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1. OPTIMUM EQUALIZATION AND
SYNCHRONIZATION OF BROADBAND

MULTI-CARRIER SYSTEMS

1.1 Introduction

With rapidly increasing demand for high speed data transmission in information

highways, many new communication techniques has been emerged to support reliable

data transmission over the media. Various transmission techniques have been proposed

to facilitate the communication among users in applications ranging from internet access

to cellular network. The choice of one over another depends on the application and

performance requirements for the specific system in use.

Among these methods, multi-carrier modulation (MCM) has become a viable corn-

munication scheme for high speed data transmission over band-limited channels due to its

high bandwidth efficiency [1]. The application of multi-carrier (MC) systems varies from

high speed modems for asynchronous digital subscriber lines (ADSL) to digital audio and

video broadcast (DAB/DVB) and wireless transceivers [2, 3, 4, 5].

The topic of efficient MC equalization and synchronization has recently received

much attention in the area of digital communication [6, 7, 8, 9]. The purpose of this
research is to optimize the performance of MCM systems in terms of computational com-

plexity and system performance.

1.2 Motivation

Currently, there are two major trends for equalization of MC systems, namely mini-

mum mean square error (MMSE) and maximum geometrical signal to noise ratio approach.

MMSE equalization of MC systems has received special attention during recent
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years [27]. Due to its robust performance, this approach has become a dominant tech-

nique for equalization of MC systems in many practical systems. Despite its efficient

performance, the computational complexity of MMSE method puts a burden in realiza-

tion of this scheme for real time applications . In other words, the existing limitations in

the processing resources of digital signal processing blocks present a major drawback in

real-time realization of MMSE equalizers. Thus, it is desirable to develop efficient signal

processing algorithms which provide a balance between computational complexity and

performance of such schemes.

On the other hand, optimum equalization of MC systems is a new developed subject

which is far from being mature as evidenced by small number of publications devoted to

this subject. Although the mathematics and theory of MMSE equalization approach

have provided a framework for analysis of such scheme, analysis of maximum capacity

equalization remains a challenge in this field. More specifically, the existing theory with

this respect fails to provide a unified solid foundation for analysis of such scheme. It

is known that equalization of MC systems based on maximum capacity criterion results

in a considerable data rate improvement in MC systems. However, this improvement is

achieved at expense of solving a highly complex constrained optimization problem. One

major concern, in this respect, is the lack of a closed form expression or even an iterative

search approach for obtaining the optimal solution of the above problem.

Another interesting challenge in the area of MC systems is in the timing and fre-

quency synchronization of such systems. Since these two problems, timing and offset

frequency synchronization, directly affect the performance of MC systems by deteriorat-

ing the orthogonality among subcarriers, it is imperative to have efficient methods to

estimate and eventually compensate these impairments in the system.

Throughout this thesis, an attempt has been made to address a few of these chal-

lenges, and solutions have been proposed to overcome some of these problems. It should

also be mentioned that there are still many questions in this field requiring further research

work.
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1.3 Thesis Outline

This thesis deals with optimum equalization and synchronization of MC systems.

Specifically, a framework for analysis of maximum capacity equalization of MC system is

proposed. Furthermore, a new family of optimum estimators is developed utilizing the

key concept of cyclic prefix.

In Chapter 2 we begin with a detailed description of the single carrier modulation

and address its limitation for data transmission over bandlimited channels. Motivated

by this shortcoming, we discuss the concept of parallel channel and explain how this

approach can benefit data communication in achieving higher data rates. To make this

thesis self-contained a brief overview of MC equalization and synchronization methods are

also presented in Chapter 2. Analysis of this chapter provides a foundation for deriving

novel equalization and synchronization methods in subsequent chapters.

The thesis is then divided into two parts. Part 1 covering Chapters 3 and 4 deals

with equalization of MC systems while Part 2, covering Chapter 5, addresses the synchro-

nization issue in MC systems.

Chapter 3 describes a new algorithm for computationally efficient equalization of

multicarrier systems over time dispersive static channels. This efficient algorithm allows

the equalizer to obtain near optimum solution through estimating the extreme eigenvector

of a Hessian matrix. As an application, it is applied to equalization of discrete multi-tone

systems. We conclude the chapter with a comparison between complexity and performance

of the proposed algorithm against standard equalization methods.

Chapter 4 uses a geometrical method to provide a mathematical framework for

analysis of optimum equalization of MC systems. As a result, a new efficient iterative

algorithm for maximum capacity equalization of MCM is presented. Due to the versatility

of this approach, it is then generalized to two main subclasses of equalizers namely, unit

tap (decision feedback) and linear phase filters.

Chapter 5 uses the concept of cyclic prefix for estimation of symbol timing error and

carrier frequency offset in MCM. Using probability distribution function of the received
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data, a likelihood function for characterizing the effect of synchronization parameters in

MC received symbol is presented. Based on this result, a ML estimator for joint estimation

of synchronization parameters is derived. We then apply the concept of sufficient statistic

to obtain a minimum variance unbiased estimation of carrier frequencty offset. To remove

the effect of probability distribution function on the performance of the estimator, a mo-

ment estimator for this purpose is also proposed. As an application, the proposed methods

are applied for synchronization of orthogonal frequency division modulation scheme.

Finally, Chapter 6 presents conclusions and considerations for further research work

in this area.



2. BACKGROUND AND STATE-OF-THE-ART

To make this thesis self-contained, a brief introduction to the basic principles of

MC system is given in this chapter. A background theory for analyzing single-carrier and

multi-carrier modulation schemes is presented in section 2.1. Sections 2.2 and 2.3, provide

an overview of the state-of-the-art equalization and synchronization techniques for MCM

respectively.

2.1 Theoretical Background

This section provides an overview of single-carrier and multi-carrier modulation

schemes. Section 2.1.1 addresses the single carrier modulation and its limitation in data

transmission over bandlimited channels. The concept of parallel channel and channel

partitioning methods are thoroughly investigated in sections 2.1.2 to 2.1.6.

2.1.1 Single Carrier Modulation

Capacity of band-limited Gaussian channel was first introduced and analyzed by

Shannon in his original paper on information theory. In this paper, he showed that the

maximum number of information units that can be transmitted over a band-limited noisy

channel with bandwidth (W) can be obtained from

PC = log(1 + (2.1)

where P and N are the signal and noise power respectively. Intuitively, this number

represents the maximum number of information units (bits) that can be transmitted per

channel use, such that the probability of error event remains arbitrarily small (but not

zero). In using the above equation, the frequency response of the channel over the entire

bandwidth(W) is assumed to be fiat. However, most practical communication channels,
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such as twisted pair wire lines, exhibit a nonflat frequency response which results in a

considerable data rate loss in data transmission [10].

A typical example is the copper phone line where the bandwidth is limited to 3300

Hertz . Assuming a typical signal to noise ratio of 25 dB, the capacity of this channel

is limitted to 33000 bits per second. In practice, there are other factors such as cross

talk, interference, echos, and non-flat frequency response which must be compensated for

in order to achieve this capacity. Among the limitations imposed on the channel, non-

flat frequency response is known to be the dominant factor in reducing the effective data

rate of transmission system. Conceptually, spectrally shaped channels cause intersymbol

interference (1ST) which eventually increases the noise power in detecting the data.

Equalization is the process of compensating a channel with non-flat frequency re-

sponse into a frequency independent flat spectrum channel. In the time domain, the

function of equalizer can be viewed as a system which conditions the channel in order to

enforce the channel impulse response into a discrete impulse function. The system which

performs this operation is known as equalizer. In many practical systems, equalization is

performed by an appropriate filtering operation at the receiver.

Depending on the characteristic of the equalization system, several criteria can be

considered for choosing the coefficient of the equalizer. Zero forcing (ZF) and minimum

mean square error (MMSE) equalization are the most common schemes which are widely

used for in practical systems [11]. In ZF scheme, equalizer taps are set such that the

frequency response of the equalizer becomes the inverse of channel spectrum. Thus the

frequency response of the overall system becomes fiat, and there would be no ISI in the

system. However, the effectiveness of this approach is limited to the class of minimum

phase channels, where the existence of stable inverse systems is guarantied [12]. Also,

it is known that ZF equalizers may result in considerable noise enhancement around

singularities of the equalizer spectrum(poles of the transfer function).

In MMSE equalization, a set of previously received data and detected symbols are

weighted by the equalizer taps to minimize the estimation error introduced by the noise

and 1ST [13]. To assure stability, the mean square error is used as a global function for
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minimization purposes. In doing so, a set of feedback and feedforward filters are used at the

receiver. MMSE equalization has the advantage of analytical tractability and mitigation

of the noise-enhancement problem of the zero-forcing criterion. However, complexity of

this approach is exponentially proportional to the effective memory of the channel impulse

response.

Complexity of the equalizer is directly proportional to the effective memory of the

channel. Consequently, as the effective length of channel impulse response increases, the

complexity of these approaches becomes considerably high. Consequently, high bandwidth

data transmission schemes require sophisticated equalization techniques along with highly

complex equalizers. Thus, none of the standard equalization methods can be used as an

effective technique for mitigating the 1ST in these scenarios

An alternative approach for coping this problem is the MCM [14]. In MCM, the

channel spectrum is partitioned into a large number of orthogonal , parallel, and approxi-

mately memoryless channels. The number of input bits assigned to different subchannels

are different, and depends on the signal to noise ratio in each subchannel. In the fol-

lowing section, the problem of optimum bit allocation for parallel channels is thoroughly

analyzed.

2.1.2 Parallel Channel and Water-filling

Consider a set of k independent Gaussian channels, with a common power constraint.

We intend to distribute the transmit power (P) among the subchannels ([ p1 P2 Pk 1)

so as to maximize the overall capacity of the system. Also, it is assumed that con-

tribution of the additive noise to the subchannels can be represented by the vector

([ N1 N2 Nk ]). A typical example of this scenario is the the set of k parallel

Q AM modulation schemes, where each subchannel can be treated as an AWGN channel

with no memory as shown in Figure 2.1. To satisfy the power constraint, the optimization

is performed subject to the constraint P1 = P. By generalizing the concept of capacity



=N(O,A)

x=N(O, Jj ) _4_- yl

n=N(O,I\)

y2

S

nk=N(O,N)

xN(O,I)-4J-- )

Figure 2.1: Parallel Gaussian Channel

given in section 2.1.1 to MCM, the overall capacity of the composite system can be written

as a function of the individual power allocated to each channel. Therefore, the Lagrangian

functional for the above constraint problem can be expressed as
k k

J(Pl,P2,,Pk)= >log(1 + (2.2)
i=1 i=1

By taking the derivative of the Lagrangian with respect to each P, and setting it

to zero, the optimum solution can be obtained from

or

1 1 +A=O (2.3)
2P2-FN

P=vN2 (2.4)

Since P's must satisfy the non-negativity constraint, it might not be always possible to

find a solution of this form. Therefore Kuhn-Tucker condition can be applied to verify

that the solution

P2 = (v N) (2.5)
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is the assignment that maximizes capacity, where v is chosen so that

N) = P (2.6)

This solution is illustrated graphically in figure 2.2. The vertical levels indicate the

noise levels in the various channels. As signal power is increased from zero, we allot the

power to the channels with the lowest noise. When the available power is increased still

further, some of the power is put into noisier channels. The process by which the power

is distributed among the various bins is identical to the way in which water distributes

itself in a vessel. Hence this is sometimes referred to as water-filling [15]. The water filling

property is the principle theory of data rate maximization in high speed data transmission.

While the water-filling energy allocation will indeed yield the optimal solution, it is often

difficult to compute and tacitly assumes infinite granularity in constellation size, which is

not realizable. One known finite-granularity multicarrier loading algorithm is the Hughes-

Hartogs algorithm [16]. However, this algorithm is very slow for high speed applications,

such as ADSL environment, where a large number of bits will be contained in each DMT

symbol. A low complexity loading algorithm was also proposed in [17]. The key point in

this approach is to distribute the rate among the subchannels according to the channel

capacity. This approach maximizes the capacity for a given signal power. However, there

are some applications in practice where the objective is to transmit a fixed data rate with

a fixed power at the lowest error rate.

In [18, 19], authors use the maximum rate loading criteria to allocate bits among

the subcarriers.

Channel partitioning technique has received a special attention during the recent

years [20]. As a result, several forms of MCM have been developed depending on the choice

of the modulating and demodulating vectors. In the following chapter, we recapitulate

the general theory of channel partitioning and provide a unified framework for analyzing

such systems.
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Power

V

Channel 1 Channel 2 Channel 3

Figure 2.2: Typical Water-Filling Distribution

2.1.3 Vector Space Approach

Consider a block of N information symbols which is used for data transmission.

By virtue of vector space concept, this N-tuple vector can be represented as a linear

combination of N orthogonal basis functions as

Xk(t) =x(t) (2.7)

Consequently, a succession of such transmission with symbol period of T can be repre-

sented as

x(t) = xfl,kcbfl(t kT) (2.8)
k n=1



Xlk

X2k

XNJ

Figure 2.3: Block diagram of MMSE Filter

Y1,k

Y2,k

3N-1,k
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Considering this function as an input to a channel with impulse response h(t) , the received

signal at the output of channel can be represented as a linear convolution according to

y(t) = h(t) * x(t) = x(t kT) * h(t) = (2.9)
k n=1 n=1

In order to detect the modulated vector, a set of N matched filters matched to pulse

responses q (t) are used at the receiver. Thus, the maximum likelihood estimate of the

transmitted signal can be obtained by maximizing the signal to noise ratio at the output

of each filter. In doing so, there are N2 describing functions

p(t) *p(t)
q[m,nJ(t) =

I

IIPnhI IIPmII
(2.10)

that characterize the modulation and demodulation process. Consequently, the above

modulation scheme can be viewed as a multiple-input/multiple-output system in which

the discrete-time I/O transfer function can be viewed as an NxN time-varying matrix Q
where the entries of the matrix have the following representation

Qk[m,n} = q[m,n](kt) (2.11)

To avoid ISI in data transmission, the characteristic matrix Q should satisfy the
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Qk[m,nI =1 (2.12)

where I is the identity matrix. There are different ways for selecting the basis functions

to satisfy the equation 2.12. A nonoptimum choice of these functions would remove

the orthogonality among the describing functions. This phenomena can be viewed as

the orthogonality distortion caused by nonideal transmit pulse shapes in PAM or QAM

transmission. In the following section, we investigate an optimum set of basis functions

which result in an 1ST-free data transmission.

