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In the first chapter of this thesis, several methods are used to

solve an n-th order linear ordinary differential equation with con-

stant coefficients together with n known initial values. The first

method is the standard elementary method where the general solution

of the differential system is found as a sum of two solutions u and

v where u is the solution of the homogeneous part of the ordinary

differential equation and v is any particular solution of the non-

homogeneous differential equation. The method is not strong enough to

find a particular solution for every function that might be given as the

non-homogeneous term of the ordinary differential equation and so we

try a more powerful approach for finding v; hence the Lagrange's

method of variation of parameters. Following this, the method of



Laplace transforms is employed to solve the differential system.

In the second chapter the n-th order linear ordinary differ-

ential equation is converted into a Volterra integral equation of second

kind and in the next chapter, the idea of the resolvent kernel of an

integral equation is introduced with some proofs of the existence and

convergence of the resolvent kernel of the integral equation. The

method of solving the Volterra integral equation by iteration is briefly

discussed.

The fourth chapter is devoted to solving the Volterra integral

equation with convolution type kernel by the method of E. T. Whittaker,

but the method is found to be very involved, and as a result, a method

suggested by G. C. Evans (1911) is employed in calculating the resol-

vent kernels for kernels made up of sums of two exponential functions

(the method of iteration was applied to the same problem but it was

tedious--it took about 20 pages of writing) and finally the method pro-

vides an easier way for calculating the resolvent kernel of the

Volterra integral equation corresponding to an n-th order linear

ordinary differential equation with constant coefficients.
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SOLUTION BY THE METHOD OF G. C. EVANS OF THE
VOLTERRA INTEGRAL EQUATION CORRESPONDING

TO THE INITIAL VALUE PROBLEM FOR A NON-
HOMOGENEOUS LINEAR DIFFERENTIAL EQUATION

WITH CONSTANT COEFFICIENTS

I. SOLUTION OF THE n-th ORDER NON-
HOMOGENEOUS LINEAR DIFFERENTIAL EQUATION

WITH CONSTANT COEFFICIENTS

1. 1. Solution by the Standard. Elementary Method

form:

The solution- -if there is one- -to the initial value problem of the

(Dy)(x) a any(n)(x) + an-1y(n-1) (x) + ... +a
0

y(x) = f(x).

1y(0) = yo, y
(1)

(0) yo, , y(11-1)(0) =

where y(i)(x), i = 1, 2, ...,n, denote the i-th derivative of y(x)

with respect to x and the a.' s, j = 0, 1, 2, ... , n are real func-
J

tions of x, together with the boundary conditions expressed in (2),

can be obtained in several ways. In this section, we shall discuss its

solution by the standard elementary method.

For this method, one finds the "general solution" of the linear

differential equation as the sum of two functions u(x) and v(x)

where u(x) is the "general solution" (meaning that it contains

assignable parameters) of the homogeneous equation
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ay(n)(x) + an_ly(n-1) (x) + ...+ a y(1)(x) + a y(x) = 0 . (3)
1 0

while v(x) is any particular solution of the non-homogeneous equa-

tion (1).

We see that expressing the "general solution" of the linear

differential equation as the sum of two functions u(x) and v(x), i.e.,

y(x) = u(x) + v(x)

makes sense since, if one has the problem (Dy)(x) = f(x) together

with initial values, it follows from the expression for the general

solution that

(Dy)(x) = (D(u+v))(x)

= (Du)(x) + (Dv)(x)

= 0 + f(x) .

We shall now assume that the coefficients a0, al, ..., an are

constants and that the homogeneous equation in (3) has a solution of

the form:
xsu(x) = e

If we differentiate equation (4) n times we obtain

(4)



u
(1) (x) = se sx

u(2)(x) = s2esx

u(n)(x) = snesx

Substituting the set of functions in (4) and (5) into equation (3)

yields:

an snesx + an-lsn-1 esx + + al se sx + a
0

e
sx = 0

from which

P(s):

esxra
L n+an

- 1
an- 1+ . . . +a Is+a 0] = 0 .

3

(5)

(5. 1)

The exponential esx never vanishes and so the polynomial

P(s) = an sn + an-lsn-1 + ...+ als + a0

must be zero, so that we have the equation for

P(s) = 0 (6)

Equation (6) has n solutions in the complex field, which may

be real or non-real. If non-real, they occur in complex conjugate

pairs. The n solutions may all be distinct or some of them may be

repeated. The methods for solving equation (6) will not be discussed

here since they may be found in many books dealing with solutions

of algebraic equations. For our purpose in this section, we shall



4

assume first that the roots are real and distinct and shall denote them

by mi,m2, ,mn. The general solution of the homogeneous equa-

tion (3) can therefore be written thus:

m
1
x m2x m x

u(x) = Ale A2. e + + Ane (7)

swherethe A.' s, i = 1, 2, ...,n, are n assignable parameters.

If some of the real roots of equation (6) are repeated, then the

function (7) will no longer be the general solution of the homogeneous

equation (3).

We recall that if s is a repeated root of the second order

linear differential equation

(
a2Y

2)
(x) + aly (1)(x) + a

0
y(x) = 0,

then two linearly independent solutions are esx and xesx. Simi-

larly if the root s1, say, is repeated k times for the n-th

order differential equation, then

s x
six1 lx 2

e
1 k-ls 1X

e ,xe ,x e

and all linearly independent solutions of the homogeneous equation (3).

More generally, suppose that equation (6) has m distinct real roots

sl, s2, . . . , s , m < n, where s. has multiplicity n., so that



n

1 < n. < n,= =
j=1

then

= n, and

P(s) = ii (s-s.) ,

j =1

n.m Is.x
u(x) = 1

e .ix
i -1

j
i=1 j=1

5

Also if a non-real complex root X + iµ occurs with multi-

plicity k, its complex conjugate X - iµ also occurs k times.

There will therefore be 2k complex-valued roots of (6) and corres-

ponding to these, we can find 2k real-valued solutions of (3) by

noting that the real and imaginary parts of

e(X.±ip.),xe(X±ip.)x . . .
xk - le (X±ill)x

are all linearly independent solutions and that

eip.x = cos p.x + i sin p.x

Hence the real valued solutions are

eXx sineXx cos µx,

Xxxe coscos µx, xe sin p.x,

k 1
eXx k-leX.xx cos µx, x sin µx .
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Thus one has for u(x) a "general solution" which may contain

real exponentials, real exponentials times polynomials (in the

repeated case), and real sines and cosines, possibly also multiplied

by polynomials.

The real trouble comes in finding a v(x). This can be done in

only a few cases by the method of "undetermined coefficients." Such

cases include those where f(x) is a polynomial, or a linear combi-

nation of exponentials or a linear combination of sines and cosines,

possibly multiplied by powers of x or by exponential functions, etc.

This limitation on the function f(x) is a serious shortcoming

of the "method of undetermined coefficients," and other methods have

been devised which will handle more general problems. One such will

be illustrated now by an example. It presents the solution y(x) in

terms of an integral involving f(x).

Example. Consider the special differential problem of order 2

in which f(x) is not specified:

y"(x) + 5y'(x) + 6y(x) = f(x) .

y(0) y0, yi(0) = yo

For the homogeneous equation

y"(x) + 5y'(x) + 6y(x) = 0,

(i)



let us try the solution

Then

and so

Xx
y = e .

X.2 + 5X + 6 = 0,

(X +3)(X +2) = 0,

X.1 = -3 and X2 = -2.

Therefore the general solution of the non-homogeneous equation is

y(x) = u(x) + v(x)

= A
1
e-3x + A 2e-2x + v(x).

