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Chapter 1 Introduction 

As the domain of robotics advances, people have started using robots in various domains

ranging from factory automation to surgical robots. In factories, robots are being used in bin

picking and for doing repetitive tasks. When it comes to the medical field, sophisticated

robots are being used to do complex surgeries where surgeons can't reach.  Robots are used

in disaster and rescue situations and also in defense where it is dangerous for humans to

work. Robotics-inspired prostheses are used for assisting physically disabled people. Across

all  these  fields,  to  complete  the  task  with  success  robot  must  be  able  to  grasp  and

manipulate objects in  the environment successfully. However, this has proven to be a hard

task. Research shows that one in every four grasps fail even under structured environment.

So there is a huge need for improvement in robotic grasping.

It is also expected that humans and robots will work together to perform complex physical

interaction  tasks  in  various  environments.  A wide  spectrum  of  possible  human-robot

interaction scenarios exists to enable this (see Figure.1.1). At one end of the spectrum, the

human and robot are physically separate from each other. In this scenario the human sends

remote  commands to  the  robot  and the  robot  provides  visual  feedback.  These  kinds  of

robots are used in disaster rescue scenarios, where it is unsafe for humans to enter[1], [2]. At

the other end of the spectrum, the human and robot are in contact physically.  For example,

a neuroprosthetic hand attached to the human provides touch and force information directly

to the human (either directly through physical contact or through the peripheral nervous

system) and in turn receives commands through the neural system[3].  Across this spectrum,

it is important to understand how humans process both visual and touch information when

performing interaction tasks, such as manipulating objects in the environment [4].

The information available to the human when teleoperating a robot to perform a physical

interaction task is diverse. It could include direct 3D views, 3D point clouds provided by a

laser scanner,  2D video or images provided by a still-camera or video feed,  and tactile

information provided through sensors attached to the robot. Prior work has been done in 
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how to present the information to operators to get the quickest response time as well as the

best  decision  from  the  operator[1],  [5]–[9].   But  very  little  work  has  been  done  in

understanding (1) how the visual information provided to the operator is processed when

performing  physical  interaction  tasks  such  as  grasping,  and  (2)  how  humans  might

compensate for missing tactile cues using visual ones.

Understanding operator gaze is important in a grasping task because it provides information

about how humans perceives the object and the task environment, and what visual cues are

important in completing that task. Specifically, eye gaze provides information about how

important different features or descriptors of the object  — such as the object's silhouette,

surface, center of mass, and center line —  are when performing the task with either a robot

hand or a human hand. More subtly, changes in visual cues between using their own hand

and the robotic one provides information about which features of a hand's position, such as

finger location and wrist orientation, humans use when performing a task. For example,

humans rarely look at their own hand when grasping an object.

 

Figure 1.1 Human-robot interaction possibilities
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In the long term, this information is useful for both autonomous robots and teleoperated

robots.  Specifically,  when developing control  algorithms for  robot  hands,  it  is  useful  to

know which features to focus on in order to prune the decision space of where the robot

hand should grasp the object.  For tele-operation environments, knowing which visual cues

are important to the human enables the robot to determine which views and data to send to

the remote operator, as well as improve the design of the human-robot interface to simplify

the manipulation task. 

This work answers two important questions (1) what features people think are important for

grasping, and (2) how effectively can humans use these features in robot grasp images to

determine grasp quality. In order to answer these questions, we  explore differences in eye

gaze patterns between two different points on the manipulation spectrum. In this  study we

use the human hand as an example of an “ideal robotic tool”, where the human has the best

information about the object and the manipulator and best control over the manipulator as

well.  As a counter example of tele-operation, we use the human physically positioning a

robotic  hand.   Here,  the  operator  has  full,  natural  control,  and  complete  visuals.  We

analyzed the eye gaze data difference between the two conditions in three different stages of

the  manipulation  task:  pre-grasp,  during  manipulation,  and  post-manipulation  grasp

evaluation.  Differences between eye gaze patterns can help distinguish extrinsic (visual)

cues from intrinsic (touch, proprioception) ones, and more importantly, which visual cues

humans use as substitutes for missing intrinsic cues. We use this information to design a

camera  view-point  algorithm[10] and  a  scoring  metric  for  view-points,  which  uses  our

identified features to determine the best view for grasp evaluation from images.

Chapter 2 explores prior work done related to robotic grasping, analyzing human eye-gaze

patterns and optimizing camera viewpoints. Chapter 3 explains physical study protocol and

how we analyzed eye gaze data. Chapter 4 presents the results from eye-gaze data analysis.

Chapter 5 explains how on-line study is conducted and presents the results from the on-line

study. Chapter 6 provides conclusion for this work. 
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Chapter 2 Background

2.1 Robotic Grasping

The domain of robotic grasping and manipulation has seen significant progress in terms of

hardware [11],[12],[13] and software development  [14],[15],[16],[17]. However, there is a

strong  need  to  improve  the  ability  of  robots  to  robustly  physically  interact  with  the

environment. Specifically, prior work has shown that even in a laboratory environment with

almost perfect information for grasp planning, robotic grasping performance only succeeds

about 75% of the time, i.e., one in four grasps fail  [18]. The primary reason for this poor

performance is  that  even small  differences  in  object  shape  or  object  position cause the

object to, for example, slip out during the grasping process. There have been significant

efforts with mixed success to address these issues using physics-based heuristics and brute-

force search algorithms to find more robust grasps[18],[19],[20],[21].

Prior work has explored “learning from demonstration”, where humans teach robots  [22],

[23],[24]to advance robot performance. However, most previous approaches for gathering

data are time-intensive [25]. Prior work has explored crowd-sourcing where they employed

images or video of the grasps to receive human input [26]. That work showed that humans

are likely to over-estimate how successful the grasp will  be.  Despite this  over-estimate,

humans are still more accurate than learning approaches that use heuristics such as center of

grasp,  center  of  mass  for  certain  subsets  of  grasp  types.  Other  work  in  the  context  of

learning from demonstration also revealed a novel heuristic that humans use for improving

grasp quality, namely, “skewness” where the human aligns the robot's wrist to the object's

principal axis [18]. Other studies also showed that integrating human demonstrated grasps

with existing grasp planning softwares tends to increase the performance of grasping[27]. It

also showed that  researchers  can  learn the placement  of  thumb and index fingers  from

human grasps which can be used to replicate more human-like grasps in robotics .
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John D.Sweeney and Rod Grupen [28] used human demonstration techniques to learn grasp

affordance preshapes —the pose of the hand and fingers relative to the object just prior to

initiating a grasping action—from demonstration data, and use those affordances to generate

preshape hypotheses for novel objects based on visual appearance. A grasp affordances [29]

is a way of grasping an object to achieve a particular function, i.e., reaching a coffee cup to

drink  and reaching a  coffee  cup to  transport.  This  research  showed  improved grasping

performance on novel objects. Hyun et.al  [30] has used appearance-based visual cues to

improve prediction of grasp affordances. 

Research has been done in improving the performance of robotic grasping by using image

based visual servoing (IBVS) technique in the shared autonomy grasping system, in which

visual input is given to control a dynamic system [31] . In this method, visual input plays a

vital role in deciding where the finger lands on the object, so providing a clear visual input

with few occlusions and more information about the scene is important. Research has also

shown that using predictive displays where there is a  huge delay in sending and receiving

commands  can  improve  performance  of  grasping  [32].  By  using  predictive  displays

operators can “lead” the task and take larger steps with confidence,  while performing a

teleoperation task. In order for a grasp to be successful, predictive displays should show

where the fingers will land on the object in the near future with high accuracy.

