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ABSTRACT

The thermobaric nonlinearity in the equation of state for seawater density—namely, the dependence of thermal
expansibility on pressure—coupled with spatial variation of the oceanic temperature–salinity (u–s) relation
generates a nonlinear behavior in the buoyant force that can counter the linear dispersion of baroclinic Rossby
waves and produce solitary waves. A Korteweg–deVries equation is derived in which the coefficient of the
nonlinear term depends on the thermobaric parameter and the spatial gradient of the anomaly of the u–s relation.
Quantitative estimates can be made of the magnitude of the effect in terms of these parameters. For example,
given first-baroclinic-mode spatial variations of order 0.1 psu (1000 km)21 or 0.78C (1000 km)21, from a u–s
relation with a density ratio of 2, a solitary Rossby wave of maximum vertical displacement of approximately
100 m and horizontal scale of approximately 30 baroclinic Rossby radii of deformation can be generated.

1. Introduction

Because of the thermobaric nonlinearity of the sea-
water equation of state (EOS)—the dependence of ther-
mal expansion coefficient on pressure (Müller and Wil-
lebrand 1986; McDougall 1987; Garwood et al. 1994;
Akitomo 1999)—the aim of devising a quasi-material
corrected density (or ‘‘appropriate density’’) that com-
pletely represents the effects of stratification on buoy-
ancy is fundamentally flawed; the task is impossible (de
Szoeke 2000). The shortcomings of potential density,
for example, have been understood for a long time (Ek-
man 1934; Lynn and Reid 1968). Various empirical at-
tempts to construct an appropriate density for use in
descriptive physical oceanography have nonetheless
been made: examples include patched potential density
(Reid and Lynn 1971), neutral density (McDougall
1984; Jackett and McDougall 1997; Eden and Wille-
brand 1999), and orthobaric density (de Szoeke et al.
2000). All of these examples rely on making use of the
oceanic temperature–salinity (u–s) relation in some way.
If the u–s relation were globally uniform, they would
presumably all reduce to the same thing and would all
become aliases of the same appropriate density. Because
the u–s relation is not globally uniform, they all display
a similar property; namely, they do not give material
surfaces (quite apart from the irreversible effects of dif-
fusion), because water leaks reversibly across them in
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proportion to the local deviation from the u–s relation,
with the proportionality factor dependent on the ther-
mobaric coefficient. [This is so even when, as with
patched potential density and neutral density, they are
renormalized from region to region to take account of
local water properties, because by so doing the density
corrections introduce rents or tears in the isopleth sur-
faces of the variable, through which water will pass (de
Szoeke et al. 2000).]

Is this difficulty with devising dynamically appro-
priate densities for seawater merely an inconvenient nui-
sance? Or is there an irreducible dynamical consequence
associated with the impossibility of a material appro-
priate density? The goal of this paper is to argue for
the latter alternative by demonstrating a nonlinear dy-
namical effect on Rossby waves that can only come
about because of the thermobaric character of the EOS.
This work will add to the arguments of earlier workers
who found dynamical effects of thermobaricity (Müller
and Willebrand 1986; Straub 1999). To facilitate the
demonstration, we first describe, in section 2, an ortho-
baric specific volume (sp. vol.) function derived from
an EOS that, though simplified, exhibits a nontrivial
thermobaric effect and from an assumed u–s relation
with constant density ratio. Next, using this orthobaric
sp. vol. as an independent variable and assuming a rest
state of the ocean with density-compensated u–s vari-
ations from the global relation (section 2), we will obtain
the intermediate geostrophic limit of the vorticity equa-
tion (Williams and Yamagata 1984), which takes into
account the effect of reversible thermobaric mass flux
across orthobaric isopycnals associated with spatial u–s
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TABLE 1. Thermodynamic parameters.

Parameter Description Value

a0

r0

T0

S0

a1

a2

Reference specific volume
Reference density (5a )21

0

Reference temperature
Reference salinity
First thermal expansion coefficient
Second thermal expansion coefficient

9.731 3 1024 m3 kg21

1027.7 kg m23

58C
35 psu
1.067 3 1024 8C21

1.041 3 1025 8C22

bs

g
Ha

c0

a0/c2
0

gc

Haline contraction coefficient
Thermobaric parameter
Akitomo–Garwood depth (g21/r0g)
Reference sound speed
Reference compressibility
Compressibility pressure coefficient

0.754 3 1023 psu21

1.86 3 1028 Pa21

5318 m
1466 m s21

4.53 3 10210 Pa21

2.98 3 1029 Pa21

variations (section 3). We will obtain from this devel-
opment a nonlinear evolution equation, which has the
form of the Korteweg–de Vries (KdV) equation, for the
amplitude of long baroclinic Rossby waves (section 4).

Nonlinear effects on planetary waves have received
considerable attention. Redekopp (1977) studied non-
linear Rossby waves propagating along zonal shear
flows and obtained amplitude evolution equations of
KdV or modified KdV type, showing that isolated sol-
iton disturbances are possible (Whitham 1974; Drazin
1983). Anderson and Killworth (1979) examined the
nonlinear steepening of baroclinic Rossby waves
brought about by the thickening and thinning of internal
layers by the divergence of the wave motion and the
consequent alteration of propagation speeds that depend
on these thicknesses. Williams and Yamagata (1984)
extended this treatment to include effects of wave dis-
persion. Flierl (1979; also Flierl et al. 1980; McWilliams
1980) obtained solutions for nonlinear baroclinic soli-
tary waves with cylindrically symmetric form propa-
gating in mean shear flows. The novelty in the present
paper is that the nonlinearity comes, not from the inertial
self-advection of the disturbance or from the internal
vortex stretching, but from the thermobaric nonlinearity
of the EOS. The EOS nonlinearity is not enough by
itself, but must be coupled with spatial variations from
the mean u–s relation (section 5).