Rewriting the non-homogeneous equation (i) using the operator nota-

tion y' = Dy and y" = D2y we have

or

and if we let

we have

or

(D2+5D +6)y(x) = f(x)

(D+3)(D+2)y(x) = f(x)

(D+2)y(x) = g(x)

(D+3)g(x) = f(x)



whence

and so

From this

g'(x) + 3g(x) = f(x),

(g(x)e3x)' = f(x),

x

g(x)e
3x

= f(s)ds + A.
0

x
g(x) = e-1x f(s)ds + Ae-3x

`j0

where A is the constant of integration. Substituting this back in

(iii) we obtain

and so

(D+2)y(x) = e
-3x S f(s)ds + Ae-3x

0

-3x
y(x)e2x = {e-3tS + A73 + B

0 0

where B is the second constant of integration. Thus

Thus

y(x) = sxe-Zx xe-3tdt f(s)ds
s0

Ae-5x + Be
-2x

3

8

x -3x--3s -5x -2x
3

f(s)ds - Ae
3

+ Bee-2x(- e

x -2x-3s e-5x Ae-5x -2x
y(x) J (e

3 3
)f(s)ds - 3+ Be (iv)

0



Substituting the initial values from (ii) we have for x = 0;

y(0) = + B = yo (v)

Differentiating equation (4) with respect to x we obtain

x -2x-3s
Yi(x) f(

e
3

0

-2x-3x
e

3

-5x
e

-5x
)f(s)]ds

3
ds + [( e

3
)f(x)]

+ 5 Ae
-5x - 2Be -2x

3

Putting the value x = 0 yields:

00) = 5A - 2B =
3 0

Multiplying equation (v) by 2 we have

A2 + 2B = 2y0
0

and adding (vi) and (vii) yields

A = 2y0 + y'o ,

and putting this in (vii) we have

from which

22B = 2y
0 3

+ (2y
0 0

+yi )

5 1 ,

B =70 +70

Equation (iv) therefore becomes

9

(vi)

(vii)
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x -2x-3 s
e

-5x
y(x) = ( e

3 3
)f(s)ds

0

-5x 5 4.1 , -2x
'TY° -3-YOIe

This is the solution of the differential problem in terms of an

integral involving the unspecified function f(x).

Still more general is J. L. Lagrange's method of variation of

parameters, which will be described in the next section. It applies

also to the case of variable coefficients, provided one can find a set

of fundamental solutions of the homogeneous equation. If the coeffi-

cients {a.(x)}11
0

can be expanded in power series, a whole new

approach is possible (method of Frobenius), but it will not be dis-

cussed in this thesis.

1. 2. Lagrange's Solution by Variation of Parameters

The method discussed in Section 1. 1 can be used to determine

the general solution of any non-homogeneous equation with constant

coefficients provided the non-homogeneous term is of suitable form.

In this section we shall discuss a more powerful approach for finding

the particular solution v(x) since, as we pointed out in the last

section, the method of undetermined coefficients can be applied in

only a few cases. The method is known as Lagrange's method for

finding the particular solution of the non-homogeneous system of the



form:

with

any(n)(x) + a
n_iy(n-1) (x) + ...+ a oy(x) = f(x)

-1
y(0) = yo, y(1)(0) = yO, . , y

(n-1)
(0) yno

For this method it is essential that n linearly independent

solutions of the homogeneous differential equation

any(n)(x) + an-1 y(n-1)(x) + ...+ a
0

y(x) = 0

11

(*)

(1)

discussed in Section 1.1 be known. Let them be ul (x)' u 2(x) '...'un(x)

so that the general solution of equation (1) is

u(x) = A
1
u 1(x) + A

2
u 2(x) + . . . + A

n
u
n

(x) (2)

The method of variation of parameters involves replacing the constants

Al' A2, . , An by functions P (x) P 2 (x) P (x) of x respec-

tively. Thus we shall assume that the solution of equation (1) is of

the form:

or

u(x) = P
1
(x)u 1(x) + P

2
(x)u 2(x) + . . . + Pn(x)un(x)

u(x) =

n

i=1

P.(x)u.(x) .

The problem then reduces to that of finding n suitable

(3)



12

functions P1 (x),(x) P
2

(x) P (x) such that the function u(x)"
defined by (3) satisfies equation (1). To do this we need a set of

independent conditions, and (n-1) of them could be selected rather

arbitrarily so as to simplify the calculations. The last condition

arises from the fact that equation (3) must satisfy equation (1).

Differentiating equation (3) we obtain:

u(1)(x) =

n

i=1

P.(x)u.(1) (x) +

n

i=1

1)P.( (x)u.(x) .
1

Since we can select (n-1) conditions arbitrarily, suppose we let the

first be

thus

n

l)(
(x)u.( ) = 0 ,

i=1

n

u(1) (x) =

i=1

Differentiating equation (4) we have:

1)P.(x)u.( (x) .
1 1

u(2)(x) =

and again suppose we set

n

i=1

(

1

1) (1)
xP.( )11.

1
(x) +

n

i =1

2)P.(x)u.(
1 1

(x) ,

n
(1) (1)

P. (x)u. (x) = 0 ,
1

i=1

(4)



to obtain

u(2)(x) =

n

i=1

2)P.(x)u.( (x) .
1 1

13

(5)

We could continue the process of differentiation and each time

if we set the term involving P(.1)'s (i = 1, 2, , n-1) to zero, after

n differentiations we would have

u(n)(x) =

n

i=1

(n)P.(x)u. (x) +
1 1

n

i=1

(1) (n-1)P. (x)u. (x)
1 1

(6)

We shall now substitute all the expressions for the n deriva-

tives of u(x) into equation (*) to obtain:

n
(n) (1) (n-1)

(x)P.(x)u. (x) + a P. (x)u.
n

i=1 i =1

+ an-
i= 1

+ + a

P.(x)u.(n1) (x) + an-

n

i=1

P. (x)Li. 1)(x) + a

n

i=1

n

i=1

P.(x)u.(n-2) (x)
1 1

P.(x)u.1 (x) = f(x) .
1

xFactorizingout each of the P.( )'s we shall obtain:



r (n)Pl(x)ianu
1

(x)+a u(n- 1) (x)+. . . +a u (1) (x)+a u (x)}
n-1 1 1 1 0 1

+ P (x){a u(n)(x)+a u(n-1) (x)+... +a u(1) (x)+a u (x)}
2 n 2 n-1 2 2 2 0 2

+ . . . + P (x){a u(n)(x)+a u
(n-1) (x)÷... +a u (1) (x)+au(x)}

n n n n-1 n 1 1 0 n

+ an P(.
1)

(x)u(
n-1) (x) = f(x)

1 1

i= 1

14

(7)

We see that the expressions in the braces now vanish because

xeachu.( ) is a solution of equation (1) .

Thus, n

a / P.(1) (n-1)(x)u. (x) = f(x)
n

i=1

is our n-th condition. The first (n-1) conditions can be sum-

marized as:
n

1) k)P.( (x)u.( (x) = 0, k = 0, 1, 2, ..., (n-2) ,
1

i=1

and from these conditions, the functions P 1(x),
...,P (x) can be

determined as

x Ain(t)f(t)
131.(x) = dt ,

0
an

(8)

an V 0, i = 1, 2, ..., n; where A. (t) is the cofactor of the element
in

in the nth row and ith column of W(t) and W(t) V 0. is the



Wronskian of the independent functions u.(x) whose linear combi-
i

nation is u(x) in (2). W(t) is defined by the determinant

W(t) =

u
1

u
2

un

(1) (1) (1)
u .. un

1
u2

(2)
11(2)

(2)ul
2

un

(n-1) (n-1) (n-1
u

1
u

2
un

The particular solution v(x) is thus given by

v(x) =
X

0

u.(x)A. (t)

i=1
anW(t) f(t)dt ;

an V 0, W(t) 0, i = 1, 2, ...,n.

15

(9)

The general solution of the non-homogeneous equation (*) is therefore

given by

y(x) = u(x) + v(x)

u.(x)A. (t)

A u (x) +...+ A
n

u
n

t)

(x) +
x i=1 f(t)dt ,

0
1 1 a W(t)

n

an 0, W(t) 0 is defined by (9) and A. (t) is the cofactor of the
in

element in the nth row and ith column of W(t). The independent
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functions u.(x), i = 1, 2, , n, are the independent solutions of the

homogeneous equation (1), and the Ai's, i = 1, 2, ,n are n

assignable parameters.

1.3. Solution by the Method of Laplace Transforms

Definition: The Laplace transform of a piecewise continuous

function f(t) for all t > 0 will be denoted by L{f(t)} and is

defined by the following expression:

co

L{f(t)} = (Lf)(s) e-stf(t)dt
0

(1)

It is evident from (1) that L{f(t)} is a function of a parameter s.

This definition is valid whenever the improper integral converges and

for our discussion in this section we shall assume that s is real.

To establish that the Laplace transform of f(t) as defined by

equation (1) does in fact exist, the following sufficient

conditions have to be imposed on the function f(t). We shall suppose

that

(a) f is piecewise continuous on the interval 0 < t <

for all TE > 0,

(b) I f(t) I < CePt for all t > N, where C, p, N are

all real constants and C > 0, N > 0, and s > p.