Human-in-the  loop is  another  technique  researchers  have  explored  where  they  combine

human cognitive skills with autonomous tools to increase the performance of grasping [33].

Human-in-the loop (HitL) has shown that subjects grasped more number of objects with less

collisions  in  cluttered  environment  when there is  more  level  of  autonomy on the robot

which decreases effort  on human operator.  This research also pointed out that operators

have concerns with comfort  level with GUI and other properties such as  positioning a

virtual  camera  while  performing  a  manipulation  task.  One  way  of  unloading  effort  on

humans performing the task is to automate the camera positioning such that it shows what

the operator wants to see to perform the task. Paul Michelman and Peter Allen[34] has used
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shared autonomy in hand teleoperation system. This research showed that the teleoperation

tasks are completed 50% more quicker when force sensations are used.

Researchers have  studied gaze patterns for evaluating static images of grasps [35], which

showed that  participants  use  many  of  the  same cues  as  they  do for  grasping,  and that

participants  are  similarly  likely  to  overestimate  the  effectiveness  of  grasps  that  look

“human”. However, no prior work has studied human eye gaze in 3D when controlling a

robot arm in a physical interaction task.

The teleoperation literature has shown that many factors can affect the performance of a

remote teleoperator like viewpoint, perception and time delay. But there is little to no work

done in understanding how humans visually process the task environment while performing

a task with a physical robot or how they perceive views shown on a user interface while

teleoperating. Most research has shown that operators have concerns with how the data is

presented to them and in understanding the presented data. Research  showed that many

operators spend a lot of time rotating the camera angle in the user interface in order to find

the best view to understand the scene[33]. In order to take the load off of the operator and to

get a quick response from them, we have to present data to the operator which shows useful

information. One way of doing this is first to understand what features or descriptors people

think are important when performing a manipulation task. In order to find these features, we

analyzed eye gaze data of humans when they were performing a manipulation task. Our

research will help in improving how the data is presented to the teleoperator, visualizing

contact points on user interface and in pruning the decision space. All these factors will help

in getting a quick response from the operator. 

2.2 Analysis of eye gaze data 

There is a growing body of prior work on where humans look when performing grasps

using their own hands [36],[37],[38]. This work showed that people's gaze patterns are a
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mix of tracking the object's center of mass, looking at the top of the object, and looking at

where the forefinger will make contact with the object (which in their case was the top of

the object). Varying the task  [38] or asking the participants to do the grasp from memory

[37] changed the ratios of which regions were gazed at,  and in what order, but did not

substantially change the types of regions. In [35] we see that these same patterns hold for

the robotic grasping task, but that participants also spend substantial time looking at the

fingers, wrist, and other contact points. 

2.3 View-point selection

Viewpoint selection is a very hard task for two main reasons: first, there are many factors

which must be taken into account to generate a good view, ranging from perceptual issues to

geometric analysis of the objects in the scene; second, the “best” view  heavily depends on

what we want to see, and thus, it is both a use and application-dependent task.

There is very little work done in identifying what features are important in an object to

represent them in the best possible way, so that useful information is captured in that view

[39],[40]. There are several existing techniques for camera viewpoint selection  [10],  [41]

which evaluate a large number of visually salient features and artistic guidelines. Most of

the features which they evaluate are domain specific. Placement of camera is very important

in order to see features without any occlusions. In GUI's, effective camera placement and

control is fundamental for the user to understand the virtual environment and be able to

effectively accomplish the intended task.  Ineffective camera placements could cause the

user  to  miss  important  visual  details  and  thus   make  incorrect  assumptions  of  the

environment while performing the task. In most of the currently used GUI's, users directly

position the camera using an input device through a tedious and time-consuming process

requiring a succession of “place the camera” and “check the result” operations. In recent

years, researchers have come up with methods to automatically position the camera so that

it shows useful information with less occlusions[42],[43],[44]. These new methods relieve 
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the  user  from  direct  control.  Camera  placement  optimization  is  done  by  considering

multiple features of the input image. Most of these features depends on the domain of the

problem, so it is crucial to identify which features are important in a specific domain. 

To present the data in best possible way, researcher have also explored how to calculate the

view-point quality and describe how this information can be used to get the quick response

from  the  operator.  Computation  of  good  view-points  is  important  in  several  fields:

computation geometry, visual servoing, robot motion, etc. There is no consensus about what

a good view means. In many areas the quality of a view-point is intuitively related to how

much information it gives us about the scene. A good view must help us to understand as

much as possible about the object or scene represented. Bourque and Dudek [45] define an

interesting  point  in  an  image  as  the  one  different  from the  surrounding  context.  These

regions are the ones on which the human attention would focus. The features which are used

to calculate view-point quality are domain dependent, i.e., in games, features are showing

characters without occlusions, while in grasping, features are showing objects and fingertips

without occlusions in cluttered environment. 

Researchers have come up with new metrics to calculate quality of view-points so that they

can select good views. Kamada and Kawai [46] have proposed a method to compute a point

of view, which minimizes the number of degenerated edges of a scene. They consider a

viewing direction to be good if parallel line segments are as far away one from another as

possible at the screen. This means minimizing an angle between a direction of view and a

normal  of  a  considered  face.  Or,  for  a  complex scene,  this  means  minimization  of  the

maximum angle deviation for all faces of the scene.

Colin [47] has proposed a method, initially developed for scenes modeled by octrees. The

method is to compute a good viewpoint for an octree. The main principle of the method can

be described as follows:
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1) Choose three best directions of view  d1 ,  d2 and d3  among the 6 directions

corresponding to 3 coordinate axes passing through the center of the scene.

2) Compute a good direction in the pyramid defined by the 3 chosen directions, taking into

account an importance of each of the chosen directions. The view-point is considered to be

good if it shows high number of voxels.

Plemenos and Benayada  [43]  have proposed a heuristic that extends the definition given by

Kamada  and  Kawai.  Their  heuristic  considers  a  viewpoint  to  be  good  if  it  minimizes

maximum angle deviation between direction of view and normals to the faces and gives a

high  amount  of  details.  Vazquez  et.al[49],[50],[51],[52],[53],  used  viewpoint

entropy/Shannon's entropy as a metric or information measure to obtain good views. This

entropy considers both the projected area and the number of visible  faces from the 3D

model normal dispersion. Satoshi et.al  [54]  used novel information quantity of Fencher

type based on Fencher's law in psychophysics to select good views. Dmitry Sokolov and

Dimitri Plemenos [55] has used curvature of a surface as a metric to choose good views.

Francisco et.al  [56] have used ambient occlusion technique to choose good views. Thales

et.al  [57] has  used  machine  learning  algorithms  to  learn  good  views  using  intelligent

galleries.

Contributions

As mentioned in the previous sections, there is little to no research done in understanding

human gaze in 3D. Most research in the context of teleoperating robots for grasping tasks

has shown that teleoperators have concerns with the comfort level of virtual interface. Most

of the existing grasping softwares takes considerable amount of time to come up with a

grasp which might not work if there is any change in the position of the object. One way to

improve is to prune the decision space. Our research will fill the gap in robotic grasping by

understanding how humans perceive task environment while performing the grasping tasks 
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and what features humans think are important for grasping. We will also focus on how this

information can be leveraged to present visual data in best possible way to a teleoperator.