2. Orthobaric specific volume; density-
compensated rest state

By assuming simple forms for the seawater EOS and
the ocean u–s relation, we will be able to obtain a useful
closed form for orthobaric sp. vol. The EOS we pro-
pose is

a a 10a9 [ 2 1 1 p 1 2 g pc2 1 2a c 20 0

1
25 (1 1 gp)a (Q 2 T ) 1 a (Q 2 T ) 2 b s,1 0 2 0 s2

(2.1)

where a, p, Q, and s 5 S 2 S0 are sp. vol., pressure,
potential temperature (in degrees Celsius), and salinity;1

a9 is sp. vol. anomaly, normalized by a0; a0, T0, S0, and
c0 are reference sp. vol., temperature, salinity, and sound
speed; and bs, a1, a2, and g are haline contraction co-
efficient, first and second thermal expansion coefficients,
and thermobaric coefficient. Of particular significance are
the nonlinearities controlled by the parameters g and a2.
Numerical values for the constants in (2.1) are given in
Table 1. The form of (2.1) is invariant to arbitrary choices
of T0, S0, and c0 and arbitrary constant shifts of p, pro-
vided the constants a0, c0, gc, bs, a1, a2, and g are
suitably transformed. The Akitomo–Garwood pressure
scale, a measure of the thermobaric effect (Akitomo
1999; Garwood et al. 1994), given by

2]a9 ] a9
21p 5 5 g (1 1 gp 1 a u/a ),AG 2 1@]u ]p]u

(writing u 5 Q 2 T0) is shown in Fig. 1 as a function
of p and Q, along with the same parameter calculated
from the empirical international EOS (Fofonoff 1985).
The parameters g and a2/a1g (intercept and slope) were
chosen to best fit the Akitomo-scale contour pAG 5 70
MPa. Correspondence is very good, except in the high-
temperature (.108C,) low-pressure (,15 MPa) part of
the ocean. Figure 2 shows u–s scatterplots at four pres-
sures using the Atlantic World Ocean Circulation Ex-
periment (WOCE) data, along with superimposed iso-
pycnals from the prototype EOS and their deviations
from the international EOS. The deviations are generally
far less than 0.1 kg m23, except near the surface.

The neutral differential is given by

a2dN 5 da9 2 ga udp 5 1 1 gp 1 a u a du 2 b ds,1 1 1 s21 2a1

(2.2)

where 2ga1u is the departure, caused by temperature

1 An ‘‘equation of state’’ is more correctly written in terms of in
situ temperature, rather than potential temperature. However, the latter
usage is convenient in oceanography.
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FIG. 1. The Akitomo–Garwood pressure scale pAG for the inter-
national equation of state (dash–dotted line) and for the prototype
EOS (2.1) (solid line) in units of 107 pascals ([1000 m). Contours
are not shown in ranges of p and u that are not encountered in the
ocean.

variation, of adiabatic compressibility from (a0/ )(1 22c0

g cp). The second equality of (2.2) follows from the EOS
in (2.1). The neutral differential is not an exact differ-
ential in the same sense that the heat transfer in the
differential form of the first law of thermodynamics is
not: the neutral ‘‘variable’’ N, like heat transfer, is not
a thermodynamic state variable.

In special circumstances, an integrating factor may
be found to replace (2.2) by an exact differential. For
example, suppose there is a specific empirical u–s re-
lation, say a linear relation such as

a u 5 Rb s,1 s (2.3)

where the constant R is called the density ratio. Then,
using this equation to eliminate bss from the EOS,
which in turn may be used to write a1u as a function
of a9 and p, one may obtain an integral of the expression
after the first equality of (2.2). More simply, though, in
the present example, one merely substitutes (2.3) in the
second form of (2.2), obtaining

a2dN 5 1 1 m gp 1 m a u a du/m 5 fdn9, (2.4)0 0 1 1 021 2a1

where m0 5 R/(R 2 1). In the second equality, n9 has been
written for a1u/m0, which is related to a9 by (2.1):

1
2a9 5 (1 1 m gp)n9 1 sn9 , (2.5a)0 2

where

2 2s 5 m a /a .0 2 1

The integrating factor in (2.4) is

]a9
f 5 5 1 1 m gp 1 sn9. (2.5b)01 2]n9

p

Solving (2.5a),

2a9
n9 5 .

2 1/2(1 1 m gp) 1 [(1 1 m gp) 1 2sa9]0 0

(2.5c)

The differential dn9 is exact; n9 is a state variable called
the orthobaric sp. vol., normalized by a0; n 5 a0n9 is
dimensional orthobaric sp. vol. When a2 5 0, n9 5 a9/
(1 1 m0gp) and f 5 1 1 m0gp.

In converse, suppose (2.5a) is used to define n9(p, a9)
and employed to eliminate da9 from (2.2):

dN 5 da9 2 gm n9dp 2 g(a u 2 m n9)dp0 1 0

5 fdn9 2 ga Dudp. (2.6)1

Here a1Du 5 a1u 2 m0n9, a graphical interpretation of
which is furnished in Fig. 3. The reference u–s relation
can be represented parametrically as a function of n9:

b s (n9) 5 (m 2 1)n9 and a u (n9) 5 m n9. (2.7)s 0 0 1 0 0

Notice how the temperature difference Du between ac-
tual temperature u and the reference temperature on the
u–s relation, m0n9/a1, multiplied by the thermobaric pa-
rameter g, figures in the coefficient of the pressure dif-
ferential in (2.6). Equations (2.2) and (2.6) give an evo-
lution equation for n9:

21 21 ˙ṅ9 5 f ga Duṗ 1 f N.1 (2.8a)

Here

a2Ṅ 5 1 1 gp 1 a u a = · (K=u) 2 b = · (K=s)1 1 s21 2a1

(2.8b)

is the sum of irreversible transports of buoyancy, K
being a turbulent diffusivity tensor. Alternatively Ṅ may
be written

a2Ṅ 5 = · K 1 1 gp 1 a u a =u 2 b =s1 1 s25 1 2 6[ ]a1

2 ga =p · K=u 2 a =u · K=u, (2.8c)1 2

in which the first term is an eddy transport divergence
of buoyancy and the second and third terms are re-
spectively thermobaric buoyancy production (either sign
is possible) and cabbeling buoyancy destruction (strictly
nonpositive) (McDougall 1987; Davis 1994). While the
term appearing in (2.8c), representing thermodynami-
cally irreversible eddy heat flux up or down the pressure
gradient, is the classic thermobaric buoyancy term, an-
other distinct reversible thermobaric contribution arises
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FIG. 2. Scatterplots of u–s at 0, 10, 20, and 40 MPa from the Atlantic WOCE dataset, with isopycnal contours from the prototype EOS
(2.1), and its deviation from the international EOS.

from the first term of (2.8a). This novel term, coming
about from the use of orthobaric sp. vol. as coordinate,
and highlighting the ocean’s deviation from the standard
u–s relation, is the crux of this paper. We shall neglect
Ṅ in the remainder of this paper, though, for complete-
ness, we have written the explicit form (2.8c) for it here.