(*)
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The problem therefore reduces to that of showing that the inte-

gral in equation (1) converges for all values of the parameter s > p.

This we can show by simply splitting the integral in two parts, thus:

and so

oo

L{f(t)} =5 e-stf(t)dt
0

oo

L{f(t)} e-s tf(t)dt +.S1 e
-stf(t)dt

0

(2)

for some fixed real constant N > 0.

Condition (a) in (*) imposed on f(t) shows clearly that the

Nfirst integral e
-stf(t)dt exists and so our problem is narrowed

0
c°

.cdown to that of showing that e
-stf(t)dt converges. Observing the

N
function e-stf(t) and applying condition (b) imposed on f(t) we

-s .

1

,

have tf(t) < Ce -stePt from which we see that

e-stf,
< Ce(p-s)t. We know that Sec

N
s > p, C, p, N, being real constants, and N > 0, C > 0. Thus the

e(p-s)tdt converges for

Laplace transform of f(t) defined by the improper integral in

equation (1) does in fact exist.

The Laplace transforms of various functions f(t) could be

found by equation (1) provided f(t) meets the conditions (a) and (b).

For the purpose of this thesis, attention is focussed on the use of

Laplace transforms to solve an nth order non-homogeneous linear

differential equation of the form



with

(n)any (x) + an-1 y (n-1) (x) + ...+ a
1
y(1)(x) + a

0
y(x) = f(

(n) n(n-1)(0) n-1
y (0) = y = y0 , y(0) = y

0
, y

0

and we shall assume that f(x) satisfies the two conditions in (*).

We shall assume that the coefficient a.'s, i = 0,1,2, ...,n of

y(i) (x) in equation (3) are constants.

18

(3)

A very important result about the transform of the nth deriva-

tive of f(t) will be applied, and the result is stated thus:

Assume that the function f, and its derivatives
(1) (2) -

f ,f , , f
(n 1) are continuous and f(n) is piecewise continu-

ous on any interval 0 < t < X' and that f(1), f(2), ...,f(n-1) all

satisfy the conditions (a) and (b) of (*), namely that

f(i)(t) I < CePt for t > N

where C, p, N are all real constants. Then the Laplace transform

of f(n)(t) exists for s > p and is expressed as:

snL{f(t)} sn-1 f(0) sf( n-2)(0) _f(n-1)(0).
L{f(n)(t)} =

(4)

The proof for this could be found in many books on differential equa-

tions [8, p. 228].

We shall now apply the method of Laplace transform to solve our
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nth order linear differential equation with constant coefficients, i.e.,

any(n)(x) + an-1 y(n-1) (x) + ...+ a0y(x) = f(x)

y(n) (0) = y y(n-1)(0) = yn
1o-, ..., y(0) = y0

.
} (5)

Knowing that if k is a constant the L{ky(x)} = kL {y(x)} and

that if P(x) and Q(x) are two functions such that P(x) = Q(x),

then by the uniqueness of Laplace transforms L{P(x)} = L{Q(x)},

we shall now take the Laplace transform of each term of equation (5),

applying formula (4) for each derivative, knowing that for two func-

tions y
1

and y2, L{y
1
+y2} = L{y

1
} + L {y2 }, we obtain

and so

a nL{y(n)(x)} + an-1L{y(n-1) (x)} + ...+ a0
L{y(x)} = L{f(x)} ,

an[snL{y(x)}-sn-ly(0)-sn-2y(1)(0) - - sy(n-2) (0)-y(n-1)(0)]

+ an -sn-2y(0)-s11-3y(1)(0)-. -sy (0) -y (0)]

+ an-2[s n-2 L{y(x)}-sn-3y(0)-sn-4y(1) (0) -sy(n-4) (0)-y (n-3)(0)]

+ ...+ a2[s2L{y(x)}-sy(0)-y(1)(0)] + a
1
[sL{y(x)}-y(0)]

a0[L{y(x)}1 = L{f(x)} .

We shall rewrite this, factorizing out the L{y(x)} to obtain:
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[ansn+an-1 sn 1+.
. . +als+a 0]L{y(x)}

r n
Lans

-1
+an- lsn-

2+.
. . +a

1
]y(0)

[ansn-2+an-lsn-3+. . . +a ]y (1)(0)

. . - [ans+an_ }y(n- 2)(0) - [an]y (n-1)(0) = L{f(x)} ,

and solving for L{y(x)} we have:

[Pl(s)]y(0)+P (s)y (1) (0)+... +any (n-1) (0)+L{f(x)}
L{y(x)} (6)

ransn+an
- 1

sn- 1+.
. . +a ls+a 0]

L

where

r n-1P
1
(s) = Lans +an-lsn-2÷...+al]

P2(s) = [a nsn-2+an-1 sn-3+...+a2]

etc.

Recalling that the Laplace transform of f(x) is given by

-sx
L{f(x)} = S e f(x)dx, we see that L{f(x)} is a function of s,

0
and we shall denote it by Q(s) say. We also note that the a. I s

i

and the contributions of the derivatives of y(x) evaluated at zero,

are all constants. The expression for L{y(x)} is therefore strictly

a function of s as we expect from the definition of Laplace trans -

form. We already pointed out the linearity of Laplace operator and its
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inverse, and so the rest of the problem is that of rearranging the

right hand side of the equation into sums of functions of s, such that

the inverse transform of each term is recognizable from tables of

Laplace transforms. A method often employed to simplify the right

hand side of (6) is the method of partial fractions, and if this is done,

the inverse transform of each fraction could be found from tables of

Laplace transforms [9, 10]. As an example let us suppose that after

simplifying the right hand side of (6) we obtained

L{y(x)} =
1

-
a

s -a
s

2+a2
s

2 2-a

From tables of Laplace transforms, the inverse transform which we

shall denote by L-1 of the right hand side are respectively

e at, s >a

1[L [ ] = sin(at), s > 0
s

2+a 2

1[L [ ] = cosh(at), s > al
s-a2

and so, again by the uniqueness of Laplace transforms

from which

L 1{y(x)} = L
-1

[ L-1[ 2]+ L -1[ 2
s 2]

s
la

s +a s -a
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y(x}
eat sin(at) + cosh(at).

The solution of our non-homogeneous ordinary differential

equation with constant coefficients would therefore be

y(x) L-1

n
[13 (s)Jy

0
+LP

2 0
(s)jy1+...+anyo

-1 +Q(s)
1

ra s +an-1 sn-1+...+a
1
s+a

0
]

L

It should be noted that the denominator in the solution is exactly the

auxiliary equation obtained in equation (6) of Section 1.1. This will

always be the case, and there shall always be the need to find the

roots of this auxiliary equation regardless of which method is

employed to solve the non-homogeneous linear differential equation

with constant coefficients.
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II. CONVERSION OF n-th ORDER NON-HOMOGENEOUS
DIFFERENTIAL EQUATION WITH CONSTANT COEFFICIENTS

INTO LINEAR INTEGRAL EQUATION OF VOLTERRA TYPE

2. 1. Classification of Linear Integral Equation

The phrase "linear integral equation" is a broad term that

encompasses large families of integral equations. To narrow this

down, we need to specify what "TYPE" of integral equation, and fur-

thermore, any type of integral equation could be any one of many

"KINDS," and so we talk of an integral equation being of any one of

1st, 2nd or 3rd kind.

An integral equation whose limits of integration are not constant

but variable such as:

x
a(x)y(x) = b(x) +.54 k(x, s)y(s)ds

0

is known as an integral equation of VOLTERRA TYPE. If the limits

of integration are fixed such as:

1

a(x)y(x) = b(x) +.14 k(x, s)y(s)ds,
0

it is known as the FREDHOLM TYPE of integral equation.

The nature of the coefficient a(x) determines what "KIND"

the equation is. If a(x) = 0 then we have an equation of the 1st kind.



24

If a(x) is always positive or always negative we have an integral

equation of the 2nd kind, and a 3rd kind is obtained if a(x) vanishes

at one or more isolated points.

If, in the integral equation, b(x) = 0, we say that the equation

is homogeneous. This chapter will be devoted to transformation of

the n-th order linear non-homogeneous differential equation with

constant coefficients into an integral equation of VOLTERRA TYPE.