2.1.4 Modal Modulation

Given an impulse response h(t) the corresponding autocorrelation function can be

defined as

r(t) = h(t) * h*(_t) (2.13)

The set of corresponding eigenfunctions for this function is defined as functions çb(t)

which satisfy the following relationship

/ r(tr)4('r) = p(t)dr (2.14)
J T/2

p-T/2
I i(t)c(t)dt = 8jj (2.15)
J T/2

One way of selecting the basis functions is to assign each basis function to a eigen-

function of the channel autocorrelation function. The block diagram of such system is

depicted in Figure 2.4. Using this assumption, we can express the received signal r(t) as

r(t) = h(t) * x(t) + n(t) (2.16)

where n(t) is the additive white Gaussian noise with power of . The channel matched

filter (h*(T t)) output is given by

y(t) = x[r(t) * (t)] + ñ(t) (2.17)
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t=T
X

1
1(t) t1- NN__

t=T
T-t)x24\\

n (t)

+ h (t) + htT-t) y(t)
S

t=T
x

x(t) r(t)

y
N-IN-i

t=T
X (t)Jt)

Figure 2.4: Block diagram of MMSE Filter

where ñ(t) is the response of channel matched filter to the input noise n(t). Through

equation 2.14, the above expression can be written as

y(t) = xp(t) + ñ(t) (2.18)

The receiver matched filters (qi (t),q2(t) ,.., i (t)) consist of N filters each matched to

the corresponding eigenfunction. Therefore, the sampled noise output at the output of

receiver matched filter has the following form

1T/2

= / n(t (2.19)
J -T/2

and the autocorrelation of this sequence can be written as

E[nn] = (2.20)

Thus, this particular choice of basis functions partitions the channel into a set of N

independent subchannels to which the results of water-filling property can be applied.

However, this particular selection requires prior knowledge of channel impulse response

and may vary from one channel to another. Such functions would be difficult to implement
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exactly in practice. In the next section, we address a particular technique which provides

an efficient partitioning method which is independent of channel impulse response.

2.1.5 Discrete-time Channel Partitioning

Consider a communication channel in which impulse response can be modeled as a

FIR filter h = {ho, h1, , h}. For a block of N1 received samples, the discrete-time

input/output relation of channel can be cast in matrix form as follows

y[N1 1] h[O] h[1] h[v] 0 .. 0 x[N 1]

y[Nj 2] 0 h[0] h[1] ... h[v] . 0 x[N 2]

0 ... 0

y[O] 0 0 h[0] h[vl] h{v] x[v]

or more compactly,

y=Hx+n (2.21)

where y, x and n are the vectors of output, input and noise respectively. The Nx(N + v)

matrix has a singular value decomposition (SVD) of

P = F [ A 0N,v ] M (2.22)

where the matrices F and M are unitary matrices (F*F = 'N and M*M = IN+v) of

size Nx N and (N + v)x (N + v) respectively. If the input vector is generated carefully

according to

x = M [ XN_1 XN_2 x0 0 0 ]
*

(2.23)

then the modulated signal can be perfectly reconstructed at the receiver as

Y=F*F[A
°N,v

]M*Mx+F*n=AX+N (2.24)

Therefore equalization at the receiving end can be performed efficiently using hadamard

division operation. This operation is known as frequency domain equalization (FEQ) in
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MC systems. The main disadvantage of this scheme is in the relatively high overhead

associated with computing SVD. However, as is explained in subsequent section, an ap-

propriate coding technique can be applied prior to transmitting data over channel in order

to reduce the complexity of SVD.

2.1.6 Channel Partitioning For Discrete Multitone Systems

Discrete multitone(DMT) system is a special case of vector coding which provides

a reduced complexity channel partitioning through adding some restriction to the data.

This scheme, forces the transmit symbol to have x_k = ZN_k for k = [1,... , v]. Such

repeating of the last v samples at the beginning of the symbol is called cyclic prefix.

With cyclic prefix, the input/output channel description can be cast in the following form

h[O] h[1] ... h[v] 0 ... 0

o h[0] h[1] .. h[v] 0
y[Nj-1] x[N-1]o. . .. .. .. 0
y[Nj 2] x[N 2]

= 0 ... 0 h[O] ... h[v 1] h[v]

h[v] J ... 0 h[0] ... h[v 1]

x[0]

h[1] ... h[v] 0 0 h[0]

(2.25)

or in compact form

y=Hx+n (2.26)

Due to the circular characteristic of the channel description matrix, it can be decomposed

into products of Fourier matrices and a diagonal matrix as

= UAU* (2.27)

In the above equation, U is the Fourier matrix, and A is a diagonal matrix, in which the

diagonal elements are the Nj-point DFT of the first row of matrix H, where N1 is the

size of matrix H. Due to the unitary characteristic of matrix U A, (UU* = UU = I)
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the decoding and encoding procedure can be performed efficiently using FFT and IFFT

transform as follows

Y=U*y=U*Hx+n=AU*x+ñ (2.28)

Therefore if the input signal is chosen to satisfy

= U*X (2.29)

then the demodulated vector at the receiver can be represented as

Y=AX+ñ (2.30)

in which ñ = U*n.

Figures 2.5 and 2.6 depict the block diagram of DMT transmitter and receiver

respectively. From the above equation, it this clear that appending cyclic prefix to the

modulated symbol provides an efficient way for computing the singular values of the

channel description matrix. Using the circular characteristic of the channel description

matrix, the SVD operation can be performed with N1log2Nj operations (FFT operation).

Due to the additional restriction of cyclic prefix, performance of the DMT systems is always

upper-bounded by the performance of vector coding. When N1 >> v, the difference

between DMT and VC would be small. However, in twisted pair wirelines, this assumption

is violated and extra processing is needed to enforce the highly time dispersive channel

into relatively short channel. This operation, known as impulse response shortening, is

the topic of the following section [21, 22]

2.2 Overview of Equalization Methods

In this section we address the impulse response shortening problem and recapitulate

the existing methods for training the time domain equalizer (TEQ) for DMT systems.

According to the previous discussion on channel partitioning, TEQ plays an important rule

in performance of DMT systems. As long as the TEQ effectively shortens the channel, the
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system is free from 1ST, which in turn guarantees that the system is free from intercarrier

interference (ICI).

Equalization of multicarrier was originally discussed by Weinstein and Ebbert [23J.

However, the proposed approach only encounters the distortion due to the cochannel

interference and completely ignores the interchannel interference. Equalization of MC

signal that has passed through a distorting channel was first addressed by Hirosaki [24].

Pioneering efforts for practical equalization of MC systems were started by Chow et.

al. [25]. In this paper, authors characterize the channel by a rational transfer function in

the form of where a(z) and p(z) are the polynomial of finite degree (FIR). In addition,
p(z)

the equalizer is set to p(z), the numerator of the transfer function. Consequently, the



equalized channel was characterized by the FIR filter a(z). Due to the high computational

complexity involved with the channel identification procedure, this method is inefficient

for channels with relatively high memory. Soon after, an LMS-like adaptive algorithm

was proposed by Chow et. al. which facilitated the training procedure for setting the

TEQ taps. A salient feature of this algorithm is that it jointly adapts the decision delay

and equalizer coefficients in each iteration. However, as stated by the authors later,

the algorithm exhibits anomalous behaviour such as increasing the number of iterations.

Although it is adhoc and not globally convergent, this approach is considered as the

most practical scheme for setting the equalizer in many practical systems. Later, in a

complementary paper, authors proposed a DFE-like filtering technique and formulated

the problem into a quadratic optimization problem [26]. It was shown in this paper, that

the DFE may not necessarily result in minimum mean square error and in optimizing

the performance of TEQ various causality scenarios have to be considered . Later, the

challenge for removing these imperfections resulted in a comprehensive paper by Al-Dharir

and Cioffi, wherein a solid framework for analyzing the MMSE equalization was proposed

[271. Fundamentally, this approach provides the optimum setting for a finite length input

aided equalizer by minimizing the MSE between the equalized channel impulse response

and a target impulse response (TIR). Also, this approach devises a search procedure for

computing the optimum delay associated with TIR which outperforms the previous search

technique proposed for this purpose [26]. Due to the high relevancy of this subject to the

material developed in chapters 3 and 4, this theory is thoroughly investigated in section

2.2.1.

Although efficient and mathematically solid, MMSE equalization has a high corn-

putational complexity which puts a burden in its application for real time systems. To

remove this impediment, a few fast versions of this approach were proposed in [28, 29].

In this approach, a periodic input signal is used for training the equalizer. Due to this

periodicity, the autocorrelation matrix of the received vector appear to be circulant and

therefore its inverse can be obtained efficiently using DFT operation. Also note that the

proposed method imposes the unit tap constraint on the equalizer. There is also a recent
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interest in application of multirate filter banks for impulse response shortening problem

[30]. Recently, the topic of optimum equalization of multicarrier systems has received

special attention by many researchers. Al-Dhahir et. al., showed that although MMSE

equalization is the most popular equalization technique due to its tractability and adapt-

ability, it does not optimize the criterion in conjunction with DMT systems [7, 8]. Having

established this property, a new criterion was proposed and the optimum equalization of

DMT systems was formulated as a constrained optimization problem. This subject is the

topic of section 2.2.2. In the next section we reformulate the MMSE equalization problem

and consider various approaches in setting the equalizer taps.

2.2.1 MMSE Equalization

The optimum setting of MMSE-DFE equalizers for ML detection have already been

investigated in many papers [27], [31]. In order to provide a sufficient background for the

following chapters, we recapitulate the theory of MMSE equalization.

Consider an additive Gaussian noise channel in which the received signal y(t) is

constructed by modulating a series of input symbols x by a channel response h(t),

y(t) = xh(t nT) + n(t) (2.31)

n = Do

in which {xj} is a sequence of iid zero mean random variables with power o. The noise

n(t) is assumed to be zero mean Gaussian and independent of the input sequence. The

channel response represents the combined effect of the transmit and receive filter as well as

channel impulse response. By resorting to the concept of fractionally spaced equalization,

the input/output relation for the discrete time equivalent channel can be represented in

the following form
l=oo

Yk = hlxk_1 + k (2.32)

where the output, input and noise vectors are defined as

{ y[k+1-1/MJ y[k+1-2/M] y[k]]
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h = [h[k + 1 1/MI h[k + 1 2/M] h[k]

I n[k + 1 1/M} n[k + 1 2/M] n[k]

In the above expressions, the sequence of samples y[k], h[kJ and n[k] are obtained through

periodic sampling of the functions y(t), h(t) and n(t) with period of TIM respectively. The

use of vector channel impulse response coefficients assumes a poly-phase representation

of the channel. In other words, hk is an M-dimensional column vector that contains M

phases of the kth symbol period and M is the oversampling factor.

Consider a block of N1 output samples. Successive using of equation 2.31 provides

a set of difference equation in a matrix form as following

where,

H
= Xk + Nk (2.33)

Xk_ S

h0 h1 h 0 ... 0

0 h0 h1 h 0H
.. . . . :

(2.34)

0 0 ... h0 h1 h

[ 0(N+1,) '(Nb+l,Nb+l) °(Nb+1,Nf+vNb-1) ]
(2.35)

(2.36)

[ Xk_ Xk_1
J

(2.37)

[ Xk Xk_1 Xk__N1_v+1 ]
(2.38)

N
kNj+1

]

(2.39)

YN1+1
]

(2.40)

As shown in Figure (2.7), MMSE equalizer consists of two filters, a fractionally

spaced feedforward filter w with MN1 taps, also known as time domain equalizer (TEQ),
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Figure 2.7: Block diagram of MMSE Filter
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and a symbol spaced feedback filter with Nb + 1 taps, known as target impulse response

(TIR). For a given value of filter lengths Nb and Nf the objective is to compute the MN1

coefficients of the feedforward equalizer, w, and the Nb + 1 taps of the feedback filter b

such that the mean square of the error sequence ek = zk r/ is minimized. In doing so,

we compute the residual error according to

e = w*Yk - b*Xk_ (2.41)

in which w and b are the vectors of feedforward and feedback filter coefficients respectively,

b* = [b0 b1 1w6]

[ Wi W2 WN1M ]

Therefore the mean square error can be represented as

E[e] = b*Rxxb b*Rxyw + w*Rw - W*Ryxb

In the above expression, E[ Xk_Yfl = R , E[ Xk_X]
,

E[ YkYfl . By invoking the orthogonality principle ( b*R, = w*R ), the mean square

error can be written in the form of



in which

E[e2] = b*Rb
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(2.42)

R11 R R R'R (2.43)xx xy yy

Equation 2.42 is in the form of quadratic function which can be minimized using standard

Newton's method. In order to avoid converging to the trivial solution an additional

constraint is imposed on the Feedback filter.

1- Unit Tap Constraint (UTC)

In this approach, ith element of the feedback filter b is forced to unity. This condition

is imposed through adding the constraint 1 ub 0 to the original optimization

problem, in which u, is the i'th unit vector. In light of this fact, the optimization

problem is formulated as,

b = arg mm b*Rxlyb + A(1 urb) (2.44)

Using Lagrange functional, the optimum vector b0 which provides the global min-

imum of the above function can be obtained from

R1 u,
b (2.45)

and the minimum mean square error is accordingly found from

1MSEUTC R(i,i) (2.46)

2- Unity Energy Constraint (UEC)

In this approach, feedback filter satisfies the unit energy constraint. This condition

is satisfied through adding the unit energy constraint to the optimization problem

which results in a objective function as follows,

b = arg mm b*R1yb + A(1 b*b) (2.47)
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Similarly, the optimum vector b0 which provides the global minimum solution of

the above objective function is the form of

b*RIyb
b = arg mill (2.48)

b b*b

The solution to this problem is the eigenvector corresponding to the minimum eigen-

value of matrix Therefore, the minimum mean square error obtained from

using this approach would be the minimum eigenvalue of matrix as

MSEUEC = .Xmin(R.xiy) (2.49)

Thus, the optimum solution may be obtained from inverting the Hessian matrix

followed by applying power iteration algorithm. A close look at equation 2.48

reveals that the MMSE-UEC problem can be viewed as minimizing the Rayleigh

quotient of matrix Later, we will use this property to obtain a fast algorithm

for computing a near optimum solution for MMSE-UEC approach.

