% (±7.5%)). There were four different snag 

species sampled at BMEF; white fir (ABCO), ponderosa pine (PIPO), Jeffrey pine (PIJE), 

and incense-cedar (CADE). The detection rates for the individual species are 

summarized in Table 3.3. PIPO and PIJE were grouped together since they have very 

similar growth characteristics. ABCOs made up 50.6% of the snags and had an overall 
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detection rate of 33.5% (±3.8%). PIPO/PIJE made up 43.3% of the snags, with the 

majority of these being PIPO, and had an overall detection rate of 47.0% (±4.3%). 

CADE had an overall detection rate of 55.6% (±11.7%) making up the remainder of 

the snags at BMEF (6.1%). 

At SF, the detection rates remained above 60% for all ≥ DBH and height 

scenarios, steadily increasing from 63 to 81% as the ≥ DBH threshold increased from 

≥ 9 to ≥ 90 cm. The majority of snags had DBHs between 12 and 63 cm with an 

overall detection rate of 64.1% (±2.5%). Snags with DBHs > 63 cm had an average 

detection rate of 70.8% (±3.9%). There were nine different snag species sampled at 

SF; white fir (ABCO), red fir (ABMA), incense-cedar (CADE), lodgepole pine (PICO), 

ponderosa pine (PIPO), Jeffrey pine (PIJE), sugar pine (PILA), Douglas-fir (PSME), and 

California black oak (QUKE). The true firs (ABCO & ABMA) made up 74.2% of all snags 

sampled, with ABCO being detected 63.5% (±3.4%) of the time and ABMA 56.8% 

(±4.0%). All other species had detection rates above 70.5% with the exception of 

QUKE, which had a detection rate of 46.2% (±6.5%).  

The mixed conifer forest type had the lowest snag sample size and the most 

variable detection rates compared to all other forest types. Even with this increased 

variability the ≥ DBH snag detection rate remained above 60% in all DBH and height 

scenarios.  As expected, mixed conifer had the most species diversity with seven 
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species being found within the strata. In order of abundance the species were: ABCO, 

CADE, PSME, PIPO, QUKE, PILA, PIJE.   

The high fir forest type had the most stable overall ≥ DBH detection rate 

increasing steadily from 58.4% to 66.7% as the DBH threshold increased. The forest 

type also had the lowest species diversity, containing (in order of abundance): ABMA, 

ABCO, PICO (3 total), and PIJE (1 total). It had the highest snag DBH variability, with 

the majority of snags located between 12 and 76 cm (average detection rate of 

57.7% (±3.4%)). With a height threshold ≥ 9 m the ≥ DBH detection rates ranged from 

77% to 100%. The sample sizes for the two ≥ DBH scenarios with 100% detection 

rates were relatively small (≥ 77 DBH: 13, ≥90 DBH: 5).  

The low fir forest type had the best overall results, with an overall detection 

rate of 67.6% (±3.6%) which increased to 90.0% (±8.7%) for DBHs ≥ 62 cm. This forest 

type had the highest percentage of larger DBH (≥ 62 cm) snags relative to snag 

sample size with an overall detection rate of 85.2% (±6.8%) for these larger snags. Six 

species were found in this forest type, with the majority of the snags being ABCO 

(81%). In order of abundance they were: ABCO, CADE, PIPO, QUKE, PSME, PILA.  

BMEF Treatment Detection Rates 

The detection rates were only calculated for snag height ≥ 3 m scenarios (all 

snags) due to the smaller sample sizes in the LoD and RNA treatments. The detection 

rates are summarized in Figure 3.6. The LoD treatment performed the best overall 
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and had the highest detection rates (42.6% (±6.1%)) for smaller snags (DBH < 38 cm). 

The HiD and RNA treatments had the lowest small snag detection rates for the entire 

study, but both still performed well for larger snags with detection rates > 60%. The 

RNA treatment had higher variability as would be expected with the low snag sample 

sizes. The ≥ DBH detection rates for LoD, HiD, and RNA treatments ranged from 42 to 

100%, 34 to 68%, and 30 to 100% respectively.      

Storrie Fire Severity Detection Rates 

The detection rates for fire severity strata were grouped into two categories: 

High/Medium (HMS) and Low/Unchanged (LUS). This was done for two reasons: 1) to 

increase snag sample sizes to more meaningful levels, and 2) because there were no 

noteworthy differences within the grouped strata. The overall detection rate was 

higher for the HMS stratum (69.7% (±2.8%)) when compared to the LUS stratum 

(55.7% (±3.2%)) (Figure 3.7). In the two highest ≥ DBH scenarios (DBH ≥ 77 and 90 

cm), LUS performed better than HMS when the height threshold was ≥ 3 m. This was 

due to decay condition 7 snags not being detected in the HMS. When the height 

threshold was set at ≥ 6 m, the HMS stratum performed better than the LUS stratum 

for the same DBH scenarios. The ≥ DBH detection rates ranged from 62.5% to 100% 

for all height scenarios in the HMS stratum, and from 55.7% to 100% for the LUS 

stratum.  
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Individual Species Detection Rates 

Overall detection rates by species are presented in Table 3.3. ABCO was the most 

prevalent snag species in both BMEF and SF, with very different overall detection 

rates for the two areas (BMEF: 33.5% (±3.8%) vs. SF: 63.5% (±3.4%)). QUKE, the only 

deciduous species had the lowest detection rate of all species at SF, with an overall 

detection rate of 46.2% (±6.5%). QUKE also had the lowest average DBH and height. 

Only three PICO snags were sampled at SF. All three were large snags (DBH > 36 cm, 

heights > 18 m) and were detected using the lidar method. The overall detection rate 

for PILA was 88.9% (±10.5%) and all twelve of these snags were also larger in size. 

The overall detection rates were lower at BMEF for all three species compared to SF.  

Snag Condition Detection Rates 

Detection rates for the individual snag decay conditions at both study location are 

presented in Table 3.4 with all species grouped together. Overall detection rates 

generally decreased with increasing snag decay conditions at both study locations. 

Condition 3 and 4 snags with broken tops had lower rates of detection compared to 

condition 3 and 4 snags with intact tops. At BMEF, the condition 7 snags did have a 

higher detection rate compared to condition 5 and 6 snags, but the sample size was 

relatively low (n = 10). Condition 3 and 4 snags were detected more often at BMEF 

compared to condition class 5, 6  and 7 snags with an average detection rate increase 

> 20%. This trend was not present at SF, where detection rates were more stable 
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across all decay conditions. Detection rates were much higher at SF for all condition 

classes.  

Detection Rate Trends 

There were four trends identified that affected detection rates in all scenarios 

and strata. The first two were related to tree size. Detection rates increased as snag 

DBH and height increased. The amount of the increase varied for the different strata. 

On average the overall detection rate increased 0.4% for every 1 cm increase in DBH. 

For height, the overall average detection rate increased 1.3% for every meter 

increase in the height threshold.  

The other two trends were associated with overstory canopy cover and lidar 

point density (Figures 3.8 & 3.9). Canopy cover was calculated for each plot as the 

proportion of first return lidar points in the canopy layer versus all lidar first return 

points. As canopy cover increased the detection rate decreased (Figure 3.8). The 

trend became less pronounced as the ≥ DBH threshold was increased. For snags with 

DBHs ≥ 64 cm, canopy cover had little effect on the detection rates. Detection rates 

increased as the plot-level point densities increased (Figure 3.9). The trend became 

less pronounced as the ≥ DBH threshold was increased.  
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Omission Errors 

Omission errors occurred when snags were not detected using the lidar method. 

The reasons for these errors were explored and broken into seven categories: 1) low 

point densities, 2) adjacent to a live tree, 3) high canopy cover, 4) needles retained, 

5) canopy height model, 6) live vegetation intensity values, and 7) unknown. The 

proportion of the errors falling into each category is presented in Table 3.5. There is 

some overlap between the categories, so the values should be viewed as general 

trends. High canopy cover was the largest source for omission errors (35.5%), 

followed by low point density (20.6%), and adjacent to live tree (16.3%). The ‘high 

canopy cover’ and ‘adjacent to live tree’ categories are caused when snags intermix 

with live tree crowns. This makes them difficult to detect with the filtering algorithm, 

because the local-areas associated with these snags have live vegetation intensity 

values associated with them as well. The canopy height model smoothing method 

caused 11% of the snags to be missed. This error occurred when two snags were 

located directly adjacent to each other. During the CHM creation process their 

individual canopies were smoothed into one snag surface, which caused only one 

snag to be detected. Snags with dead needles still attached were almost always 

missed and they constituted 6.3% of the omission errors. Dead attached needles 

caused lidar point intensity values to be categorized as live vegetation, and made 

them difficult to detect. Some snags that did not have dead needles were also found 
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to have too many live vegetation points associated with them and were not located 

adjacent to any live trees. These live vegetation criteria intensity values are 

hypothesized to be associated with fine branches, witches broom (i.e., small localized 

clump of branches caused by disease), or other finer material in the canopy. Some 

omission error snags could not be associated with any of the categories directly 

(7.2%), so they were classified as unknown. They are likely caused by either a 

combination of the identified factors or by another unidentified factor.  

Commission Errors 

Commission errors occurred when the lidar snag detection method falsely 

identified a live tree or a portion of a live tree as a snag (Table 3.6). All falsely created 

snags were either small to medium live trees (DBH < 38 cm) or comprised of a small 

portion of a large tree (DBH ≥ 38 cm). Many of the live trees classified as snags had 

either dead tops or had high risk ratings (3 or 4 rating) (~33%). The mixed conifer 

forest type had the highest commission error rate with 5.40 falsely created snags per 

hectare. The other forest types all had similar error rates between 0.64 to 1.37 snags 

per hectare.    