Our  contribution  from  this  research  is  a  method  for  picking  important  features  and

providing  a  quality  metric  to  choose  good  views  for  the  more  specific  task  of  grasp

evaluation. Also we have conducted an on line study to verify how effective are the features

we chose  in determining the quality of grasp. 
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Chapter 3 Experimental Methods

To understand eye gaze patterns better we decided to run a user study where we collect eye

gaze data of participants while they are performing the task. In this chapter we will explain

how experimental study is conducted, what objects were used in the study, what tasks were

performed during the experimental study and how data is collected and analyzed. In high

level, participants were asked to lift the object from the table and also perform an object-

specific task. They did both these tasks with their own hand and a robotic hand. The order of

the two phases were randomized to prevent learning effects. The participants’ eye-gaze was

tracked  throughout  the  task,  and  they  were  also  asked  to  “think  aloud”  ―  verbally

evaluating their choice of grasp.

3.1 Objects and tasks

We used 15 everyday objects for the study. A photo of the objects is show in the Figure 3.1.

For each object, participants were asked to perform two tasks. The first task was to pick up

the object from the table and the second task was object-specific (see Table 3.1). The object-

specific tasks are tasks or actions that are associated naturally with each object, such as

pouring water out of a jug, throwing a ball, or pressing a button on the remote.

3.2 Phases

Human grasping and human-driven grasping were captured during our study. The study

features  a training phase and two distinct  capture phases: in  the first  capture phase the

participants use their own hands to grab an object,  while in the second, the participants

physically position the robotic arm and hand to grasp the object (order randomized). Data

was not captured during training phase. In this phase, participants were asked to familiarize

themselves with the hand by moving it around adjusting the fingers. Although there was a

gravity compensation mode for the arm, it did not adjust well when the hand was opened 
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and closed, so participants were also given instructions to ask for help in supporting the

hand if needed.

When participants were doing the task with their own hand (human hand), they were asked

to use only three fingers, i.e., thumb and first two fingers, to replicate the three fingers of

the robotic hand.

 

Figure 3.1 Objects used in the study

3.3 Prompts and think-aloud

We asked them to think aloud to provide insight into what they were thinking of while

performing the grasping tasks.  For  the move-the-object  task,  participants  were asked to

actually move the object using the robotic hand and arm. For the other tasks, they were not

required to perform the task,  but  simply needed to position the hand. They were given

explicit permission to pick up the object, position it how they wanted, and use their other

hand if needed. At the end of each grasp, participants were asked: “Is this grasp exactly

what you wanted? Or are the finger placements slightly different than what you were

12



intending? (How so?)”. This prompt is aimed at determining how much the robotic hand

limitations affected the participants’ grasp choice. Also it has helped us in interpreting the

results.

Table 3.1 Object-specific tasks and number of grasps captured (including pick-up task).

Object Natural Task Total Grasps

Water Pitcher Pour water out of pitcher 11

Spray Bottle Pull trigger to spray 14

Margarita Glass Drink out of glass 14

Cereal Box Pour cereal out of box 12

Cracker Box Pour crackers out of box 15

Television Remote Press power button on 
remote

11

Toy Plane Pretend to fly plane around 13

Food Clip Open clip as if using it to 
close bag

10

Soap Dispenser Press down on nozzle to 
dispense soap

10

Foam Cylinder Throw object overhand 16

Bison Plush Toy Hand toy to someone 5

Plush Ball Throw ball underhand 19

Sock Doll Hand doll to someone 16

Decorative Cord Hand cord by its metal ring 5

Tape Roll Support tape roll so that 
another hand can be used to 
rip tape off

11

Total Grasps/object 182
12.1

3.4 Data Capture: equipment and procedure

The equipment used for this  study included a pair  of SMI Eye Tracking Glasses 2.0 to

collect eye-gaze data and a Barrett WAM Arm with BH280 BarrettHand to perform the
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robotic grasping. We also instrumented the working space with spatial calibration patterns

(see Figure. 3.2) and the capture procedure to ensure calibration between data sources (eye-

gaze, Kinect sensor, and BarrettHand).

3.4.1 Eye tracking

The SMI glasses recorded both where the user was looking and what they were looking at.

The data was recorded as a 960*720 video stream at 30 Hz, plus an eye gaze location for

each  video  frame  (as  x,  y  image  coordinates).  The  eye  gaze  data  also  included  other

information such as pupil diameter, fixations, and saccades. The eye tracker had to be fit to

the person's head (similar to goggles) using two nose pieces and calibrated to their eyes. To

perform the calibration, the participant was asked to sit down in front of the table and fixate

on a red dot on the table (see Figure.3.2). This one-point calibration was performed using

SMI software.  We checked the calibration at  the end of each grasp trail  by having the

participant focus on the red dot again.

3.4.2 Arm and hand tracking

We used a Barrett WAM and Barrett Hand (BH-280) in the study. The arm is back drivable

and gravity compensated; that is, the arm location can be physically adjusted with ease.

However, the BarrettHand's fingers cannot be physically adjusted from external forces; it

can only be done through motors. We used a physical set of three sliders to control how

much each finger was closed, and a knob to control the spread of the fingers. Note that the

two joints of each finger are controlled with one actuator.

3.4.3 Audio and temporal alignment

The eye-tracker recorded audio with the video. In addition to recording what the participant

said, we also used this information to temporally align the eye-tracker to the arm data
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streams using a generated beep. All other data alignment was through the Robot Operating

System(ROS) toolkit.

Figure 3.2 Study set up. The table included a checkerboard pattern for further calibration. The red circle was

used to calibrate the eye tracker. The box on the table was used in the object placement tasks. Participants were

seated at the table.

3.5 Protocol management and flow

The study is designed to be run by two researchers. One researcher handled the Ubuntu

Linux PC running ROS and the arm, the other handled the SMI eye tracking laptop. Both

researchers were involved in explaining the study and talking to the participant.

The average time for a data collection session was an hour and a half, covering two grasps

each for three or four objects. The maximum time was restricted to two hours due to eye
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strain generated by the eye tracking glasses, as well as general fatigue from performing the

experiment. New participants went through a training session to familiarize themselves with

the robot arm and hand before starting data collection.

The general flow of the study can be seen in Figure 3.3 and is also outlined in the list below.

 1. Subject enters room and signs consent form.

 2. Brief training session with a test object.

 3. Eye tracking calibration performed.

 4. Study tasks explained to participant.

(a) Object placed on table, and participant told to use robot hand or their own hand

(order randomized) to perform pick up task.

 i. Pick up task performed.

 ii. Repeat until no new grasps.

(b) Natural task explained

 i. natural task performed.

 ii. repeat until no new grasps.

(c) Object-tasks repeated with human hand or robot hand

(d) Eye tracking recording stopped, and re-calibration is done to check if there is

any drift in eye-gaze.

 5. Repeat a-d with as many objects as possible

 6. Eye tracking recording stopped, all other data collection ended.

3.6 Participants

We  recruited  13  participants,  ranging  in  age  from  16  to  late  50's,  all  with  normal  or

corrected to normal with contacts vision. It is not possible to wear regular eye glasses with

SMI eye-gaze glasses. On average participants specified 4.5 (maximum 8) grasps per object

across the two tasks.
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Figure 3.3 Flow chart of the study procedure

3.7 Analysis of eye-tracking data

We performed two types of analysis on the eye-gaze data. The first analysis focused on

labeling what the participants were looking at before, during and after grasping the object to

perform the manipulation task (see Figure 3.4) . The second analysis focused on differences

in fixation points  for different objects. Example frames from the video are show in Figure

3.5.