When orthobaric sp. vol. n 5 a0n9 is used as a vertical
coordinate, the substantial rate of change operator is
written

D ] ]
5 1 u · = 1 ṅ . (2.9)n)Dt ]t ]n

n

For example,

Dp ]p
ṗ 5 5 1 u · = p 1 ṅp , (2.10)n n)Dt ]t

n

so that (2.8a) may be written

]p
p ṅ 5 (c 2 1) 1 u · = p . (2.11a)n n1 ) 2]t

n

Here

21 21c 5 (1 2 f ga Dua p )1 0 n (2.11b)

is the buoyancy gain factor. It is also the ratio /n2,2na

where is the apparent buoyancy frequency squared,2na

22fg
2n 5 , (2.12)a 2a pn

which differs from true buoyancy frequency squared,

2 2g g
2n 5 2 2 , (2.13)

2 2a p ca

where g is gravitational acceleration. In the following
when we use (2.12) or (2.13) we shall replace a by
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FIG. 3. Schematic u–s diagram at fixed pressure p showing the
standard relation with normalized slope R 5 m0/(m0 2 1), and de-
viations Du and Ds of an observation point, measured along an or-
thobaric or in situ isopycnal (which coincide at fixed pressure).

constant a0 (a minor approximation) without further
comment. Equation (2.11a) is the thermobaric mass flux
across orthobaric isopycnals caused by the deviation of
a water mass from a reference u–s relation (de Szoeke
et al. 2000). (It would be zero if g 5 0 or Du 5 0.)

Rest state: Constant buoyancy frequency

A motionless rest state can be described in which both
orthobaric and in situ isopycnals are level surfaces while
isotherms and isohalines slope across level surfaces and
across each other because of the thermobaric effect. If
constant apparent buoyancy frequency na 5 n0 is as-
sumed, (2.12) for the orthobaric sp. vol. profile can be
integrated, using (2.5b), to give

p 5 P(n)

21 a n n0 0 2 2 22g gm n/a n0 0 05 1 2s (21 1 e ) 2 s .
21 2[ ]m g g gm a0 0 0

(2.14)

The argument of the exponential can be shown to be
small, so that this is very well approximated by P(n) ù
2g2n/ , that is, linear in n. [For an arbitrary buoy-2 2a n0 0

ancy frequency profile, e.g., na 5 n0 , the counter-2p/p0e
part of (2.14) may be readily obtained.]

For an ocean at rest, one may suppose that this re-
lation between pressure and orthobaric sp. vol. holds
everywhere. From (2.5a), sp. vol. anomaly is easily ob-
tained, being a function only of n9 and p. In particular,
it can be obtained for the rest state [(2.14)]. Also, the
separate temperature and salinity profiles are easily ob-
tained from (2.7). If these profiles pertain everywhere,
then 5 and c 5 1. However, suppose there are2 2n na 0

meridional deviations (say) from these salinity and tem-
perature profiles; that is,

b s 5 (m 2 1)n/a 1 b s (y, n) and (2.15a)s 0 0 s 2

a u 5 m n/a 1 a u (y, n), (2.15b)1 0 0 1 2

where s2 5 u2 5 0 at y 5 0.
The rest state will be maintained if the deviations are

density compensated; that is,

1
2a [1 1 gP(n) 1 sn/(m a )]u 1 a u 5 b s , (2.16)1 0 0 2 2 2 s 22

so that (2.14) applies everywhere. However, then the
local u–s relation, and the local density ratio, defined
in terms of local contributions of temperature and sa-
linity to density, will vary with position y. Only at y 5
0 will it match the constant R of the reference u–s re-
lation.

Consider in particular a temperature anomaly of the
form

(s)u 5 u9yZ (n),2 2 (2.17a)

with corresponding salinity anomaly given by (2.16),
and with

(s)Z (n) 5 cos[pP(n)/P ].B (2.17b)

The buoyancy gain factor for the rest state is givenc
by (2.11b), upon setting p 5 P(n), given by (2.14), and
using (2.17):

21 21c (y, n) 5 1 2 f(P) ga u (y, n)P a1 2 n 0

(s)5 1 1 byZ (n), (2.18)

where
2 2b 5 gg a u9 /a n .1 2 0 0

This may differ significantly from 1, on a meridional
length scale b 21 . The true buoyancy frequency is
n2 5

21
, which we see is not constant, but varies2c n0

meridionally and vertically, even though the ocean is at
rest. This is because of the meridional variation of the
u–s relation and the thermobaric nonlinearity of the
EOS, measured by the parameter g.

In Fig. 4, meridional sections are shown of u, s, in
situ and orthobaric sp. vol., and potential sp. vol. that
give a rest state for the parameter settings listed in Tables
1 and 2. As the foregoing discussion made clear, the
temperature and salinity sections were engineered to
give level in situ and orthobaric sp. vol. surfaces, though
with meridional variation from the central standard u–
s relation (Fig. 4g). Potential sp. vol. surfaces (Figs.
4e,f) are markedly not level, irrespective of choice of
reference pressure, even showing an inversion—this de-
spite a less than 20% variation of squared buoyancy
frequency from (Fig. 4h). This behavior of potential2n0

density comes about from its reliance on the expansion
coefficient at the reference pressure, rather than allowing
for its variation with pressure (Ekman 1934). Orthobaric
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sp. vol. surface labels show only the small variations
due principally to u and s, rather than the far larger
contributions from pressure that dominate in situ sp. vol.

3. The model equations

A vorticity equation will be obtained for motion per-
turbations of a resting ocean with a spatially variable
u–s relation, an effect measured by nonunit buoyancy
gain factor. We begin with the time-dependent equations
of motion on the beta plane, written in terms of an
arbitrary function n(p, a) instead of z as vertical in-
dependent variable (de Szoeke et al. 2000):

u 1 uu 1 yu 2 f y 5 2M , (3.1)t x y x

y 1 yy 1 yy 1 fu 5 2M , (3.2)t x y y

P(p, n) 5 M , (3.3)n

p 1 (up ) 1 (yp ) 1 (ṅp ) 5 0, and (3.4)nt n x n y n n

u 1 uu 1 yu 1 ṅu 5 0. (3.5)t x y n

Here x, y, and t are east, north, and time coordinates; u
and y are horizontal velocity components; f 5 f 0 1 by
is Coriolis parameter; p is pressure; s is salinity; M is
the Montgomery function; and P is the Exner function,
the latter two respectively defined as

p

M 5 a(r, n) dr 1 F and (3.6a)E
0

p

P 5 ]a(r, n)/]n dr, (3.6b)E
0

where F 5 gz is the geopotential. Friction and diabatic
effects are neglected, so that the diapycnal pseudovelocity

is due solely to reversible thermobaric effects. Theṅ
associated diapycnal mass flux is given by (2.11a):

ṅp 5 (c 2 1)(p 1 up 1 yp ).n t x y (3.7)

Here c would be the buoyancy gain factor, defined by
(2.11b), if n/a0 5 n9 were the normalized orthobaric
sp. vol. given by (2.5). In more general terms, de Szoeke
(2000) showed how c can be defined for arbitrary n(p,
a).