In both approaches, the optimum equalizer settings for the feedforward filter w is obtained

from solving Wiener-Hopf equation as

w= RjRb (2.50)

This unified approach requires one-time inversion of an MN1-dimensional matrix

R to compute Rj11. For the special case where the input spectrum has a white spectrum

with twosided power spectral density of o, the cross correlation matrices and R.

can be directly obtained from the channel description matrix as

= E[ Xk_Yfl = E[ Xk_(HkX + Nk)*]

= E[ Xk_X*H] = E[ Xk[ X XK ' *1 11*] = S H*kz bi

wherein the vectors Xa, Xb and the matrix S is defined as

*

Xk Xk_1 Xk_+1
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Xb
[
Xk__Nb_1 Xk__Nb_2 X_1_V

]

S
[ °Nb+1, 'Nb+l,Nb+l °Nb+1,s ]

In the above expression, A is the decision delay involved with the feedback filter

and s = N1 + v Nb 1. Matrices I, 0 and represent the identity, zero, and

noise autocorrelation matrices, respectively. Using the new expression for crosscorrelation

matrices, the Hessian matrix R1 for the white input sequence would be in the form of,

R cTINb+1 - aS*H*RjjHS* = °'N&+1 (2.51)

where H HS*. From the above expression one can conclude that changing the decision

delay would result in different objective functions which changes the MSE. Therefore, the

optimum value for the parameter A is obtained from performing exhaustive search on all

values of A = 0, 1,... , + v and selecting the one which provides the minimum value of

the objective function given in 2.51. It can be shown that the MMSE error under UEC

results in a lower value in comparison to the MSE provided by UTC approach [27].

Figure 2.8 shows the result of the MMSE approach for both UTC and UEC con-

straints on a typical twisted pair wireline, namely 9Kft 26 AWG channel.

Although the problem of finding optimum setting of coefficients in FIR MMSE-

DFE has been addressed thoroughly, this technique is still not attractive for real time

applications due to the following reasons

Computational complexity

Due to the fairly complex matrix operations associated with this MMSE equalization

approach, , this scheme is still not attractive for real time applications. In Chapter

3 we propose an efficient technique which removes this impediment in practical

realization of this technique.

Suboptimum performance

The MMSE equalization method obtains the setting of the equalizer by minimizing

the mean square error in impulse response shortening . However, it is known that
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Figure 2.8: Comparison between MMSE-UEC and MMSE-UTC equalization approach for
9Kft 26 gauge AWGN channel

this criterion does not result in the best system performance in conjunction with MC

systems. In other words, the capacity obtained from using the MMSE equalization

approach may not necessarily result in maximum data rate for MC system. The

problem of optimum equalization of DMT system is the subject of the following

section.

2.2.2 Maximum Capacity Equalization

The problem of optimum equalization of MC systems is investigated in this section.

Consider a MC system consisting of N independent and equally spaced subchannels. By

virtue of equation 2.1, the capacity of the composite system can be expressed as

N SNR
bDMT = log2(1+ ) (2.52)

i= 1
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wherein SNR, and F are the signal to noise ratio and coding gain of the i'th subchannel

respectively. By factoring the log terms inside the sum expression, we can reformulate

equation 2.52 into the form

bDMT = Nlog2(1 + SNR9eom) (2.53)

where the term SNRgeom is the geometrical signal to noise ratio defined by

-'-
IN iN

SNR I

SNRgeom F(III(1+ )I
1) (2.54)

[i1

To simplify the analytical derivations, it is assumed that all the subchannels contribute

in the data transmission. In other words, all of the available bandwidth is assumed to be

used by the MC system. Neglecting the "+1" and "-1" terms in the above expressions,

the SNRgeom can be approximated by

N
SNRgeorn = [nsNR] (2.55)

The noise power in each subchannel can be decomposed into two terms. The first

term is due to the residual error associated with the impulse response shortening problem

(mean square error) . The remainder is due to the AWGN introduced by channel and

receiver noise. Assuming the contribution of MSE resulted from impulse response short-

ening is negligible comparing to the AWGN term, the geometrical signal to noise ratio can

be reformulated as
IN

SNRgeom = Sx
I H(

lB 2

[i=i S[i]fWj2)] (2.56)

where S[i], B and W are the noise power, DFT of filter band DFT of filter win jth bin

respectively. For fixed bandwidth,maximizing the achievable bit rate would be the same

as maximizing the SNRgeom. Thus, the optimization problem can be formulated as

[

"

[b,w] = argmax loJJ(S[]112)j (2.57)
b,w

To reduce the complexity of consecutive stages as follows
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Step 1 The optimum solution for TIR ise obtained from solving the following constraint

optimization problem

b = argmaxlogb*Gzb (2.58)

where Gz , and gi is the th Fourier basis vector given by

[1 e* 2riNb

]

*

Step 2 The Wiener-Hopf equation given in 2.50 is used to obtain the optimum setting of

the TEQ.

The above optimization problem was originally proposed in [27]. In this paper, authors

used sequential quadratic programming (SQP) method in order to obtain the optimum

setting of the TEQ. However, no specific iterative method for equalizer training was pro-

posed for this problem. Motivated by this shortcoming, a new efficient iterative approach

for the above constraint optimization problem is developed in Chapter 4.

2.3 Overview of Synchronization Methods

The principle disadvantage of MC system is in its sensitivity to improper synchro-

nization environment introduced by nonideal receiver. More specifically, due to improper

sampling of the received signal, MC symbol is subject to the timing delay. Moreover, an

offset in the carrier frequency of demodulator at the receiving end may cause loss of or-

thogonality among subcarriers. These deleterious effects puts an impediment in realization

of MC systems for practical purposes.

Synchronization, is the process of adapting the receiver to the symbol timing error

and carrier frequency offset introduced by the channel delay and improper sampling op-

eration at the receiver. The effect of frequency offset on the performance of MC systems

was originally analyzed by Moose [32]. It was shown in this paper that the signal to noise



ratio at the output of MC receiver is lower-bounded by

E {sinlrc/(7r6)}2SNR>
N0 1 + .5947(Ec/No)(sin)2

(2.59)

where E, N and e are the signal power and noise power and carrier frequency offset

respectively. Pollet et. al. analyzed the sensitivity of MC system to carrier frequency

offset and provided an expression for computing the probability of error [33]. Eduardo

et. al. expanded this concept to OFDM communication and derived the BER for binary

OFDM systems.

Categorically, the previously proposed methods for synchronization of multicarrier

systems can be classified into two main subclasses, namely minimum mean square error

(MMSE) and ML estimators. In MMSE approach, estimator uses the side information

provided by the reference signal ( pilot tones ) in order to minimize a cost function

associated with the synchronization parameters [34, 35]. A salient feature of this approach

is that no probabilistic assumptions are made in regard to the data. Although MMSE

estimators usually result in a tractable (globally stable) and easy to implement realization,

no optimality criterion (probabilistic or statistical ) is associated with these estimators.

Also, since part of the transmitted information is allocated to the reference pilots, the

bandwidth efficiency of these methods is lower in comparison to the nonpilot schemes.

On the other hand, ML estimators provide the estimate of unknown parameter

subject to the minimum probability of error criterion [36], [37], [32]. Although not exactly

efficient, ML estimators are asymptotically minimum variance unbiase (MVU), i.e. their

variance attains that of MVU estimator as length of the data record goes to infinity.

However, due to the physical constraints, systems with infinitely long data records are not

feasible for implementation purposes.

In [32], authors use retransmission technique in order to reveal the frequency off-

set parameter in the likelihood function of the received signal. Due to the redundancy

introduced by repeating the data block, the spectral efficiency is dropped by a factor of

two. To avoid this imperfection, a new ML estimator based on cyclic prefix (CP) was

introduced in [37]. In this approach, the side information provided by the CP is used to
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obtain the likelihood function for joint estimation of symbol timing error and frequency

offset in MC systems.

Our research revealed that the likelihood function proposed in [37] does not globally

characterize the observation vector over the entire range of the timing offset. Consequently,

the ML estimator proposed based on this likelihood function would result in considerable

performance loss over a finite range of timing offset interval.

Motivated by the suboptimum performance of this estimator, a new likelihood func-

tion for joint estimation of carrier frequency offset and symbol timing error of multicarrier

systems is introduced in Chapter 5. Based on this result, a new optimum ML estimator

for the joint estimation problem is also presented. In an attempt to reduce the variance

of ML estimator, we also investigate a new class of MVU estimators for frequency offset

estimation of multicarrier systems. It is shown that there exists but one function of suf-

ficient statistic which provides the MVU estimate of the frequency offset. The proposed

estimator provides a closed form expression as a function of data statistic. Consequently,

the new method does not suffer from converging to multiple local minima, the problem

which arises in ML technique with nonconvex loglikelihood function [36]. Synchronization

of multicarrier system is thoroughly addressed in Chapter 5.
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3. FAST ALGORITHM FOR FINITE LENGTH MMSE
EQUALIZERS WITH APPLICATION TO DISCRETE

MULTITONE SYSTEMS

3.1 Summary

This section presents a new, fast algorithm for finite-length minimum mean square

error (MMSE) equalizers. The research exploits asymptotic equivalence of Toeplitz and

circulant matrices to estimate Hessian matrix of a quadratic form. Research shows that the

Hessian matrix exhibits a specific structure. As a result, when combined with the Rayleigh

minimization algorithm, it provides an efficient method to obtain the global minimum of

constrained optimization problem. A salient feature of this algorithm is that extreme

eigenvector of the Hessian matrix can be obtained without direct computation of the

matrix. In comparison to the previous methods, the algorithm is more computationally

efficient and highly parallelizable, which makes the algorithm more attractive for real

time applications. The algorithm is applied for equalization of discrete multitone (DMT)

systems for asynchronous digital subscriber line (ADSL) applications.

3.2 Introduction

In design of adaptive filters for signal processing applications, various optimality cri-

teria can be used to obtain the optimum setting of the adaptive filter. However, MMSE is

considered to be the most tractable technique which guarantees existence and uniqueness

of global optimum solution. The problem of finite-length MMSE filtering has already been

investigated in many literatures [27],[31]. In [31], author applies the notion of MMSE filter-

ing for system identification problems. Partial equalization of spectrally shaped channels

is another fruitful application of MMSE filtering in communication and signal process-
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ing. Specifically, given a highly dispersive channel of length v, the objective is to design

a finite-length time domain equalizer (TEQ) to force the effective channel into a much

shorter filter known as target impulse response (TIR). In general, the optimum solution

to this problem is obtained from computing the global minimum of a quadratic function.

Due to the inherent potential of quadratic forms to converge to the trivial solution, an

energy boosting constraint is applied to the problem. Among the feasible constraint sets,

unit energy constraint (UEC) and unit tap constraint (UTC) have found more applica-

tions in communication systems. In principle, decision feedback equalization (DFE) can

be categorized as a special class of MMSE equalizers under UTC. A fast algorithm for

MMSE equalizers has already been proposed in [28]. However, the study conducted in

[28] provided the optimum solution subject to UTC. In this paper, a new fast iterative

algorithm for computing optimum setting of MMSE-UEC equalizers is presented. Also

note that equalization under UEC provides better SNR in comparison to UTC [27]. The

method makes use of asymptotic equivalence of circulant and Toeplitz matrices to obtain

a closed form expression for the Hessian matrix. Additionally, we show that any quadratic

form can be computed efficiently using the discrete Fourier transform (DFT) operation.

When combined with the Rayleigh minimization algorithm, it provides a fast algorithm

for computing coefficients of TIR and TEQ . The algorithm provides the solution after

Nb + 1 iterations and requires O(N11og2(N1)) operations/iteration where N1 and Nb + 1

are the length of TEQ and TIR, respectively. The rest of this paper is organized as follows.

In section 3.3 an overview of MMSE approach is presented. In section 4.3 few properties

of Hessian matrix are derived. Based on these derivations, a new iterative algorithm for

MMSE-UEC is proposed. The complexity of algorithm is compared against the stan-

dard matrix inversion method. Finally, in section 3.6 the algorithm is applied to impulse

response shortening of DMT systems.
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3.3 MMSE equalization

This section presents an overview of the MMSE equalization problem.1 Block dia-

gram of the equalizer studied in this paper is depicted in figure 3.1. The channel response

is modeled as a discrete time FIR filter, expressed by h = {h[O], h[1},... , h[v]} where v is

the channel spread. The channel response represents the combined effect of the transmit

and receive filters as well as the channel impulse response. Input is an independent iden-

tically distributed random sequence with power of o. In MMSE approach, equalizer taps

are set such that the residual error between output of TIR and TEQ filters is minimized

in the mean square sense. MMSE equalization can be viewed as a quadratic optimization

problem in which the optimum settings for the TIR and TEQ filters are obtained from

the following equations

and

b0 = arg mm b*Rb (3.1)

w = (3.2)

where R is the Hessian matrix given in

R = OINh+1 aHRH (3.3)

= oHH* + (3.4)

= HS* (3.5)

h[O] h[1] ... h[v] 0

o h[0] h[1] ... h[v]
H (3.6)

o ... h[O] h[1} h[v]

S
[ °Nb+14 'Nb+l,Nb+l °N6+1,k ]

(3.7)

'Throughout the paper, symbols 0, *, and , represent element by element vector multiplication,
linear convolution, real and Fourier transform operations respectively. Also matrices and vectors are
represented by upper-case and lower-case bold characters, respectively.
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In the above equations, L is the decision delay involved with the TIR and ic = N1 +

vNbi. Also matrices 1,0 and R represent the identity,zero and noise autocorrelation

matrices, respectively. Recall that in the presence of UEC, the optimization problem given

in (4.1) can be viewed as minimization of Rayleigh quotient of matrix H. With this idea

in mind, we apply the iterative algorithm proposed in [38] to obtain extreme eigenvalue

(vector) of the Hessian matrix. Basically, this algorithm applies the conjugate-gradient

method to find the minimum of second order approximation of Rayleigh quotient. Rayleigh

minimization algorithm is widely used in subsapce tracking problems [39]. This method,

although iterative in nature, is guaranteed to converge after at most Nb + 1 iterations.