3.7.1 What did they look at?

We annotated the eye-gaze data using a two-step process. In the first step, we annotated the

video into three phases: Pre-grasp (when the participant is looking at the object but has yet

to touch it), during-grasp (when the participant closes the hand around the object) and post-

grasp evaluation (when the participant evaluates the grasp in the think-aloud protocol) (see

Figure 3.4). While manually annotating through the videos we found similar patterns in all

the videos that the subjects looked at a particular set of features while performing the task

with their own hand and robotic hand. The features we found that subjects are focusing on 
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are same as the features found in other research [35]. So we decided to find how much time

participants spent looking at each of these features while performing the task. So in the

second step we labeled what features the participants were looking at. The view is split into

five regions, three of which focuses on the object and two on the hand (see Table 3.3). Apart

from these features subjects also looked at the control box which is used to control finger

joints of the robotic hand while performing manipulation task.

We annotated the video data and produced the statistics using MaxQDA [max 1989-2015]

(see Figure.3.6). To verify inter-coder reliability, we had a second coder repeat the coding

for 1 participant;  the code alignment  was within 5%. For  this  analysis,  the gaze points

outside of the object and hand were ignored.

Figure 3.4 Three stage of grasping. Left to Right: before, during and after

Not all participants had all codes, most notably, very few participants had a pre-grasp gaze

for the robotic hand, and there were also 2 participants who had no pre-grasp gaze for the

human hand. We hypothesize two reasons for this:

1. Peripheral vision was sufficient in some cases for the participant to categorize the

object.

18



2. If the participants were doing the robotic hand second, they had no need to look at

the object again (10 of 11 subjects with no pre-grasp gaze).

Figure 3.5 Example frames from the eye-tracking video showing the different eye gaze locations (center, top,

side, finger, wrist).

3.7.2 Data analysis of eye-gaze data

Once eye-gaze data is annotated using MaxQDA we have performed data analysis to show

that the data is statistically significant. 

As  described  above,  in  the  first  stage  of  annotation  we annotated  the  video  into  three

different stages. Once we have completed annotating all the videos, we measured how much

percentage of total time is spent in each of these stages for each participant. After that we

did a two sample T-test at 5% significance level between all the three stage across both

condition, i.e., human hand and robot hand. The box plot for the percentage of time spent in

each stage in two different scenarios is show in Figure 4.2
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In second stage of annotation, we focused on annotating what features participants were

looking at in each of the stages. We annotated the features participant is looking at  if the

eye gaze was  moving/constant (700ms - 3sec) at a certain region.  Once second stage of

annotation is done, we did a two sample T-test at 5% significance level between all the

features  across  three  stage  for  all  participants.  Before  performing T-test  we did  feature

scaling  to  bring  data  between the  range 0 and 1.  Feature  scaling  is  done by using  the

formula below:

X '
=(X−Xmin)/ (Xmax−Xmin)

Following  steps are performed on eye-gaze data:

1. Careful annotation of eye-gaze data into three stage, i.e., before, during and after.

2. Statistical analysis is performed.

3. While annotating we found similar patterns across all the videos that is, participants

are focusing on certain features on the object and hand while performing the task.

These features coincide with features mentioned in other research [35],[37],[36]. So

we decided to find percentage of time spent on each feature at each stage.

4. Careful annotation of eye-gaze data to identify features.

5. Normalization of data between range 0 and 1.

6. Statistical analysis is performed.

_______________________________________________________
Pseudo code for T-test:
_________________________________________________________

H =[]; 

P =[]; 

temp_vec_h= []; 

temp_vec_p = []; 

for i = 1:size(data,2) 

temp_vec_h = []; 
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    temp_vec_p = []; 

    for j = 1:size(data,2) 

a_mat = data(:,i); 

b_mat = data(:,j); 

                       [h,p] = ttest(a_mat,b_mat); 

                       temp_vec_h = [temp_vec_h, h]; 

                       temp_vec_p = [temp_vec_p, p]; 

           end 

           H = [H; temp_vec_h]; 

            P = [P; temp_vec_p]; 

end

where,

temp_vec_h = temporary list of h values of ttest

temp_vec_p = temporary list of p values of ttest

data = normalized time spent looking at each of the five features in three different stages 

across all participants

H = final list of h values from ttest

P = final list of p values from ttest

A subset of P-values for all the combinations between the data is shown in the Table 3.2

( see Appendix A.3 for complete set of P-values) . A box plot which shows normalized time

spent on each feature at each stage is show in the Figure 4.1.

      Table 3.2 P-values

before_top during_top after_top before_wrist

before_top 1 0.398038 0.333148 0.01855

during_top 0.398038 1 0.85671 2.6E-006

after_top 0.333148 0.85671 1 3.5E-006

before_wrist 0.01855 2.6E-006 3.5E-006 1
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3.7.3 Fixations

While  annotating  the eye-gaze  data  we found another  pattern in  the  data.  We saw that

subjects tend to focus on  multiple locations on objects while performing the task. These

locations or points on complex objects are more when compared to simple objects. In order

to find these points, we implemented the EyeMMV fixation detection algorithm [58], which

filters the coordinate sequences by applying a threshold of dispersion to the points. We used

standard  settings  [59] for  the  algorithm:  a  90  ms  minimum  fixation  duration  and  a

maximum fixation dispersion of 0.5 degree of visual angle (DVA), with a preliminary filter

of 5 pixels greater than ½ DVA. We measured visual angle based on gaze frames where the

participant was focused on the object. The algorithm produces a sequence of fixations, with

each fixation centered at the average of the coordinates and lasting a given duration. Using

fixations, over the raw coordinate data, both reduces processing time and removes saccades,

where the viewer is essentially blind. We overlay the fixation counts with the annotations to

produce the number of fixations on the object during each phase.

Table 3.3 Annotation codes

Regions                     Codes

Regions (object)    Centerline      Top      Edges

Regions (hand)    Wrist        Finger tips
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Figure 3.6 Annotations for the videos using MaxQDA

3.7.4 Think-aloud evaluations

We  did  not  formally  analyze  the  participant’s  comments;  we  summarize  here  overall

statements. Around half of the participants said at least one grasp was not quite what they

wanted, particularly for more complex objects such as the plane. The major refrain was that

the participants didn't like that the joints in the fingers couldn't be controlled individually

(the Barrett hand only supports bending the finger not controlling each joint independently).

This was most noticeable in cases where the finger locks up due to collision with the object

― one part of the finger comes in contact and stops, while the remaining part of the finger

stops where it is and doesn't close all the way around the object. Other issues were the

fingers being too thick, the hand too big, or the controls being too fidgety to achieve some

of the more precise grasps the participants had intended to perform.
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Figure 3.7 Images showing fixation points on different locations on objects and hand while performing the 
task
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Chapter 4 Results from User Study

Here  we  summarize  the  eye-gaze  difference  between  the  two  conditions  (human  hand

versus robot hand), and the differences in fixations between objects. T-tests are performed

on eye-gaze data at the significance level of α = 0.05 between the different conditions. 

4.1 Gaze difference

Figure 4.1 Gaze time spent on each feature while performing task with the human hand and the robot hand in

three phases. From left to right: Before, during and after phases. Gaze time is normalized across all three

phases.

Figure 4.1 shows the normalized gaze times for both using the robot hand and the human

hand in the three phases of grasping (before, during, and after). Several patterns are clear. In

the “before” phase when using the robot hand, the human subject almost never looks at the 
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object's top and edges or the robot's wrist or fingertips. They only focus on the object's

centerline. This is in contrast to using their own hand, where the focus is primarily on the

top and edges of the object, as found in previous studies[35].