By cross-differentiating (3.1) and (3.2), one may ob-
tain the vorticity equation

(] 1 u] 1 y )(y 2 u )t x y x y

1 ( f 1 y 2 u )(u 1 y ) 1 by 5 0. (3.8)x y x y

Assuming an approximate geostrophic balance in (3.1)
and (3.2) and replacing the Coriolis parameter by the
constant f 0 as follows:

2 f y 5 2M and (3.9a)0 x

f u 5 2M , (3.9b)0 y

one may calculate the relative vorticity in (3.8),

21 2y 2 u 5 f ¹ M.x y 0 (3.9c)

The thickness equation (3.4) may be written, using
(3.7), as

p 1 up 1 yp 1 p (u 1 y )nt nx ny n x y

1 ] [(c 2 1)(p 1 up 1 yp )] 5 0. (3.10)n t x y

From (3.3), Pj 5 Pppj 5 Mnj, where partial differ-
entiation with respect to j stands for t, x, or y differ-
entiation, holding n constant. Also, from (2.5b) and
(3.6b), f 5 ]P/]p. Hence, using (3.9),

up 1 yp 5 ] (up 1 yp )nx ny n x y

21 211 f f (M M 2 M M ),0 yn nx xn ny

so that (3.10) may be written

] [c(p 1 up 1 yp )] 1 p (u 1 y ) 5 0.n t x y n x y (3.11)

Eliminating ux 1 yy between (3.8) and (3.11), one ob-
tains

D Dg g21 2 21 2 21 21f ¹ M 2 ( f 1 f ¹ M )p ] cf M0 0 n n n1 2Dt Dt
211 f bM 5 0, (3.12)0 x

where

Dg 215 ] 1 f J(M, · ) (3.13)t 0Dt

is the geostrophic advective rate-of-change operator.
Boundary conditions on (3.12) are that perturbation
pressures vanish at top and bottom boundaries:

fp9 5 M 5 0 at n 5 n and n . (3.14)n 1 2

Equation (3.12) is a form of the intermediate geo-
strophic approximation to the vorticity balance (Wil-
liams and Yamagata 1984), here written relative to x,
y, n coordinates. The first term is the rate of change of
the component of relative vorticity perpendicular to n
surfaces (de Szoeke 2000); the second term is internal
vortex stretching due to thickening and thinning of n
layers; the last term is advection of planetary vorticity.

Though it is our intention to take advantage of the
properties of the particular orthobaric sp. vol. function
introduced in section 2, the use of the independent var-
iable n hitherto in this section is general; it is only
required that it be a monotonic function of p and a.

To make the vorticity equation in (3.12) look a little
more familiar, we may take a special case, n 5 p; in more
general terms, let n 5 p 2 /a before taking the limit c1

2c1

→ 0. De Szoeke (2000) shows that in this case
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FIG. 4. Meridional sections across an idealized ocean in a rest state. (a), (b) and , respectively, calculated from (2.15)–(2.17), so thatu s
meridional gradients are density-compensated, giving level (c) in situ and (d) orthobaric isopycnals. Orthobaric isopycnal values lack the
strong pressure variation of in situ isopycnals (units: kg m23). (e), (f ) Potential density referenced to 0 and 20 MPa, respectively.

TABLE 2. Geophysical parameters.

Parameter Description Value

f0

b
HB

PB

n0

l1

Reference Coriolis parameter
Coriolis parameter gradient
Mean ocean depth
Mean ocean depth (in pressure units)
Reference buoyancy frequency
Baroclinic Rossby radius of deformation (5n0HB/ f0p)

1024 s21

2 3 10211 m21 s21

5 km
50 MPa
0.8 3 1023 s21 ([0.46 cph)
12.7 km

c1

R
u 92
b

Long Rossby wave speed (52bl )2
1

Mean density ratio [5m0/(m0 2 1)]
Meridional gradient of mean temperature
Coefficient of meridional variation of buoyancy gain factor

(5g2ga1u 92/a0n )2
0

20.32 cm s21

2.0
7.07 3 1027 8C m21

2.2 3 1027 m21

a(1)
2 Principal thermobaric contribution to nonlinear coefficient of KdV

equation (5b/4 f0l )2
1

3.35 3 10212 m23 s

b/a(1)
2 Scale for first-mode solitary Rossby wave amplitude (Montgomery

potential units)
6 m2 s22

p b
2 (1)n H a0 B 2

Scale for first-mode solitary Rossby wave amplitude (isopycnal
displacement units)

6000 m
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FIG. 4. ( Continued ) Potential isopycnals are not level for the rest state and may show inversions even though stratification is stable. (g)
The u–s diagrams at y 5 2500 (1), 0 (V), and 500 (*) km. The standard u–s relation is taken from y 5 0, where R 5 2 (or m0 5 2). (h)
The buoyancy gain factor c, the ratio of the reference squared buoyancy frequency to the local squared buoyancy frequency.

2ac1P 5 2a 2 → 2 a,
2ap 2 c1

p 2 n
2M 5 c ln 1 F → F,1 1 2n

2g 1 1
c 5 1 1 2 , and

2 2 21 2n c c1

2a
f 5 . (3.15)

2c1

The last two expressions are singular as → 0, though2c1

their ratio, which occurs in (3.12), is bounded:

21 22 2 22cf → 2a g n .

Hence (3.12) becomes

D Dg g21 2 21 2 22 2 22f ¹ F 1 ( f 1 f ¹ F)] a g n F0 0 p p1 2Dt Dt
211 f bF 5 0. (3.16)0 x

Making the quasigeostrophic (QG) approximation
¹2F K f ù f 0, replacing g]p 5 2]z, and making21 21f a0 0

the approximation a2/ ù 1, one recovers Straub’s2a0

(1999) form of the QG vorticity equation in z coordi-
nates with thermobaric effect included. It should be
stressed that n2, buoyancy frequency squared, is yet a
function of all four space and time variables, not of p
alone. Because g is nonzero, it is not possible to obtain
a conserved potential vorticity form, unless a u–s re-
lation is universally satisfied. For then, and only then,
if n were chosen with reference to that relation, buoy-
ancy gain factor c would be 1 everywhere and, because
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D p ] D p ] Dg g gn 215 5 f M ,n1 2Dt ]n Dt ]n Dt

(3.12) would become

21 2D f 1 f ¹ Mg 0 5 0.1 2Dt pn

This equation expresses the conservation of what one
might call intermediate geostrophic potential vorticity.