Snag Height Comparison  

Snag heights estimated using the automated lidar individual-snag detection 

method were compared to field measured heights. A simple ordinary least squares 
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(OLS) regression analysis was used to compare heights. The OLS scatterplot is 

presented in Figure 3.10, with values categorized by snag condition. The lidar method 

produced negatively-biased results for height estimation (Bias = -2.07 m), but 

displayed an overall good relationship with the lidar heights explaining a large 

amount of the variation associated with field measured heights (R2 = 0.965).  Snag 

condition 3 snags had a smaller negative bias (condition 3 bias = -0.96).     

Discussion 
 
Detection of Snags   

The method presented in this study was able to accurately detect and locate a 

large proportion of snags in all strata. Snag detection rates increased as the size of 

snags increased (DBH & height) and decreased as snag conditions decayed. Most 

forest management snag stocking guidelines and standards are focused on larger 

snags, as they provide more wildlife habitat potential. For the areas in this study, a 

common snag size threshold for stocking guidelines is DBH ≥ 38 cm. The method 

presented in this paper provided an overall detection rate of 70.6% (±2.7%) for snags 

meeting this requirement.  

The different strata provided an opportunity to explore the method’s 

performance in various forest conditions and types. At SF, the datasets were 

relatively small for the individual forest types and had some unique characteristics, 

which likely caused these forest types to have inflated detection rates. Most of the 
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sampled snags at SF were located within the HS and LS strata (56%). These strata 

have very low canopy covers (0-25%) and live tree percentages (0-20%), which 

resulted in higher detection rates than would be expected in natural forest 

conditions for these forest types (e.g., higher live canopy covers). Thus, the 

interpretation of SF individual forest type detection rates should take this into 

account. More samples from each SF forest type need to be tested with the method 

to determine how it would perform in more natural conditions. The SF detection 

rates did however demonstrate the ability of the method to successfully detect 

individual snags post-wildfire (~ 9 years) in all three forest types with various fire 

severities. This could be useful for post-fire severity, wildlife habitat, or volume 

assessments. Even with the sample size limitations at SF, the method performed 

similar to BMEF in regards to overall trends.  

At BMEF, there were a large number of samples in a wide range of natural 

conditions. Thus, more weight should be given to the results at BMEF in regards to 

how the method would perform in more natural forest conditions. Detection rates 

will likely be similar to the results at BMEF, with smaller snags (DBH < 38 cm, height < 

9 m) being detected between 30-60% of the time, and larger snags being detected 

between 60-80% of the time.    

Detection rates using this method were affected by a number of 

uncontrollable and controllable factors. Uncontrollable factors were associated with 
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forest stand and individual snag characteristics, while controllable factors were 

associated with the quality of the lidar data and the individual-snag detection 

methods. Canopy cover was an uncontrollable factor that significantly affected snag 

detection rates (Figure 3.7). As canopy cover increases the likelihood of snags 

intermixing with live tree crowns also increases. When intermixing occurs, lidar 

points meeting live tree intensity criteria are more likely to be located within snag 

point local-areas, making snag points more difficult to identify with the snag 

detection algorithm. The same problem occurs in lower canopy cover areas when a 

live tree is located directly adjacent to a snag. These stand characteristics occur 

normally in all forested environments, thus the method used in this study will be 

limited in these situations. The development of new snag detection lidar filtering 

methods or higher lidar point densities could help reduce or overcome this problem, 

but this is left for future work.   

Snag detection was also influenced by individual snag characteristics using the 

method in this study. Four individual characteristics were found to adversely affect 

snag detection. First, snags with dead needles attached often had a large proportion 

of their lidar points with intensity values meeting live tree criteria, which caused 

them to be eliminated during the first stage of the filtering algorithm. This means 

that for this lidar dataset, the surface characteristics of intersected objects had more 

influence on intensity values compared to color. Overcoming this problem will be 
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difficult only using discrete-return lidar data, even with better intensity calibration. If 

the method is coupled with other remote sensing variables, such as those derived 

from airborne multispectral imagery, detection of these snags might be feasible. This 

also means there is a temporal component to snag detection; as time since mortality 

passes, snag detection rates should initially increase as the amount of dead needles 

and fine branches decrease, and then slowly decrease as decay conditions mature. In 

the instance of a large-scale disturbance, such as wildfire or insect outbreak, 

acquisition of lidar data for snag detection should be timed in consideration of the 

timing of needle- or leaf- cast.  

The second characteristic found to affect detection rates was associated with 

QUKE, the only deciduous tree species in the study. All QUKE snags sampled in this 

study were located on four plots in SF, three in MC and one in LF (the LF plot 

containing only one QUKE). The growth characteristics associated with these snags in 

the MC plots produced a unique situation which adversely affected their detection 

rates and increased commission errors. In all cases, these snags were associated with 

multiple stems generating from one tree base. Due to the sampling protocol each 

stem with a DBH ≥ 9 cm was treated as a separate snag, and while one of them was 

successful detected in each case the other stems were treated as undetected snags. 

Making matters even more troublesome for these snags was the fact that they did 

not follow a simple vertical growth pattern. They grew with spread out dome-shaped 
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crowns. This caused the CHM for these snags to have multiple maxima, which in turn 

caused an increase in commission errors. This was the primary reason why the MC 

stratum had the highest commission error rate. Changing the CHM smoothing 

parameters would help to alleviate this problem, but identifying each individual snag 

stem will be difficult.    

The other two uncontrollable individual tree characteristics that adversely 

affected the study’s method were associated with trees declining in vigor or 

containing dead tops. Many of the commission errors were caused by live trees with 

large dead tops (e.g., dead tops constituting > 20% of the tree’s total height) or trees 

that were showing signs of declining vigor (e.g., risk rating 3 and 4 trees). The error 

effects of both these factors might be reduced with increased lidar point densities, 

better intensity calibration, or modified filtering methods. While these trees caused 

commission errors, they also highlight the ability of the method to identify live trees 

displaying unique physical health characteristics. Trees with large dead tops and 

decreasing vigor often provide valuable wildlife habitat as well (Bull et al., 1997). In 

the future, modifications to the lidar filtering algorithm and the addition of new 

remote sensing variables might provide the ability to detect and classify trees with 

these characteristics, as well.  

Controllable factors affecting the overall ability of the method to detect snags 

can be partitioned into three categories: 1) lidar acquisition and intensity calibration, 



110 

 

 1
1
0
 

2) snag filtering algorithm, and 3) individual-snag detection methods. Adjustments to 

these could help improve overall detection rates. Lidar acquisition parameters 

determine the usefulness of the lidar data. The acquisitions in this study used a 

narrow beam divergence setting which resulted in a high percentage of first and 

single returns (BMEF: 90.2%, SF: 89.9%). These returns have been shown to provide 

better intensity information when compared to multiple returns and were the only 

returns used in this study (Morsdorf et al. 2010). The vendor also used the automatic 

variable gain setting during acquisition in both study areas which helped to provide 

more useful intensity information. Post-acquisition intensity calibration was not 

completed for the lidar data in this study. Doing so would likely improve the results.  

Lidar point densities need to be high enough to ensure there are enough lidar points 

to characterize individual snags and for the filtering algorithm to successfully identify 

individual snag points. Based on the lidar point density trends found in this study 

(Figure 3.8) and the results of the filtering algorithm, point densities ≥ 4 first or single 

return points m-2 should provide an adequate amount of data to successfully detect a 

majority of large snags (> 50%), although higher densities should improve results. 

Identifying the optimal lidar point density for snag detection will vary depending on 

the quality of the intensity information, forest stand characteristics (e.g., forest type, 

tree density, crown structure, etc.), and snag detection algorithm parameters.  
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The snag detection filtering algorithm displayed great potential in its ability to 

identify individual snag points. The two reinstitution filters successfully identified 

snag points that were removed during the elimination stage. The coarse-scale 

reinstitution filter reinstituted a total of 46 possible snags, all of which were larger in 

size (DBH > 38 cm), while the fine-scale reinstitution filter reinstituted a total of 163 

possible snags. The majority of snags reinstituted using the fine-scale filter were 

small or broken snags identified under the first scenario (67%), and most often 

occurred in the high and medium fire severity strata at SF. The filtering method will 

likely perform better for species with denser foliage characteristics since the 

difference in intensity values between live and dead trees should be more 

pronounced for these species. Increasing point density and calibrating intensity 

information should also improve filtering results.  

This is the first time this unique filtering method has been used for snag 

detection, thus improvements can likely be made. Using fine-scale 3D voxel-based 

filtering earlier in the algorithm might improve results by providing more detailed 3D 

local-area information. Another possibility warranting investigation is the use of 

small-footprint full-waveform airborne lidar (SFFW). SFFW provides more than just 

discrete-return coordinate and intensity information, it also provides laser pulse echo 

width information. Echo width information has proven to be useful for classifying 

ground and vegetation returns, thus it may provide more information for 
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differentiating between live and dead tree points (Ducic et al., 2006; Wagner et al., 

2008). Costs associated with SFFW acquisition are still relatively high at the time of 

this study, making its use prohibitive for most broad-scale forest inventory 

applications. These costs are likely to decrease over the next decade. Incorporating 

different remote sensing technologies into the filtering framework could also provide 

improved filtering results.  