Robustness to matrix condition number is another noticeable feature of this algorithm

[40]. Although the Rayleigh minimization algorithm does not exploit matrix inversion

it requires frequent computation of quadratic forms. In the next section we describe an

efficient method for computing the quadratic terms, which eventually leads us to a fast

algorithm for computing coefficients of MMSE-UEC equalizers.
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3.4 Iterative Algorithm

The first step in reducing the complexity of the algorithm is to provide an effi-

cient method for computing the inverse of the autocorrelation matrix. In doing so, we

approximate the Toeplitz matrix

= Tp1tz(r[O},r[1], ... ,r,[N1c 1]) (3.8)

with its asymptotic equivalent, known as circulant matrix [41]

= Tpltz(r{0],r[1],... ,r[N1/2], (3.9)

1],... ,r,[1]) (3.10)

Note that the argument of the Tpltz operator is the first row of the Toeplitz matrix. It is

known that the matrices and C defined in 3.8 and 3.9 satisfy the condition

lim C = 0
N1 -+oo

where the weak norm is defined as [42]

(3.11)

Nji N1-1

Al (n_itrace[A*A]) = (n1 ak,j) (3.12)
k=O j=O

A distinct advantage of circulant matrix is that it can be decomposed into the product of

Fourier matrices and a diagonal matrix as given by

where

Cyy = U 'I' U1 (3.13)

'I' = diag(/' [0] /i [1] b [N1 1]) (3.14)

2irkl
UN1[k,l] = 1 eNf k,l= 0,1,...N1 1 (3.15)

27rkmNf1
[k] = c[m]e2 N1 k=0,1,...N1-1 (3.16)

m=O
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and c[j] is the j'th element of the first row of matrix Using orthogonal properties of

Fourier matrices, we can estimate the Hessian matrix as

R = Ux2INb+i a4HU1 4,_i UNf H (3.17)

This closed form expression appears to attain fruitful properties as we will illustrate

shortly.

Property 1:

Given an arbitrary pair of vectors p and q of length Nb + 1, the quadratic term p*Rq

can be expressed as

p*Rq = p*(ax2INb+i aXHU 4' U H)q (3.18)

Define a dummy vector ccr2Hq as

c[0] h[Aj h[/. + 1] h[ + N1 1] q[0]

c[1] h[L 1] h[A] ... h[z + Nf 2] q[1}

c[Nf 1] h[z. Nf + 1] ... 1] h[] q[Nf 1]

(3.19)

Due to the circular property of matrix this vector can be written as linear

convolution of two vectors as expressed by

Nf 1

c [n] = a2 h [L n + 1] q [1] = ax2g [n} * q [n] (3.20)

1=0

2 .where g [n] = h [n + L] . The term a UHq = c is simply the Fourier transform of

vector c and can be computed efficiently as

aUHq=i =a® (3.21)

Note that in the above expression, we have assumed that the length of TEQ exceeds that

of TIR filter (Nj > Nb + 1). In applications in which this constraint can not be tolerated,

the long TEQ filter can be well approximated by a pole-zero filter with fewer coefficients



[43]. Applying equation (3.21) and Parseval's equality to equation (3.18) results in a closed

form expression for the quadratic term p*Rq as given by
N1 -1

p*Rq = [k] [k] Ej [k] (3.22)

where the new vector is defined as

- 2
4[k]*[k]

z[k] = cJ
'[k]

(3.23)

This closed form expression given in (3.22) suggests performing the Rayleigh minimization

algorithm in the frequency domain. In doing so, we need to represent the Fourier transform

of vector Rq as a function of vector . Wishing to avoid performing the above operation

in the time domain, we propose an efficient method which performs the above operation

using DFT.

Property 2:

For a vector s = Rq, the z th element can be represented as
27rki

1
N1-1

s [i] = eRq = [k] E1 [k] e
lYf

(3.24)

k=O

where e is the i'th unit vector of length Nb + 1. In deriving the above equation, we have

used the closed form expression given in (3.22). Equation (3.24) appears to be the i'th

element of IDFT of vector ® E. Hence, the vector s can be obtained from the first Nb + 1

elements of the IDFT( GD E'). Consequently, Fourier transform of the vector Rq can be

obtained by performing DFT operation on the vector s. These two properties along with

Parseval provide us an efficient algorithm as we will explain in the subsequent section.

3.5 Fast Algorithm

. Initialization:

Starting from an arbitrary normalized vector b°, compute the minimum eigenvalue

estimate, residual error and descent direction according to
N1 -1

= [k] r°[k] (3.25)
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= )0j0 0 i° = j0 r°[kJ l° [k] 2 (3.26)

Iteration:

For i = 0. Nb compute the TIR frequency response as

= b2+j15 j= B+\/B2-4CD
(3.27)2D

D = pp , B = )p', C = p A2p (3.28)
N1-1 N1-1

Pa = [k}ãi[k]
, Pb = z[k]d2[k] (3.29)

k=0 k=0
Nj-i Nf-1

=
> , Pd2 = d2[k] (3.30)
k=0 k=0

ã1[k] = (15i[k])*bi[k] , d2[k] = (151[k])*15i[k] (3.31)

Compute the minimum eigenvalue estimate, residual error, descent direction and normal-

ized TIR vector according to

where

Nf-1 )i+lbi+l i+11=
y+i II

[k]1[k} -i+'r
+1 (3.32)

k=0

1
152+1 i+1 + 3Z152 £i+1 = (3.33)

(3
LkO i[k] (jzz+l[k])*152[k} + (lIrlI2)(pc + I1Pd)

(3.34)
Pb2 - )i+1 Pd

- -
[k] = (i)2 + (j)2d2[k] + 2ti2R(d1[k}) (3.35)

Nf_1(_i+1 [k]) (3.36)

Upon computing the optimum setting for TIR, TEQ's coefficients are obtained from

equation (4.2). It is also worthwhile to remark that the term aHb in equation (4.2)

can be computed efficiently using equation (3.21). Table 3.1 compares the computational

complexity of the proposed method against the standard matrix inversion method.
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3.6 Simulations and Performance Evaluation of the Algo-
rithm

In this section we apply the proposed algorithm for equalization of DMT in ADSL

environment. A series of simulations are performed on 2 kft, 26 guage (AWG) wire line

sampled at 2.208 MHz. The power spectral density of near-end crosstalk (NEXT) noise

is generated by exciting the NEXT coupling filter H(f)I2 kNEXTI3/2 by a white

Gaussian noise with power of 10mW. Unless specified, kNEXT is fixed to 10's. Also there

is an AWGN with power of -3OdBm across the two sided spectral bandwidth. Decision

delay is set to the optimum delay obtained from MMSE-UEC .Unless specified, transmit

power is set such that the matched filter bound ( MFB = IjhH2a/o) of 15 dB is
achieved at the receiving point. As a performance measure, we compute signal power
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to MSE (SNR = cr/b*Rb) to evaluate the performance of the methods. Throughout

the simulations, performance of the proposed method is compared against MMSE-UEC

method. The following points can be inferred from the plots.

The gap between exact solution and proposed algorithm reduces as the length of

the TIR filter increases (Figure 3.2). This is due to the fact that the Rayleigh

minimization algorithm provides more exact solutions as dimension of the Hessian

matrix increases.

As long as N1 is large enough to satisfy the asymptotic equivalence of Toeplitz and

circulant matrices, the proposed algorithm provides a robust solution for various

values of Nj.
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. Performance of the algorithm is not influenced by the spectrum of the noise. As is

shown in Figure (3.4) Signal to MSE is constant over a large range of KNEXT.

Signal to MSE is a linear function of signal power (MFB). This is a favorable char-

acteristic, as there would be no limitation on the dynamic range of transmit power.

3.7 Concluding Remarks

We have developed a novel fast algorithm as a straightforward application of Rayleigh

minimization approach to solving the optimum MMSE-UEC equalization problem. Its

structure was chosen to allow the use of the DFT operation which makes the algorithm

highly parallelizable. The proposed method can be customized to provide a balance be-
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tween performance and computational complexity. Simulation results in this paper show

that the numerical complexity in the minimum eigenvector estimation can be reduced

considerably by exploiting the proposed algorithm, without significant loss in the perfor-

mance.
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Power Proposed

iteration algorithm

Hessian matrix N(Nb + 1)

Computation +Ni(N& + 1)2

Mi eigen. O((Nb + i)) O(N1log2N1)

Computation per iteration

Sensitivity to Highly Robust

condition No. sensitive

Other Requires Parallelizable,

Features matrix inversion requires large N1

Table 3. : Comparison Between Proposed Method and Standard Power iteration Algo-
rithrn
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4. OPTIMUM EQUALIZATION OF MULTICARRIER
SYSTEMS: A UNIFIED GEOMETRIC APPROACH

This section presents a new, iterative equalization algorithm that maximizes capac-

ity for discrete multitone (DMT) systems. The research modifies a previously proposed

criterion and applies an appropriate transformation to map the constraint set into a proper

region. The resulting constraint set exhibits an identifiable geometric characteristic, which

provides an efficient method for obtaining the optimal solution. Using the gradient projec-

tion method in conjunction with projection onto convex sets (POCS) provides us with an

iterative search algorithm which facilitate the search direction. We also generalize the ap-

proach to two important subclasses of equalizers, namely linear phase and unit tap filters.

An fundamental limit on the performance of the approach is also derived. In comparison

with the previous methods, the proposed equalization algorithm is less computationally

complex, more robust, and geometrically intuitive. Simulation experiments confirm the

validity of the proposed method for practical purposes.

4.1 Introduction

Since the introduction of channel capacity by Shannon, there has been considerable

interest to maximize the bit rate through the communication channels. Multicarrier trans-

mission systems exploit several parallel quadrature amplitude modulation (QAM) blocks

to transmit data reliably over highly dispersive channels. As a subclass of multicarrier

systems, discrete multitone (DMT) systems provide an efficient method for partitioning

the channel into a set on nonoverlapping orthogonal subchannels. DMT systems generate

the transmit sequence by performing a discrete Fourier transform (DFT) operation on a

block of data. Prior to sending the data on the channel, a portion of generated sequence,

known as cyclic prefix (CP), is prepended to the modulated symbol. The cyclic prefix

makes the channel-description matrix circulant, thus the orthogonal set of Fourier basis
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vectors can be applied to find its associated eigenvalues [44]. The cyclic prefix introduces

redundancy in data transmission, therefore reduces the effective data rate of a digital

transmission system.

A short CP would reduce the performance loss of data transmission and is favorable

in many real time applications. However the length of the cyclic prefix is lower bounded

by the effective length of the channel [451. In many practical channels, such as digital

subscriber loops, the effective length of the channel is large, which results in a considerable

performance loss due to adding the cyclic prefix. The solution is to force a long channel

impulse response to a short filter, which reduces the performance loss introduced by adding

the cyclic prefix. At the receiving end, the DMT system uses a finite impulse response

(FIR) filter (w), known as a time domain equalizer (TEQ). TEQ forces the effective

channel to a much shorter filter, known as the target impulse response (TIR). In setting

the coefficients of TEQ, several criteria have been considered and investigated. Chow et al.

provided an adaptive LMS algorithm for setting the coefficients of the TEQ [46]. Although

it is simple in structure, the algorithm is not robust and globally optimum. Following this

work, Al-Dhahir and Cioffi proposed a unified robust method that provides the optimum

solution of the impulse response shortening problem based on minimum mean square error

(MMSE) criterion [27]. Later, in a comprehensive study performed by the same authors, it

was found that the solution obtained from MMSE approach may not necessarily optimize

the performance (capacity or margin) of the DMT system. Based on this observation,

a new objective function was defined which outperformed the setting obtained from the

MMSE approach. Nevertheless, no specific algorithm was proposed to obtain the optimal

setting of the equalizer. This chapter presents a new iterative algorithm for obtaining the

optimum setting of the TEQ. The research makes use of the gradient projection method

to obtain the descent direction for the gradient method. As a result, when combined

with the POCS technique, the stationary point obtained from the algorithm converges

to an optimum point. POCS is a powerful technique which has found a wide spread

applications in set theoretic signal processing algorithms [47]. The rest of this chapter is

organized as follows. Section 4.2 presents an overview of equalizer training approaches for
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DMT systems. In section 4.3 a new algorithm for training the DMT equalizer based on

maximum capacity criterion is presented. Section 4.4 addresses the unit tap constraint

on the optimization problem. Optimization under linear phase constraint is thoroughly

investigated in section 4.5. An upper-bound on the performance of the system is derived

in section 4.6. Finally in section 4.7 the algorithm is applied to equalization of DMT

systems in order to assess the performance of proposed method for asynchronous digital

subscriber line (ADSL) applications [4].

4.2 State of the Art

This section presents an overview of various time domain equalization methods

for DMT systems as shown in figure 4.1. Throughout this paper, the symbols t *

and , represent transpose, Hermitian transpose and Fourier transform operations,

respectively. Matrices and vectors are represented by upper-case and lower-case bold

characters, respectively. The channel response is modeled as a discrete time finite impulse

response (FIR) filter, expressed by h = {ho,h1,. , h,} where v is the channel spread. The

channel response represents the combined effect of the transmit and receive filters as well as

the channel impulse response. The input signal x, is an independent identically distributed

random sequence with power of a. As explained earlier, several objective functions can

be used to optimize the performance of the TEQ. Among the existing methods, MMSE is

known to be the most tractable technique for impulse response shortening problem [27].

Several methods based on this approach have been proposed [29]. In this approach, the

optimum equalizer taps are computed to minimize the mean square error between output

of the TIR and TEQ filters. MMSE equalization can be viewed as a quadratic optimization

problem in which the optimum settings for the TIR and TEQ filters are obtained from

the following equations

b = arg mm b*Rb (4.1)

w = (4.2)
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where R is the Hessian matrix given in

R OINb+1 aHRjHA (4.3)

= + (4.4)

h0 h1 0

o h0 h1
11=

o h0 h1 h

S
[ °Nb+1, 'Nb+l,Nb+l °Nb+1,s ]

in which N1 and Nb + 1 are the length of TEQ and TIR filters, respectively. Also, L is

the decision delay involved with the TIR and s N1 + v Nb 1. Matrices I, 0 and

represent the identity, zero, and noise autocorrelation matrices, respectively.