2. 2. Transformation of n-th Order Non-Homogeneous Linear
Differential Equation with Constant Coefficients into
Integral Equation of Volterra Type

The n-th order non-homogeneous linear differential equations

with constant coefficients

ay(n)(x) + an-ly (n-1) (x) + ...+ a y (1)(x) + a y(x) = F(x)
n 1 0

together with ( 1 )

y(n-1)(0)
= yn-1, y (n-2)(0)

= ,yn-2 ... y(0) = yo
'

can be transformed into a Volterra integral equation of the form

u(x) = f(x) + k(x, t)u(t)dt
0

by the following procedure. Suppose we let

y(n) (x) = u(x)

(2)

(3)
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We shall further define

(D
-1 f)(x) = .51 f(s)ds, (D

-2 f)(x) = (D -1
(D

-1 f))(x),
0

etc. Performing successive integrations

D
-1 u(x) = u(t)dt,

0

D-zu(x) (D 1(1)-1u))(x) = D
-1

D-nu(x) (D
-1

(D
-(n-1) u))(x) =Sx

of u(x) we therefore

u(t)dt = S x(x- t)u(t)dt
0 0

(x-t)n-1

have

(4)

u(t)dt
0

Furthermore integrating both sides of equation (3) we obtain

(n_1) -1
ti

n-1
y (X) = D (x) Yo

n- 1
where

YO
is the constant of integration obtained from

(n-1)(0) = yn-1 in equation (1). Integrating successively and each
0

time employing the boundary conditions in (1) we obtain:

y(n-2) (x) = y(n-1)x + yn0
-2 + D

2 u(x),
0

(n-3) n-1 x2 n-2 n-3 -3
(x) YO 7.2 + YO

x + yo + D u(x),

n-1 xn-1 n-2 xn-2 n
y(x) = y0 + . . .+ y + D



Substituting the values of each D-iu(x), i = 1, 2, ...,n from (4)

into the last set of equations yields:

n- 1
y(n-1) (x) y u(t)dt

0
0

y(n -2)(x)
n-1 n2

= yo x + yo (x-t)u(t)dt
0

n-1 xn-1 n-2 xn-2
Y(x) YO (n-1) ! YO (n-2) ! ...+YOx YO

x (x-11-10 u(t)dt ,

0
(n-1) !

from which we further see that

n
(n-1) -1

a
-1

y (x) = an-1y° + an-lS u(t)dt
0

x

an-2y(n-2) (x) = an y
n-1 n-2

-2 0 x + a ,y + an-2.c (x-t)u(t)dtn-G 0 0

n-1 xn-1 n-2 xn-2
'oa0y(x) = a

0
y0 (n-1) ! + a

0
y0 (n-2) !

+ ...+ aoyx

+ a0y0 + a0
'Co

(n-U!

Adding both sides of these equations we have

u(t)dt

26
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an-ly(n-1)(x) + an-2y (n-2) (x) + + a
1
y

(1)(
x)+ a0y(x)

1 xn-1n-1 n-1 n- Z + a (yn- +.-+y;x+yo)=an_ly0 1.1-2 0+ a (y x+y0 ) 4 0 0 (n-1) !

+

0

n-1
(x -t)i

an-i-1 (i)!
i=0

We can simplify this as

where

and

u(t)dt .

an-1 y(n-1) (x) + an-2y(n-2) (x) + ...+ aiy (1)(x) + a0y(x)

= f(x) k(x, t)u(t)dt
0

(5)

n-1
n-1 n-1 n-2 n-1 x

f(x) = an-1 y0 + a (y x+YO ) + + a0(Y0 (n--7TT!
+... +y0)

n-2 0

k(x, t) =

i=1
n-i-1 (i)!

However, we already set y(n)(x) = u(x) and so

(n)
any

Adding equations (5) and (8) we have

) = an u(x)

(6)

(7)

(8)



(any n) (x) + a n-ly(n-1) (x) + + a
1
y(1)(x) + a

0
y(x)

= anu(x) + f(x) +.1 k(x, t)u(t)dt
0

= F(x)

from equation (1). Thus

anu(x) + f(x) k(x, t)u(t)dt = F(x) ,
0

and since the a s.' are constant coefficients, suppose we divide

through by -an to obtain

-f(x)+F(x) x
u(x) ( ) + u(t)dt .

an
0

-an

This can be further written as

u(x) = W(x) K(x, t)u(t)dt
0

where IF(x) =
1(F(x)-f(x)).

an

Equation (9) is a Volterra integral equation with kernel

K(x, t) =

n-1

28

(9)

(10)
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We have therefore converted the original non-homogeneous lin-

ear differential equation with constant coefficient into a Volterra

integral equation expressed in (9) with its kernel K(x, t) given by

equation (10). If the integral equation has a solution, it will furnish

one for the differential problem.



III. SOLUTION OF THE VOLTERRA INTEGRAL
EQUATION BY THE METHOD OF ITERATION

In Chapter II, the n-th order non-homogeneous linear differ-

ential equation

a ny(n)(x) an-ly (n-1) (x) + ...+ a
1
y

(1)(x) + a0y(x) = F(x)

together with
(n-1) n-1 (n-2) n-2

(3) YO
(0) yo , , y(0) = yo

was converted into a Volterra integral equation of the form

y(x) = f(x) + X .5. x-k(x, t)y(t)dt
0

0 < x < cr, where f(x) is a function of x aryl k(x, t) is a

30

(1)

(2)

function of x and t, and as a matter of convenience, we are

introducing the parameter X. which we shall assume real. In this

chapter we shall look into the method of solving equation (2) (and

hence solving the differential equation in (1) ) by the method of itera-

tion.

Substitution for y(t) in equation (2) gives
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y(x) = f(x) + X k(x, t) f(t)+YX. k(t, s)y(s)d s dt,
0 0

x
= f(x) + k(x, t)f(t)dt + k(x, t) 5- k(t, s)y(s)ds dt,

0 0 0

= f(x) + k(x, t)f(t)dt + X.2 (k(x, t)k(t, s))dt y(s)ds,
0 0 s

= f(x) + X s k(x, t)f(t)dt + X k
(2)(x, s)y(s)ds,

0 0

where we shall define k(2)(x, s) by

k(2) (x,(x, s) = f k(x, t)k(t, s)dt .

The equation therefore becomes, on substituting s = t, ds = dt,

y(x) = f(x) + X k (x, t)f(t)dt + 2 9 x
k

(2)(x, t)y(t)dt (3)
0 0

The process of repeated substitution of expression for y(t) as done

in the last step is known as "ITERATION." We shall iterate again

substituting value for y(t) in equation (3) to obtain:
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y(x) = f(x) + X .51 k(x, t)f(t)dt + X2
xk (2)(x,

t) f(t)+X k(t,$)y(s)ds dt
0 0 0

where

x
= f(x) + ,. .c )(x, t)f(t)dt + X2 S

k
(2)(x, t)f(t)dt

0 0

+ X3 S k(2)(x, t) S k(t, s)y(s)ds/ dt
0 0

= f(x) + X J k(x, t)f(t)dt + X2
xk (2)(x, t)f(t)dt

0 0

+ X
3

x x
k (x, t)k(t, s)dt y(s)ds

0

= f(x) + X J k(x, t)f(t)dt + X2 k(2)(x, t)f(t)dt
0 0

+ 3 k(3)(x, s)y(s)ds
0

k (3)(x, s) = S x
k

(2)(x, t)k(t, s)dt

If we let s = t, ds = dt, we have

y(x) = f(x) + J k(x, t)f(t)dt +
2y xk

(2) (x, t)f(t)dt
0 0

X

+
X3 S (3) (x, t)y(t)dt

0

(3. 1)

(4)
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This process of iteration could be carried on, and after n substitu-

tions we would have

where

and

y(x) = f(x) + X k(x, t)f(t) + X
x

k (x, t)f(t)dt
0 0

+ ...+ Xn xk(n)(x, t)f(t)dt + Xn+1 r (n+1)(x, s)y(s)ds
0 0

k(n+1)(x, s) = J xk(n)(x, t)k(t, s)dt

k(1) (x,(x, t) = k(x, t)

Simplifying equation (5) we have:

(5)

(6)

y(x) = f(x) + xXik(i)(x , n+1S xkt)f(t)dt + X. (n+1) (x, t)y(t)dt (7)
0

i= 1
0

We see that equation (7) satisfies our original Volterra equation (2)

since the former has been deduced from the latter. However,

observation of equation (7) suggests that we may be generating an

infinite series for y(x) of the form

00

y(x) = f(x) +
x

X lk (x, t)f(t)dt

i=1

(8)
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This is the case, but to establish this it is necessary to show

that the solution of this equation converges to some useable function

and satisfies equation (2). In addition we ought to show that this solu-

tion is unique and that the iterated kernels as defined by equation (6)

actually do exist.