The individual-snag detection method was able to correctly identify and 

locate snags in all strata. Having live tree points removed from the point clouds used 

to create the CHM made it easier differentiate individual snag canopies. The input 

parameters (e.g., grid cell size, smoothing factors, and size of the median filter) 

involved in the CHM creation and smoothing process ensure the CHM accurately 

represents individual snag canopies and ultimately how well individual snags are 

detected. Identifying proper CHM input parameters required a trial and error 

process, where multiple CHM were created and tested. This important process will 

be necessary for each individual lidar dataset. Even with the positive results, the CHM 

creation method still had two downfalls. First, snags located directly adjacent to each 

other were sometimes reduced to one snag canopy during CHM creation. This can be 

overcome by using a smaller grid cell size during CHM creation; however this could 

also result in more commission errors. Second, in areas where deciduous trees 

intermix with coniferous species the CHM will likely have problems characterizing 
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one or the other. A method that treats them separately might help, but this would be 

more difficult to implement. Higher point densities would help alleviate both 

problems by providing more information for canopy characterizations, but the 

problems would still likely remain in some capacity. 

The CanopyMaxima individual-tree detection algorithm provided relatively 

accurate height information, even though it was negatively biased. Negative biases 

have been found in many lidar studies for tree heights, although they are typically 

smaller than the one found in this study (Stereńczak & Zasada, 2011). The larger 

negative bias was likely a function of the physical characteristics associated with 

snags (e.g., small target surface area at the top). Higher point densities would likely 

help reduce the height bias. A bias correction factor can also be applied, since the 

bias remained relatively stable, slightly decreasing with increasing snag height (Figure 

3.9). The individual-snag detection method might be improved by using a different 

individual-tree segmentation method. Voxel-based methods utilizing 3D information 

to reconstruct individual snags from the ground upward are one possibility. It could 

also be possible to classify individual snags into decay condition stages based on 

information collected during an individual-snag detection algorithm (e.g., crown 

widths, heights, etc.).  

The method presented had very similar snag detection results compared to 

Bütler & Schlaepfer (2004) and overcomes many of limitations associated with their 
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method (e.g., time, user bias). Their study was conducted in a spruce-dominated 

forest in Switzerland and produced detection rates of 27% for snags with DBHs ≥ 10 

cm (n = 633), and 67% for snags with DBHs ≥ 25 cm (n = 211). They found detection 

rates increased as snag sizes increased and decreased as canopy closure increased, 

which this study also found. The biggest difference between the studies is associated 

with the individual snag detection methods. They used a manual segmentation 

method that coupled color infrared aerial photographs and a geographic information 

system, which introduced operator interpretation bias and subjectivity errors. These 

limitations are overcome using this study’s method, while also improving time 

efficiency.   

The extension of the method to different airborne lidar datasets, forest types 

and stand structures warrants further investigation. A number of the filtering 

algorithm parameters will likely need adjustment for lidar datasets with different 

point densities or intensity calibrations (e.g., SPR, local-area sizes, point density 

requirements). The current parameters should work well for lidar datasets acquired 

using similar methods (e.g., scan angle of ±15o from nadir, point densities > 4 points 

m-2, automatic variable gain setting, narrow beam divergence). Filtering algorithm 

parameters can be adjusted for individual lidar datasets using a simple trial and error 

process. Useful detection parameters could also be standardized in the future for 
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various lidar datasets and forest types. Applications for the method should overcome 

a number of the traditional problems associated with the quantification of snags.     

Applications 

Extensive literature exists on the structural and functional characteristics of 

snags and their importance for wildlife habitat, biodiversity and overall forest health 

(Bull et al., 1997; Caza, 1993; Laudenslayer, 2002). Minimum stocking standards have 

been developed that require certain densities or volumes of snags to be maintained 

over time to provide continuous habitat and ecosystem sustainability. Both the 

development of and the assurance in meeting these requirements are based on field 

sampling and modeling methods, which often produce highly variable results due to 

sampling difficulties associated with irregular and sparsely distributed snags. The 

method presented in this study provides the ability to estimate snag densities while 

also providing the spatial location and arrangement of individual snags over a 

landscape. The method can provide useful snag density estimates using the following 

formula which applies corrections for undetected snags and commission errors.  

 
 (4) 

where,  is the snag density,  is the number of snags detected from the lidar 

method,  is the lidar detection rate determined from either a comparison with 
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field sampled snags or estimated based on prior performance,  is the total area 

sampled, and  is the commission error rate correction factor in the same area 

units as sampled (i.e., number of commission errors per hectare) and is also 

determined from either a comparison with field sampled snags or estimated based 

on prior performance. The formula can be applied to any DBH or height threshold 

scenario.  

The efficient field sampling method used in this study can be incorporated 

into a traditional fixed-area plot forest inventory sampling design without much 

additional effort, but other sampling designs could also be utilized to sample 

individual snags and develop lidar detection rates. Once detection rates are known 

for various forest types and situations, snag density estimates could be determined 

using only airborne lidar data.  

The other application and major benefit of the method is the creation of 

accurate snag distribution maps across the landscape. The ability to create snag stem 

maps across a landscape has never been available without costly intensive sampling. 

These maps can help with many forest management activities and decisions, some 

uses include: 1) identification of areas with high and low snag densities, 2) 

assessment of the spatial arrangement of snags and coordinating wildlife species 

interactions, and 3) monitoring snag spatial changes over time. Both applications 

should increase our understanding of snag dynamics in forest ecosystems, while also 
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helping to develop more accurate stocking standards. Additional uses for this type of 

dataset are likely to surface in the future. 

The method also produced a by-product that could prove useful in the 

estimation and prediction of many live tree characteristics. The points eliminated 

during the filtering algorithm are most likely associated with live-trees. By taking 

another simple step, live-tree point clouds can be obtained. Live-tree points that 

were eliminated during the snag filtering algorithm can be reinstituted while 

identified snag points can be eliminated. This new live-tree point cloud should 

produce better lidar metrics for characterizing live-tree attributes (e.g., biomass, tree 

density, height attributes, basal area, etc.), since these point clouds are more 

representative of the live trees.  

Conclusions 
 

This study presented a new semi-automated airborne lidar-based method to 

identify and locate individual snags across forested landscapes. The method used 

both 2D and 3D local-area lidar point filtration focused on intensity values to identify 

individual lidar points associated with snags and eliminate lidar points associated 

with live trees. While the detection of smaller snags was somewhat limited, detection 

of larger snags was promising. Given the difficulties associated with the 

quantification of snags across the landscape, the method presented should provide a 

safer, simpler and more accurate alternative. The method has many promising 
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attributes: 1) it provides the ability to obtain less variable snag density estimates for 

forest stands; 2) it produces an accurate snag stem map for larger snags; 3) it is semi-

automated; 4) it could become a standardized procedure and bring more clarity to 

snag stocking requirements.  

The method’s detection rates could be improved by using new lidar point 

filtering and detection methods, or by coupling the lidar information with other 

airborne remote sensing products. The method could also be extended to classify 

individual snags into snag decay condition classes and possibly identify individual live 

trees exhibiting unique health characteristics (e.g., dead tops, decadence ratings, 

etc.).  Given the promising results, the method warrants further investigation in other 

forest types and conditions.     

Acknowledgements 

This study was funded through a cooperative agreement between Oregon 

State University and the U.S. Forest Service Pacific Southwest Research Station. The 

author gratefully acknowledges the field work and additional help of Thomas Fisher, 

David McClung and Travis Springer. 

 

 



119 

 

 1
1
9
 

 

Figure 3.1: Geographic location of the Blacks Mountain Experimental Forest and the 
Storrie Fire with study design depictions.  
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Figure 3.2: Visual depiction of snag condition stages used for the study. Derived from 
Thomas et al. (1979). Stage 8 and 9 snags were not sampled in the study. 
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Figure 3.3: Depiction of a individual plot lidar cloud and the stage one 3D local-area 
robust elimination filter. Lidar points are colored by intensity values.  
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Figure 3.4: Depiction of a fine-scale 2D local-area used in the second reinstitution 
filter and how SPR was calculated for each grid cell.  
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Figure 3.5: Overall detection rate summaries and trends for the various forest types 
at BMEF and SF under different DBH and height scenarios. >= DBH snag detection 
rates are defined as all snags with DBHs greater than or equal to the DBH listed (i.e., 
>= DBH 25 cm = detection rate for all trees with DBHs ≥ 25 cm).    
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Figure 3.6: Detection rate summaries and trends for the three treatment groups at 
BMEF under different DBH scenarios (LoD = low diversity; HiD = high diversity; RNA = 
research natural area). All summaries are for the height ≥ 3 m scenario. >= DBH snag 
detection rates are defined as all snags with DBHs greater than or equal to the DBH 
listed (i.e., >= DBH 25 cm = detection rate for all trees with DBHs ≥ 25 cm).    
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Figure 3.7: Overall detection rate summaries and trends for the two grouped fire 
severity strata at SF under different DBH and height scenarios. >= DBH snag detection 
rates are defined as all snags with DBHs greater than or equal to the DBH listed (i.e., 
>= DBH 25 cm = detection rate for all trees with DBHs ≥ 25 cm).    
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Figure 3.8: Canopy cover snag detection rate trends for different >= DBH scenarios 
combining data from both study locations (≥ 3 m height threshold). Data points 
represent the detection rates for the various canopy cover classes. Trend lines are 
based on the detection rate data points.    
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Figure 3.9: Lidar point density snag detection rate trends for different >= DBH 
scenarios combining data from both study locations (≥ 3 m height threshold). Data 
points represent the detection rates for the various canopy cover classes. Trend lines 
are based on the detection rate data points.    
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Figure 3.10:. Lidar derived snag heights versus field measured snag heights, 
categorized by snag condition.  
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Table 3.1: Standing live tree (DBH ≥ 9 cm; Heights ≥ 3 m) attributes from all plots per 
strata at SF and treatment type (LoD, HiD, RNA) at BMEF (ns = number of snags; np = 
number of plots; sd = standard deviation). 
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Table 3.2: Standing dead tree (DBH ≥ 9 cm; Heights ≥ 3 m) attributes from all plots 
per strata at SF and treatment type (LoD, HiD, RNA) at BMEF (ns = number of snags; 
np = number of plots; sd = standard deviation).  
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Table 3.3: Snag species detection rates and summary for BMEF and SF (n = number of 
snags; sd = standard deviation).  
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Table 3.4: Snag detection rates for snag decay conditions for all snags combined (n = 
number of snags). Standard errors are given in parenthesis. Some snags were missing 
snag conditon information and were excluded from the table analysis. 
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Table 3.5: Categorized omission error summary combining both study locations. 
Standard errors are given in parenthesis.   
 