To avoid converging to the trivial solution, further constraint is imposed on the

optimization problem (4.1). The Unit energy constraint (UEC) requires the norm of TIR

filter to be equal to one (b*b = 1), and the unit tap constraint (UTC) forces one of the taps

in the TIR to be unity (b[k] = 1 k E {0, 1,... , Nb}). Further investigations on optimizing

the performance of DMT systems determined that the equalizer setting obtained by using

the MMSE criterion would not necessarily result in the best geometrical signal to noise

(SNRgeom) ratio

SNRgeom Ifl(i + SN

N
Ri)] (4.5)

1
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Figure 4.1: Block diagram of MMSE equalizer
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for DMT systems, where N is the number of effective used subchannels [8]. A new criterion

for setting the coefficients of the TEQ equalizer to maximize the (SNRgeom) was proposed

in [7] ,[81. According to this criterion, the coefficients of the equalizer are obtained to

maximize the number of bits transmitted per DMT symbol, as expressed by

SNR
BitsDMT=>1og2(1+ 1' )

(4.6)
i=1

where SNR and F are the signal to noise ratio and the coding gain for the i'th subchannel

respectively. Throughout our analysis it is assumed that F is constant over the entire

subchannels. Optimization under unequal coding gain has been investigated in [....].

Following the approach proposed in [7], it is straightforward to show that the opti-

mum setting for TIR filter, which results in the maximum capacity criterion, is found by

solving a dual constrained optimization problem as expressed by

b0 = arg max log2b*Gib (4.7)

s.t. C1: b*Rb <2 (4.8)

C2 : b*b = 1 (4.9)



In equation (4.7), matrix G is defined as

G2

where gi is the jth Fourier basis vector given by

gZ [1 e* .. e3
2N

]

*

After obtaining the optimum setting for TIR, the optimum setting for TEQ is obtained

by solving the Wiener-Hopf equation (4.2). The optimization problem given in (4.7) does

not have a closed form solution. In [7] and [8], authors use standard optimization software

[48] tools in order to solve the above optimization problem .In the next section, we will

present a new iterative gradient search algorithm, for obtaining the optimum solution of

the problem given in 4.7.

4.3 Proposed Iterative Gradient Search Algorithm

As explained in the previous section, the optimum equalization of DMT can be

obtained by solving the constrained optimization problem given in 4.7. As depicted in

figure 4.2, the constraint set in problem (4.7) is the intersection of two regions. The first

region C1 : {b e RN1 b*Rb < 2} represents a closed set on the Euclidean

space R"1. Geometrically, the set C1 represents an ellipsoid in Because of the

positive definite property of the matrix R, this constraint set forms a convex set on the

Hilbert space. However, the unit energy constraint, C2 : {b E RNb b*b = 1},

represents a region on the surface of a unit radial sphere that lacks convexity. In order

to exploit the potential advantage of POCS, we remove the UEC from the constraint set.

Unlike the MMSE approach, we can remove the UEC from the constraint set because

origin is not among the local minimums (maximums) of the objective function and no

energy boosting constraint is needed in order to avoid converging to the trivial solution.

However, upon obtaining the global minimum, the solution vector can be normalized in

order to satisfy the UEC. This scaling would not affect the geometrical signal-to-noise
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Figure 4.2: Geometrical Representation of the Algorithm

(SNRgeom) profile, as the TEQ coefficients would be scaled accordingly. Consequently,

the mean square error and the additive noise contribution would be scaled by the same

factor. Using the convexity property of the constraint set C1, along with a suitable

iterative descent algorithm can lead us to a stationary point. We considered the gradient

projection method in order to find the feasible direction at each iteration.

Due to the positive definite property of matrix R, any Nb + 1-dimensional vector

b can be represented as linear combination of Nb + 1 orthonormal eigenvectors of matrix

R given by

b = X0V0 + a1v1 + + NbVNb O, ,
apj, E R (4.10)

where Vmand ) are the mt normalized eigenvector and associated eigenvalue of matrix

which satisfy

Rv = Av and vv3 = j]

By substituting equation (4.10) into equation (4.7) the objective function can be expressed
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as

N N5 Nb

f 1og2((ajvj)*Gi(>ajvj))
i=1 j=Q j=Q

b0920 N5]Q[Q a1 .aNb}*

where the new matrix Q is defined as

vGv0 vGtvi VGVN

Qi vGv0 vGv1 vGZvr

VNGVO VNGV1 VJ5GV

Due to the properties of matrix Gz, its (m, n)th entry can be computed efficiently as

Q[m,rt] = (4.11)

By virtue of equation (4.10), the constraint set Ci can be written as
N5 Nbb*Rb = (ajvj)*R(>.ajvj)

j=O jrO

=

Using this transformation, the optimization problem given in (4.7) subject to the con-

straint set C1 can be written as
N

1iopt = arg mm >1092qi
jz1

s.t Ci ao2)o + + + UN5.AN5

where is the projection vector given by
*

a al aN5

The principle drawback of the gradient projection method is the substantial over-

head for computing the projection at each iteration. However, as we will address shortly,
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the canonical property of this constraint set enables us to perform the projection in an

efficient way. The main idea with regard to the gradient projection method is that, in

each iteration, a feasible direction is obtained by taking a step along negative gradient

followed by a projection onto the constraint set given by

ak+l = [ak - sky1 (ak)] +

Here [.]+ denotes the projection onto constraint set c1, sk is a positive step-size, and Vf

is the gradient of the objective function given by

N (Qi+Qit)a

1n2.1 Qiä

There are several step size selection procedures for the gradient projection method. In

order to simplify the search direction, we consider a constant step size 5k = s. It is possible

to show that the limit points of a sequence generated by the gradient projection with a

constant step size are stationary, provided s is sufficiently small and the gradient satisfies

a Lipschitz condition [49].

Next we derive the projection onto the convex set. Given a point a E RI'4+l, the

projection of this point onto the set would be a point in the set such that it minimizes

the distance a /3J among all the points inside the set. In light of this fact, projection

of a point ä C would be on the boundary of the set. Also each point inside the

constraint set would satisfy the constraint and would be projected onto itself. Therefore

the projection operator is defined as follows

ía ifäEC1
3 ifaC1

where [ j3 I3Nb ]
is a point in C1 which satisfies the constraint with

equality

I /O2)O+/12A1+"+/Nb2ANb 2}
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To find this point we construct the Lagrange functional

Nb

J(, -y) = - + 2]

Nb

= + 'y(i32)] +

By taking the partial derivative of J(13, -y) with respect to particular /, and setting it to

zero, we obtain

3J3, -y) = 2(3 cj) + 2-y.\jI3j = 0

i-
l+-yA

(4.12)

Also taking the partial derivative of the Lagrangian functional with respect to Lagrange

multiplier -y and setting it to zero provides the following

Nb

()2A 2 = 0 (4.13)
i=o

Substituting equation 4.12 in the above equation provides

NbDJ()
(

)2 2 = 0 (4.14)a7 l+-yAi=:o

Clearly equation (4.14) is a non-linear equation in 'y. It can be shown that starting

from 70 = 0 the iterates generated by Newton's method

k+1k (4.15)

would always lead us to the unique positive solution of this equation, which results in a

projection vector 3 that has a smaller distance to a than that furnished by use of any

other root [50]. Upon computing the Lagrange multiplier 7 from the equation (4.15), the

projection vector is found through equation (4.12).
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A few additional remarks regarding to the effect of initial condition are appropriate.

First we point out that the objective function lacks the convexity property. Therefore, the

stationary point obtained from exploiting this algorithm is dependent upon the choice of

initial condition. However, a proper choice of initial condition can lead us to a stationary

point close to the optimal solution. A feasible initial condition can be the solution obtained

from MMSE-UEC approach as given in equation (4.1). As a second comment, we also point

out that in order for the algorithm to converge to a stationary point, the initial condition

should be set so that the starting point satisfies the inequality constraint (feasible point).

In the following sections, we investigate the effect of further constraints such as UTC and

Linear phase on the performance of of the TEQ.

4.4 Unit Tap Constraint

In some applications, it is desirable to impose a UTC on the TIR filter. This

constraint forces kth tap of the TIR filter to unity. Decision feedback equalization is a

special case of UTC with k = 0. As mentioned before, UTC forces the kth element of

TIR filter to unity. Using equation (4.10), we can represent kt element of TIR as linear

combination of kth elements of orthonormal eigenvectors of matrix R. Consequently the

UTC set (C3) can be formulated as
N5

C3={/3ER' >Iijvj[k]=1}
j=o

(4.16)

The above equation conforms a hyperplane in R' which is both closed and convex. In

general, the projection operator is a vector j3 which minimizes the Lagrangian functional,

i.e.
Nb

JC, iI') = II

- II2 + iI 3v[k] 1) (4.17)
3=0

To obtain this point we compute the partial derivative of the above term with respect to

1' and set it to zero which provides

=
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Solving the above equation with respect to /3 provides the projection operator as

= cj v[k] (4.18)

where ' is the parameter which minimizes the term given in (4.17) as ,i.e.
Nb

_____ = v[k] 1=0
j=o

Substituting equation (4.18) into the above term results in a closed form expression for

the parameter / as expressed by
Nbv[k] 1

Nbv2[k]

The above equation along with (4.18) results in the projection operator as

>1'Jbav[k] 1
(4.19)v, [k]i=i

4.5 Linear Phase Constraint

In optimizing the performance of TEQ, the effect of phase distortion was not con-

sidered. In order to remove the phase distortion, linear phase constraint must be imposed

on the TIR filter. This would add another constraint set to the previous problem, which

increases the complexity of the problem. However the linear phase constraint is the inter-

section of hyperplanes in Euclidean space RNb that is both closed and convex. Therefore,

projection onto convex sets can be extended to provide the optimum solution under linear

phase constraint. Following, we provide the projection operator for linear phase filters

type (I) and (III) [12].

4.5.1 Linear Phase Type I

Linear phase type I satisfies the even symmetry property as given by

Nb 1b[k]=b[Nbk] k=0,1,.,--



Using equation (4.10), the above constraint can be written as a function of orthonormal

eigenvectors of matrix R. as expressed by

/3vj[k}=/3jv[Nbk] k=0,1,,-1

Therefore linear phase type (I) constraint set is the intersection of hyperplanes in

RNbf given by
Nb

Nb>I3jpj[k]=0 ,k=0,1,.,----1}
j=o

whose component of the normal vector corresponding to the flth hyperplane has the

form of

pj[fl] = v3[nI vj[Nb n] (4.20)

The projection vector /3 represents a point on the intersection of these planes which

minimizes the following Lagrangian functional

Nb

= ll/3_al12+ k/3jPj[k] (4.21)
k=O j=O

*

where
[ o i ] . By computing partial derivative of the above term

with respect to vector 3 and setting it to zero we obtain the projection operator as

p[k] i=0,1,--,Nb (4.22)

In the above term, 'k is the kth element of the vector which minimizes the term given

in (4.21). Taking the partial derivative of JC8, ') withrespect to particular 'j5 and setting

it to zero, we obtain
- Nb

Nb=/3jpj[n}=O n=0,1,,-1
substituting equation (4.22) into the above term yields

N21 Nb Nb

p[n]p[k} = ajpj[n]
k=O j=O j=O
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The above term is a set of simultaneous linear equations which can be cast in a matrix

form as following

eb=p
where the matrix 0 and vector p are defined as

Nb

0[n, k] > pj[n]pj[k]

j=o

Nb

p{n]2 jpj[n]

j=o

n,k=0,1,,-1

(4.23)

(4.24)

(4.25)

There are two approaches to compute the vector /'. The first method is to apply the

idea of FOGS and compute the projection using successive projection on hyperplanes.

An alternative method is to compute the vector (' through inverting the matrix 0 as

given by

= 0'p (4.26)

4.5.2 Linear Phase Type III

Linear phase filters type III satisfy the even antisymmetry property as expressed by

b[Nbri] n=0,,-1
b[n] =

1°
Likewise linear phase type (I), the first constraint is the intersection of hyperplanes in

RNb* Also, the second constraint can be viewed as another hyperplane in R'b which

encounters origin and can be represented as

b[} = 0

Using the above equations, the Lagrangian functional can be written as
N-1 Nb Nb

JC) = IIflII2+ kjTj[k]+>I3jVj[]
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where the variables rj[n] and /' are defined as

-rj[n] = v3[n] + V3[Nb n] (4.27)

I

(4.28)
2 J

Taking the partial derivative of equation (4.27) with respect to /3 and setting it to

zero provides the projection operator as follows

12 1 Nb
I3 kTi[k] (4.29)

k=0

Similarly taking the partial derivate of equation (4.27) and setting it to zero results in

= J
03r3[n]=0 n=0,, 1

>i/3v['=O LY

Substituting equation (4.29) into the above equations results in a set of +1 simultaneous

equations as follows

Nb Nb Nb
Nbrj[n]rj[k] + ''j 2

k=0 j=0 3=0 j=0

2 Nb
Nb

Nb
Nb2

Nb
Nb'bk>vj[--]rj[k] + vj[--] 2ajvj[--}

2 3=0 3=0k=0 3=0

The above equations can be cast in a matrix form as

= F

where the matrix F and vector r are defined as

{ 30rj[n]v3[]
Lj=0 rj[m]rj[n]

r[m, I=

L.jr0
s-' NbLj=0 v[]2

m=
n = & Tn 0, ,

In = n =

(4.30)



{2m'aj
r[n]=

20rj[m]ajvj[] n=

The lagrangian multiplier vector can be obtained through successive iteration of POCS

algorithm or simply through inverting the matrix F as follows

= (4.31)

4.6 Upper-bound on Performance

Assuming the optimization problem given in (4.7) finely maximizes the objective

function given in (4.6), an upper-bound on the total number of bits transmitted in one

DMT symbol can be obtained as follows

N N
logb' G'b = 109211 lb g2

j=1 i=1

N
2 2(Nb+1)2)N

(4.32)<109211
Amin(R)

Note that the first inequality follows from the Cauchy-Schwartz inequality while the second

inequality is obtained from applying Rayleigh inequality as expressed by

b*Rb
Amin(Rz)

11b112
Xmax(R)

where Amiri (Amax) is the minimum (maximum) eigenvalue of matrix R.