While the vorticity balance (3.12) relative to a general
coordinate of the form n(p, a) reduces to (3.16) when
n → p is taken, the reverse does not seem to be the
case; that is, it is not obvious how to arrive at (3.12)
by starting from (3.16). Hence, while Straub’s (1999)
conclusions about thermobaric effects, drawn from
(3.16), may be considered to follow also from (3.12),
it may be possible to derive further insights from the
more general (3.12), perhaps by specializing to other
coordinates n (p, a). Indeed the choice of an appropriate
orthobaric sp. vol. for n, which tends to make the buoy-
ancy gain factor c close to 1 (contrast n → p, which
corresponds to c → 2`!), and diapycnal mass flux pnṅ
small, will be shown to have particular merit.

4. Perturbation analysis

We shall obtain solutions of the extended vorticity
equation in (3.12) by conducting a perturbation around
the rest state described in section 2. Suppose

M 5 M(n) 1 M9, p 5 P(n) 1 p9, (4.1)

u 5 u(y, n) 1 u9, and s 5 s(y, n) 1 s9, (4.2)

where and are given by (2.15), and the fluctuatingu s
primed variables introduced here are functions of x, y,
n, and t. The subsidiary variables f and c defined by
(2.5b) and (2.11b) must also be decomposed into means
and fluctuations and are given by

f 5 1 1 m gP(n) 1 sn/a ,0 0

f9 5 m gp9,0

21
21c 5 (1 2 f ga u a P ) , and1 2 0 n

22 22 21
c9 5 c (2f f9ga u a P 1 f ga u9a P1 2 0 n 1 0 n

21
1 f ga u a p9), (4.3)1 2 0 n

where a1u2 5 a1 2 m0n/a0. The linearized hydrostaticu
balance (3.3) gives

21
p9 5 f M9 ,n (4.4)

and the linearized diapycnal mass flux (3.7) is

ṅP 5 (c 2 1)p9.n t (4.5)

An equation for the fluctuating temperature is obtained
by substituting (4.2) into (3.5), using (3.9), (4.4), and
(4.5) and neglecting quadratic terms,

21 21u9 1 f M9u 1 (c 2 1)(fP ) M9 u 5 0.t 0 x y n nt n (4.6)

This will be required to evaluate c9, in which u9 appears.

Once u9 and p9 are determined from M9, obtained in
the manner to be shown below, the total pressure p and
temperature u can be obtained from (4.1) and (4.2). These
are given as functions of n. To obtain salinity, one cal-
culates sp. vol. anomaly from (2.5a), a9 5 (1 1 m0gp)n/
a0 1 (1/2)s(n/a0)2, then inverts the EOS (2.1) for s:

1
2b s 5 2a9 1 (1 1 gp)a u 1 a u . (4.7)s 1 22

This can be partitioned into (y, n) and s9 if required. Its
is not necessary to solve a prognostic equation for salinity.

To anticipate perturbations propagating zonally with
a constant speed c, not yet known, we change to co-
ordinates moving with this speed:

x9 5 x 2 ct and (4.8a)

t9 5 t. (4.8b)
Hence partial derivatives transform according to

] 5 2c] 1 ] , and ] 5 ] .t x9 t9 x x9 (4.9)
The premise of this transformation is that the temporal
evolution of a perturbation waveform, and its self-ad-
vection, is slow following its propagation:

21] 1 f J(M, · ) K c] .t9 0 x9 (4.10a)
Also, it is assumed that fluctuating perturbations are
small in comparison with means:

p9 K P, c9 K c , and f9 K f. (4.10b)
Thus, (4.6), by dropping primes on M9, x9, and t9 and
using these ordering assumptions, may be written

21 212cu9 1 f M u 2 c(c 2 1)(fP ) M u 5 0. (4.11)x 0 x y n nx n

Integrated with respect to x, supposing that both u9 and
M → 0 as | x | → `, this gives

21 21a u9 5 ( f c) a u M 2 (c 2 1)(fP ) a u M . (4.12)1 0 1 y n 1 n n

Here we may substitute from (2.15b) and (2.17) for (y,u
n).

Equation (3.12) similarly becomes
21

222c(cf M ) 2 b f P Mnx n 0 n x

21 21
225 2(cf M ) 1 b f (f M ) Mnt n 0 n n x

22 21 21 f P [2c] 1 f J(M, · )]¹ M0 n x 0

21 22
1 c[(c9f 2 cf f9)M ]nx n

21
211 cf by] (cf M )0 n nx

21
212 f ] [cf J(M, M )]. (4.13)0 n n

Terms that have been written on the right appear because
they are small in comparison with those on the left on
account of the criteria enunciated by (4.10); some terms
have been omitted altogether because they are small in
comparison with those retained on the right. The rate
of change of relative vorticity—the third term on the
right—has been held to be small in comparison with
internal vortex stretching and planetary vorticity ad-
vection on the left.

Substituting an ordered expansion of M,
(0) (1)M 5 M 1 M 1 · · ·, (4.14)

in which M (n) K M (n21), one obtains, at the lowest orders,
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21
(0) 22 (0)2c[cf M ] 2 b f P M 5 0 and (4.15)n n 0 n

21 21 21
(1) 22 (1) (0) 22 (0) (0)] {2c[cf M ] 2 b f P M } 5 2[cf M ] 1 b f [f M ]Mx n n 0 n nt n 0 n x

21 22
(0) 221 c[(c9f 2 cf f9)M ] 1 f P {2c]nx n 0 n x

21
21 (0) 2 (0) 21 (0)1 f J [M , · ]}¹ M 1 cf by] [cf M ]0 0 n nx

21
21 (0) (0)2 f ] {cf J [M , M ]}. (4.16)0 n n

The boundary conditions (3.14) apply at all orders of
the expansion (4.14). Equation (4.15) is a classical
Sturm–Liouville eigenvalue problem for c. It is also, in
somewhat disguised form, the equation for the vertical
baroclinic modes. Let

(0)M 5 A(x, y, t)Z(n); (4.17)

then Z(n) satisfies (4.15), with boundary conditions

Z 5 0 at n 5 n and n .n 1 2 (4.18)

Convert this equation by making P 5 P(n) the inde-
pendent variable, with ]n 5 Pn]p:

2 2f g02c Z 1 bZ 5 0 withP2 21 2n a0 P

Z 5 0 at P 5 0 and P ,P B

(4.19)

where
21 212 2 2 2n 5 2c fg /P a 5 c nn 0 0 (4.20)

is the meridionally nonuniform buoyancy frequency cal-
culated from the rest state. The gain factor is a func-c
tion of y [see (2.18)], though this is merely a parametric
dependence in (4.19). The eigenvalue problem posed in
the form (4.19) is standard and transparent to the def-
inition of orthobaric specific volume n, as it should be.
It gives the vertical modes and phase speeds of the
baroclinic planetary waves. For n0 5 a constant, for
example, the solutions of (4.19), neglecting the devia-
tion of from 1, arec

Z 5 cos(mpP /P ) and (4.21a)m B

2 2 2bP n aB 0 0c 5 2 , (4.21b)m 2 2 2 2m p f g0

for m 5 1, 2, 3 . . . . Even for general n0(P), the vertical
modes and phase speeds may be readily computed. For
example, Chelton et al. (1998) have done this for (P,n
x, y) profiles averaged over geographical degree-squares
for the world’s oceans, displaying maps of first-mode
Rossby deformation radius, which is l1 5 (2c1/b)1/2 in
the present notation. If varies meridionally, this willc
force a meridional dependence in (4.21). Yet if the ver-
tical average of is close to 1, the effect on the cm,c
especially the low modes, which depend on the average
of , will be slight.n

Equation (4.16) describes corrections to the linear
modes that are driven by several effects neglected at
lowest order. Considering the various terms on the right
side of (4.16), these are internal vortex stretching due to
long-term temporal changes with respect to the moving
reference frame, advection of planetary vorticity asso-
ciated with internal thickness anomalies generated by
low-order motions, internal vortex stretching induced by
anomalies in the buoyancy gain factor, relative vorticity
changes encountered in the moving frame, and self-ad-
vection of relative vorticity. The operator on the left side
of (4.16) has the same form as (4.15). To ensure that the
right side of (4.16) does not force secular resonances of
the eigenvalues of (4.15), it must be orthogonal to the
eigenmode Z(n) 5 Z[P(n)]. Formally, one multiplies both
sides of (4.16) by Z(n) and integrates from n1 to n2. Partial
integration of terms on the left side of (4.16) and use of
boundary conditions (3.14) show that this integral is zero.
Hence the integral of the right side must also be zero.
Substituting (4.17), one obtains

n2
21

21(2A 1 cf byA ) (cf Z ) Z dnt 0 x E n n

n1

n2
21

22 2 2 221 AA b f (f Z ) Z dn 1 ¹ A cfx 0 E n n x 0

n1

n2

23 (2P )Z dnE n

n1

n2

23 2 32 f J(A, ¹ A) (2P )Z dn0 E n

n1

n2
21 22

1 A c [(c9f 2 cf f9)Z ] Z dn 5 0.x E n n

n1

(4.22)
{The internal vortex stretching self-advection makes no
contribution because J[M (0), ] 5 J(A, A)ZZn 5 0.}(0)M n

From (4.15), one can show that
n n2 2

21 b
2(cf Z ) Z dn 5 (2P )Z dnE n n E n2f c0n n1 1

PBb b
25 Z dP [ N,E2 2f c f c0 00

(4.23)
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which defines the normalizing constant N. The coeffi-
cient of AAx in (4.22) may be written

n P2 B2
21 g ZP22 2 22 2b f (f Z ) Z dn 5 b f Z dP0 E n n 0 E2 21 2a n0 0n 0 P1

22[ f Na , (4.24a)0 1

where the second equality defines a1. For the coefficient
of Axc, upon integrating by parts and substituting from
(4.3), (4.4), and (4.12), one obtains at length

n2
21 22

[(c9f 2 cf f9)Z ]Z dnE n n

n1

n2
21 22

25 2 (c9f 2 cf f9)Z dnE n

n1

21 225 ANc f a , (4.24b)0 2

where

n2
22 23 21 22 Z

2 2 21a 5 cf c f m g f Z a u a P 2 f g a u 2 (c 2 1)(fP ) a u Z a P2 0 E 0 n 1 2 0 n 1 y n 1 n n 0 n7 5 [ ]f c0n1 (4.24c)

22 21 22 21
22 f ga u a (f Z ) 1 cf m gf Z Z dn/N.1 2 0 n n 0 n n6 8

The coefficient of J(A, ¹2A) is
n P2 B

23 3 23 32 f (2P )Z dn 5 2 f Z dP0 E n 0 E
n 01

23[ 2 f Na . (4.24d)0 3

Hence, (4.22) may be written

b
2 21 22 A 1 c¹ A 2 a f J(A, ¹ A)t x 3 0c

2 211 (a 1 a )AA 1 b yf A 5 0. (4.25)1 2 x 0 x

Equation (4.25) is identical in form and similar in phys-
ical interpretation to the intermediate geostrophic vor-
ticity equation (Matsuura and Yamagata 1982; Williams
and Yamagata 1984). The wave steepening term—the
AAx term in (4.25)—is composed of two contributions,
one from the coefficient a1, measuring the nonlinear
effect of finite-amplitude changes in thickness on di-
vergence of ageostrophic motion within isopycnals (An-
derson and Killworth 1979), and a novel one from the
coefficient a2, which, by contrast, measures divergence
in orthobaric isopycnals driven by the diapycnal motion
associated with fluctuating variations s9 and u9 away
from the u–s relation, coupled with the thermobaric ef-
fect. The byAx term in (4.25), representing the merid-
ional variation of Rossby-wave propagation speed and
included here for completeness and comparison with
Williams and Yamagata (1984), will be neglected. If
motions are elongated in the meridional direction, so
that ]y K ]x, (4.25) becomes

b
2 A 1 cA 1 (a 1 a )AA 5 0, (4.26)t xxx 1 2 xc

which is the well-known Korteweg-de Vries equation
(Whitham 1974; Drazin 1983).