In the “during” and “evaluation” phases, the two gaze patterns were more similar. Primary

differences  are  that  the participants  spent  more time observing the robot's  wrist  (versus

looking at their own) and less time looking at the object's centerline. 

Overall, during the robotic grasp task participants spent significantly less time looking at the

edges and top of the object before beginning the manipulation (some participants barely

glance at the object before starting ― see Figure 4.2). In human grasping studies, gaze on

the edges and top corresponds to participants determining potential contact points for their

fingers. We hypothesize that the lack of these pre-grasp glances for placing the robotic hand

implies that visualizing contact points is part of the  control strategy for guiding the robot

hand to the desired grasp, but not for planning the grasp in the first place. 

Figure 4.2 Percentage time spent in each stage during robot driven and human driven grasping.
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Robotic hand control strategy: Participants varied on exactly how they moved the robot

hand, but in general they positioned the hand roughly where they wanted it and with the

desired  finger  spread,  and  then  iterated  a  few times  between  adjusting  the  fingers  and

repositioning the hand.

4.2 Fixation differences for objects

Objects  with  more  complex  geometry  saw  more  fixations  than  simple  objects  in  the

“before” phase (see Fig.4.3). We define complexity by the number of components produced

by an automated shape analysis approach such as [60]. From an informal observation of the

gaze patterns, participants appeared to be moving between the center line and top of each

convex regions of the object (e.g. the wings to the plane body). A more formal evaluation of

what regions they were looking at would require tracking the object in the video.

4.3 Fixation counts on the object, organized from simpler shapes to more complex ones.
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In fig 4.3 you can see that even though the geometry of cracker box is not complex it has

more number of fixation points which is an anomaly. We have gone through the videos and

checked why this has happened and we found out that subjects were reading the details

which were on the cracker box. We will take care of this by covering the objects in our

future studies. Apart from gaze differences and fixation points we haven't found any patterns

in eye-gaze data.

4.3 Discussion

Results from eye-gaze data analysis shows that people mainly look at features like object's

centerline,  wrist  and  fingertips  while  performing  the  task,  which  is  in-line  with  other

research. We also found that people look very less time at their wrist when performing a

task with their own hand when compared with performing task with a robot hand. We think

this is because humans have been grasping and manipulating object's for a long time and we

have complete control over our hands when compared with a robotic hand.

We also presented how much percentage of total time human subjects spent at looking each

feature  while  performing the  task  in  both  condition.  This  will  help  us  in  finding  what

features are important during each stage of grasping which can be used in pruning decision

space  for  grasping.  We also  found a  distinct  pattern  in  fixation  points  when compared

between  simple  and  complex  objects.  Complex  objects  saw more  fixation  points  when

compared with simple objects. We think more rigorous and formal analysis is required in

this direction to make a strong hypothesis. Also we think that more analysis in eye-gaze data

might lead to finding new patterns.

There is a huge scope and interest in finding what people are looking at while performing

the task. Our research takes a major step in this direction. We are also interested in seeing 
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how eye-gaze patterns differ when human subjects perform task with a different robotic

hand and how they change depending upon the flexibility of robotic hand. 

4.4 Conclusion

This work presents a major step in the direction of finding what features people think are

important for grasping. By conducting a user study and analyzing eye-gaze data we found

what features people look at while performing the task and for how much time they are

looking at  each  of  these  features.  We also  presented  how fixation  points  vary  between

complex and simple objects. This information is very useful for understanding how humans

process scene environment and how they process data shown to them on a screen. These

results are useful in designing better algorithms for grasping and also in designing better

visual interfaces for grasping.
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Chapter 5 View-point Selection Study

Analysis of eye gaze data has shown some promising results. But how can we leverage

these results to improve performance of robotic grasping. In this chapter we describe how

the results from previous analysis (eye-gaze data analysis) helped us to design an on-line

survey to validate what features people think are important for grasping. The long-term goal

is that this information on what features humans consider important for evaluating grasp

quality may be used in huma-robot interfaces for teleoperation. We also present the results

from the on-line survey in this section.

5.1 Follow-up on-line study on viewpoint selection

Data collected from physical studies are of high quality, but it is very tedious to collect and

does not scale. Previous work [26] shows that we can leverage on-line surveys to quickly

label and classify grasps by asking participants to evaluate images of them; however, on-

going  work  also  shows  that  view  point  selection  plays  a  key  role  in  how  effective

participants are in labeling grasps and how confident they are. Our goal is to use the eye-

tracking data to guide an automatic view-point selection algorithm for this use case. 

We use the relative percentage viewing time of the features during the robotic grasping hand

stage to create a quality/scoring metric to choose the best view-point. We follow this with an

on-line survey to evaluate if the algorithm selected views are both effective and useful.

5.1.1 Viewpoint optimization algorithm

Various researchers have used different techniques (presented in background section) for

viewpoint  selection  based  upon  the  domain  they  are  working  in.  We  have  designed  a

viewpoint  selection  algorithm which  depends  upon  the  features  people  looked  at  when

performing grasping task.
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As gravity and object orientation are important components in grasp evaluation, we limit

our  viewpoint  search to  azimuth  and elevation  (see Figure 5.1)  (essentially  searching a

hemisphere of viewpoints, see Figure 5.2). The camera is pointed at the center of the object

and the  up vector is aligned with gravity. The algorithm selects a sample of points on a

hemisphere with fixed radius from the center of the object to determine a set of candidate

viewpoints.  Then  we  use  our  scoring  metric  to  choose  the  'best'  viewpoint.  The  best

viewpoint is the one with highest scoring metric value.

Figure 5.1 Azimuth and Elevation of a view-point

______________________________________________________________
Pseudo code for camera view-point generation
___________________________________________________

view ← load_view()

constant_vec ←  get_vec_up(view)

constant_radius ←  get_radius(view_coordinate,model_coordinate)

initial_rot ← get_rot(view)

views =[initial_rot]
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for i in range(# of view points needed)

R ← get_new_rot()

if R not in view:

views.add(R)

end for

where,

load_view() = this function loads the view-point

get_vec_up() = given the view-point this function gets the UP vector of the view-point

get_radius() = given the required coordinates this function gets the radius

get_rot = given the initial view-point this function outputs the rotation matrix of the view-

point

get_new_rot() = this function (hammersley sampling function) outputs a new view-point

____________________________________________________
Pseudo Code for hammsersley sampling function
___________________________________________________

def hammersley_points(n):

points=[ ]

for k in range(n):

t = 0

p = 0.5

kk = k

while kk > 0:

if (kk & 1):

t += p

p *=0.5

k >>=1

t = 2.0 * t - 1.0 

        theta = (k + 0.5) / n 

        thetarad = theta * 2.0 * pi   
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        st = sqrt(1.0 - t*t) 

        point = (st * cos(thetarad), st * sin(thetarad), t) 

      points.append(point) 

return points;

where,

n = number of sample points needed

thetarad = value of theta in range [0,2pi]

For every grasp we sampled 250 different view-points.  These view-points are generated

using  a  hammersley  sampling  function  which  yields  sample  points  on  the  view-point

hemisphere.  Our quality/scoring metric  for  a  given viewpoint  is  simply  the  sum of  the

percentage of visible pixels for each feature (normalized by the maximum number of pixels

seen from any viewpoint). Each feature is identified by a different color. Each feature is

weighted by the percentage of time participants spent viewing that feature, averaged across

all participants(top=0.17,edges=0.24,fingertips=0.27,wrist=0.024, center line=0.29). For the

contact point feature we added a sphere roughly half the size of the fingertip, centered on

the point. The best view is the one with highest score; the second best is the one with next

highest score that is at least 30 degrees from the best view. Figure 5.3 shows the plot for

range of values of the scoring metric for a single grasp. 