The above expression shows that increasing quadratic inequality constant (QIC) 2,

would result in a larger upper-bound for the objective function. On the other hand, a

smaller value for QIC, would cause the dual constraint problem given in (4.7) to better

approximate maximization of the original objective function described in (4.6). This fact

is consolidated through computer simulation in the subsequent section.
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Figure 4.3: Performance Of The Proposed Algorithm For Various GSA Lines

4.7 Simulations and Performance Evaluation of the Algo-
rithm

In this section, we explore the potential performance achievable through the use of

the proposed algorithm for equalization of DMT systems. We ran a series of simulations

on GSA loops sampled at 276 kHz. The number of subchannels considered is N = 64.

The TEQ and TIR are assumed to have lengths of N1 = 17 and Nb = 4, respectively.

Receiver and thermal noise is modeled as AWGN noise with power of -30 dBm across the

two-sided bandwidth. Near end cross-talk (NEXT) noise is modeled by exciting coupling

filter with spectrum of ( H(f)j2 = 10-1313/2) by a white Gaussian noise with power of

10 mW. Unless specified, signal power is set such that the matched filter bound (MFB

IIhII2o/o) of 15 dB is achieved at the receiving point. Furthermore, it is assumed that
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the power is equally divided amongst the entire subchannels. In estimating the capacity

of the DMT system, the entire bandwidth is used and no limitation is imposed on the

number of bits allocated for each subchannel. Also the coding gain of 0 dB is assumed

over entire subchannels.

4.7.1 Effect of Channel Impulse Response

In order to evaluate the performance of the proposed algorithm, computer simu-

lations have been performed on a series of CSA loops. Figure 4.3 shows the percentage

of improvement in capacity with respect to the capacity obtained from MMSE-UEC ap-

proach. Decision delay, initial condition and QIC are set to the settings furnished by

the MMSE-UEC approach. Simulation results indicate that the algorithm exhibits robust
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convergence for all CSA loops used in the study. As shown in the figure, the capacity of

the proposed method exceeds that of MMSE-UEC approach in the range of 10% to 35

%. Figure 4.4 compares the signal to distortion ratio of maximum capacity equalization

against MMSE-UEC approach for CSA-1 ioop. As shown in the figure, the MMSE ap-

proach exhibits considerable performance degradation over half of the subchannels. This

degradation can be viewed as sharp notches in the signal to distortion profile. Equal-

ization of DMT based on maximum capacity outperforms the MMES-UEC approach by

removing these nulls from the signal to distortion profile.
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4.7.2 Effect of Transmit Power
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We applied the maximum capacity equalization on a typical GSA loop, namely

GSA 1, under various transmit power. Figure 4.5 shows the relative improvement in

capacity with respect to the capacity obtained from MMSE-UEC approach. The transmit

power is set so the matched filter bound at the receiving end achieves values of 5, 10,

15, and 30 dB. Likewise previous experiment, initial condition, optimum delay and QIC

are set to the values furnished by MMSE-UEC approach. Simulation results show

that a considerable improvement in system performance can be achieved through the use

of proposed algorithm. Also as inferred from the figure, robustness of the algorithm is

insensitive to the transmit power.
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4.7.3 Effect of QIC (c2) and Decision Delay (z)

In order to investigate the effect of QIC, the proposed algorithm is applied for

equalization of a typical CSA ioop, namely CSA-6. Figure 4.6 depicts the capacity profile

as a joint function of QIC and decision delay. The QIC is set to c2 = KefMSE, where

Ke E [0.2 1]. As mentioned earlier, increasing QIC would increase the volume of the

constraint region which provides more freedom in the search direction. On the other

hand, the dual optimization problem would better approximate the capacity maximization

problem if QIC is small. Therefore, the admissible range of QIC is bounded from both

sides and an exhaustive search should be performed on QIC to obtain its optimum value.

As is shown in the figure, the maximum capacity is displaced downward as K increases

from .2 to 1.
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4.7.4 UTC and Effect of Filter Causality

Next we examine the effect of UTC on the optimum equalization of DMT system.

Figure 4.7 shows the relative improvement in capacity for maximum capacity equalization

under UTC for various GSA lines. In optimizing the performance of the equalizer, QIC,

decision delay and unit tap index are set to the optimum values obtained from MMSE-

UTC approach. Changing the causality of TIR filter results in a different normal vector for

the constraint hyperplane, which shapes the constraint region accordingly. The optimum

unit tap index k is found through performing exhaustive search on values k ranging from

1 to Nb + 1. In order to show how the causality of TIR can affect the performance of

the proposed algorithm, the optimum equalization algorithm is performed on on a typical
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Figure 4.9: Signal to Distortion Ratio for MMSE-TEQ and Max Capacity-TEQ with
Linear Phase type (I) Constraint

CSA loop. Figure 4.8 depicts the capacity profile as a joint function of decision delay and

unit tap index k for CSA-1 loop.

Unit tap index 1 and 5 correspond to causal and noncausal TIR filters respectively.

As shown in the figure, a noncausal TIR would maximize the the performance of the DMT

system for this particular case.

4.7.5 Effect of Phase Distortion

In order to investigate the effect of phase nonlinearity on the performance of DMT

system we impose the linear phase constraint on the maximum capacity equalization

problem. We consider the CSA-1 loop used in section 4.7.1 and impose the linear phase

type I constraint on the optimum equalization.
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4.8 Conclusion

Figure 4.9 shows the signal to distortion ratio over subchannels for this experi-

ment. Figure 4.10 compares the phase response of the TIR for MMSE-UEC, optimum

capacity equalization and optimum capacity equalization with linear phase constraint.

As expected, the optimum capacity equalization with linear phase outperforms the other

schemes through removing the phase distortion from the frequency response. Optimum

equalization of multicarrier systems can be viewed as a constrained optimization problem

over convex sets. The constraint sets exhibit identifiable geometrical characteristics which

make the projection operation significantly efficient. Based on these observations, we have

proposed a novel iterative algorithm as a straightforward application of POCS for solving

the optimum equalization of multicarrier systems. Further work will also be carried out to

demonstrate the impact of the bit loading algorithm on the overall capacity of the system.
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5. CLASS OF CYCLIC BASED ESTIMATORS FOR
FREQUENCY OFFSET ESTIMATION OF OFDM

SYSTEMS

In this chapter we present a new, class of non data-aided cyclic based estimators

for carrier frequency offset and symbol timing error estimation of orthogonal frequency

division modulation (OFDM) systems. Essentially, the proposed approach exploits the

properties of cyclic prefix subset to reveal the synchronization parameters in the likelihood

function of received vector. This approach is an extension of the previously proposed

estimation method given in [37]. However, our research indicates that the previously

proposed likelihood metric does not globally characterize the estimation problem. Based

on this observation, a new likelihood function for the joint timing and frequency offset

estimation is derived. The resulting probabilistic measure is used to develop three class

of unbiased estimators namely, maximum likelihood, minimum variance unbiased (MVU),

and moment estimators. In comparison to the previously proposed methods, the proposed

estimators are computationally and statistically efficient which makes the estimators more

attractive for real time applications. Performance of estimators is assessed by computer

simulation for OFDM scheme.

5.1 Introduction

OFDM system is a viable modulation scheme for data transmission time varying

dynamic channels [51, 52] . However, it is known that performance of such system is highly

susceptible to nonideal synchronization parameters [33, 53]. Specifically, symbol timing

and carrier frequency offset become an increasingly important concern in using OFDM

systems for practical applications [9, 54]. It is known that carrier frequency offset deteri-

orates performance of OFDM systems by introducing interference among the subchannels

[32]. To overcome this imperfection, various compensation methods for estimation and

correction of synchronization parameters have recently been proposed [32, 37, 55]. In order



to compare the performance of these estimators, it is required to define a single number

representing the goodness of the estimate. Knowing that all the estimators are unbiased,

i.e. expectation of the estimate is equal to the parameter, the variance of the estimator is

used as a global measure for performance comparison of these estimators.

Cramer-Rao lower bound (CRLB) is a fundamental lower bound on the variance of

the estimators and the estimator whose variance equals CRLB is called efficient. When

the evaluation of efficient estimator is not possible, it is desirable to obtain an estimator

in which its performance becomes as close as possible to the CRLB fundamental bound.

The estimator in which its performance is the closest to the CRLB estimator is known as

MVU estimator.

Categorically, the previously proposed methods for synchronization of OFDM sys-

tems can be classified into two main subclasses, namely minimum mean square error

(MMSE) and ML estimators. In MMSE approach, estimator uses the side information

provided by the reference signal ( pilot tones ) in order to minimize a cost function asso-

ciated with the synchronization parameters [34],[35]. A salient feature of this approach is

that no probabilistic assumptions are made in regard to the data. Although MMSE es-

timators usually result in a tractable (globally stable) and easy to implement realization,

no optimality criteria (probabilistic or statistical ) is associated with these estimators.

Also, since part of the transmitted information is allocated to the reference pilots, the

bandwidth efficiency of these methods is lower in comparison to the nonpilot schemes.

On the other hand, ML estimators provide the estimate of the unknown parameter

subject to minimum probability of error criteria [36], [37], [32]. Although not exactly

efficient, ML estimators are asymptotically MVU, i.e. their variance attains that of MVU

estimator as length of data record goes to infinity. However, due to the physical con-

straints, systems with infinitely long data records are not feasible for implementation

purposes.

In [32], authors use retransmission technique in order to reveal the frequency off-

set parameter in the likelihood function of the received signal. Due to the redundancy

introduced by repeating the data block, the spectral efficiency is dropped by a factor of
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two. To avoid this imperfection, a new ML estimator based on cyclic prefix (CP) was

introduced in [37]. In this approach, the side information provided by the CF is used to

obtain the likelihood function for joint estimation of symbol timing error and frequency

offset in OFDM systems.

However, our research reveals that the likelihood function proposed in [37] does

not globally characterize the observation vector over the entire range of the timing offset.

Consequently, the ML estimator proposed based on this likelihood function would result

in considerable performance loss over a finite range of timing offset interval.

Motivated by the suboptimum performance of this estimator, a new likelihood func-

tion for joint estimation of carrier frequency offset and symbol timing error of OFDM

systems is introduced in this paper. Based on this result, a new optimum ML estimator

for the joint estimation problem is also presented. In attempt to reduce the variance of

ML estimator, we also investigate a new class of MVU estimators for frequency offset

estimation of OFDM systems. It is shown that there exists but one function of sufficient

statistic which provides the MVU estimate of the frequency offset. The proposed esti-

mator provides a closed form expression for the estimator as a function of data statistic.

Consequently, it does not suffer from converging to multiple local minima, the problem

which arises in ML technique with nonconvex loglikelihood function [36].

The advantage of the proposed MVU estimator over the class of previously proposed

estimators is two fold. First, it is MVU , therefore its variance is minimum among the

entire class of estimators which use the same probabilistic measure. Secondly, it provides a

closed form expression for mapping the statistics into the estimation domain. The former

property assures optimality of the estimator, while the later facilitate the closed loop

analysis of the system.

The rest of this paper is organized as follows. Section 5.2 introduces the timing and

frequency offset estimation problem and addresses the previously proposed estimation

approach. In section 5.3 a new global likelihood function for joint estimation of timing

and frequency offset is presented. Once the likelihood is found, a new ML estimator for

joint estimation problem is proposed in section 5.4. In section 5.5 the powerful Neyman-
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Fisher factorization theorem and Rao-Blackwell-Lehmann-Scheffe (RBLS) theorem are

applied to obtain the MVU estimator. Lower bound and closed ioop performance of this

estimator is also investigated in this section. Section 5.6 addresses a moment estimator

for estimation of frequency offset under uncertain timing offset knowledge. In section we

propose a unified structure which encounters the class of proposed cyclic based estimators.

Performance assessments of the estimators for OFDM system are presented in section

5.2 Preliminaries

This section presents an overview of cyclic based estimation method for synchro-

nization of OFDM system [37]. In the OFDM, an N-point FFT is used to divide the

channel spectrum into a set of N parallel subchannels. Due to the intersymbol inter-

ference introduced by non-fiat spectrum channel, the OFDM symbols are subject to the

interbiock interference (IBI) among consecutive transmitted blocks [561. This would result

in considerable performance degradation in OFDM system. To mitigate this effect, the

last L input samples in each input block of length N are repeated at the beginning of the

block. This makes the input sequence look periodic and clears the channel memory at the

end of each input block making the successive OFDM symbols independent. Figure 5.1

depicts the transmission blocks in OFDM systems. We denote the OFDM received signal

by

2irne

y[n]=s[n-9]exp3 N -i-w[n] (5.1)

where s[.] is the transmitted sequence and w is the additive white Gaussian noise (AWGN).

Both signal and noise sequences are assumed to be uncorrelated independent identically

distributed (iid) random variables with power of a and a respectively. Also, E and are

the frequency offset and symbol timing error introduced by the synchronization mismatch

in the carrier frequency and symbol timing respectively. Let x [x[0] . x[2N + L 1]]

be a vector of 2N +L previously received samples at time n, known as observation vector

(OV). With the above notation, the kth entry of this vector can be represented as x[k] =
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Figure 5.1: Observation Window

y[n 2N L + 1 + k]. Length of this vector is selected such that there are at least

L correlated symbols associated in the OV regardless of the synchronization parameters

values. Due to the timing offset error t9 at the receiver, the starting point of this vector is

shifted by 9 samples with respect to the beginning of the OFDM symbol block.

Under the iid assumption for both signal and noise, the autocorrelation function for

the OV x can be expressed by

E{x[k}x*[k + m]} =
a+a rn=O

ae2 m=N,kE1
0 otherwise

(5.2)

where Il = {k E N : < k < 9 + L 1} is the cyclic associated with the OV. Assuming

AWGN scenario, the probability density function (PDF) of the observation vector is in

the form of

1p(x,'O,E) = exp[x*R_lx] (5.3)(2ir) 2N+L det (R)
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where R is the autocorrelation matrix of the observation vector. In [37] authors use the

Bayes conditional theorem in order to obtain the PDF of the observation vector. However,

as we show next, the resulting likelihood measure does not fully characterize the random

observation vector x over the entire range of the timing offset parameter. In the next

section we propose a new likelihood function which removes this imperfection.