For any of the eigenmodes given by (4.21), valid
when 5 a constant, it may easily be verified that2n0

a 5 0 and a 5 0.1 3 (4.27)

These properties are merely a consequence of the
symmetry of the modes when buoyancy frequency is
constant in the vertical direction. If buoyancy frequency
is not constant, this symmetry is broken and a1 and a3

may be nonzero.
The parameter a1 measures a classic planetary wave-

steepening effect (Anderson and Killworth 1979). This
can be illustrated most advantageously in two layers.
Consider two layers of fluid with thickness H1 2 h(x,
t) and H2 1 h(x, t) and densities r1 and r2. The long-
planetary-wave speed is given by

22 21 21 21c 5 2b f g9[(H 2 h) 1 (H 1 h) ]R 0 1 2

21 21 2ù c [1 1 (H 2 H )h 1 0(h )], (4.28)1 2 1

where g9 5 g(r2 2 r1)/r0 and c1 5 2b g9( 122 21f H0 1

)21 is the small-amplitude limit of the wave speed.21H 2

By taking into account nonlinear effects of baroclinic
vortex stretching, Anderson and Killworth (1979)
showed that the wave equation for the baroclinic dis-
placement h(x 2 c1t, t) is

21 21h 1 c (H 2 H )hh 5 0,t 1 2 1 x9 (4.29)

where x9 5 x 2 c1t. The wave-steepening term vanishes
for two symmetric layers, H1 5 H2—analogous to the
constant-n continuous ocean. [The Sturm-Liouville
problem (4.19) with n2 5 g2(r2 2 r1)d(P 2 r0gH1)
yields c1 as sole eigenvalue, with the two-layer baro-
clinic eigenmode

21Z 5 H (P , r gH ) and1 0 1

21Z 5 2H (P . r gH ). (4.30)2 0 1
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TABLE 3. Vertical and horizontal scales of solitary thermobaric
Rossby waves.

e e2 3e2 z9max (m) (Dx/l1)0.5 (Dx/l1)0.1

0.183
0.129
0.058

0.033
0.0167
0.0033

0.1
0.05
0.01

600
300

60

10
14
31

20
28
63

By a simple calculation, this mode gives a1 5
b2 ( 2 ), which is nonzero for H1 ± H2.21 22 21 21c f H H1 0 1 2

Keeping only the temporal tendency and wave-steep-
ening terms from (4.26),

22 21 21A 1 b f (H 2 H )AA ø 0.t 0 2 1 x (4.31)

This is the same equation as (4.29) when one identifies
interface displacement h with 2( 1 )A/g9.]21 21H H1 2

Among the contributions to a2, defined by (4.24c),
we focus on one, proportional to y, given by (2.15b)u
and (2.17),

n2
22 22

(1) 21 (s) 2a 5 f N c f ga u9a (2P )Z ZZ dn2 0 E 1 2 0 n n

n1

PB
22

(s) 2c Z ZZ dPE P
2 0g

5 f b . (4.32)0 P2 2 Ba n0 0
2Z dPE

0

Here b21 is the meridional length scale—(2.18)—on
which varies. Replacing approximately by 1 in thec c
integrand of (4.32), however, and using (2.17b) for Z (s)

(i.e., first baroclinic mode) as the vertical shape factor
of the u–s relation variation, as well as Z 5 Z1, one
may calculate this parameter to be

2 22g 1 p f b p0(1)a ù f b ù , (4.33)2 0 2 2 21 2 1 2a n 4 P 4n H0 0 B 0 B

where HB 5 a0PB/g is the ocean depth. The assumption
of the vertical antisymmetry of y due to Z (s)(n) is cru-u
cial to (4.33). Were this factor symmetric, the integral
in the numerator of (4.32) would vanish. It is essential
that there be some vertically antisymmetrizing com-
ponent of y for the parameter , which controls the(1)u a2

nonlinear modification of the first baroclinic mode, itself
antisymmetric, not to vanish. For these very reasons of
symmetry, the other parameter a1 appearing in (4.26),
defined by (4.24a), vanishes for constant buoyancy fre-
quency, for the first baroclinic mode.

On the other hand, for the second baroclinic mode,
Z 5 Z2, which is symmetric, it is necessary for Z (s) to
contain a symmetric contribution—for example, Z (s) 5
sin(pP/PB)—to make a nonzero contribution to . In(1)a2

this example (4.32) gives

2128 f b p0(1)a ù 2 . (4.34)2 2 1 2105 n H0 B

In Table 2 are listed the geophysical parameters, and
some representative numerical values for them, that ap-
pear in the theory developed above. Among them is

, the nonlinear thermobaric coefficient that appears(1)a2

in the KdV equation, (4.26), for the first baroclinic
mode, and the parameters from which it is calculated.
The well-known solitary-wave solution satisfying
(4.26) is

2A(x, t) 1 x 2 c (1 1 e )t12 25 23e sech e (4.35)
(1) 5 6[ ]b/a 2 l2 1

(Whitham 1974). The dimensional amplitude scale (in
Montgomery potential units) is b/ , and the length(1)a2

scale is l1, both listed in Table 1; the dimensionless
parameter e is arbitrary. A pressure perturbation asso-
ciated with (4.35) is

]Z
21 21p9 5 f M 5 f P A(x, t). (4.36)n n ]P

Substituting from (4.21), one may write this as

a p9 p pP0z9 5 2 5 2 sin A(x, t), (4.37)
2 1 2g n H P0 B B

which is the displacement, associated with the solitary
wave, of an orthobaric isopycnal from its rest position
(in meters, positive upward). In Table 3 are shown the
maximum displacements 5 3e2(p/ HB)[b/ ] for2 (1)z9 n amax 0 2

several choices of e, and the associated horizontal dis-
tances Dx/l1, measured from the center of the solitary
wave in units of the Rossby deformation radius, where
the solitary-wave displacement amplitudes are one-half
and one-tenth of the maximum. Also shown is e2, the
nonlinear wave propagation speed-up factor. This factor
is very small, no more than a few percent, and is cer-
tainly not large enough to cause any significant speed-
up. The first row of Table 3 corresponds to a 600-m
wave with half-amplitude scale of 10 deformation radii.
This is a very vigorous wave certainly, though not in-
conceivable. The third row shows a 60-m isopycnal-
displacement wave with half-amplitude scale of 31 de-
formation radii. This is a very modest wave: What is
interesting about Table 3 is that, at planetary wave scales
of tens of deformation radii, even moderate-amplitude
waves (.60-m displacement) evidently can show non-
linear inhibition of planetary wave dispersion owing to
thermobaric effect.

The sense of the internal displacement associated with
a solitary wave like (4.35) is important. If the parameter
b is positive, that is, positively increasing mean tem-
perature and salinity variation from the standard u–s
relation with latitude in the upper pycnocline (negatively
in the lower pycnocline), the first-baroclinic-mode ther-
mobaric solitary wave is an elevation of the pycnocline.
If b , 0, that is, colder and fresher meridional variation
from the standard u–s relation in the upper water col-
umn, warmer and saltier in the deep, the first-mode ther-
mobaric solitary wave is a depression of the pycnocline.
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FIG. 5. Zonal sections of first-mode solitary waves in the pycnocline
for various amplitude settings e (Table 3): (a) 0.058, (b) 0.129, and
(c) 0.183.

On the other hand, if the meridional deviation from the
standard u–s relation is negative throughout the pyc-
nocline (colder and fresher at all depths, and increasing
with latitude), it generates a second-mode (i.e., varicose)
thermobaric solitary wave, in which the middle layers
thicken while the upper and lower layers thin. Figure 5
shows zonal sections through the pycnocline of first-

mode solitary waves of depression for the parameters
of Table 3.