We saw from equation (3.1) above that

k (3)(x, s) = k (2)(x, t)k(t, s)dt .

We shall assume that the integrand is uniformly continuous in

0 < t < X for X < oo, so that the expression may be Riemann-

integrable for all x > 0. It will also be a continuous function of x

on 0 < x < X for each t. This shows that k (3)(x, s) will exist

and will have the same continuity properties. The argument is also

true for k(n)(x, s) for n > 2. We therefore see that if f(x) is a

continuous function on 0 < x < X, then all the terms of the series

expressed in equation (8) exist and are continuous functions of x.

Under our continuity assumption for k(x, t) and f(x) in the

above paragraph, each of the sequence of partial sum {yn(x)} given

by

{yn(x)} = f(x) +

n

i=

x (i)k(i)(x, t)f(t)dt
0

(9)

n = 1, 2, ... , is continuous on 0 < x < 00. The problem thus reduces
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to that of showing that {yn(x)} is uniformly convergent on the closed

interval 0 < x < X for some X < 00, since this being so implies

that the limit function must also be continuous. We shall employ

Cauchy's theorem stating that for {yn(x)} to converge uniformly on

[0, X] it is necessary and sufficient that, given any E > 0, there

exists an integer N(E) such that if n > N(E) then

yn+p(x)-yn(x) I < E for every positive integer p and every x in

[0, X] .

However we see that from equation (9),

n+p

yn+p(x) - yn(x) = Xlk(1)(x, t)f(t)dt

i=n+1
0

(10)

Since f(t) was assumed continuous, this means that IVO' has

some maximum value which we shall denote by F(X). Further, let

us assume that k(x, t) is bounded on the interval 0 < t < x < X

and that I k(x, t) I < M(X), where M(X) <

Substituting these in (10) leads to

for 0 < X <

n+p

I Yn+p(x)-yn (x)I < F(X) olk(i)(.,t)Icit=
i=n+1

0

at each point x in the interval [0, X]. We note that

00 .



and

I k(x, t) I dt < M(X) J dt = M(X) x ,
0 0

S`
x

I k
2(x,

t) I dt =
x

I k(x, s)k(s , t)ds I dt
0 0 t

M
2(X)

2
< M 2(X) S (x-t)dt 2!

0
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Using equation (6), it could be shown by the process of induction that

xn
k(n)(x, t) dt < Mn(X) , n = 1,2, ... .

0
n!

We shall put all these values in (11) to obtain

n+p .

(x)-y (x) I < F(X)
k M (X)xi

n+p n (i)!
i=n+1

(12)

and it is valid for all x in [0, X]. However we note that the sum on

the right hand side of (12) is a segment of the Maclaurin series for

the exponential e
[M(X) which we know from Calculus converges

uniformly on each bounded interval. Therefore given any E > 0, any

N(E) can be found so that for n > N(E) and p > 0, an integer,

I yn+p(x)-yn(x) I < E for all x in [0, X] .

This shows uniform convergence for the partial sum {yn(x)} on the
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interval [0, X], to a continuous limit function.

The uniqueness of the solution of the Volterra equation can be

shown simply by assuming that there exist two distinct continuous

solutions and that the difference between them is denoted by w(x).

We know that this difference ought to satisfy the homogeneous

Volterra equation

w(x) = X J k(x, t)w(t)dt
0

since if the two solutions are denoted by yi(x) and y2(x) we have

and

y
1

x
(x) = f(x) + X k(x, t)y

1
(t)dt

0

y2(x) = f(x) + X k(x, t)y2(t)dt
0

Subtracting one equation from the other we have:

from which

yi(x) - y2(x) = w(x) = X k(x, t)[yi(t)-y2(t)ldt
0

w(x) = X k(x, t)w(t)dt .

0

Iterating this n-times yields



38

w(x) s
x
kni(x, t)w(t)dt, n = 2, 3, .. . ,

0

and using the same notation for bounds on k(n)(x, t) as done in

showing convergence above, we have

1 w(x) 1 <

Mn(
maxxnn!
max I w(t) 11

0 < t < x

We notice that the right hand side is just a term of the

Maclaurin series for exponential (M(X) x X) multiplied by maxi w(t)I.

We also know that each term of a convergent series approaches zero,
mn(x)xn xn

and since exp(M(X) xX) converges, the single term

must approach zero, hence

Mn(X)xn Xn
n. Imax w(t) I -- 0 as n~ 00.

n!

This means that w(x) = 0 on [0, X], and we thus show that there

is only one solution to the Volterra integral equation defined by equa-

tion (2).

Having thus shown that the iterated kernels defined by equation

(6) do exist, and are uniformly convergent on the interval [0, X], and

that the solution of the Volterra integral equation is unique, we shall

from now on accept that



y(x) = f(x) +

i=1
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ik(i)(x, t)f(t)dt (13)

where k (1)(x, t) is the iterated kernel of equation (2).

3.1. The Resolvent Kernel

It was shown preceding this section that the solution of the

Volterra integral equation, which was deduced from our n-th order

non-homogeneous linear differential equation with constant coeffi-

cients, was

y(x) = f(x) +

oo

i=

x
ik(i)(x, t)f(t)dt

0
(1)

and, of course since we have shown that the infinite series expressed

in equation (5) of the preceding section converges uniformly, we can

from now interchange the summation and the integration signs. Thus

equation (1) becomes:

co

y(x) = f(x)
o

and we shall further simplify it as

ik(i)(x, t)) f(t)dt (2)
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y(x) = f(x) + A R(x, t; X.)f(t)dt (3)
0

R(x, t;X) =

oo

i=1

i-1 (i)
k (x, t) (4)

R(x, t; X) is called "The Resolvent Kernel" for the kernel k(x, t).

As we shall see in Chapter V, the resolvent kernel plays an important

role in finding solutions to some Volterra integral equations that

would have been otherwise involved or too complicated to solve. First

we need to establish that this resolvent kernel R(x, t;)%.) actually

satisfies the Volterra integral equation as defined in Chapter II.

3. 2. The Resolvent Kernel R(x, t;)q is a Solution of the Volterra
Integral Equation

R(x, t;).) = k(x, t) + k(x, t;X)dT,
0

Proof: Let us consider an integral of the form

rck(x, )R(; t;X)cl = k(x, )

t t

The uniform convergence of the series

(5)

t) enables us

i=1
to interchange the summation and the integral signs so that



00

xk(x, )Rg, td.)cg = Xi-1 k (x, Qk(i)g, t)d
i=1

00

i-lk(i+1)(x, t) ,

applying equation (6) of the first section of Chapter III, i. e. ,

Thus

and so

since

x

k(x, gR(,t,;X )(% = X1-1k(i)(x, t) ,

t
i=2

(n+1) (1) (n)
k (x, t) k (x, t)cl

k(x, ,)R(r,, =

t

00

oo

i-lk(i+1)(x,
t)

i=1

oo

xi-2k(i)(x,

i=2

R(x, t;X) =

00

i=2

oo

i-1 (i)
k (x, t)+k

(1)(x,
t) - k (1)

(x,t)

i=2

= R(x, td.) - k(1)
(x, t) ,

i-1 (i)
k (x, t) + k (1)(x, t)

00

i=1

i-1 (i)
k (x, t),

41
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and k (1)(x, t) = k(x, t). Rearranging, the integral finally becomes

R(x, t;X) = k(x, t) + A J k(x, t;X),:g . (6)
t

Equation (6) is of the same form as our original Volterra equation if

we replace y(x) by R(x, t;X) and f(x) by k(x, t). We shall

further impose that k(x, t) 0 for x < t to take care of the lower

limit in equation (6). From now on, and especially in Chapter V, we

shall use this version of the Volterra integral equation (6) involving

the resolvent kernel R(x, t;X) since it is evident that R(x, t;X) is

a solution of the original Volterra integral equation and hence a solu-

tiOn of our original initial value problem from which the Volterra

integral equation was deduced.



IV. SOLUTION OF INTEGRAL EQUATION BY
WHITTAKER'S METHOD

In this chapter we shall briefly discuss E. T. Whittaker's

numerical method of solving integral equations of the form:

y(x) y(s)k(x-s)ds = f(x)
0
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(1)

where the kernel k(x, s) is of special form known as a "convolution-

type" kernel. We shall represent the kernel k(x) as a sum of n

exponential functions of x, thus

q
1
x q

2x
qnx

k(x) = Q
1

e + Q2e + ...+ Qne (2)

where the coefficients Q1, Q2, , Qn of the exponentials and the

coefficients qv q2, ...,qn of x in the exponentials are constants.