 
 

  

  

 

 

 

 

 

 

 

 

 

 

 

 



134 

 

 1
3
4
 

 
Table 3.6: Summary of commission error rates for each forest type. Standard errors 
are given in parenthesis.    
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Abstract 
  

Live above ground biomass (AGB) assessments are used in a myriad of forest 

management applications. Airborne lidar remote sensing has been used successfully 

to predict live AGB at both the individual tree and the plot level, with the latter being 

more common in practice. Thus far, most plot-level assessments utilize lidar-derived 

metrics created using the entire plot’s lidar point cloud to predict live AGB. While 

these metrics have produced promising results, many of the points located within 

these plot-point clouds are associated with dead trees introducing variability into the 

modeling framework. In this study, live AGB prediction models are created using 

three separate sets of plot-level lidar-derived metrics and compared using both 

model selection statistics and cross-validation statistics. The three sets of lidar-

metrics used in the study were; 1) a ‘traditional’ set created using the entire plot lidar 

point cloud, 2) a ‘live-tree’ set created using a lidar point filtering algorithm that 

attempts to remove points associated with dead trees from the plot point clouds, 

and 3) a ‘vegetation-intensity’ set created by filtering and removing lidar points not 

meeting intensity value thresholds associated with live vegetation. The live-tree lidar 

metric set produced the best results, reducing prediction variability by 4.3% over the 

traditional set in plots containing filtered dead tree points. The study highlights the 

ability of filtering lidar point cloud data to create more useful and accurate 
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explanatory variables for prediction of live AGB. The method should also extend into 

the prediction of other live tree attributes with similar results. 

 Introduction 
 

Accurate prediction of above-ground biomass (AGB) is important for multi-

scale forest assessment. AGB is used to evaluate carbon stocks (Boudreau et al., 

2008), measure carbon fluxes after natural and human disturbance (Turner et al., 

1995), help characterize fuel loading and model fire behavior (Riaño et al. 2004; 

Rothermel, 1983), and quantify carbon exchanges between terrestrial and 

atmospheric sinks (Kimes et al., 2005). AGB has traditionally been estimated using 

extensive in-field inventory methods or aerial photography (Avery & Burkhart, 1994). 

These methods are relatively unbiased, but are also time consuming and expensive. 

More recently, the use of airborne lidar has been used to successfully estimate and 

predict live AGB. 

Airborne lidar is an active remote sensing technology employing an aircraft 

mounted laser capable of simultaneously mapping terrain and vegetation heights 

with sub-meter accuracy. It has proven to be a very promising remote-sensing 

technology for increasing the accuracy and efficiency of large-scale forest inventories 

for a myriad of important forest inventory and wildlife habitat variables (Næsset, 

2002; Maltamo et al., 2006; Martinuzzi et al., 2009). Airborne lidar can be used to 

directly measure the three-dimensional structure of terrestrial and aquatic 
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ecosystems across large spatial extents (Lefsky et al., 2002a). They provide a superior 

choice for remote-sensing of AGB compared to passive optical sensors that suffer 

from saturation in spectral response to dense canopies with high biomass. Discrete-

return airborne lidar data produce three-dimensional characterizations of objects in 

the form of point clouds that are defined by precise x, y and z coordinates. They also 

help characterize the reflectance and surface properties of intersected objects by 

providing intensity values, which are a measure of return-signal strength, for each 

point. 

The use of airborne discrete-return lidar to predict AGB, both live and dead, 

has received much attention. The methods can be separated into individual-tree and 

plot-based assessment (Reutebuch et al., 2005). Individual-tree AGB assessments 

seek to delineate individual trees and then estimate their biomass based on lidar-

derived metrics (e.g., tree height, crown width, diameter at breast height (DBH)) 

(Bortolot & Wynne, 2005; Popescu et al., 2007; Zhao et al., 2009). The use of 

individual-tree methods has been restricted due to limitations. A significant limitation 

is associated with individual-tree segmentation and location algorithms. These 

algorithms are generally limited in their ability to locate intermediate and suppressed 

trees, trees in tight clusters, and trees located in stands with dense canopies 

(Maltamo et al. 2000). Additionally, stem identification algorithms are difficult to 

parameterize and are complicated by scale and adjacency effects (Holmgren, 2004, 
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Bortolot & Wynne, 2005; Zhao et al., 2009). Until these limitations can be overcome 

the use of the individual-tree based assessments will continue to be limited. 

Plot-based AGB lidar assessments have been more common, because they 

have proven to accurately estimate and predict plot-level biomass in variable 

conditions. These methods derive a myriad of plot-level lidar point cloud metrics, 

which quantify canopy characteristics of individual point clouds (e.g., canopy point 

density above certain height thresholds, canopy point height percentiles, variability 

of canopy point heights). These metrics are then used as explanatory variables in 

linear and nonlinear regression analysis settings to estimate field measured AGB (Lim 

et al., 2003). Results have been promising in all cases using this method (Kim et al., 

2009; Lefsky et al., 1999; Lim & Treitz, 2004; Means et al., 2000; Nelson et al., 2004). 

After model validation, the regression models are applied to the rest of the lidar 

dataset to predict AGB across the landscape using the two-stage procedure outline in 

Næsset (2002).  

Most studies using the plot-based method to estimate AGB have combined 

live and dead tree biomass. Few studies have focused on separating the two, even 

though they play different roles in the carbon cycle (Siccama et al., 2007). Kim et al. 

(2009) successfully differentiated and estimated live and dead AGB using commonly 

used lidar canopy metrics derived from intensity stratified lidar point clouds. They 

found that point clouds containing only first-return lower intensity values estimated 
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dead AGB better than point clouds containing only high intensity values or point 

clouds containing both (i.e., all points included). The opposite was true for live AGB 

estimation were high intensity value point clouds performed the best. All other 

studies using the plot-based lidar method to estimate live, dead or combined AGB 

used the entire plot-level point cloud without any intensity or other stratification 

(Lefsky et al., 1999, Nelson et al., 2004).  

Intensity values are an often underexploited feature of lidar data, due to 

difficulty and variability associated with acquisition settings and calibration (Wing et 

al., in review (a)). It is primarily a measure of surface reflectance and is a function of 

the wavelength of the source energy, path distance, and the composition and 

orientation of the surface or object which the laser pulse intersects (Boyd & Hill, 

2007). The quality of the intensity value data is dependent upon lidar acquisition 

parameters and calibration techniques, which has resulted in a broad range of 

qualities and limited its use. Even with the difficulties, intensity has been used 

successfully in many forestry applications to differentiate between tree species, 

estimate live and dead biomass, and predict basal area (Donoghue et al., 2007; 

Holmgren & Persson, 2004; Hudak et al., 2006; Kim et al., 2009; Lim et al., 2003; Wing 

et al., in review (b)). Most recently, Wing et al. (in review (b)) utilized intensity values 

to filter and identify individual lidar points associated with dead trees and remove 

points associated with live trees from point clouds, with promising results. The 
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filtered point cloud was then used to identify and measure individual snags with an 

overall detection rate of 70.6% (±2.7%) for dead trees ≥ 38 cm in DBH. The study 

cited the possibility of reversing the filters results to create a live-tree point cloud by 

removing the dead-tree identified points and restoring points that were eliminated 

during the filtration algorithm. Canopy lidar metrics derived using this live-tree point 

cloud should, in theory, predict live tree attributes (e.g., live AGB) more accurately 

than traditional plot-level derived metrics that use the entire point cloud, since most 

points associated with dead trees are removed.  