Scoring metric =  
(no . of pixelson object∗w 1)+(no . of pixles on wrist∗w 2)+(no .of pixels on fingertips∗w 3)

total no . of pixels

where,

w1 = normalized percentage of time spent looking at object

w2 = normalized percentage of time spent looking at wrist

w3 = normalized percentage of time spent looking at contact points/fingertips
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Figure 5.2 A hemisphere from which viewpoints are selected

Figure 5.3 Graph showing range of values of scoring metric for a single grasp.
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Pseudo code to find quality of view point
                                                                                                                     
max ← 0 

viewPoint_index ← 0

for i in all viewPoints

temp_quality ← compute quality metric for thi viewPoint

if temp_quality ← max then 

max ← temp_quality

viewpoint_index ← I 

end if

end for 

save max and viewPoint_index
                                                                                                                              

5.1.2 Survey 1 

Our survey was designed to measure both how effective the views were for evaluation (did

this grasp work, yes or no?) and perceived usefulness. We used four viewpoints: best and

second best (good pair) (see Fig.5.4), and worst and second worst views (bad pair). The

survey has four questions (5-point Likert scale) (see Appendix A.1):

1. (All good and bad pairs): Would the grasp work, yes or no, and how confident are

you in your answer.

2. (Good pair and bad pair): Rank the usefulness of the first pair with respect to the

second pair.

3. (Best and second best/Worst and second worst): Rank the usefulness of the second

view.

4. (Good pair and bad view): Rank the usefulness of the three views (see Fig.5.5).
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         Figure 5.4 Image showing two different views (good view) of same grasp

We evaluated our algorithm with three objects (spray bottle, ball,  glass) and two grasps

each.  These  grasps  were  given  by  participants  in  the  physical  study  and  subsequently

verified as being effective using a shake test. Image order was randomized. Each of the 30

participants saw 20 of the 24 total questions, again randomized. Participants were recruited

from Mechanical Turk; we verified that the participants spent enough time on each question

to  have  seen  the  images  and  didn't  click  same  thing  for  every  question.  This  is  the

preprocessing step on data to eliminate erroneous data. 

We  conducted  a  two  sample  T-test  at  5%  significance  level  to  determine  statistical

significance in the data. We determined that there was an order bias; Images on the left

tended to be preferred over images shown on the middle or right (Question 1 mean 0.68

versus 0.35, Question 4 mean 3.45 versus 3.07 and 2.31, p < 0.0007,0.0005 respectively). In

a previous study  [35] we also saw a distinct pattern of looking at the left image then the

right, with only far more salient views on the right drawing the gaze first.
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Figure 5.5 Image showing three different views of same grasp. From left to right: first best, second best and

first worst view-points

5.2 Results from On-line Survey 1 

Refer to Figure 5.6. For Q1 (effectiveness) participants were not only more likely to rank

the grasps as effective (means 0.68, 0.35, p < 0.0007) but were also more confident in their 

answer (means 2.3, 1.4, p < 0.05). Grasp views were ranked as expected for usefulness both

as pairs and individual images (Q2 and Q4, See Fig.5.7, Fig.5.8). 

Interestingly,  the  second best  (and first  worst)  views  were both  rated  approximately  as

useful (mean 3.07,2.31, p<0.00039, 0.00019) relative to their corresponding first view (Q4).

The answers to Q3 did not yield data with statistical significance.
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Figure 5.6 Results of on-line survey 1. Grasp works y/n (Q1, good grasps)

Figure 5.7 Results of on-line survey 1. Usefulness of view pairs (Q2, good grasps). 
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Figure 5.8 Results of on-line survey 1. Usefulness of first and second best view to worst (Q4, good grasps).

(useful is to the right.)

5.3 Survey 2

In previous survey we shown the participants images of good grasps, i.e.,a good grasp is the

one which has passed shake test and asked them to answer a set of questions. But in survey

2 we have shown the participants images of bad grasps (see Fig 5.9), i.e., a bad grasp is the

one which has failed shake test and asked them a set of questions about quality of grasp.

These views are produced by the same algorithm used for generating views in survey 1. 

Survey 2 consists of 2 set of questions. In set 1, we showed them images of bad grasps.

And in set 2, we showed them those images which got most number of yes and no votes for

good and bad viewpoints respectively.  The main idea of set 2 questions is to cross verify

consistency of answers from the participants. In this survey we did not visualize contact

points. These are the questions in the survey (5-point Likert scale) (see Appendix A.2):
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1. (All good and bad pairs): Would the grasp work, yes or no, and how confident are

you in your answer. 

2. Why do you think the grasp will fail (this option only shows up if they answered 'no'

for  question 1)?

◦ Object will slip from hand

◦ Object will rotate when grasping

◦ Fingers are not closed around object

◦ Other reasons – please say why (descriptive answer)

Figure 5.9 Image showing two different views of same grasp (bad grasp)
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5.4 Results from On-line Survey 2

Figure 5.10 Results of on-line survey 2. Grasp works y/n ( Q1, bad grasps)

We  conducted  a  two  sample  T-test  at  5%  significance  level  to  show  that  the  data  is

statistically significant. Figure 5.10 shows the results from survey 2 question 1, where we

asked the participants whether the grasp works or not based upon the image shown to them.

For  both  good  and  bad  views  we  almost  got  equal  yes  and  no  votes,  which  means

participants were unable to say whether the grasp works or not based upon the image shown

to them (p >0.1). We think this is because grasps shown in the survey are really bad that the

quality of view-point did not make a difference in their decision if the grasp would fail or

not.  Most  of  the  participants  answered  that  the  object  might  slip  from the  hand  while

grasping or fingers are not completely closed around the object. We think this is because of

not visualizing the contact points as all fingers didn't make any contact with objects in most

grasps. 
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  Figure 5.11 Results of on-line survey 2. Grasp works y/n (Q2, good grasps)

Figure 5.11 shows the results from survey 2 question 2, where we showed images of good

grasps and asked participants whether the grasp works or not. These are the images which

got significant number of yes and no votes for good and bad views respectively(p <0.01) .

As you can see, when we shown them good views of a grasp they were able to say that the

grasp works and when we shown them bad views of the grasp they voted that the grasp

wouldn't work. These results are in line with results from survey 1. 

From survey 2 results we hypothesized that visualizing contact points plays a vital role in

deciding whether the grasp works or not. Also people assume grasps which are not human 
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like tends to fail more often when compared to human-like grasps. More research has to to

be done in order to make a strong hypothesis.  

5.5 Discussion

Our results from question 1 in on-line survey 1 suggests that people were able to distinguish

whether a grasp works or not based upon the views we provided. When we showed them a

bad view of a good grasp most people answered that the grasp won't work, but when we

showed them good view of the same grasp most people answered that the grasp will work

and confident about their answer. We think this is because good views captured most useful

information about the scene and they showed those features what people think are important

for grasping. But in case of bad views, they didn't capture useful information about the

scene. Results from question 2 and 4 from on-line survey 1 suggests that people were also

able to rank the relative usefulness of different views (best, second best and worst) correctly.

Most researchers has pointed out that operators had a hard time in understanding the visual

information, i.e., 2-D views, presented to them and in using interfaces while manipulating

an  objects.  We  think  these  results  helps  researchers  to  better  understand  how  humans

perceive visual information presented to them which indeed helps them to design better

interfaces and they can use the visual cues we found in our research to present the visual

information  in  the  best  possible  way to  a  teleoperator  so  that  they  can  understand  the

environment better.