Using this expression for the kernel, we shall show that a solution of

the integral equation (1) is of the form:

where

y(x) = f(x) K(x-s)f(s)ds
0

p x
1K(x) =P

1
e +P

2
e
p2x pn

+ ...+ Pne

another sum of n exponential functions where P1, ...,Pn and

(3)

(4)



P1' 'Pn

integral equation given by (3) has a unique solution since it is of

Volterra type. Furthermore it was shown in Section 3. 2 that the

resolvent kernel K(x) satisfies the Volterra integral equation

are to be determined in equation (3). We note that the

K(x) K(x)k(x-s)ds = k(x)
0

44

(*)

If we put back values for k(x) and K(x) as defined by equations

(2) and (4) respectively we obtain:

p x
1

p2x pnx
P le + P

2e
+ + Pne

p s
1

0

p q1(x -s) qn(x-s
Pte e

2 +...+Pne Qle +... +Qne ds

ql 2
x q x q x= Q le + Q

2e + + Qnen

Expanding this by multiplying out the product under the integral sign

we have:

p
1
x pnx

P le + P2e + + Pne

2
x+pls-ci

2s+S xf [P Q eI 1

lq x+Pls-qls
1 2

+ +PI Qnecinx P1
0

q
+P2Q2e +...+P Q ecinx+P2x-cins

q2x+P2x-q2s
iP2Q1e

lx+p2s -qls
2 n



qix+pns -qi s q x+p s-q sq
2
x+pns -q 2s+...+P Q en n n

nQle +P Q en 2 n n
q x q x qnx

Q lei + Q 2ez + . . + Qne .

Performing the integrations we obtain:

pnx
P lepl + P

2
ep2x + + Pne

kP
1

Q1 q
1
x+ (p

1
-q 1)5 s=x P

1
Q2 q 2x+ (p

1 -q 2)s

l-c11 s=0 (p1 -q2)

P1 Qn qnx+(p
1 -q n)s

+. + e
S = X

x=0

S = X

x= 0

P2Q1 cilx+(P2-cil)s s=x P2Q2 ci2x+(P2-c12)s

==x0

+

(132 -c11) s=0
+

`F2 si2
)e

P2 Qn qnx+(p
2 -q n)s+.. +

1.'

)e
2 `in

S = X

s=0

45

Ida

PnQI qix+(pn-qi)s pnQn qnx+(pn-pn)s S =X

+ + e +...+ e
Pn 1 x=0 wn

ql x q x
2

qnx
= Q

1
e + Q

2e
+ + Qne .

Evaluating the definite integrals we have:
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nP xPte
plx

+ P 2eP2x + + Pne

P1 Q1
(e -e )+

Plxqlx P1Q2
(e -e ) +...+

p
1

Qn p
1
x qnxPlxq2x

(1)1-q1) (131 -q2) (Prqn)
-e

P
2
Qn

p2x+
P2Q1 P2x_ qlx)+ P2Q2 (eP2x_eq2x)+...4. qnx

(e -e )

(132-q1) (132-(12) (P2-qn)

PQ px qx P Q px q x P Q px qxn 2 n 2 nn n n+...+
(Pn-q1) (Pn-q2) 43n-qn1

(e -e )+ (e -e )+...+ 1(e -e )

q
1
x q

2x
qnx

= Q
1

e + Q2e
+ + Q e .

P x
1Equating coefficients of e

and so

( 9)

on both sides of the equation yields:

P
1

Q1 P
1

Q2 P
1
Qn

P + + + = 0 ,
1 (pl-q1) (131-q2) (131 -qn)

Qn
1 + ...+ ) = 0 .

(P
1 qn)

p
1

(1+
(131-c11) (131-

Q2

q2)

We do not want P1 to vanish otherwise we shall be contradicting our

assumption that the function K(x) defined by equation (4) consists of

n exponential functions. Therefore

Q1 Qn
1+

Q2
+ + = 0

(P1 -cid (131-q2) plqn)
(10)
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By similar reasoning, after equating coefficients of ep2X in equation

(9) we would obtain:

Q2 Qn
1

1 + + + = 0
(p2 -q1) (P2-q2) (132 -cln)

The process could be carried out n-times and each time equating
pix

coefficients of e , i = 1,2, ...,n, in equation (9) and we would

obtain:

1+
Q1

Q2
+

Qn

)

+ = 0
(Pi-ql) (pi q2) (Piqn

(12)

i = 1,2,3, ... , n. Thus, we see that ply p2, ...,pn are the roots of

the algebraic equation in

Q1 Q2 Qn
1+

c1

+ + = 0
(x-ql) (x-2) (x-qn)

and from this, we can determine the values of P1' P2' ' Pn.

(13)

lq xReturning to equation (9) and equating coefficients of e on

both sides of the equation we obtain:

from which

P
1

Q1 P
2

Q1 PnQI
-( + + ) = Q1

(13l qi) (132-`11) (Pnq1)

Q1(1+
P1 P2 Pn

) = 0.(prqd (p2 q1) (13 n I)
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By similar reasoning done in the forgoing paragraphs we do not want

Q1 to vanish, hence

P P2 Pn
1 + + + ... + = 0

pl-c111 132-c111 (Pn cl 1)

q
2xEquating coefficients of e on both sides of (9) also yields

p P2 Pn
1

1 + + + ... +
(131-q2) (132-c12) (pn-c12)

0

(14)

(15)

q.x
and equating the coefficients of a general exponential e J we have:

1 +
P

1
+

Pn
2 + ... + = 0

(p1-qj) (

Pp2-c1j)

(pri-cj)

j = 1,2, ...,n. Again we see that ql,q2, ...,qn are the roots of

the algebraic equation in z:

P
1

P2 Pn
1+ + + ... + =0(p1-z) (p2-z) (Pn-z)

(16)

(17)

and this will enable us to determine their values.

If pi, p2, , pn , and qi, q2, 1 qn are known they could

be used in the set of 2n equations given by equation (12) and (16) to

determine our coefficients P l' P
2

... Pn of the function K(x)

that we are constructing. Hence if p1, p2, ..., pn and
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P 1, P2, . . . , Pn are determined, they could be put back in our expres-

sion for K(x) and we thus see that the resulting expression for

K(x) given by equation (4) will satisfy the integral equation (*).

The problem therefore reduces to that of finding the value for

K(x) and this can be done by eliminating P1, P2, ...,Pn determi-

nantly from the n-equations defined by (16) together with (4). From

these equations we have:

K(x)

pix
= -e

1 1 1

(Pi -qi) (p2 -q1) (Pn-q1)

1 1 1

(P1-q2) (p2 -q2) (pn-q2)

1 1 1

(1°1 -qn) (132-qn) (Pn-qn)

1

1

1

1 1

(Pn-q1)

1 1

(P2 -q2) (Pn-q2)

1 1

(1°2-qn) (Pn-qn)

p2X
e

1

(p1 -q1)

1

(P1-q2)

1 11 ...
(Prqn) `Priqn)

and factorizing these determinants [5, p. 380] we have
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K(x) =
(1)1-q1"1-c12) (131-qn) ePlx (132-c11"2-c12) (p2-cin) eP2x
(P1-132"1-133) (pl-Pn) (P2-131)(P2-133) (132 Pn)

(pn-c11)(Pn-c12). (pn-qn) ePnx-
(Pn-P1)(Pn-P2). (Pn-Pn-1)

(18)

With this value of K(x), equation (*) and hence equation (3) is a

solution of our original integral equation defined by (1).

The method, as a whole is very much involved and so in the next

chapter we shall discuss a method proposed by G. C. Evans in 1911

[2] for finding the resolvent kernels (and hence solving the integral

equation containing the kernel) for kernels that satisfy differential

equations together with known initial conditions. The method will

therefore be applicable in treating a kernel of Whittaker's exponential-

sum type since it will always satisfy a linear ordinary differential

equation with constant coefficients.