This study tests this theory by comparing the prediction and explanatory 

power of traditional lidar-derived canopy metrics created using three different point 

clouds to predict live ABG. The three point clouds used to create the metrics were as 

follows: one containing all first-return points (traditional), one containing filtered 

first-return live-tree points using the algorithm described in Wing et al. (in review (b)) 

(live-tree), and one containing only first-return points meeting live vegetation criteria 

intensity values (vegetation-intensity). The objectives of this study were to: 1) 

develop regression equations to predict live AGB from discrete return lidar data using 

the three different point cloud metric sets, and 2) examine and compare the results 

of the three point cloud metric set models in their ability to predict live AGB. 
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Materials and Methods 
 
Study Area 

The study was conducted at Blacks Mountain Experimental Forest (BMEF) 

located in northeastern California (Figure 4.1). BMEF (40°40´N, 10 121°10´W), 

managed by the USDA Forest Service Pacific Southwest Research Station, is located 

approximately 35 km northeast of Mount Lassen Volcanic National Park and ranges 

between 1700 and 2100 m elevation. Stands are dominated by ponderosa pine (Pinus 

ponderosa Dougl. ex P. & C. Laws) with some white fir (Abies concolor (Gord. & 

Glend.) Lindl.) and incense-cedar (Calocedrus decurrens (Torr.) Florin) at higher 

elevations. At lower elevations, Jeffrey pine (Pinus jeffreyi Grev. & Balf.; Oliver, 2000)  

can also be found in some stands. Classified as an interior ponderosa pine forest type 

(Forest Cover Type 237) (Eyre 1980), the 4,358 ha forest has a wide range of stand 

conditions as a result of past research and management activities, as well as 

disturbance events (Ritchie et al., 2007).  

As part of a large-scale, long-term interdisciplinary experimental design at 

BMEF initiated in 1991, two contrasting stand structures were created: low structural 

diversity (LoD) and high structural diversity (HiD) (Oliver, 2000). LoD stands were 

thinned to maintain a single canopy layer of intermediate trees, with the goal of 

simplifying forest tree structure. At the time of treatment implementation, stands 

were thinned to a uniformly spaced density of approximately 40 trees ha-1, 
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maintaining trees with heights ranging between 12 to 30 m and crown ratios 

generally greater than 50%. At the time of the study, LoD stand densities ranged from 

25 to 430 trees ha-1 based on plot-level data (DBH > 9cm). In contrast, the HiD units 

retained all canopy layers, which resulted in stands that feature multiple age classes 

and varying crown structures (Oliver, 2000). All large old trees were maintained with 

one smaller tree retained within the larger tree’s crown circumference. Tree 

densities ranged from 60 to 95 trees ha-1 at initial implementation and ranged from 

90 to 1400 trees ha-1 at the time of our study based on plot-level data (DBH > 9 cm). 

Plots with higher tree densities are associated with a few spatially scattered dense 

thickets (0.4-0.8 ha) containing smaller trees that were left as part of the HiD 

prescription.  

Six research units each were randomly assigned from both the LoD and HiD 

treatments ranging in size from 77 to 144 ha. Each unit was then split in half with one 

randomly assigned half receiving prescribed fire treatments (Figure 4.1).  Due to the 

large unit size, treatment implementation took several years. The three individual 

treatment blocks, each with four units, were created in 1996, 1997, and 1998, 

respectively.  

Also included at BMEF, are four research natural areas (RNA) each 

approximately 40 ha in size (RA, RB, RC, RD). The RNAs were set aside to serve as 

unmanaged, qualitative controls representative of the interior ponderosa pine type. 



144 

 

 1
4
4
 

They have never received mechanical treatment, but fire exclusion has greatly 

increased their understory tree densities. Two of the four RNAs (RB & RC) received 

one application of prescribed fire in the late 1990’s. RNA stand densities ranged from 

420 to 1220 trees ha-1 for trees ≥ 9 cm DBH at the time of the study. 

As part of the experimental design all 16 research units at BMEF have 

permanently monumented grid markers located within them on a 100 x 100 m lattice 

pattern. The permanent grid markers serve as the center points for most all of the 

plot level research being conducted on the forest. Each grid was located by 

conventional survey methods using the High Precision Geodetic Network along with 

survey grade GPS (location error: ±15 cm) (Oliver, 2000). These provide a solid 

foundation to conduct aerial lidar research, because plot location errors are 

minimized.  

Field Data 

At BMEF, five of the LoD units, six of the HiD units and 2 randomly selected 

RNAs (RC & RD) were sampled in July 2009. Standing live and dead tree (DBH ≥ 9 cm) 

stand attributes for all three structure types at the time of the study are summarized 

in Table 4.1. Using the BMEF permanent grid system, plot locations were assigned 

systematically with a random start within each unit on every other grid point in all 

intercardinal directions (282 m spacing). At each selected grid point location an 805 

m2 circular plot was established. All trees with a DBH ≥ 9 cm were mapped from plot 
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center and measured for height, DBH, crown width, and height to live and dead 

crown. The stem map data were used for verification of plot locations. Trees were 

also assigned codes for various tree conditions (i.e., broken, dead or forked top, 

branching anomalies, mistletoe presence, etc.). Trees having DBH ≥ 60 cm were also 

assigned vigor condition class ratings using the systems developed by Ferrell (1989) 

for fir and cedar species, and Salman and Bongberg (1942) for pine species. The 

classification systems resulted in individual tree vigor risk ratings ranging from 1 to 3 

for the fir and cedar species and 1 to 4 for pine species, with higher risk ratings 

associated with declining tree vigor. 

Field Derived Biomass 

The generalized national allometric equation of Jenkins et al. (2003) was used 

to calculate live tree biomass (dry weight) for individual trees and then expanded to 

plot-level. The Jenkins et al. (2003) equation (1) has separate parameter values for 

ten tree species groups (5 softwood, 4 hardwood, and 1 woodland) (Table 4.2).  

   (1) 

where,  is the individual tree biomass in kg for trees 2.5 cm and larger,  and  

are species specific parameters for estimating biomass (Table 4.2), and  is the 

individual tree’s diameter at breast height (cm). Individual tree biomass corrections 

were applied to trees with broken or dead tops, raked off branches, and sparse 
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crowns. Plot-level live tree biomass was computed in Mg ha-1. Live AGB for the three 

different treatments (i.e., LoD, HiD, RNA) is summarized in Figure 4.2.   

Lidar Data 

Discrete multiple return airborne lidar data were provided by Watershed 

Sciences Inc. in LAS file format (version 1.1). The lidar data was acquired in late July 

2009 using a Leica ALS50 Phase II laser system mounted on a fixed wing aircraft. The 

aircraft was flown at 900 m above ground level following topography. Data were 

acquired using an opposing flight line side-lap of ≥ 50% and a sensor scan angle ± 14-

degrees from nadir to provide good penetration of laser shots through the canopy 

layers. On-ground laser beam diameter was approximately 25 cm (narrow beam 

divergence setting), which resulted in a very low percentage of multiple returns 

(9.2%) and a very high percentage of single returns (81.4%). The high ratio of first and 

single returns (90.8%) helped provide better quality intensity information, because 

calibration problems associated with laser pulse energy are reduced for these returns 

(see: Morsdorf et al., 2010). An average of 6.9 points m-2 was obtained for the entire 

study area, with a standard deviation of 5.6 points m-2. Ground survey data were 

collected to enable the geo-spatial correction of the aircraft positional coordinate 

data collected throughout the flight, and to allow for quality assurance checks on 

final LiDAR data products. Simultaneous with the airborne data collection mission, 

multiple static (1 Hz recording frequency) ground surveys were conducted over 
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monuments with known coordinates to enable geo-spatial data correction. Indexed 

by time, these GPS data were used to correct the continuous onboard measurements 

of aircraft position. To enable assessment of LiDAR data accuracy, ground truth 

points were collected using GPS based real-time kinematic (RTK) surveying. 

The vendor post-processed lidar data using automated methods that utilized 

proprietary software (TerraScan) coupled with manual methods to identify ground 

points for development of the digital terrain model (DTM). Fundamental vertical DTM 

accuracy for BMEF was approximately 15 cm at a 95% confidence level. The vendor 

used an automatic variable gain setting during acquisition and did not calibrate the 

intensity values post-acquisition. Point clouds corresponding to the 805 m2 circular 

plots were extracted and their heights were normalized using the DTM. All plot 

locations were manually inspected using the field-based stem map and the plot lidar 

point clouds. Only one plot needed a location adjustment (less than 1.5 m).     

The individual plot lidar data was then used to create the three different point 

clouds used in the analysis. Only first and single returns were used in all three point 

clouds for three reasons: 1) these returns have been employed to predict biomass in 

previous studies (Kim et al., 2009, Lim et al., 2004), 2) the intensity filtering method 

used to create the live-tree point cloud needed to use these returns to ensure good 

results, and 3) the proportion of multiple returns for this lidar acquisition was very 

low due to the small laser footprint size (9.2 %). The first point cloud (traditional) was 
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created by extracting all first and single return points with no stratification based on 

intensity. This point cloud is traditionally the one utilized to derive lidar plot-level 

metrics in most previous studies for estimation of numerous forest attributes 

including biomass. The second point cloud (live-tree) was created using the 

individual-point local-area intensity filtering algorithm developed by Wing et al. (in 

review (b)). In the method, individual first- and single- return points are evaluated 

using a series of filtration steps that identify individual points associated with dead 

trees. As a by-product of the method individual points associated with live trees were 

also identified and removed from the point cloud by forcing their individual height 

values (h-values) to zero. To create the live-tree point cloud, the removed live-tree 

points were restored to the point cloud by restoring their original height values (h-

values) and the identified dead-tree points were removed by forcing their h-values to 

zero. The end result is a plot-level point cloud containing points that are more than 

likely associated with live trees along with understory and ground points (heights < 2 

m). The third point cloud (vegetation-intensity) was created using the live vegetation 

intensity value thresholds identified in Wing et al. (in review (b)). These are points 

that have intensity values more than likely associated with live vegetation (e.g., 

leaves and needles). Points with intensity values greater than or equal to the lower 

intensity threshold and less than or equal to the upper intensity threshold using 

equations (2) and (3) were kept, while all values not meeting these criteria were 
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removed. The final results were three separate point clouds for each plot that were 

then used to derive plot-level lidar metrics.    