5.3 Likelihood Measure

The question of the optimal choice of likelihood function for joint estimation of fre-

quency and timing offset in OFDM systems is considered next. The analysis developed

here for computing the PDF is based on the standard matrix inversion approach. De-

pending on the value of timing offset 9, the autocorrelation matrix (R) can be cast into

one of the following forms

5.3.1 Case I (1 <i9 < N)

In this case there are two cyclic sets associated with the observation vector. This

would partition the autocorrelation matrix and its inverse into the following forms

rXX[OII()) 0 0

B. = 0 T(N+L) 0 (5.4)

0 0 rXX[O]I(N_9)

0 0
rx[0]

= 0 T+L) 0 (5.5)

0 0
r[0]

(5.6)

where T(M) is a tridiagonal toepliz matrix of size M as expressed by

TM Toeplitz([ r[0] r[1] ... r[M ii]) (5.7)
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The argument inside the Toeplitz operator is the first row of the toeplitz matrix R(,)

with

r[m] (o + o)6[m] + N] (5.8)

Due to the tridiagonal toeplitz property of the matrix T(M), the [i, entry of its inverse

can be obtained from

1

I

r[O](1_a) = j & (1 < i < M N or N + 1 < i < M)

I

rxx[O](1_1a12)
j

.
= N

rxxoi-iap .i = N (5.9)

1

fö]
z=j&MN+1<i<N

0 otherwise

where eio
a (5.10)o + cY

Substituting equations (5.9) and (5.5) into (5.3), after some algebraic manipulation, the

conditional PDF for this case can be expressed as

2N+L-1
1 1

p1(x,e,t9) = (2)2N+Ldet(R) exP[2( 2 + a2) (
krO

L+t9-1 t9+L-1 a*
+ (Ix[k]I + Ix[k + N]2)1

_1a12
2{ x*[k]x[k + N]1

1ai2
k=t9 k=

(5.11)

5.3.2 CaseIl (N+1<9<N+L)

In this case there are three cyclic sets associated with the observation vector and the

autocorrelation matrix is partitioned into two tridiagonal toeplitz matrices as expressed

by

[T()

0
1 (5.12)

0 T(2N+L_) j
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Substituting equation (5.12) into (5.3), and using (5.9) the conditional PDF for this case

can be written as
2N+L-1

1 1p2(x,E,'O) = exp[(2)2N+Ldet(R) 2(a + a2) lx[k]j2
k=O

9-N-1 N+L-1 2

+ ( x[k]2 + lx[k + Nil2 + x[k]2 + lx[k + Nil2) al
1_1a12k=O k=3

9-N-1 * N+L-1 a*2{ x*[k]x[k + N]1 a 2{ x*[k]x[k + N]1
1a12a12kO k=9

(5.13)

Combining this with (5.11), we conclude that the exact PDF which globally characterize

the observation vector can be expressed as

p(x,e,O) = pi(x,r,t9)(U[t9 1] U[9 Ni])

+ p2(x,,'O)(U[t9 Ni] U[9 N L+ 1]) (5.14)

where U{n] is the discrete time unit step function. We conclude this section by noting

that the PDF given in [37] is only the first term of the PDF given in (5.14).

5.4 Maximum Likelihood Estimator

In this section, a ML estimator for joint estimation of carrier frequency and symbol

timing error is presented. The ML estimate for the unknown vector [e, 9} is defined to

be the vector [EML, 'i9ML] that maximizes the p(x, &, 9) for fixed realization of the random

vector x as expressed by

[EML,'t9ML] = argmaxp(x,E,i9)
,i9

The maximization is performed over the entire span of the estimation vector [E, '9}.

By taking the derivative of the likelihood function given in (5.14), it can be shown

that the joint ML estimation of 9 and becomes

ML = arg max T2(t9)lal+2lTi(9)l



L+i9-1

Ti(x,?9)=

£ML = ZTi(x,19)
27r

x[k]x*[k + N]

x[k]x*[k + N] +

1<9<N
N+L-1

x[k]x*[k+N] N+1<t9<N+L

L+-1

f

i
x[k]l2+x[k+N]2 1<i9<N

k=t9
t9-N-1

T2(x, 9)

2 Ix[kII + x[k + N]12+

k=O

N+L 1
x[k]12 + x[k + N]J2 N + 1 <0 <N + L
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(5.15)

(5.16)

The estimator proposed in [37] provides the Likelihood function of the observation

vector over a finite range of timing offset parameter. Thus, the resultant ML estimator is

suboptimal and obtains the ML estimate by maximizing the conditional likelihood function

p(x,e,9Ii

To better visualize this difference, a typical realization of log-likehood measures for

both suboptimum and proposed functions are plotted in Figure (5.2). In this experiment,

the DFT block size (N) and CP (L) are assumed to be 64 and 8. Signal to noise ratio,

frequency offset (e) and timing offset (?9) are set to 25 dB, .01 and 70 samples respectively.

The upper plot indicates the log-likelihood function for the suboptimum metric proposed

in [37] and the lower plot provides the metric given in equation (5.14). By investigating

these plots, it is inferred that the suboptimum metric achieves its maximum at = 48.

However, for the metric given in (5.14), the maximum is 70 which is exactly the unknown

symbol timing error. Knowing the fact that during the startup and initialization of the

receiver, symbol timing error is uniformly distributed between 9 E [1 N + U, the ML

estimator proposed in [3'7] results in considerable estimation error with probability of

L/(N+L).

ML estimators are asymptotically MVU, i.e. the variance of the estimator achieves

that of MVU estimator as length of the observation vector goes to infinity. However, for
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Figure 5.2: Comparison Between Realization of Log-likelihood Function for suboptimum
and Proposed Method

many practical purposes, length of observation vector is constrained by physical limitations

and can not be chosen arbitrarily long. In the subsequent section we investigate the MVU

estimator which has the minimum variance among the set of cyclic based estimators.

5.5 MVU Estimator

In this section we try to find the MVU estimator by resorting to the theory of

sufficient statistics [57]. The first step in deriving the MVU estimator is to obtain the

sufficient statistic for the PDF given in (5.14). The sufficient statistic is known to be a
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function of the OV , namely T(x), such that the conditional PDF of the OV given T(x)

does not depend on the unknown estimation parameters [e,O]. Evaluating the sufficient

statistic is a formidable task for the broad class of PDFs, however the Neyman-Fisher

(NF) Factorization theorem can be used for identifying the potential sufficient statistics.

According to this theorem if the PDF can be factored in the form g(T(x), , 'O)h(x) where

g is a function depending on x only through T(x) and h(x) is a function depending only

on x, then T(x) is a sufficient statistic for estimation of the parameters and 9. By
reformulating the PDF given in 5.14 to

2[e2Ti(x,9)IaI] IaI2T2(x,i9)

p(x,e,'9) = e 2(1 IaI2)(a + o) hi(x)

it is straightforward to verify that there is a direct dependency between the parameter i9

and the statistics T1 (x, 0) and T2(x,0). Based on this observation the NF theorem fails to

provide a sufficient statistic for estimation of 9. However, for a deterministic realization

of the parameter i9, we can factor the PDF into

R[e32Ti (x, ) aU

p(x,4,) = e (1 IaI2)(c °) h(x) (5.17)

Clearly then, T1 (x, 9) forms a sufficient statistic for estimation of the parameter e.

Next, we apply Rao-Blackwell-Lehmann-Scheffe (RBLS) theorem to find a MVU

estimator. According to this theorem, If ë is an unbiased estimator of E and T(x) is a

sufficient complete statistic for then ë = E(lT(x)) is a valid, unbiased , MVU estimator

of E.

In applying the above theorem, we need to obtain an unbiased estimator of e, say ,

and determine the conditional expectation of this estimator given the statistic T1 (x, 9). An

appropriate candidate for the unbiased estimator of can be obtained from the statistical

moments of the random vector x. According to equation (5.2) the second moment of the

random variable x[k], with k E , satisfies the following identity

E{r[k]x*[k + N]} = (5.18)



Having this observation, we use the second moment estimator as an unbiased estimator

for e as given by

1= ln{ x[k]x*[k + N]} (5.19)
27r LaS k=9

In deriving the above estimator, we replaced E(x[k]x* [k + N]) by its natural estima-

tor >t' x{k]x*[k + N]. It is straightforward to verify that this estimator is unbiased

as it satisfies the condition
9+L-1

E{ë} = 1nE{_ x[k]x[k + N]} = (5.20)

X k=9

Next, we obtain the conditional expectation of given the sufficient statistic T1 (x, '9)

as follows

i

EMVUI = E(ëIT1(X,,)) lnE{-- x[k]x[k + N]IT1(X,)}

X kr9

1{1Tl(x9)}
(5.21)

It is important to emphasize that since the underlying PDF given in (5.14) belongs

to the exponential family of PDFs, then the sufficient statistics T1 (x, 9) forms a complete

statistic for estimation of the parameter c. Therefore, the mapping function obtain from

applying RBLS theorem, namely lnT(x, 9), is but one function of the statistic Ti(x, 9)

and no other estimator with the same statistic can result in a lower variance with respect

to MVU estimator.

5.5.1 Cramer-Rao Lower Bound

It is known that under broad conditions, the variance of any unbiased estimator of

a nonrandom parameter E satisfies the CRLB as

1var(ëMvuJ) > (5.22)
1(E)

where 1(E) is the Fisher information given by

a2lnpr(x,EI)1
(5.23)1(e) = E[
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Substituting (5.17) into (5.23), after some algebraic manipulations, the CRLB of the MVU

estimator becomes

(1 IaI2)(o+a) (1+__i__\2_1SNR)var(ëMvuI)
(2)2IaIE{Ti(x,?9)} (2)2L (5.24)

where SNR j- is the signal to noise ratio at the receiving end.

5.5.2 Closed Loop Performance

The frequency recovery ioop for estimation of frequency offset is depicted in figure

5.3. The closed loop system is obtained by feeding back the information obtained from

the estimator into the sampler block (boot strap). The sampler updates its frequency

at the beginning of the each observation vector (every (N + L) samples). To match the

various sampling frequencies used in the system, a down sampler block is used prior to

the sampler. Also, a gain block (C) is used to control the closed loop characteristic of the

system (stability, settling time, noise sensitivity). According to figure 5.3, the frequency

offset for the mth observation vector can be expressed as



is:

L-1 27r[m 1}(9 + 2ir[m 2](i9 + i)c1 1 j[m] = in > x(m_i)[i]e N xm_2)[i]e3 N
i=O

27re[rn 1](t9) L-i .27r[m 1](i)
1 1

e3 N x(m_i)[i]x(m2)[i1e* N (5.25)= ln7--
i=O

where ê{m 1] = (E[m 1]E[m-2])G and xm[i] = x[m(N+L)+9+i}. The term inside

the sum is a stochastic quantity and does not have a ciosed form expression. However, for

reasonably high signal to noise ratio it can be well approximated by its expected value

E[X(m_l)[i]X'm2)[i]] = at). Therefore, the expression inside the sum can be written as

2r5[m-1}L L[m-1JLL1 2irLë[m 1](i) 1 e3 N .2rê[m-1J(L-1) 5i( 2N )
I

e3 N = = e3 2N
2rA[m- 1} [m- 1]

i=O 1 e3 N sin( 2N )
2rz[m-1](L-1)

2N L (5.26)

Substituting (5.26) into (5.25), after some algebraic manipulations, the frequency offset

of m'th OV becomes

[m] = ([m 1] 2])
L 1)

(5.27)

The above equation represents a second order finite difference (FD) system in which its

dynamic can be obtained from solving the following equation

[m] + /3[m 1] /3ê[m 2] 0

where /3 -( + Clearly, the solution to the above DE is the form of

[m] = 1(Z1)m + C2(Z2)m

_.J/2+4L3where z1,2 = 2 are two dynamical modes of the system. The smaller root

(negative) results in a high frequency oscillation in the frequency offset estimate. However,

as we show in the computer simulation, this term is filtered out by the moving average

filter . To assure stability, the gain block should be set such that both poles lie inside the

unit circle.

/3max + \/I3max + 4/3maxl :c 2 (5.28)



where

E31

axG(+L_l G L 1
I3max = m N 2

= + L +
2

(5.29)

5.6 Moment Estimator

As discussed earlier, when the timing offset parameter is not known to the receiver

or if the the noise PDF differs from Gaussian distribution, finding optimum estimator

(ML, MVU, CRLB) may not be an easy task. However, as we show next, there exists a

moment estimator which provides a consistent estimate for estimation of frequency offset

regardless of noise distribution and timing offset values. Although there is optimality

criteria associated with this estimator , it can be globally used as an initial estimate for

other estimators such as ML estimator.

Consider a sequence of first N + L samples of vector x. Using equation (5.2),

autocorrelation of kth entry of this vector satisfies the following identity

ue3 k er[N] = (5.30)
10 kf

Using Base Rule, the expected value of the above function (with respect to parameter k)

can be expressed as

L 2Ek[r11[N]}=aexp2pr(k E1)+0pr(k L+N exp2 (5.31)

Substituting the Nth autocorrelation lag with its natural estimator , the moment

estimator for frequency offset under uncertain timing offset can be found as

Einom = {lnT3(x)} (5.32)
27r

where the statistic T3(x) is defined as

1
N+L-1

T3(x) = x[k]x*[k + N] (5.33)
k=O



Statistical assessment of moment estimator is a formidable task for entire span of SNR.

However, for relatively high SNRs, the random OV is heavily concentrated about its

mean. Using the statistical linearization, we can use a first-order Taylor expression of the

estimator about its mean to obtain the variance of estimate. In doing so, we substitute

the random variable x in 5.33 with the expression given in (5.1) and obtain
N+L-1

T3([x]) = f([s,w])=f{La (s{k-9]exp

2'r(k+N)e

+ w[k])(s*[k_9+N]exp_J N +w*[k+N])} (5.34)

where the signal (s) and noise (w) vector are defined as

s = [s[O1 . s[N + L 1]] (5.35)

= [w[O] .. w[N + L 1]] (5.36)

By virtue of the above equation, the expected value of OV for a fixed realization of signal

vector s would be E[Emom] = f(s). We then perform a first order Taylor expansion of

f([s,w]) about the point s = E[x] to yield
L+N-1
\ ôf([sw])1

[1 (5.37)rnom =f([s,O])+Vwf([s,O])*w=f([s,O])+
L aw[n]n=o

Taking the derivative of (5.34) with respect to w[n] and setting w = 0, we obtain
N+L-1

2r(n+N)

r w0 (
s[i 9 + N]e

)_l*[ + N N
clw[n]

i=O

The second term in 5.37 represents the contribution of noise in the estimate. Knowing

that noise samples are iid with power of a, variance of estimate can be obtain from
L+N-1

nnr( c\
N+L-1 (5.38)

(2ir s[i_9]s*[i_9+N] )2

For sufficiently large block lengths (N), the above term can be well approximated as

(N + L)ocr (N + L)
(539)var(s)

(2LU)2 (2L)2 SNR

In the next section we use the resemblance between the estimators to propose a model to

cast all the proposed estimators into a unified structure.
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5.7 Unified Structure

In this section we shall show how the proposed estimators can be classified into a

single unified structure. This provides a unique framework for analysis of the proposed

estimators. Moreover, it allows us to investigate the effect of symbol timing error in the

estimation of carrier offset for each individual scheme.