V. CALCULATION OF THE RESOLVENT KERNEL BY
THE METHOD OF G. C. EVANS

The resolvent kernel R(x, t;X) of the Volterra integral

equation

y(x) = f(x) + X S k(x, t)y(t)dt
0

corresponding to the initial value problem

any(n)(x) + an-1y(n-1) (x) + ...+ a
1
y(1)(x) + a

0
y(x) = f(x)

(n -1) n -1 ,y-1(n-2) n-2
y (0) = y ( 0 ) = yo , y(0) = yo

'

was found to be

R(x, t;)) =

oo

i=1

i-lk(i)(x,
t)
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(i)

where k(x, t) is the kernel of the integral equation (i). We pointed

out that different kernels k(x, t) will produce different resolvent

kernels according to equation (ii). The method of iteration could be

employed to solve for the resolvent kernels for some simple kernels

of the form

or

k(x, t) = 1

k(x, t) = k(x-t) = em(x-t)
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However the work involved in calculating resolvent kernels for ker-

nels of the form

m (x-t)
1

m
2

(x-t)
k(x, t) = k(x-t) = Ale + A2e

is formidable, and certainly for more involved kernels, finding the

resolvent kernels by the method of iteration does not help. We hope

that there is a way of finding the resolvent kernel by some other

method and so for this chapter we shall discuss the method suggested

by G.C. Evans in 1911. Some kernels k(x, t) do in fact satisfy

linear differential equations with known initial conditions, and it is to

this family of kernels that we shall apply the method of G.C. Evans.

Before we employ the method to solve our n-th order non-

homogeneous linear differential equation with constant coefficients,

we shall apply it to solve for the resolvent kernel for the kernel

m
1
(x-t) m

2
(x-t)

k(x, t) = k(x-t) = Ale + A 2e

where it was almost impossible to solve for it by the method of

iteration.

We shall assume, without loss of generality that m
1

>m2'

and Al' A2' ml' m2 are real constants. This kernel k(x, t) is in

fact a solution of the linear differential system:



k"(x-t) (m1 +m2)k'(x -t) + m
1
m

2
k(x-t) = 0 ,

k(0) = Al + A2
'

le(0) = m
1
A1 + m2A2
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(1)

The general integral equation satisfied by the resolvent kernel

R(x, t;X) which may be represented by R(x, t;X) = r(x-t;X) as we

saw in Chapter III is,

r(x-t;X) = k(x-t) + X SI k(x-u)r(u-t;X)du
t

Differentiating twice with respect to x yields:

and

(2)

(x-t;X) = k (x-t) + X kx(x-u)r(u-t;X)du + Xk(0)r(x-t;X) (2a)
t

r (x-t;X) = k (x-t) + X k (x-u)r(u-t;X)duxx xx xx

+ Xkx(0)r(x-t;X) + Xk(0)rx(x-t;X)

Substituting (1) in (3) gives

rxx (x-t;X.) = {(m1 +m2)k'(x- t)- m1m2k(x -t)}

+XS1 {(mi+m2)k'(x-u)-m1m2k(x-u)}r(u-t;X)du

(3)

+ X.(m1A1+m2A2)r(x-t;X) + X.(A1+A2)rx(x-t;X) (4)
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For simplicity we shall leave the (x -t;)) out of the resolvent

kernels and (x-t) out of the kernels k(x-t). We therefore have:

x
rxx = kxx

+ X {(ml +m2)kx-m1m2k}rdu
t

+ X {m1A1 +m2A2 }r + k(Al+A2)rx

Multiplying (2) by (mim2) yields;

(m m 2)r = (m I
m 2)k + k(m

1
m2).5. krdu

Adding (5) and (6) leads to;

(5)

x
rxx

+ (m1m2)r = kxx + X (ml +m2)kxrdu + k(m1A
1
+m2A 2)r

t

(6)

+ X.(A1+A2)rx + (m1m2)k . (7)

From (2a), substituting (1) gives;

rx = kx
+ X J k (x-u)r(u-t; k)du + k (A

1
+A2)r

t

and multiplying (8) by (mi+m2) gives;

(8)

(ml +m2)rx = (ml +m2)kx + k(m
1
+m ) J kxrdu+k(m

1
+m )(A

1
+A2)r

(9)
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Subtracting (7)-(9) leads to;

rxx (rillm2)r (rnl+m2)rx

= kxx + Sx{(m
1
+m

2
)kxr}du + X(m

1
A

1
+m

2
A2)r

t

+ X(A1+A2)rx + (m1m2)k (n1 +rn2)kx X(mi+m2

"rnl+rn2)(Al+A2)r

= {kxx-(m1+m2)kx+(m1m2)k} + X(A1+A2)rx

+ X.{(m1Al+m2A2)-(mi+m2)(Ai+A2)}r

= k(A1 +A2)rx + X{(m1A1 +m2A2)-(mi+m2)(A1 +A2)}r

x
kxrdu

Since {kxx-(m1 +m2)kx+mim2k} = 0 from (1), leading to the differ-

ential equation in r:

rxx - {(m
1
+m

2
)+X(A

1
+A

2
)}r x

+ {(mirr2)-X.(m1A1 +m2A2)+X(mi+m2)(A1 +A2)}r = 0,

and simplifying gives:

rxx - {(m
1
+m

2
)+X(A

1+AZ
) }rx + {(m1m2) +X(m1A2 +m2A1) }r = 0

(10)

which for simplicity may be written as:

r - arx + br = 0xx



where the constants

a = {(m1tinz)+X(A1 +A2)}

b = {(m1m2)+X(m1A2 +m2A1)} .

In solving equation (11) assume that the solution is of the form

r = es(x-t)

and differentiating with respect to x, we obtain:

and

r = ses(x-t)

2 s(x-t)r = s exx

Substituting these in the differential equation (11) yields:

with solution

s
2 - as + b = 0,

[a±(a2-4b) 1 /2]
s

2

Now to find the value of (a
2

-4b) from (12), we have that:

a2 4b = {(m1 +m2) +X(A1 +A2)}2 - 4{(m
I
m

2
)+X(m

1
A

2
+m A1)/

= (ml2+m2
2+2m1 m2) + X2(A1 +A2)2 + 2(m1 +m2)k(A1 +A2) -

56

(12)
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- 4 (m m ) - 4 X. (m A +m 2A i)

= [m
1

2
+m

2
2 -2(m

1
m2)] + X2

(A
1
+A2)2 + 2X.m

1
A1 + 2Xm

1
A2

+ 2km
2
Al + 2km

2
A2 - 4km

1
A2 - 4 km

2
A1

= (m
1

-m
2

)2 + X
2(A

1
+A

2
)2 + 2Xm

1
A1 - 2Xm1A2

- 2X.m
2
A1 + 2Xm2A2

= (m1 -m2)
2

+ X
2

(A
1
+A2)

2
+ 2XA 1(m

1
-m2) - 2X.A2(ml -m2)

= (m
1

-m 2)2 + X2(A1 +A2)2 + 2(m
1
-m

2
)X(A

1
-A2) .

Unfortunately, it does not come to a nice perfect square as hoped, but

anyway, the two roots of equation (11) are:

and

1
s

1 2
= [ {(m

1
+m

2
)+X(A

1 +A 2)}

+{(m
1

-m
2

)
2

+X.
2

(A
1
+A

2
)

2
+2X(ml -m

2
)(A1 -A2)}1 /2]

1
s

2 2
= [ {(m l+m 2

)+X(A
1+A 2)1

-{(m 1-m 2 )2+X2(A
1

+A
2

)2+2X(m1-m 2
)(A1 -A

2
)}1 /2}

So the general solution of (11), which is the resolvent kernel, is:

s
1

(x-t) s
2

(x-t)
r(x-t; X) C le + C 2e
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where C1, C2 are real constants. Therefore,

R(x, t; X)

[{(ml+m2)+X(A1+A2)}+{(m1-m2)
2
+X

2(A1+A2) 2+2X(m1-m2)(ArA2) /2Rx-t)
= C le

12[{(mi+m2)+X(A1 +A2)}-{(m1-m2)
2
+X

2(A1+A2) z+2X(m1-m2)(A1-A2)} 1/2
ix-t)

+C 2e

To eliminate the constants C1, C2,

X = 0 then;

r(x-t; 0) = k(x-t)

we see from (2) that if

m
1
(x-t) m

2
(x-t)

= Ale + A2e (14)

Also from (13) putting X. = 0 gives:

m
1
(x t) m

2
(x-t)

R(x-t; 0) = C le + C2e

Comparing (14) and (15) shows that:

Al = C1,

and

A2= C2.