  (2) 

  (3) 

Where,  is the lower intensity threshold,  is the upper intensity threshold, 

and  is the maximum intensity value associated with individual plot point 

cloud being examined. The multiplication factors (0.35 & 0.65) were determined 

through visual inspection, and trial and error. 

Lidar-Derived Metrics 

Various lidar-derived metrics were created from each plot-level point cloud to 

estimate plot-level biomass (Table 4.3). Lidar point height distributions were created 

using all first- and single- return points > 2 m for each plot-level point cloud. The 2 m 

threshold was used to ensure no understory points would be included in the analysis. 

A large number of metrics were derived from these distributions. From previous 

studies the following distributional metrics were created; 1) the height quantiles 

corresponding to the 0, 10, 20, 25, 30, …, 99 percentiles of the distributions, 2) the 

minimum, maximum and mean heights; and 3) the standard deviation and coefficient 

of variation for the heights. Furthermore, several canopy density metrics were 

derived, calculated as the proportion of points above certain height thresholds. The 



150 

 

 1
5
0
 

following canopy density metrics were created: 1) the proportion of points > 5, 10, 

15, and 20 m, 2) the proportion of points above the mean and mode values, and 3) 

the proportion of points above the understory layer (> 2 m), also referred to as 

canopy cover. One last metric was created which has shown promise in previous 

studies in the estimation of biomass. Often referred to as lidar canopy volume, it was 

created by multiplying the canopy cover value by the mean height.  

Model Formation and Comparison 

A multiple linear regression analysis was used to assess relationships between 

the lidar-derived metrics and field measured biomass estimates. In the multiple 

regression analysis, multiplicative models were estimated as linear regressions in the 

natural logarithmic scale, because such models were found to be suitable based on 

preliminary analysis and from previous studies estimating volume and biomass using 

the same or similar variables (Næsset, 1997; Næsset, 2002). The linear regression 

model was formulated as:   

 

  

(4) 
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where, ABG is above ground biomass (Mg ha-1),  are parameter regression 

coefficients, and the individual parameters are the lidar derived metrics.  

Stepwise selection was used to identify final model variables for each lidar-

derived metric dataset. No predictor variable was included in the model with a partial 

F statistic with a significance level greater than 0.05. Since all variables are related to 

point height, the likelihood of variable correlation is high. All variables were assessed 

for multicollinearity using variance inflation factors (VIF). VIFs quantify how much the 

variance of the estimated regression coefficient is inflated by the existence of 

correlation among the remaining predictor variables in the model (Marquardt, 1970). 

A VIF of 1 means that there is no correlation among the predictor and the remaining 

predictor variables, and hence the variance of is not inflated at all. The general rule of 

thumb is that VIFs exceeding 4 warrant further investigation, while VIFs exceeding 10 

are signs of serious multicollinearity requiring correction. Models containing multiple 

predictor variables were required to have VIFs less than 4.  

In addition to the multivariate models, a single predictor variable model was 

identified for each of three lidar-derived datasets. It was found in preliminary 

analysis that all models selected the same variable as the most significant predictor; 

therefore these single models were added to the analysis to simplify the comparison 

between the three sets of lidar-derived metrics.  
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All BMEF treatment plots were combined for the regression analysis (n = 154). 

Models were fit to the entire dataset using each set of lidar-derived metrics 

individually (i.e., traditional, live-tree, vegetation-intensity). In addition, a secondary 

dataset was constructed to aid with comparison between the three different lidar-

derived metric sets. Plots containing dead trees that were detected using the filtering 

method outlined in Wing et al. (in review (b)) and meeting specific snag criteria were 

used as a secondary model dataset (henceforth referred to as: detected snag 

dataset). Plots meeting either one of the following snag criteria were utilized in the 

detected snag dataset: 1) at least one detected dead tree with a DBH ≥ 25 cm, or 2) a 

cumulative detected dead tree plot biomass ≥ 0.3 Mg ha-1.  There were 53 plots 

meeting these criteria. This dataset aided the comparison by focusing the model 

analysis on plots where the three lidar-derived metric sets should vary the most.   

The above criteria resulted in twelve models used for comparison, six each for 

the two datasets. Models were compared using traditional model fit and selection 

statistics, as well as a cross validation procedure. Traditional model fit statistics 

included the coefficient of determination (R2), root mean square error (RMSE), 

Akaike’s information criterion (AIC), and the Bayesian information criterion (BIC). No 

independent data were available to assess the prediction accuracy of the estimated 

regression equations. A leave-one-out cross validation procedure was therefore used 

to assess prediction accuracy. In the procedure, one of the sampled plots was 



153 

 

 1
5
3
 

removed from the dataset at a time, and the selected models were fit to the data 

from the remaining sample plots. Biomass was then estimated for the removed plot 

using these models. When converting log-linear equations back to the original scale a 

bias will be introduced (Goldberger, 1968). Therefore, it was essential to apply a bias 

correction when converting the values back into the original scale. An approximate 

and simple correction that will introduce an error of less than 1% is to add half the 

model variance to the regression intercept before conversion (Flewelling & Pienaar, 

1981). This correction factor was used to reduce the conversion bias. The cross 

validation statistics used for comparison were absolute bias (AB) and root mean 

squared error (RMSE) calculated using the following formulas: 

 
 (5) 

 

 (6) 

Results 
 
Final Models 

The final twelve models are summarized in Table 4.4, with coordinating fit 

and selection statistics. All models performed well in the estimation live AGB (R2 > 

0.85). All model fits found the lidar canopy volume metric (VolCov) to be the most 
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significant variable in estimation of live AGB biomass. No multiple variable models 

were identified for either the traditional or live-tree metric sets due to significant 

variable interactions (VIF > 4). Differences between single predictor variable models 

using VolCov and multiple variable models were low for all lidar-derived metric sets. 

The RMSE ranged from 24.3 to 30.7 Mg ha-1 for the all plot model fits and 16.0 to 

22.1 Mg ha-1 for the detected snag model fits. Multiple variable models contained no 

more than three significant predictor variables, which were often associated with 

either the lower or upper portion of the canopy distribution.   

The live-tree lidar-derived metric models had the highest coefficient of 

determination, and lowest RMSE, AIC, and BIC values compared to all other models 

for both datasets (LT1ab, LT2a, LT2b). Model fit statistics can only be compared using 

identical datasets (i.e., the all plots dataset models cannot be compared with the 

detected snag dataset models). Traditional models (T1ab, T2a, T2b) performed similar 

to the vegetation-intensity models (V1a, V1b, V2a, V2b) for both datasets. In terms of 

RMSE the traditional models outperformed the vegetation-intensity models, while 

the vegetation-intensity models had lower overall AIC and BIC values for both 

datasets. The vegetation-intensity models also had the highest RMSE for both 

datasets.   

The most significant differences between models were found for the detected 

snag dataset. The AIC and BIC decreased by -36.8 and -18.1 respectively when 
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switching from the traditional to the live-tree lidar-derived metric models, while 

RMSE decreased by more than 3 Mg ha-1. For the all plots dataset the relationship 

was also prevalent, with AIC and BIC value reductions of 43.4 and 39.7 respectively 

and a RMSE reduction of 0.8 Mg ha-1.      

Scatter plots for all six single variable models are presented in Figure 4.3. 

Errors located below the trend lines were typically associated with the presence of 

dead tree biomass. These errors were reduced for both the live-tree and vegetation-

intensity models compared to the traditional models, with the former performing the 

best. Three of the four largest errors below the trend line for the LT1ab model were 

associated with plots that had dead trees that were undetected using the filtering 

algorithm. The remaining error seemed to be caused by a large number of trees 

located directly outside that plot’s boundary, with their crowns extending into the 

plot. Errors occurring above the trend line were typically associated with denser 

areas where biomass was over predicted.         

Cross Validation 

The leave-one-out cross validation results are summarized in Table 4.5. All 

models performed well in the prediction of live AGB (RMSE < 9% of the estimated 

biomass). The live-tree models performed the best overall, with an overall RMSE of 

7.3% for the all plots dataset (LT1ab) and a RMSE of 5.4% for the detected dead tree 

(snag) dataset (LT2a). The difference between the traditional models and the live-tree 
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models was negligible for the dataset using all plots (RMSE LT1ab: 7.3% versus T1ab: 

7.5%), while much more pronounced for the detected snag dataset (RMSE LT2a: 5.4% 

versus T2a: 6.8%). The vegetation-intensity models performed the poorest overall for 

both datasets.  

Absolute bias was similar for the all plot models, and higher for the traditional 

and vegetation-intensity models using the snag detection dataset. The traditional and 

vegetation-intensity models both had a negative AB greater than 1 Mg ha-1 for the 

detected dead tree dataset, while the live-tree models had AB values closer to zero. 

Discussion 
 
Model Comparison 

The live-tree lidar metric models successfully reduced prediction model 

variation for live AGB compared to models based on traditional point cloud lidar 

metrics. This confirms that filtering and removing dead tree points from plot-level 

point clouds can provide more accurate lidar metrics for prediction of live AGB. The 

results will likely extend into the prediction of other live tree attributes, as well. 

While differences between the live-tree and traditional lidar metric models were less 

significant when all plots were analyzed, the live-tree model still performed better 

based on the model selection statistics and the cross validation results. The 

differences between the two sets of lidar metrics will depend upon dead tree 
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density. In areas with higher densities of dead trees the difference will become more 

pronounced, with the live-tree metrics performing better.  