Much mathematical machinery is available for deal-
ing with far more general solutions of the KdV equations
than the sech-squared solitary wave—for example, in-
verse scattering theory for nonlinear dispersion of a gen-
eral initial state into individual solitons, or the merging
of several individual solitary waves (Whitham 1974;
Drazin 1983). This approach is beyond the scope of this
exploratory investigation, but perhaps it suffices to note
that an initial arbitrary isopycnal disturbance composed
of wavenumbers in the range of tens to hundreds of
deformation radii but with amplitudes far smaller than
indicated in Table 3 will disperse linearly according to
well-known wave-mechanical principles. Initial distur-
bances in this range of scales with larger amplitudes
must evolve nonlinearly, however, with modifications
caused by the temperature dependence of the compress-
ibility of seawater and spatial nonuniformities in the u–
s relation.

Certainly the thermobaricity of the equation of state
for seawater does not exhaust the possible nonlinear
mechanisms that affect baroclinic wave propagation,
though it seems a hitherto unexamined one. One might
also have considered the effects of mean flow shear, for
example, as in Redekopp (1977) and Flierl (1979). Yet
despite neglecting such effects, it is surprising that mod-
est vertical excursions of isopycnals (;100 m), coupled
with the effect of the pressure dependence of thermal
expansion, for which the natural scale of vertical var-
iation is measured in thousands of meters, can produce
such marked effects. Nor does the free solitary-wave
solution shown here describe the complete range of pos-
sible dynamical influences of the thermobaric effect. Yet
it provides an illustration of how the effect may quan-
titatively modify ocean phenomena long taken to be well
understood.

5. Summary and discussion

It has been shown that the pressure dependence of
the thermal expansion coefficient of seawater—the ther-
mobaric effect—coupled with large-scale meridional
variation of the oceanic u–s relation can induce dynam-
ical modifications of the propagation of planetary Ross-
by waves. The means for this demonstration has been
the use of orthobaric density as the vertical coordinate
in writing the intermediate geostrophic equations of mo-
tion. Orthobaric density is in situ density corrected for
pressure by using a virtual compressibility, obtained by
assuming a particular u–s relation (de Szoeke et al.
2000). We gave an example in section 2 of orthobaric
density calculated for a simple equation of state (con-
taining a bilinear thermobaric term, so that ]2a/]p]u 5
a constant ± 0), coupled with a linear u–s relationship,
illustrating in a closed form how thermobaricity and the
u–s relation (in the guise of the density ratio R) deter-
mine the pressure correction. If the assumed u–s relation
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were exactly satisfied throughout the ocean, orthobaric
density would be a quasi-material variable everywhere,
like potential temperature or salinity (or potential den-
sity). If there are deviations from the u–s relation, how-
ever, then, in addition to the irreversible mixing and
diffusion effects that change any quasi-material vari-
able, there is a reversible contribution to orthobaric den-
sity change from a remnant of the adiabatic compressive
effect that is proportional to the thermobaric coefficient,
the deviation from the u–s relation, and the apparent
vertical motion of orthobaric isopycnals.

The different effects of thermal expansion (and haline
contraction) of seawater at different pressures and their
anomalous influence on potential density have long been
appreciated (Ekman 1934; Lynn and Reid 1968; Mc-
Dougall 1987). Often these effects have been dismissed
as a nuisance, to be overcome with better formulation
of potential density, perhaps, rather than a fundamental
consequence of the nature of seawater and the variation
of u–s properties. This paper is offered as a corrective
to this view, by demonstrating that precisely the effect
responsible for the anomalous properties of potential
density can cause interesting and even unexpected con-
sequences for an important class of baroclinic planetary
motions in the ocean.

The effect is caused by the mass flux across fluctu-
ating orthobaric isopycnals that occurs when water prop-
erties deviate from a uniform u–s relation. This un-
avoidable diapycnal mass flux has an internal stretching
effect on potential vorticity, defined as the projection of
absolute vorticity onto the gradient of orthobaric den-
sity. It prevents the development of a potential vorticity
conservation principle in a fluid of variable composition
(variable salinity), whenever its local composition is not
in a firm universal relation to its local entropy or po-
tential temperature (i.e., nonhomentropic flow). Poten-
tial vorticity can be shown to be a Casimir invariant of
single-component (i.e., fixed composition) Hamiltonian
fluid mechanical systems viewed from an Eulerian per-
spective (Shepherd 1990; Salmon 1998; Müller 1995).
This means that fluid parcels need extra labeling, pro-
vided by their potential vorticity, to supplement the Eu-
lerian view, which otherwise does not distinguish fluid
parcels’ origins. When the fluid varies in composition,
this invariance is broken (potential vorticity is not con-
served) because the variation of composition does pro-
vide such information (unless it is superfluous, as when
the composition is uniquely related to the entropy, i.e.,
when there is a unique u–s relation).

A vorticity equation modified by thermobaricity was
obtained that reduces to the intermediate geostrophic
potential vorticity equation when salinity is related to
potential temperature (or the thermobaric effect can be
neglected). Otherwise this equation is linked nonlinearly
to a conservation equation for temperature (or salinity)
fluctuations from the u–s relation. By carrying out a
perturbation expansion around the horizontally homo-
geneous mean stratification, having included the ther-

mobaric effect, a propagation equation was obtained for
the amplitude of a baroclinic planetary wave distur-
bance. This equation turned out to be similar to the
reduced-gravity form of the intermediate geostrophic
vorticity equation (Williams and Yamagata 1984). In the
limit of meridionally uniform disturbances, it reduces
to the familiar Korteweg-de Vries equation, which ad-
mits solitary-wave solutions. The coefficient of the non-
linear term in the KdV equation is, first of all, propor-
tional to the thermobaric coefficient. Beyond that, it
depends on geographical deviation of the mean u–s re-
lation in some way from a horizontally homogeneous
relation. To produce a significant effect, we assumed a
meridional gradient of deviation from the mean u–s re-
lation that was of opposite sense in the upper ocean as
in the deep ocean. An unexpected result was that even
modest thermocline displacements (.60 m) of a few
tens of Rossby deformation radii in horizontal scale are
sufficiently affected by the thermobaric nonlinearity to
exist as solitary waves. If the upper-ocean temperature
and salinity deviation gradients are positive (increasing
toward the Pole, with the opposite gradients at depth),
the solitary planetary wave is a zonally propagating
elevation of the thermocline; if negative, it is a depres-
sion.
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