Results from question 1 survey 2 did not yield any important information. At present we

don't know the exact reason why this has happened. We think this is because grasps shown

in the survey are really bad that the quality of view-point did not make a difference in their

decision if the grasp would fail or not. Most participants answered that grasps might fail

because the object might slip from the hand. It is interesting to know how visualizing
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 contact points might affect the judgment of the participant. More research should be done

in  order  to  find  whether  visualizing  contact  points  has  any affect  or  not.  Results  from

question 2 are in agreement with results from survey 1.

5.6 Conclusion

In this work we have explored how efficient the features we found from the previous study

are in finding whether a grasp works or not. We have explored this with both good and bad

grasps  with  three  different  objects  and  two  grasps  per  object.  We  also  identified  that

providing good views helps the users to understand the scene better.

Our main contribution from this study is that by showing useful features like contact points,

have tremendous effects on how people judge the effectiveness of a grasp. This is a major

step towards understanding how people perceive the information presented to them. More

work needs to be done to have a  better understanding about the effects of these features and

we think that there is a lot of scope for future research in this area. Our future work will

include  making  the  selection  of  best  views  automated  and  integrating  it  with  visual

interfaces like Rviz and seeing the effects of it. 
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Chapter 6 Conclusion

Understanding human gaze can tell us a lot about how humans perceive visual information

while performing a task and this  knowledge can be used to design better  interfaces  for

teleoperation and also improve robotic grasping performance using those same heuristics. In

chapter 3, 4 and 5, I presented what features people think are important for grasping and

evaluated their efficiency using an on-line survey. This begins to provide an understanding

of  how  humans  perceive  visual  information  and  which  visual  cues  they  substitute  for

missing tactile cues when performing a physical interaction task. This research  is just the

beginning step in understanding human gaze patterns.

An analysis of eye gaze data has shown us that people seldom looked at the object's top and

edges or the robot's wrist or fingertips in the “before phase” when performing the task with

robot  hand (see Fig.4.1).  But when they performed the task using their  own hand they

mainly focus on the top and edge of the object, as found in previous studies. The main

difference  between  two  eye  gaze  patterns  in  “during”  and  “evaluation”  phases  is  that

participants spent more time observing the robot's wrist and less time looking at the object's

centerline. We think this is because participants are trying to adjust the robot's wrist to lower

the skewness of the grasp (that is, the angle between the object’s principal axis and the wrist

orientation). We made an informal observation that for objects with complex geometry has

more fixations than simple objects (see Fig.4.3). A more formal evaluation of this result is

required to understand what regions they were looking at during grasping. Along with these

interesting results, Chapter 4 raised interesting questions regarding changes in gaze patterns

when participants uses a different robotic hand and how does the flexibility of robotic hand

changes gaze patterns.

Chapter 5 explored in detail the effectiveness of features to decide whether a grasp works or

not based upon the views we provided. Participants rated that the best views  –— which

shows useful features –— are more effective and useful in deciding whether the grasp works
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or not when compared to other views (see Fig.5.6, Fig.5.7,Fig.5.8). The results from on-line

study suggests that participants were able to judge whether a grasp works or not when we

provided them good views. This suggests that showing good views which captures useful

information about the environment helps teleoperator tremendously in successfully grasping

an object. We have also formulated a scoring metric to evaluate the quality of views. Along

with these interesting results, on-line survey raised interesting questions regarding effects of

visualization of features on deciding grasp quality.  In this  thesis,  We have presented an

analysis  of  the  difference  in  eye  gaze  when  participants  used  their  own  hand  versus

manipulating a robotic one. 

Eye-Gaze  analysis  is  totally  different  from  the  existing  methods  used  by  grasping

community like Human in The Loop, Learning from Demonstration and we think that this

domain  needs  our  attention  and  efforts  due  to  it's  uniqueness  and  potential  impact  on

grasping community. Even though there is an overlap with other research areas, most of

them have not addressed questions regarding human perception of visual information and

we think eye-gaze analysis should be classified as a new domain in robotics community. We

just  scratched  the  surface  of  how we can  use  eye-gaze  in  improving  robotic  grasping.

Researchers  has  analyzed  eye-gaze  to  improve  performance  of  human-robot  interaction

[61]. And there is a lot of research going on in understanding human perception. There is a

multitude of possibilities on how we can use eye-gaze information in robotics.

This research will push the boundaries in understanding human gaze patterns. Findings from

this  research  reinforces  the  idea  of  providing good views improves  the  performance of

teleoperators  and   questions  raised  in  Chapter  4  and  Chapter  5  will  encourage  more

researchers  to  study  about  eye-gaze  patterns  and  how  it  will  be  helpful  in  improving

performance  of  grasping.  This  research  provides  initial  results  regarding  how eye-gaze

results can be used to improve decision making of teleoperators and in presenting visual

data in a best possible way.
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Grasping community will  need to  focus more on understanding human gaze patterns in

various scenarios. The long-term goal of this work is to help in designing better interfaces

for tele-operation and help in understanding how people process visual information when

performing grasping tasks in various environments. 
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Appendix A: On-line Survey

A.1 On-line Survey 1

This  sections  describes  the  questions  we  asked  the  participants  in  survey  1.  Survey  1
consists of four questions which are described below:

Question 1:

Figure A.1 Question 1 from survey 1

In question 1, we shown them an image (good view or bad view) of a grasp and asked
questions shown in figure A.1.
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Question 2:

In question 2, we shown them two images (good view and bad view) of same grasp and
asked questions shown in figure A.2

Figure A.2 Question 2 from survey 1
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Question 3:

In question 3, we shown them an image (good view or bad view) of a grasp and asked
questions shown in figure A.3

Figure A.3 Question 3 from survey 1
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Question 4:

In question4, we shown them three different views (best, second best and worst) of same
grasp and asked questions shown in figure A.4.

Figure A.4 Question 4 from survey 1
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A.2 Survey 2

In this survey we have shown the participants images of both bad and good grasps and
asked them set of questions which are described below:

Question1:

In question 1, we showed them image (good view or bad view) of a grasp and asked them
questions shown in figure A.5

Figure A.5 Question 1 from survey 2 (bad grasp)
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Question 2:

In question 2, we showed them image (good view or bad view) of a grasp and asked them
questions shown in figure A.6.

Figure A.6 Question 2 from survey 2 (good grasp) 
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A.3 P-values for eye-gaze data

The following to tables shows p-values for eye-gaze data across all participants in three
different stages of grasping.