Vegetation-intensity metrics performed similar to the traditional metrics, 

although variability came from different sources. The vegetation-intensity metrics 

were able to reduce the variability associated with dead trees, but overall variability 

was not reduced. Live trees have a significant number of points meeting the live 

vegetation intensity criteria used for stratification, but they also have a large 

proportion of low intensity points resulting from lidar pulses intersecting branches or 

other solid wood surfaces. These points were often removed using the live 

vegetation intensity thresholds, which likely caused the extra variation. If the lower 

intensity value threshold was relaxed it might perform better, since fewer live tree 

points would be eliminated. The vegetation-intensity metrics are easier to create 

compared to the live-tree metrics, so if new threshold values can be identified that 

produce similar results, the vegetation-intensity metrics would increase the method’s 

efficiency.  

According to both AIC and BIC model selection criteria, the live-tree models 

provided the strongest evidence for selection for both datasets. According to Raferty 

(1995) and Kass and Raferty (1995), a difference in BIC values (∆BIC) of ≤ 2 between 

models is “not worth more than a bare mention” and a ∆BIC > 10 implies very strong 

evidence that the models are different. The same general trend holds for the 
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difference in AIC values according to Burnham and Anderson (2002). AIC and BIC 

values are not directly comparable since they have different target models 

(Reschenhofer, 1996). With this in mind, both AIC and BIC model selection criteria 

provided strong support for the live-tree models, with both AIC and BIC value 

decreases of > 10 when compared to the other two model types. 

This study adds to the growing research highlighting the ability of canopy 

lidar-derived metrics to accurately predict standing tree forest attributes. The most 

significant variable in all but one model was lidar canopy volume (VolCov), 

demonstrating the strong relationship between VolCov and AGB (Figure 4.3). This 

relationship has been found in previous studies estimating AGB as well (Kim et al., 

2009; Lefsky et al., 2002b). The metric has the ability to accurately characterize and 

summarize the unique attributes associated the canopy layer. When the variable was 

removed from the model selection process, it was typically replaced by a 

combination of a canopy density and height metrics, most often by the two variables 

used in the creation of the VolCov metric (e.g., canopy cover and mean height).      

Future Developments 

In the future, new point cloud filtering techniques are likely to improve lidar-

derived prediction models. Filtering individual points will aid in the creation of more 

accurate lidar explanatory metrics for a myriad of forest attributes. The filtering 

algorithm used to create the live-tree point cloud utilized lidar point location and 
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intensity value attributes to identify points associated with dead trees. As such, the 

usefulness of intensity information to help characterize forest attributes is 

dependent upon the quality of the intensity information. The intensity data in this 

study did not receive post-acquisition calibration, which should improve filtering 

results. Incorporating airborne lidar with other remote sensing techniques such as 

aerial photography, or utilizing small-footprint full-waveform (SFFW) airborne lidar 

could also enhance the ability to filter lidar points. SFFW airborne lidar provides more 

than just coordinate and intensity information, it also provides echo width 

information. Echo width information has proven to be useful for classifying ground 

and vegetation returns and warrants investigation (Ducic et al., 2006; Wagner et al., 

2008).   

The filtering algorithm attempted to identify live tree lidar points and remove 

dead tree points. Not all dead trees points were removed using the filtering method, 

which likely caused some of the variability in the live-tree models. Another identified 

source of variability was found when trees located just outside plot boundaries had 

crowns overlapping into the plot-level point cloud. In these cases points not 

associated with measured trees are used when deriving the lidar metrics. These 

instances are always likely to occur, but their impact could be reduced by developing 

a filtering algorithm that identifies and eliminates them, or by using a weighted point 
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structure that gives less weight to points located near plot boundaries. If either of 

these is successfully implemented, variability should be reduced further.  

Applications 

Application of a prediction model to forest stands can be completed following 

the traditional airborne lidar two-stage plot-based gridding procedure outlined in 

Næsset (2002). In this procedure, stands of interest meeting the model criteria are 

first divided into grid cells that match the prediction model’s plot size. Then 

significant independent variable values are obtained for each grid cell and the 

prediction model is applied using weights for each grid cell to minimize edge bias 

associated with the smaller boundary-edge grid cells. Upon completion a raster 

dataset is created where every 805 m2 grid cell contains a live AGB prediction. These 

can be used to obtain accurate predictions of live AGB across entire landscapes, while 

also providing the ability to assess the spatial arrangement of the biomass.  

Extension of the method to different forest types warrants further 

investigation. The results will depend on the filtering algorithms ability to identify live 

and dead trees points. Three key components affecting the algorithms ability to do so 

are: 1) the quality of the intensity information, 2) lidar point density, and 3) canopy 

cover. The quality of intensity information directly affects the ability of the algorithm 

to distinguish between live and dead tree points. Currently, most airborne lidar 

acquisitions use the automatic variable gain setting to compensate for changes in 
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ground reflectance and do not apply any post acquisition calibration. This type of 

acquisition should provide adequate intensity calibration for accurate differentiation 

between live and dead tree points. The algorithm also does not perform as well when 

lidar point densities are less than 4 points m-2 or in forests with dense canopy covers 

(> 70%). Filtering becomes more difficult in these situations because it is harder to 

distinguish unique forest structures. A number of parameters used in the filtering 

algorithm also might need adjustment for different lidar datasets (Wing et al., in 

review (b)).  

Conclusions 

This study highlights the ability of filtered lidar point clouds to produce higher 

quality lidar-derived explanatory variables for the prediction of live AGB. The method 

should also extend into the prediction of other live tree attributes with similar 

results. While the filtering method used to identify individual live tree points was 

successful and provided a more accurate prediction model, it can likely be improved 

by developing more accurate point filtering methods. Filtering methods in the future 

should focus on identifying live and dead tree points more accurately and removing 

points associated with tree crowns originating from trees outside the plot. This 

should result in even more accurate predictions.  

The results from this study can be used to create accurate live AGB maps for 

the interior ponderosa pine forest type. Extension of the method to additional forest 
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types warrants further investigation and the results will likely depend on tree density 

(i.e., canopy cover) and the quality of the lidar data (i.e., point density and intensity 

calibration). Filtering lidar points to help estimate and predict forest attributes 

warrants further investigation.   
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Figure 4.1: Geographic location of the Blacks Mountain Experimental Forest and 
layout of the Blacks Mountain Long-Term Ecological Research Project in northeastern 
California. 
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Figure 4.2: Live tree (DBH > 9 cm) oven dry weight above ground biomass summary 
from all plots  per treatment type (LoD, HiD, RNA) at BMEF.  
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Figure 4.3: Lidar canopy volume (VolCov) versus field estimated live above ground 
biomass for the three different sets of lidar-derived metrics (Traditional, Live-Tree, 
and Vegetation-Intensity). 
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Table 4.1: Standing live and dead tree (DBH ≥ 9 cm; Heights ≥ 3 m) attributes from all 
plots per treatment type (LoD, HiD, RNA) at BMEF (ns = number of snags; np = number 
of plots; sd = standard deviation). 
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Table 4.2: Parameter values used for the biomass equation (Jenkins et al., 2003). R2 is 
the coefficient of variation model statistic calculated using the number of data points 
generated from the published equations for parameter estimation. 
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Table 4.3: Plot-level lidar-derived explanatory variables (metrics) used in regression 
analysis (h subscript stands for height). 
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Table 4.4: Final regression model parameters with fit and selection statistics for the 
two datasets (all plots and detected snag plots). Model T = traditional lidar point 
cloud metrics; Model LT = live-tree point cloud metrics; Model V = vegetation-
intensity point cloud metrics; a = final model; b = single variable model; VIF = 
variance inflation factor.  
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Table 4.5: Live above ground biomass leave-one-out cross validation summary 
statistics for all models using both datasets (all plots (n = 154), and detected snag 
plots (n = 53)). Model T = traditional lidar point cloud metrics; Model LT = live-tree 
point cloud metrics; Model V = vegetation-intensity point cloud metrics; a = final 
model; b = single variable model; RMSE (%) = normalized root mean square for plot 
estimated biomass. 
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CHAPTER 5: CONCLUSIONS 
 

The overall goal of this dissertation was to explore the use of airborne 

discrete-return lidar to both predict and identify important forest attributes. Chapter 

2 presented a new method to predict understory vegetation cover; increasing model 

explanatory power compared to traditional models (R2 value increases of ~0.35 to the 

0.7-0.8 range). Chapter 3 presented a new method to identify and quantify snags 

which overcomes many common difficulties associated with snag quantification and 

also provides information on their spatial arrangement. Chapter 4 presented a 

method to reduce model variability for the prediction of plot-level live above ground 

biomass. All three chapters demonstrate the ability of airborne lidar data to 

accurately predict and identify important forest attributes. Intensity information 

proved to be extremely useful for filtering point clouds and identifying individual lidar 

points associated with unique forest attributes in all three chapters. The intensity 

filtering methods described in this dissertation are new to the literature, and provide 

an enhanced framework for analyzing lidar data.  

The primary objectives of Chapter 2 were to: 1) analyze the potential of 

airborne lidar-derived metrics to estimate and predict understory vegetation cover; 

2) explore the use intensity values to filter understory component lidar points, 3) 

compare two modeling approaches for prediction of understory vegetation cover 

using the airborne lidar-derived metrics, and 4) develop a practical method that 
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utilizes airborne lidar-derived metrics to predict understory vegetation cover. 