Thus the resolvent kernel is given by the expression

(15)
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R(x, t; X)

[{(mi+m2)+X(Ai+A2)}+{(m1-m2)
2
+X

2(Ai+A2) 2 +2X(m1-ma)(Ai-A2/21
(x-t) )

= Ale

ii-m2)+X (A tA2)} -{(m1 -m2)
2
+X2 (A1 +A2)

2
+2X (m 1-m2)(A fA2)1121(x-t)

+A 2e

As mentioned before, calculating this resolvent kernel by the

method of iteration was almost impossible because of the amount of

work involved. The method of G. C. Evans has provided a way out.

5.1. Solution of the Volterra Integral Equation Corresponding to
the Initial Value Problem for a Non-Homogeneous Linear
Ordinary Differential Equation

In Chapter II, we converted the initial value problem for a non-

homogeneous linear differential equation with constant coefficients

any(n)(x) + an-ly(n-1)(x) + ... + a0y(x) = f(x)

(1)
ny(n-1)(0) yo

-1
y(0) = y0

into a Volterra integral equation of the form:

x
y(x) = f(x) + X J k(x, t)y(t)dt (2)

0

where we found the kernel of equation (2) to be



k(x, t) = -

n-1
n-1-1 (x-t)ia .

an (i)!
i=0
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(3)

In Chapter III, we introduced the idea of the resolvent kernel

R(x, t;X) for kernel k(x, t) and we showed that the resolvent kernel

actually satisfies the Volterra integral equation

R(x, t;X) = k(x, t) + S. k(x, )RR, t;X)d.
t

In other words, in solving for y(x), the solution of our initial value

problem, it is sufficient to solve for R(x, t;X-) since equation (2) on

page 30 is solved by equation (3) on page 40.

In solving (1), our problem therefore reduces to that of finding

the resolvent kernel R(x, t;X.), and, as mentioned in the preceding

section, the method of iteration will do us no practical good. We shall

find it by the method of G. C. Evans.

First, we need to find out what differential equation together with

suitable boundary conditions is satisfied by the kernel given in equation

(3). To do this, let us write out the terms of the kernel k(x, t) and

then differentiate n times. From equation (3),



k(x,t) =

n-1 an-i-1 (x-t)1
-an (i)!

i=0

(x-t)n-1
= -

1 (x-t) (x-t) 2

+a
a a +a

n -1 n -2 1! +a +a
2!

(x-t)3+...+a
0 (n-1)!n-4 3!

Differentiating with respect to x we have:

2
(1) 1 (x-011-2

k (x-t) = - a +a (x-t)+an-4
2!

+ .+ a
an n-2 n-3 0 (n-2) ! j

and
n-3

(2) 1 (x-t)2 (x-t)
k (x-t) = - a

an-3+an-4(x-t)+an-5 2!
+ + a

0 (n-3)!
n

a
k

(n-1) (x-t) = 0 ,an

from which

k(n)(x-t) = 0 .

Our differential system, satisfied by k(x-t) is therefore:

k(n)(x-t) = 0

k(0) = -an-1 /an

k(1)(0)(0) = -a /an-2 n

k (2)(0) = -a /an-3 n

(n-1)
k (0) = -a /a

0 n

Having obtained these, we are now in a position to apply the

61

(4)
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method of G. C. Evans to solve for the resolvent kernel R(x, t;X) for

the kernel k(x-t). As we pointed out before, the resolvent kernel

R(x, t;X) is a solution of the Volterra integral equation:

R(x, t;X) = k(x, t) + X 1 k(x, u)R(u, t;X)du
0

(5)

and since k(x, t) is of the form k(x-t) in equation (3) we may

assume that the resolvent kernel R(x, t;X) is of the form r(x-t;X)

so that rewriting equation (5) we have:

r(x-t;).) = k(x-t) + X. s k(x-u)r(u-t;))du
0

(6)

To simplify our writing suppose we just write r for r(x-t;X) and

r(u-t;X) and k for k(x-t) and k(x-u), thus obtaining

r k + X krdu
x

0

Differentiating this with respect to x, we obtain

x
r (1) = k (1)

+ k (1) rdu + Xk(0)r ,
0

and differentiating again leads to

(7)
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r (2) = k (2) + k (2) rdu + Xk (1)(0)r + Xk(0)r
(1)

.

0

A third differentiation yields:

r (3)
= k(3) +

(3) rdu + Xk
(2)

(0)r + Xk
(1)

(0)r
(1)

0

+ Xk(0)r (2)
.

We can see a general pattern building up, and after the i-th differen-

tiatiori we would obtain:

r(i) = k(i) + XS + X
0 j=0

j) (0)r (i-j-1)

In particular, after the n-th differentiation we have

n-1

i=0

r (n) =k (n) k
(n) rdu+X

0

(0)r (n-i-1)
(8)

Equation (8) can be further simplified since we already showed that

k(n) = 0 and so

k
(n)

+ X
S

k
(n) rdu = 0 .

0

Equation (8) therefore becomes



n-1

r(n) - k (0)r (n-i-1)
= 0
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(9)

i=0

Writing out a few terms we have

r(n) Xk(0)r
(n-1) (1)

Xic (0)r
(n 2)

Xk
(n-1) (0)r = 0 (10)

However, from our expressions for the derivatives of k(x-t)

we see that

k(0) = a /an-1 n

k
(1)(0)

= a /an-2n
k(2)(0)(0) = - an-3 /an (11)

k
(n-1)(0) = - a /a

0 n

Equation (10) therefore becomes:

r(n) an -1
+

an-1 (n-1) a0
(x-t;X) + X r (n-2) (x-t;X)+...+ X r = 0.X. ran an

(12)

This is the differential equation satisfied by the resolvent kernel. We

can solve this equation provided we have n boundary conditions,

since the differential equation is of order n. To find the conditions

we substitute X = 0 in the general equation for the derivatives of r:

i.e., in



to obtain

r(i) = k(i) + X k(i)rdu +

`j0

i-1

(0)r (i-j-1)

r(i)(x-t, 0) = k(i)(x-t), i = 0,1,2, ... , n-1.
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We shall further substitute x-t = 0 to obtain the set of n boundary

conditions:

and
r(0,0) = k(0) = -an-1 /an from (11),

r (1)(0,0)
= k (1) (0) = -an-2 /an from (11),

r (n-1) (0,0) = k(n-1) (0) = -a
0

/an
from (11).

Our problem therefore reduces to that of solving the homogene-

ous linear differential equation with constant coefficients, together

with n boundary conditions:

(n) (n-1)anr (x-t;X) + Xa r
n-1

(x-t;X) +

r(0, 0) = -a /a
n -1 n

r (1) (0,0) = -a /an-2 n

r (2)(0,0) = -a /an-3 n

r (n-1) (0,0) = -a /a
0 n

-+ xaor
= 0

(13)

Several methods for solving such equations were discussed in
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detail in Chapter I and so any of them could be readily applied. We

already pointed out that the resolvent kernel R(x-t;X) is in fact a

solution of the Volterra integral equation deduced from our original

initial value problem; therefore once the resolvent kernel R(x-t;X)

is determined, we essentially have the solution of our Volterra inte-

gral equation corresponding to our original initial value problem for a

non-homogeneous linear differential equation with constant coefficients.
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SUMMARY

Different methods have been employed to solve the initial value

problem for a non-homogeneous linear differential equation with

constant coefficients

any(n) (x) + an-1 y(n-1) (x) + + a
0
y(x) = f(x)

y(0) = yo, y(1)(0) = . ,y(n-1)(0) = y0n-1

We saw that the method of "undetermined coefficients" has its

limitations since it could be applied in only a few cases, and so we

sought a more powerful method--the Lagrange's method of variation of

parameters--for finding a particular solution v(x) of the non-

homogeneous differential equation.

The method of Laplace transform was also employed in solving

the differential system. It is a nice method but we would almost

always have to have a table of Laplace transforms handy every time

we want to solve such differential systems.

We further converted our differential system into a Volterra

integral equation and found that solving by the method of iteration was

not the best thing to do because of the work involved. We tried

Whittaker 's numerical method but here again we saw that the method

was very much involved.



68

The limitations encountered with these various methods led us

into developing the idea of the resolvent kernel of the Volterra integral

equation and calculating it by the method suggested by G. C. Evans in

1911, having shown that the resolvent kernel actually is a solution of

the Volterra integral equation corresponding to the initial value prob-

lem for a non-homogeneous linear differential equation with constant

coefficients.
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