Table A.1 P-values for eye-gaze data

b_top d_top a_top b_wrist
d_wris
t a_wrist

b_edg
e

d_edg
e a_edge

b_fingerti
p

d_fingerti
p

a_finger
tip

b_centerli
ne

d_cente
rline

a_cent
erline

b_top 1 0.4 0.33 0.02 0.06 0.04 0.38 0.04 0.05 0.02 0.18 0.69 0 0 0

d_top 0.4 1 0.86 0 0 0 0.87 0.11 0.16 0 0.52 0.49 0 0 0

a_top 0.33 0.86 1 0 0 0 1 0.17 0.23 0 0.66 0.38 0 0 0

b_wrist 0.02 0 0 1 0 0.03 0 0 0 0.6 0 0 0 0 0

d_wrist 0.06 0 0 0 1 0.25 0 0 0 0 0 0 0 0 0

a_wrist 0.04 0 0 0.03 0.25 1 0 0 0 0.05 0 0 0 0 0

b_edge 0.38 0.87 1 0 0 0 1 0.22 0.3 0 0.7 0.46 0 0 0

d_edge 0.04 0.11 0.17 0 0 0 0.22 1 0.74 0 0.29 0.02 0 0.06 0.06

a_edge 0.05 0.16 0.23 0 0 0 0.3 0.74 1 0 0.42 0.02 0 0.02 0.02

b_finger
tip 0.02 0 0 0.6 0 0.05 0 0 0 1 0 0 0 0 0

d_finger
tip 0.18 0.52 0.66 0 0 0 0.7 0.29 0.42 0 1 0.15 0 0 0

a_fingert
ip 0.69 0.49 0.38 0 0 0 0.46 0.02 0.02 0 0.15 1 0 0 0

b_center
line 0 0 0 0 0 0 0 0 0 0 0 0 1 0.01 0.01

d_center
line 0 0 0 0 0 0 0 0.06 0.02 0 0 0 0.01 1 1

a_center
line 0 0 0 0 0 0 0 0.06 0.02 0 0 0 0.01 1 1

R_b_top 0.58 0.14 0.11 0.1 0.26 0.18 0.14 0.01 0.01 0.11 0.05 0.27 0 0 0

R_d_top 0.25 0.73 0.89 0 0 0 0.91 0.15 0.21 0 0.71 0.22 0 0 0

R_a_top 0.18 0.5 0.62 0 0 0 0.66 0.4 0.55 0 0.91 0.18 0 0.01 0.01

R_b_wri
st 0.11 0 0 0.35 0.92 0.66 0.01 0 0 0.38 0 0 0 0 0

R_d_wri
st 0.94 0.24 0.18 0 0 0 0.26 0.01 0 0 0.05 0.58 0 0 0

R_a_wri
st 0.2 0 0 0 0.12 0.03 0.01 0 0 0 0 0 0 0 0

R_b_edg
e 0.15 0.01 0 0.35 0.81 0.6 0.01 0 0 0.37 0 0.01 0 0 0

R_d_edg
e 0.06 0.19 0.28 0 0 0 0.36 0.6 0.84 0 0.51 0.02 0 0.01 0.01

R_a_edg
e 0.09 0.25 0.35 0 0 0 0.41 0.6 0.83 0 0.58 0.05 0 0.01 0.01

R_b_fin
gertip 0.02 0 0 0.32 0 0.01 0 0 0 0.16 0 0 0 0 0

R_d_fin
gertip 0.3 0.86 0.97 0 0 0 0.97 0.1 0.14 0 0.56 0.29 0 0 0

R_a_fin
gertip 0.69 0.49 0.39 0 0 0 0.46 0.02 0.02 0 0.15 1 0 0 0

R_b_cen
terline 0.02 0.04 0.05 0 0 0 0.05 0.22 0.15 0 0.07 0.01 0.09 0.89 0.89
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R_d_cen
terline 0.11 0.33 0.44 0 0 0 0.5 0.46 0.65 0 0.72 0.07 0 0.01 0.01

R_a_cen
terline 0.01 0.02 0.03 0 0 0 0.04 0.37 0.2 0 0.05 0 0 0.34 0.34

R_b_to
p

R_d_to
p

R_a_t
op

R_b_wr
ist

R_d_wr
ist

R_a_wr
ist

R_b_ed
ge

R_d_ed
ge

R_a_ed
ge

R_b_fing
ertip

R_d_fing
ertip

R_a_finge
rtip

R_b_ce
nterline

R_d_c
enterli
ne

R_a_
cente
rline

b_top 0.58 0.25 0.18 0.11 0.94 0.2 0.15 0.06 0.09 0.02 0.3 0.69 0.02 0.11 0.01

d_top 0.14 0.73 0.5 0 0.24 0 0.01 0.19 0.25 0 0.86 0.49 0.04 0.33 0.02

a_top 0.11 0.89 0.62 0 0.18 0 0 0.28 0.35 0 0.97 0.39 0.05 0.44 0.03

b_wrist 0.1 0 0 0.35 0 0 0.35 0 0 0.32 0 0 0 0 0

d_wrist 0.26 0 0 0.92 0 0.12 0.81 0 0 0 0 0 0 0 0

a_wrist 0.18 0 0 0.66 0 0.03 0.6 0 0 0.01 0 0 0 0 0

b_edge 0.14 0.91 0.66 0.01 0.26 0.01 0.01 0.36 0.41 0 0.97 0.46 0.05 0.5 0.04

d_edge 0.01 0.15 0.4 0 0.01 0 0 0.6 0.6 0 0.1 0.02 0.22 0.46 0.37

a_edge 0.01 0.21 0.55 0 0 0 0 0.84 0.83 0 0.14 0.02 0.15 0.65 0.2

b_fingertip 0.11 0 0 0.38 0 0 0.37 0 0 0.16 0 0 0 0 0

d_fingertip 0.05 0.71 0.91 0 0.05 0 0 0.51 0.58 0 0.56 0.15 0.07 0.72 0.05

a_fingertip 0.27 0.22 0.18 0 0.58 0 0.01 0.02 0.05 0 0.29 1 0.01 0.07 0

b_centerlin
e 0 0 0 0 0 0 0 0 0 0 0 0 0.04 0 0

d_centerlin
e 0 0 0.01 0 0 0 0 0.01 0.01 0 0 0 0.89 0.01 0.34

a_centerlin
e 0 0 0.01 0 0 0 0 0.01 0.01 0 0 0 0.89 0.01 0.34

R_b_top 1 0.07 0.06 0.35 0.43 0.58 0.42 0.01 0.02 0.1 0.08 0.27 0.01 0.03 0

R_d_top 0.07 1 0.66 0 0.07 0 0 0.26 0.34 0 0.83 0.23 0.04 0.45 0.02

R_a_top 0.06 0.66 1 0 0.07 0 0 0.65 0.7 0 0.54 0.18 0.09 0.84 0.09

R_b_wrist 0.35 0 0 1 0.01 0.47 0.91 0 0 0.32 0 0 0 0 0

R_d_wrist 0.43 0.07 0.07 0.01 1 0.01 0.03 0 0.01 0 0.09 0.58 0.01 0.02 0

R_a_wrist 0.58 0 0 0.47 0.01 1 0.62 0 0 0 0 0 0 0 0

R_b_edge 0.42 0 0 0.91 0.03 0.62 1 0 0 0.32 0 0.01 0 0 0

R_d_edge 0.01 0.26 0.65 0 0 0 0 1 0.97 0 0.16 0.02 0.12 0.78 0.13

R_a_edge 0.02 0.34 0.7 0 0.01 0 0 0.97 1 0 0.25 0.05 0.12 0.83 0.15

R_b_fingert
ip 0.1 0 0 0.32 0 0 0.32 0 0 0 0 0 0 0

R_d_fingert
ip 0.08 0.83 0.54 0 0.09 0 0 0.16 0.25 0 1 0.29 0.04 0.33 0.01

R_a_fingert
ip 0.27 0.23 0.18 0 0.58 0 0.01 0.02 0.05 0 0.29 1 0.01 0.07 0

R_b_center
line 0.01 0.04 0.09 0 0.01 0 0 0.12 0.12 0 0.04 0.01 1 0.1 0.49

R_d_center
line 0.03 0.45 0.84 0 0.02 0 0 0.78 0.83 0 0.33 0.07 0.1 1 0.1

R_a_centerl
ine 0 0.02 0.09 0 0 0 0 0.13 0.15 0 0.01 0 0.49 0.1 1
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