Understory vegetation cover has been difficult to estimate and predict, especially 

over large spatial extents. The method presented in Chapter 2 increased the ability to 

predict understory vegetation cover in interior ponderosa pine forests considerably 

(R2 values increasing from 0.2-0.45 to 0.7-0.8). The new lidar-derived variable 

understory vegetation cover density (ULCD), created by filtering the plot-level 

understory lidar point cloud using intensity values, had a very strong relationship 

with understory vegetation cover. The intensity filter successfully removed a portion 

of the understory lidar points associated with non-vegetation understory 

components, which made the metric more accurate in the prediction of understory 

vegetation cover.  

Both modeling approaches had similar results, and provided accurate 

predictions without introducing bias. The method worked well under different forest 

conditions in the interior ponderosa pine forest type. Results will likely be diminished 

in areas where understory vegetation grows underneath high canopy densities or in 

forests where the understory and overstory layers intermix. Extension of the method 

to other forest types and conditions warrants further investigation. 

The primary objectives of Chapter 3 were to: 1) create an individual point-

based local-area filtering algorithm that removed points associated with live trees, 2) 

apply an individual-snag detection method to the filtered point cloud and test the 
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detection and error rates associated with the method, and 3) test the method in 

various forest types and structures to determine applicability in different forest 

conditions. This was the first individual point-based local-area filtering algorithm 

used to identify individual points associated with snags and eliminate individual 

points associated with live trees. It demonstrated the potential to use intensity 

values and local-area statistics to characterize individual lidar points. Given that this 

was the first attempt at this type of point filtering algorithm, the method can likely 

be improved. The method presented in this study was able to accurately detect and 

locate a large proportion of snags in various forest types and conditions, with smaller 

snags (DBH < 38 cm, height < 9 m) being detected between 30-60% of the time, and 

larger snags (DBH > 38 cm, height > 9 m) being detected between 60-80% of the 

time. Snag detection rates increased as snag DBH and height increased and 

decreased as snag conditions decayed.  

Detection rates were affected by a number of uncontrollable and controllable 

factors. Uncontrollable factors were associated with forest stand and individual snag 

characteristics, while controllable factors were associated with the quality of the lidar 

data and the individual-snag detection methods. The two primary outputs from this 

research are: 1) the ability to derive accurate snag density estimates in a practical 

and relatively simple manner, and 2) the ability to map individual snags across entire 
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landscapes. Both these outputs should provide useful tools for many forest 

management applications. 

The primary objectives of Chapter 4 were to: 1) develop regression equations 

to predict live above ground biomass (AGB) using airborne discrete-return lidar-

derived metrics from three separate plot-level point clouds, and 2) examine and 

compare the results of the three point cloud metric set models in their ability to 

predict live AGB. Models containing lidar metrics developed using the live-tree 

filtered point cloud provided the most accurate prediction of live AGB. The live-tree 

lidar metric models reduced prediction model variation compared to models based 

on traditional plot-level point cloud metrics. This result demonstrates the ability of 

filtered point clouds to produce more accurate lidar-derived explanatory variables 

when specific attributes are targeted. When predicting live AGB, the differences 

between the live-tree and traditional lidar metric sets will depend upon the dead tree 

density within the stand. In stands with higher densities of dead trees the difference 

will become more pronounced, with the live-tree metrics performing better.   

All three chapters successfully utilized lidar point location and intensity values 

to filter points associated with targeted forest attributes (e.g., understory vegetation, 

live and dead trees). Thus, successful extension of these methods will be predicated 

on the quality of the intensity value information. The intensity values used in all three 

chapters did not receive post-acquisition radiometric calibration. If they had, the 
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results would likely improve. The lidar acquisitions used narrow laser beam 

divergence and automatic variable gain settings, which provided a large proportion of 

first- and single-returns and better calibrated intensity values. First- and single 

returns provide better quality intensity information and therefore should be used 

when filtering lidar points with intensity values. In the future, intensity calibration 

will likely become more common, which should increase the usefulness of intensity 

information. Even without post-acquisition calibration the intensity values used in 

this dissertation were able to adequately differentiate between points associated 

with solid wood and finer materials, such as photosynthetic vegetation and small 

branches.  

While all three studies were successful in meeting their individual objectives, 

the results could be improved. In terms of lidar acquisition, increasing lidar point 

densities and calibrating intensity information should provide better results for all 

three studies. Higher point densities would provide more detailed information and 

increase the ability to develop more accurate lidar point filters. Lidar point filters can 

also be improved for all three chapters. Utilizing fine-scale local-area 3D voxels could 

provide the ability to more accurately filter lidar points and characterize forest 

attributes. Incorporating other remote sensing technology metrics, such as those 

produced from hyper- or multispectral imagery, might also enhance results. Another 

possibility warranting investigation is the use of small-footprint full-waveform 
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airborne lidar (SFFW). SFFW provides more than just discrete-return coordinate and 

intensity information, it also provides laser pulse echo width information. Echo width 

information has proven to be useful for classifying ground and vegetation returns, 

thus it could provide more information for differentiating between unique forest 

attributes.  

This dissertation focused on the ability of airborne discrete-return lidar to 

characterize important forest attributes in both the overstory and understory with 

promising results. The innovative intensity based filtering techniques, demonstrated 

the ability of lidar intensity information to adequately differentiate between unique 

forest attributes. In the future, it is expected that airborne lidar data will continue to 

provide more useful tools and information for forest management and assessment. 

The technology provides the ability to accurately quantify many important forest 

attributes at fine-resolutions across large areas. This information can be used to 

enhance forest management decisions by providing more accurate and detailed 

information on the spatial arrangement of forest attributes. In the future, this 

information could also be used to assess achievement of forest management goals 

and objectives, and optimize forest planning to meet multiple objectives over time. It 

is expected that the use of airborne lidar for forestry applications will continue to 

accelerate in the future as the technology continues to evolve.      
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LIST OF SYMBOLS USED IN TEXT 

Symbol Definition 

3D Three-dimensions 

AB Absolute bias 

ABCO White fir 

ABMA Red fir 

AGB Above ground biomass 

AIC Akaike's information criterion 

BA Basal area 

BIC Bayesian information criterion 

∆BIC Change in Bayesian information criterion 

BMEF Blacks Mountain Experimental Forest 

BR Beta regression 

CADE Incense-cedar 

CBI Composite burn index 

CCh Proportion of points above 2 m lidar metric 

 Commission error rate correction factor 

CHM Canopy height model 

CIR Color-infrared 

Cm Centimeters 

CVh Coefficient of variation height lidar metric 

CWD Coarse woody debris 

 Snag density 

D5h …D20h Proportion of points above height thresholds lidar metrics 

DBH Diameter at breast height (cm) 

DMh Proportion of points above mean height lidar metric 

DMdh Proportion of points above mode height lidar metric 

 Lidar snag detection rate  

DTM Digital terrain model 

DTS Digital terrain synthesis 

EPC Effective plot coverage 

EXP Exponential function 

GIS Geographic information system 

H Height (m) 

Ha Hectare 

HiD High diversity treatment 



193 

 

 1
9
3
 

HMS High and medium fire severity strata 

HS High fire severity strata 

I Lidar intensity value 

LAI Leaf-area index 

Lidar Light Detection And Ranging 

 Lower lidar intensity value threshold  

Ln Natural logarithm 

LoD Low diversity treatment 

LS Low fire severity strata 

LT1, 2, 3, 4 Live-tree lidar metric models 

 Local-area lidar points meeting live vegetation intensity criteria 

LUS Low and unchanged fire severity strata 

M Meters 

Maxh Maximum height lidar metric 

 Maximum intensity value 

Mg Megagram 

Minh Minimum height lidar metric 

Modeh Mode height lidar metric 

MS Medium fire severity strata 

N Sample size 

NF National Forests 

NIR Near-infrared 

 Density of overstory first return lidar points in the fifth strata 

 Standard deviation of overstory lidar first return point heights 

OLS Ordinary least squares 

P01h…P99 h  Percentile height lidar metrics 

PICO Lodgepole pine 

PIJE Jeffrey pine 

PILA Sugar pine 

PIMO Western white pine 

PIPO Ponderosa pine 

PSME Douglas-fir 

QUKE California black oak 

R Pearson's correlation coefficient 

R2 Coefficient of determination 

RA Research Natural Area A 
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RB Research Natural Area B 

RC Research Natural Area C 

RD Research Natural Area D 

RdNBR Relative differenced Normalized Burn Ratio 

RGP Relative ground points 

RMSE Root mean squared error 

RMSPE Root mean squared prediction error 

RNA Research Natural Area 

RTK Real-time kinetic 

 Number of detected snags  

 Local-area lidar points meeting snag intensity criteria 

Sd Standard deviation 

SDh Standard deviation height lidar metric 

SF Storrie Fire 

SPR Snag point ratio 

SFFW Small-footprint full-waveform lidar 

T1, 2, 3, 4 Traditional lidar metric models 

U Unchanged fire severity strata 

 Upper lidar intensity value threshold 

ULCD Understory lidar cover density 

UPf Filtered understory lidar points 

UPD Understory lidar point density 

USDA United States Department of Agriculture 

V1, 2, 3, 4 Vegetation-intensity lidar metric models 

 Variance 

VolCov Lidar canopy density lidar metric 

WR Weighted regression 

X Lidar point x coordinate 

 Vector of explanatory variables 

Y Lidar point y coordinate 

Z Lidar point z coordinate 

Β Vector of regression coefficients 

 Residual model errors  

 Link function 

Η Vector of linear predictors 

ω Vector of weighted regression weights 
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