5.7.1 MVU and Moment Estimator

Comparing the moment estimator given in (5.21) to the MVU estimator in (5.32)

reveals some similarities in the structure of the estimators. Clearly, both moment and

MVU estimators use the same mapping function, namely log function, to project the data

statistics into the estimation domain. The only difference is in the form of statistics used

for each scheme. Figure 5.4 depicts the block diagram of these two estimators. As shown

in the figure, both estimators obtain the statistic by correlating the samples with their Nth

delayed samples. This operation is performed by using a moving average (MA) filter in the

structure of estimators. However, MVU and moment estimators use different upper and

lower bound for the MA filter. In moment estimator, the averaging is performed over the

first N + L samples of OV. This would remove the requirement of knowing the exact timing

offset parameter in estimation of carrier frequency offset. However, the estimate obtained

from using this scheme results in less accurate estimate (more variance) in comparison

to MVU estimate. On the other hand, MVU estimator requires the knowledge of timing

offset parameter which can be obtained from using pilot tones in the OFDM symbol. This

would result in a lower bandwidth efficiency: the price which is paid for improvement in

the performance.



5.7.2 MVU and ML estimator

Although the resemblance between MVU and ML estimators may not be as evident

as that of MVU and moment estimator, it can be shown that ML estimator can also be

classified into the same family. Knowing the fact that {logTi (x, 9) } = /T1 (x, 9) the ML

estimator can be expressed as

EML = x [k]x[k + N]} (5.40)
2ir

k=

where the parameters a and 3 are functions of 0ML and can be obtained from 5.15.

Thus, the ML estimator falls into the same family of estimators. It is noticeable that ML

estimator provides the upper and lower bound of the moving average filter by extracting

the timing parameter from the likelihood function. Although ML has the advantage of

exploiting the entire bandwidth by removing the requirement for having pilot tones, the

symbol timing estimate obtained from ML scheme has larger confident interval. This

may result in a considerable performance degradation in comparison to the pilot based

schemes.

5.8 Discussion and Simulation

In this section we shall perform computer simulation to assess the performance of

proposed estimator for synchronization of OFDM systems. As it is usually the case, we

shall choose the variance of estimator as a performance measure through our study. The

simulation parameters used are typical of the environments. More specifically, the chosen

FFT size (N) for OFDM is 64. Unless specified, the length of cyclic prefix is L = 8.

Unless specified we choose the signal to noise ratio level to be 20 dB. Also, in exception

of closed loop system, the carrier frequency offset is set to E = .01. We carry out a Monte

Carlo simulation to evaluate the performance of proposed estimators.

In doing so, we start with a comparison between performance of proposed ML

estimator with the suboptimum ML estimator given in [37] over the range of timing
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offset parameter (9 E [1 N + L]). Since the estimation parameter is varying itself, we

use a normalized variance E[(E as a performance measure for timing offset

estimator. Figures 5.5 and 5.6 compares the variance of the proposed ML estimator

against the suboptimum ML estimator. As expected, the suboptimum ML estimator

exhibits anomalous statistical behaviour over the range of (9 E [N + iN + L]).

Figure shows the performance of MVU estimator for frequency offset estimation

under complete knowledge of timing offset error. A careful examination of the variances

reveals that the gap between MVU estimator and CRLB tends to zero as SNR increases.

Also as illustrated in the figures, the departure from CRLB happens rapidly as SNR goes

bellow a threshold. The threshold also depends on the length of CP and is moved toward
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lower SNRs as L increases. This can be justified in terms of having more observation sam-

pies in estimating the unknown parameter. The choice of cyclic prefix length L represents

a tradeoff between data rate reduction and performance (lower variance). Increasing L

brings the performance of MVU estimator closer to the CRLB, nevertheless, could result

in a considerable data rate reduction due to redundancy introduced by CP.

To illustrate the dynamical behaviour of the closed ioop MVU estimator, we have

plotted in Figure (5.8), the frequency offset parameter of the closed ioop MVU estimator

together with the analytical derivation given in equation 5.28. It is clear that the simula-

tion result very closely resembles the analytical model, thus consolidates the approximate

model of the closed ioop system.
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5.9 Conclusion

We have proposed a class of non data-aided cyclic based robust estimators for fre-

quency offset estimation of MC systems. We determined a likelihood function for joint

estimation of symbol timing error and carrier frequency offset in MC systems. As a result,

it is used for deriving a maximum likelihood estimator for the joint estimation problem.

The proposed estimator outperforms the previously proposed suboptimum ML estimator.

We also used the concept of sufficient statistics to obtain the minimum variance unbiased

estimate of the frequency offset under certain knowledge of timing offset error. In doing

so, we apply the factorization and RBLS theorems to identify the sufficient statistic and
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appropriate mapping functions. It is shown that there is but one function of the suffi-

cient statistics which results in the minimum variance estimate among the possible class

of estimators. Also, a moment estimator is proposed to obtain the consistent estimate of

carrier offset under uncertain symbol timing error. The moment estimator does not rely

on any probabilistic assumptions. Thus, its performance is insensitive to the distribution

of the additive noise. Finally a unified structure for modeling all the proposed estimators

is proposed.
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6. CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

Since the mid 1980's, multicarrier systems have been a viable solution for data

transmission over bandlimited channels. Their immunity to nonflat frequency response

channels and also the inherent parallelism in their structure, make these systems a com-

petitive candidate in high speed data transmission. Nevertheless, this research area is

far from being mature as evidenced by the large number of publications devoted to this

subject around the globe.

Due to the high computational complexity involved with equalization of multicarrier

modulation, the practical realization of these systems is still a great challenge. Mathe-

matically, the minimum mean square error equalization can be viewed as the problem of

computing extreme (minimum) eigenvector of a positive definite matrix. The standard

approach for this purpose requires inverting a high dimensional Hessian matrix. Due to

the sensitivity of this operation to the truncation and quantization errors and because of

the relatively high floating point operations involved with this scheme, the existing digital

signal processing blocks are not able to handle this operation in real time. Chapter 3 of

this thesis focused on the low complexity implementation of minimum mean square error

equalizers for discrete multitone systems. This method has the advantage of being con-

ceptually simple and practical to implement. The robust performance to quantization and

truncation effects is inherited from the characteristic of Rayleigh minimization approach.

On the other hand, the proposed algorithm is characterized by its FFT based structure,

thus the existing infrastructure of multicarrier system can be used to reduce the hardware

complexity. The proposed algorithm exploits asymptotic equivalence of Toeplitz and cir-

culant matrices to estimate Hessian matrix of a quadratic form. It was shown that the

Hessian matrix exhibits a specific structure. As a result, when combined with the Rayleigh



91

minimization algorithm, it provides an efficient method to obtain the global minimum of

the constrained optimization problem. A salient feature of this algorithm is that extreme

eigenvector of the Hessian matrix can be obtained without direct computation of the ma-

trix. The proposed algorithm performs well provided only that the length of equalizer

filter is large enough for the asymptotic equivalence of Toeplitz and circulant matrices.

In chapter 4 we addressed the problem of optimum equalization of multicarrier sys-

tems. It is known that MMSE is not the optimum criterion in conjunction with miilticar-

rier systems and the optimum setting for the equalizer is obtained at expense of solving

a highly complex constrained optimization problem. Motivated by this shortcoming, a

new framework for training the time domain equalizer subject to maximum system per-

formance was proposed. The proposed approach exploits an appropriate transformation

to shape the constraint region into an identifiable convex boundary, namely a canonical

ellipsoid. Due to the canonical property of the constraint set, projection onto this set

is obtained efficiently through projection onto convex set (POCS) method. Armed with

this, the gradient projection method is applied to obtain the search direction in each it-

eration of the algorithm. Due to versatility of this method, it is then generalized to two

classes of systems namely, unit tap and linear phase filters. Also an upper bound on the

performance of equalizer is obtained. As an assessment for the performance of equalizer,

it is then applied to equalization of discrete multitone systems for asynchronous digital

subscriber line (ADSL) application.

The primary contribution of chapter 5 has been to introduce a new family of estima-

tors for joint symbol timing and carrier frequency synchronization of orthogonal frequency

division modulation scheme. Essentially, the approach uses the periodic property of the

cyclic sets to reveal the synchronization parameters in the likelihood function of the re-

ceived vector. The likelihood function is then used as a basis for deriving three classes

of efficient estimators namely, maximum likelihood (ML) , minimum variance unbiased

(MVU), and moment estimators. The ML estimator obtains the solution for the joint

estimation problem by maximizing the likelihood function of the observation vector. On

the other hand, MVU estimator exploits the property of sufficient statistic to obtain an
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estimate of carrier frequency offset subject to minimum variance criterion. The most ap-

pealing aspect of these estimators is that they are are classified in a single unified structure.

This would facilitate the analysis of cyclic based estimators within a common framework.

6.2 Recommendations for Future Investigation

It should be stated that although the work presented in this thesis makes some

contributions to the area of multicarrier systems [58, 59, 60, 61, 62, 63], there remain

plenty of challenges requiring further research work.

In the MMSE equalization, there are two important areas where more work needs

to be done. In the context of eigenvalue estimation, few more approaches might be con-

sidered. For example one may use Lanczos or subspace methods to provide an estimate

of extreme eignevectors. The second area is that various aspects of vector norms beside

12 norm may also be considered. Although 12 norm result in a mathematically tractable

solution, one may consider 11 or l norms in minimizing the residual error of impulse

response shortening problem. Thus, rather than minimizing power of noise sequence,

sum of absolute values of noise error or even maximum element of noise sequence can be

minimized (minimax). The interesting question is " which norm results in the optimum

performance in conjunction with multicarrier systems?" There are also other techniques

that one can choose for the impulse response shortening problem. For example, instead

of using an FIR filter as TEQ one may consider a block-digital filter as an equalizer [64].

Then, one interesting question is that " what is the best way to realize such a filter in

terms of reducing the overall complexity while maintaining reasonable system sensitivity?"

The fourth chapter of this thesis, dealing with optimum equalization of multicarrier

systems, has provided a new method for training the equalizer. With this approach, one

can also combine the optimum loading technique for joint equalization and bit allocation

of the multicarrier systems. By including the effect of bit loading on the optimum equal-

ization, a question might be "How to jointly optimize the performance of blocks such that
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the data rate becomes maximized?" An effective solution to this problem is necessary to

benefit fully from maximum data rate. There are also several interesting issues regarding

to the equalization of multicarrier systems over time varying dynamic fading channels

[65, 661. In particular, due to the dynamical variation of channel impulse response , so-

phisticated channel identification methods are required to compensate this shortcoming

[67, 68]. At present most system designers use complicated estimation techniques for this

purpose [69]. One possible course of action would be to exploit the temporal coding to

transform the time-varying channel into an asymptotic AWGN channel [70]. This would

transform the fading channel into highly dispersive static 1ST channel. Thus, one can use

multicarrier systems to mitigate the effect of 1ST in the resulting system.
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A. CIRCULANT MATRICES

A circulant matrix C is one having the form

C0 C1 C2 C_

C_ CØ C1 Cn_2

C CO C_3 (A.1)

Cl ...... cT1_l CO

(A.2)

The matrix C it itself a special type of Toeplitz matrix. The eigenvalues
'/-'k and the

eigenvectors Ilk of C are the solutions of

CYk = kYk (A.3)

in which the m eigenvalue is the point of DFT of the first row of matrix C. Any

circulant matrix C can be decomposed as

where

C=U*1II,U (A.4)

27rimk
U = {YoyhI Iyi} = n{exp m,k=0,1,...,n-1} (A.5)n

Also if /k 0; k = 0, 1,. .. , n 1, then C is nonsingular and

C' = UWU (A.6)
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B. RAYLEIGH MINIMIZATION APPROACH

Conjugate gradient method is a versatile algorithm that can be customized to pro-

vide balance between performance and computational complexity [71]. Use of the con-

jugate gradient algorithm in adaptive filtering applications allows flexibility that ranges

from LMS-like performance and cost at one extreme, to RLS-like performance and cost at

the other. In general, conjugate gradient methods are proposed and analyzed for purely

quadratic problems. However, conjugate gradient technique can be successfully applied in

many quadratic problems, where it can be argued that near the solution the error surface

becomes approximately quadratic. With this assumption, the Rayleigh minimization al-

gorithm exploits conjugate gradient method to obtain the minimum point of the second

order approximation of the Rayleigh quotient, i.e.,

R(b) = R(bj) + - bi)*H(bi)(b b1) (B.1)

where H(b) is the Hessian of the Rayleigh quotient as expressed by

b*RbH(b)=V,( b*b ) (B.2)

. Initialization

Compute the minimum eigenvalue estimate, residual error vector and descent direc-

tion vector as following;

. Iteration

= bo*Rbo (B.3)

r0 = Rb° (B.4)

p0 = r0

Update the minimum eigenvector solution as

(B.5)

(B.6)

bZ = b1 + tzpz (B.7)
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where the parameters are defined as

B+I2-4CD= (B.8)2D

D = PPPP B=P)2P C=PAP (B.9)

p
Pb

pt*RpZ
(B.10)a bz*bj bj*bj

(B.11)I c
bj*bj bj*bj

(B.12)

Update the minimum eigenvalue estimate, residual error vector and descent direction

vector and normalize the vector as following;

bj+l*Rbj Ai+lbi+l - Rb
= r' = (B.13)bj+l*bj+l bj+l*bj+l

p+l = rz+/p (B.14)

r1*Rpi + (ri+l*ri)(b*p1)
/3i = (B.15)pz*Rpi

(B.16)

Normalization

Normalize the minimum eigenvector estimate to provide the unit energy constraint

i+'
b1 B17

IIb1II




